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ABSTRACT

The purpose of Section I is to generalize Theorem 3 of Severo,
Montzingo, and Schillo, "Charecterization of the asymptotic distribu-
tions of a transformed ncrmal random variable," Sankhz;, Series A, 27,
by relaxing the assumption of normality and removing the requirement
that the parameters py and o& of the distribution of the random
variable Y be the mean and variance, respectively. A result analogous
to the above-mentioned theorem 18 obtained for the class of location-
scale parameter distributions. Examples are given which show that the
conditjions given are sufficient, but not necessary, for the existence

of an asymptotic distribution of a transformed random variable.

Section I1 illustrates ways of deciding whether or not a given uni-
variate random variable X «can be transformed into a given univariate
random variable Y ; and it gives procedures for defining various trans-
formations of X 4nto Y {n the event that one such transformation is

known to exist.

Section III, which consists of three parts, gives an illustration
of the notion of robustness of a test, a generalization of this notion,
and a tentative definition of the robustness of a test in terms of a
metric on the space of power functions of the test. A short investiga-
tion is also made in this section of the properties of the Kolmogorov
wetric on the space of location families of distribution functions, and
applications are made .o the normal, Ccuchy, student's-t, gamms, and

exponential distributions.
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Section IV presents two theorems that provide simple interative
solutions of special systems of differential-difference equations,
The first system consists of linear differential equations whose
coefficient matrices are trisngulsr, have constant el::@ntl, and have
diagonal elements equal to each other at most in pairs. The equations
of the second system also have constant triangular coefficient matrices,
such that whenever therc are equal diag~unal elements then sufficient con-
ditioni are imposed on the matrices themselves so that the solutions
involve only sums of exponmential terms,

The theorems are applied to the simple 1:ochastic epidemic and to
the general stochastic epidemic, respectivcly, in each of which the
initial distribution of the number of uninfected susceptibles and the
number of infectivea are arbitrary but the total population size is
assumed bounded. The results for the simple stochastic epidemic provide

solutions not obtainable by previously known results, The results for

the general stochastic epidemic are simpler and more direct than other known .

methods, which, when used to solve the problem having an arbitrary initial

distribution, would involve additional steps that would sum proportionally-

weighted conditional results,
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I. ON THE ASYMPTOTIC DISTRIBUTION OF A TRANSFORMED RANDOM VARIABLE

In [2], there is stated and proved a theorem regarding the ssymptotic
distribrtion of a transformed normal random variable, and the following
classen of Raire functions are defined:

For each natural number n , and each real number s , A [a;s]
is that class of Baire functions whose elements, ) , satiefy the con-
ditions: (i) the nEE derivative, X(n) , of A is continuous at
s . (1) 2™ (s) 1s a nonzero real number, and (iii) {f m is a
natural number less than n , ﬁhen l(m)(s) is zero.

For each natural number n , and each real number s , #[n;s]
is that class of Baire functions whose elements, w , satisfy

lim w(x)/x" = s/n' .
x=0

The theorem in [2] to which we refer may be stated in a slightly
altered form as follows:

If Y is a normal random variable with mean “y and standard
deviation c& s If 2 = (Y-uy)/cy ; 1f there is 2 natural number n
such that h € J\[n;uy] ; 1f there are real constants R and Q ,
with Q 40 , such that r € u(n;kh(n)(uy)] and uo(ay) - h(uy) + r(o&) H
1t o an;Qh(n)(uy)] P A X = HOD , and 4 W = [Xepg@)) /oy (0)
then the asymptotic distribution of W , as c& approaches zero, is
that of the random variable (Zn-R)/Q .

The purpose of the present work is to relax the assuwption of
normality on Y and, incidentally, to remove the requirement that the
parameters “y and a} be the mean and standard deviation of Y .

“l-
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For convenience, we introduce some terminology.

Let T be a subset of Rl x RI » the real upper half plane. We
call a femtly (P(x;u,6):(u,6) € T} of distribution functions a
location-scale-parameter family with respect to T {f, and only if,
there is a distribution function, G , on the real iine such that for
each real x , we have F(x;u,0) = ;((x-p)le) » for every (u,9) €T .

For ease of reference, we restate Lemma 2 of [2], in slightly
altered form.

LEMMA, Let h € ]\[n;a] » R be a real number, and
Q be a nonzero feal number. Then a necessary and sufficient

condition that 1lim [h(a+bz) - h(a) - r(b)1/q() = (z"-R)/Q ,
b0

for each real number z , is that r € Q[n;Rh(n)(a)] and
q € 2n;qn (™ (a))

We can now prove a generalized version of Theorem 3 of (2].

THEOREM. Let Y be a random variable with distribution
function F(y;u,6) , where {P(y;u,9):(u,?) € T} is a location-
scale family with respect to T . Let h € Aln;al] , R
be any real number, and Q be any ninzero real number. If

™ )] and

W = [h(Y) - h(u) - £(6)/q(8) with r € Q[n;Rh

q € u[n;Qh(")(u)] » then the asymptotic distr’bution of W ,

as 6 spproaches zero, is equal to that of . (Zn-R)IQ ’

where Z = (Y-p)/6 .

Proof. By applying Theorem a, pag: 166, of [1], the characteristic
function, Bw(t) , may be written in the form

Bw(t) - fexp[ic v(z)]dG(z) = Jrexput[h(p-i-ez) - h(w) - r(9)]/q(9))d(z)

- -
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where G , the distribution function of 2 , does not depend4on (-,6) .
By applying the Lebesgue dominated convergence theorem and the Lemma,

we have, for each real t ,

l1im B, (t) = “/‘exp[it(zn-n)/Q]dC(z) = 8(t) , aay.
6= " J

Since 1lim B(t) = B(0) , B 1is continuous at zero and, hence, B 1
t—0

a characteristic function. Thus, the asymptotic distribution of W ,
as 6 approaches zero, is equal to the distribution of (Zn-R)/Q .

We note in passing that the proof does not depend upon the existence
of.momen:u of Y . For example, the theorem applies to the situation in
which Y {s a Cauchy random variable with location-scale parameter (u,6)
belonging to T = Rl X R; « Thus, for any transformation h of the
tyne described in the thecrem, the usymptotic distribution of the random

variable W = [h(Y) - h(u) - r(F))/q(6) 1is equal to that of the random

, variatle (Zn-R)/Q » where the probability density function of 2Z 1is

given by
f(z)-—‘L——-l——z— N .-<z<. .
142

We also note that the theorem gives conditions under which the
distribution of the random varisble W spproaches, as 6 approaches
gero, the distribution of the random variable (zn-R)/Q which Joes not

depend upon & .
We give below some examples of situations in which the distribution
of (z“»n)/q may depend upcn 6 , and for which it is true that the

distribution functions of W and of (z“-n)/q approach the same function

-3-




as 6 approaches zero.

Exanple 1. In this example, we show that the distribution func-
tions of W and of (z"-R)/Q wmay approsch the same distribution
function as 6 approaches zero, even though F(y;u,f) 1is not a
location-scale family with respect to T .

Let u be a nonzero real number and let 6 be & real number fn
the open unit interval (0,1) . Let T' = {(,6)) and let Y@,6)

denote a discrete random variable with distribution function

r
0 » ~»<y<u-6
6212 ., p8<y<y

F(y:us:6) = <
1-67/2 , pSy<u#

Ll y W Sy<ew

If Z(u,9) denotes the random variable (Y(u,6)-p)/6 , then the dis-

tribution function of 2(s,6) is given by

1
0 » - < z< -1
62/2 , -1<z2<0
¢z = {1 .
1-6%/2 , 0<z<1
1l : » 1_<_z<-
L

which depends on (u,8) , so that (F(y;H,8) : (4,6) € T'] 1s not a
location-scale family with respect to T .

If R 1is any real number and Q is any positive real number, then
we denote by U(8) the random variable (zz(u,e)-R)/Q in order to
stress the fact that the distribution function of 2Z(4,6) depends on
6 . It is easy to show that the distribution function of U(6) 1is

given by




0 » - <y < "l/Q
H(uif) = §1-62 , -RIQ<u< (1-R)/Q .

1, A-BQSu<e

If ve take h(y) = (y-u)2 » r(6) = REZ(146) and q(8) = Q2 (1426) ,
then it is readily verified that h €A[2;u] , r € ¥[2;2R] and
q € Q[2;2qQ] , and that the rardom variable W(6) defined by

W(8) = [h(¥(u,6)) - h(u) -~ r(6))/q(6) has distribution function

0 » == < w < -R(148)/Q(1+26)
Jwi6) = { 1-67 , -R(148)/Q(1426) < w < [1-R(149)]/Q(1420) .

1 » [1-R(1+6)]1/Q(1420) Sw < =

1f we consider, for a fixed real number x , the limit, as 6

approaches zero, of H(x;6) , then we see that

o , “"<X<‘R/Q

lim H(x;6) = .
6=0 1 , -RIQ<x<mw

And if we write J(w;6) 1in the equivalent, but more tractable, form

( 0 -1
0 .~.<H<'R/Q[l+m

-1
J(w;6) = { 1-92 . -R/Q[l +-1-§+5 ] fw< [Q(l+29)]‘1 i R/Q[l +Te_+_e

-1
1 ’ [Q(1+29)]‘1 - R/Q!:l +i%é ] Sw<e

\

then it {s easy to see that, for fixed real x , we have

0 , -=<x <-R/Q

1im J(x;6) = .
6-0 1 , -RrR/Q <x<e

-5-
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Thus, as 6 approaches zero, the distribution functions of the random
variables W(6) and U(6) both approach the same distribution function.
Example 2. In this example, we show that even though the limit,

as 6 approaches zero of the distribution function of the random variable
U) = (z"(,8)-r)/Q 1s not a distribution function, the limit, as 6
approaches gzero, of the difference between the distribution function of
U(6) and that of W(f) can approach zero.
Let T' be the same as in example 1, and let Y(,6) denote a

discrete random variable with distribution function

t -1
0 ,-<y<“-9

/x1-6%) , p-67t Sy<wu

F(y;u,0) = { 2 -1
0/2146Y) , w <y < ueo

1 'U"‘e-lsy<-

The distribution function of the random variable (Y(u,6)-u)/0 ,

which we again denote by 2(u,8) , is given by

4

0 ,-<z<-6-2

a/x1-6%) , -672<2 <0
G(z;6) = 2 -2
(/2(146%) , 0<z2< 8

1 ,9252<-

“

and that of the random variable U(6) = (zz(u,a)-l)/Q » for positive

real R and positive real Q , is given by

0 ’ ".<U<“R/Q

L+
-

H(u;0) = Q<u< @ Q.

1 ., @ERQ<u<e

-6~
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By taking h , r and q to be the same functions as they were

in example 1 and defining W(E) as it was defined there, wa find that

W(6) has distribution function

0 , -» < w<-R(149)/Q(14+26)
Jw;0) = 3 6%, -R(146)/Q(1420) < w < (6”42 (146)1/Q(1426) .
1, (e-a‘l(l"e)]/Q(l-fZe) S w<au

In order to simplify the computations ard make the discussion easier
to follow, we now specialize to the case R =1 and Q =1 . We note

that no essential generality is lost by so doing. Under this restric-

tion we have

0 , «w<uy<-]

4

Hwo) = { 68 , -1zu<eta

1, e Su<e
and
0 , -=<w<-[146/(1+0))71

J(w;0) = o2, -[1+e/(14-e)]'1 <w< [e"‘-(1+6)]/(1+ze) .

1, [9"’— (149)1/(14260) <w < »

It is clear that, for any fixed real number x , the absolute

difference |J(x;9) - H(x;9)| can be made arbitrarily small by choosing

8 sufficiently close to zero; {i.e.,

lm [J(x;0) - H(x;0)| =0 , =w<x<w .
60

It is also clear that 1f x 1is any fixed real number, then H(x;9)

can be made arbitrarily sasll by choosing 6 sufficiently close to

7~
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zero (for 6 < (x+1; » H(x;6) < (x+1). ); t.e.,

1im H(x;0) =0 , w < x<e ,
6-0

which is not a distiibution function.

REFERENCES
[1) Loeve, M. (1963), Probability Theory, third edition, van Nostrand,
Princeton.
(2] severo, N. C., Montzingo, L. J., and Schillo, P. J. (1965),

Characterization of the asymptotic distributions of a trans-

formed normel random variable, Sankhya, Series A, 27, 417-422.
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1I. SUPPLEMENT TO CHAPTER 1I OF ARL 65-75

1. Preliminary Remarks

Let B denote the set of all Besire functions which map the real
line R into R ; and let D denote that subset of B which contains
the function P {f, and only {f, F 1is a dJdistribution functioéon. If F
is a function in D , 1if P {is the probability measure which induces
F , so that, at each point x of R , the value of F 1is

1

F(x) = Pl z:zX x‘} ,
if h 1is a function in B , and 1f G is that function in D whose
value at each point y of R 1is

G(y) =P{x=h(x)5y} ,
then the symbol (F,h,G) stands for the assertion that the Baire functions
F , h and G are related to one another in the manner hypothesized.
For each ordered pair (F,G) of functions in D , the symbol (F,*,G)
denotes the subset { h : (F,h,G) } of B ; and (F,G) 1is said to be
a compatible pair or‘an incompatible pair according as it is not or is
true that the set (P,*,G) is the empty set ¢ . Chapter II of the
interim technical report ARL 65-75 , entitled "Some Properties Of Dis-
tribution Functions And Transformations That Induce One Another", pro-
vides necessary and sufficient conditions under which an ordered pair
(F,G) of distribution functions in D 1is a compatible pair. In this
supplement to chapter II of ARL 65-75 , we shall carefully examine some

special ordered pairs of distribution functions in D ; we shall determine

whether or not they are compatible pairs; if one of them, (F,G) , is a

- Gt
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compatible pair, then we shall determine at least one fuuction h in
the non-empty set (FP,*,G) ; and, in the final section of this supplement,
we shall consider ways of finding various functions in (F,*,G) when
(r,G) is a compatible pair. We would like our illustrations to require
~= and, thereby, to justify -- some of the elaborate details in the
theory concerning compatible pairs of functions in D which is developed
in chapter II of ARL 65-75.

In order to make this supplement to chapter II of ARL 65-73 nota-

independent of that technical report, we shall define here those

Bymbols and terms that we use. Of course, many statements in this
supplement will not be independent of that reference, because we shall

not prove them here.

2. The Notion of Clearance

Let W denote the set of all infinite column matrices whose entries
are real numbers. Thus, W may also be regarded as the set of all infinite
.equence; of real numbers. If w denotes a matrix in W (or a sequence
in W ), then, tor each positive integer n , the symbol v, denotes
the entTy in the n'th rowv of w (or the n'th termof w ).

Three operators which may be applied to symbols denoting elements
of W are cum: , 1lim: and sum: . If w denotes an element of W ,
then cum:w denotes the sequence of partial sums of the terms of the
infirite sequence w ; that is, cum:w denotes that element v of W
whose first term v 1is w , and whose n'th term vn , for each integer

1 1

n>1,1s v +v . 1f w denotes a convergent sequence in W ,

n n-1
then lim:w denotes the limit of w . Finally, i{f v denotes an element

«10-




ot W which is such that cum:w 1is a convergent sequence, then sum:w
denotes the real number 1lim:cum:w .

A matrix v in W 1is said to dominate a matrix w in W {f, and
only i{f, for each positive integer n , vn‘z LA and, the fact that
v dominates w may be asserted symbolically by either v>2>w or w<kv .

If v>2>w and v ¢ w , then we may write v > wandc v<<kv . i

Let T denote the set of all matrices with infinitely many rows and ;
columns, in each column of which there is one, and only one, non-zero
entry, the real number 1 . If A denotes a matrix in T , then, for :
each ordered pair m,n of positive integers, the symbol Am,n denotes
the entry in the m'th row and n'th column of A . Let 1 denora
the identity matrix in T ; that is, let I be that matrix in I which is
such that, for each positive integer n , Ln,n =1 .

For each matrix w in W , let T(w) denote that subset of I
which contains the matrix A in T 1f, and only 1{f, the matrix product
Aw is a defined columm matrix; in other words, let I(w) denote that
subset of T which contains the matrix A in T 1if, and only if, for
each positive integer m , the sequence v in W , whose n'th tem
va is Am,n'n for each positive integer n , is such that sum:v {is
defined., It is evident that, for each matrix w in W , T(w) #9¢ ,
because Iw =w .

A matrix v in W 1is said to clear a matrix w in W if, and
only 1f, there is at least one matrix A {n T(w) for which it 1s true

that v dominates the matrix product Aw ; and, the fact that v clears

w may be asserted symbolically by either v D>>w or w<<v .,

-11-
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Our special interest in the notion of clearance -- that is, the
idea which underlies the assertion that one infinice sequence of real
numbers clears another such sequence -- will be restricted to such a
modest range of its application (e.g., to such sequences in W as w ,
where w {s a monotone non-increasing sequence of non-negative real num-
bers, and vhere swn:w 1s a definite non-negative real number that does
not excesd 1 ) that it might seem that some simpler notion would serve
our purpose for introducing it. It happens, however, that we have found
no replacement for it that is as easily described as it is, and that is

suitable to our needs.

3. The Theorem in Chapter II of ARL 65-75

Some notation from chapter II of ARL 65-75 is the following: For

each real number x , © (x) denotes that subset of R which containsa

the point z of R 1if, and only if, z < x . For each function F |in

D , the symbol R(F;») denotes the set of all points of discontinuity

of F ; the symbol R'(F;®) denotes the difference set R - R(F;*)

the symbol RC(F;m) denotes that subset of R'(F;o) which»contains the

point x of R'(F;*) 1if, and only {f, for each point z of R which

is less than x , F(z) ¢ F(x) ; the symbol Ré(F;ﬁ) denotes the difference
set R'(F;®) - RC(F;m) ; the symbol R (F;») denotes that subset of RC(F;v)
which contains the point x of RC(F;w) if, and only 1f, for each real

number < x , and with P denoting the probability measure that induces F ,

z
{ r:reon (z)f\Rc(F;a) \ <P{r:ream(x)N R (F;e) :
P ~ N

and the symbol R&(F;m) denotes the difference set R'(F;m) - Rw(F;m) .

-12-
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Finally, for the function F in D and the real number x , the symbols
R(F;x) , R'(F:x) , RC(F;x) , R;(F;x) , Rv(F;x) and R;(F;x) denote
the set intersections E(x)f\R(F;m) , E(x)f\R'(F;m) , E(x)r\kc(r;m) ,
w(x)NRL(Fiw) , @(X)NR (Fi=) and @(x)NR'(F;=) , respectively.

Let p be that function which maps D {into W 1in such a way that

its value at each function F in D {s that sequence p(F) =w {n W
which satisfies the following six conditions:

(1) 1f R(F;») = ¢ , then, for each positive integer n , wvo=n ;

(2) 1f R(F;e) contains exactly m points, the greatest of which
is r , then, for each integer n >m , v, =T +n-m ;

(3) if a 1is & point of R(F;») , then there is one, and only one,
positive integer n such that v, = a ;

(4) LI, for some positive integer n v is not a point of R(F;e)
then R(F;») 18 not an infinite set;

(5) 1if a and b are points of R(F;e«) such that the saltus of F
at a 1is greater than the saltus vof F at b , then there exist
positive integers m and n such that m<n |, w, = 8 and
wn =b ; and

(6) if & and b are points of R(F;~) 8such that a < b , and
such that the saltus of F at a 1is the same as the saltus of
F at b , then there exist positive integers m and n such
that m<n , vy =2 and v,o= b .

Let W' be that subset >f W which contains the sequence w of W

1f, ard only {f, cum:w 15 a convergent, monotone non-decreasing sequence,

w 18 a monotone non-increasing sequence, and sum:w does not exceed 1

-13-
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If F 1is any function in D , let w be the sequence p(F) 1in
W ; for each positive integer m , let v(m) be that sequence in W
whose n'th term, for each positive integer n , is vim) = F(wm) -

P(w- - 1/n) ; and let the symbol sal:FP denote that sequence u in W'
whose m'th term, for each positive integer w , is u, = lim:v(m) .
Thus, sal: {s an operator which {s applicatle to each function F in
D ; and, loosely speaking, sal:F {is the monotone non-increasing se-
quence vwhose non-zero terms are the saltuses of F . |

By making use of the notation described in this supplement to
chapter II of ARL 65-75 , the theorem of that chapter can be stated con-
cisely as follows:

For P and G in D , (FP,*,G) #¢ 1if, and only 1{f, sal:F <X sal:G5 ,
Thus, this theorem gives necessary and sufficient conditions for an ordered
pair (F,G) of functions in D to be a compstible pair. Hovever,isince
these conditions appeal to the somewhat formidable notion of clearance for
their meanings, it behooves us to show that‘this theorem {s necessarily
preferable to the tautological assertion that (F,G) 1is a compatible pair
if, and only 1f, (F,G) 1s a compstible pair. 1In the next section, we

intend to provide the theorem with a modest justification.

4. Clearance in W'

In this section, we shall state and prove three theorems concern-
ing the clearance relation >>> between sequences in W' . These theorems
will be considered in the next section where we shall be dealing with
some special compatible and incompatible pairs of discrete distribution
functions in D . However, we would not want the theorems of this

section to be mistaken for fundamental theorems in a carefully constructed

-14-
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theory of clearance. Such a study would properly begin on foundations
provided by a good understanding of the set W , and of the dominanc?
relation >> between its elements, and by a separate study of the set T .
In unifying the results of these separate 1nvestigatioqu in order to
develop a theory of clearance, one of the fundamental theorems would assert
that clearance, like dominance, is ; transitive relatifon. The following

theorems are too limited in scope to be regarded as fundamental theorems.

THEOREM 1. 1If the sequence Vv in W' dominstes the saquence w in W' ,
then v clears w .
PROOF: Since v>>w , I ¢ T(w) and Ilwmw , v2321Iw ; 8o
voOOO>w o,
THEOREM 2. The sequence v in W' clears the sequence w in W' only
if cum:v dominates cum:w .
PROOF: We shall prove this theorem in the following way: we shall
let v and w be any sequenices in W' which are such that the sequence
y = cum:v in W dces not dominate the sequence x = cum:w in W ; we
shall let A be & matrix in T(w) ; and we shall let u be the matrix
product Av in W' ; then we shall show that A cannot meet the necessary
requirements for v to dominate u , so that v cannot clear w
Since y does not dominate x , there exists one, and only one,
positive integer k such that yk < xk , and such that, if n 4is a

positive integer les. than k , then Yo T x, - Since v and w are

monotone non-increasing sequences of non-negative real numbers, it follows

that

-15-
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(*) for any positive integers m and n such that m >k >n ,
v <w .
n n
For each positive integer n , let r(A;n) denote that positive
integer m which is such that Am n™ 1 ; &nd, for each positive integer
m , let A(w) denote that sequence in W whose n'th term Agm) is
Am a for each positive integer n . Now, 1f, for some positive integer
?

n <k, the integer m = r(A;n) 1is not less than k , then, by (*) ,
L]
u = A(m)w >A(m)w m-mw >v
m h h="n 'n n m ‘
h=1

so that v cannot dominate u = Aw ; therefore, {f v 1is to clear w , A
must be such a matrix in I that, for each positive integer n <k ,
r(A;n) <k . If A meets this requirement, and if 2 denotes the sequence

cum:u in W , then

k k o k k k k
%=/, ' _y Z At(\n)wh 2/ y Al(an)"h = }: Yh Y A!(ln)
n=1 n=1 h= n=1 h=l h=1 n=1

k k
=Z w ALFCAI) =Z “ =x
h=1 h=1

> .

and, eimcc X > Ye 0 % D Y Consequently, there is a positive
integer n < k such that u > v, » 80 that v does not dominate u
Thus, for no matrix A in T(w) , does v dominate Aw ; hence, v

does not clear w

THEOREM 3. The sequence v {in W' clears the sequence w in W' only

if sum:v > sum:w

-16-




PROOF: let y = cum:v and x = cum:w . If sum:v < sum:w , then,

because v and w are monotone non-increasing sequences of non-negative
real numbers, there is a positive integer k such that xk > sum:v
hence, xk> Yo » 8° that cum:v does not dominate cum:w and, by theorem

2, v does not clear w

5. Examples of Compatible and Incompatible Pairs

Let 1. denote the negative half of the real line R ; let JO

0

denote the non-negative half of R ; and, for each positive ;nteger n,
oo

let I, I; » J, and Jé denote the respective intervals [ n -1,n-1/2),
[n-1/2,n), [ -2n, -2n +99/100 ) end { -2n + 99/100 , -2n + 2 ) ,
which are all open on the right.

Let F be that fuaction in D whose value st each x ¢ R 1is that
real number F(x) which 18 defined as follows: {if x ¢ I0 , then P(x)
= 101/2(101-x) ; if n 1is a positive integer and x ¢ In , then F(x) =
(101x+2n2+200n+10100)/2(n+100)(n+101) ; and, if n {s a positive integer
and x ¢ I; , then F(x) = (4n2+602n+20099)/4(n+160)(n+101)

Let H be that function in D whose value at each x ¢ R 1is that

|

real number H(x) which i{s defined as follows: {f x ¢ Io , then

H(x) 50/(100-x) ; 1f n 1s a positive integer and x ¢ In , then

H(x) (50x+n2+99n+d950)/(n+99)(n+100) ; and, if n 1is a positive integer

and x e 1!, then H(x) = (n +149n+4925)/(n+99) (n+100) .

Let G be that function in D whose value at each x ¢ R 1is that
real number G(x) which i{s defined as follows: 1f x ¢ Jo , then G(x) =
(x+1)/(x+2) ; 1f n 1is a positive integer and x ¢ Jn , then G(x) =
(x+4n) /4n(n+l) ; and, 1f n 1is a positive integer and x ¢ J; , then
G(x) = (200n+99) /400n (n+1)

-17-




Ve intend to find out whether or not (P,H) and (F,G) are com-
patible pairs. Let sal:P mw , sal:H =u , ;al:G =Yy |, cumiv m v ,
cumiu =u and cumiy = v ; and let a , b , a and b be those sequences
in W whose n'th terms, for each positive integer n , are a =u ocw
bn nlh A A :; = ;; - ;n and ;; - ;n - ;n , respectively.

We shall consider the pair (F,H) first. Each of the sets .. (F;w)
and R(H;») 1s the set of all positive integers; in fact, p(F) and
p(H) are the sequence of positive integers. Furthermore, for each posi-
tive integer n , v - 101/4(n+100) (n+101) , u = 25/(n499) (n+100) ,
a = (101-0)/4(n+99) (n+100) (n+101) , w_ = n/4(n+101) , u = n/4(n+100)
and :; = n/46(n+100) (n+101) . Thus, sum:w = lim:w = 1/4 and sum:u
= 1/4 . In theorems 2 and 3 of section 4 , there were given necessary
conditions for u to clear w ; since U dominates v and sum:w does
not exceed sum:u , these necessary conditions are met; and, therefore,
it cannot be concluded that (F,H) 1s an incompatible pair by applying
those theorems. In theorem 1 of section 4 , there was given a sufficient
condition for u to clear w ; since 202 < 0, so that Yi02 < Y02 and
u does not dominate w , this sufficient condition is not met; and, there-
fore, it cannot be concluded that (F,H) 1is a compatible pair by applying
that theorem. 1In this example, the simple tests of section 4 are of no use
to us. We have to find some other way of determining whether or not the
set (F,* H) 1is empty.

We designed this problem to ifllustrate some of the difficulties which

can attend the use of the clearance criterion in testing the compatibility

of ordered pairs of distribution functione in D . However, since we
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wanted a decision to come out of a modest amount of study, we made it
possible to show that (F,H) {s an incompatible pair (i.e,, that u

does not clear w ) 1in a way that is only a little more complicated
than it would have been if the tests derived from the theorems of section
4 could have been employed successfully. Of course, in this wey, we do
no more than hint that there might be ordered pairs of fuanctions in D to
which neither the adjective "compatible' nor the adjective "incompatible'
can be applied. Until an upper bound on the possible number of simple
decisions necessary to conclude that a given ordered pair of functions

in D 1is or is not a compatible pair is definitely established, the
statement that the pair has to be either compatible or incompatible will

appear to be quite flimsy from a critical viewpoint. We must admit that

there is much that {s vulnerable to severe criticism in our simple dichotomy

of the Cartesian product set D x D of all ordered pairs of functions
in D 1into compatible and 1nc0mpa£1b1e pairs; but no exampie here {s
subject to that kind of criticism.

In showing that (F,H) {s an incompatible pair, our procedure will
be as follows: we shall try to find a matrix A in TI(w) which 1is such
that, 1f 2z 1s the matrix product Aw in W' | then u dominates 2z ;
therefore, when we have shown that no such matrix A can meet 2ll the

requirements which we shall find that we must {mpose on it, we shall have

shown that u cannot clear w , and that (F,H) 1s an incomputible pair.

For each positive integer n , let r(A;n) denote that positive

integer m for which Am a ™ 1 . For each positive integer n , v“>'un_4_1 ’

becaure L 1/4(n+100) (n+101) ; therefore, if r(A;n) were to

be an integer m greater than n , then the m'th term of the sequence
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g = Av would be

> i >
*a -z Aﬂ.t Ve S An,n ¥a = 'n > “n#l = Yn

tml

in which event u would not dominate 2z ; consequently, A must meet the

requirement that, for each positive integer n , r(A;n) < n,

Since r(A;1) <1 , r(A;1) =1 , Suppose that it has been shown

that, for each positive integer n which is less than or equal to a

particular positive integer k ,

r(A;n) must be n {4f it is to be at all

possible for u to dominate z =Aw , We wish to see whether or not, under

these conditions, r(A;k+l) , whi
integer m which i{s less than k

term of 2z would be

ch cannot exceed k+1 , can be a positive

+1 . For such an integer m , the m'th

(-]
*n -Z Am,t Ve 2 Am,m ¥m t Am,k+1 V2t Vi "Vt ('k+1 - .m) *

t=l

If w is greater than 8

k+1

would not dominate z ., Hence

k+1l {f "k+1 exceeds ‘m . Si

then z would dbe greater than vy o and
r(A;k+l) cannot be an integer m 1less than

nce, for each positive integer m < 201 ,

L (201-m) /2 (m+99) (=+100) (m+101) (m+102) 1is positive, and since,

m o

for each {nteger m > 101 , a = (101-m) /4 (m+99) (m+100) (m+101) 1is negative,

the greatest term in the sequence

since wk+1 must not exceed am

a of W is a, =1/41208 , Therefore,

1

< a8 if it 1s to remain possible for m

to be less than k+1 , it follows that m cannot be less than k+1 1{f

o exceeds a . We find tha

k+1 1

it is true that wk+1 does not e

t the lesst positive integer k for which

u

xceed a, 1s the least positive integer k

1
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such that 101/4(k+101)(k+102) < 1/41208 ; thus, we conclude that k wmust
exceed (W/Zi2536§ = 203)/2 , which means that k > 919 ., For this reason,
we are forced to :onclude that, if k were to be less than 919 , then
r{(A;k+l) would have to be k+l ; consequently, for each roeitive integer
n<920 , A must meet the requirement that r(A;n) =n ., However, 1if A

meets this requirement, then, since 802 <0 , the 102'nd term of z = Aw

is

= - >
A ve 24 Y102 ~ *102 > Y102 ,

102,¢t Ye = “102,102 Y102 =¥

%102 © 102

Js

—

t=

so that u does not dominate 2z ., Thus, no matrix A in T(w) {s such
that u dominates Aw ; consequently, u does not clear w ; and (F,H)
is an incompatible pair.

Now, let us consider the ordered pair (F,G) . It will not be hard
for us to show that (F,G) 4is a compatible pair, so that the subset (F,*,G)
of B is not § ., Our work on this compatible pair will be primarily that
of defining a particular Baire function h in (F,*,G) . But, first, we
shall take the trouble to show that sal:G =v clears sal:F =w ,

We find that R(G;») {8 the set of all non-positive even {ntegers,
that p(G) 1is the strictly monotone decreasing sequence of non-positive even
integers, and that the n'th terms of the sequences v , v , b and b .
for each positive integer n , are v, = 101/400n(n+l) , ;n = 101n/400(n+l) ,
bn =V - = 101(10100+101n-99n2)/600n(n+1)(n+100)(n+101) and

bn =v - ;; = n(n+10101/400(n+1) (n+101) , respectively, so that sum:v =

lim:v = 101/400 . Evidently, the tests derived from the three theorems of

section 4 fail to disclose whether or not (F,G) 1is a compatible pair.

-21-
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Ve shall show that v clears w by defining a matrix A {n
T(w) vhlcﬁ i{s such that v dominates Aw , This satisfactory matrix A
will then be of use to us in our work defining a function h 1iun (FP,%,G) .
Yor each ordered pair of positive integers (m,n) , let Am,n be either 1
or O according as it is or is not true that 10l1(m-1) < n < 10lm . If =
is the matrix product Aw 1in W' , then, for each positive integer m ,
the m'th term of 2z {is

[ 101m
z -X A W = W = 1 < 101 =v 3
n=]l

n m,n n n
' n=101m-100 4m (m+l) 400m (m+1)

consequently, v dominates z , v clears w , and (F,G) 1is a
compatible pair.

The matrix A establishes the following one~to-many correspondence
betveen the points of R(G;w) and R(F;x) ; to each positive integer m ,
and, hence, to the m'th term Vg = 2 - 2m of p(G) , there correspond
101 points of R(F;») , the n'th of which is xm’n =101(m-1) + n of
R(P;») for each positive integer n < 101 ; and, to each positive integer
n , and, hence, to the n'th term n of p(F) , there corresponds one,
and only one, point of R(G;») , the even integer 2y which is such that
(1-n)/101 < y < (101-n)/101 . We are now prepared to begin defining a
function h 1in (FP,*,G) by following the procedure used in chapter II of
ARL 65-75 .

For any subgets M and N of the real line R , let the symbol

B{M,N] denote that subset of B which contains the Baire function q in

B 4{f, and oaly {f, tae value of q at each point x of M is a point
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q(x) of N . Let y denote that special function in B whose value at
each point x of R 4is that integer y{(x) which is such that

x=1<7y (x) <x . Since the function h in (P,*,G) which we want to
define 1s a function in B[R(F;=),R(G;e)] , we make use of the many-to-one
correspondence between the points of R(P;@») and R(Gi;») which was defined
in the last paragraph; and we define the value of h at each point x of

R(F;=) to be

M hw=e2r(Z2)

Of course, 1f we were to set up a different many-to-one correspondence
between the points of R(F;») and the points of a subset of R(G;x)
(i.e., if we were to find a matrix C # A in T(w) such that v >> ow) ,
then we would have to define h differently over R(F;w) .
The subsets Ré(F;w) and RL(P;») of R are the same set; this
set contains the point x of R 1if, and only if, there is a positive
‘integer n such that I; contains x , and such that n {s not x+1/2 ,
For each point x of R;(P;m) = R;(?;m) , there 1s a real point y > x
such that F(y) = F(x) . We are free to define h over R;’F;a) in any
way that ve find convenient; therefore, we define the value ¢f h at each

point x of RL(F;&) to be

@  hw=-2r(E2) .

It remains for us to define h over R'(F;u) =R'(Fim) = R;(F;a) R

let p be that sequence in W' whose n'th term, for each positive integer

23~
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n, is P, " vn -8, - 1/400n(n+l) ; then the special number ¢t = sum:p 1is
1/400 . Let P denote the probability measure which induces the distri-
bution function P ; and let T and S be Borel sets in R which ar~ such
that TNS =§ , TUS -Rw(F;m) and P(T] =t . Since R = R(F;=)UR'(F;=)
and R'(F;=) = R (F;=)UR (Fi=) = R!(F;=)UTUS , since TNS =¢ and ‘
R(P;=)NR! (F;=) = R(F;=)NT = R(F;=)NS = R (F;=)NT = RE(F;=)NS = 9§ ,

and since P[R] =1, P[R(Fix)] = sum:w = 1/4 , P[RL(F;@)] =0 , and

P[T] = t = 1/400 , it follows that R = R(F;m)L)R;(F;m)U‘rk)S and P[R] =
P[R(F;:=)] + P[R;(F;m)i + P[T] + P[S] , so that the special number s = P{ 1

is 299/400 . Thers are non-denumerably infinitely many ways of chooainé'

the disjoint Borel sets T and S so that TUS = Rw(F;m) , P[T] = t and
P[S] = 8 ; and no two such choices would yield the same definition of h

over R"(F;m) . We shali define S (and, consequently, T ) in a way

that we feel is most convenient.

Let S. and S'! denote the set of all non-positive real numbers; and,

0 0
for each positive integer m , let Sm denote the open sub-interval (m =~ 1,
m - 101/200 ) in In , and let
] ™ .
s“‘=};)o S, - |

Since, for any integers m and n such that m >n >0 , Smr\Sn =9 ,

smC R"(F;m) ard an Rw(l-';n) C RH(F;m) , it follows that, for these integers,
v[snu Sn‘l = P[Sm'l + P{Sn1 and S"‘C S;C R(F;m) . Therefore, since qy =
P[501 = F(0) = 1/2 and, for each positive integer m , q, = P[Sm1 =F(m -
101/200) - F(m - 1) = 9999/400(m+100) (w+101) , it follows that q6 = P[Sb1

= P[So1 = 1/2 ard, for each positive integer m ,
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(m+101)

q;-PfS‘;]-P[U 51] '2 ’[31]“%'* Z'E(T%ITG’S '72.%% " %00
1=0 1=0
The facts that, if q' 1is that sequence in W' whose m'th term is q;
for each positive integer m , then 1lim:q' = 29%/40C , end that %;(: R,
for each non-negative integer m , combine to enable us to define tpe set

to be the following union of Borel sets in Rw(F;w) H
w
k)s1 .
1=0
For each positive integer m , let T;: denote the closed

interval ([m - 101/200 , m - 1/2] 1in R ; let

101 m
- " . ' -
T, Hrml(m-n“ ; and let T! H T, .

Since, for any integers m and n such that m >n >1, T;'f\T;' =g

T;' C R“(F;m) and T"" C Rw(F;n) C RV(F;m) , it follows that, for these

integers, P(T;'UT‘;W = P[T;"l + P[T"‘W , TmC Rw(F;IOIm) and 'rnC Rw(F;IOIn) .

Also, for any integers m and n such that m >n >1, Tmf\Tn =¢ , so
that P[TmL)Tn1 = P[Tml + P[Tn] . Therefore, since, for each positive in
m , p;' - P[T;'l =F(m - 1/2) - F(m - 101/200) = 101/400(a+100) (m+101) , 1
follows that

101

101 1

1
Py = P[Tml -F [ };i Tial(m—1)+i 1= E: Pl Tial(m'1)+1] = 400m(w+1

i=1

for each positive integer m . Furthermore, for each positive integer m

m o
1 1 .
wer [0 n] - § e ds - e
{m]

The fact that S0 is the set of all non-positive real numbers, and that,
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each positive integer m , snf\T;' =- ¢ , ‘SQLJT;' =(m-1,m-1/2],
which 1is [I.U I"]ﬂR' (F;m-1/2) , and (m =« 1/2 , m) = I;f\R;(F;eo) .

forces us to define T to be the following unions of Borel sets in R"(F;m)

© . -
- 7' = iii T .

The most convenient definitf{on of h over T {is the following:
if x 1s s point of T , and {f =m {s that positive integer such that Tm

containsg x , then the value of h at x 1is h(x) = I = 2(1-m) . How-

ever, other definitions are possible; for example, by observing that

11 139
Len)
PrTIN =) R(T!']
1 L, 1
1=5 1=110
snd by letting
11 139
M= \UJT', n=U Ty L, TP =(TUN) - M,
1=5 1 1=110

Tg = (TZLJM) - N and, for each integer m > 2 , T; = 'I‘|n , we could define
h over T as follows: 1f x 1is a point of T , and {f m 1is that posi-
tive integer such that T: contains x , then h(x) = ) Nevertheless,

our choice of definition of h over T has the advantage that its value

at each point x of T i

e =2r(82) .

Since the formulas (1) , (2) and (3) are all the same, the function h
has, thus far, been defined so that it coincides with a convenient monotone
non-increasing step-funct .on over the Borel set R- S .

It remains for us to define h over S ., Such a definition will be
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31§en at the end of a process which follows that in the proof of the theorem
in Chapter II of ARL 65-75 .
First, we define the function K to be that function which maps R
into the set of all Borel subsets of the set TUR(F;») {ir such a vay
that, at each point y of R , the value of K 1is the Borel set
K(y) = (x : x ¢ TUR(F;») and h(x) <y} .
In order to put this definition of K into a more tractable form, we define
the following sets: for each positive integer m , let X, be that subset
of R(F;») which contains exactly 101 points, the n'th of which is
Xn = 101(m-1)4n ; let
m a0

X! = }=)1 X, ;let L =TUX ; lec L= H L, ; and let LaHL

Since L; = T;L)X; for each positive integer m , L = TUR(F;») . Thus,

if y 18 a point of J, , then K(y) =L ; and, {f, for some positive

0
integer m , y 1is a point of JuL)J; = [-2m , 2 - 2n) , then K(y) =L -~
'L; . Since P[L] = 101/400 and, for each positive integer m , P[Xm1 =

zn = lll‘m(m""l) »

om
PIX!] = Z PIX,] = 77qy  and PILL) = P(TL] + PIX.] "’"‘“""403231) ,
{=1

it follows that, 1if y ¢ J then P[K(y)] = 101/400 ; and, if, for some

0°
positive integer m , y € J-L)J; , then P[K(y)] = 101/400(=+1) .

Next, we define the function g to be that “unction in B whose
value at each point y of R 1s g(y) =G(y) - P[K(y)1 . Thus, if y ¢
J0 , then g(y) = (299y+198) /400(y+2) ; and, if, for some positive integer

m L, Y€ Jn\lJ; , then g(y) 1s either (100y+299m)/400m(m+l) or 99/400um
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sccording as y {s or i{s not less than 99/100 - 2m ,
Now, we intend to define a function V which maps the closed interval
[0, 81 , vhere s = P[S] = 299/400 , into the set of all Borel subsets
of S 1in such a way that each of the following four conditions is satis-
fled:
(1) for each point u of [0 , 8] , the image V(u) of u
under the mapping V {3 a Borel subset of S such that
P[V(u)! = u ;
(11) for any points u and v of [0, 8] such that u<v,
V(u) 4is a proper subset of V(v) ;
(114) 4f u =0, tlen V(u) =9 ; and
(iv) 1f u =38 , then V(u) =S .
The particular function V which we shall define is taken from a non-
denumerably infinite collection of functions, each of which « tisfies these
four conditions, but no two of which yield the same definition of h over
s .
Let X denote that subset of R - S which contains the point x
of R~ S 1f, and only {f, there exists a positive integer m such that
x =m - 101/200 ; and let y be that function which maps SUX into the
class of all Borel subsets of S 4in such a way that the image of each point
x € SUX under the mapping 1 18 the set 4 (x) = SNAR'(F;x) 1f xe¢ S ,
and 18 the set (x) = S; if x is the point m - 101/200 of X . Thus,
for each point x of SUX, Lither x <0 and Plu(x)! =F(x) , 8> that
Plu(x)] « 101/2(Q01-x) - , or there exists a positive integer m such that

ml<x<m and P[u(x)] = q; - q + 2wm(x-m+1) = q;-l + 2wm(x-m+1) , 80
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that Plu(x)] = (20200x+299m2+29900m+2030201)/400(m+100)(m+101) . If x

and z are points of SUX such that x < z , then
0 = P[P < Plu(x)] < Plu(2)1 < P[S] =8 ,

so that ;(x) 1s a proper subset of ;(z) . Consequently, the function
.13 a one-to-one mapping of Dom  , 1its domain of definition SUX , onto
Ran  , its range of values, which 1s a proper subset of the set of all
proper Borel subsets of S ; in other words, , defines & one-to-one
correspondence between the elements (points) of Dom  and the elements
(sets) of Ran |4 . Furthermore, there ia 2 one-to-one correspondence
between the points of the open interval (0 , s) and the points of the set
SUX =Dom | such that ue (0, 8) and x € SUX correspond to one
another 1f, and only 1f, P[u(x)] =u . Therefore, there is a one-to-one
correspondence between the points of (0, s) and the Borel sets in Ran
such that the point u ¢ (0 , 8) and the set Z ¢ Ran | correspond to one
another {f, and only if, P[2] =u .

We define the function V , whose domain of definition Dom V ({s
the closed interval [0 , s8] , in such a way that its range of values Ran V
is Ran |, augmented by the values V(0) =¢ and V(s) =S of V at O
and s , respectively, and its value at each point u of (0 , 8) = Ran
is that s2t V(u) =y(x) in Ran y , for some unique point x of Dom TR

which is such that P[p(x)! =u . Thus, if u =0, then V(u) = ¢ ; 1if

0<u< 1 , then V(u) =4 ( 10123°'1 .> s 1f, for some positive integer m ,

2

2
400 (m+100) (mr+101) u-299m" = 29900m= 2030201
' ) =
Qp.y SUS q » then V(W) =y ( 20200

and, if u =8 = 299/400 , then V(u) =S .,
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Iet C be that function which maps R onto Ran ;4 in such s

way that its value at each point y of R {s C(y) =V(g(y)) . Thus, if,

for some positive integer m , «2m <y < -1-3% = 2m , then

2
101 -
c(y) -u( (lggLoyig?;uH%) ; 1f, for some positive integer m ,

99 _ 101 (99-200m) . 202
100 m<y<2-2m, then C(y) = u( 99 * s 1f 0<y< 99

then C(y) =g ( 101(99y-202 ) ; and, 1f, for soms positive integer m ,

2994+198

400m+20002 . . 400w+20402 then C(y) = (299m+9799 ) 2(m2+201nﬂ-10100)
9999 ¥ 279999 ’ ) =u 200 101 (y+2)

Let C' be that function which maps R into the set of all
subsets of R 1in such a way that its value at each point y of R 1s that
subset C'(y) of C(y) which contains the point x of C(y) 1f, and only
if, for each real number z <y , x 1s not a point of C(z) . Thus, 1f, for
some positive integer m , ~2m <y < 2 - 2mn , then C'(y) 1is either the
empty set § or the set whose only point is 101(100y-200m2+99m)/(100y+299m)
sccording as y does or does not exceed 99/100 - 2m ; 1f 0 <y < 202/99 ,
then C'(y) 1s the set whose only point is 101(99y-202)/(299y+198) ; and,

1f, for some positive integer m , (400m+20002)/9999 < y < (400m+20402)/9999 ,

2
299m+9799 2(m +201m+10100)
' -
then C'(y) 1is the set vhose only point 1is 700 101G +2) .

Finally, we define the function h over the set S 1in such a
way that its vslue at each point x of- S .is that point h(x) =y of R

which {s such that C'(y) = x . Thus, if, for some positive integer m ,

_ 101 (200m+101) _ 101(200m-99) an(299x+20200m—9999) .
99 <x< 99 , then h(x) 100(101-x) ; 1f
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10201 2(99%x+10201)
- =99 < xms 0, then h(x) = 9999-299% ; and, 1f, for some positive

2

- 101 - 400101 x+m " +50m+5151)4+2m+202
integer m , m - 1 < x<n 200 ° then h(x) 101 (295m+9799- 200%) .

There can be little doubt that the method used in this construction
of a function h 1in (£,*,G) 1leaves much to be desired, After having showmn
that (F,G) 1is a compatible pair, we might have found an easier way of
defining a function in (F,*,G) . However, it does not seem likely that
there is a procedure which is necessarily always most convenient for dealing
with problems of this kind., 1In fact, this particular {llustration in-
volves very few of the difficulties which are anticipated in the theory of
Chapter II of ARL 65-75 . |

Of course, as was mentioned earlier in this section, it is possible
that a decision on the matter of whether or not a given ordered pair
(F,G) of functions in D 1is a compatible pair might be precluded by
some inherent difficulties in the definitions of F and G , This possi-
bility arises when one takes a mathematical intuitionist's critical point
of view and observes the shaky foundations under the measure-theoretic
notions which were entertained in the proof of the theorem of Chapter II
of ARL 65-75 .

Now, once it has been shown by a satisfactory procedure that a given
ordered pair (F,G) in D X D {s a compatible pair, and that a definite
function h 1is in the non-empty set (F,*,G) , the matter of defining
other functions than h in (F,*,G) can be considered, The next section

{8 devoted to this consideration.
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6. Some Members of the Class C

2
The class C is that set of subsets of B which contains the sub-

2

set M of B {f, and only 1if, there exist functions F and G 4in D
such that (F,*,G) = M . In this section, we want to do two things: — we
would like to show how the theory in Chapter II of ARL 65-75 suggests a way
of generating special subsets of the non-empty members of the class c2 by
employing the group of all one-one, Lebesgue-measure-preserving mappings of
the closed interval I = [0,1] onto itself; — and we would like to pro-
vide {llustrative material of sufficient complexity to justify a few of the

elaborate details of the theory which was constructed around class C in

2
ARL 65-75. In order to realize the latter intention, we shall make use of
some pathological functions throughout the discussinn; and we shall define
these functions by means of sprays. The subject "Spray-forms and Sprays” is
considered in section 3 of the Appendix in ARL %5-75; however, the brief
discussion of this subject which follows should be adequate for our present
needs.

A sequence (by which term we mean an infinite sequence) may be thought
of as an array of things, called its terms, which have been eﬁtered one
after another into the places of a figurative structure which we shail call
the sequence-form. If the entries (i.e., the terms) of a particular sequence
are real numbers, then the sequence is an element of the set W which was
defined in section 2. However, a particular sequence, which is produced by
entering into each place of the sequence-form a gequence of real numbers,
one, and only one, of which is non-zero and is 1 , 1s a matrix in the set

T which was defined in section 2. By such examples as the latter, one

could justify the idea that matrices are special sequences. For this reason,
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we do not hesitate to bypass matrices in our search for a generalization of

the sequential notion.

For each nstural number n , a term in the fundamental sequence of
natural numbers, let P(l,n) denote one, and only one, place in the
sequence-form; and, for each place in the sequence-form, let there be one,
and only one, natural number n such that P(l,n) denotes that place.
Each place P(l,n) 1in the sequence-form has one, and only one, succesgsor:
the place P(l,n+l) ; each place P(l,n) which is different from P(1,1)
has one, and only one, predecessor: the place P(l,n-1) ; and the place
P(1,1) has no predecessor. |

By analogy, we produce a generalized version of the sequence-form

which, for a positive integer k , is called the k-fpgted spray-form. For
each ordered pair of positive integers (m,n) , in which m< kn-l » let
P(m,n) denote one, and only one, place in the k-footed spray-form; and,
for each place in the k-footed spray-form, let there be one, and only one,
ordered pailr of positive integers (m,n) , in which m g kn-l » such that
P(m,n) denotes that place. Each place P(m,n) in the k-footed spray-form
has k , and only k , successors, the t'th of which is the place
P(km-k+t,n+l) ; each place P(m,n) which is different from P(1,1) has
one, and only one, predecessor; the place P(h,n-1) , in which h 1is the

greatest integer less than (m+k)/k ; and the place P(l,1) has no

predecessor.

The onc-footed spray-form is the sequence form. The two-footed spray-
form, which we shall call simply the spray-form, will now be given our

attention. Figure 1 is an illustrative array of fifteen of zhe symbols
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which denote places of the spray-form; in it, the fourteen arrows are
directed from seven of the place symbols toward the symbols which denote

their successors.

Figure 1
The Spray-Form

P(1,1)

P(1,4) P(2,4) P(3,4) P(4,4) P(5,4) P(6,4) P(7,4) P(8,4)

We shall refer to the first and second successors of a place as its left
and right feet, respectively; and we shall refer to the predecessor of a
place as its head. The place P(m,n) 1s said to be in the m'th position
on the n'th level of the spray-form. The place P(l,1) 1s called the
topmost place. A sequence of places of the spray-foim, in which the place
P(m,n) 1s the first term and each term, a place, is followed immediately
by either its left foot or its right foot, is said to be a limb of P(m,n) .
A limb, all of whose terms after the first term are left (or right) feet,
is cslled a ieft limb (or a right limb); and a limb which i{s either a left
l1imb or a right limb is called a straight limb. Thus, eacl place of the
spray-form has exactly two straight limbs: & right limb and a left limb.

The left limb of a place P(m,n) which {s not a term of the left 1limb
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of P(1,1) has as its so-called heart that place whose right foot's

left limb has P(m,n) as one of its terms; the right limb of a place
P(m,n) which is not a term of the right limb of P(l,l1) has as its heart
that place whose left foot's right limb has P(m,n) as one of its terms;

the left limb of a place which 1s a term of the left limb of P(l,1) has

no heart; and the right 1imb of a place which is a term of the right limb

of P(l,1) har no heart. The left and right limbs of P(4,4) have the
respective hearts P(2,3) and P(1,1) ; the left and right limbs of p(81,8)
have the respective hearts P(3,3) and P(41,7) ; the right limb of
P(1,3) has the heart P(1,2) ; and the left limb of P(1,3) has n; heart.

By the branch of a place P(m,n) 1s mweant that part of the spray-form
which contains a place P(a,b) if, and only 1f, P(a,b) 1is a term of a |
limb of P(m,n) . A branch 1s structurally the same as the spray-form.

A proper limb of the spray-form is any limb of the topmost place which
is not the left limb of P(1,1) , and which has infinitely many terms that
are left feet.

A spray (for ''spreading array'') is envisioned as being the array which
is produced by entering objects, called entries, into the places of the
spray-form; this is analogous to the treatment of a sequence as the result
of having entered objects, called terms, into the places of the sequence-
form.

By a limb L' 4in a spray S (which is not the same as a limb of a
place in the sprocy-form) is meant the sequence of entries in the terms of
a proper limb L of the spray-form; the limb L' in S 1s said to occupy
the proper limb L of the spray-form.

We shall have need to consider only those sprays whose entries are
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B

real numbers, and whose limbs are convergent sequences. Each such spray S

is called a valuable spray; and the limit of each limb fn § 1is said to be

the value of the limb. If S 1is a valuable spray, th;n S 1is said to
spread over that subset M of th. real line R which contains the real
number x 1{f, and only {f, there is & limb in S whose value {# x . If
S 1is a valuable spray, and if no two limbs in S have the same value,
then S is said to be a real spray.

1f S is a real spray which spreads over R, and if T is a
:Aiuable spray, then the symbol § —» T denotes that function which maps
R 1nt6 R in such a way that, at each point x of R , its value y 1in
R s the value of that limb in T which occupies the same proper limb of
the spray-form that is occupied by the limb in S whose value {s x .

We are now ready to define five special valuable sprays. This is done
for the purpose of facilitating our definition of some pathological Baire
functions in B .

The spray X 1is constructededn such a way that each of its entries is

a ratio of two integers whose greatest common divisor is 1 . For each

| ~ositive integer n , its entries in the places P(l,n) and P(Zn l,n) of

the spray-form are 1{5 and E%l » respectively. The sequence of numerators
of its entries in the places of a straight 1limb of the spray-form which huas a
heart is an arithmetic progression whose common difference is the numerator
of its entry in that heart; and the sequence of denominators of its entries
in the places of a straight limb which has a heart is an arithmetic

progression whose common difference is the denominator of its entry in that

heart. The first five levels of spray X are shown in Pigure 2.
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The spray X 1s constructed in such a way that, for any positive inte-

gers m and n which are such that 2n—2 < m= 2“-1 s its entry in P(m,n)

is the square of the entry of spray X 1in P(m,n) ; and, for any integers

'@ and n which ate such that 1< m< 2™1 , its entry in  P(m,n) 1is the

negative of its entry in P(2n-1+1-m,n) . The first five levels of spray X

are shown in Figure 3.

Figure 3
Spray X
0
/ 1 -
i ™~
1 1
:.a__/ = a7 4
1 4 4 1
/ N\ / N\
=9 =9 :.‘.*_/ \.‘__1__ __1_./ \_f‘_ S 3
1
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«16 -25 -25 -16 =9 -9 4 1 1 4 9 9 16 25 25 1




The spray Y 1is constructed in such a way that each of its entries

is & ratio of two integers whos. greatest common divisor is 1. 1Its

entries in P(1,1) , P(1,2) , P(2,2) and P(2,3) are -g , -136- ,

%% and %% » respectively. For each integer n > 2 , its entry in

P(l,n) {s 1/2n+1 ; and its entry in each place of the branch of P(2,n+l)
is 1/2n+1 . 1f % is its entry in any place of the branch of P(2,3) ,

then its entries in the left and right feet of the place occupied by

a 4a-9 ba+3 a
b AT D and b respectively; and, if b is its entry in any
place of the branch of P(2,2) , thea its entries in the left and right

48-9-/2b 4a+3+V2b
T S and ————

feet of the place occupied by % are AN ’

respectively. The first five levels of Y are shown in Figure 4.

Figure 4

Spray Y

1 15 9 119

16 6 28 12

/N /7 N\ /N /N
1 1 51 63 339 383 451 495
3 1 25 256 1 12 512 12

195 207 243 255 1315 1391 1491 1567 1763 1839 1939 2015
64 32 16 16 1024 1024 1024 1024 2048 2048 2048 2048 2048 2048 2048 2048

2 16 512
/\1/\1 / \ / \ / \ /\ / N\ / \

The spray 2 1is constructed in such a way that {ts entry in each
place of the branch of P(2,2) 1is a ratio of two integers whose greatest
common divisor is 1; and its entry in each place which does not belong

to the branch of P(2,2) 1s 0. 1Its entry in P(2,2) 1is 8 and, {f

% is its entry in any place of the branch of P(2,2) , then {ts entries
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in the left and right fee: of this place are 2;;1 and —zgsl- ’

respectively. The first five levels of Z are shown in Figure 5.

Figure 5

O/"\
N

/\ / \ _1/16\3 _5/ \_1
/\ /\ /\ /\ _{32\. —2/3\ 32 3/32}

The spray V 1is constructed in such a way that its entry in each
place of the branch of P(i,2) is O ; and its entry in each place which
does not belong to the branch of P(1,2) 1is a ratio of two integers whose

greatest common divisor is8 1 . Its entries in P(1,1) , P{2,2) and

3 2 _65 a
P(3,3) are 8° 32 and 128 ° respectively. 1f b is its entry in auy

place of the branch of P(3,3) , then its entries in the left and right
4a-27-/26 . 4a+9+V/2b
4b 4b

feet of this place are » respectively. For aay

integer n > 2 , the entries of V {n P(Zn-l,n) and P(Zn-l,n+1) are

22130271 722 gng (2205027 013)722™3 | reapectively; and,
if % is its entry in any place of the branch of P(Zn-l.n+1) » then its
entries in the left and right feet of this place are éﬂ:gigiié and
3512{§ZZ§ s respe:tively. The first five levels of spray V are shown in
Figure 6.
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Pigure 6

Sprly v
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By making use of the sprays X, Y, Z, X and V , the Baire
functions F, F and G 1in B are defined as follows: F =X —> Y,
? wX—>2 and G = X —> V . Now that the letters X, Y, 2 end V

have served their purpose in the definition of the special functions F ,

E and G , we free them for other uses in this discussion.
Some particular values of these special functions are: F(-3/2) = 1/16 ,
&
F(-101/100) = 1/16 , F(-1) = 3/16 , F(-2/3) = 51/256 , g((l-*/g)IZ) w 1/5,

F(0) = 5/8 , F(/I)= 74/85 ., P(3/2) = 451/512, F() =0, F(Ql) =1/8,
F(VZ) = 3/20 , F(3/2) = 5/32, G(-1/i00) =0, G(0) = 3/8 ,
G(4/25) = 909/2048 , G(9/16) = 1181/2048 , G(1) = 25/32 and
G(3/2) = 3439/4368 .

Throughout the remainder of this section, we shall have occasion to
repeat some cof the definitions given previously. This will be done In the
process of providing the kind of illustrative material which we hope will

support the procedure that was followed in the proof of the thesrem {n

Chapter II of ARL 65-75.
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The symbol Bl denotes the class of all Borel sets in R . The symbol
B denotes the set of all Baire functions which map R 4{into R . The symbol
1 denotes the closed interval [0,1] in R . The symbol D denotes the
leﬁ of all distribution functions which map R 1into I . For example, the
special functions F , E aad G are in B ; and the functions F .and [
are in D .

For any h € B, the symbol h denotes that function which maps R

into B, in such a way that its value at each y € R 1{is the Borel set

1
hiy) = {x : h(x) S y} . The special symbol @ denotes that function in
B whose value at each x ¢ R 1s W(x) = x ; therefore, for each x € R ,
@W(x) denotes the half-line (-»,x] .

For any F € D , the symbol PF denotes that probability measure
which maps B, into I 1in such a way that, for each x € R , the PF—

1

measure of the Borel set ﬁ(x) is PFLB(x)] = F(x) « For any F € D and
h € B, there exists one, and only one, function ¢ in D whose value at
each y 6§ R 1s G(y) = Pplﬁ(y)] ; and the fact that the functions F , h
and G are related to one another in this way is stated symbolically by
" (P,h,G) ". For any F € D and G € D , the symbol (F,*%,G) denotes that
subset of B which contains h € B 1if, and only if, (F,h,G) 1s a true
statement. For example, the special set (F,*,C) contains the special
function h in B whose vaiue at each x € R 1is h(x) = xz » We intend
to describe a method of obtaining various functions in a set (F,*,G)
when one such function {s known.

For any F € D , the symbol R(};) denotes the set of all points of

discontinuity of F ; and the symbol R'(P;ﬁ) denotes the difference set

R — R(F;») . For example, R(F;w) contains x € R 1if, and only 1f, x 1{s
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either a negative integer or a rational number in the open half-line (-1,m) ;
and R(G;») contains y € R 1if, and only if, y is the square of a non-
negative rational number.

For any P € D , the symbol Rc(?;¢0 denotes that subset of R' (F;e)
which contains x ¢ R'(F;») 1f, and only if, for each real number r < x ,
F(r) € F(x) ; and the symbol R;(P;.) denotes the difference set
R'(F;®) — RC(F;G') + Purthermore, for each x € R , the symbol RC(F;x)
denotes the intersection set RC(P;Q)(\ t-)(x) ; and the symbol RC(P;-u)
denotes the empty set ¢ . If R;(F;ﬁ) # J , then it is either a single
interval with no left endpoint or the union of pairwise disjoint intervals
with no left endpoints; and, over each such interval in the composition of
l;(P;c» » the function P has only one value (i.e., it has a so-called
"plateau'). For example, R;(§;¢0 is the set of all non-integers of the
half-line 5(-1) o Despite the fact that the arbitrary value F(x) of a
function ¥ € D 1increases as x 1increases over RC(F;NQ » it need not be
true that, if X 1s a Borel subset of Rc(r;ao whose Lebesgue measure is
positive, then pp[x] is positive. It happens, for example, that, if X is
that subset of R (F;m) which consists of all the irrational numbers in the
open interval (-1,0) , then PP[X] =0 .

Let R denote that npeci:l set which consists entirely of all the
poiuts of R and the two special non-real points e and -00. For any
F €D, let the symbol ¥ denote the function which maps R into I in
such a way that its value at each point x of R {s PP[RC(F;xﬂ . For
example, if * 1is F , then, for each x € R, ?(x) -E(x) .

Por any P &€ D , the symbol R'(P;O) denotes that subset of RC(P;ﬂ)
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vhich coutains x ¢ Rc(Pﬁco 1f, and oﬁly if, for each real number r< x ,
?(r)< ?(x) + For example, RUQ;Q) is the set of all positive irrationsl
numbers; and the set R"(g;co is the set of all positive real numbers which
are not the squares of rational numbers.

For any F ¢ D , let the symbol Ip denote the closed interval

{0,F@)] onto which the set R 1is mapped by the function F ; let the
symbol F denote that function which waps R (F;®) into I, in such a
way tha® its value at each x ¢ RV(F;a» is ;(x) - ?(x) ; let the symbol
Hp denote that subset of Ip which contains u € Ip if, and only if,
there exists an x ¢ RV(F;“O at which the valu(léf F is ;(x) =y ; and
let the symbol JP denote that subset of Ip which is such that

JFU H, = I and Jrn Hp = ¢ . Since F 1is a one-one mapping of Rv(l?;en)
onto HP » it has a unique inverse which may be denoted by the symbol ;_1 .
Since the Lebesgue measure of JF is O , the Lebesgue measure of HF is
the length ?(oo) of the interval Ip + For example, since IP is the

closed interval [0,1/4] , and since Jp 1s that subset of 1, which

contains 0 and a positive real number u {f, and only if, there exist

integers m and n which are such that 0 < m < 22 +-;- and

(2:—1)/2n+1 = u , it follows that Ig contains a denumerably infinite

number of points, so that its Lebelg:e measure is O ; consequently, the
Lebesgue measure of both the set Hl? -1 - J’ and the interval I' is
the latter's length 1/4 . B T -

If O 1is a one-one mapping of a set S onto itself, and if X 1is a

subset of S , then, by the mcdified restriction of Q to the subset X

of 8 , we mean the unique one-one mapping £ of X outo itself which is

defined as follows: let Y = S — X ; let x(o) be that suhset of Y which
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contains y € Y 1f, and only 1if, a'l(y) « x 1is an element of X , where

0.1 denotes the unique inverse of & ; for each positive integer n , let

X(n) be that subset of X which contains x € X 1f, and only if, Q(x)
is an element of x(“’l) ; let X' be that subset of X which contains
x ¢ X 1f, and only 1{f, there exists a positive integer n such that

x & x‘“’ i let X'' mX ~-Xx'; and let B be that function over X whose

value at each x € X 1is either B(x) = x or PH(x) = 0(x) according as

xeX' or xex''. Since, for each non-negative integer n , and for

each x € x(")
(n+l)

’ a-l(x) is either an element of Y or an element of the

(n+l)

subset X of X , there can be no more elements in X than there

are in x(“) ; consequently, 1if S is a Borel subset of R, If Q i3 a
one-éne, Lebesgue-measure-preserving mapping of S onto S, if X is a
Borel subset of S, and {f Y « § — X 18 a set with Lebesgue measure 0 ,
then every Borel subsct of X' has Lebesgue measure 0 .

Let M denote the set of all one-one, Lebesgue-measure-preserving
mappings of the closed interval I onto ftself. Forany 0 € M and B e M,
let the symbol A denote that function in M whose value at each u € I
is Pa(u) = B(a(u)) ; and let the symbol a-l denote the inverse of « .,
The set M constitutes a group with respect to the binary operat‘on that is
indicated when two symbols which denote functions in M are placed side by
side in order to form a composite symbol which denotes a function in M .

Por any @ € M and F € D, let the symbol @_ denote that one-one,

F

Lebesgue-measure-preserving mapping of tie closed interval IP onto IF
whose value at each u € I, 1is efther Ep(u) «u or &'F(u) = Floo)a(u/Féee))
according as ?0») is or 13 not O ; and let the symbol OF denote the
modified restriction of EF to the subset HF of IF .
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Let T denote that function which maps MxDxB {into B 1in such a

wvay that, for each ordered triple (Q,F,h) in MxDxB , the image in B

of (@@,F,h) is the function 'rdl?:h whose value at esch x € R 1is either

T Fih(x) = h(?‘l(aF(ﬁ(x)))) or TFih(x) = h(x) according as x is or is

not & point of RH(F;oo) + The image in B of (Q,P,h) € MxDx B under the

mapping T 1is denoted by the symbol 'ral?:h in order that one may be able
to denote some other functions by convenient symbols. Thus, for any C ¢ M,

the symbol Ty denotes that function which maps DxB into B in such a

way that, under Ty » the image in B of the ordered pair (F,h) € DxB

is TaF:h ; and, for any ordered pair (O,F) in MxD , the symbol (or

operator) TaF: denotes that function which maps B 1into B 4n such a
way that, under Tarz s the image in B of the function h € B 1is TaF:h .

If (Q,F,h) 18 any ordered triple in MxDxB , and i{f G 1is that

function in D which makes (F,h,G) a true statement, then the subset

(F,*,G) of B contains both h and TaF:h .

For each ordered triple (a,b,c) in IwxIxI which {8 such that

a4 £ b and b-a £ ¢ , let the symbol (a:b:c) denote that function in M

whose value at each u € 1 1is either (a:b:c)(u) = a+c-u or (a:b:c)(u) = u

according as u {2 or {s not a point of the union of closed intervals

[a,b] U [a-b4e,c] o
For our illustration of this method of using an operator TE: in

order to obtain a function in (F,*,G) which differs from h € (F,*,G)

over a subset of R with positive Pz-measure, we choose O to be the

convenient mapping (1/4:1/3:3/4) 1in M . Then, since h is that function

in B whose value at each x € R is h(x) = xz » the function k = Togz_l}_
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fn B is such that its value at each x € R 1is either k(x) = I/x2 or

k(x) = xz according as x 1is or is not an irrational number in the union

of closed {ntervals [1/2,(+/5-1)/2] U [(+/5+1)/2,2] .
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I1X1. ROBUSTNESS OF TESTS

1. An Illustration of the Notion of Robustness of a Test

In order to put a particular notion of robustness of tests into a
somewhat realistic and tractable, hypothetical, experimental situation,
we present the following illustration:

The officer in charge of a military radar operators' school wishes
to consider a change in the training regimen that has been followed for
several years to one which 1is much less costly. A group of n entrants
is put into an experimental program for the full duration of :hé course
of training. It has been the practice at this school to assign to each
trainee a proficiency rating at the completion of his training. A
recent study of the school's records seems to justify the assumption
that the proficiency ratings are normally distributed. Therefore, next
to each such rating in the school's records, but not in the service

trecords of the graduates, is placed a standardized rating, which is that

transformation of the given proficiency rating that adjusts the aggregate
of all ratings to conform with the assumption that they are normally dis-
tributed with mean O and variance 1 . It is intended that the
proficiency ratings of the trainees in the experimental group shall be
transformed (i.e., shall be standardized) by the same function that is
used on all the proficiency ratings. And, in order to meet the require-
vents of the Analysis of Variance methodology in testing the worth of

the proposed change in the course, it 1s assumed that, {f for each posi-

tive integer 1 <n , x1 is the random variable whose values are the
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possible standardized ratings that the 1'th trainee in the experimental
course might achieve upon the completion of his training, then the vari-

ance of X, 1is 1 . Two further reasonable assumptions are made: {f

i
143 , then xi and xJ are independent random variables; and, for
each positive integer 1 <n , X 18 normally distributed with mean u

i
The distribution function and the probability density function of x1 »
which is N(u,l) , are denoted simply by Iu and *H » respectively;
and IO and ‘0 may be denoted simply by I and § , respectively.
Furthermore, the probability measure which induces I is denoted by P .

Thus, the sample mean of the standardized ratings of the experimental

- x1+.’. +xn

units is the normal random variable X = a with mean u and

variance % .

Now, a real number Qa {n the iﬂterval (0,1) 1is chosen; and, for
each real number 'v » the symbol c(v,0) denotes that real number which
satisfies the following equation: P(i <ec(vy,d) : y =v) = , The num-
ber c(v,0) 1is the right endpoint of an open half-line criticalizggigg
ro. |

With all these things under consideration, the question of whether
or not the regular training program should be replaced by the experimental
training pt;gtam is taken up in the following test which tests H. : u = 0

0

against the Hy :w <o .

If X < ¢(0,0) , then reject the null hypothesis HO ;

and {f X 2 ¢(0,0) , then do not reject Ho .
The power function of this test is defined at each real point v by

B(v) = P(i <e(@,0) : y = v} = Pr i"V_ < C@,az-v ) _@La)_-_!\)
\iva 1va J TN 1/va
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since @ = P(X < ¢(0,@) : p = 0) = P(X Vh < c(0,@) V) = P(c(0,@) Vn) ,
the real number 71 = ¢(0,0) 1is E '1(a)/\/§i , 80 that, at each real
point v , the value of B {8 B(v) -§(I -I(Ct) - v\/;) .

Now, suppose that the underlying assumption that the variance of
X, 1is 1 {is changed; that is, suppose that, for each positive integer

1<n , X, 1is N(u,az) . Under this assumption, X 1is N(u,czln) .
Then too, the power function Bo’ of the above test, in which the critical
region [' 1is the open half-1ine with right endpoint Y , has as its

value at each real point v the number

50<V)'P(-x-<'r:ulv)-P{l:.V_<_7.-_!_}

o/Nn o/Vn
-1 _
- Y-v ) - ¥ "@-vVn ) )
§ ( o/ Vn g ( i

For convenience, the functions ® and A are defined at each real
point v as follows: B(v) -Ba(v) - B(v) and A(v) = [6¢(v)| . The

first derivative of & 1is 5' whose value at each real point v is

- -1 -
6'(v)--¥¢(1———“%°—"—vl>+ Va 48 e - vva)

For 0'2 41 , 5'(v) =0 1if, and only if, v is either

__!___E-l(a)_c Z;no or %F-l(a)*.a 2;!10] ,
Vn qcr-l Vn VO'-I

Therefore, for each real number v

2 ln v 2 1lno (-iln o
< < \ /-—-- - £:R g <
0= 8m s I( 02-1 > !<0[02-1 > - *(o+1) '
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wvhere the upper bound on the right i{s useful only if o 1is close to 1 .
In a rough way, it can be said that, with respect to the above mentioned
change in the underlying assumptions, the measure of robustness of the

test under discussion is
! 21lno 21lno
1- !<\/ 2 ) 5("\/ 2 > ‘
o -1 og-1

This measure is greater than 1/2 (i.e., the test is more than 50%

robust) {f o 1is in the interval (e-l,e) .

2. A Generalization of the Notion of Robustness of a Test

In the last section, we tried to illustrate a way of measuring the
robustness of a test. By considering a contrived experimental situation
and a convenient test, we produced a number between O and 1 which was
to serve as a rough indicator of the ineffectiveness of a particular change
in the assumptions underlying the test as a disturbing influence on its
power function. This number, which could be eipressed as a pe}centage,

was called the measure of robustness of the test with respect to the

particular change in its underlying assumptions.

In this section, we shall give a skeletal version of a generaliza-
tion of the illustration tn the last section. In doing this, we begin
with a review of some notational conventions which, in somewhat more
detai., are treated in ARL 65-75.

For each positive integer n , let Rn denote the Euclidean space
of n dimensions; for each point x of Rd and each positive integer

t <n , let x _ denote the t'th coordinite of x ; let R = R,




let Bn denote the class of all Borel subsets of Rn ; for each point
x of Rn » let [-2,x] denote that member of Bn which contains the
point u of Rn 1f, and only {f, for each positive integer t <na ,
u, < L let Dn denote the set of all distribution functions which
map R into the closed interval I = [0,1] in R ; let M denote
the set of all probability measures which map Bn into I ; for each
P € Dn s let Pr(F) denote that probability measure P in Hn which
induces F , so that, for each point x of R Plu : u € [-a,x]) = P(x) ;
and, for each P € Hn » let Df(P) denote that distribution function
F in Dn which is induced by P , so that Pr(F) =P . Furthermore,
for each ordered palr of positive integers (m,n) , let ‘mBn denote the
set of all Baire funczions which map Rn into Rm ; and, for eaclt ordered
pair (F,h) 1in the Cartesian product szt Dn X By o let (F,h,*) denote
that subset of Dm which contains the function ¢ in Dm if, and only
if, for each point y of R, G(y) = Plx : h(x) € [-»,y]} , where
P = Pr(F) .

1f, for positive integers 1 and j§ , V denotes a non-empty
subset of Ri and W denotes a non-empty subset of Rj » then the

symbol V:W denotes that subset of R which contains the point u

1+}
of R1+j if, and only 1if, there exist points v of V and w of W
such that, for each positive fnteger ¢t <1 + | , u, is either Yooy
or v, according as t does or does not exceed 1 ; and, if this point
u is in V:W because such points v of V and w of W do exist,
then u may be denoted alt.rnatively by the symbol v:iw . If V CR

and WC R , then V:W 1is the Carteaian product set V X W ; however,

if VcR and WC R2 » then V:W need not be a Cartesiaan product
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subset of R

3
If S {s any non-empty set, then a function £ which maps the

Cartesian product set S xS 1into R 1is said to be a metric for § {if,
and only if, the following three conditions are satisfied:
(1) if, for any ordered pair (a,b) of S XS , p(a,b) =0 ,
then a = b ;
(2) for each a€s , p(as,a) =0 ; and
(3) for each ordered triple (a,b,c) of S X§ XxX§ ,
P(a,c) + A(b,c) > D(Q,b) .
Consequently, for each (a,b) € S x § " p(a,b) = {[p(a,b) + P(a,b)]/2 2
p(a,a)/2 , which, by (2), is zero, so that p(a,b) 1is non-negative;
and, furthermore, f(a,b) = P(o,b) + P(a,b) by (2), P(b,b) + P(a,db) >
p(b,a) by (3), P(b,a) =p(a,a) + p(b,a) by (2) and p(a,a) + P(b,a) >
p(a,b) by (3), so that p(a,b) > p(b,a) >p(a,b) and pP(a,b) = p(db,a) .
If the range of values of P 1is a subset of I = [0,1] in R » then
P 1is said to be a metric for S limited to I .
New, let 1 , 3 , m , and a be positive integers; let the
non-empty subsets V and W of R, and R, be called parameter

1 J
spaces; let the member [ of Bm be called a critical region; and let

the function h of mBn be called a transformstion. For each point

v:iw of V:W , let Pv-v be a unique distribution function in Dn H

let P = Pr(F ) , and let G be that distribution function in
v:iw v:iw v:iw

the subset (Fv:u,h,*) of Dm « For each point w of W , let Bw ,

called a power function, be that function which maps V into the interval

I whose value at each point v of V is B_(v) = Pv-w[x : h(x) e T} .

Let S be that set of functions which map V into 1 , which contains
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the funcition f 1f, and only if, there exists & w € W wsuch that

Ev = f . Finally, let P be & metric for S limited to 1 . For ’
example, P(f,g) could be the least upper bound of |f(v) - g(v)| , {
where fe€S , ges And vVeEV .

Suppose that, in an experimental situation, a decision is to be
based on the way a random variable X whose range of values is Rn
1s distributed. It is thought that the distribution function of X 1is
Fr:n » where r:s € V:W . A test of the hypothesis that r 1is the
proper parameter in V 1is designed; and it makes use of the transfor-
mation h as well as the critical regicn I' which is such that
Bs(r) is some small number O in 1 . i.is test may be stated as
follows: 1f h(X) € I' , reject Hy 5 otherwise, do not reject Hy
The power function of this test is BB s where the parameter s 1is a
fixed point of W and, hence, i{s an underlying assumption of the test.
In ascribing to this test some measure of robustness with respect to a
change in the underlying assumption concerning the parameter s ,
another test, with h and T unchanged, but with s changed to w e W
ylelds the power function Bv « And the number 1 - D(bv,ﬁﬂ) serves
as a measure of the robustness of the test with respect to the particular
change in its underlying assumptions.

Of course, the utility of such 2 =tawsure of robustness of a test
will depend on the choice and general acceptance of the metric P .
Even though these measures of robustness are in I and are intuitively

appealing, it is not easy to defend the choice of any one of them with

general considerations.
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3. The Kolmogorov Metric on the Space of Location Families of

Distribution Punctions

In order to define the notions of robustness of a statistical
test and robustness of a transformation, some quantitative measure of
the distance between power fuictions and the distance between distribu-
tion functions appears to be highly desirable. It would appear that

several authors (see, e.g., [1]-[10]) have held this view to a greater

or lesser extent. 1In section 1, an example waa given which exploits

the Kolmogorov metric on the space of normal distribution functione as

& measure of the robustness of a test. The power functions being dealt

é with in this example are very simply related to distribution functions,
a ;1tuation which will not occur in general. However, for those situa-
tions for which it does occur, it appears that the assumption of normal-
ity does not play a large part in determining the outcome. The present
section is an attempt to iﬂveatigate the Kolmogorov metric on the space
of distribution functions of location-parameter families.

We begin with ante definitions and notation. Let 1 be a subset
of the real line, and let {F(x;u) : 4 € I} be & family of distribution
functions on the real line. We may suppose that the distribution func-
tions are right-continuous, and that the ordering on 1 {8 that induced
by the natural order on the real line. We will call the family
(P(x;8) : 4 € I} a location-parameter family with respect to I 1if and
only 1if there {s a distribution function G such that for each real x ,

P(x;p) = G(x~-y) , for each |4 € I . 1t is obvious that such a family




is stochastically increasing; {.e., if 2 € 1 and p €1 with A >, ,
then F(x;A) < P(x;u) , for all real x .

Since we will require a mecasure of distance between distribution
functions, we introduce one such measure, often called the Kolmogorov
metric. Por each pair p , A with 4y €1 and A e 1 , and for each
pair F“ » 7, of distribution functions, we set d(x;u,)) = lF(x;u) - (x;)))
and p(Fu.Fx) - O:p J(x;u,2) . It {a readily verifiec :z_at p 18
indé;d a2 metric on the space of distribution functions. As noted above,

a location-parameter family (with respect to I ) is stochastically
ordered. 1In view of fhis, we may dispense with the absolute value signs
in the definitfon of d(x;u,A) {f we assume that 2 >, .,

Because of the exploratory nature of our study, we will wake a series
of inc.easingly stringent assumptions oas the location-parameter family
{P(x;u) : 4 € 1} , and at each stage, study the effect of each additional
assumption on the Kolmogorov metric.

Assumption 1. G 18 a continuous function.

| Cons~ 1ence. d(x;u,}, 18 & continucus functiow £ x

Proof. d(x;u,\) = F(x;u) - P(x;)\) = G(x-p) - G(x-}) .

Assumption 2. ¢ 1is a strictly increasing function.

Consequence. To each positive real number 1 , there correspond
real numbers a(N) and b(N) , with a(") < b(") , such that x < a(n)
implies d(x;u,M) <N and b("N) < x implies d(x;u,x) <n .

Proof. From M >y and G strictly increasing it follows thzt
F(x;u) » G(x-p) > G(x-1) = P(x;2) , for all real x . The remminder

of the proof follows from the fact that G 1is a distribution function.
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We may sumvcrize the consequences of assucptions 1 and 2 as follows:
Remark. If G 1is a continuous strictly incressing function,

then d(-;u,r) 4s a continuous function which attains its
(absolute) maximum on & finite interval.

Proof. d(+;u,\) 1is, when restricted to [ar/"},b(1)] , a continuous

function on a closed, bounded interval, and hence it attains itas (absolute)

maxioum on [a(n), (7)) .
Assumption 3. G(x) =1 - G(-x) , for all real x ; i.e., G
is a symmetric distribution function.
Consequence. d(-;u,r) 18 symmetric about the point %(u+x) .
Proof, d(%(u+x) - XjupA) = GC%(u+x)—x-u) - G(%(u+x)~x-x)

= CGOWIT = GEM-1X) =1 - Glx = F0-1)) + G(x = 3(u=N)) - ]
= G(x +20-W)) - Glx + 2(uM)) = GAGA) + xo) - GG W x-M)

= d(%(p+l) + x;u,A) , for every real x .

Assumption 4. G 18 absolutely continuous, with probability density

function g .

Consequence. d' (+;u,\) satisfies d'(%(u+l) + X3U,A) =
’d'f%(u+k) - X;u,A) , for all real x .,

Proof. For each real number x , define k(x;u,A) by k(x;u,r) =
d(%(p+k) + X;u>,A) .« From the consequence of assumption 3, it follows
that k(-;u,A) 1is an even function. Since the derivative (when it
exiats) of an ever function is an odd function, the proof 1s couplete.

We note that assumptions 3 and 4 together yield the following result.

Remark. g 1is an even function.

Proof. The existence of g follows from assumption 4 and its
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Arte@d b lows from assumption 3.
Assumption 5. g 1is increasing for x <0 .
g has a

Consequence. g 1is decreasing for x >0 , and hence

single waximum at x =0 .,
Proof. This is a simple consequence of the assumption and the fact
that g 1is an even function. |
Assumption 6. g has & derivative g' ; thus, &' =2 G" .
Consequence. If x >0 , then g'(x) <0 .
Proof. Since g 1s decreasing for x >0 , it follows that its

derivative. g' , must be negative for x >0 .

We con now summarize the consequences of these assumptions in the following

way.

Theorem. If G 4is an absolutely continuous function which is

symmetric about zero, and if G" exists and is an increasing

function for x < 0 , then D(F“,Fx) = 2G(%(X-u)) -1 , for
Ay .

Proof. Because \ > O(Fu,F)) = sup (F(x;p) - F(x;M)] . 1t
' x

is clear that d(%(u+k);u.k) - zc(%(k-u)) -1 , and that sup [F(x;u) - F(x;)\)]
x

- d(-;-(uu);p,x) follows from these facts: (1) d'(-;—(wx);u.n -
1 1 , nw,l v 1 v L1
gG(AK)) - 8G(-2)) =0, and  (2) dTGGH)A) =B GOK)) - & (GM-D))

- 28" GO-w) <0 .

As we will show presently, this theorem furnishes sufficient, but
not necélaaty, conditions under which the distance, as measured by the
Kolmogorov metric, between two members of a particular family of distri-

bution functions can be computed as a function of the distance between
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their indices. We list here some cases of interest that are included

in the above analysis.

x
1. Normel; I = ‘1 3 P(x;u) = (2x) 2 h/\ exp [~ %(t-u)zldt .
)
x
2. Double exponential; I = R, ; P(x;p) = % ~/~ exp [-]t-p]lae .
-

arctan [1+(x-p)2] s x <y

3. Cauchy; I =R, ; P(x;n) =

N e

+ % arctan [1+(x-u)2] s W< x

4. Student's t ; I = Rl H
n+l

-1 X .o+l
F (x;p) = F(n_;l ) [F(§ >'/“—"] f (4t 2 ae
for each natural number n .

x
-Q - - -
5. camma; T=Ry Bt =@ [ ™t e 167 e lae
B ‘
for fixed real positive Q and fixed real positive B , x>, .

We turn now to a location-parameter family of distribution functions

with nonsymmetric members. Take I = Rl » and for each 4 € I , let

0 » x<y

) F(x;p) = .
l-ep-x) , p<x

It is clear that the family (P(x;u) : u € I) is & location-parameter

family with respect to I . However, the distribution function G

for which P(x;u) = G(x-u) for each real x is
0 ’yfo

2) G@y) = ’
1 - exp(-y) , 0<y
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wvhich {s not symmetric with respect to any real number. Nevertheless,
we may still prove the following result.

Theorem. If P(x;u) and G(y) are given by (1) and (2)

respectively, then for any u € I and A € I , with

A >y , we have D(FM’FX) = G(A-p) .

Proof. We distinguish three distinct and exhaustive cases:
(1) =«<x<y , ({i) w<x<>r , ad ({11) A <x<w

(L) Por x<pu , F(x;u) = F(x;2) =0 ; thus d(x;u,r) =0 ,

for x <. .

(11) Por u < x <X , d(x;u,\) can be written as d(x;u,\) =
F(x;p) - 0 = 1 - exp(u-x) , which exhibits the fact that for p <=z <2}
d(x;u,)) 1is a strictly monotone increasing, continuous and bounded
function of x . Hence d(x;u,r) attsins 1ts maximum value (which is
clearly G(A-p)) at x =X

(111) We complete the proof by considering this case, since for
A<x , dlxued) = e R ee¥) <eMete?) =1 - expron) =GO
Let us atcempt to generaljize this thi~ eum to include location-

parameter families whose ﬁembers are not necessarily symmetric. Thus,

we suppose that for some subset I of Rl » we have a family

{(P(x;u) : 4 € I} of distribution functions such thst for each u €I ,
F(x;u) =0 , for x<pug .+ If we further suppose thaf the family
{P(x;u) : u € I} 1ies a location-paraneter family with respect to I ,
with F(x;u) = G(x-u) for all real x , thon, as before, this family is
stochastically increasing. But we do not assume now that G is symmetric
with respect to any real number. Without adding ary resiriction, we

suppose that A >, , and we observe that for -« < x <y , we have
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P(x;\) = F(x;u) =0 , so that for x< pu , d(x;u,r) =0 .

If we now suppose that G 1s a continuous function which is
strictly increasing whenever it is positive, then as above, corresponding
to each positive reel number 7 , there is a real number a(n) such :
that a(n) < x implies d(x;u,A) <N . When d(x;u,r) 1is restricted
to the clesed interval [u,a(n)] , 1t 1s a continuous function on a
closed interval (which {s also bounded), and hence it attains its
(absolute) maximum on [u,a(n)] . From the nature of d(x;u,\) for

x € [u,A] , vwe may conclude that sup d(x;u,A\) = sup G(x-p) = G(A-p)
xi[p,ll xe[“b

While it may not always be true that D(F“,Fx) = G(A-y) for the situa-
tion under consideration, we are able to state the following result.

Theorem. Suppose G 18 a continuous function which {s

strictly increasing for positive values of its argument.

1f, for each positive real number & 1less than a&a(n)-:» ,

G(A-p4d) < G(A-p) + G(®) , then o(r-'u.?)‘), = G(Ay) .

Proof. 1f x € (\,a(n)] , then (x-)\) € (0,a(n)-A] , so that
x-A may be taken as 5 . 1If this substitution i{s made in the in-
equality on G , then we see that G(x-u) < G(A-n) + G(x~-A) , which
is equivalent to d(x;u,A) < GAA-u) for x € (A,a(n)] , thus com-
pleting the proof of the theorm.

To see that the exponential example treated in equations (1) and
(2) Ls indeed covered by the ineq:ality of the theorem, 1% is sufficlent
to note that the distribution function of the exponential distribution

given by (2) satisfies the functional equation

G(x+y) = G(y) = G(x)[1-G{y)]
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for all x>0 and y >0 . Since M >u and & >0 , we see that for

the G of equation (2) we have
G(A-p+8) = G(8) = G(>-w)[1-6(®)] ,

and hence that the inequaljity of the theorem is satisfied, since for

any 5 >0 , we have G(0) >0 .
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IV. TWO THEOREMS ON SOLUTIONS OF DIFFERENTIAL-DIFFERENCE

EQUATIONS AND APPLICATIONS TO EPIDEMIC THEORY

1. 1Introduction

We present two theorems that provide simple iterative solutions
of special systems of differential-difference equations. We show as
examples of the theorems the simple stochastic epidemic (cf. Bailey,
1957, p. 39, and Bailey, 1963) and the general stochastic c¢pidemic (cf.
Bailey, 1957; Gani, 1965; and Siskind, 1965), in each of which we let
the initial distribution of the number of uninfected susceptibles and
the numt:r of infectives be arbitrary but assume the total population
size bounded. 1In all of the references cited above the methods of
solution involve solving a corresponding partial differential equation,
whereas we deal directly with the original system of ordinary differential-~
difference equations. PFurthermore in the cited references the authors
begin at time t = 0 with a population having a fixed number of unin-
fected susceptibles and a fixed number of infectives. For the simple
stochastic epidemic with arbitrary initial distribution we provide
solutions not obtainable by the results given by Bailey (1957 or 1963).
For the general stochastic epidemic, if we use the results of Gani or
Siskind, then the solution of the problem having an arbitrary initial
distribution would involve edditional steps that would sum proportionally-

weighted conditional results.
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Let x(t) and x'(t) denote n by 1 column matrices whose 1{'th
row elements are the real-valued differentiable function xi(t) and 1its
derivative xi(t) , respectively, each defined for all t >0 . Let
initial conditions at time t = 0 be x(0) =& , where the colum
matrix 2 has as 1'th row element the real number a8 . Let B be
an n by n triangular matrix whose (1i,))'th element b(i,j) i< a
constant for each pair (i,j) and in particular b(i,}]) = 0 for 1< 3
We let In = (1,...,nj and for convenience of notation we denote b(i,i)
by bi for 1 € In . Let G denote an n by n catrix with c(4,))
as (1,3)'th element. Occasionally it will be convenient to write
b(1,]) or c(i,)) as bli,j] or ¢fi,}] , respectively. The n by
1 column matrix with 1'th row element exp(bit) 1s denoted by e(t) .
We define the symbol Sl(x) to be equal to t when x =0 and x.1
when x $ 0 . We define the real-valued function Bz(x) to be equal
to 1 when x =0 and x-1 when x 4 0 . Finally, we shall make

frequent use of the function &(x) defined as 1 for x 20 and O

for <0

2. Solutions of Some Systems of Differential-Difference Equetions
THEORFM 1. Let x(0) = g , and for t >0 let x'(t) = Bx(t) , where
(1) b(1,3) =0 for 1-31>2 , and (i1) for each 1 ¢ In , b1 = bj

for at most one } ¢ I and j 41 . Then x(t) = Ge(t) , where

0 , 1<}
8 1i=3=1 ' ;
c(l,)) = b(i,i-l)[c1(1~1,j)al(bj-bi) - cz(l-l,j)ﬁf(bj-bi) (1)
- + cz(i-l,j)bl(bj-bi)t] » 12
- W, 1=3>1,
nml
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in which for fixed j the functions 9 and c, are defined recursively

(in 1 ) as the term independent of t and the coefficient of t ,

respectively, in c(1,j) ; {i.e.,

C(i,j) = cl(l’j) + Cz(i,j)t . (2)

(Thus, in particular, cl(l,l) =a cz(l,l) =0 ; aad for 1 >1

i-1
o
cl(i,i) =8 -L— cl(i,u) . cz(i}i) =0 .)

uml

b, t
Proof. Note that xl(t) =a,e 1 so that ¢(1,j) 18 equal to ‘1

when § =1 and O when j >1 . For fixed integer 10 where

1< io = 1<n assume equation (1) hclds for positive integers
i <L 10 -1 . Consider the equation
i-1
' QH bjt
x, (t) - b1 L9 (t) = b(io,io - l)L c(i0 - 1,)e . (3)
(] 0 "0 ful

The term in which j=§, < io- 1 on the right hand side of equation (1)

b, t
3
contributes to the solution of ;b(t) the term l(io,jo)e 0 . We

shall show that K(io,jo) = c(io,jo) . Note that

(b, - b, )t

b.t b, t ,
0 LTS (%)

JD 1O
R(1,,1p)e -e b(iy,1- 1%1(10-1,10
(b . |
0
+ Cz(to-l,jo‘)%e dtJ .

Our proof distinguishes three cases: Case 1. b, 4 b, for
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i = jo + 1,...,10 . Por this case cz(io-l,jo) =) . Therefore

| -1
K(io,jo) - b“o"‘o'l)ﬁ“o'l'Jo)(bjo - bio) . Case 2. b"o - bjo .

Here again cz(io-l,jo) = 0 , but now K(io,jo) - b(io,in'l)cl(io-l,jo)t .

Case 3. bJO - bko where ‘10 < ko < 10 . Then
-1 . -2
i
-1
+ t:z(i.Q-l,jo)(bjo - bio) t] .

Note that all three cases are sccounted for by the 51 symbol as used in

equation (1) where 1o>jo . Therefore

1571 b, ¢t
g-v bjt 10
xio(t) =/ c(iy, e + Kje ,
j=1
and so by applying the initial condition x, (0) = a, e cbtain
0 0
| 10-1
K, =38, - vc (i.,u) . This completes the proof of Theorem 1.
17 %, 7 L1
us]

THECREM 2. 1f ;(O) =38 , ;'(t) = Bx(t) for t 20 , and if for every
pair of integers «a < § such that ba ] bB wve have either (1) bl{a+y ,a) =0
for y=1,...,8 ~a , or (ii) b(g,j) =0 for j=a,...,p-1 , then

5(:) = Ce(t) where

.

0 , 1<)
{=)=1

i-1 )
Bylby - ) Y Bltwew ) 1>

umj

.1 »

c(.i,j) =~ <

i-1

a -vc(i,u) , 1=3>1 .
{1

usl
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bt
Proof. Note that xl(t) =ae 1 so that c(1,j) 1is equal to 8
when j =1 and O when j >1 . For fixed integer 10 where
1< 10 - 1<n , assume equation (5) holds for all positive integers
1:_10-1 and let R!.oa[j:bj’bi ,15]51.0-1} and
0
*
R, =1{j + b, %b , 1£3<1i,-1) . Then
i ) i -4 =70
0 0
10~1
, A
xg (t) - b1 x, (t) = b(io,u)x ()
0 00 o’
u=l
10-1 u
() b t
= bl u) c(u ve ¥
L, O
u=l v=1
i -1
o c o\ byt
( + \ b(io,u)c(u v)e .
veR u=v
0 0
Therefore 15-1 1,-1
- ‘—‘b(i sujyc{u,v) bvt V—b(io,u)c(u v)x i
x, (t) = -0 - e +D + , (6)
j'O Lo L., (bv-bi) . LJ 'b )
veR*  u=v . 0 chI
i
0
where
F o io{_’l b, ¢
0
D = I /. )b(io,u)c(u,v)]te . (7)
‘veRi uz=y
0
If Ri is empty, then the term D does not appear in (6). If
0
R is not empty, then for fixed j. e R we have
10 0 10
io\;l
/. b(i u)c(u,jo) = 0
uajo
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if either b(io,u) m0 for u= jo,...,io-l , or b(jo + r,jo) =0 for

Y= 1,...,10-30
! the identity for {1 > §
[b(bj'bi)b(ltj)c(J:j) ) i= j +1

c(i,3) -l $-1
i=j+2,...,n

8(b b, )[bCL, De(d, 1) + Zb(i,u)c(u.j)l ,
u=j+1

N e e ——— ———r ot

Therefore D 1s identically equal to zero.

It is now easy to see that we may write

1

0
bt
x, (8) = * e(d,v)e ¥ ,
10 L, O
v=1
where
0 y VD 10
10-1
B(b-b)\_‘b(i Ye(u,v) <1
c(io,v)-< o (b, 10 .. orwelu,v) v 0
u=v
, iqv-}
! d =
Laio ldc(io u) , v 10 ,
u=

and so the theorem is proved.

3. Stochastic Epidemics

By an epidemic population we shall mean a well-defined set 0 of

elements (individuals) « defined to be in N 1f and only if for some

time t >0, 1is an uninfected susceptible or an infective. For each
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me © and for each t 2 0 we define:

1 , 1if o 4is an uninfected susceptible at time ¢t

“l(m.t) = {

0 , otherwise

— e —

1 , 1f o 1is an infective at time t (9)
V. (w,t) -{
) 0 , otherwise
o
v
1 , 1f & 1is neither an uninfected susceptible nor
93(m,t) - an infective at time ¢
0 , otherwise.
We shall assume that the number of elements in 0 {s M , a finite
positive integer.
Let
A 3
R(t) = W, (o, t)
L
nef
|
S(t) = vwz(m,t) ? (10)
L
wef?
J
L(t) = W_(w,t). J
. 3
e N
Then
M = R(t) + S(t) + L(t) . (11)
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We shall denote the size of the epidemic population at time t >0 by
N(t) , which consists of the total of uninfected susceptibles and

infectives at time t >0 ; {.e..
N(t) = R(t) + S(t) . (12)

The problem we consider is to find pra(t) , the probability that
R(t) = r and S(t) = s , when we are given the initial distribution
(pr.(O)} and information about the infinitesimal transition probabilities
for an o to move amongst the three states of being (1) an uninfected
susceptible, or (2) an infective, or (3) neither an uninfected

susceptible nor an infective.

4. The Simple Stochastic Epidemic

In the simple stochastic epidemic, which has been extensively
investigated by Bailey (1957, 1963), there is a positive integer N such
thar for each t >0 the probability is one that N(t) = N(O) = N
Therefore S(t) =N - R(t) .

When we make the usual assumptions (cf. Bailey (1957), p. 39)

*
sbout the infinitesimal transition probabilities, then we obtain

P;,u-:(*) = (t+1)(N-r-l)Pﬁ1'N_r-l(t) - r(N-r)pr’N_r(t) (13)

for r »-0,1,...,N , where p () &0 1f r<0 orr>N ., We
rs

write the initial conditions for this system as

Pen-r(® =8 nor, (14)
N
v
r =0,1,...,N , where each L u-:zf 0 and L & Nr ™ 1 . Thus
» »
r=0

*Because there 1is no loss of generality for our purpose, we have assumed
throughout sections 4 sand 5 that the infection rate is equal to one,
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in addition to including an arbitrary initial distribution, we have

introduced for completeness the case in which r =N , which corresponds

to an initial population completely free of infectives.

We shall now put this problem {nto the framework of the theory

of section 2.
(r,N-r) let

LEMMA 1. For each ordered pair of integers
PeoN-p ) = E(r)EN-r)x, (1)
15)

ar,N-r T8

where k = k(r;N) = N-r+l (16)

Then the system of equaticns (13) with initjal conditionas (14) ,

where p_ N~r(t) £0 if r<0 or r >N , is equivalent to the svstem
’

X (1) = (N-ks2) (k-2)E(k-2)x, | (1) = (N-k+)) (-D)x () a”n

*with initial conditions

(0 =a (18)
kel , where n =N +1
n

Proof. 1f we make the indicated change of variables then for r = 0Q,1,...,N

pr,N-r(t) = xk(f)

P;.H_r(t) = x (1) (19)
pl"‘l‘l,“'t‘l(‘t) = S(k-Z)xk'l(t) ?

where k = N - r 4+1 . Thus k takes values 1,2,...,.N+ 1 %n , and
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so equations (17) and (18) follow.

)
A e 0 v s = 5 e e

The solution of the simple epidemic i{s given by
THEOREM 3. 1f we have the system of equations (17) with initial conditions
(18), k¢ In , then x(1) = Ce(t) , where b1 = ~(N-i+1)(i~-1) and
c(1,)) 1s given by eanation (1), in which b({,1-1) = (N-1+2)(1-2)E(1-2)
Proof. We need only note that for { =1,...,n , bi = bN-1+2 and

b1 * bj for j # N=i4+2 , ; #1i . Thus Theorem 1 applies,

Example. We illustrate the simplicity of the theory by showing the

details of the example in which N =6 , and initial distribution

(306’ 8,55 85,5 8335 8,5, 8gps a60) = (0, .10, .3C, .25, .15, .10, .10)

If we use Lemma 1, then

’xi(t)] [o 1, ‘(xl(’t)’; i 7 .10‘5
K A R
xy(4) 5 -8 xy() o, g.lsl
i : { .
xi(t)! = ; 8 -9 ‘ ixa(t)! and a,l = 2.25‘
x;(t) i 9 -8 % xs(t) L] ‘.305
xg(*) l 8 -5 xg (1)) 8 | .10':
: |

o) | 50 x (1) e, Lo

By applying Theorem 3 we obtain:

c(1,1) = fa and c(4,1) =0 for { >1
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e(2,2) = i
€(3,2) = 5333 = ¢
c(4,2) = B =+
c(5,2) = 9@ = 1
c(6,2) = 8(1)6,(0) = 8¢

2
¢(7,2) =
(3, = -1.. %
c(6,3) = 8(- 5@ = - &
c(5,3) = 9(-%'5')61(0) = -g’ ¢
c(6,3) =
c(7,3) =
c(4,4) =% -%+§_5=§_0.
€(5,6) = 9G3) (- 1) = - 2=
c(6,4) = 8(- -3-5) - -‘1:) = '?‘o
e(7,6) = 5G5)(- 3) = - 3

3 1
C(S)S) = TB -1 4 %6 - - z

(6,9 =8¢- p(- 5 =3

58 (- D) 458 Pr=F -8

1 16

2
-8CHhH rachhe 22218

2
5<‘11‘§>(' %) . 5(1—2)(%) + 5(1—2)(- '18‘)‘ =

«73-
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P S S

(7,9 =53 (-9 =~

A _16_9 _2_ 76
€(6,6) = 151510 3™ 3
1. 76
€(7,6) = 5(- L(- D) = I8
8 11 1.5 76 9
(1, =5+ *+2*12 " 30" 10

Therefore the solution is

( - y !
P6O !xl i 6
1
P51 x, i 0
P42 x5 0
= 1,
Py, | = {%|=60|°
P24 s 0
P1s 3 0
POG‘ 171 ~0
(6
0
0
1
- 60 0
0
0
lo

10

20

480t

-96-480t

6
10
20
60
-152
56

-1
-8

-15
104
-80

-72t

64+192t

-55-120t

Note that of the 28 entries calculated for

“Tm

3
-27 -15
54 40
=30 -25
-72
192 480
- 120 -480

G only 5 had

5440 1 -’

<, $»0 .




Once the individual probabilities are known then it is an easy
matter to obtain other derived quantities such as the duration of the

epidemic, the mean number of infectives at time t , and the distri-

bution of the total size of the epidemic. For example, the distribution

functicn of time to extinction may be read directly from the above
solution as G(T) = p06(T) E x7(T) for T>0 , and G(T) = 0 for

T<O0 .

5. The General Stochastic Epidemie

In the general stochastic epidemic, which has recently been
investigated by Gani (1965) and Siskind (1965), the probability is omne
that for ¢t

2t. >0, N(tz) < N(tl) . We shall assume the initial

2 1
population bounded in the sense that there exists a positive integer N
such that the probability is one that N(0) < N . Let si be the set
of ordered pairs of integers ((r,s) : r >0 ,8>0 ,r+s8s<N} .
If we make the usual assumptions (cf. Bailey (1957), p. 53) about the

infinitesimal transition probabilities then we obtain
' - -
Prg(t) = (1) (s-1)p ., ., (t) - s(rio)p  (t) + p(-+1)pr’.+1(t)

where p 18 the removal rate and p_(t) E 0 1if (r,s) ', We
ra

write the initial conditions for this system as

) -
Pr.(O. a

rs °

]
(r,s) ¢ SN , Where ar"z 0 and a ., " 1 .

(ro')Gsﬁ

(20)

(21)

In order to put this epidemic problem {nto the framework of the theory
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of section 2 we construct a counting mechanism for the equations and
the variables. This i{s done in the following lemma whose proot is lett
to the reader.

LEMMA 2. Por each non-negative integer N , let SN denote the
net of ordered triplets of integers (k,r,s) , where k20, r >0,

820, r+s<N , and
k & k(r,s;N) = (N+1)(N+2)/2 - (N+l)r- 8 + (x-1)r/2 . (22)

Then S, contains exactly n = (N+1)(N+2)/2 ordered triplets and fnr

N
each positive integer k < n , there exieta ane and only one ordered

pair of non-negative integers (r,s) such that (k,r,s) ¢ SN

Therefore for each patr (r,s) ¢ S& one can find k(r,s;N)
It might be worthwhile to point out that the converse prcblem can
also be neatly treated; namely, for each positive integer k <n ,
let u be the greatest integer which is less than (1 + Vek+1)/2 .
Then r=N+1-u and s =u(u +1)/2 - k . (uLater wn the state-
ment and proof of Theorem 4 it will be convenient to use the notation
(rk,ak) in order to indicate the one-to-one correspondence between

k = k(r,s;N) and (rk,sk) J)

We are now prepared to effect a change of notation, which we do
in the following lemna.

LEMMA 3. Por each ordered puir of integers (r,s) let

P, (1) = E(EMEN-r-8)x (1) |
(23)
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where k & k(r,s;N) 1is given by (22). Then the system of equationa (20)
with {nitial conditious (21), where p _(t) =0 1if (r,s) ¢ sé , 18

equivalent to the system
xi(t) + l(t+9)xk(t) - (r+1)(a-l)E(n-l)xk_N+r(t) + D(s+1)E(N-r-1-l)xk_1(t) (24)

with initial conditions

xk(O) =8 (25)
k €I, where n = (N+ 1) + 2)/2 and (k,r,s) € Sy °
Proof. If we make the indicated change of variables then for each
(k,r,8) € SN we obtain

Prg(t) = % ()

Prg(t) = X, (t)

r ' (26)
Pr+l.a-1(t) - Ei("l)xk-m-r(t)
Pr,as1(t) = EN-r-l-s)x , (t) J

and so the conclusion of the lemma follows immediately.

We now state the solution of the general stochastic epidemic 1

THEOREM 4. 1f we have the system of equations (24) with initial

conditions (25), k € In » where n = (N 4+ 1)(N + 2)/2 and (k,r,s) € S“ .
and {f P 1is such that for (r,s) € Sé ,» (r',8') € sé , s $0

and s8' #0 , we have s(r+0) = 8'(r'49) only {f s = s' , then

z(t) = Ce(t) , where for any 71 € In » bT - - 'T(rT +P) , and
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(0 , k<)

ek,j) = ﬁ [ (r+1) (s-1)E(s-1)c (k-N+r, ) E(k-N4x-})
+ 9(-+1)8(N-r-1--)c(k-1.J)]bz(bj -b) » k>3 2D

-1
Laj-ic(j,u) s kw1l .
us=]

. > - -
Proof. If (r,s)e s“ and 8 >0 , then bk(r,o;ﬂ) s(r + P) are

all distinct. If s =0 , then for r = 0,1,...,N we have b 0o .

k(r,0;N)
The following argument holds for each positive integer r < N . In

equation (24) the only possible non-zero coefficients of ‘k(r 0;N) are
| gt ] .

blk',k(r,0;N)] and b[k",k(r,0;N)] , vhere k' = k(r,0;N) +1 and
k" = k(r,0;N) + N - r_n , We see that k' = k(r-1,N-r+1;N) and
k" ® k(r-1,1;N) . Therefore b{k’,k(r,0;N)] = o[ (N-r+1)+1]EN-(x-1)-1-(N-r+l)) -
P(N-r+2)E(-1) = 0 and b{k",k(r,0;N)] = [(r-1)+1](1-1)E(1-1) = xr(0)E@0) =0 .
Thus condition (1) of Theorem 2 i3 satisfied. Finally, by applying
equation (5) we get the conclusion of our present theorem. RNote the
resemblance between equation (24) and equation (27) for the case k > j .

The question arises as to whether or not there is anything distinctive
about the choice of N , the bound on the initisl total population size.
The following esirodding theorem answers this question in the negative.
THEOREM 5. The ger iral atochastic epldemic with total initial population
size bounded by N, < Hd, wny be treates as one with initial total pop-’

ulation size boun-ed by X, and {nitial conditions satisfying .
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‘k(r,!;Nz)- 0 for a'l non-negative {nteger pairs (r,s) such *hat

> .
r+s "1
We leave the details of the proof to the interested reader,

Essentially what must be shown is that for each non-negative integer

pair (r,s) such that r + a8 < “1 wve have xk(r,o;Nl)(t) =

Xe(r, 8N )(t) for all t >0 . Also for each non-negative integer
? H 2

pair (r,s) such that Nl <r+s< Hz we have xk(r,s;Nz)(t) £0

The special cases considered by Gani and Siskind are included
in Theorem &4 by simply choosing the i{nitial conditions appropriately.
In fact if a computing program {s worked out for fixed N , then aany of

and S(0) = & , where r_+ 8 =N ,

0 0 0 0

may be obtained by letting p (0) = a = ! and getting all other
r.s r.8
oo 00

.ra's equal to zero. Furthermore, by Theorem 5, any case in which the

probability is zero that the sum of R(0) and S(0) exceeds Nl < "2

their cases in which R(0) = r

may be obtained from the program written for Nz by suppressing from

the program all terms involving triplets (k,r,s) ¢ SN such that
2

>
r+s Nl

Conversely, {f one wishes to use the results of Gani or Siskind
to solve a general stochastic epidemic with arbitrary infitial distri-

bution then one can obtain Prs(t) by evaluating

Sq P[R(t) = r,5(t) = s|R(0) = ro,S(O) - aO]l
& To®0

1
(ro,ao)esN
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where P(A|B] 1s the conditional probability of A given B . This,
of course, would be considerably wmore difficult than i{f one were to use
our Theorem &4 directly.

Exsmple. We illustrate the simplicity of the theory by showing the
details of the example in which N =2 , p =2 , and initial distri-

bution (loo, %1 %02° *10° *11° 020) = (0, .20, .30, .25, .15, .1C)
Then SN = ((1,2,0), (2,1,1), (3,1,0), (4,0,2), (5,0,1), (6,0,0))] .
\

I1f we use Leoma 3 then

x(6)] [0 HEXS) (a;) (.10
x3(t) 0o -3 x,(t) s .15
xj(t) | = 2 o xy(t)| and [a, | = |.25
HO) 1 -4 x,(t) :, .30
xL(t) 0 & -2 x4 (t) 2 .20
[xge] L 2 0 flxg (o) L ag) Lo

By applying equation (27) we obtain

1
c(l,l) = 10

ce(2,1) =( O + 0c(1,1)/3 =0
c(3,1) =( O + 2c(2,1)62(0) =0
c(4,1) = (1c(2,1) + 0 )/4 =0
c(5,1) = (0c(3,1) + 4c(4,1)/2 =0

¢(6,1) = (0 +2¢(5,138,(0) =0
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c(2,2) '%6 - ¢(2,1) -%5
c(3,2) =( 0 4+ 2¢(2,2))/(-3) -‘—}-6
c(6,2) = (1c(2,2) + 0 /1 '%6

€(5,2) = (0c(3,2) + be(6,2)/(-1) =3

(6,2 =( 0 +2e(5,20/¢) =%

 e(3,3) -% - e(3,1) - ¢(3,2) -%—5
N =( 0 + 0 @ =0
c(5,3) = (0c(3,3) + bc(6,3))/(2) =0

c(6,3) = ( 0  + 2c(5,3))8,(0) =0

c(6,8) =25 - c(6,1) - €(5,2) - e(4,3) = 55
c(5,6) = (O +4c(6,8))/(-2) =35

e(6,4) = (O +2c(5,4))/(-4) .%3

c(5,5) =% - e(5,1) - €(5,D) - €(5,3) = c(5,4) -1

c(6,5) = ( 0  +2¢(5,5))/(-2) =~ %

5
c(6,6) = -Sc(6,u) -_-%

u=l
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Therefore the solution is

P x, ) 2 o)
20 1 ‘
: -3t
M x, 0 3 Ve
= «Llo -2 7 1 | .
P10 *31 " 20
-4t
Po2 X, 0 3 o0 3 e
P x 0 -12 0 -6 22 e 2t
o1 5
Pog %, | o 8 0o 3 -22 1mJibi |

The same comments which were made in the example of section
4 regarding the ease of finding other derived quantities from the above
solution apply here. For example, the distribution function of time
to extinction obtained from the above solution i{s G(T) =0 for T < O

and for T >0 ,

-4T -2T

- 22e

2
1 -3T
G(T) = E prO(T) =1+ -53(6.: + 3e )

=0

"
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