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ABSTRACT

The purpose of Section I is to generalize Theorem 3 of Severo,

Montzingo, and Schillo, "Characterization of the asymptotic distribu-

tions of a transformed ncm.-al random variable," Sankhya, Series A, 27,

by relaxing the assumption of normality and removing the requirement

that the parameters py and ay of the distribution of the random

variable Y be the mean and variance, respectively. A result analogous

to the above-mentioned theorem is obtained for the class of location-

scale parameter distributions. Examples are given which show that the

conditions given are sufficient, but not necessary, for the existence

of an asymptotic distribution of a transformed random variable.

Section II illustrates ways of deciding whether or not a given uni-

variate random variable X can be transformed into a given univariate

random variable Y ; and it gives procedures for defining various trans-

formations of X into Y in the event that one such transformation is

known io exist.

Section I11, which consists of three parts, gives an illustration

of the notion of robustness of a test, a generalization of this notion,

and a tentative definition of the robustness of a test in terms of a

metric on the space of power functions of the test. A short investiga-

tion is also made in this section of the properties of the Kolmogorov

metric on the space of location families of distribution functions, and

applications are msde '.o the normal, Ccuchy, student's-t, gamma, and

exponential distributions.
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Section IV presents two thearems that provide simple interative

solutions of special systems of differential-difference equations.

The first system consists of linear differential equations whose

coefficient matrices are triangular, have constant el=,cnts, and have

diagonal elements equal to each other at most in pairs. The equations

of the second system also have constant triangular coefficient matrices,

such that whenever there are equal diag-nal elements then sufficient con-

ditions are imposed on the matrices themselves so that the solutions

involve only sums of exponential terms.

The theorems are applied to the simple izochastic epidemic and to

the general stochastic epidemic, respectively, in each of which the

initial distribution of the number of uninrected susceptibles and the

number of infectives are arbitrary but the total population size is

assumed bounded. The results for the simple stochastic epidemic provide

solutions not obtainable by previously known results. The results for

the general stochastic epidemic are simpler and more direct than other known,

methods, which, when used to solve the problem having an arbitrary initial

distribution, would involve additional step& that would s,- proportionally-

weighted conditional results.

iv



Table of Contents

Section Page

I. On the Asymptotic Distribution of a
Transformed Random Vriab), 1

II. Supplement to Chapter II of ARL 65-75 9

2. The Notion of Clearance 10

3. ihe Theorem in Chapter II of ARL 65-75 12

4. Clearance in W' 14

5. Examples of Compatible and Incompatible Pairs 17

6. Some Members of the Class C2  32

III. Robustness of Tests 47

1. An Illustration of the Notion of Robuctness of a Test 47

2. A Generalization of the Notion of Robustness of a Test 50

3. The Kolmogorov Metric on the Space of Location Families 54
of Distribution Functions

IV. Two Theorems on Solutions of Differential-Difference Equations
and Applications to Epidemic Theory 63

1. Introduction 63

2. Solutions of Some Systems of Differential-Difference
Equations 64

3. Stochastic Epidemica 68

4. The Simple Stochastic Epidemic 70

5. The General Stochastic Epidemic 75

V



LIST OF ILLUSTRATIONS

FIGURE TITLE PAGE

1 The Spray Form 34

2 Spray X 37

3 Spray X 37

4 Spray Y 38

5 Spray Z 130

6 Spray V 40

vi



I. ON THE ASYMPTOTIC DISTRIBUTION OF A TRANSFORMED RANDOM VARIABLE

In [2], there is stated and proved a theorem regarding the asymptotic

distrib,,tion of a transformed normal random varlabit, and the following

clapspo of Paire functions are defined:

For each natural number n , and each real number a , A fn;s]

is that class of Baire functions whose elements, X , satisfy the con-
th n

ditions: (i) the n--- derivative, (n) , of X is continuous at

a , (iL) ,(n)(,) is a nonzero real number, and (iii) if m is a

natural number lepq than n , then X(m)(9) is zero.

For each natural number n , and each real number a , U(n;s]

is that class of Baire functions whose elements, w , satisfy

lim cu(x)/xn = a/n.
x- 0

The theorem in [2] to which we refer may be stated in a slightly

altered form as follows:

If Y is a normal random variable with mean •y and standard

deviation aY ; if Z - (Y- )/1ayc ; if there is a natural number n

such that h f Af n;iAy I ; if there are real constants I and Q ,

with Q A 0 , such that r e U(n;Rh(n)(Iy)] and AO(a' ) - b(ý.y ) + r(ay)

if ao, e W[n;Qh(n)(,,y )I ; if X - H(Y) , and if W - tX-t 0(a y)I/CO(a y)

then the asymptotic distribution of W , as a approaches zero, isY

that of the random variable (Zn -R)/Q

The purpose of the present work is to relax the assumption of

normality on Y and, incidentally, to remove the requirement that the

parameters py and ay be the mean and standard deviation of Y
y-y



For convenience, we introduce some terminology.

Let T be a subset of R X R + , the real upper half plane. We

call a family [F(x;g,8):(p,e) G T) of distribution functions a

location-scale-parameter family with respect to T if, and only if,

there is a distribution function, G , on the real line such that for

each real x , we have F(x;jL,O) - G((x-p)/e) , for every (p,G) E T

For ease of reference, we restate Lemma 2 of [2], in slightly

altered form.

LMIVA. LPt h e Arfn;a1 , R be a real number, and

Q be a nonzero real number. Then a necessary and sufficient

condition that lim th(a+bz) - h(a) - r(b)]/q(b) - (zn-R)/Q
b-'O

for each real number z , is that r e Qtn;Rh(n)(a)] and

q C Q4n;Qh(n)(a)]

We can now pr-ve a generalized version of Theorem 3 of (2].

THEOREM. Let Y be a random variable with distribution

function F(y;p,e) , where (F(y;m,e):(jL,e) C T) is a location-

scale family with respect to T . Let h e Arn;aj , R

be any real number, and Q be any n)nzero real number. If

W - [h(Y) - h(p) - r(O)]q(e) with r e U[n;Rh (n)] and

q e Ufn;Qh(n)(p)] , then the asymptotic discrbution of W

n
as 6 approaches zero, is equal to that of. (Z -R)/Q

where Z -

Proof. By applying Theorem a, pag,• 166, of (1], the characteristic

function, IS(t) , my be written in the form

W
0 p

1w(t) - fexprit w(z)]dG(z) - exp(it[h(p+Gz) - h(p) -r(e]/q(e)}d(z)

-2-



where G , the distribution function of Z , does not depend on (p,e)

By 'pplying the Lebesgue dominated convergence theorem and the Lemma,

we have, for each real t

lira 0w(t) exp -t(znR)/Q]dG(z) - 0(t) , say.
e-0O

Since lim 1(t) - 0(0) , 0 is continuous at zero and, hence, 0 is

t-O

a characteristic function. Thus, the asymptotic distribution of W

as e approaches zero, is equal to the distributioki of (Z n-R)/Q

We note in passing that the proof does not depend upon the existence

of moments of Y . For example, the theorem applies to the situation in

which y is a Cauchy random variable with location-scale parameter (Pe)

belonging to T - R x R+ . Thus, for any transformation h of the

t)'e described in the thecrem, the dsymptotic distribution of the random

variable W - (h(Y) - h(p) - r(P)]/q(O) is equal to that of the random

variable (Zn-R)/Q , where the probability density function of Z is

given by

I 1I . z<.
f(z) < 2 <z

We also note that the theorem gives conditions under which the

distribution of the random variable W approaches, as 8 approaches

zero, the distribution of the random variable (Zn_-R)/Q which does not

depend upon G .

We give below some examples of situations in which the distribution

of (Z,-n)/Q my depend upcn 0 , and for which it is true that the

distribution functions of W and of (Zn-R)/Q approach the same function
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approaches zero.

Example 1. In this example, we show that the distribution func-

tions of W and of (Zn-R)/Q my approach the same distribution

function as 0 approaches zero, even though F(y;I,e) is not a

location-scale family with respect to T

Let p be a nonzero real number and let 9 be a real number in

the open unit interval (0,1) . Let T' - ((,8)) and let y(4,e)

denote a discrete random variable vith distribution function

0 o < y <,-8

a e2/2 V -0 <_ y <A
iF(Y;iAe) 2S1.e2

8 /2 , < y < _ 4•

M 2I +9 < y <

If Z4,,e) denotes the random variable (Y4.A,e)-ps)/e , then the dis-

tribution function of Z(p,e) is given by

0 , < z < -1

e2 /2 ,-1 < z < 0

G(z;e) - l-e2/2 0 <z<1

1-e/ < z < as

1 l<z<o,

which depends on (p,e) , 50 that (F~y;ge) : (i.,e) e T') is not a

location-scale family with respect to T'

If R is any real number and Q is any positive real number, then

we denote by U(e) the random variable (Z2 (,e)-R)/Q in order to

stress the fact that the distribution function uf Z(p,O) depends on

9 . It i1 easy to show that the distribution function of U(e) is

given by

-4-



0 , -<u <- R/Q

H(u;e) 1-0 2  , -R/Q < u < (I-R)/Q

I (I-Rt)/q < u <-

If we take h(y) - (y.P) 2 , r(9) i Re2 (1+8) and q(e) m Q 2 (l+2e)

then it is readily verified that h .A[2;ý,] , r I 0[2;2R] and

q e 0[2;2Q] , and that the ran.dom variable W(O) defined by

W(O) - (h(Y(V,e))- h(g) - r(O)J/q(e) has distribution function

f0 , - w < -R(1+4)/Q(l+2e)

J(v;e) - 1-e 2  -R(l+e)/Q(l+2e) < v < [l-R(l+e)]/Q(l+2e)

1 , [1-R(l+0)]/Q(l+2e) < v < .

If we consider, for a fixed real number x , the limit, as 0

approaches zero, of H(x;6) , then we see that

0 , .- < x < -R/Q
lim H(x;e)-0.-lmH(00 1 , -R/Q :5 x <

And if we write J(v;0) in the equivalent, but more tractable, form

0 < w < <-R/Q + -8

J(v;e) - 1-e 2 , -R/Q I, + ]-_ <w < [q(1+2e)]" - R/Q I + ]9

1 , [Q(l+2e)1"I - R/Q 1 + l 1 < -

then it is easy to see that, for fixed real x , we have

S S0 . --w < x < -R/Q

lin J(x;e)
e-O ) 1 , -R/Q <5x <,

-5-



Thus, as 8 approaches sero, the distribution functions of the random

variables V1(0) and U(9) both approach the same distribution function.

Example 2. In this example, we show that even though the limit,

as 0 approaches &er% of the distribution function of the random variable

U(8) - (Z (IA,0)-l)/Q is not a distribution function, the limit, as e

approaches zero, of the difference between the distribution function )f

U(9) and that of W(9) can approach zero.

Let T be the same as in example 1, and let YO.L,) denote a

discrete random variable with distribution function

0 < y <,-e "1

(1/4(1-02 P- 1< y <
F ~y;MO) /(1/0+02) , _< y < 1+0"1

P+1 .+"1 < y < a

The distribution function of the random variable (Y(4,0)-•)/0,

which we again denote by Z(p,O) , is given by

0 < Z < -e"2

(1/2)(1_92) _e-"2 < 2 < 0

G(z;e) - (/2)1+0 2  < < e2

1 ,2 < Z<i

and that of the random variable U(6) (Z2 (mO)-&)/Q , for positive

real R and positive real Q i is given by

S0 , < u < -R/Q

H(u;9) - { 2 -iQ < u < (0 4 _R)/Q

(0-6- )/q < u <



By taking h , r and q to be the ame functions as they were

in example I and defining W(6) as it wes defined there, we find that

W(8) has distribution function

S0 ,- < v < -R(1+0)/Q(l+20)

J(v;G) V :2 -R(l+)/Q(l+2e) < v < [' 4-1t(l+o)]/Q(l+2e)

I e 4-R(l+e)]/Q(l+2e) < w <-

In order to simplify the computations and make the discussion easier

to follow, we nov specialize to the case R - 1 and Q - I • We note

that no essential generality is lost by so doing. Under this restric-

tion we have

{0 , < -1

H(u;O) - e2 _< u < 94-1

1 , 4 -41 u< m

and

f 0 , .- v < -[1+4/(1+8)1]1

J(v;e) m 62 -4l+0/(l+0)"11 < v < [e'4-(l+e)]/(.+2e)

1 , [e-4-(1+8)]/(1+29) < v < a

It is clear that, for any fixed real number x , the absolute

difference IJ(x;9) - H(x;O)j can be made arbitrarily small by choosing

0 sufficiently close to zero; i.e.,

1ia J(x;e) - H(x;e)l -0 , <. <x<
e-0o

It is also clear that if x is any fixed real number, then H(x;6)

can be made arbitrarily small by choosing 6 sufficiently close to

"-7-



zero (for a < (x+l) 4 H(x;S) < (x+1) 8 ); i.e.,

limH(x;e) -0 , -. s<x<- ,e-.o

which is not a didtribution function.

REFERENCES

[1] Loeve, M. (1963), Probability Theory, third edition, van Nostrand,

Princeton.

(2] Severo, N. C., Montzingo, L. J., and Schillo, P. J. (1965),

Characterization of the asymptotic distributions of a trans-

formed normal random variable, Sankhyi, Series A, 22, 417-422.
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II. SUPPLEMENT TO CHAPTER II OF ARL 65-75

1. Preliminary Remarks

Let B denote the set of all Baire functions which map the real

line R into R ; and let D denote that subset of B which contains

the function F if, and only if, F is a distribution functi6n. If F

is a function in D , if P is the probability measure which induces

F , so that, at each point x of R , the value of F is

F(x) -P z : z < X

if h is a function in B , and if G is that function in D whose

value at each point y of R is

G (y) - PI x :h(x) y

then the symbol (F,h,G) standa for the assertion that the Baire functions

F , h and G are related to one another in the manner hypothesized.

For each ordered pair (F,G) of functions in D , the symbol (F,*,G)

denotes the subset { h ; (F,h,G) } of B ; and (F,G) is said to be

a compatible pair or an incompatible pair according as it is not or is

true that the set (F,*,G) is the empty set 0 . Chapter II of the

interim technical report ARL 65-75 , entitled "Some Properties Of Dis-

tribution Functions And Transformations That Induce One Another", pro-

vides necessary and sufficient conditions under which an ordered pair

(F,G) of distribution functions in D is a compatible pair. In this

supplement to chapter II of ARL 65-75 , we shall carefully examine some

special ordered pairs of distribution functions in D ; we shall determine

whether or not they are compatible pairs; if one of them, (F,G) , is a

-9-



compatible pair, then we shall determine at least one fuiction h in

the non-empty set (F,*,G) ; and, in the final section of this supplement,

we shall consider ways of finding various functions in (F,*,G) when

(7,C) is a compatible pair. We would like our illustrations to require

-- and, thereby, to justify -- some of the elaborate details in the

theory concerning compatible pairs of functions in D which is developed

in chapter II of ARL 65-75.

In order to make this supplement to chapter II of ARL 65-73 nota-

tionall: independent of that technical report, we shall define here those

of its ymbols and terms that we use. Of course, many statements in this

supplement will not be independent of that reference, because we shall

not prove them here.

2. The Notion of Clearance

Let W denote the set of all infinite column matrices whose entries

are real numbers. Thus, W may also be regarded as the set of all infinite

sequences of real numbers. If w denotes a matrix in W (or a sequence

in W ), then, tor each positive integer n , the symbol w denotes

the entry in the n'th roy of w (or the n'th term of w ).

Three operators which may be applied to symbols denoting elements

of V are cum: , lim: and sum: . If w denotes an element of W

then cum:v denotes the sequence of partial sums of the terms of the

infinite sequence w ; that is, cum:v denotes that element v of W

whose first term vI is vI , and whose n'th term vn , for each integer

n > 1 , is wn + vn-I . If v denotes a convergent sequence in W ,

then lim:w denotes the limit of w . Finally, if w denotes an element

-10-



of W which is such that cum:w is a convergent sequence, then suM:w

denotes the real number lim:cum:w

A matrix v in W is said to dominate a matrix w in W if, and

only if, for each positive integer n , v > w ; and, the fact that

v dominates w may be asserted symbolically by either v>> w or w << v

If v >>w and v v w , then we may write v >> w an4 w << v

Let T denote the set of all matrices with infinitely many rows and

columns, in each column of which there is one, and only one, non-zero

entry, the real number 1 . If A denotes a matrix in T , then, for

each ordered pair m,n of positive integers, the symbol A denotesmjn

the entry in the m'th row and n'th column of A . Let I denote

the identity matrix in T ; that is, let I be that matrix in T which is

such that, for each positive integer n , I n,n = 1 .

For each matrix w in W , let T(w) denote that subset of T

which contains the matrix A in T if, and only if, the matrix product

Aw is a defined column matrix; in other words, let T(w) denote that

subset of T which contains the matrix A in T if, and only if, for

each positive integer m , the sequence v in W , whose n'th term

vn is A w for each positive integer n , is such that sum:v isn m,iln

defined. It is evident that, for each matrix w in W , T(w) i t

because Iw - w .

A matrix v in W is said to clear a matrix w in W if, and

only if, there is at least one matrix A in T(w) for which it is true

that v dominates the matrix product Aw ; and, the fact thot v clears

w may be asserted symbolically by either v >>> v or w <<< v

-11-



SOur special interest in the notion of clearance -- that is, the

idea which underlies the assertion that one infinice sequence of real

numbers clears another such sequence -- will be restricted to such a

modest range of its application (e.g., to such sequen..es in W as w
where w is a monotone non-increasing sequence of non-negative real num-

bars, and where sum:w is a definite non-negative real number that does

not exc•-d I ) that it might seem that some simpler notion would serve

our purpose for introducing it. It happens, however, that we have found

no replacement for it that is as easily described as it is, and that is

suitable to our needs.

3. The Theorem in Chapter II of ARL 65-75

Some notation from chapter II of ARL 65-75 is the following: For

each real number x , a, (x) denotes that subset of R which contains

the point z of R if, and only if, z < x . For each function F in

D , the symbol R(F;w) denotes the set of all points of discontinuity

of F ; the symbol R'(F;-) denotes the difference set R - R(F;-) ;

the symbol R c(F;co) denotes that subset of R'(F;an) which contains the

point x of R'(F;") if, and only if, for each point z of R which

is less than x , F(z) < F(x) ; the symbol R'(F;-) denotes the differenceC

set R'(F;=) - R (F;=.) ; the symbol R (F;w) denotes that subset of R (F;-)

which contains the point x of R (F;-) if, and only if, for each real
C

number z < x , and with P denoting the probability measure that induces F

P r : r n a• (z)R (F;) P r : r e t1 (x) n R(F;-)

and the symbol R'(F;&-) denotes the difference set R'(F;*n) - R (F;-)

w w

-12-



I
Finally, for the function F in D and the real number x , the symbols

R(F;x) , R'(F;x) , R (F;x) , R'(F;x) , R (F;x) and R'(F;x) denote
CC V W

the set intersections a(x)r1R(F;.) , w(x)0 R'(F;.o) , w(x)AR (F;-)
C

!(x)C.R'(F;a)) , w(x)fR (F;ao) and w(x)OR'(F;&) , respectively.

Let P be that function which maps D into W in such a way that

its value at each function F in D is that sequence P(F) = w in W

which satisfies the following six conditions:

(1) if R(F;e) = 0 , then, for each positive integer n , w = n

(2) if R(F;a.) contains exactly m points, the greatest of which

is r , then, for each integer n > m , w = r + n - m ;

(3) if a is a point of R(F;w) , then there is one, and only one,

positive integer n such that w = a ;n

(4) 1", for some positive integer n , w is not a point of R(F;*-)

then R(F;&) is not an infinite set;

(5) if a and b are points of R(F;&-) such that the saltus of F

at a is greater than the saltjq of F at b , then there exist

positive integers m and n such that m < n , w = a and

w = b ; andn

(6) if a and b are points of R(F;o) such that a < b , and

such that the saltus of F at a is the same as the s9ltus of

F at b , then there exist positive integers m and n such

that m < n , w = a and w = bm n

Let W' be that subset 3f W which contains the sequence w of W

if, ard only if, cum:w is a convergent, monotone non-decreasing sequence,

w is a monotone non-increasing sequence, and sum:w does not exceed I

-13-



If F is any function in D , let w be the sequence p(F) in

W ; for each positive integer m , let v(m) be that sequence in W

whose n'th term, for each positive integer n , is v(m) . F(w
n -

F(wa - 1/n) ; and let the symbol sal:F denote that sequence u in W1

whose m'th term, for each positive integer m , is u m lim:v(m)

Thus, sal: is an operator which is applicaLle to each function F in

D ; and, loosely speaking, sal:F is the monotone non-increasing se-

quence whose non-zero terms are the saltuses of F

By making use of the notation described in this supplement to

chapter II of ARL 65-75 , the theorem of that chapter can be stated con-

cisely as follows:

For F and C in D , (F,*,G) 1 0 if, and only if, ssl:F <<< sal:G

Thus, this theorem gives necessary and sufficient conditions for an ordered

pair (F,C) of functions in D to be a compotible pair. However, since

these conditions appeal to the somewhat formidable notion of clearance for

their meanings, it behooves us to show that this theorem is necessarily

preferable to the tautological assertion that (F,G) is a compatible pair

if, and only if, (F,G) is a compatible pair. In the nezt section, we

intend to provide the theorem with a modest justification.

4. Clearance in W'

In this section, we shall state and prove three theorems concern-

in$ the clearance relation »> between sequences in W' . These theorems

will be considered in the next section where we shall be dealing with

some special compatible and incompatible pairs of discrete distribution

functions in D . However, we would not want the theorems of this

section to be mistaken for fundamental theorems in a carefully constructed

-14-



theory of clearance. Such a study would properly begin on foundations

provided by a good understanding of the set W , and of the dominance

relation >> between its elements, and by a separate study of the set T

In unifying the results of these separate investigations in order to

develop a theory of clearance, one of the fundamental theorems would assert

that clearance, like dominance, is a transitive relation. The following

theorems are too limited in scope to be regarded as fundamental theorems.

THEOREM 1. If the sequence v in W' dominates the sequence v in W'

then v clears w

PROOF: Since v >> w , I T(w) and _I = w , v >>_Iw ; so

v >>> w .

THEOREM 2. The sequence v in W' clears the sequence w in W' only

if ct•m:v dominates cum:w

PROOF: We shall prove this theorem in the following way: we shall

let v and w be any sequences in W' which are such that the sequence

y = cum:v in W dcea not dominate the sequence x = cum:w in W ; we

shall let A be a matrix in T(w) ; and we shall let u be the matrix

product Aw in W' ; then we shall show that A cannot meet the necessary

requirements for v to dominate u , so that v cannot clear w

Since y does not dominate x , there exists one, and only one,

positive integer k such that yk < xk , and such that, if n is a

positive integer lesz. than k , then y 'x t. Since v and w are

monotone non-increasing sequences of non-negative real numbers, it follows

that
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(*) for any positive integers m and n such that m > k > n

v <w nm n

For each positive integer n , let r(A;n) denote that positive

integer m which is such that A I 1 ; and, for each positive integerm~n

m , let AOw) denote that sequence in W whose n'th term A(m) is
n

A for each positive integer n Now, if, for some positive integer

n < k , the integer m = r(A;n) is not less than k , then, by (*)

u=Z Am) wh m w

h=1

so that v cannot dominate u = Aw ; therefore, if v is to clear w , A

must bc such a matrix in T that, for each positive integer n < k ,

r(A;n) < k If A meets this requirement, and if z denotes the sequence

cum:u in W , then

k k k kc k kc

z u= Un Z A(n)wh - Ah(n)wh Y wh (n)

n=l n=l h=l n=l h=l h=l n=l

k k

=.1 whA~r(Ah)) Z wh =

h=l h=l

and, siacc xk > Yk ' Zk > Yk Consequently, there is a positive

integer n < k such that un > v , so that v does not dominate u

Thus, for no matrix A in T(w) , does v dominate Aw ; hence, v

does not clear w

THEOREM 3. The sequence v in W' clears the sequence w in W' only

if sum:v > sum:w

-16-



PROOF: Let y I cum:v and x - cum:w If sum:v < sum:w , then,

because v and w are monotone non-increasing sequences of non-negative

real numbers, there is a positive integer k such that xk > sum:v

hence, Xk> Yk , so that cum:v does not dominate cum:w and, by theorem

2, v does not clear w

5. Examples of Compatible and Incompatible Pairs

Let 10 denote the negative half of the real line R ; let J0

denote the non-negative half of R ; and, for each positive integer n

let I1 I' , J and V' denote the respective intervals [ n - I , n - 1/2 )
n n

n - 1/2 , n ) , [ -2n , -2n + 99/100 ) and C -2n + 99/100 , -2n + 2 )

which are all open on the right.

Let F be that function in D whose value at each x E R is that

real number F(x) which is defined as follows: if x q I0 , then F(x)

- 101/2(1l0-x) ; if n is a positive integer and x C I , then F(x) =
2 

n

(101x+2n 2+200n+10100)/2(n+100)(n+101) ; and, if n is a positive integer

and x q I' , then F(x) = (4n 2+602n+20099)/4(n+l00)(n+101)S n P

Let H be that function in D whose value at each x e R is that

real number H(x) which is defined as follows: if x e 10 , then

H(x) = 50/(l00-x) ; if n is a positive integer and x e I , thenn

H(x) = (50x+n 2+99n44950)/(n4.99)(n+l00) ; and, if n is a positive integer

and x C I' then H(x) = (n 2+149n+4925)/(n+99)(n+l00)n'

Let G be that function in D whose value at each x C R is that

real number G(x) which is defined as follows: if x e Jo , then G(x) =

(x+l)/(x+2) ; if n is a positive integer and x e Jn , then G(x) -

(x44n)/4n(n+l) ; and, if n is a positive integer and x ' J then
n

G(x) = (200n+99)/400n(n+l)

-17-
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We intend to find out whether or not (F,H) and (F,G) are com-

patible pairs. Let sal:? = w , sal:H = u , sal:G - v , -:w - ,w

cum:u = u and cum:v-v ; and let a , b , a and b be those sequences

in W whose n'th terms, for each positive integer n , are a - u - v

bn - vn - vn , an a -n - Vn and b n = vn - wn , respectively.

We shall consider the pair (F,H) first. Each of the sets .. (F;w)

and R(H;m) is the set of all positive integers; in fact, p(F) and

p(H) are the aequence of positive integers. Furthermore, for each posi-

tive integer n , w n l-l/4(n+lO0)(n+ll) , u n 25/(n+99)(n+100)

a = (l0l-n)/4(n+99)(n+l00)(n+l0l) , w = n/4(n+101) , u = n/4(n+lO0)
n n n

and a -n/4(n+lOO)(n+101) . Thus, sum:w - lim:w 1/4 and sum:un

- 1/4 . In theorems 2 and 3 of section 4 , there were given necessary

conditions for u to clear w ; since u dominates w and sum:w does

not exceed sum:u , these necessary conditions are met; and, therefore,

it cannot be concluded that (F,H) is an incompatible pair by applying

those theorems. In theorem I of section 4 , there was given a sufficient

condition for u to clear w ; since a102 < 0 , so that u1 0 2 < W10 2 and

u does not dominate w , this sufficient condition is not met; and, there-

fore, it cannot be concluded that (F,H) is a compatible pair by applying

that theorem. In this example, the simple tests of section 4 are of no use

to us. We have to find some other way of determining whether or not the

set (F,*,H) is empty.

We designed this problem to illustrate some of the difficulties which

can attend the use of the clearance criterion in testing the compatibility

of ordered pairs of disttibution functions in D . However, since we
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wanted a decision to come out of a modest amount of study, we made it

possible to show that (F,H) is an incompatible pair (i.e., that u

does not clear w ) in a way that is only a little more complicated

than it would have been if the tests derived from the theorems of section

4 could have been employed successfully. Of course, in this vay, we do

no more than hint that there might be ordered pairs of functions in D to

which neither the adjective "compatible" nor the adjective "incompatible"

can be applied. Until an upper bound on the possible number of simple

decisions necessary to conclude that a given ordered pair of functions

in D is or is not a compatible pair is definitely established, the

statement that the pair has to be either compatible or incompatible will

appear to be quite flimsy from a critical viewpoint. We must admit that

there is much that is vulnerable to severe criticism in our simple dichotomy

of the Cartesian product set D x D of all ordered pairs of functions

in D into compatible and incompatible pairs; but no example here is

subject to that kind of criticism.

In showing that (F,H) is an incompatible pair, our procedure will

be as follows: we shall try to find a matrix A in T(w) which is such

that, if z is the matrix product Aw in W' , then u dominates z

therefore, when we have shown that no such matrix A can meet all the

requirements which we shall find that we must impose on it, we shall have

shown that u cannot clear w , and that (F,H) is an incompitible pair.

For each positive integer n , let r(A;n) denote that positive

integer m for which Am,n = 1 . For each positive integer n , wn> Un+1

becauce wn - u n+1 , /4(n+100)(n+lOl) ; therefore, if r(A;n) were to

be an integer m greater than n , then the m'th term of the sequence

-19-



smAw would be

n A wt Am,n V n - U u u

tMl

in which event u would not dominate z ; consequently, A must meet the

requirement that, for each positive integer n , r(A;n) : n.

Since r(A;l) < 1 , r(A;l) - 1 . Suppose that it has been shown

that, for each positive integer n which is less than or equal to a

particular positive integer k , r(A;n) must be n if it is to be at all

possible for u to dominate z = Aw . We wish to see whether or not, under

these conditions, r(A;k+l) , which cannot exceed k+l , can be a positive

integer m which is less than k+l . For such an integer m , the m'th

term of z would be

Zm Am't wt > AMm wm + A =k w + u + (Wk+1 - am)m -mmm m,k+l m Wk (wk l

t =1

If wk+1 is greater than a. , then zm would be greeter thn u m, and u

would not dominate z . Hence r(A;k+l) cannot be an integer m less than

k+l if wk+1 exceeds a . Since, for each positive integer m < 201

am - am+1 = (201-m)/2(m+99)(m+100)(m+lO1)(m+102) is positive, and since,

for each integer m > 101 , am = (101-m)/4(m+99)(m+100)(m+101) is negative,m

the greatest term in the sequence a of W is a1 = 1/41208 . Therefore,

since Wk+1 must not exceed a. < a, if it is to remain possible for m

to be less than k+l , it follows that m cannot be less than k+l if

'.k+l exceeds a 1  . We find that the least positive integer k for which

it is true that Wk+l does not exceed a1 is the least positive integer k
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such that 101/4(k+lO1)(k+102) < 1/41208 ; thus, we conclude that k must

exceed (-/4162009 - 203)/2 , which means that k > 919 . For this reason,

we are forced to :onclude that, if k were to be less than 919 , then

r(A;k+l) would have to be k+l ; consequently, for each rositive integer

n < 920 , A must meet the requirement that r(A;n) - n . However, if A

meets this requirement, then, since a102 < 0 , the 102'nd term of z - Aw

is

z102 . A102,t wt t '102,102 w10 2  1W102 'u102 " '102 >u102
t=l

so that u does not dominate z . Thus, no matrix A in T(w) is such

that u dominates Aw ; consequently, u does not clear w ; and (F,H)

is an incompatible pair.

Now, let us consider the ordered pair (F,G) . It will not be hard

for us to show that (F,G) is a compatible pair, so that the subset (F,*,G)

of B is not 0 . Our work on this compatible pair will be primarily that

of defining a particular Baire function h in (F,*,G) . But, first, we

shall take the trouble to show that sal:G - v clears sal:F = w .

We find that R(G;w) is the set of all non-positive even integers,

that p(G) is the strictly monotone decreasing sequence of non-positive even

integers, and that the n'th terms of the sequences v , v , b and ,

for each positive integer n , are v n 101/400n(n+l) , n = lOln/400(n+l)n n

b -v - w = 101(10100-+101n-99n 2)/400n(n+l)(n+100)(n+101) andn fl f

b9= v - w = n(n+10101Y400(n+l)(n+101) , respectively, so that sum:v -n n n

lim:v - 101/400 . Evidently, the tests derited from the three theorems of

section 4 fail to disclose whether or not (F,G) is a compatible pair.
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We shall show that v clears w by defining a matrix A in

T(w) which is such that v dominates Aw . This satisfactory matrix A

will then be of use to us in our work defining a function h in (F,*,G)

For each ordered pair of positive integers (m,n) , let A be either Impn

or 0 according as it is or is not true that 101(m-l) < n < 101m . If z

is the matrix product Aw in W' , then, for each positive integer mi

the m'th term of a is

A V W I <1011.
- Z Amn~n Z V 1 • 101 - v ;

n- n-ll.- 100 n 4m(=+l) 400m(m+l)

consequently, v dominates z , v clears w , and (F,G) is a

compatible pair.

The matrix A establishes the following one-to-many correspondence

between the points of R(G;w) and R(F;w) ; to each positive integer m

and, hence, to the m'th term ym = 2 - 2m of p(G) , there correspond

101 points of R(F;w) , the n'th of which is x l -01(m-1) + n ofm,n

R(F;ao) for each positive integer n < 101 ; and, to each positive integer

n , and, hence, to the n'th term n of o(F) , there corresponds one,

and only one, point of R(G;w) , the even integer 2y which is such that

(1-n)/101 < y < (101-n)/101 . We are now prepared to begin defining a

function h in (F,*,G) by following the procedure used in chapter II of

ARL 65-75

For any subsets H and N of the real line R , let the symbol

B[M,NJ denote that subset of B which contains the Bmire function q in

B if, and only if, tie value of q at each point x of M is a point
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q(x) of N . Let y denote that special function in B whose value at

each point x of R is that integer y(x) which is such that

x - 1 < r (x) < x . Since the function h in (F,*,G) which we went to

define is a function in B[R(F;-).R(G;*-)] , we make use of the many-to-one

correspondence between the points oý R(F;m) and R(G;w) which was defined

in the last paragraph; and we define the value of h at each point x of

R(F;-) to be

(1) h(x) - -2 r ( 4x---

Of course, if we were to set up a different many-to-one correspondence

between the points of R(F;-) and the points of a subset of R(G;-)

(i.e., if we were to find a matrix C gi A in T(w) such that v >> Cw)

then we would have to define h differentl7 over R(F;w) .

The subsets R'(F;*-) and R'(F;ao) of R are the same set; this
c w

set contains the point x of R if, and only if, there is a positive

,integer n such that I' contains x , and such that n is not x + 1/2n

For each point x of R'(F;w) = R'(F;w) , there is a real point y > x
c w

such that F(y) = F(x) . We are free to define h over R'F;w) in anyw

way that we find convenient; therefore, we define the value of h at each

point x of Rw(F;w) to be

(2) h(x) - -2 T (4-

It remains for us to define h over R (F;m) -l'(F;m) - R'(F;-)
V w

Let p be that sequence in W' whose n'th term, for each positive integer

-23-
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n , is P =n v 1/400n(n+l) ; then the special number t = sum:p is

1/400 . Let P denote the probability measure which induces the distri-

bution function F ; and let T and S be Borel sets in R which ar, such

that TrIS -0 , TgS - R w(F;-) and P[TT w t * Since R - R(F;ao)UJR'(F;-)

and R'(F;w) - R(F;w)VR (F;m) - R'(F;=)UTUS , since TAS - and

It(F;-) R0(F;R ) - R (F;m)AT -RF;o()ns - R'w(F;=)AT - R' (F;=)ns -S

and since P[R- 1 , P[R(F;w)1 - sum:w = 1/4 , P[RR(F;w)] -0 , and

PCT1 - t - 1/400 , it follows that R = R(F;a*)UR,(F;w)UTV S and P(RI =

P[R(F;-)] + P[R'(F;-)] + P[T] + P[S] , so that the special number a = PC I

is 299/400 . There are non-denumerably infinitely many ways of choosing

the disjoint Borel sets T and S so that TUS - R (F;w) , PrTl - t and

P[Sl - a ; and no two such choices would yield the same definition of h

over R (F;m) . We shall define S (and, consequently, T ) in a way

that we feel is most convenient.

Let S and S; denote the set of all non-positive real numberb; and,

for each positive integer m , let S denote the open sub-interval ( m - 1 ,
m

m- 101/200 ) in I ,and letm

m

So= U S
m i

Since, for any integers m and n such that m > n > 0 , Sm rS =n

SmC RW(F;m) and SnC Rw(F;n)C R,(F;m) , it follows that, for these integers,

PrSmU SnI = PrsmI + P[SnI and S' C S' C R(F;m) . Therefore, since qO =

P[sg0 - F(0) - 1/2 and, for each positive integer m , qm - P[SmI - F(m -

101/200) - F(m - 1) = 9999/400(m+100)(*+10l) , it follows that q0, = PtSo1

= Prs 01 = 1/2 ar,!, for etch positive integer m
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-S [ P s] s I I 99M 299 9999

= 'ssm ] = + 400(m+lO) =400 - 400(m+101)

i-0 IMO

Tho facts that, if q' is that sequence in W' whose m'th term is

for each positive integer m , then lim:q' - 299/400 , and that S' C Rw(F;-)

for each non-negative integer m , combine to enable us to define the set S

to be the following union of Borel sets in RW(F;a)

U Si

For each positive integer m , let T" denote the closedm

interval Cm - 101/200 , m - 1/2] in R ; let

101 m
Tl01(im-l)+i ; and let T' Ti

i~l m

Since, for any integers m and n such that m > n > 1 , T'lT'n -0

T"' C Rw(F;m) and Tn Rw(F;n) C Rw(F;m) , it follows that, for these

integers, PfT''UT''1" P[TmT' + PfTn'' , Tm Rw(F;lOlm) and T n" R w(F;101n)

Also, for any integers m and n such that m > n > 1 , Tm nT 0 . so

that PC TUTn1 - P(TmI + PFThn . Therefore, since, for each positive integer

m , p'" - P[TTI' = F(m - 1/2) - F(m- 101/200) = 101/400(m+l00)(m+101) , it
im

follows that

r101 101

mWPCT I . P U Tj01 (m_,)+.i PC T1 0 1 (in )+i
1  0(ali=l il -4o(+1>

for each positive integer m . Furthermore, for each positive integer m

m m

p' = P[T.' = P ] T 1 o(__
in n] i L PLi~l 40-0 -400(m+1)

i-1

The fact that S is the set of all non-positive real numbers, and that, for
0
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each positive integer a q S CT" -1 , SmUT' (- 1/21a a

which is CI UlI'm]I'R' (F;m-1/2) , and ( m - 1/2 , m) - I'flR'(F;a)

forces us to define T to be the following unions of Borel sets in R (F;-)

0 T" -0

L-1 T M.1 Is"

The most convenient definition of h over T is the following:

if x is a point of T , and if m is that positive integer such that T

contains x , then the value of h at x is h(x) - ym = 2(1-m) . How-

ever, other definitions are possible; for example, by observing that

11 139

P rTi' - P(Tj')
i_5 i=110

and by letting
11 139

M , T1 1 , N=11 T0 ' , T* = (TIUN) - M
1-5 i=110 i 1

T* = (T 2UH) - N and, for each integer m > 2 , T* =Ti , we could define

h over T as follows: if x is a point of T , and if m is that posi-

tive integer such that T* contains x , then h(x) = ym . Nevertheless,

our choice of definition of h over T has the advantage that its value

at each point x of T it

(3) h(x) --2 r / •

Since the formulas (1) , (2) and (3) are all the same, the function h

has, thus far, been defined so that it coincides with a convenient monotone

non-increasing step-funct.on over the Borel set R- S .

It remains for us to define h over S . Such a definition will be
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given at the end of a process which follows that in the proof of the theorem

in Chapter II of ARL 65-75 .

First, we define the function K to be that function which maps R

into the set of all Borel subsets of the set TUR(F;-*) ir such a way

that, at each point y of R , the value of K is the Borel set

K(y) - (x : x a TUR(F;m) and h(x) <! y7

In order to put this definition of K into a more tractable form, we define

the following sets: for each positive integer m , let X be that subset

of R(F;w) which contains exactly 101 points, the n'th of wahich is

x = 101(m-l)-fr ; letmjn

m s doo

x'= Xi ; let L-TUX let L'= L Li ;and let L U L,
a L= ia m

Since L' TT'UX' for each positive integer m , L = T VR(F;w) . Thus,

if y is a point of Jo , then K(y) = L ; and, if, for some positive

integer m , y is a point of J UJ' = [-2m , 2 - 2m) , then K(y) -L-
a 3

L' Since PfLj - 101/400 and, for each positive integer m , PfX =
m a

-m l/4in(u+l)

Iand PrL'1 - PIT' + +Px lo.m
a PLX] 4(m+l) n m m 400(m+•)

i=1

it follows that, if y e Jo P then PrK(y)] - 101/400 ; and, if, for some

positive integer m , y e J UJ_' , then PrK(y)1 = 101/400(=+I).

Next, we define the function g to be that "unction in B whose

value at each point y of R is g(y) = G(y) - PfK(y)] . Thus, if y e

Jo tLen g(y) - (299y+198)/400(y+2) ; and, if, for some positive integer

m , y JVJ' J then g(y) is either (lOOy+29 9 m)/ 4 0 0m(m+l) or 99/400w
ms-7

-27-



according as y is or is not less than 99/100 - 2m.

Now, we intend to define a function V which maps the closed interval

JO , al , where a - P[$I - 299/400 , into the set of all Borel subsets

of S in such a way that each of the following four conditions is satis-

fied:

(i) for each point it of ro , &I , the image V(u) of u

under the mapping V is a Borel subset of S such that

PrV(u)l = u

(ii) for any points u and v of [0 , .1 such that u < v

V(u) is a proper subset of V(v)

(iii) if u = 0 , t!.en V(u) =0 ; and

(iv) if u = ,then V(u) = S .

The particular function V which we shall define is taken from a non-

denum4rably infinite collection of functions, each of which e tisfies these

four conditions, but no two of which yield the same definition of h over

S .

Let X denote that subset of R - S which contains the point x

of R - S if, and only if, there exists a positive integer m such that

x = m - 101/200 ; and let p be that function which maps SUJX into the

class of all Borel subsets of S in such a way that the image of each point

x e SV X under the mapping V is the set u(X) SfIR'(F;x) if x e S ,

and is the set g(x) = 5' if x is the point m - 101/200 of X . Thus,m

for each point x of SVX , either x < 0 and Pf"(x)1 = F(x) , a., that

Pr~(x)1 - 101/2(101-x) ., or there exists a positive integer m such that

m-l < x < m and P[r(x)1 qmI - qm + 2w (x-m+l) = + 2w (x-m+l) , so
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that Prv(x)1 - (20200x+299m 2+29900m+2030201)/400(m+100)(m+101) . If x

and z are points of SV X such that x < z , then

0 - P#ro < P41(x)1 < Pfr(z)1 < Prsl . s ,

so that tI(x) is a proper subset of u(z) . Consequently, the function u

is a one-to-one mapping of Dom M , its domain of definition SVJX , onto

Ran U , its range of values, which is a proper subset of the set of all

proper Borel subsets of S ; in other words, M defines a one-to-one

correspondence between the elements (points) of Dom W and the elements

(sets) of Ran A . Furthermore, there is a one-to-one correspondence

between the points of the open interval (0 , a) and the points of the set

SUX = Dom V such that u e (0, s) and x c SUX correspond to one

another if, and only if, Pru(x)1 - u . Therefore, there is a one-to-one

correspondence between the points of (0, s) and the Borel sets in Ran 4

such that the point u e (0 , s) and the set Z e Ran p correspond to one

another if, and only if, PfZ1 u .

We define the function V , whose domain of definition Don V is

the closed interval [0 , a] , in such a way that its range of values Ran V

is Ran V augmented by the values V(O) 0 and V(s) = S of V at 0

and s , respectively, and its value at each point u of (0 . a) = Ran U

is that sat V(u) =u±(x) in Ran V , for some unique point x of Don ,

which is such that Prw(x)1 = u . Thus, if u = 0 , then V(u) 0 ; if

0then V(u) = 101(2u- ; if, for some positive integer m-2 \ 2u

( 4 0 0 (m+l00) (m+l0l)u-299m2 _-29900m-2030201<U < , then V(u) ..... 20200

and, if u = a = 299/400 , then V(u) = S
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Let C be that function which maps R onto Ran p, in such a

way that its value at each point y of R is C(y) - V(g(y)) . Thus, if,
99

for some positive integer m , -2m < y <-- - 2m , then

- (101 (IOy- 200a2+99.)C&y) --1 lOOy+299m ) ; if, for some positive integer m ,

(101 99-2000) 2920

99 -2m y < 2 -2m , then C(y) = I 101(99-20N) if 0 <10 99 -99

1 l01(99y-202)then C(y) a1 9 ; and, if, for some positive integer m

400m+20002 < 400m+20402 ,then C(y) 299m+9799 2(m2+20ol 0100))9999 • < 9999 ,he y)= 200 101(y+2)"

Let C' be that function which maps R into the set of all

subsets of R in such a way that its value at each point y of R is that

subset C'(y) of C(y) which contains the point x of C(y) if, and only

if, for each real number z < y , x is not a point of C(z) . Thus, if, for

some positive integer m , -2m < y < 2 - 2m , then C'(y) is either the

empty set 0 or the set whose only point is 101(100y-200m2 +99m)/(100y+299m)

according as y does or docs not exceed 99/100 - 2m ; if 0 < y < 202/99

then C'(y) is the set whose only point is 101(99y-202)/(299y+198) ; and,

if, for some positive integer m , (400m+20002)/9999 < y : (400m+20402)/9999 ,

299u2+9799 2 (m2+201rn+10100)

then C'(y) is the set whose only point is 200 201(y+2)0"

Finally, we define the function h over the set S in such a

way that its value at each point x of- S is that point h(x) = y of R

which is such that C'(y) - x . Thus, if, for some positive integer m

101 (200+101) < X 101(200m,-99) th ho m(299x+20200m-9999) if
"99 99 lO0(101-x)
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- 1001 <~ th L~ 
2 (99x+10201)"99 then- - 2 ; and, if, for some positive

99 9999- 299x

101 2101xm2+50m+5151integer m , m - 1 < x < m - T , then h(x) = 400(24 m +9 +2m+202l01(299m49799-200x)

There can be little doubt that the method used in this construction

of a function h in (f,*,G) leaves much to be desired. After having shown

that (FG) is a compatible pair, we might have found an easier way of

defining a function in (F,*,G) . However, it does not seem likely that

there is a procedure which is necessarily always most convenient for dealing

with problems of this kind. In fact, this particular illustration in-

volves very few of the difficulties which are anticipated in the theory of

Chapter II of ARL 65-75

Of course, as was mentioned earlier in this section, it is possible

that a decision on the matter of whether or not a given ordered pair

(F,G) of functions in D is a compatible pair might be precluded by

some inherent difficulties in the definitions of F and G . This possi-

bility arises when one takes a mathematical intuitionist's critical point

of view and observes the shaky foundations under the measure-theoretic

notions which were entertained in the proof of the theorem of Chapter II

of ARL 65-75 .

Now, once it has been shown by a satisfactory procedure that a given

ordered pair (F,G) in D X D is a compatible pair, and that a definite

function h is in the non-empty set (F,*,G) , the matter of defining

other functions than h in (F,*,G) can be considered. The next section

is devoted to this consideration.
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6. Some Members of the Class C2

The class C is that set of subsets of B which contains the sub-
2

set H of B if, and only if, there exist functions F and G in D

such that (F,*,G) - H . In this section, we want to do two things: - we

would like to show how the theory in Chapter II of ARL 65-75 suggests a way

of generating special subsets of the non-empty members of the class C2 by

employing the group of all one-one, Lebesgue-measure-preserving mappings of

the closed interval I - (0,11 onto itself; - and we would like to pro-

vide illustrative material of sufficient complexity to justify a few of the

¶ elaborate details of the theory which was constructed around class C2  in

ARL 65-75. In order to realize the latter intention, we shall make use of

some pathological functions throughout the discussion; and we shall define

these functions by means of sprays. The subject "Spray-forms and Sprays" is

considered in section 3 of the Appendix in ARL 65-75; however, the brief

discussion of this subject which follows should be adequate for our present

needs.

A sequence (by which term we mean an infinite sequence) may be thought

of as an array of things, called its terms, which have been entered one

after another into the places of a figurative structure which we shall call

the sequence-form. If the entries (i.e., the terms) of a particular sequence

are real numbers, then the sequence is an element of the set W which was

defined in section 2. However, a particular sequence, which is produced by

entering into each place of the sequence-form a sequence of real numbers,

one, and only one, of which is non-zero and is 1 , is a matrix in the set

T which was defined in section 2. By such examples as the latter, one

could justify the idea that matrices are special sequences. For this reason,
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we do not hesitate to bypass matrices in our search for a generalization of

the sequential notion.

For each natural number n , a term in the fundamental sequence of

natural numbers, let P(l,n) denote one, and only one, place in the

sequence-form; and, for each place in the sequence-form, let there be one,

and only one, natural number n such that P(l,n) denotes that place.

Each place P(l,n) in the sequence-form. has one, and only one, successor:

the place P(l,n+l) ; each place P(l,n) which is different from P(l,l)

has one, and only one, predecessor: the place P(l,n-l) ; and the place

P(l,l) has no predecessor.

By analogy, we produce a generalized version of the sequence-form

which, for a positive integer k , is called the k-footed spray-form. For

each ordered pair of positive integers (m,n) , in which m t kn , let

P(m,n) denote one, and only one, place in the k-footed spray-form; and,

for each place in the k-footed spray-form, let there be one, and only one,

ordered pair of positive integers (m,n) , in which m < k , such that

P(m,n) denotes that place. Each place P(m,n) in the k-footed spray-form

has k , and only k , successors, the t'th of which is the place

P(km-k+t,n+l) ; each place P(m,n) which is different from P(l,l) has

one, and only one, predecessor; the place P(h,n-l) , in which h is the

greatest integer less than (m+k)/k ; and the place P(l,l) has no

predecessor.

The one-footed spray-form is the sequence form. The two-footed spray-

form, which we shall call simply the spray-form, will now be given our

attention. Figure 1 is an illustrative array of fifteen of the symbols
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which denote places of the spray-form; in it, the fourteen arrows are

directed from seven of the place symbols toward the symbols which denote

their successors.

Figure 1

The Spray-Form

P(l,l)

P1,2) P2,2)

P(1,3) P(2,3) P(3,3) P(4,3)

P(1,4) P(2,4) P(3,4) P(4,4) P(5,4) P(6,4) P(7,4) P(8,4)

We shall refer to the first and second successors of a place as its left

and right feet, respectively; and we shall refer to the predecessor of a

place as its head. The place P(m,n) is said to be in the m'th position

on the n'th level of the spray-form. The place P(l,l) is called the

topmost place. A sequence of places of the opray-fotm, in which the place

P(m,n) is the first term and each term, a place, is followed immediately

by either its left foot or its right foot, is said to be a limb of P(m,n)

A limb, all of whose terms after the first term are left (or right) feet,

is c•lled a ieft limb (or a right limb); and a limb which is either a left

limb or a right limb is called a straight limb. Thus, eac*. place of the

spray-form has exactly two straight limbs: a right limb and a left limb.

The left limb of a place P(m,n) which is not a term of the left limb
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of P(I.1) has as its so-called heart that place whose right foot's

left limb has P(m,n) as one of its terms; the right limb of a place

P(m,n) which is not a term of the right limb of P(l,l) has as its heart

that place whose left foot's right limb has P(m,n) as one of its terms;

the left limb of a place which is a term of the left limb of P(l,l) has

no heart; and the right limb of a place which is a term of the right limb

of P(l,l) has no heart. The left and right limbs of P(4,4) have the

respective hearts P(2,3) and P(l,l) ; the left and right limbs of P(81,8)

have the respective hearts P(3,3) and P(41,7) ; the right limb of

P(1,3) has the heart P(1,2) ; and the left limb of P(1,3) has no heart.

By the branch of a place P(m,n) is meant that part of the spray-form

which contains a place P(a,b) if, and only if, P(a,b) is a term of a

limb of P(m,n) . A branch is structurally the same as the spray-form.

A proper limb of the spray-form is any limb of the topmost place which

is not the left limb of P(l,l) , and which has infinitely many terms that

are left feet.

A spray (for "spreading array") is envisioned as being the array which

is produced by entering objects, called entries, into the places of the

spray-form; this is analogous to the treatment of a sequence as the result

of having entered objects, called terms, into the places of the sequence-

form.

By a limb L' in a spray S (which is not the same as a limb of a

place in the spray-form) is meant the sequenca of entriep in the terma of

a proper limb L of the spray-form; the limb L' in S is said to occupy

the proper limb L of the spray-form.

We shall have need to consider only those sprays whose entries are
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real numbers, and whose limbs are convergent sequences. Each such spray S

is called a valuable spray; and the limit of each limb in, S is said to be

the value of the limb. If S is a valuable spray, then S is said to

spread over that subset M of th, real line R which contains the real

number x if, and only if, there is a limb in S whose value ip x . If

S is a valuable spray, and if no two limbs in S have the same value,

then S is said to be a real sa.

If S is a real spray which spreads over R , and if T is a

'aluable spray, then the symbol S -W T denotes that function which maps

R into R in such a way that, at each point x of R , its value y in

R is the value of that limb in T which occupies the same proper limb of

the spray-form that is occupied by the limb in S whose value is x

We are now ready to define five special valuable sprays. This is done

for the purpose of facilitating our definition of some pathological Baire

functions in B •

The spray X is constructedt4n such a way that each of its entries is

a ratio of two integers whose greatest common divisor is 1 . For each

n- 1
ý-ositive integer n , its entries in the places P(l,n) and P(2 ,n) of

1-n n-l
the spray-form are n and - respectively. The sequence of numerators

of its entries in the places of a straight limb of the spray-form which h.as a

heart is an arithmetic progression whose common difference is the numerator

of its entry in that heart; and the sequence of denominators of its entries

in the places of a straight limb which has a heart is an arithmetic

progression whose coimmon difference is the denominator of its entry in that

heart. The first five levels of spray X are shown in Figure 2.
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Figure 2

Spray X

0

-2I

-2 11 1 1
-2 21 1 2

/\/\/ \ / \
-_•3 -_•3 -_2 -1L 1 _2 3 3L

1 2 3 3 3 3 2 1

-4 -5 -5 -4 -3 -3 -2 -1 1 2 3 3 4 5 5 4
1 2 3 3 4 5 5 4 4 5 5 4 3 3 2 1

The spray X is constructed in such a way that, for any positive inte-

n-2 n-igers m and n which are such that 2 -2 < m < 2 , its entry in P(m,n)

is the square of the entry of spray X in P(m,n) ; and, for any integers

n-Im and n which are such that I s m < 2n it entry in P(nn) is the

negative of its entry in P(2 n'+l-m,n) . The first five levels of spray X

are shown in Figure 3.

Figure 3

Spray X

0

j1

-4 1 4

-9 -9 -4 -1 1 4 4 9 9
4 9 9\ 9 9 4 1

-16 -25 -25 -16 -9 -9 -4 -1 1 4 9 9 16 25 25 1'
1 4 9 9 16 25 25 1616 25 25 16 9 9 4 i
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The spray Y is constructed in such a way that each of its entries

is a ratio of two integers whosc greatest common divisor is 1. Its

5 3
entries in P(l,l) , P(1,2) , P(2,2) and P(2,3) are 1

27 
-'15P1

3"1 and L5 , respectively. For each integer n > 2 , its entry in
32 64

P(l.n) is 1/2n+1 ; and its entry in each place of the branch of P(2,n+l)

is 1 / 2 n+l . If is its entry in any place of the branch of P(2,3)

then its entries in the left and right feet of the place occupied by

a 4&-9 4a+3 a
are and 4b respectively; and, if b is its entry in any

place of the branch of P(2,2) , then its entries in the left and right

feet of the place occupied by are 4a9b and 4b f
b 4b 4b

respectively. The first five levels of Y are shown in Figure 4.

Figure 4

Spray Y

5

3 27

1 15 91 -- 119
16 64,, 128 128/\/\/ \/\

1 1 51 63 339 383 451 495
32 16 256 256 512 512 512 512/\ /\ / \ /\ /\ /\ /\ /\

1 1 1 1 195 207 243 255 1315 1391 1491 1567 1763 1839 1939 2015
64 32 16 16 1024 1024 1024 1024 2048 2048 2048 2048 2048 2048 2048 2048

The spray Z is constructed in such a way that its entry in each

place of the branch of P(2,2) is a ratio of two integers whose greatest

coumon divisor is 1; and its entry in each place which does not belong

1
to the branch of P(2,2) is 0. Its entry in P(2,2) is 1 ; and, if

is its entry in any place of the branch of P(2,2) , then its entries
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2a-l 2a+l
in thQ left and right feet of this place are 2b and 2b

2b 2b

respectively. The first five levels of Z are shown in Figure 5.

Figure 5

Spray Z

0 ~01

0 0

o o 1• "3

l •3 _ _

0 0 0 0 32 32 32 32

0 0 0 /0 1 3 5 7 9 11 13 L5
64 64 64 64 64 64 64 64

The spray V is constructed in such a way that its entry in each

place of the branch of P(l,2) is 0 ; and its entry in each place whicO

does not belong to the branch of P(1,2) is a ratio of two integers whose

greatest common divisor is I . Its entries in P(l,l) , P(2,2) and
3 25 a

82_5 and 32-5 respectively. If - is its entry in anyP(D3 ae8 32 128 b

place of the branch of P(3,3) , then its entries in the left and right
4a-27-•# 4na•+9+%/ epetvl. o n

feet of this place are 4 b nd respectively. For any

n-l n
integer n > 2 , the entries of V in P(2 ,nn) and P(2 -l,n+l) are

(2 2n+l-32 nl-1)/22n+l and (2 2n+3-52 n+l-13)/22n+3 , respectively; and,

if b is its entry in any place of the branch of P(2 n-l,n+l) , then its

entries in the left and right feet of this place are 4a-9-- and

4b , respe:tively. The first five levels of spray V are shown in

Figure 6.
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I

Figure 6

Spray V

3

o 250 -

0 65 115

0\ 217 ý285 41q 487

, / , / \ / \ / \
809 909 1081 1181 1635 1711 1875 1999

2048 048 2048 2048 2048 2048 2048

By making use of the sprays X Y , Z , X and V , the Baire

functions F ,_F and G in B are defined as follows: F - X -* Y

F - X b Z and G - X -- V . Now that the letters X , Y , Z and V

have served their purpose in the definition of the special functions F

F and G , we free them for other uses in this discussion.

Some particular values of these special functions are: F(-3/2) - 1/16

F(-101/100) - 1/16 , F(-l) - 3/16 * F(-2/3) - 51/256 , F((I-V"3)/2) - 1/5

F(O) - 5/8 , F(•v7) = 74/85 . F(3/2) - 451/512 , Y(O) - 0 , (1) a 1/8

"F(-,Tr2) 3/20 , F(3/2) - 5/32 , G(-I/100) - 0 , G(0) - 3/8

G(4/25) - 909/2048 , C(9/16) - 1181/2048 , G(1) - 25/32 and

G(3/2) - 3439/4368

Throughout the remainder of this section, we shall have occasion to

repeat some of the definitions given previously. This will be done In the

process of providing the kind of Illustrative material which we hope will

support the procedure that was followed in the proof of the theirem in

Chapter II of ARL 65-75.
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The symbol BI denotes the class of all Borel sets in R . The symbol

B denotes the set of all Baire functions which map R into R • The symbol

I denotes the closed interval [0,1) in R • The symbol D denotes the

set of all distribution functions which map R into I . For example, the

special functions F , F and G are in B ; and the functions F and C

are in D

For any h E B , the symbol h denotes that function which maps R

into B in such a way that its value at each y E R is the Borel set

h(y) - Ix : h(x) S y) . The special symbol W0 denotes that function in

B whose value at each x 4 R is (4(x) - x ; therefore, for each x f R

W(x) denotes the half-line (-in,x•

For any F 6 D , the symbol PF denotes that probability measure

which maps B1 Into I in such a way that, for each x E R , the PF-

measure of the Borel set i(x) is PFLFW0(x)] - F(x) . For any F G D and

h 4 B , there exists one, and only one, function G in D whose value at

each y 4 R is G(y) - PPh(y)A ; and the fact that the functions F , h

and r, are related to one another in this way is stated symbolically by

" (F,h,G) ". For any F 9 D and G 6 D , the symbol (F,*,G) denotes that

subset of B which contains h f B if, and only if, (F,h,G) is a true

statement. For example, the special set (F,*,C) contains the special

function h in B whose value at each x 6 R is h(x) - x . We intend

to describe a method of obtaining various functions in a set (F,*,G)

when one such function is known.

For any F E D , the symbol R(I;-) denotes the set of all points of

discontinuity of F ; and the symbol R'(F,40) denotes the difference set

R - R(F;-) . For example, R(F;m) contains x 6 R if, and only if, x is
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either a negative integer or a rational number in the open half-line (-lm)

and R(G;m) contains y 6 R if, and only if, y is the square of a non-

negative rational number.

For any F 4 D , the symbol Rc (F;D) denotes that subset of R (F;w)

which contains x 6 R' (F;co) if, and only if, for each real number r < x

F(r) < F(x) ; and the symbol R'€(F;..) denotes the difference set

R' (F;i') - R c(F;io) . Furthermore, for each x f R , the symbol R c(F;x)

denotes the intersection act Rc(F;oo) A• i(x) ; and the symbol Rc0F;-4c)

denotes the empty set 0 • If Rc'(F;W) , 0 , then it is either a single

interval with no left endpoint or the union of pairwise disjoint intervals

with no left endpoints; and, over each such interval in the composition of

Rc(7;eo) , the function F has only one value (i.e., it has a so-called
c

"plateau"). For example, R'c(;oo) is the set of all non-integers of the

half-line g(-l) . Despite the fact that the arbitrary value F(x) of a

function F E D increases as x increases over R (Y;oo) , it need not be

true that, if X is a Borel subset of Rc (F;co) whose Lebesgue measure is

positive, then P:X] is positive. It happens, for example, that, if X is

that subset of Rc(Fm) which consists of all the irrational numbers in the

open interval (-1,0) , then P FX) - 0 .

Let "t denote that special set which consists entirely of all the

poiuts of R and the two special non-real points so and -00. For any

F 4 D , let the symbol ? denote the function which maps R into I in

such a way that its value at each point x of R is PF[RC(F;x)] . For

example, if F is F , then, for each x C R , 'F(x) - (x) •

For any F 6 D , the symbol R (F;a) denotes that subset of R (Fs.)

w c
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which contains x G R c(F;m) if, and only if, for each real number r< x *

7(r) < F(x) . For example, RI(F;u) is the set of all positive irratiooal

numbers; and the set Rw(G;a) is the set of all positive real numbers which

are not the squares of rational numbers.

For any F * D , let the symbol IF denote the closed interval

[0,?(*o)] onto which the set R is mopped by the function ' ; let the

symbol F denote that function which maps R (F;oo) into IF in such a

way thai, its value at each x 6 R (F;a• is F(x) - F(x) ; let the symbol

denote that subset of IF which contains 6 IF if, and only if,

there exists an x I Rw (F;ao) at which the valu of F is F(x) - u ; and

let the symbol 3F denote that subset of IF which is such that

JFU 1 F 'IF and 3 F f HF - 0 . Since F is a one-one mapping of R(F;*)

onto ,F it has a unique inverse which may be denoted by the symbol P-I *

Since the Lebesgue measure of JF is 0 , the Lebesgue measure of lF is

the length 'F(oo) of the interval IF . For example, since IF is the

closed interval [0,1/41 , and since JF is that subset of IF which

contains 0 and a positive real number u if, and only if, there exist

integers a and n which are such that Oc a . -2 - + and

(2,-1)/2 - u , it follows that J contains'a denurably infinite
F raI nfnt

number of points, so that its Lebesgue measure is 0 ; consequently, the

Lebesgue measure of both the set HY- 'IF - JF and the interval IF is

the latter's length 1/4 •

If a is a one-one mspping of a set S onto itself, and if X is a

subset of S , then, by the modified restriction of a to the subset X

of S , we mean the unique one-one mapping F of X o-to itself which is

defined as follows: let Y - S - I ; let X( 0 ) be that subset of Y which
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contains y a Y if, and only if, ' -(y) - x is an element of X , where

C1 denotes the unique inverse of Ct ; for each positive integer n , let
X(n) be that subset of X which contains x E X if, and only if, CI(x)

is an element of X(nl) ; let X' be that subset of X which contains

"i G X if, and only if, there exists a positive integer n such that

"x 4 X(n) ; let X" - X - X' ; and let I be that function over X whose

value at each x * X is either O(x) - x or 0(x) - Ct(x) according as

x * X' or x 6 X'' * Since, for each non-negative integer n , and for

each x 6 X , C (x) is either an element of Y or an element of the

suse (n+l) 1 (n+l) ta hr
subset X~n~l) of X , there can be no more elements in X than there

(n)are in X ; consequently, if S is a Borel subset of R , if a is a

one-one, Lebesgue-measure-preserving mapping of S onto S , if X is a

Borel subset of S , and if Y - S - X is a set with Lebesgue measure 0

then every Borel subsct of X' has Lebesgue measure 0 .

Let M denote the set of all one-one, Lebesgue-measure-preserving

mappings of the closed interval I onto itself. For any Cr 6 M and 6 M ,

let the symbol Pa denote that function in M whose value at each u 4 I

is 00(u) - 1(Cf(u)) ; and let the symbol a-1  denote the inverse of C .

The set M constitutes a group with respect to the binary operat'on that is

indicated when two symbols which denote functions in M are placed side by

side in order to form a composite symbol which denotes a function in M

For any a f M and F 6 D , let the symbol 1F denote that one-one,

Lebesgue-measure-preserving mapping of ti.- closed interval IF onto IF

whose value at each u 6 1F is either a F(u) - u or CrF(u) - F(*)C(u/F(-*))

according as `(oo) is or is not 0 ; and let the symbol CrF denote the

modified restriction of tF to the subset H of F
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Let T denote that function which maps MW DxB into B in such a

way that, for each ordered triple (c,F,h) in Mx Dx B , the image in B

of (a,F,h) is the function TaF:h whose value at each x E R is either

A-1 A
TF:h(x) h(F (aF(F(x)))) or TaF:h(x) - h(x) according as x is or is

not a point of Rw (F;oo) . The image in B of (Q,F,h) 6 MxD xB under the

mapping T is denoted by the symbol Tap:h in order that one may be able

to denote some other functions by convenient symbols. Thus, for any a 6 M

the symbol Ta denotes that function which maps Dx B into B in such a

way that, under Ta , the image in B of the ordered pair (F,h) 6 Dx B

is TCF:h ; and, for any ordered pair (Q,F) in Mx D , the symbol (or

operator) T F: denotes that function which maps B into B in such a

way that, under TjF: , the image in B of the function h E B is T aF:h

If (a,F,h) is any ordered triple in Mx Dx B , and if G is that

function in D which makes (F,h,G) a true statement, then the subset

(F,*,G) of B contains both h and TOF:h

For each ordered triple (a,b,c) in I1'IxI which is such that

a A b and b-a !S c , let the symbol (a:b:c) denote that function in M

whose value at each u 6 i is either (a:b:c)(u) a a+c-u or (a:b:c)(u) - u

according as u ip or is not a point of the union of closed intervals

[a,b] U [ a-b+c,c] .

For our illustration of this method of using an operator T•f: in

order to obtain a function in (F,*,G) whi'h differs from h e Q,*,G)

over a subset of R with positive P -measure, we choose a to be the

convenient mappi.ng (1/4:1/3:3/4) in M . Then, since h is that function
2

in B whose value at each x G R is h(x) - x , the function k - TJ:h
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in 3 is such that its value at each x 6 R is either k(x) 1/x2 or
2

k(x) - x according as x is or is not an irrational number in the union

of closed intervals [l,2,(V..-l)/2] U [(-•"+-)/2,2]
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III. ROBUSTNESS OF TESTS

1. An illustration of the Notion of Robustness of a Test

In order to put a particular notion of robustness of tests into a

somewhat realistic and tractable, hypothetical, experimental situation,

we present the following illustration:

The officer in charge of a military radar operators' school wishes

to consider a change in the training regimen that has been followed for

several years to one which is much less costly. A group of n entrants

is put into an experimental program for the full duration of the course

of training. It has been the practice at this school to assign to each

trainee a proficiency rating at the completion of his training. A

recent study of the school's records seems to justify the assumption

that the proficiency ratings are normally distributed. Therefore, next

to each such rating in the school's records, but not in the service

records of the graduates, is placed a standardized rating, which is that

transformation of the given proficiency rating that adjusts the aggregate

of all ratings to conform with the assumption that they are normally dis-

tributed with mean 0 and variance I . It is intended that the

proficiency ratings of the trainees in the experimental group shall be

transformed (i.e., shall be standardized) by the same function that is

used on all the proficiency ratings. And, in order to meet the require-

rwents of the Analysis of Variance methodology in testing the worth of

the proposed change in the course, it is assumed that, if for each posi-

tive integer i < n , Xi is the random variable whose val.es are the
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possible standardized ratings that the i'th trainee in the experimental

course might achieve upon the completion of his training, then the vari-

ance of Xi is 1 . Two further reasonable assumptions are made: if

i j ,then Xi and X are independent random variables; and, for

each positive integer i < n , Xi is normally distributed with mean p

The distribution function and the probability density function of Xi ,

which is N(t,l) , are denoted simply by and t , respectively;

and 0 and 0 mamy be denoted simply by and * , respectively.

Furthermore, the probability measure which induces ] is denoted by P

Thus, the sample mean of the standardized ratings of the experimental

X1 + .. + X

units is the normal random variable - n n with mean p and

variance -n

Now, a real number a in the interval (0,1) is chosen; and, for

each real number v , the symbol c(v,CI) denotes that real number which

satisfies the following equation: P[X < c(v,a) : P .V - C1 . The num-

ber c(v,a) is the right endpoint of an open half-line critical region

r.

With all these things under consideration, the question of whether

or not the regular training program should be replaced by the experimental

training program is taken up in the following test which tests H0 : j = 0

against the HA < 0

If X < c(O,Q) , then reject the null hypothesis H0

and if X > c(O,a) , then do not reject H0

The power function of this test is defined at each real point v by

ONv)-P{X < c(O'a): -V) ' P-f i-v < c(Opa)-v •,. (O,a),v-

-8-- J - )
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Since CI P[ < c(0,0) • 0) -P ýn < c(0,) Vn) - (c(0,Q) I/n)

the real number r - c(O,Q) is -I(M)/Vn , so that, at each real

point v , the value of P is 0(v) - -d'1 (a) - v/Vn)

Now, suppose that the underlying assumption that the variance of

Xi is 1 is changed; that is, suppose that, for each positive integer

i < n , Xi is N(V,a 2) . Under this assumption, X is N(p,2 /n)

Then too, the power function 3a of the above test, in which the critical

region r is the open half-line with right endpoint 7 , has as its

value at each real point v the number

P (v)-P(X < Y : 1- V) P• i-_.yv <.•Y-v._

alI/n /V/ a

For convenience, the functions 5 and A are defined at each real

point v as follows: 5(v) - 0 (v)- 8(v) and A(v) - lb(v)I . The

first derivative of 5 is B' whose value at each real point v is

8'(v) - -ia ( , +( Q4( ) v4 4( - (C)- V )

For a 2 1 , '(v) - 0 if, and only if, v is either

1 .2.n o L 2n l) oj

Therefore, for each real number v

0 < A(v) < ( 21. ) . () < v r(2+l)
a 2 -r 1 a 2_1 -- 9
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where the upper bound on the right is useful only if a is close to 1

In a rough way, it can be said that, with respect to the above mentioned

change in the underlying assumptions, the measure of robustness of the

test under discussion is

CT-I cr-V( al _ )V ) 2_"

This measure is greater than 1/2 (i.e., the test is more than 50%

robust) if cr is in the interval (e ,e) .

2. A Generalization of the Notion of Robistness of a Test

In the last section, we tried to illustrate a way of measuring the

robustness of a test. By considering a contrived experimental situation

and a convenient test, we produced a number between 0 and 1 which was

to serve as a rough indicator of the ineffectiveness of a particular change

in the assumptions underlying the test as a disturbing influence on its

power function. This number, which could be expressed as a percentage,

was called the measure of robustness of the test with respect to the

particular cýange in its underlying assumptions.

In this section, we shall give a skeletal version of a generaliza-

tion of the illustration in the last section. In doing this, we begin

with a review of some notational conventions which, in somewhat more

detaii. are treated in ARL 65-75.

For each positive integer n , let R denote the Euclidean spacen

of n dimensions; for each point x of R' and each positive integern

t < n , let xt denote the tcth coordinate of x ; let R - R
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let B denote the class of all Borel subsets of R ; for each point

x of R , let ( .,x] denote that member of B which containa the

point u of R if, and only if, for each positive integer t < nn

u < x ; let Dn denote the set of all distribution functions which

map Rn into the closed interval I - [0,11 in R ; let Mn denote

the set of all probability measures which map Bn into I ; for each

F C Dn , let Pr(F) denote that probability measure P in Mn which

induces F , so that, for each point x of R n Ptu : u t [-,x1 - F(x)n

and, for each P M , let Df(P) denote that distribution functionn

F in Dn which is induced by P , so that Pr(F) = P . Furthermore,

for each ordered pair of positive integers (m,n) , let Ben denote the

set of all Baire functions which map R into R ; and, for each orderedn m

pair (F,h) in the Cartesian product sat D x B , let (F,h,*) denoten mn

that subset of D which contains the function G in D if, and onlym m

if, for each point y of R , G(y) - P(x : h(x) f [ -,y]) , wherem

P - Pr(F) .

If, for positive integers i and j , V denotes a non-empty

subset of Ri and W denotes a non-empty subset of R , then the

symbol V:W denotes that subset of Ri+j which contains the poirnt u

of Ri+j if, and only if, there exist points v of V and w of W

such that, for each positive integer t < i + j , ut is either w ti

or vt according as t does or does not exceed i ; and, if this point

u is in V:W because such point3 v of V and w of W do exist,

then u may be denoted alt,.rnatively by the symbol v:w . If V C R

and W c R , then V:W is the Cartesian product set V X W ; however,

if V c: R and W c R , then V:W need not be a Cartesian product
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subset of R3

If S is any non-empty set, then a function P which maps the

Cartesian product set S x S into R is said to be a metric for S if,

and only if, the following three conditions are satisfied:

(1) if, for any ordered pair (a,b) of S X S , P(a,b) -0

then a - b

(2) for each a e S , P(a,a) - 0 ; and

(3) for each ordered triple (a,b,c) of S X S X S

P(a,c) + P(b,c) > P(a,b)

Consequently, for each (a,b) e S x S , P(a,b) - [P(a,b) + P(a,b)1/2 >

P(a,&)/2 , which, by (2), is zero, so that P(a,b) is non-negative;

and, furthermore, P(a,b) - P(ob) + P(a,b) by (2), P(b,b) + P(ab) >

P(b,a) by (3), P(b,a) - P(a,a) + P(b,a) by (2) and P(a,a) + P(b,a) >

P(a.b) by (3), so that P(a,b) > P(b,a) > P(a,b) and P(a,b) - P(b,a)

If the range of values of P is a subset of I [0,11 in R , then

P is said to be a metric for S limited to I

Now, let i , , m , and ai be positive integevs; let the

non-empty subsets V and 'W of R and R be called parameter
I

spaces; let the member r of B be called a critical region; and let

the function h of B be called a transformation. For each point
m n

v:w of V:W , let F be a unique distribution function in D
V:w n

let P - Pr(Fv) and let G be that distribution function in
v:w V:w v:w

the subset (Fv:w2h,*) of D . For each point w of W , let 0w,

called a power function, be that function which maps V into the interval

I whose value at each point v of V is w (v) - P v:w(x : h(x) e Pr

Let S be that set of functions which map V into I , which contains
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the function f if, and only if, there exists a w C W such that

M f . Finally, let P be a zetric for S limited to I . For
W

example, P(f,g) could be the least upper bound of ff(v) - g(v) ,

where f e S , g c S and v e V

Suppose that, in an experimental situation, a decision is to be

based on the way a random variable X whose range of values is Rn

is distributed. It is thought that the distribution function of X is

Fr:a , where r:s e V:W . A test of the hypothesis that r is the

proper parameter in V is designed; Pnd it makes use of the transfor-

mation h as well as the critical region r which is such that

Ps(r) is some small number a in I . i-is test may be stated as

follows: if h(X) e r , reject H0  ; otherwise, do not reject HO

The power function of this test is 13 , where the parameter s is a

fixed point of W and, hence, is an underlying assumption of the test.

In ascribing to this test some measure of robustness with respect to a

change in the underlying assumption concerning the parameter a ,

another test, with h and r unchanged, but with a changed to w C W

yields the power function 3w . And the number 1 - P(iw ,6 ) serves

as a measure of the robustness of the test w4.th respect to the particular

change in its underlying assumptions.

Of course, the utility of such a =avure'of robustness of a test

will depend on the choice and general acceptance of the metric P .

Even though these measures of robustness are in I and are intuitivel;

appealing, it is not easy to defend the choice of any one of them with

general considerations.
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3. The Kolmogorov Metric on the Space of Location Families of

Distribution Functions

In order to define the notions of robustness of a statistical

test and robustnesu of a transformation, some quantitative measure of

the distance between power fuictions and the distance between distribu-

tion functions appears to be highly desirable. It would appear that

several authors (see, e.g., [1]-[i0]) have held this view to a greater

or lesser extent. In section 1, an example was givon which exploits

the Kolmogorov metric on the space of normal distribution functione as

a measure of the robustness of a test. The power functions being dealt

with in this example are very simply related to distribution functions,

a situation which will not occur in general. However, for those situa-

tions for which it does occur, it appears that the assumption of normal-

ity does not play a large part in determining the outcome. The present

section is an attempt to investigate the Kolmogorov metric on the space

of distribution functions of location-parameter families.

We begin with ,nru definitions and notation. Let I be a aubset

of the real line, and let [F(x;g) : 4 I] be a family of distribution

functions on the real line. We may suppose that the distribution func-

tions are right-continuous, and that the ordering on I is that induced

by the natural order on the real line. We will call the family

(F(x;v) : IA I) a location-parameter family with respect to I if and

only if there is a distribution function G such that for each real x

F(x;p) - G(x-p) , for each M C I . It is obvious that such a family
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is stochastically increasing; i.e., if X C I and I E I with X > IA

then F(x;X) < F(x;p) , for all real x

Since we will require a measure of distance between distribution

functions, we introduce one such measure, often ralled the Kolmogorov

metric. For each pair p , ) with p E I and X e I , and for each

pair F , F) of distribution functions, wt set d(x;p,W) - IF(x;i) - F(x;X)I

and P(F,,FX) - sup (x;•,\) . It in readily verife( ::-At p is
J I X

indeed a metric on the space of distribution functions. As noted above,

a location-parameter family (with respect to I ) is stochastically

ordered. In view of this, we may dispense with the absolute value signs

in the definition of d(x;p,X) if we assume that X > p

Because of the exploratory nature of our study, we will make a series

of incieasingly stringent assumptions oj the location-parameter family

F(x;') : IA 4 I) , and at each stage, study the effect of each additional

assumption on the Kolmogorov metric.

Assumption 1. G is a continuous function.

con.ý-'-ence. d(x;p•,), is a continuuti functiov -f x

Proof. d(x;p,),) - F(x;p.) - F(x;X) - G(x-p.) - G(x-X)

Assumption 2. G is a strictly increasing function.

Consequence. To each positive real number I , there correspond

real numbers a(1) and b(TI) , with a(TI) < b(T) , such that x < a(T1)

implies d(x;p,X) < Y1 and b(Q) < x implies d(x;p,)X) < 1 .

Proof. From X > p and G strictly increasing it follows that

F(x;p) - G(x-ý±) > G(x-X) - F(x;X) , for all real x . The reissnder

of the proof follows from the fact that G is a distribution function.
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We may sumc~rize the consequences of assucrions 1 and 2 as follows:

Remark. If G is a continuous strictly increasing function,

then d(.;4,X) is a continuous function which attains its

(absolute) maximum on a finite interval.

Proof. d(.;w,X) is, when restricted to [a(2,b(Tj)] , a continuous

function on a closed, bounded interval, and hence it attains its (absolute)

maximum on

Assumption 3. G(x) - I - G(-x) , for all real x ; i.e., G

is a symmetric distribution function.

Consequence. d(.;p,X) is sycmzetric about the point l(•+X)

Proof. d((+X) - x;,.,X) - G(jI(+X)-x-i )- G(-(P+)-x-X)

1 1 11
- G( 0-s)-x)- G(ý(-X)-x) - 1 - G(x - (x-i)) + (x - !(P-X)) - I

- G(x + 1(1'()) - ((x + 1(p-X)) -((p+X) + x-p) - 1(L+X)+ x-X)

a d(&(p+X) + x;ý,,X) , for every real x

Assumption 4. G is absolutely continuous, with probability density

function g

Consequence. d'(.;p,X) satisfies d'(l(-jX) + x;PX) -

d. - x;p,A) , for all real x

Proof. For each real number x , define k(x;A,X) by k(x;p,X) -

dj((+A) + x;p,X) . From the consequence of assumption 3, it follows

that k(.;j,)%) is an even function. Since the derivative (when it

exists) of an ever function is an odd function, the proof is LoWplete.

We note that assumptions 3 and 4 together yield the following result.

Remark. g is an even function.

Proof. The existence of g follows from assumption 4 and its
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Ilws f rom assumption 3.

Assumption 5. g is increasing for x < 0

Consequence. g is decreasing for x > 0 and hence g has a

single uaximum at x - 0

Proof. This is a simple consequence of the assumption and the fact

that g is an even function.

Assumption 6. g has a derivative g' ; thus, G"

Consequence. If x > 0 , then g'(x) < 0 .

Proof. Since g is decreasing for x > 0 , it follows that its

derivative. g' , must be negative for x > 0

We c- iow summasrize the consequences of these assumptions in the following

way.

Theorem. If G is an absolutely continuous function which is

symmetric about zero, and if G" exists and is an increasing

function for x < 0 then P(F ,FX) - 2G(ý(X-I.)) - 1 , for

Proof. Because X , P(F ,F) - sup CF(x;')- F(x;,)] . It

is clear that d(!(.)L+X);6LX) - 2G(l(X-p)) - 1 , and that sup [F(x;4) - F(x;X)]
x

- d(J+X);.,X) follows from these facts: (1) d'(½(1+X);t,) -
0 , g(a(j-X) - and (2) d"(g' (g+X);g,

22 2

S2g'(4(x-.)) < 0

As we will show presently, this theorem furnishes sufficient, buL

not necessary, conditions under which the distance, as measured by the

Kolmogorov metric, between two members of a particular family of distri-

bution functions can be computed an a function of the distance between
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their indices. We list here some cases of interest that are included

in the above analysis.

lxx

1h Norml; I = 13 ; F(x;¼) = (21)2 f exp [=- 1 (t-.2.dt.

2. Double exponential; I R ; F(x;) - f exp l dt

2I

arcta x +(x-P) 2 1

+ arctan [l+(xP) < x

4. Student's t ;I =RI

--n+lSFr(x;p) 2 2" [" ] l f [l+nl(:.N)2]2 dt

for each natural number n1

5. Gamma; I - ; Fa,,(x;p) -ra~r(al)]IJ(t-oa-l exp C-0'I(t-p)]dt

for fixed real positive a and fixed real positive x , x

We turn now to a location-parameter family of distribution functions

with nonsymmetric members. Take I n R1 , and for each g e I , let

S0 ,x <P

(1) F(x;p) W
- e:cp(14-x) , 5< x

It is clear that the family (F(x;p) p C 1I) is & location-parameter

family vith respect to I . However, the distribution function G

for which F(x;p) - G(x-g) for each real x is

0 , y<O
(2) GOy)

( - exp(-y) ,0 < y

-58-



which is not symmetric with respect to any real number. Nevertheless,

we may still prove the following result.

Theorem. If F(x;IA) and G(y) are given by (1) and (2)

respectively, then for any p E I and X C I , with

> p , we have P(,F1 ) - G(X-t) .

Proof. We distinguish three distinct and exhaustive cases:

(i) -• < x < p , Ii) < x < X , &A. (iii) X < x <-

(i) For x < , F(x;p) - F(x;)%) - 0 ; thus d(x;k,X) - 0 ,

for x < 4 .

(ii) For p _ x < X , d(x;p,X) can be written as d(x;g,X) -

F(x;p) - 0 - 1 - exp(p-x) , which exhibits the fact that for 1 f x < X

d(x;14,X) is a strictly monotone increasing, continuous and bounded

function of x . Hence d(x;p,X) att&ins its maximum value (which is

clearly G(X•p)) at x - X .

(iii) We complete the proof by considering this case, since for

X < x , d(x;pt,X) - eX (eX- ev) < eX(eX- eV) - 1 - exp(X-g) - G(X-$A)

Let us attempt to goneralfte this th-'ý - to include location-

parameter families whose members are not necessarily symmetric. Thus,

we suppose that for some subset I of RI , we have a family

(F(x;p) : p 6 I) of distribution functions such that for each I C I ,

F(x;p) - 0 , for x < p . If we further suppose that the family

(F(x;p) : p I) is a location-paraseter family with respect to I

with F(x;1s) - G(x-p) for all real x , thernas before, this family is

stochastically increasing. But we do not assume now that G is symetric

with respect to any real number. Without adding any restriction, we

suppose that X > p , and we observe that for -w < x < i , we have
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F(x;k) = F(x;p) 0 , so that for x < , d(x;p,A) - 0

If we now suppose that G is a continuous function which is

strictly increasing whenever it is positive, then as above, corresponding

to each positive real number n , there is a real number a(n) such

Sthat a(rj) < x implies d(x;p,X) < Tj . When d(x;p,X) is restricted

to the closed interval ti•,a(Tj)] , it is a continuous function on a

closed interval (which is also bounded), and hence it attains its

(absolute) maximum on [t,a(n)] . From the nature of d(x;1±,X) for

x E 4,)X] , we may conclude that sup d(x;p,X) - sup G(x-p) - G(X-p)! xc,.×]xcp,.XI

While it may not always be true that P(F,Fx) - G(X-p) for the situa-

tion under consideration, we are able to state the following result.

Theorem. Suppose G is a continuous function which is

strictly increaaing for positive values of its argument.

If, for each positive real number B less than a(n)-X

G(O-p+b) < G(X-p) + G(5) , then P(F ,Fk\ - G(O-0)

Proof. If x C (X,a(I)] , then (x-X) e (O,a(T1)-X] , so that

x-X may be taken as 5 . If this substitution is made in the in-

equality on G , then we see that G(x-p) < G(X-p) + G(x-X) , which

is equivalent to d(x;.,X) < G(X-p) for x E (Xa(n)] , thus com-

pleting the proof of the theorm.

To see that the exponential example treated in equations (1) and

(2) is indeed covered by the ineqality of the theorem, it is sufficient

to note that the distribution function of the exponential distribution

given by (2) satisfies the functional equation

G(x+y) - G(y) - G(x)[l-G'y)1

-60-



for all x >0 and y>O Since X >p and b >0 ,we see that for

the G of equation (2) we have

G(,-"-8) - G(5) - G(--p)(l-G(5)]

and hence that the inequality of the theorem is satisfied, since for

any 5 > 0 , we have G(b) > 0 •
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IV. TWO THEOREMS ON SOLUTIONS OF DIFFERENTIAL-DIFFERENCE

EQUATIONS AND APPLICATIONS TO EPIDEMIC THEORY

1. Introduction

We present two theorems that provide simple iterative solutions

of special systems of differential-difference equations. We show as

examples of the theorems the simple stochastic epidemic (cf. Bailey,

1957, p. 39, and Bailey, 1963) and the general stochastic cpidemic (cf.

Bailey, 1957; Gani, 1965; and Siskind, 1965), in each of which we let

the initial distribution of the number of uninfected esisceptibles and

the numl'r of infectives be arbitrary but assume the total population

size bounded. In all of the references cited above the methods of

solution involve solving a corresponding partial differential equation,

whereas we deal directly with the original system of ordinary differential-

difference equations. Furthermore in the cited references the authors

begin at time t = 0 with a population having a fixed number of unin-

fected susceptibles and a fixed number of infectives. For the simple

stochastic epidemic with arbitrary initial distribution we provide

solutions not obtainable by the results given by Bailey (1957 or 1963).

For the general stochastic epidemic, if we use the results of Gani or

Siskind, then the solution of the problem having an arbitrary initial

distribution would involve additional steps that would sum proportionally-

weighted conditional results.
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Let ;(t) and x'(t) denote n by I column matrices whose i'th

row elements are the real-valued differentiable function xi(t) and its

derivative x (t) , respectively, each defined for all t > 0 Let

initial conditions at time t - 0 be x(0) a a , where the column

matrix A has as i'th row element the real number a Let B be

an n by n triangular matrix whose (i,j)'th element b(i,j) i- a

constant for each pair (i,j) and in particular b(i,j) w 0 for i < j

We let I - (1,...,n) and for convenience of notation we denote b(i,i)

by bi for i f In Let 5 denote an n by n r.atrix with c(i,j)

as (i,j)'th element. Occasionally it will be convenient to write

b(i,j) or c(i,j) as bfi,j] or cri,jl , respectively. The n by

1 column matrix with i'th row element exp(b t) is denoted by S(t)

We define the symbol 1 (x) to be equal to t when x - 0 and x-i

when x + 0 . We define the real-valued function 5 2 (x) to be equal
-I

to 1 when x = 0 and x when x 4 0 . Finally, we shall make

frequert use of the function E(x) defined as 1 for x > 0 and 0

for x < 0

2. Solutions of Some Systems of Differential-Difference Equations

THEOREM 1. Let 1(0) = S , and for t > 0 let x'(t) = D(t) , where

(i) b(i,j) = 0 for i-j ? 2 , and (ii) for ench i e I , bi = b

for at most one J e I and j + i Then x(t) = gt(t) where

0 , i< j

al, i=J l
c(i,j) =b(i,i-l)(Cl(i-l,J)51(bj-b) - 2(i-lJ)b 2(bj-b)

•+ c 2(i-lJ)5Il(b J-bidt] ,i > J

ai - c 1 (iu) , i - J > I

--6
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in which for fixed j the functions c1  and c2 are defined recursively

(in i ) as the term independent of t and the coefficient of t

respectively, in c(i,j) ; i.e.,

c(i,j) - c 1 (i,j) + c 2 (i,j)t . (2)

(Thus, in particular, c1(I,1) = a1  , c 2 (1,1) = 0 ; a"d for i > 1

i-I
Cl (i,i) - *i -L cl(i'u) , c2 (i~i) - 0 .)

blt

Proof. Note that x1(t) = aIe so that c(1,j) is equal to a

when j = 1 and 0 when j > 1 For fixed integer i 0 where

1 •i 0 - 1 < n assume equation (1) hclds for positive integers

i < i - 1 . Consider the equation

i -1

xo(t) - bo Xi(t) - b(io,i 0 - 1) c(i 0 - 1,j)e (3)

The term in which J - Jo < iO - 1 on the right hand side of equation (1)

bot

contributes to the solution of %(t) the term K(io,Jo)e We

shall show that K(i 0 ,jo) - C(ioJo) Note that

b t b ot (b - b o)t

K(i 0 ,jo)eb0 - e b(io0lO- 1I1(i 0 -lJo b dt (4)

0 (bo "b b)tdt

+ c 2 (i 0 -l,j ) e 0 )t dt

Our proof distinguishes three cases: Case 1. bjo + bi for
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S-0 + 1'""0oi " For this case c 2 (io-l,Jo) ,0 . Therefore

S,, b(i io-l)c (io-l,J o)(bjO - b , Ca e 2. b 0 bjo

z(1oJ 0 )- 10 )Cae2 b -b

Here again c 2 (i 0 -1,J 0 ) - 0 , but now K(i 0 ,j 0 ) - b(i 0 ,i')c(i 0 -lJo)t

Came 3. b b where J < k < O Then

b(iol4 0 ( b 1(-1 c2 (io.'0J0  b 1, 0 b o1  )

+ c 2 (i 0 "l, 0 )(bo - b)1 t .

Note that all three cases are accounted for by the B 1 symbol as used in

equation (1) where 1 0 > .O . Therefore

i0-1b bo t

X M ) /c(i0,J)e J+ Kle
.1 0

and so by applying the initial condition x 1(0) M a we obtain

10 - 0

THECREH 2. If S(0) = a , x' (t) = Jx(t) for t > 0 , and if for every

pair of integers a < 0 such that b . b we have either (i) b(a + y ,a) - 0

for y a 1,... - a , or (ii) b(0,J) - 0 for J - a.... ,-l , then

.S(t) = L(t) where

0 , < J

al , i J 1

c(i,j) - 0 i'l (5)

8 2 -(b b1 ) b(i,u)c(u,J) i > j

jIL -I iui J
•at c(i,u) i >

u-6
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bit

Proof. Note that xI(t) = ale so that c(l,j) is equal to a

when j = 1 and 0 when j > 1 For fixed integer i where
0

1 < £ - 1 < n , assume equation (5) holds for all positive integers

i - 1 and let RO = J: b bi , <J <i 0 - 1) and

RI -(j :b b , 1 < _j 0 - 1) Then

00-

x' (t) b x(t) = b(iou)x u(t)
£0 ioi 0 0_

u=l

1" 0-1 b t71 -"l
= b(io0U) c(u,v)e v

u=l v=l

1 0-1

+ 1"b(iou)c(u,v)e

R*, LR UV

Therefore i t o

7t) - -- D + - f••" b -1 b(iOu)c(uv•bOt• (6)Xo R (bv . b o e + + a L uL (bv " b )(6
0 R u1 0 Lt ui£0 0 R O0

where
i o- IbI t

D=I 17 •b(io'U)C(u'v) te 0,(7o
Di 1L L.. I'~

If R is empty, then the term D does not appear in (6). If

R Is not empty, then for fixed J e R we have

iO O-0

10-
.b(iou)c(u,jo) 

- 0

u=j 0
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if either b(ilou) M 0 for u - jO,...,iO-1 , or b(J 0 + -r,JO) - 0 for

T 1,...,io-jo . (The latter condition is seen to be sufficient when we use

the identity for i > j

f5(bj-bi)b(iJ)c(j,j) , i = J + I

c(i,j) - -

15(bJ b)[b(13j)c(jij) + b(i,u)c(u,j)1 , £ = j + 2,... ,n .) (8)

u=j+l

Therefore D is identically equal to zero.

It is now easy to see that we may write

joit 0' b t

x M =7 cL(ioiv)e v

v--l

where

"0 , v >10

1 0-

c(i ,v) 6 2 (b -_b i r ou~~,v V < 1 0

a u1 1 (10 U) , v i

0i - C~i -) , v =i

u--I

and so the theorem is proved.

3. Stochastic Epidemics

By an epidemic population we shall mean a well-defined set n of

elements (individuals) wn defined to be in fl if and only if for some

time t > O,tw is an uninfected susceptible or an infective. For each
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(n q P and for each t > 0 we define:

{ I , if tn is an uninfected susceptible at time t

1 , otherwise

1 0 , if tu is an infective at time t

" ~0 ,other'wise

I I , if (j) is neither an uninfected susceptible nor

Wf(0),t) an infective at time t

0 , otherwise.

We shall assume that the number of elements in P is M , a finite

positive integer.

Let

R(t) - W l(cn,t)

L

L(t) W (w,t).

Then

M R(t) + S(t) + L(t) (11)
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We shall denote the size of the epidemic population at time t > 0 by

N(t) , which consists of the total of uninfected susceptibles and

infectives at time t > 0 ; i.e..

N(t) - R(t) + S(t) (12)

The problem we consider is to find p r(t) , the probability that

R(t) - r and S(t) = s , when we are given the initial distribution

(p (0)) and information about the infinitesimal transition probabilitiesrs

for an w to move amongst the three states of being (1) an uninfected

susceptible, or (2) an infective, or (3) neither an uninfected

susceptible nor an infective.

4. The Simple Stochastic Epidemic

In the simple stochAstic epidemic, which has been extensively

investigated by Bailey (1957, 1963), there is a positive integer N such

that for each t > 0 the probability is one that N(t) = N(O) .= N

Therefore S(t) - N - R(t) .

When we make the usual assumptions (cf. Bailey (1957), p. 39)

about the infinitesimal transition probabilities, then we obtain

p;,N'r(t) -(r+l)(M-r-l)Pr+lN-r-1(t) - r(N-r)p r,Nr(t) (13)

for r = 0,1,..., N , vhere ps r M 0 if r < 0 or r > N . We

write the initial conditions for this system as

Pr,N-r(0) a r,N-r , (14)

N

r = 0,1,...,N , where each a > 0 and a I 1 . Thus
rN-r L r,N-r

r-0

Because there is no loss of generality for our purpose, we have assumed
throughout sections 4 end 5 that the infection rate is equal to one.
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in addition to including an arbitrary initial distribution, we have

introduced for completeness the case in which r -N , which corresponds

to an initial population completely free of infective@.

We shall now put this problem into the framework of the theory

of section 2.

LEM4A 1. For each ordered pair of integers (r,N-r) let

"PrN- F(r)E(N-r)xk (t)
Pr,N~r\ ) =

aN a~( 1(15)
a r,N-r "•ak ,

where k T= k(r;N) = N-r+l (16)

Then the system of equatiGns (13) with initial conditions (14)

where pN (t) F 0 if r < 0 or r > N , is equivalent to the system

xi(t) - (N-k+2)(k-2)E(k-2)x.k 1 (1) - (N-k+l)(k-l)xk(t) , (17)

-with initial conditions

xk(O) k , (18)

k e I ,where n= N + 1n

Proof. If we make the indicated change of variables then for r - 0,1,...,N

Pr'N-r(t) - xk(t) },N-r (19)

Pr+lN~r~l(t) - E(k-2)xk_,(t)

where k - N - r + 1 . Thus k takes values 1,2,...,N + I a n , and
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so equations (17) and (18) follow.

The solution of the simple epidemic is given by

THEOREM 3. If we ha,,e the system of equations (17) with initial conditions

(18), k I then x(t) = Ce(t) whpre bi = -(N-i+l)(i-1) and

c(i,j) is given by ealmation (1), in which b(i,i-l) = (N-i+2)(i-2)E(i-2)

Proof. We need only note that for i = 1,...,n , bi = bN-i+2  and

b bi b for j * N-i+2 , i i . Thus Theorem i applies.

Example. We illustrate the simplicity of the theozy by showing the

details of the example in which N 6 , and initial distribution

(a 0 6 , a1 5 , a2 4 , a3 3 , a4 2 , a5 1 , a60) = (0, .10, .30, .25, .15, .1O, .10)

If we use Lermma 1, then

0(X, (t), a

10 -5 1 x (t) a2  .10

5 -8 x3 (t) .15

X -(t) 8 -9 x4 (t) and a 4  ý.25

X;(t) 9 -8 x5(t) a5 .30!5 5

X )( 8 -5 x6 (t) a "10

X; t) t 5 oJ xT(7)j a 7

By applying Theorem 3 we obtain:

c(l,l) 1-i and c(i,l) = 0 for i > 1
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c(2,2) -L

10

1 1 1
c(3,2) - 5(1 )(-) =

c(4,2) - 8()( 1) =

c(5,2)- 9j-)(-1) =1

c(6,2) - 8(1)6 1 (0) = 8t
2

c(7,2) - - 5(8)(- + 5(8)(-1 =-8 8t55

3 1 1
c(3,3) = 3 1 1

c(4,3) -8(- .--•) 15

c(5,3) = 9(•L)b1(0) = -6
-6 1 2 -6 -1

c(6,3) = - 8(" )(b )2 + 8( 6) -i)t = + 16 t

16 1 1 2 16 1 -c(7,3) = 5(75')(- i)-5(5 )+5-5)(1it T2 2

c(4,4) - 4 3+15 20

1 9
c(5,4) = -) = - 20

9 1 9
c(6,4) = 8(- 1-)- 2) =910

c(7,4) = 5( )(- 1) -

10 9 2

c(5,5) = - 1 + 9 -
10 20 4

i 1 2c(6,5) = 8(- 3) 1 3
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2 1 5
c(7,5) - 5( )(- i) - 12

S 16 9 2 76
C(6,6) - 1 -5 3 " "

c(7,6) 5 )(- L ) 1) 76
30 5 30

c(7,7) - 1+ + .5 6

Therefore the solution is

x 06
P60 2

I
P1 x2 0 6 e."

P4 2  x3 10 -1 8t

P3 1 x4 6 0 20 -8 3 e

P2 4  05 0 6 -72t -27 -15

P15 06 480t 64+192t 54 40 -152 e"5t

P06 x7 -96-480t -55-120t -30 -25 152 54/ 1

6 1ii

0 6 e

0 10 -1 e-8tI
-• 0 20 -8 3 e

0 60 -15 -27 -72 , 8t

0 -152 104 54 192 480 J te-5t

(0 56 -80 -30 120 -480 5.41 "

Note that of the 28 entries calculated for • only 5 had c2 * 0
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Once the individual probabilities are known then it is an easy

matter to obtain other derived quantities such as the duration of the

epidemic, the mean number of infectives at time t , and the distri-

bution of the total size of the epidemic. For example, the distribution

functitn of time to extinction may be read directly from the above

solution as G(T) = p0 6 (T) r. x 7 (T) for T > 0 , and G(T) - 0 for

T<O .

5. The General Stochastic Spidemie

In the general stochastic epidemic, which has recently been

investigated by Gani (1965) and Sisklnd (1965), the probability is one

th2t for t2>t1>O - N(t 2 ) < N(tl) . We shall assume the initial

population bounded in the sense that there exists a positive integer N

such that the probability is one that N(0) < N . Let S be the set

of ordered pairs of integers ((r,s) : r > 0 , a > 0 , r + a < N)

If we make the usual assumptions (cf. Bailey (1957), p. 53) about the

infinitesimal transition probabilities then we obtain

Prs(t) - (r+l)(@-1)Pr+l,2 5 l(t) - s(rI+P)Prs(t) + P(0+l)Pr,*+l(t) (20)

where p is the removal rate end p r(t) E 0 if (r,s) w S We

write the initial co'iditions for this system as

Prs (O) a , (21)

(rs)ce ,where ars > 0 and a r.

(rs)(S)

In order to put this epidemic problem into the framework of the theory
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of section 2 we construct a counting mechanism for the equations and

the variables. This is done in the following lemma whose proof is left

to the reader.

LEMMA 2. For each non-negative integer N , let SN denote the

met of ordered triplets of integers (k,r,s) , where k > 0 , r > 0

a >0 , r + s <N and

k a k(rs;N) = (N+l)(N+2)/2 - (N+l)r- a + (r-1)r/2 . (22)

Then SN contains exactly n = (N+l)(N+2)/2 ordered triplets and for

each positive integer k < n , there exl-•t nne and only one ordered

pair of non-negative integers (r,s) such that (k,r,s) c SN

Therefore for each pair (r,s) c S' one can find k(r,s;N)

It aight be worthwhile to point out that the converse problem can

also be neatly treated; namely, for each positive integer k < n

let u be the greatest integer which is less than (I + V8k+l)/2

Then r = N + 1 - u and s = u(u + 1)/2 - k . (Later xn the state-

ment and proof of Theorem 4 it will be convenient to use the notation

(rk,sk) in order to indicate the one-to-one correspondence between

k r k(r,s;N) and (rkSk) -)

We are now prepared to effect a change of notation, which we do

in the follawing lenma.

LEMMA 3. For Pach ordered pair of integers (r,s) let

Pr(t) - E(r)E(s)E(N-r-s)xk(t)

(23)

a-7ak , -

-76-



where k a k(rs;N) is given by (22). Then the system of equations (20)

with initial conditious (21), where p r(t) -0 if (r,s) g S is

equivalent to the system

x '(t) + a(r+O)xk(t) - (r+l)(s-l)E(s-l)X.N~r(t) + P(s+1)E(N-r-1-s)x.l(t) (24)

with initial conditions

xk(O) - ak , (25)

k C In , where n - (N + 1)(H + 2)/2 and (k,r,s) C SN

Proof. If we make the indicated change of variables then for each

(k,r,s) C SN we obtain

prs(t) - xk(t)

prowt - ,(t)

(26)
Pr+i,s•.(t) - E(s-l)xk.N+(t)

and so the conclusion of the le- follows immediately.

We now state the solution of the general stochastic epidemic i7

THEOREM 4. If we have the syster of equations (24) with initial

conditions (25), k e I , where n - (N + 1)(N + 2)/2 and (k,r,s) C SN 'n

and if P is such that for (r,s) C , (r',s') f S , s A 0

and a' A 0 , we have s(r+P) - s'(r'+P) only if s = a' , then

x(t) - ge(t) ,where for any In , b - - s(r + P) , and
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0 , k<j

e(k,j) - [(r+l)(a-1)E(s-1)c(k-+r,J) (k-+r-)

+ p(s+l)E(N-r-l-s)c(k-l,J)]e 2 (bj - bk) , k > J (27)

aj - c (J,.) , k = > I1 •

Proof. If (r,s)s S% and a > 0 , then bk(rs;N) s(r + P) are

all distinct. If a - 0 , then for r = 0,1,...,N we have bk(0;N) = 0

The following argument holds for each positive integer r < N . In

equation (24) the only possible non-zero coefficients of Xk(r,O;N) are

b[k',k(rO;N)J and b(k",k(rO;N)] , where k' - k(r,O;N) + I and

k" - k(rO;N) + N - rk,, , We see that k' - k(r-lN-r+l;N) and

V - k(r-l,l;N) . Therefore b[k',k(r,O;N)J - P((N-r+1)+lI]E(N-(r-l)-l-(N-r+l))

P(N-r+2)E(-l) - 0 and bfk",k(rO;N)] - [(r-l)+l](1-l)E(l-1) - r(O)E(0) - 0

Thus condition (i) of Theorem 2 is satisfied. Finally, by applying

equation (5) we get the conclusion of our present theorem. Note the

resemblance between equation (24) and equation (27) for the case k > j

The question arises as to whether or not there is anything distinctive

about the choice of N , the bound on the initial total population size.

The following euJ-dding thcorem answers this question in the negative.

THIOM 5. The Ser at -s-'chastic eptdemic with total initial population

xize bounded by N, 5< if. say be traatau as one with initial total pop-

ulation size bok.a'E4 by N2 and initial conditions satisfying
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ak ;2 0 for all non-negative integer pairs (r,s) such *hat
k(r,s;N 2)

r + a > NI

We leave the details of the proof to the interested reader.

Essentially what must be shown is that for each non-negative integer

pair (r,s) such that r + a < NI we have Xk(rs;N) (t)

xk(rs;N2)(t) for all t > 0 . Also for each non-negative integer

pair (r,s) such that NI < r + a < N2 we have Xk(rs;N2 )(t) F 0

The special cases considered by Gani and Siskind are included

in Theorem 4 by simply choosing the initial conditions appropriately.

In fact if a computing program is worked out for fixed N , then any of

their cams in which R(O) = r 0  and S(O) = so ,w here r0 + a0 - N

may be obtained by letting p (0) a t and setting all other
0 a0 r 0s80

a 's equal to zero. Furthermore, by Theorem 5, any case in which thers

probability is zero that the sum of R(O) and S(O) exceeds N < N2

may be obtained from the program written for N2 by suppressing from

the program all terms involving triplets (k,r,s) e SN2 such that

r + a > NH1I

Conversely, if one wishes to use the results of Gani or Siskind

to solve a general stochastic epidemic with arbitrary initial distri-

bution then one can obtain p r(t) by evaluating

PrfR(t) = r,S(t) - sIR(O) - rOs(O) M s 0 1ar so

(r0 s )esý-7
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where P[AtB] is the conditional probability of A given B . This,

of course, would be considerably more difficult than if one were to use

our Theorem 4 directly.

Example. We illustrate the simplicity of the theory by shoving the

details of the example in which N = 2 , p - 2 , and initial distri-

bution (oo a0 1 , a0 2 , alO, all, a2 0 ) , (0, .20, .30, .25, .15,.10)

Then SN " ((1,2,0), (2,1,1), (3,1,0), (4,0,2), (5,0,1), (6,0,0) .

If we use Lemma 3 then

X M ' 0 
i M ' 'a l [ 103

x 'Mt 0 -3 x2(M) a.1
22 2

x '(t) -2 0 x (t) and a .25
333

xI(t) 1 -4 x 4 (t) a4  .30

x (t) 0 4 -2 x (t) a5 .20
5 5

x'(t) 2 0 Ix 6 (t) a6  0

By applying equation (27) we obtain

c(1,1) -_

c(2,1) - ( 0 + Oc(l,1W13 M 0

c(3,1) - ( 0 + 2c(2,116 2 (0) - 0

c(4,1) - (lc(2,1) + 0 )/4 = 0

c(5,1) = (Oc(3,I) + 4c(4,1)/2 - 0

c(6,1) - ( 0 + 2c(5,1352 (0) - 0
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3 3
c(2,2) =2- c(2,1) 20

-1

c(3,2) - ( 0 + 2c(2,2))/(- 3 ) To
3

c(4, 2 ) - (lc(2,2) + 0 ))/ "-2"
-3

c(5,2) - (oc(3,2) + 4c(4,2))I(-) -

c(6, 2 ) - ( 0 + 2c(5,2))/(-
3 ) 2

1 7

c( 3 , 3 ) - c(- 3,1) - c(3, 2 ) - 2

c(4,3) - ( 0 + 0 )/(4) -0

c(5,3) = (Oc(3,3) + 4c(4,3))/( 2 ) = 0

c(6, 3 ) - ( 0 + 2c(5,3))b 2 (0) = 0

c( 4 , 4 ) - 3 c(4,1) - c( 4 .2) - c( 4 ,3) 3_2
"10 20

-3

c(5, 4 ) - ( 0 + 4c(4,4))/(-2) - 10
35TO

c(6, 4 ) - ( 0 + 2c(5,4))/(-4) 20

11

c(5,5) -, - c(5,1) - c(5,2) - c(5,3) - c(5, 4 ) 10
11

c(6,5) - ( 0 + 2c(5,5))/(-
2 ) = - 10

110
5

c( 6 , 6 ) - -'c(6,u) =

U=1
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Therefore the solution is

P20 Xo 1 2 1

P1 1 ] x2 0 3 e"3t

P10  1 "- 0 -2 7 1
PIO 3' U 

4t
P0 2  x, 0 3 0 3 e

2t
P0 1  x15 0 -12 0 -6 22 e

p 0  0 8 0 3 -22 11P00) 5

The same comments which were made in the example of section

4 regarding the ease of finding other derived quantities from the above

solution apply here. For example, the distribution function of time

to extinction obtained from the above solution is G(T) - 0 for T < 0

and for T_> 0

2 1I -Yr e-4T 2
G(T) 7 P r(T) 1 + 1-(6e +3e - 22e 2T)

r--2
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