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ABSTRACT 

A solution has been obtained to the magnetogasdynamie 
equations of motion including the effects of compressibility, 
viscosity, thermal conductivity and crossed electric and 
magnetic fields.  The solution obtained is valid for an 
acceleration flow in which a separation of variable form 
of solution is utilized.  The constraints under which a 
separable solution is valid are clearly delineated.  The 
solution is an exact solution in the sense that no terms 
have been dropped from the governing equations and boundary 
layer approximations have not been employed. 

The results of the investigation were presented in the 
form of velocity and temperature profiles for several values 
of the electromagnetic parameters Ha and <J>.  Although the 
mathematical model used in the present investigation is too 
crude to be utilized for detailed design of a practical MHD 
accelerator, it is believed, nevertheless, that the model 
displays certain qualitative features of the flow which are 
likely to be encountered in a practical device. 
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NOMENCLATURE 
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JT     C7     Z 
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r Coordinate direction 
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ri Normalized coordinate, 0/a 

9 Coordinate direction 

K Thermal conductivity 

X Mean free path 

(X Viscosity 

(X Magnetic permeability 

IT Dimensionless parameter, Eq. (60) 
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a Electrical conductivity 
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03 Exponent, Eq. (110) 

SUBSCRIPTS 

c Characteristic or reference values 

o Values at the channel entrance, r = r 

w Values at the wall 0 = a 
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I 
INTRODUCTION 

For several years there has been considerable interest 
in the electromagnetic acceleration of ionized gases for 
space propulsion purposes and for application to high speed 
wind tunnels.  Many types of devices have been proposed to 
accomplish this acceleration and a number of prototypes 
have been built that demonstrate technical feasibility. 
One of the more promising of these devices is the steady 
flow, crossed field or Faraday accelerator.  There is 
particular interest in this type of accelerator for wind 
tunnel applications. 

One factor that limits conventional hypervelocity 
flight simulation techniques is the necessity of confining 
a high temperature gas at high pressure prior to expanding 
in a supersonic nozzle.  By directly adding kinetic energy 
to the flow, a magnetogasdynamic accelerator would, to a 
large extent, alleviate this containment problem.  Ring 
(Ref. 1) has stated, "In a sense, MHD techniques offer the 
first promise of a quantum increase in aerodynamic test 
capabilities since the introduction of shock-tube, shock- 
tunnel techniques a number of years ago," 

A schematic drawing of a crossed field accelerator to 
be used for the simulation of high speed flight is shown 
in Fig. 1.  In such an arrangement air would be preheated, 
seeded, and ionized in an arc heater and then passed through 
a low Mach number supersonic nozzle into the accelerating 
channel.  In the accelerator itself, energy would be added 
to the ionized gas or plasma by the crossed electric and 
magnetic fields.  A large portion of this added energy 
would be in the form of directed kinetic energy, the re- 
mainder being random thermal energy increasing the enthalpy 
of the plasma.  A post-accelerator nozzle would expand the 
gas to the desired static conditions and further increase 
the Mach number. 

It is clear that the accelerator itself is the heart 
of such a flight simulation system and that it is important 
that the details of the flow in this device be well under- 
stood. 

A considerable amount of theoretical work has been 
done on the crossed field accelerator and in the next section 
a brief survey of the more pertinent of these analyses is 
presented.  The majority of these investigations have treated 
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an inviscid, non-heat conducting gas, the tacit assumption 
being made that the viscous and heat transfer effects are 
confined to a thin boundary layer adjacent to the channel 
wall.  However, in wind tunnel accelerators where relatively 
large length to diameter ratios will be necessary to produce 
the required acceleration, it is likely that a significant 
portion of the flow will be fully developed in the sense 
that the boundary layers have merged.  Thus, the influences 
of viscosity and thermal conductivity would extend throughout 
the flow field.  This would especially be true for accelerators 
operating at low to moderate Reynolds number i.e. low density. 
It is well known (Ref. 2) that under these conditions the 
flow must be treated as fully viscous and that boundary 
layer theory is no longer applicable.  Under these circum- 
stances, the results of one-dimensional analyses cannot be 
expected to accurately describe the actual flow. 

It would appear then that there is a need for a study 
of the crossed field accelerator including the effects of 
compressibility, viscosity, and thermal conductivity.  A 
general study of such a problem would be a formidable under- 
taking indeed.  In this investigation attention is focused 
on a special type of accelerator flow for which it is 
possible to obtain a solution to the governing equations 
including the aforementioned effects. 

The flow considered is a two-dimensional gas flow 
between diverging plane walls, the pressure and Mach number 
being constant down the channel.  For this model it is 
possible to separate the axial and cross channel dependence 
of velocity and temperature.  Performing this separation 
results in a pair of coupled, non-linear, ordinary differential 
equations for the cross channel variations.  This system of 
equations is extremely complex and must be integrated by 
numerical methods.  Moreover it is shown that the problem 
is generally over specified and that solutions cannot be 
obtained for arbitrary values of the parameters.  This 
difficulty is circumvented by converting the boundary value 
problem to an initial value problem and allowing the wall 
divergence angle and wall temperature to be determined by 
the integration. 

In order to accomplish the separation of variables 
mentioned above it is necessary to assume that the viscosity, 
thermal conductivity, and electrical conductivity do not 
change down the channel.  Consequently, in the main portion 
of this report, it is assumed that these properties are 
constant throughout the flow field.  This assumption rep- 
resents a rather severe restriction because the viscosity 
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and electrical conductivity are strong functions of tem- 
perature.  The latter section of this report is concerned 
with an attempt to assess the effect of these property 
variations across the channel on the velocity and temperature 
profiles- 



AEDC-TR-67.80 

PREVIOUS WORK 

2.1 ONE-DIMENSIONAL STUDIES 

The one-dimensional magnetogasdynamic equations for an 
inviscid non-heat conducting gas were presented by Resler 
and Sears (Ref. 3), and many of the interesting properties 
of these equations were pointed out.  In particular, the 
possibility of accelerating a gas, flowing in a channel, to 
very high speeds was noted.  In another paper (Ref. 4) the 
same authors discussed in some detail constant area magneto- 
gasdynamic channel flow listing eight possible flow situations 
that might occur, depending on the initial velocity and initial 
Mach number. 

In the succeeding years, a number of authors have analyzed 
quasi-one-dimensional channel flow problems with crossed 
electric and magnetic fields.  Matthews (Ref. 5), for example, 
has presented a number of solutions for the steady flow crossed 
field accelerator.  Following the approach of Resler and Sears, 
Matthews assumes the electrical conductivity to be a constant 
and ignores the effect of the induced magnetic field.  The 
latter assumption permits the gas dynamical equations to be 
treated independently of Maxwell's electromagnetic equations. 
A further consequence of this assumption is that the variation 
of two of the dependent variables must be specified before a 
solution can be obtained. 

Drake (Ref. 6) studied the isothermal acceleration of 
a plasma with the aim of optimizing the channel design.  Using 
a variational technique he determined the channel shape that 
would yield a minimum accelerator length for a given velocity 
change. 

Krupka and Kezios (Ref. 7) analyzed a constant area 
accelerator for constant applied electric and magnetic fields. 
In their study the induced field in the direction of the 
applied field was not neglected and the electrical conductivity 
was taken to be a function of temperature.  The results of 
Krupka and Kezios indicate that the Mach number increase 
during acceleration is limited and that the flow cannot be 
accelerated through the sonic velocity. 

Two investigations of inviscid magnetogasdynamic flow 
are of particular interest in connection with the present 
work.  These are the papers by Hains (Ref. 8) and Podolsky 
and Borman (Ref. 9).  Hains examined several cases of 
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magnetogasdynamic source flow and obtained a particularly 
simple solution for the case of crossed electric and mag- 
netic fields.  The electric field was assumed constant and 
the magnetic field was assumed to vary inversely with 
radial distance from the source.  The electrical con- 
ductivity was assumed constant and induced field effects 
and Hall effects neglected.  Kains found that the flow 
proceeds outward from the source at constant pressure and 
constant Mach number, the velocity increasing linearly 
with radial distance and the temperature increasing as the 
square of the radial distance. 

In a related investigation, Podolsky and Borman (Ref. 
9) considered precisely the geometry that is dealt with 
in the present study.  The governing equations for a crossed 
field accelerator were written in cylindrical coordinates, 
neglecting changes in the z and 9 directions.  These equations 
were then numerically integrated for specified entrance 
conditions at r .  For large values of r they obtained a 
solution of the form 

u "u r 

p = constant 

T ~ r2 

From the solution graph presented it appears that this 
pattern is established fairly quickly and is valid for 
values of r/rQ > 3.  In the entrance region where 1 < r/rQ < 3 
the velocity is still almost linear although the pressure 
drops rapidly.  Podolsky and Borman also treat this problem 
for a lithium vapor propellant using values for the con- 
ductivity calculated from the degree of ionization at 
equilibrium. 

Sherman (Ref. 10) has extended the work of Podolsky 
and Borman to include Hall currents and propellants that 
are mixtures of inert gas and ionized seed gas. 

2.2 INCOMPRESSIBLE STUDIES 

A vast number of articles have been published that 
deal with magnetohydrodynamic channel flows, and only a few 
of the more pertinent will be discussed here.  No survey of 
the literature in this area would be complete, however, 
without mentioning the original paper in the field by Hartmann 
(Ref. 11), which deals with fully developed laminar flow 
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between parallel, non-conducting walls.  A discussion of 
Hartmann's work and several other interesting magnetohydro- 
dynamic channel flows is contained in a recent book by 
Sutton and Sherman (Ref. 12). 

In an incompressible study somewhat similar to the 
present work, Axford (Ref. 13) examined the magnetohydro- 
dynamic flow between non-parallel plane walls, an extension 
of the classical Jeffrey-Hamel problem.  The channel shape 
and magnetic field distribution were the same as those 
considered in this investigation, but the applied electric 
field was taken to be zero, corresponding to a short cir- 
cuited MHD generator.  Writing the governing equations in 
cylindrical coordinates, Axford was able to separate the 
axial and cross channel dependence.  By assuming small 
magnetic Reynolds number, i.e. neglecting the induced field, 
he was able to obtain a closed form solution for the cross 
channel variation.  The emphasis in this study was on the 
mathematical analysis and only a limited number of numerical 
results were presented.  It was reported that for divergent 
flow the tendency toward separation and back flow at high 
Reynolds number is opposed by the transverse magnetic field. 
Velocity profiles presented for convergent flow show the 
characteristic flattening for increasing magnetic field 
strength. 

Vatazhin (Ref. 14) examined some limiting cases of 
the divergent channel problem treated by Axford and obtained 
solutions in terms of elementary functions,  Vatazhin's 
results support the conclusions made by Axford. 

Heywood (Ref. 15) investigated the magnetohydrodynamic 
flow between parallel plates assuming an electrical con- 
ductivity-temperature relation of the form o" ~ T^.  He 
found very little effect on the temperature profile due 
to the conductivity variation but a noticeable alteration 
of the velocity profile.  He noted, however that for gases 
flowing at high speed the effect on the temperature dis- 
tribution could be significant. 

2.3  VISCOUS MAGNETOGASDYNAMIC STUDIES 

In an early paper, Bleviss (Ref. 16) studied magneto- 
gasdynamic Couette flow in an effort to deduce information 
about the magnetogasdynamic boundary layer.  Hall effects 
were not included in this study but the variation of trans- 
port properties was taken into account.  Bleviss' results 
show a rather severe distortion of the velocity and temper- 
ature distributions with increasing magnetic field strength. 
This study was directed toward aerodynamic boundary layers 
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on space vehicles reentering the atmosphere rather than 
boundary layers in channels.  Consequently the effect of 
an applied electric field was not considered, 

Martin (Ref. 17) studied the flow of a compressible, 
viscous fluid in a pipe of circular cross section; the 
fluid being accelerated by an axial body force.  His work 
dealt with both the entrance flow and the fully developed 
flow which was defined as a non-accelerating parallel flow. 
A body force is required in order for the fully developed 
flow to exist.  By assuming that the viscosity, thermal 
and electrical conductivities were constant and that the 
flow was unidirectional throughout, Martin was able to 
solve the linearized momentum equation independently of 
the energy equation. 

Although the applicability of this study to magneto- 
gasdynamic channel flows was stressed, it is doubtful that 
the body forces assumed could actually be produced by the 
interaction of electric and magnetic fields in circular 
pipes. 

Some very interesting results were obtained by Hale 
and Kerrebrock (Ref. 18) in a study of insulator boundary 
layers in crossed field accelerators.  Two models for the 
electrical conductivity variation were employed:  an equi- 
librium model where the degree of ionization was determined 
by the local gas temperature and pressure, and a non- 
equilibrium model in which the electrical conductivity is 
strongly coupled to the electric field strength. 

It was found that similar solutions could be obtained 
only for very restricted conditions and local similarity 
was assumed. 

The boundary layer profiles for the non-equilibrium 
case show some very unusual characteristics and were ex- 
tremely sensitive to the free stream Mach number and elec- 
tromagnetic loading parameter.  For certain values of the 
parameters, the velocity and temperature profiles show very 
pronounced bulges near the wall.  The variation of the 
profiles for the equilibrium case is less pronounced. 

Sonnerup (Ref. 19) investigated the fully developed 
flow of a compressible, electrically conducting fluid in 
slowly diverging channels.  SonnerupJs work differs from 
the present study in that he was concerned with flow in a 
generator and the confining walls were electrode surfaces 
rather than insulator surfaces.  The most interesting feature 
of this work is that a closed form solution was obtained. 
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Sonnerup simplified the governing equations via boundary 
layer type approximations in a manner similar to Williams 
(Ref. 2).  By choice of the proper wall geometry the pressure 
gradient and the electromagnetic body force were made to 
balance each other.  This, in turn, permitted the energy 
equation and the momentum equation to be uncoupled and 
analyzed separately»  The velocity profiles were found to 
be self-similar but the temperature profiles were generally 
non-similar. 

Although the emphasis of Sonnerup's work was on the 
mathematical analysis some numerical results were presented. 
The velocity and temperature profiles given exhibit no 
unusual characteristics. 
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II! 

FORMULATION OF THE PROBLEM 

Consider the steady, two-dimensional, laminar flow of 
an electrically conducting gas between diverging plane walls 
as shown in Fig. 2,  The problem is best described in cylin- 
drical polar coordinates. 

The flow may either be considered as emerging from a 
line source at r = 0 or as the fully developed portion of 
an actual channel flow.  The rays 9 = +  a  are electrically 
insulated walls and the magnetic field is applied in the 0 
direction.  An electric field is applied in the negative z 
direction, i.e. into the paper. 

The governing equations of motion for a single fluid 
plasma are expressed in cylindrical polar coordinates in 
Eqs. (1) through (5). 

Continuity equation: 

OP   1 ö<PUrr)   1 ö(pV  ö(pUz) £P + A 3L_ + A  Z_ +  5_ = o       (1) 
at  r  or     r  oö      dz 

r momentum equation: 

DU  ue
2   + + a   a    ÖU       _ 

Dt    r ör  ör     or   3 

+ [p,( + — ;] + — 0( + )] 
r 00   r oö   or   r     öz '  öz   or 

2.i  ÖUr   1 hVd       Ur 

r  or   r o0   r 
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0 momentum equation: 

p[_e + _z_ö] = (JXB) -IÜL + 1 A[M.(2 _e 
Dt     r r 5©  r 50   r Ö6 

+ _Z _ 2 v . u)] + _L^{_£ + 1 _zn + i_^(l __r 
r   3 dz   dz   r Ö0     or  r d0 

or r r 00   dr 
(3) 

z momentum equation: 

---  _ Ö£ .. J_r..,„ 
ÖUz  2 p ■—- = (JxB) 

Dt 
+ -H>(2 

dz  dz 
- - V • U) 

dz   3 

,     i ÖU ÖU i^i   dU„        ÖUa 

r  ör öz är r äö       r   ö0 dz 
(4) 

Energy equation: 

Dh = Dp. + J*+ 1 A (rK ÖT, + 2. i_(jc ÖT, + !_<, ÖT, 
Dt  Dt  a       r ör    är   r

2 30  d0   5z  dz 

r au 2    , 5U9  U a    oU      1 
H 2(—£)  + 2(1 -1 + -£)a + 2(-^)2 + (1 
t  ör       r d0   r       äz      r 

^z +^0)2 
50   dz 

ÖUr   öüz 2    1 ÖUr   ÖU0  U0 2' + <—^ + —-)2  + (1 —^ + —- + —) 
dz   ör     r ö0   ör   r 

- - n(7 • U)2 (5) 

10 
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where 

Dt  ot   r or  r  de   Z dz 

7 - U = - 
r  dr    r öö   Sz 

The necessary equations for the electromagnetic variables 
are i 

Ampere's laws 

Faraday's law: 

V x B = |ieJ (6) 

V x E = - £5. (7) 

Ohm's law: 

dt 

J = a(E + U x B) (8) 

The equations as written incorporate the so-called 
magnetohydrodynamic approximations, i.e. the dielectric 
displacement current is neglected in Eq. (6) and the gas 
is assumed to be electrically neutral.  The latter assumption 
permits deletion of the convection current term in Ohm's law 
and a body force term due to the electric field.  These 
approximations are discussed by Sutton and Sherman (Ref. 12) 
and are standard magnetofluiddynamic assumptions. 

Ohm's law is written in its simplified form neglecting 
Hall currents and ion slip effects. 

In addition to the equations listed above we have an 
equation of state: 

P = P<P,T) (9) 

11 
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a caloric equation of state: 

h = h(p,T) (10) 

and relations for the transport properties: 

[i  = \l(p,T) a =  a(p,T) K   = <(p,T) (ID 

Eqs. (1) through (10) are, sixteen equations for the 
sixteen unknowns p, p, T, h, U, B, E, and J.  With appropriate 
boundary conditions they represent, theoretically, a deter- 
minate set.  These equations will now be reduced to a form 
suitable for the particular problem being investigated. 

As was stated previously, the flow is assumed to be 
steady and two dimensional, i.e. d/dt = d/äz = 0.  Also, the 
transverse velocity components Ug and Uz are assumed to be 
zero.  It is further assumed that the induced magnetic field 
is negligibly small compared to the applied magnetic field. 
This last assumption permits the gas dynamical equations to 
be uncoupled from and solved independently of Ampere's law. 
The assumption has been used extensively in magnetogasdynamic 
studies and is equivalent to requiring that the magnetic 
Reynolds number, Ra = a|ieUL, be small compared to unity. 

With these assumptions the equations of motion reduce 
to the following form: 

Continuity Equation: 

-2- (pur) = 0 
dr 

(12) 

r momentum equation: 
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ÖU„ ^ A   ö
2U_       A     ÖU„ ,    Ö2U 

pU 
v    ör ör        '   3    är2     3r    ör        3r2     r       r2 Ö92 

+   (1 -i - A „   )iä+J_^läü-jBfl (13) 
3    ör        3r     r     ör       r2    0 9   ÖÖ 

0 Momentum Equation: 

0 = - I ä£ + j± (1  r + _7_ _r) 

r öS  3  r öröö  r2 öö 

,  . äU   U  ^   , öU N - 2 (1 _r-2_r} lü + 1 _r au (14) 

3 r ör   r2 ö9  r 59 ör 

Energy Equation: 

r ör   r ör  r ör    ör   r2 09   09 

r  öU 2    U 2   , ÖU 
+ n   2(—£)  + 2(-ü)  + C 

L   ör       r r 06  J 

2 ÖU   U 2   J 
2 

- ~ IX (—- + ~)  + -£ (15) 
3 ör    r     a 

Ohm's Law: 

Jz = a(Ez + UrB0) (16) 

The fluid medium is assumed to behave as a perfect 
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gas, both thermally and calorically so that: 

P = pRT (17) 

h = CpT (18) 

where Cp is a constant. 

To complete the specification of the problem, boundary 
conditions must be imposed on the independent variables 
Ur, T, and p.  Along the channel centerline, Ö = 0, a con- 
dition of symmetry is imposed. 

*Ur(r?Q> = o  ,  *T<r,°> = o  ,  5P<^0) = 0     (19) 
de        a©        öe 

At the wall, the no slip condition is applied and the 
pressure and temperature variations are specified. 

Ur(r,a) = 0  ,  T(r,a) = Tw(r)  ,  p(r,a) = pw(r)   (20) 

Rather than specifying the additional boundary con- 
ditions necessary at a particular value of r, a separable 
form of solution is assumed.  It is then assumed that the 
dependent variables, transport properties, and applied 
fields can be expressed in the following form; 

Ur(r,0) = Ü(e)r
a 

p(r,0) = p(9)rb 

(Equation continued) 
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p(r,0) = p(9)rC 

T(r,0) = T(9)rd 

Ez(r) = - Er
e 

B9(r) --  Brf 

u.(r,9) = n(0)rg 

j(r,0) = c(0)rh 

K(r,9) = ic(e)rJ (21) 

where the exponents a, b, c, etc. are constants to be 
determined.  Substitution of Eqs. (21) into Eqs. (12) 
through (15) and eliminating J and h gives: z 

(a + b + l)pUra+b = 0 (22) 

~7,z  sa+b-i     - c-i  4 -,   , ., .,- apU^r      = - cpr   + — p.[a(a - 1)U 
3 

+ aü - Ü]ra+g"2  + £ü"ra+g"2 +   <± aÜ -  * ü)gfLra+g~2 

3 3 

+ ÜVra+g-2 + äflre+f+h   -  5ÜB2ra+£f+h (23) 

0 =  - p'rc_1 + ±  (aü'   + 7Ü')ra+g_2 

3 

- 2  (aÖ-2Ü)^I'ra+g-s  + gÜ'üra+g-2 (24) 
3 
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dpüCpTr^-"1-1 = cÜpr^0"1  + 5(E - ÜB)2rh+2e 

+ d(d + j)^Trd+j~2  +  üf" +  K'f')rJ+d-2 

2fi2    JL    Ofr2      .      /rT'l2-|v.2a+g-a + \L  [2a2U*  + 2U2  +  (U  )2]r 

2 ü (a + l)£ü2r2a+S"2 (25) 
3 

prc = pRTrb+d (26) 

where the prime refers to differentiation with respect 
to e. 

If Ü, f, etc, are to be functions of 6   only, as 
assumed, then Eqs, (22) through (26) may not involve the 
variable r.  Therefore the following equations must be 
satisfied by the exponents: 

a + b + 1 = 0 

2a + b-l = c-l = a + g-2 

= e + f+h = a + 2f + h 

a + b + d- l = a + c - 1 = h + 2e 

=d+j -2=2a+g-2 

c = b + d (27) 
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Eqs. (27) represent only seven independent equations 
for the nine exponents which can be solved in terms of the 
electric and magnetic field exponents e and f. 

a = e - f Ur = U(0)r
e-f 

b = f - e - 1        p = p(0)rf~e~1 

e-f-i c = e - f - 1        p = p(0)r 

d = 2(e - f) T = T(0)r a(e-f) 

g = 0 ia = [1(0) 

h = - 2(f + 1)       a = ö(Ö)r"2(f+l) 

3=0 K = K(0) (28) 

Since the fluid transport properties cannot vary with 
r, they are assumed independent of 0 as well, i.e. p, = 
constant and K  =  constant will be assumed. 

From Eqs. (28) it is clear that the radial variations 
of the quantities Ur, p, p, and T are determined by electric 
and magnetic field distributions.  These distributions will 
be chosen so as to be consistent with Maxwell's electro- 
magnetic equations. 

The r and 0 components of Faraday's law for steady 
state are: 

dE^  d(rE~) _z 0_ = 0 
00     dz 

ÖE   dE 
—£  = 0 (29) 
äz   ör 

Then since d/dz = 0 by assumption 

ÖE   dE 
—Z*.=—5.=  o 
Or   d0 
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or 

E, = constant,  e = 0 (30) 

Such an electric field could be produced by using parallel 
equipotential electrode surfaces for the channel sidewalls, 

A solution to Ampere's law, Eq. (6) is 

where 

B = BH + b (31) 

V x BH = 

V x b = |ieJ 

It is clear that Bg, the solution to the homogeneous 
equation, is the applied^ field BQ  and that b is the induced 
field.  By assumption |b| « BQ,     Thus the applied magnetic 
field BQ  should satisfy the z component of Ampere's law 
with J = 0. z 

d(rB0) 
=  0 

or 

B0 ^ -     ,     f = - 1 (32) 
J   r 

Such a magnetic field could be produced by a current carrying 
wire coincident with Z axis and could doubtless be closely 
approximated by a magnet with diverging pole faces. 

It should be pointed out that while Eqs. (30) and (32) 
define the only electric and magnetic field distributions 
rigorously consistent with the geometry and assumptions of 
this model, in an actual three-dimensional channel other 
distributions are not only possible but may be desirable. 
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By using finely segmented, individually powered electrodes 
almost any reasonable electric field distribution can be 
closely approximated.  Although the magnetic field is not 
so easily modified, this distribution too can be tailored 
to some extent. 

Introducing the values of e and f into Eqs. (28) 
gives: 

a = 1 U    = U(0)r 

b = - 2 p =  p(0)r"2 

c = 0 P - p(0) 

d =  2 T =  T(0)r2 

h = 0 a = a(0)  = (33) 

Since the electrical conductivity cannot vary with r, it 
will be taken to be a constant. 

Eqs. (33) show that the gas is accelerated down the 
channel, the pressure and Mach number being constant along 
radial lines.  It is not surprising that these radial 
variations are of the same form as found by Hains (Ref. 8) 
and Podolsky and Borman (Ref. 9) on the basis of inviscid 
models. 

Substituting the values of the exponents into Eqs. 
(22) through (26) gives: 

pU2 = U.U + a(E - UB)B (34) 

p' = - U.Ü' (35) 

2pUC T = a(E - ÜB)2 + KT" + 4KT 
P 

+ H[(Ü')2 + - Ü2] (36) 
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p = pRT (37) 

Eq. (22) is identically satisfied. 

In summary the additional restrictions that have been 
forced by the separation of variables are: 

1. The variations of velocity, density, temperature 
and pressure down the channel have been specified, 

2. It has been shown that the viscosity, thermal 
conductivity, and electrical conductivity can- 
not change with r.  These properties have been 
taken to be constant. 

3. The variation of temperature and the constancy 
of pressure have been specified along the channel 
wall. 

T(r,cc) = Tw(r) = T^r
2 

p(r,a) = pw(r) = pw 

Eq. (35), the 0 momentum equation, can be integrated 
immediately to give 

p = - [lV  + pw (38) 
3      w 

Using Eq. (38) and the equation of state given by Eq. (22) 
the density p can be eliminated from Eqs. (34) and (36) 
giving: 

~ (- M.Ü + p ) = [1Ü" 4- a(E - ÜB)B (39) 
RT 3 

2C_ p 
—£—- U = 0(E - ÜB)2 + /cf" + 4/cT 

R 
(Equation continued) 
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+ M-[(U')2 + - (1 - ^£)Ü2] (40) 
3       R 

Eqs. (39) and £40) are two coupled, non-linear differential 
equations for U and T.  The boundary conditions for these 
two quantities are: 

Ü'(0) = 0      Ü(a) = 0 

f(0) = 0      T(a) = fw (41) 

Eqs. (39) and (40) can be put into dimensionless form by- 
defining new variables 

Ür Tr 2 

f(0) = —2. ,   g(9) = _°~             (42) 
U T c c 

where rQ is the radial distance to the channel "entrance", 
Uc and Tr are characteristic values of velocity and tempera- 
ture to Be specified.  Also define 

Bo=~       >       Eo = E (43) 

o 

where B0 is the magnetic induction at r0.  Define the 
dimensionless parameters 

a JL 

Ha = (—)2 B r    (Hartmann number) 
M- 

pcUcro Re =        (Reynolds number) 
P- 

where 
* w 

pc = — (44) 
RTc 
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E 
• - -2- 

U B c o 

uc 
M =  j.       (Mach number) 

(7RTc)2 

C \i 
pr _ _P_   (Prandtl number) 

Then Eqs. (39) and (40) can be rewritten in terms of the 
dimensionless variables and parameters as 

!f£ = I 7M
2 i3 + Re -2 - (Ha)2(* - f) (45) 

d02  3    g      g 

^-& + 4g = 2RePrf - (7 - l)MaPr (Ha)2 (4> - f); 

d02 

- (7 - l)M2Pr(—)2 + -  (37 + l)M2Prf2 (46) 
d9 3 

with boundary conditions 

f'(0)   =   0 f(a)   =  0 

g'(0)   =  0 
T r 

g(a)   =    * ° 
Tc 

(47) 

Eqs. (45) and (46) with boundary conditions given by 
Eq. (47) represent the analytical model for the present 
investigation. 
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IV 
TECHNIQUE OF SOLUTION 

4.1 SOLUTION DIFFICULTIES OF THE DIRECT BOUNDARY VALUE PROBLEM 

Eqs. (45) through (47) appear to define a straight 
forward but complicated non-linear boundary value problem. 
The following method of solution would seem applicable. 

1. Assign values for the divergence angle a 
and the wall temperature g(a). 

2. Specify values for the six dimensionless 
parameters 7, Pr, Ha, Re, M, $. 

3. Guess initial values for the dimensionless 
velocity and temperature f(0) and g(0). 

4. Numerically integrate Eqs. (45) and (46) 
using the Runge-Kutta method from 0=0 
to 9 ~ a  hoping to satisfy the boundary 
conditions at the wall. 

5. Adjust the values of f(0) and g(0) as 
necessary and integrate the equations 
again.  Repeat until the boundary con- 
ditions at a are met. 

6. Assign new values for the parameters "y, 
Pr, Ha, Re, M, ? and repeat steps 3 through 
5. 

The iterative procedure outlined above would obviously 
involve considerable computation time with no a priori 
guarantee of convergence.  There is also, however, another 
somewhat more subtle difficulty with this method. 

In order that the dimensionless variables and parameters 
be well defined, the characteristic velocity Uc and the 
characteristic temperature Tc must be specified.  A convenient 
value for the characteristic temperature is the wall temper- 
ature at r0, Tc = T^rp2, so that the temperature boundary 
condition becomes g(a) = 1.  For the characteristic velocity, 
a logical choice would be the average velocity at rQ, defined 
as 

r  a 

U„ = — Jv(9)dB (48) 
2a -a 
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Introducing 
U(9)r 

f (6) =  2        gives 
Uc 

a 

/ f(6)dÖ = 2a (49) 

-a 

Definingvr) = 0/a and using the fact that f (0) is an even 
function gives 

1 

/f(T))dr) = 1 (50) 

0 

an extra condition of f that generally would not be satisfied. 
For problems that can be solved explicitly in closed form, 
this extra condition usually defines a relationship between 
the parameters.  For example, in ordinary hydrodynamic flow 
between parallel plates a condition similar to Eq. (50) gives 
a relation between the mean velocity and the pressure gradient 

Thus in the present problem one would expect some 
relationship among the parameters 7, Pr, Ha, Re, M, and <J> 
that must be satisfied before a solution can be obtained. 
This conclusion can be illustrated by considering the 
corresponding one-dimensional, inviscid problem. 

The governing equations for the inviscid problem can 
be obtained from Eqs. (12) through (18) by setting p. = K.  = 0. 
The resulting equations are 

ö(pUrr) 

or 
= 0 (51) 

PU £. = _ ä£ + a(E - U B)B (52) 
r or    ar        r 
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pUrC  ^1 = Ur ^ + a(E - U B)s (53) 
dr     dr 

P = pRT (54) 

Define new dimensionless variables as 

u* = ^E   p* = -£-   T* = ^L 
U p T o po o 

p* = JL   r* - i. (55) 

where the subscript zero denotes the value of the quantity 
at r0.  The applied magnetic field distribution is the 
same as previously derived in Eq. (32), i.e. B = B0/r*. 

In terms of the dimensionless variables the equations 
become 

P*„* jj£ . , |8i + Vs - Vl)  i (56) 
Or*    or*   l r*  r* 

p*U*r* - 1 (57) 

-J^^=«*^+ »(*-!£)« (58) 
(7-1)M2 Or*      or*   M    r* 

p* = p*T* (59) 
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where 

$ 
E 

U^B„ o o 

*M 

or B p 

o o 

PoUo 

IT 
Po 

PoUo2 

M  = 
Uo 

(7RT )2 
(60) 

The initial conditions on the dependent variables are 

U*(l) = 1 

T*(l) = 1 

p*(D = 1 

p*(l) = 1 (61) 

Following a procedure similar to that used for the two 
dimensional problem assume a solution of the form 

U* = C1(r*)
a 

p* = C (r*)b 

p* = C (r*)' 
3 

T* = C (r*)d (62) 
4 

26 



which  leads  to 

AEDC-TR.67-80 

U* = —22  r* (63) 
1 + RM 

1     +     RH 
p*  =  «   (r*)   - (64) 

M 

(7-l)M2$ 
P*  =   (65) 

2(1  + V 

2D    ^2 (7-DM2RM*: 

T*   =  J*_ r*2 (66) 
2(1  + V2 

This solution will  satisfy  the  initial conditions   if  and 
only  if, 

—M—= i 
1  +  RM 

T2T>  ^a (7  -   DM2^ 

2d + V8 ' 

1  + ^ or $ =  si (67) 

M2  =  —-3L- (68) M_ 

>   -  1 

If Eqs.   (67)   and   (68)   are  satisfied  the  solution  is 
given by 
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U* = r* 

P* = 1 

T* = (r*)2 (69) 

If Eqs. (67) and (68) are not satisfied the solution 
is entirely different, but according to Podolsky and Borraan 
(Ref. 9) approaches the values given by Eqs. (63) through 
(66) for large values of r*.  The solution given above is 
a special case of the problem investigated by these authors 
although it was not specifically pointed out by them. 

In view of the above considerations one is forced to 
conclude that the direct boundary value problem is indeed 
overspecified and that a solution cannot be' obtained for 
an arbitrary choice of the parameters.  This overspecification 
would make solution by the iterative procedure outlined 
previously extremely difficult.  Fortunately, there is an 
alternate approach to the problem that alleviates this 
difficulty. 

4.2 THE INITIAL VALUE PROBLEM 

An approach which will circumvent the difficulty of 
overspecification of the problem mentioned above is to 
leave the wall divergence angle as a dependent variable of 
the problem.  The problem also becomes an initial value 
problem in contrast to the two point boundary value problem 
specified by Eqs. (47). 

For this approach the characteristic velocity and 
characteristic temperature of the problem are defined to 
be values of velocity and temperature at r = r and 9=0, 
i.e. 

U = u = u(r ,0) c   o     o 

T = T = T(r ,0) (70) coo 

With this choice the dimensionless equations and boundary 
conditions become 
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2f| = i 7M
2 — + Re — - (Ha)2($ - f)        (71) 

do-5  3     g      g 

^-& + 4g = 2RePrf - (7 - l)M2Pr (Ha)2(4> - f)2 

dS2 

2 
- (7 - l)M2Pr(—) + - O7 + l)M2Prf2         (72) 

do 3 

f(0) = 1 f'(0) = 0 

g(0) = 1 g'(0) = 0                (73) 

Eqs. (71), (72) and (73) constitute an initial value 
problem that can be integrated directly by numerical methods. 
The divergence angle and the wall temperature are then 
determined by the integration.  The no slip condition 
f(a) —  0 is used to specify the wall divergence angle, a, 
and the corresponding value g(a) gives the ratio of wall 
to centerline temperatures. 

Thus, in approaching the problem by the method des- 
cribed above, two new parameters have been introduced, 
giving a total of eight, namely 7, Pr, Ha, $, Re, M, a, 
g(a).  In order to keep the number of computations required 
within reason, it was decided to fix and hold constant the 
ratio of specific heats, 7, and the Prandtl number at values 
typical for diatomic gases.  Thus the values 7 = 1.4 and 
Pr = 1 are used in all numerical calculations. 

Eqs. (71) and (72) with initial conditions given by 
Eqs. (73) were programmed for solution using a standard 
fourth order Runge-Kutta scheme. 

Consider now the interrelation among the remaining 
parameters Ha, $, Re, M, a,   g(a).  It is to be expected 
that a change in any one of the parameters Ha, 3>, Re, or M 
will cause a change in both a  and g(a).  Extensive computer 
calculations reveal that this is true.  More generally it 
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may be said that only three of the six parameters may be 
held constant at once or that a change in any one of these 
must result in a change in two of the remaining five. 
Figs. 3 and 4 illustrate this behavior showing the relation 
between Ha, 0, a, and g(a) for Re and M fixed.  Lines of 
constant a have been cross plotted on Fig. 4. 

Thus it is not possible in this problem to directly 
assess the effect of the change of a single parameter. 
Other solutions for viscous, compressible, channel flows 
both with and without electromagnetic effects exhibit a 
similar behavior (Ref. 2, 19, 20). 

In view of these considerations, solutions will be 
compared on the following basis 

1. The electromagnetic parameters Ha and 0 will 
be taken as the independent parameters, 

2. The values a and g(a) will be considered 
as fixed. 

3. The gas dynamic parameters Re and M will be 
considered dependent parameters. 

This technique will permit a comparison of velocity and 
temperature profiles for flows with Ha = Ha)-,^ and Ha = Ha)2 
at the same values of $, a, and g(a).  Corresponding to 
the change in Ha there will be a change in both Re and M. 
It is felt that this method will yield the most information 
about the effect of a change in one of the electromagnetic 
parameters on the flow. 

From the numerical calculations, graphs were constructed 
showing a as a function of Re and M and g(a) as a function 
of Re and M for fixed values of Ha and $. 

Range of Parameters 

It was quickly discovered through numerical computations 
that there are well defined limits on the values that some 
of the parameters can be assigned.  For example, reference 
to Fig. 26 shows that there is a minimum value of the 
divergence angle which occurs at Re = 0.  Moreover, it is 
clear that (öa/öM)Re _ Q = 0.  From these observations an 
expression can be obtained for the minimum divergence angle 
as a function of Ha and $.  Putting Re = 0 and M = 0 in 
Eq. (45) gives 

d2f + (Ha)2(0 - f) = 0 (74) 
de- 
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with  initial conditions 

f(0)   =  1 f'(0)  =  0 (75) 

which yields 

f = * + (1 - O)cosh(HaS) (76) 

Using the condition f(a) = 0 gives 

l,-i$ , a™-iv, = — cosh    (77) min Ha       $ - 1 

For Ha = 100, $ = 1.6, Eq. (77) gives amin = .0164 rad = .94° 
which agrees with Fig. 28.     Also the general behavior 
predicted by Eq. (77) is the same as shown by Fig. 3 for 
non-zero values of Re and M. 

Note that as $ approaches unity amin approaches infinity 
and that for $ less than one, no real values of amjn exist. 
This would suggest that meaningful solutions to Eqs. (45) 
and (46) are only possible for $ > 1.  This conclusion has 
been verified by numerical calculations. 

The quantity $ = EO/UQBO is an electromagnetic loading 
parameter and 0 < $ < 1 corresponds to a generator mode 
of operation of the channel where energy is extracted from 
the fluid.  The accelerator mode of operation corresponds 
to $ > 1.  Since the solution form assumed in Eqs. (33) 
clearly indicates that energy is being added to the fluid 
by the applied fields, it is not surprising that solutions 
cannot be obtained for $ < 1. 

Having obtained an expression for the minimum value of 
the divergence angle, it is logical to inquire whether or 
not this parameter has an upper limiting value.  Rewriting 
the differential equations for f(0) and g(0) and the initial 
conditions on these variables gives 

H2-F    R       -P3        -F2 

2-i = £ 7M
2 — + Re — - (Ha)2(<J> - f)        (78) 

d92   3     g      g 
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|2 
^-& +  4g = 2RePrf - (7 - l)M2Pr(Ha)2($ - f)2 

de2 

(7 - l)M2Pr(—)2 + - (37 + l)M2Prf2        (79) 
de        3 

f(0) = 1    f'(0) = 0 

g(0) = 1    g'(0) = 0 (80) 

Then at 0 = 0 

8 f"(0) = - 7M2 + Re - (Ha)2(0 - 1) (81) 
3 

g"(0) = 2RePr - 4 - (7 - l)M2Pr(Ha)2($ - 1) 

+ - (37 + l)M2Pr (82) 

If Re, M, Ha, and <t> are chosen such that f (0) = 0 and 
g"(0) = 0, it is seen by continued differentiation of 
Eqs. (78) and (79) and setting 0=0 that 

fn(0) = 0   gn(0) = 0   n=3,4... (83) 

Thus 

f(0) = 1    g(9) = 1 

for all values of 9  and a = 00.  Obviously then there is no 
upper limit on the values that a can attain.  Nonetheless, 
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a very interesting result has been obtained.  Considering 
Ha and $ as being fixed, the equations corresponding to 
f"(0) = 0 and g"(0) = 0, namely 

- 7M2 + Ee - (Ha)2($ - 1) = 0 (84) 

2RePr - 4 - (7 - l)M2Pr(Ha)2($ - 1): 

+ - O7 + l)M2Pr = 0 (85) 

define a limiting point in the Re, M plane. 

It is expected that for fixed values of Ha and $ as 
values of Re and M are chosen approaching the limiting 
values, defined by Eqs. (84) and (85), larger values of a 
will be obtained. 

It is particularly interesting to note the close 
relationship between Eqs. (84) and (85) and Eqs. (67) and 
(68), the conditions that must be satisfied in order that 
the inviscid solution be given by Eqs. (69).  If the terms 
8 4 
=- -yM2, 4, and - O7 + l)M2Pr are ignored, Eqs. (84) and (85) 
»J 3 

become 

Re - (Ha)2($ - 1) = 0 (86) 

2RePr - (7 -l)M2Pr(Ha)2(* - I)2 = 0 (87) 

But 
or B 2  p U r 

(Ha)2 = 3. B 2r 2 = (—2-2-)(I2-2-Ä) . R Re O  O TT M 
M- P0U0     H 

so that Eqs. (86) and (87) become 
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1 + R^ 
* =  (88) 

2RM 
M2 =  iL (89) 

7-1 

Eqs. (88) and (89) are identical to Eqs. (67) and (68). 
Q A 

The terms — 7M2, 4, and — (37 + l)M2Pr arise due to 

the cross channel pressure variation, axial heat conduction, 
and viscous dissipation due to axial velocity gradients. 
If the problem had been formulated not including these 
effects, i.e. using boundary layer type approximations to 
simplify the equations, then the inviscid solution given 
by Eqs. (69) would represent truly the limiting solution 
for the viscous problem.  With the aforementioned effects 
excluded the dimensionless equations for f(9) and g(6) are: 

dfl = Re tL -   (Ha)2(0 - f) (90) 
do2     g 

d-& = 2RePrf - (7 - l)M2Pr(Ha)2(3> - f)2 

do2 

- (7 - l)M2Pr (dl)2 (91) 
do 

with initial conditions 

f(0) = 1    f'(0) = 0 

g(0) - 1    g'(0) = 0 (92) 

Setting 0 = 0 gives 
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-i- f "(0) = 1 - R^($ - 1) (93) 
Re 

-i- g"(0) = 2 - {-> - 1)M2RM(* - l)
2 (94) 

RePr m 

so that for 
1  +  RM $ = 

RM 

2 
2RM 

7-1 
(95) 

fn(0) = gn(0) =0   n = 2,3,... (96) 

f(0) = g<6) = 1 (97) 

for all 9  and for all values of Re and Pr.  Then the 
solution is 

U (r,0) = U0(—) (98) 
r o 

T(r,0) = T (—)2 (99) 
ro 

This is, of course, the same solution obtained for the 
inviscid problem and is valid only when Eqs. (67) and (68) 
are satisfied. 

Returning to a consideration of the limits on the 
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various parameters, it was decided to concentrate on values 
of g(a) between 0.1 and 0.5.  It is unlikely that the ratio 
of wall temperature to centerline temperature would be 
outside these limits in a practical device.  Fig. 5 shows 
the region in the Re, M plane where acceptable solutions 
can be obtained for Ha = 200 and * = 1.6.  As was anticipated, 
as values of Re and M are chosen, in this region, approaching 
the limit point, larger values of divergence angle are ob- 
tained.  Note that the region of acceptable solutions becomes 
increasingly narrow as the limiting point is approached. 

If values of Re and M are used that lie to the left 
of the region shown in Fig. 5, negative values of g(a) are 
obtained.  Such a result is physically meaningless.  If 
values are used to the right of the region shown, large 
values of g(a) are obtained and ultimately the dimensionless 
velocity, f(9), grows without limit. 

Finally, there are practical upper limits on the values 
of Ha, $, and a.     As is shown in Fig. 3 and by Eq. (77),* 
a tends to decrease with increasing values of Ha and $. 
Thus, for large values of these parameters, it is necessary 
to closely approach the limiting values of Re and M in order 
to hold ct constant.  But, as was pointed out, the region of 
acceptable solutions becomes very narrow in the neighborhood 
of the limiting point.  Thus, it is very difficult to obtain 
solutions for large values of Ha, 0, and a simultaneously. 

In view of these considerations it was decided to con- 
centrate on values of a  between 1.0° and 1.6°, to use values 
of Ha =  100, 150, 200, and to use values of $ -  1.2, 1.6, 
2.0.  For these selections it is possible to carry out the 
proposed solution and comparison scheme with a reasonable 
amount of numerical calculations. 

In summary, it has been ascertained that there are 
well defined limitations on the range of each of the para- 
meters involved in the present study, Ha, $, Re, M, a, and 
g(a).  These restrictions are either mathematical, physical, 
or practical, depending on the parameter but in all cases 
they are quite real and meaningful solutions can be obtained 
only within these limitations.  Table 1 gives the numerical 
values of am^n, M^imi^, R

eiimit ^
or ^e values of Ha and $ 

used in this study. 
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V 

DISCUSSION OF RESULTS 

The results of this portion of the investigation are 
presented graphically in Figs. 6 through 18.  Figs. 6 through 
14 give velocity and temperature profiles for the nine com- 
binations of Ha and 0 considered in the study.  The dimen- 
sionless  variables f and g are plotted against the normalized 
space coordinate rj = 6/a.     For each of these graphs the 
divergence angle is approximately 1.5° and the ratio of wall 
temperature to centerline temperature is approximately 0.2. 
The values of Re and M required to maintain these values 
a and g(a) were obtained from Figs. 26 through 43.  Figs. 
15 and 16 show the variation of viscous drag and wall heat 
transfer with Ha and <t>.  Figs. 17 and 18 are velocity and 
temperature profiles for a = 1.25° and. g(a) = 0.2.  These 
figures show the effect of a change in the divergence angle 
and will be used for comparison with the results for variable 
properties. 

The velocity profiles can also be interpreted to give 
the cross channel pressure variation. Writing Eq, (38) in 
terms of dimensionless variables .and parameters and letting 

p*(0) =  2. (loo) 
p. w 

gives 

p*(0) « £ iMl f(0) (loi) 
3 Re 

Table II summarizes the results giving the values of 
Re, M7 f'(ct), g'(a), and p*(0) in terms of Ha and $ for 
a = 1.5° and g(a) = 0.2. 

It must be pointed out again that the changes in the 
velocity and temperature profiles exhibited in Figs. 6 
through 14 cannot be solely attributed to changes in the 
electromagnetic parameters Ha and $.  As has been discussed, 
associated with a change in one or both of these parameters, 
there is a change in the gas dynamic parameters Re and M. 
This interdependence of electromagnetic and gas dynamic 
parameters will be shown in the following discussion to be 
an important feature of the problem. 

37 



AEDC-TR-67-80 

Perhaps the most salient feature of the results is 
the prominent bulge in the temperature profiles.  Physically 
this is due, of course, to the concentration of joule heating 
and viscous heating in the vicinity of the cool wall.  In 
this region the reversed electromotive force due to the 
fluid motion is small and a large current density results. 
This effect, however, is somewhat more pronounced than had 
been anticipated. 

The trend exhibited by the temperature bulge as $ 
changes is very interesting.  If gmax denotes the maximum 
value of g(r)), for certain values of Ha, gmax increases 
monotonically with $.  At a larger value of Ha, gmax in~" 
creases to a maximum value and then decreases with increasing 
$, and for a still larger value of Ha, gmax may monotonically 
decrease with $.  In particular for Ha = 100, gmax increases 
monotonically with 0, for Ha = 150, gmax increases to a 
maximum and then decreases with <J>, and for Ha = 200, gmax 
decreases monotonically with $.  This behavior is also 
reflected in Fig. 16 which shows the temperature gradient 
at the wall as a function of $ for the above three values 
of Ha. 

In order to explain this phenomenon, the behavior of 
the temperature profile for constant values of Ha and <3> 
along a line of constant g(a) in the Re, M plane must be 
examined.  Now for g(a) fixed there is a correlation between 
the bulge in the temperature profile and g"(0). 

g"(0) = 2RePr - 4 - (7 - l)M2Pr(Ha)2(4> - 1)J 

+ - (37 + l)M2Pr (102) 

From Eq. (102), considering the dominant first and third 
terms on the right side, it is clear that g"(0) increases 
with increasing Re and decreases with increasing values of 
M.  Thus, referring to Fig. 5, one would expect upon moving 
along a line of constant g(a) toward the limit point that 
the bulge in the temperature profile would first increase, 
reach a maximum and then decrease.  The temperature profile 
must flatten as the limit point is approached. 

Next consider a three-dimensional O, Re, M space for 
fixed Ha.  In such a space there are surfaces of constant 
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a and surfaces of constant g(a).  Corresponding to the 
limiting point in the Re, M plane, there is a limiting 
curve in 0, Re, M space.  In obtaining solutions for Ha, 
a, and g(a) fixed and for various values of 0, one obtains 
solutions corresponding to points in this space that lie 
on the line of intersection of a constant g(a) surface and 
a constant a surface.  Now it was stated in Section IV that 
for larger values of <i> it is necessary to closely approach 
the limiting values of Re and M in order to hold a constant. 
In other words as the $ coordinate increases the line of 
intersection approaches the limiting curve.  Thus in obtaining 
solutions on the line of intersection for increasing $, i.e. 
approaching the limiting curve, one expects a behavior 
similar to that observed in moving along a line of constant 
g(cz) in the Re, M plane, that is an increase in the temper- 
ature bulge followed by a decrease. 

Mathematically, then, the reason for the aforementioned 
behavior becomes clear.  For Ha = 100 increasing 0 from 1.2 
to 2.0 along the line of intersection of the surfaces a = 1.5° 
and g(a) = 0.2 occurs on a section of this line removed 
far enough from the limiting curve such that the temperature 
bulge becomes more pronounced.  For Ha = 200 the change in 
<t occurs on a section of the corresponding line close enough 
to the limiting curve so that the temperature bulge becomes 
less pronounced. 

While the explanation given above is perhaps satisfactory 
from a mathematical point of view it yields little insight 
into the physical mechanisms involved. 

The dimensionless parameter <$>  can be interpreted as a 
measure of the total energy input divided by the accelerating 
work. 

Total energy input/(unit vol)(unit time) = J • E 

Accelerating work/(unit vol)(unit time) - (J x B) - U 

Forming the ratio of these quantities gives 

■*   "*       JE 
J * E       ZZ * (103) 

(Jxi) . !J  JzB0Ur   f (0) 

where E 

o o 
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But 

J, • E = — + (J x B) • U 

so that Eq. (103) can be written as 

$       J2/a 

f(0)   (J x B) • U 
+ 1 (104) 

Eq. (104) indicates that for larger values of $ a greater 
portion of the total energy input is dissipated in Joule 
heating.  It has been noted that this dissipation is largest 
in the vicinity of the wall where the reversed electromotive 
force due to the fluid motion approaches zero.  Then as 
expected, for low values of Ha this increased dissipation 
for larger values of $ is exhibited as a more pronounced 
temperature bulge. 

Evidently, however, another mechanism is involved that 
counteracts this effect and dominates it for large values 
of the Hartmann number.  Examination of the velocity profiles 
shows that there is, as expected, a flattening of these 
profiles with increasing Ha and to a lesser degree with 
increasing $.  It is suggested that this flattening of the 
velocity profiles for large values of the Hartmann number 
tends to depress the temperature bulge by distributing the 
Joule dissipation more evenly over the channel. 

Obviously, the physical explanation given above is not 
the complete story; the effects of viscous dissipation and 
heat transfer to the wall certainly play an important role 
in the behavior of the temperature profiles.  It is felt, 
however, that the dissipation of energy in Joule heating 
is the most important mechanism affecting the temperature 
distribution in the channel. 

Another interesting feature of the results is the slight 
bulge in the velocity profiles that occurs at the large values 
of Ha and $.  This behavior is no doubt due to the fluid 
density variation across the channel.  Table II shows that 
the pressure change across the channel is very small so 
that the density is very nearly inversely proportional to 
the temperature.  Thus regions of high temperature correspond 
to regions of low fluid density.  Now the J x B body force 
is a volumetric force and therefore strongly affects the 
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fluid in regions of low density.  It is concluded then that 
the bulge in the velocity profiles is caused by the density 
variation across the channel coupled with the electromagnetic 
body force.  The fact that the velocity and temperature 
profiles do not peak at the same location is due to the 
growing influence of the viscous forces as the wall is 
approached. 

The above argument can be strengthened somewhat by 
appealing again to the equations.  Consider the differential 
equation and initial conditions for the dimensionless velocity 
function f(0). 

dfl = 1 7M
2 — + Re — - (Ha)2($ - f) (105) 

de2  3     g      g 

f(0) = 1   ,   f'(0) = 0   ,   g(0) = 1 

Then at 9  = 0 

f "(0) = - -7M2 + Re - (Ha)2($ - 1) (106) 

For the moment assume that the temperature function g(0) 
either remains constant or decreases with 9.     In this case 
if the parameters Ha, <t>, Re and M are so chosen that 

f"(0) > 0 

i.e. if 

- 7M2 + Re > (Ha)2($ - 1) (107) 

then the function f(9) has a local minimum at 9  = 0.  Then 
as 0 increases from zero, f increases and all terms on the 
right side of Eq. (105) become more positive, the last term 
becoming less negative.  Thus, in this case,' the velocity 
function f(0) increases monotonically with 9,   growing without 
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limit, and no meaningful solution can be obtained.  Then 
if f"(0> > 0 meaningful solutions can be obtained only 
if the temperature function g(9) initially increases with 0 
and increases faster than fs.     Thus in order to have a bulge 
in the velocity profile there must also be a bulge in the 
temperature profile.  This conclusion supports the argument 
given previously. 

Fig. 15 shows the velocity gradient at the wall plotted 
against 4> for the three values of Ha used in this study and 
reflects the flattening of the velocity profiles with in- 
creasing Ha and 0.  This flattening of the velocity profile 
and the corresponding flattening of the temperature profile 
would be a desirable characteristic for wind tunnel accelerators, 
For aerodynamic testing purposes it is mandatory that the 
flow approaching the model be quite uniform. 

In the present investigation the flattening of the 
profiles is due not only to the increasing ratio of magnetic 
forces to viscous forces as represented by the Hartmann 
number but also to the corresponding change in the ratio 
of inertia forces to viscous forces as represented by the 
Reynolds number.  As has been discussed it is not possible 
to assess the influence of each of these effects separately. 
It is reasonable to suppose, however, that with larger 
values of the Hartmann number than used in this study both 
the velocity and temperature profiles would become more 
uniform. 

Finally a comment is in order on the magnitudes of the 
values of Ha and Re.  In the formulation of this problem 
these parameters were defined based on rQ, the radial 
distance to the channel entrance, i.e. 

i 

Ha = (-)2 B r V   ° ° 

Re = 
p U r *o o o 

A more conventional procedure would be to define these 
quantities based on the channel height at r , say d , i.e, 

Ha* = (2-y  B d 
H o o 
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p U d *  ro o o Re 

These are not convenient definitions for this problem.  For 
small values of the divergence angle a 

d *s 2ar o     o 

so that 

Ha* = 2aHa 

Re* = 2aRe 

Then for a = 1.5° = .02618 radians 

Ha* = .05236 Ha 

Re* = .05236 Re 

Thus the values of the Hartmann number and Reynolds number 
based on the initial channel height are much smaller than 
the values based on the radius to the channel entrance. 
For small values of Re*, one must check the validity of a 
continuum analysis in terms of the Knudsen number 

d  ' Re* o 

In particular for Ha —  100 and $ — 1.2, the maximum value 
of M and minimum value of Re* used in this investigation 
give a Knudsen number of 0.11.  This value suggests that 
under these conditions, the continuum analysis is perhaps 
being pushed to the limit of validity. 
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V! 
VARIABLE PROPERTIES 

6.1 FORMULATION OF THE EQUATIONS 

It was shown in Section III that, as a consequence of 
the separation of variables technique employed in this study, 
the electrical conductivity a, the viscosity p., and the 
thermal conductivity K  cannot vary down the channel.  Equa- 
tions have been formulated and solved assuming that these 
transport properties are constant throughout the flow field. 
Such an assumption is not realistic since the values of 
these properties are strongly dependent on the local tempera- 
ture.  The results of the investigation for constant properties 
indicate, however, that the temperature variation across the 
channel is much more pronounced than the temperature variation 
down the channel, i.e. |oT/d0|»|dT/dr|.  It was felt, then, 
that useful information about the effect of the variation 
of the transport properties on the velocity and temperature 
profiles could be obtained by allowing these properties to 
vary as a function of temperature across the channel while 
ignoring their variation down the channel. 

It should be pointed out that although generally 
|öT/ö9 |»|dT/dr j , the total temperature change between the 
entrance and the exit of the channel may be quite large. 
For example, if L is the channel length and d0 is the channel 
height at the entrance, then the ratio of centerline tempera- 
ture at exit to the centerline temperature at entrance is 

_e = c-?-)2 = (_2 2 2)2 (108) 

T    r r o    o o 

and since d^ £ 2ar o     o 

T T  2 
— = (1 + 2a —) (109) 
T d o o 

Then for a = 1° = .01745 radians and L/d = 10, o 
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T 
— = 1.82 
T o 

a temperature change that could not be neglected in 
evaluating the transport properties.  Thus the equations 
that will be developed in this section should perhaps be 
considered valid only for a short section of the channel 
Ar < dQ. 

The governing differential equations will first be 
formulated taking into account only the variation of the 
electrical conductivity.  Assume a ö - T relation of the 
form 

£■ = <i)° (HO) 
a T c    c 

where ac and Tc are reference values of the conductivity 
and temperature, say values along the channel centerline. 
ac  is assumed to be constant.  Introducing Eq. (110) into 
Eqs, (34) and (36) and non-dimensionalizing yields 

dff = 8 7M2 ff. + Re If. _ (Ha)ag<u(0 - f) (ill) 
d6a  3     g      g 

2-E- +  4g = 2PrRef - (7 - l)MaPr(Ha)2ga>(0 - f)2 

d92 

- (7 - l)M2Pr (—)2 + - (37 + l)M2Prf (112) 
d9    3 

where now 

a 1 
Ha = (-2-)2 B r 

M- 
o o 
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The initial conditions for f and g are 

f(0) = 1, f'(0) = 0 

g(0) = 1, g'(0) = 0                 (113) 

Eqs. (Ill) and (112) together with initial conditions of 
Eq. (113) are amenable to solution by the same technique 
as used for the constant conductivity model.  Figs. 44 
through 49 show the divergence angle a and the ratio of 
wall temperature to centerline temperature g(a) plotted as 
functions of the Reynolds number and Mach number for 
to = 3/2 and (Ha,0) = (100,1,6),(150,1.2),(150,1.6). 

Equations will next be formulated including the cross 
channel variations of viscosity and thermal conductivity 
according to a square root law, i.e. 

JL = JL = fW) 
Pv.   K„   IT(0) 

i 
2 (114) 

One additional assumption is made that 

^2-= 0 (115) 
be 

This assumption is convenient since the 9 momentum equation 
can no longer be directly integrated and is justified by 
the results for the constant property model.  Then intro- 
ducing Eqs. (110), (114), and (115) into Eqs. (34) and 
(36) and non-dimensionalizing gives 

**A =  Re -*i- - J- (<£)(<&) - (Ha)2gCD-*(0 - f)     (116) 
d92     g3/2   2g  do  do' 

2-S- + 4g * 2RePr 4 - — ^ 
d02 g^   2g d9 

46 

(Equation continued) 



AEDC-TR-67-80 

- (7 - l)M2Pr(Ha)2gü) 2(0 - f); 

- (7 - l)M2Pr  {^)2 +if2 

I d0    3 

where L 

Ha = (—)
2 B r 

M,    ° ° 

(117) 

Re = 
p U r 

^c 

Pr Vc 
Kc 

The initial conditions on f and g are 

f(0) = 1,    f (0) = 0 

g{0) = 1,    g'<0) = 0 (118) 

Again Eqs. (116) and (117) with initial conditions of 
Eq. (118) can be treated by the technique described in 
Section IV.  Figs. 50 through 55 show a and g(a) plotted 
as functions of Re and M. 

6.2  DISCUSSION OF RESULTS 

The results of this portion of the investigation are 
presented in Figs. 20 through 25.  Figs. 20 through 22 show 
velocity and temperature profiles for a ~ T3'2, and Figs. 
23 through 25 show velocity and temperature profiles for 
a ~ T3/2, |x ~ <  ~ T1/2.  In both cases the divergence angle 
is approximately 1.25° and the ratio of wall temperature to 
centerline temperature is approximately 0.2.  Figs. 17 
through 19 show the corresponding velocity and temperature 
profiles for constant properties.  Table III gives the 
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comparative values of the temperature and. velocity gradients 
at the wall. 

Itie most conspicuous feature of the results for the 
variable conductivity model is the accentuation of the 
bulges in both the velocity and temperature profiles.  A 
comparison of Figs. 19 and 22 best illustrates this 
behavior. 

The accentuation of the temperature bulge can be 
attributed to the increased Joule heating in the high 
temperature region.  Using Ohm's law, the expression for 
the Joule heating can be written as 

= aUzB„2($ - f)2 (119) J      -ii 2D 2/* . f^2 

a °     ° 

Since a  ~ T3/2 it is clear that this term will be large in 
regions of high temperatures. 

With regard to the velocity bulge, in addition to the 
density change across the channel, which is more pronounced 
in this case, there is also an increase in the J x B force 
in the high temperature region as a result of the conduc- 
tivity variation. 

It is expected that for larger values of Ha and $, 
where it would be necessary to approach the limiting values 
of Re and M in order to maintain a constant, both the velocity 
and temperature profiles would become more uniform. 

The main effects of the variation of viscosity and 
thermal conductivity are to depress the bulges in the 
velocity and temperature profiles and to steepen the 
velocity and temperature gradients at the wall.  This can 
be seen by comparing Figs. 25 and 26. 

In the region of high temperature the corresponding 
high value of thermal conductivity tends to promote the 
diffusion of heat to the adjacent low temperature regions. 
Near the cool wall the lower thermal conductivity opposes 
the transfer of heat. 

The influence of the viscosity variation is analagous. 
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VII 
SUMMARY 

A solution has been obtained to the magnetogasdynamic 
equations of motion including the effects of compressibility, 
viscosity, thermal conductivity and crossed electric and 
magnetic fields.  The solution obtained is an exact solution 
in the sense that no terms have been dropped from the 
governing equations and boundary layer approximations have 
not been employed. 

The particular flow model considered was the two- 
dimensional, fully developed flow between diverging plane 
walls.  Self-similar solutions to the governing equations 
were sought.  It was determined that such solutions could 
be obtained under certain conditions; the resulting flow 
being an accelerating flow, the velocity increasing linearly 
with distance down the channel, in which the pressure and 
Mach number are constant along streamlines.  For this special 
type of flow, with the assumption of constant transport 
properties, the partial differential equations of motion 
reduce to a pair of coupled, non-linear, ordinary differ- 
ential equations, Eqs. (45) and (46) with boundary conditions 
given by Eq. (47). 

It was shown that the boundary value problem defined 
by Eqs. (45) through (47) is generally overspecified.  That 
is, if the divergence angle a and the ratio of wall temper- 
ature g(a) are considered fixed, and two of the four para- 
meters Ha, $, Re and M are specified, then the remaining two 
parameters are uniquely determined.  Thus, in a broad sense, 
Eqs. (45) through (47) constitute an eigenvalue problem. 
If the required relationship among the parameters is not 
satisfied then a self-similar solution to the governing 
equations does not exist.  The technique used for the solution 
of this problem has been amply discussed in Section IV. 

The results of the investigation were presented in the 
form of velocity and temperature profiles for several values 
of the electromagnetic parameters Ha and $.  The values of 
the gas dynamic parameters, the eigenvalues, were selected 
so as to maintain the divergence angle and the ratio of wall 
temperature to centerline temperature constant.  The most 
conspicuous feature of the results is the prominent bulge 
that occurs in the temperature distribution for certain 
values of the parameters.  This behavior becomes less pro- 
nounced for large values of Ha and $ where, incidentally, 
practical devices would be likely to operate. 
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Although it was not possible, in this study, to include 
the variation of the transport properties a,   JJ, and K.   along 
the channel, it was shown that the effect of the variation 
of these properties across the channel is to accentuate the 
bulges in both the velocity and temperature profiles. 

Finally, a few comments are in order on the significance 
of the present study with regard to wind tunnel accelerators. 
Certainly the mathematical model used in this investigation 
is too crude to be utilized for detailed design of a prac- 
tical accelerator.  Nonetheless there are certain qualitative 
features of the results, such as the bulge in the temperature 
profiles, which are likely to be encountered in a practical 
device.  Also there are several characteristics of the flow 
situation considered in this study which might be desirable 
for wind tunnel accelerators.  For example, although a large 
portion of the energy added to the plasma is dissipated in 
Joule heating thereby, increasing the enthalpy of the gas, 
this enthalpy would be recoverable as directed kinetic energy 
in the post accelerator nozzle.  In particular this expansion 
should pose no difficulty since no pressure drop occurs in 
the accelerator itself.  Furthermore, despite the fact that 
the flow is considered fully viscous, for large values of 
Ha and $ a rather well defined core region does exist where 
the velocity and temperature profiles are relatively flat. 

From these considerations, it would appear desirable 
to extend the present investigation, using a more realistic 
model.  One might, for example, relax the constraint of 
separation of variables technique employed here.  This 
technique, despite its undeniable virtue of simplifying the 
problem, imposes rather severe restrictions on the solution 
obtained.  Then, rather than assuming a particular form for 
the solution as was done in Section III, one would specify 
initial conditions at the channel entrance r0.  This pro- 
cedure would require solution of a pair of coupled, non- 
linear, partial differential equations with boundary con- 
ditions, a very difficult but not impossible task.  It is 
likely that some of the well known techniques developed 
in boundary layer theory could be extended to this type of 
channel flow problem.  Such a solution would give detailed 
information for a realistic MHD channel flow to a degree not 
presently available in the open literature. 
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TABLE I 
LIMITING VALUES OF a, M AND Re 

Ha $ a mm limit limit 

100 1.2 1.420c 4.9894 1906.6 
100 1.6 .938° 2.8857 5968.9 
100 2.0 .756° 2.2357 9981.4 
150 1.2 .946° 4.9961 4406.6 
150 1.6 .625° 2.8863 8068.9 
150 2.0 .504° 2.2359 22481.4 
200 1.2 .710° 4.9973 7906.6 
200 1.6 .469° 2.8865 23968.9 
200 2.0 .378° 2.2360 39981.4 
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TABLE II 
SUMMARY OF RESULTS FOR CONSTANT PROPERTIES 

> 
m □ 
n 

TO 

Ha O Re M f'(a) g'(a) P*(0) 

o 100 1.2 350 1.87 - 117 - 186 .0372 
100 1.6 5150 2.24 - 138 - 347 .00361 
100 2.0 9700 2 „02 - 156 - 386 .00157 
150 1.2 4100 3.00 - 172 - 629 .00819 
150 1.6 14010 2.704 - 209 - 776 .00194 
150 2.0 23045 2.209 - 238 - 711 .00079 
200 1.2 8450 3.750 - 231 - 1333 .00621 
200 1,6 24600 2.860 - 281 - 1180 .00124 
200 2.0 40250 2.2376 - 318 - 980 .00046 



o 
CO 

TABLE III 
COMPARISON OF i'{a) AND g '(a)   FOR CONSTANT AND VARIABLE PROPERTIES 

Constant 
Properties O   <\, T3/2 

Ha * f'(a)     g'(cO f'(a) g'(a) 

100 1.6 - 139      - 272 - 110 - 204 

150 1.2 - 172      - 449 - 181 - 576 

150 1.6 - 207      - 666 - 322 - 1322 

\i. ^ K ^ T3/2 

f'(a) g'(a) 

- 251 -  499 

- 392 -   1141 

- 662 -  2434 

o 
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