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ABSTRACT 

This report describes the continuing development of preprocessing, 

classification, and context analysis techniques for hand-printed text, 

which are advancing at an accelerating pace. 

Experiments have been continued with the Plecewise-Linear learning 

machine, using the outputs of two preprocessors:  the PREP 24A simu- 

lation of the 1024-image optical preprocessor, and the CALMMASK preproces- 

sor, which employs both edge-detecting and corner-detecting masks.  A 

new low test error rate for classification has been achieved on hand-printed 

alphabets of FORTRAN characters. 

Statistics of the performance of the learning machine during a single 

testing iteration are presented, and shed light on several important 

questions, such as the distribution of rankings of the desired character 

category when it is not In first place. 

A discussion of the preprocessing methods used in the topological 

approach to preprocessing and classification is begun. 

The Initial development of a FORTRAN syntax analyzer is described. 

A milestone has been reached with the passage of a snail sample of actual 

FORTRAN text from a coding sheet through the scanning, preprocessing, 

classification, and syntax-analysis programs. 
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I  INTRODUCTION 

The development of preprocesslnR, classification, and context- 

analysis techniques for hand-printed text Is progressing at an acceler- 

ating pace. 

Section II of this report describes experiments with two template- 

matching preprocessors and the CALM simulation of the Piecewise-Linear 

Learning Machine.  One series continues the nine-view experiments with 

the outputs of the PREP 24A simulation of the 1024-image optical preproces- 

sor.  A new low test error rate is achieved as the training set is ex- 

panded.  In a new series of experiments, CALM Is used on the outputs of 

a different simulated preprocessor (the CALMMASK program), utilizing both 

edge-detecting and corner-detecting masks, together with the features de- 

rived from Clemens' technique. 

In an interesting new line of data analysis, detailed statistics 

were developed for the performance of the learning machine during a single 

testing iteration.  These are discussed in Sec. II,  These statistics shed 

light on several questions important to both the classifier and the context 

analyzer--for example, the distribution of rankings of the desired char- 

acter category when it Is not in first place. 

A discussion of the preprocessing methods used in the topological 

approach to preprocessing and classification (formerly called the AD 

HOC approach) is begun In Sec. III.  An improved classification routine 

is being developed, and it is planned that extensive further discussion 

of these methods will be presented in the next report. 

The initial development of a FORTRAN syntax analyzer, which is the 

heart of the context analyzer, is described in Sec. IV.  A milestone 

has been reached with the passage of a small sample of actual FORTRAN text 

from a coding sheet through the scanning, preprocessing, classification, 



and syntax-analysis programs.  The results of this experiment (presented 

in Sec. IV) indicate the power of the syntax analysis in cleaning up 

text with misclasslfied characters. 



II  EXPERIMENT WITH TWO TEMPLATE-MATCHING PREPROCESSORS 
AND THE PIECEWISE-LINEAR LEARNING MACHINE 

A.  Further Experiments with the Edge-Detecting Preprocessor and the 
Piecewise-Linear Learning Machine 

We have continued the series of experiments described in the Second 

and Third Quarterly Reports with two additional experiments.  The basic 

feature vectors used in these experiments, as in the ones described 

previously, were the nine-view, 84-blt binary vectors produced by the 

PREP 24A simulation of the 1024-image optical preprocessor.  Each of the 

84 bits specifies the detection of an edge of a certain orientation In 

a certain region of the image field.  The classifier used, as before, 

was the CALM (Collected Algorithms for Learning Machines) simulation 

of the 46-category Piecewise-Linear Learning Machine, with two dot pro- 

duct units per category. 

1.  PREP-CAIM Experiment 8 

This was a re-run of Experiment 3 (Described In Sec. II  of the 

Second Quarterly Report), in which we added to the feature vectors the 

24 bits generated by Clemens' technique (also described in the Second 

Quarterly Report).  The patterns used in Experiment 3 were 9-vlew, 

84-bit patterns.  In Experiment 8, each of the single-view patterns was 

augmented by the addition of 24 bits, broken into eight segments of three 

bits each.  Within each of the eight segments, the three bits were used 

to encode the number of occurrences of extrema of the figure boundary (in 

X or Y) in one of the four quadrants of the figure. 

The result of combining the edge-detection data with the Clemens' 

technique data was thus a set of nine feature vectors (views) for each 

character.  The feature vectors each had 108 (84 + 24) components.  The 24 

Clemens' bits were the same throughout all nine views, whereas the edge- 

detection bits varied. 



The results of the learning-machine experiment on this set of feature 

vectors are presented in Fig. 1.  The training error rate decreased to 

23.4/^ In five Iterations.  The one-view Independent test error rate 

dipped to 33.9/^, then rose to 39.9/^ at Iteration 4.  The nine-view test 

error rate was calculated at Iteration 3 (22.6$)   and at Iteration 5 

(23.7^). 

(The graphs of Fig. 1 and similar figures are prepared by a sepa- 

rate small program for the SDS 910 computer, called ERROR GRAPH.  The 

training error rate is the generally lower curve, whose numerical values 

are listed below the curve.  The test error rate is the other curve.  The 

precision of plotting the ordinate values is limited to half-line spacing 

vertically by the use of the computer's typewriter for preparing the graph; 

each vertical half-space corresponds to 1.2 or 1.3^b.) 

The results of Experiment 8 may be compared with those of Experiment 3, 

in which the training error rate reached 36^ In 5 iterations, the one-view 

test error rate reached 45$, and the nine-view test error rate was 23% 

(Fig. 2).  We see that the addition of the Clemens' technique bits In the 

present experiment has considerably Improved the one-view training and 

test error rates during the first five Iterations, but has had essentially 

no effect on the important nine-view test error rate.  This result 

would appear to reflect the fact that the new bits, while contributing 

valuable information to each view, do not contribute correspondingly to 

the majority-voting nine-view recognition process, because the bits are 

the same in all views.  The improvement in recognition rate using nine 

views may be thought of as resulting from the outvoting of a "bad" view 

or views by the others, and this cannot happen when the information in 

all views Is the same. 

In conclusion, we found that the extra information carried in the 

Clemens' technique bits did Improve the single-view classification of 

patterns, but that without a "9-view generalization" of the Clemens' 

technique the improvement did not carry over noticeably to 9-view classi- 

fication. 
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2.  PREP-CALM Experiment 9 

Experiment 9 was a re-run of Experiment 3 with an expanded training 

set.  The patterns used were the same as those in Experiment 3:  84-bit, 

nine-view patterns.  This time, in addition to the three FORTRAN alpha- 

bets from each of twelve authors for training and four authors for test- 

ing, three alphabets from each of eight more training authors had been 

preprocessed through PREP 24A. 

The results for Experiment 9 are presented in Fig. 3.  The training 

error rate decreased to 31.4^ at Iteration 10.  The one-view test error 

r^te ranged between  38 and 42^ from Iteration 3 through Iteration 10. 

The nine-view test error rate was 18.8^ at Iteration 5 and 19.6% at Iter- 

ation 10.  These values represent a new low in test error rate for the 

FORTRAN characters, and, apart from statistical fluctuations, appear to 

be a couple of percent lower than the results of Experiment 3.  It may be 

noted that the training and test error curves are quite close together, 

indicating that tht expanded traininc set is largely successful in rep- 

resenting  the test data. 

B.  Experiments with the CALMMASK Preprocessor and the Piecewlse-Linear 
Learning Machine 

1.  The CAIMMASK Preprocessing Program 

As an aid to the development of new templates (or maska) for pre- 

processing, and new structures combining these templates, a program 

called CALMMASK was written for the SDS 910.  CALMMASK implements sim- 

ulated optical masks of the type used in the 1024-image preprocessor 

and the PREP 25A simulation--for example, edge-detectors. CALMMASK allows 

additional flexibility in the use of these templates.  The shapes and 

threshold values of individual template types may be specified; several 

templates of the same or different types may then be combined by logical 

OR-ing and AND-ing into a feature; and features may be replicated at 

various locations on the pattern image field.  Parameters controlling 

all of these options are under direct control from the computer console. 
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CALMMASK exists in two versions.  The "interactive" version allows 

an experiment to design features on-line by specifying them at the console, 

observing their behavior when presented with test patterns, and modifying 

them at will   The "production" version provides a more efficient program 

for processing large quantities of patterns through an already-designed 

preprocessor. 

The CALMMASK feature set used in the experiments to be described 

here was as follows:  There were 16 types of template.  Twelve of these 

were edge detectors similar to those employed in PREP 24A, oriented at 

each 30° of the compass.  The remaining four were corner detectors, 

designed  to detect the corners formed by the meeting of a vertical and 

a horizontal stroke (Fig. 4).  Each corner template had 14 cells with a 
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FIG. 4    CORNER-DETECTING   TEMPLATES 



weight of +1, 6 cells with a weight of -1, and a threshold of 12.  It 

may be noted that the templates are more tolerant of the orientation of 

the vertical stroke than of the horizontal, reflecting the characteristics 

of actual printing. 

Each of the 16 template types was placed in each of the four quad- 

rants of the image field, giving a total of 64 pattern components (fea- 

tures) in the output of CALMMASK.  Within each quadrant the template was 

presented in every vertical and horizontal location, and a response from 

the template in any location caused a positive response for the correspond- 

ing feature.  (in other words, each feature was a many-way OR function 

of all the responses for the locations throughout the quadrant.) 

The patterns were not translated before presentation to the tem- 

plates, as was the case with PREP 24A; thus, only one-view feature vectors 

were obtained from CALMMASK.  It was expected that the presentation of 

the templates in every location would have much the same effect as the 

translation of the patterns to give the nine-view PREP 24A feature sets. 

One purpose of the experiments was to compare the two approaches to trans- 

lation invariance; the other purpose was to see the effect of the corner- 

detecting templates. 

2.  MASK-CALM Experiment 2 

Following a shakedown experiment, a full set of patterns was pre- 

processed with CALMMASK and presented to the CALM simulation of the 

Piecewise-Linear learning machine.  The 24 Clemens' technique bits de- 

scribed above were added to the patterns as they were presented to CALM, 

forming feature vectors of 88 (64 + 24) bits.  In this MASK-CALM Experi- 

ment 2 the training and testing setJ were the same as in Experiment 3 

of the previous series, which used patterns preprocessed by PREP 24A. 

Thus, a direct comparison is possible.  The training set consisted of 

three FORTRAN alphabets from each of twelve authors; and the test set, 

of three alphabets from each of four authors. 

10 



Figure 5 shows the results of the experiment The training error 

rate decreo"^?. to 2 9^ in five iterations. The training error rate dur- 

ing PREP-CALM Experiment 3 never improved beyond 30% (however, it must 

be remembered that only one-view patterns were used in the present in- 

stance, so the identical feature vector was presented at each iteration, 

forming an easier training problem). The test error rate decreased to 

25.2^, then rose to 27.0% at Iteration 5. These rates may be compared 

with the 23^ test error rate of PREP-CALM Experiment 3 at Iteration 4. 

The single-view pattern vectors from CALMMASK performed almost as well 

as the nine-view vectors from PREP 24A. 

3. MASK-CALM Experiment 3 

In MASK-CALM Experiment 3, six more authors (18 alphabets) were 

added to the training set.  Other details stayed the same as in the 

previous experiment.  As shown in Fig. 6, the training error rate 

decreased to 8.1^ in four iterations, and the test error rate reached 

24.6^. 

4. MASK-CAIJM  Experiment   4 

In Experiment 4, the first six authors (18 alphabets) in the pattern 

file were used for testing, and the seventh through twenty-second authors 

for training.  Again, all other details of the experiment were the same 

as in the two previous experiments.  The experiment was carried for ten 

iterations to check for any extra long-term improvement in the test 

error rate.  Figure 7 shows that the test error rate flattened out at 

22 to 23^ after the third iteration.  The training rate reached 3.5^. 

Comparison of Experiments 3 and 4 with Experiment 2 show that the 

increased training set has improved the test error rate on the CALMMASK 

patterns by a small amount.  To date, the best error rate in the experi- 

ments on the CALMMASK patterns (22%  in Experiment 4) has not matched the 

best 9-view rate (19%   in Experiment PREP-CALM 9). 

5. MASK-CALM Experiment 5 

Experiment 5 was performed to Isolate the effect of the Clemens' 

technique bits, which had been included with the template features 

throughout the other MASK-CALM experiments.  In Experiment 5, only the 

11 
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64 template feature bits were used.  The training and testing sets were 

the same as In Experiment 4.  Figure 8 shows that the error rates were 

increased by the deletion of Clemens' technique bits:  in four iterations, 

the training error rate reached 14,5% and the test error rate reached 

32.2^. 

C.  Examination of Learning-Machine Statistics During a Test Iteration 

A small modification was made to the CALM program, which allowed 

certain statistics concerning the performance of the Piecewlse-Llnear 

learning machine to be gathered during the running of an iteration. 

Raw statistics gathered included the values of the largest and second 

largest category responses (Dot Product Unit sums) for each pattern, the 

ranking of the desired (true) category, and its sufficiency or deficiency. 

The ranking of the desired category can range from 1 to 46.  It is 1 

for a pattern if and only if the pattern is correctly classified.  If the 

ranking is 1, the sufficiency is defined as the difference between the 

DPU sum of the desired category and the largest of the other sums (which 

will belong to the second-ranked category).  If the pattern Is In error, 

the deficiency is defined as the difference between the largest sum (the 

one in Ihe chosen category) and the sum for the desired category. 

The sufficiency (or deficiency) measures the closeness of the machine's 

decision, and thus can be interpreted as a measure of confidence In the 

category chosen.  (if the ranking of the desired category is 3 or greater, 

the deficiency does not show how close the second choice was to the 

first choice, but this is a small point.) 

Since the significance of individual DPU sums is clearer in a one- 

view than in a nine-view experiment, we chose a one-view test iteration 

for analysis: Test Iteration 4, from MASK-CALM Experiment 4. Figure 7 

shows the error rate for this iteration to be 23.1^. 

The distribution of rankings of the desired category is shown in 

Table I.  Rankings 1 and 2 include the correct category almost 90% of the 

time; rankings 1 through 4 include the correct category 95% of the time. 

15 
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Table      I 

MASK-CALM   EXPERIMENT   4,   TEST   ITERATION   4— 
RANKINGS   OF   DESIRED  CATEGORY 

Ranking Occurrence i Cumulative   % 

1 637 76.9 76.9 

2 96 11.6 88.5 

3 40 4.8 93.3 

4 14 1.7 95.0 

5 9 1. 1 96.1 

6 7 0.8 96.9 

7 2 0.2 97.1 

8 3 0.4 97.5 

9 1 0. 1 97.6                 1 

10 5 0.6 98.2 

12 2 0.3 98.5 

13 3 0.4 98.9                  i 

14 1 0.1 99.0 

17 2 0.3 99.3 

19 5 0.6 99.9 

27 1 0.1 100.0 

TOTAL 828 100. O 100.0             ~1 

17 



Thus,   presenting   the   llrst   lew   choices   to   the  context   analyzer   leads   to 

a   very   high   probability   of   including   the  correct   category. 
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FIG. 9 HISTOGRAM OF SUFFICIENCIES 

Figure 9 is a histogram of the sufficiencies of the correctly clas- 

sified patterns.  Figure 10 is a histogram of the deficiencies of the 

incorrectly classified patter-is , broken down according to ranking. 

Figure 11 is a histogram of values of the maximum DPU sum formed for 

every pattern, broken into two parts:  for the correctly classified 

patterns, and for the patterns in error.  A number of interesting con- 

clusions can be drawn from these graphs. 

The first, and quite surprising fact to be observed from the histo- 

grams is the great range of the maximum DPU sums (from approximately 280 

to 1310), sufficiencies (up to B00), and deficiencies (up to 600).  The 

CAUI program records and prints out the overall maximum DPU sum formed 

during an entire iteration, as a check against overflow in the computer. 

18 
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In this case, the largest sum was 1312, and this figure is in the typi- 

cal range for experiments run with CALM.  We may assume that the most 

negative DPU sum formed during the iteration was comparable in magnitude. 

This means thai, all of the DPU sums formed for each pattern lie in an 

Interval of length approximately 2500. 

If the 46 category responses in the machine were randomly distributed 

in the range -1200 to 1300, the average numerical interval between 

responses would be about 50.  Even with fluctuations, we would expect the 

sufficiencies, most of the deficiencies, and the variation In maximum 

sums all to range up to only 100 or 200.  Yet we find spreads of 600 

to 1000, and occurrences such as a pattern for which not one of the 

DPU sums exceeded (approximately) 280.  Such behavior is quite contrary 

to our intuition, which expected much tighter distributions of these 

quantities.  Since the actual performance of the learning machine is an 

a priori fact, we do not infer that the observed distributions are in 

themselves "good" or "bad"—merely surprising. 

A second observation is that the distribution of maximum DPU sums 

is higher, on the average, when the pattern is correctly classified than 

when It is not.  It might be possible to use the maximum sum to adjust 

the confidence measures of the chosen and competing categories, unless 

the maximum sum is so correlated with the sufficiency and deficiency that 

there is little or no independent information to be gained. 

Turning to the histogram of sufficiencies, we find a tendency, 

which appears to be statistically significant, for depletion in the 

region near zero.  Since the sufficiency and deficiency are measures 

of the same quantity (namely, desired-category response minus the maximum 

of other responses), we can further study this effect by combining the 

deficiency histograms of Fig. 10, reversing the horizontal axis, and placing 

the resulting histogram beside that of Fig. 9.  This is done in Fig. 12. 

It is evident that the dropoff in sufficiencies near zero is related to 

the continuing  dropoff of occurrences with increasing deficiency.  (Since 

there is no reason to expect a discontinuity at zero, the jump there is 

probably a statistical fluctuation.) 
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FIG. 12 COMBINED HISTOGRAMS OF DEFICIENCIES AND SUFFICIENCIES 

During MASK-CALW Experiment 4, the training margin was set to S8 

(the number of pattern components).  This value closely matches the value 

of sufficiency at which the dropoff occurs.  It is an attractive hypoth- 

esis that the margin has tended to 'push" sufficiencies above the 88 

level, although this one example is only limited evidence.  If the hypoth- 

esis is true, the results are quite satisfying, because although the 

training governed by the training margin was applied only to the training 

patterns, we here see its effect in enhancing the decisions on the test 

patterns. 

Finally, the study of information such as that in Fig. 10 will be 

of value In the future, when more Is known about the needs of the context 

analyzer.  Figure lO portrays the relation between the ranking of a mis- 

classified character and its deficiency.  A study of relations such as this 

will indicate, for example, how much weight should be given to the ranking, 

and how much to the differences in DPU sums, when determining the confi- 

dence measures to be assigned to each category. 
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Ill TOPOLOGIGAL PREPROCESSING OPERATIONS FOR HANDPRINTED 
CHARACTER RECOGNITION 

A.  IntroductIon 

Let us propose, with the usual risk of oversimplification, the 

following ciil'ference among methods of extracting feature information for 

the recognition of graphical patterns such as handprinted characters. 

On one hand are the "topological" preprocessing methods; on the other 

hand, the "non-topological  ones. 

The topological methods extract from the character imr.ge those types 

of leatures that would be commonly used by people asked to describe the 

shapes of characters.  Typical descriptions are:   A letter P has a closed 

loop on top, with a stroke sticking down from it—on the left-hand side. 

"The difference between a letter O and a letter D is that the 0 is round, 

but the D has two corners on the left,  and so on.  Topological features 

Include strokes, loops, hollows, corners, curvatures, connections, etc., 

as well as the relative positions and orientations of the basic features. 

In short, these features are primarily concerned with the geometrical and 

topological components and relationships of the character as a whole. 

We may characterize the non-topological methods, by contrast, as 

those which derive information less related to the "natural  or intuitive 

description of the character at the topological level.  Clemens' technique 

(described in Ref. 1  and in the Second Quarterly Report), in which the 

x and y extrema of the contour of the character are recorded, is an 

example of such a method.  Integral geometry (Quarterly Reports 3 and 4 

of the preceding Contract No. DA 36-039 SC-78343), in which statistical 

measurements are made of the intersections of a pattern with randomly 

chosen lines, is a prime example of a method seemingly unrelated to the 

natural description of the character.  The character-recognition litera- 

ture provides many more examples of non-topological feature-extraction 

•M- 
References are listed at the end of the report. 
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techniques, such as random sampling (e.g., Perceptron and N-tuple) 

methods,2 md the sequence of Intersections of the character with a 

scan line of fixed orientation.*3  Finally, In this framework, the ex- 

traction of features by edge-detecting masks (as exemplified by the 

1024-lmage preprocessor) falls In the non-topologlcal category. 

Non-topologlcal preprocessing methods are often prompted by their 

elegance and simplicity, and the convenience of a uniform approach.  Most 

such techniques are based on elegant or "clever" processes that are quite 

simple conceptually, and that are correspondingly easy and straightforward 

to Implement in a computer program or In hardware.  If a process generates 

sufficient information to allow unique classification of well-formed 

characters. It becomes a candidate for a preprocessing technique.  The 

major problem that confronts such methods arises when they are faced with 

the Ill-formed characters that do occur in actual input and must be handled. 

The method based on a single organizing principle often seems to lack the 

"ruggedness" to maintain the constancy of its outputs in the face of 

character distortions and aberrations, and no corrective recourse is 

available within the framework of the single uniform approach. 

The topologlcal preprocessing methods gain their appeal from the 

fact that they use the same features used by humans In describing the 

characters.  It can then be hoped that when faced with distortions that 

leave a character still recognizable by humans, such methods will preserve 

Information sufficient for classification.  As a corollary, human Intro- 

spection together with observation of the system's operation can be 

used as guides for designing, evaluating, and Improving the preprocessor 

and subsequent classifier. 

B.  Current Status of the Topologlcal Preprocessing and Classification 
Program 

A preliminary program for the preprocessing of handprinted characters 

by the extraction of topologlcal features was described In the third 

The  Blrdwatch  technique, developed by Rabinow Engineering Co., 
described In Ref. 1. 
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Quarterly Report under the heading, "AD HOC Preprocessing and Classifi- 

cation of Characters."  The preliminary program contained routines for 

finding the connected components of a character image, its boundary, con- 

vex hull, enclosures, concavities of the boundary, and spurs (strokes that 

end at an Isolated tip).  The preliminary program consisted almost entirely 

of these preprocessing routines.  Only a fragmentary classification 

routine, with a decision tree for handling single-stroke characters, had 

been added. 

An extensively modified version of this program, called TOPO 2, is 

currently being written.  Changes of three types are being made in TOPO 2. 

1irst, needed improvements have been introduced into the boundary- 

following and stroke-tracing routines.  Second, a general cleanup of the 

coding was undertaken, primarily to reduce running time and storage 

requirements.  Third, the decision tree approach to classification that 

had been begun in the AD HOC program has been dropped in favor of pro- 

ducing alternative classifications with confidence measures. 

The change in classification procedure is important in two respects. 

On one hand, output providing alternative classifications and their 

confidence measures is vital for the operation of the syntax and context 

analyzer, discussed in Sec. IV of this report.  But in addition, it 

appears that the new procedure will be much easier to design and modify. 

In the decision-tree approach there was a considerable tendency for all 

but the most conservative decisions to send characters down the wrong 

branches of the tree.  For example, a seemingly obvious dichotomy is one 

between characters with enclosures and those without.  But many characters 

have spurious enclosures due to quantization noise, and many actual en- 

closures are filled in.  It is impossible to make even such basic dichot- 

omies without losing a considerable number of characters from their pro- 

per branches.  If the alternate branches of the decision tree are patched 

up to handle the characters that fall into them, the program becomes un- 

manageably complex. 

In the confidence-measure approach, however, the decision is made 

separately for each character category on the basis of all the preprocessed 
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information.  Each case can be decided on the basis of its own merits, so 

to speak.  There is not the pressure to make binary choices like the 

branching of a decision tree, if there is any significant possibility of 

losing characters thereby.  Furthermore, absolute decisions do not have 

to be made in any case.  The existence of the continuous-valued confi- 

dence measure allows a gradual decrease of confidence in a given category 

as the feature values depart more and more from the values expected for 

that category.  Thus, the natural and beneficial consequence of producing 

confidence measures for the context analyzer is that the classifier is 

allowed to express degrees of doubt, as it were, about placing a character 

in a given category.  This situation would seem to mirror the human re- 

sponse to ill-formed text. 

The addition to TOPO 2 of a classification routine embodying these 

concepts is underway.  The results of the first preliminary tests are 

most encouraging.  We shall continue to implement the classification 

routine (and add to the preprocessing as necessary) and report move 

fully on results in the next report. 

The remainder of this section contains the first half of a discussion 

of the techniques that have been developed for topological preprocessing. 

C.  Discussion of Topological Preprocessing Operations 

Topological features extracted by preprocessing should not only be 

"natural," but should also meet the allied criterion of "ruggedness." 

A rugged feature is one whose presence is not changed, and whose charac- 

teristics are not greatly altered, by normal variations in the image of 

a character in a given category.  The processing routines used to find the 

features must be tolerant of variations in the source characters and 

distortions caused by the scanning process, if they are to produce rugged 

features.  If the image is affected by salt-and-pepper noise, for example, 

a route to find connected figure components must be able to reject small, 

isolated figure elements. 

The primary feature information concerning a character evidently resides 

in the strokes forming the character.  In fact, if the strokes are defined 
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as comprising the path(s) that the writing instrument follows in forming 

the character, it is a tautology that the strokes contain all the feature 

information.  But, in a more practical sense, the stroke information suf- 

fers two weaknesses:  not all stroke information can be recovered, and 

other types of features may convey equivalent information in more desirable 

form . 

We may contrast the available stroke information on the hand-printed 

page with that of 'on-line' input to a computer, through, for example, a 

cathode ray tube and light-pen or a RAND tablet.  Two characteristics of 

on-line input are outstanding.  First, time-sequence information and 

even velocity information about the strokes are available.  Second, the 

strokes are line drawings; they have infinitesimal width.  These charac- 

teristics make the recognition of characters on-.1ine an ent irely different 

problem from the off-line recognition of characters on a printed page. 

It Is a point of major significance that an off-line printed character 

must be recognized from its shape alone. 

Full stroke information cannot be recovered from an off-line printed 

character image, owing to the overlapping of strokes in the body of the 

figure and the masking of the stroke path by the finite width of the 

stroke.  (Thus, it appears that an important quantitative parameter of the 

difficulty of a handprinted character recognition problem is the ratio 

of stroke width to character size.)  We are led, therefore, to define the 

stroke information as that information that can be derived from the image 

by some processing routine, and to look for auxiliary forms of natural, 

rugged feature information. 

Two such feature types are concavities of the figure boundary, and 

enclosures (holes) within the figure.  Others are Junctions, or blobs— 

regions in which strokes come together to form nodes, masses, or areas of 

confusion.  The overall size and location of the character as a whole and 

of its connected components are important features.  We may also add to 

the list foataros that are derivable from the stroke information:  direc- 

tions, curvatures, and corners.  Finally, the relations among features 

can be features in themselves, such as the connections of strokes and 
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the relative placemenl of strokes, concavities, and enclosures.  It 

appears that the features just listed represent a natural, and profitable, 

way of presenting handprinted characters. 

We turn now to a discussion of the feature types and the computer 

routines we have used to calculate them (working from a 24 X 24 binary 

matrix representation of the character Images). 

1. Figure Extent and Location 

The subroutine EXTENT (NFIG, JT, JB, KL, KR) finds the indices of 

the topmost (JT), bottommost (JB), leftmost (KL), and rightmost (KR) 

figure points in the image NFIG.  (Rows are numbered 1-24 going downward; 

columns 1-24 from left to right.)  NFIG may be a character, a connected 

component, or any Image at all.  EXTENT is fast In operation because it 

need merely scan the image once by rows (computer words) to find the top 

and bottom of the figure, then scan the word it has collected meanwhile 

(by OR-ing the rows of the image) to find the left and right boundaries. 

The location of a figure is determined by the row and column indices 

of its center.  The center of an object is typically defined as its 

centroid or center of gravity.  Finding the centrold, however, requires 

a lengthy computation.  We prefer the definition 

JC  =  (JT + JB)/2 

KC  =  (KL i-   KR)/2 

which locates the center of the smallest rectangle enclosing the figure. 

This calculation can be performed far faster than finding the centroid. 

It generally gives values close to the centroid, and may be equally 

desirable or even preferable for our purpose. 

2. Connect ivity 

A figure Is connected if any two of its elements can be joined by 

a chain of neighboring figure elements.  Two definitions of "neighbor," 

and thus of connectivity, are at hand.  We shall call them 4-connectivity 

and 8-connectlvity.  In 4-connectivity, the neighbors (N) of an element (X) 
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are the four adjacent elements vertically and horizontally: 

N 
NXN 
N 

In 8-connectivlty, the four elements adjacent diagonally are Included 

as neighbors: 

NNN 
NXN 
NNN 

Rosenfeld and Pfaltz describe the two types of connectivity in a 

recent article.4 They point out the "paradox," or inelegance, in the 

connectivity   of   figure   (l)   and   ground   fo)   elements   related   thusly: 

1   0 

0   1 

The figure and ground are both 8-connected, but neither is 4-connected. 

The authors fail to remark on the satisfjing duality that results from 

specliying one entity to be governed by 4-connec1.i vi ty and the other 

by 8-connectivity, so that only one is connected at a crossover. 

It Is generally in our Interest to maximize figure connectivity, 

so we choose the figure to be governed by 8-connectivity, and the ground 

by 4-connectivity.  (Often a single marginal figure element will lie 

diagonally adjacent to the body of the figure, and we can thus avoid 

having to treat it as a separate figure.  Marginal elements and isolated 

elements due to salt-and-pepper noise can be eliminated by a smoothing 

operation.5  Since we seldom receive such noise from the vidicon camera, 

we avoid the smoothing operation, which represents extra work and is not 

without some danger of losing significant detail.) 

Our choice of figure and ground connectivities means that concavities 

and enclosures, which are ground areas, will be 4-connected.  Thus, in 

the following image, the figure is connected but the ground is not. 
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One   ground   element   is   an  enclosure    in   the   figure. 

110 0 

1 O 1 0 

110  0 

3.  Subroutines CONN8 and CONN4 

Subroutines C0NN8 and CONN4 embody the basic connectivity operation. 

CONNH works with 8-connectivity; CONN4, with 4-connectivity .  Their 

action is otherwise identical, so only CONNÖ will be described.  The 

function of CONN8 is to find those connected components of a figure (FIGA) 

that include elements of another figure (FIGB).  The image composed of the 

components found is returned by the subroutine as (FIGC).  CONNS has two 

modes of operation: 

CONNS   (FIGA, FIGC, FIGB, 0) 

and 

CONNS   (FIGA, FIGC, J, K) 

where J and K range from 1 to 24.  In the second mode, the figure in FIGB 

is taken to consist of a single element located at (J, K). 

The operation of CONNS begins with storing in FIGC an image that is 

the element-wise logical product of FIGA and FIGB: 

FIGC (J,K)  =  FIGA (J,K) AND FIBG(j,K) 

This image contains all the 1-bits (usually figure elements) common to 

FIGA and FIGB.  In the second step, an image is formed which includes as 

1-bils all the elements of FIGC and all the neighbors of all i le elements 

of FIGC.  This image represents the growth of FIGC by one unit over all 

its perimeter.  In the third step  the logical product of this "growing" 

image with FIGA is returned to FIGC, thus restraining the growth of FIGC 

to elements within 1IGA.  The second and third steps are repeaued until 

no new elements are generated in FIGC.  At this point, FICG has filled 

out the connected components of FIGA containing elements of the original 

FIGC. 
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The elementary operations required by CONNS are the element-wise 

logical AND and logical OR functions performed over two 24 X 24 image 

fields, and operations that shift an image field right, left, up, and 

down.  Such operations are available to us separately in the form of 

subroutines: 

ANDFIG 
ORF IG 
XORFIG 
DIFFIG 

(INFIG 1, INFIG 2, OUTF1G) 

(i n 2) 
(1 U 2) 
(1 ® 2) 

[ (i n 2) 

and 

RSHFIG 
LSHFIG 
USHFIG 
DFHFIG 

(INFIG, COUNT, OUTFIG) 

For the sake of speed and compactness in CONNS, however, these operations 

are performed directly by machine-language coding. 

The operations Just listed are examples of parallel operations, 

which can be applied in parallel to the elements of an image field (or 

two) to produce an output image field.  The attractiveness of parallel 

operations in terms of speed is such that entire computers—notably the 

ILLIAC III at the University of Illinois—have been devised with a bank 

of processors capable of working in parallel.  (Our own 1024-Image pre- 

processor performs a specialized type of parallel operation on the image 

field.)  It should be noted that a conventional computer such as the 

SDS910 is capable of partial parallel processing by using the logical 

operations that deal in parallel with the bits of a computer word, re- 

presenting a row of the image.  An operation on a 24 X 24 element field 

that would require 576 steps sequentially, or one step in a parallel 

computer, can be performed in 24 steps by the conventional computer, 

affording a considerable saving in time relative to purely sequential 

operation. 

The CONNS routine, as it is actually programmed, also takes advan- 

tage of the fact that each row of the growing FIGC is immediately available 
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for the calculation of the next row.  This allows the connected region 

formed in FIGC to cascade in one direction (downward) during the execution 

of steps 2 and 3, above.  If the original FIGB is at or near the top of 

the appropriate connected component of FIGA, FIGC can be found in very 

short order.  This is a limited example of the sequential processing dis- 

cussed in the paper by Rosenfelü and Pfaltz.4 

CONNS and CONN4 are basic building blocks for other operations 

described below. 

Although we have associated CONN4 with the ground (rather than 

figure) components of the image, C0NN4 is programmed to work on regions 

composed of elements with the value 1, as does CONNS.  Since the figure 

is normally assigned the value of 1 and the ground the value of 0, a 

figure-ground complementation is necessary if CONN4 in its present form 

is to be used on ground regions.  This complementation can be per- 

formed by the subroutine 

CMPFIG (INFIG, OUTFIG). 

4.  Figure Dissection 

An arbitrary figure can be dissected into its 4- or 8-connected 

components by subroutine 

DISE48 (INFIG, KOUNT, NFIGS, MAXNT, MODE). 

DISE48 places individual connected components in NFIGS, which is an 

array of image fields, and returns the component count in KOUNT.  DISE48 

first searches the input image to find an element with value 1.  (This 

search can be performed by subroutine WNPT, which finds the northmost of 

the westmost of the figure points.)  Elther CONN4 or CONNS is then 

called, depending on MODE, to find the entire connected component including 

this element.  This component is removed from the input image and placed 

In the first image field of NFIGS.  The process is repeated, filling 

successive fields of NFIGS, until the input image is exhausted or MAXKNT-1 

components have been dissected. 
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5.  Subroutines GROW8 and GROW4 

Subroutine GROWS (iNFIG, OUTFIG) expands the figure INFIG by one 

element in each of the eight major directions.  GROW« performs an 

operation equivalent to the operation applied to FIGC in the second step 

of CONNS.  GROWS is useful for finding parts of an image field immediately 

adjacent to a given area.  GROW4 is a routine analogous to GROWS, but in- 

volving 4-connectivity. 

A routine SHRINK, which strips away the outer layer of   iigure, 

could be devised.  SHRINK is, in a rough sense, the Inverse of GROW. 

The two operations are not truly inverse, however, nor are they commuta- 

tive with each other.  For example, the sequence (SHRINK, GROW) eliminates 

isolated figure points, thvs changing the image. 

SHRINK can be realized by applying GROW to the complement of the 

figure to be shrunk, obtained with CMPFIG.  Just as there are 4-connected 

and 8-connected versions of GROW  there could be analogous versions of 

SHRINK. 

The  GROW and SHRINK operations are quantized analogs of the "grass-fire" 

method of Dr. Harry Blum of Air Force Cambridge Research Labs. 

This description will be resumed in a future report, with a descrip- 

tion of routines for finding the perimeter, convex hull, concavities, 

enclosures, and strokes of a connected figure. 
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IV  INITIAL DEVELOPMENT OF A FORTRAN SYNTAX ANALYZER 

A.  Introduction 

Some brief experiments, described In the Second Quarterly Report, 

Indlcnted that humans achieve error rates In the range from one to five 

percent when presented with hand-printed characters in random order. 

When presented with text materlal--i.e., printed matter organized into 

words, sentences, equations, etc.--humans achieve error rates of a small 

fraction of one percent.  Clearly, the human makes use of context In 

recognizing  the individual characters, and it is obvious that a success- 

ful FORTRAN text reader will have to do likewise.  Accordingly, we under- 

took the development of a FORTRAN syntax analyzer, which would accept 

partially mis-identified input from the single-character classifier and 

produce clean text, 

The word "syntax" refers to the formal grammar of the FORTTIAN 

language: hence, the syntax analyzer would make use of the fact that 

every statement in FORTRAN must obey the rules of FORTRAN grammer.  One 

can also Investigate the use of context.  The word "context," as opposed 

to "syntax," refers to the fact that a particular word or character must 

fit in with the words and characters surrounding it in order for the 

whole tc make sense.  Thus, one could construct a statement in FORTTIAN 

(or in any natural or computer language, for that matter") which obeyed 

the rules of grammar (syntax) but made no sense because some of the 

words were meaningless in their particular context.  It is anticipated 

that the text analyzer will eventually make use of contextual information 

as well, but the current effort emphasizes the grammatical aspects of 

the FORTRAN language. 
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B.  Structure of the Syntax Annlyzer 

1. Input to the Analyzer 

A pattern classifier Is usually thouftht of as a device that accepts 

a pattern and decides which class It belonRS to.  In order to make the 

most efficient use of the syntax analyzer, however, the classifier will 

produce not a single decision, but a list of alternative decisions. 

Moreover, each alternative will be accompanied by a number giving the 

confidence in that alternative.  For example, if the oriKlnal character 

ftrue classl was the letter "O", the classifier might produce the list: 

("CD 40) ( O 30) fQ   10) TU 10) fp   10)) meaning that the classifier decided 

that the character was a "D" with confidence 40, an "O" with confidence 

30, a "Q" with confidence 10, the numeral "0"  with confidence 10, or a 

"P" with confidence 10.  We have called such lists L-lists. 

The number of alternatives for any given character to be recognized 

will vary, depending upon how uncertain the classifier was.  If the 

classifier used is the 9-view piecewise linear machine described in 

previous reports, for example, then each view might contribute 10^ to 

the total confidence.  fNormallzation to 90^, 100$, or any other number 

Is Immaterial, since the analyzer deals with relative confidence levels.) 

A single FORTRAN statement would be represented at the input of the syntax 

analyzer by a list of L-lists, one for each character of the text, where 

each L-llst has the form of the example given above.  We have called 

such lists P-llsts.  A P-llst is the basic Input to the syntax analyzer. 

2. Breakdown by Statement Types 

The FORTOAN language is divided into approximately 35 different 

statement types.  Some of the more common types are the DO statement, 

arithmetic assignment statement, GO TO statement, and IF statement.  The 

analyzer attempts first to find the statement type that the P-list 

belongs to, and then calls in a "specialist" program to clean up that 

statement type and produce the final answer.  The determination of the 

statement type is based on the fact that the syntax of each type, with 

one exception, requires that the statement begin with a special control 

word or words.  In the examples above, DO, IF, and GO TO are the control 
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words.  The arithmetic nsslRnment statement Is the single exception. 

Thus, the analyzer first finds the average confidence of a match with 

each of the FORTRAN control words.  If the match Is sufficiently high 

with a given control word, then the statement type corresponding to that 

control word Is assumed.  If no match Is sufficiently high, then the 

arithmetic assignment statement Is assumed.  A detailed explanation 

and theoretical Justification for this procedure Is given in the Appendix. 

3.  Specialist Programs 

One the statement type has been determined, the specialist program 

for that type must be called in to produce the final clean FORTRAN 

statement.  We are currently in the process of writing these programs, 

and to date have completed eight.  Of these eight, three are represen- 

tative of the difficulty we expect to encounter In writing the remainder. 

It is difficult to describe these programs in detail without first 

specifying the syntax of each statement type.  Loosely speaking, however, 

the specialist programs try to break the P-list into small pieces by 

attempting to find delimiters called for by the syntax.  Thus, for 

example, If the syntax of a given statement type calls for a comma at 

a certain place, the program will look for the existence of a possible 

comma, and see if the pieces on each side can be made into the appropriate 

segments of the statement.  If they can be, they are; otherwise, we 

continue searching for a possible comma.  This breakup process can be 

carried out only to a certain degree of fineness; beyond that point, 

one must examine a segment of the P-list as an entity, and try to make 

sense of it.  Examples of these "entities" are variable names, numbers 

(not necessarily single digits), and arithmetic expressions. 

At this level in the program we again appeal to the confidence 

attached to each alternative.  For any segment of a P-llst, we can 

find the string of characters it most confidently represents by simply 

choosing the most confident alternative for each character.  Similarly, 

one could find the second most confident string, third most confident 

string, etc.  Thus, if we arrive at a point where a segment of the P-list 

must be examined as an entity, we consider the most likely string of 
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chnrncters,    the   second   most   likely,    etc.,   until   either   a   strlnf?   Is 

found   which   agrees   with   the  FORTHAN   syntax  or   we   are   forced   to   stop 

because   the   combinatorial   growth   In   the   number  of   possible   strings 

exceeds   our   computing  power.      This   process   Is   essentially   the   same   ns 

the  method   In  determining   statement   type,   and   the   analysis   presented 

In   the  Appendix   applies   here   as   well.      The   problem  of   finding   the   1st, 

2nd,    3rd,    . . .   most   confident   string  of   characters   is   by   no   means   a 

trivial   -roblem.      A   solution   to   this   problem   involving   a   modification 

of   the   technique   known   as   dynamic   programming  was   proposed   by  R.   E.   Larson 

of   SRI   and   is   described   in   the   next   section.      ^  program   implementing   this 

solution   is   currently  being  written. 

4.      Dynamic   Programming 

Consider   the   followinp;  P-list   that   might   have   been   produced   by   the 

classifier   working  on   the   list   of   integers   19,8: 

(    ( (/   601 
( (.50) 
( (,    50) 
( (B   40) 

(1    30)    ) 
(9   40)    ) 
(7   30)       (9    10)    ) 
(8   30x       (3   20)    )    ) . 

This P-list indicates that the first character was classified as a slash 

with confidence 60 and as a one with confidence 30, etc.  By taking the 

first choice for ench of the four characters, we obtain the string  /, ,E 

having the maximum confidence, 200.  A brief examination shows that 

there are two strings having confidence 190—namely /,,8 and /9(B--but 

even with this simple problem it soon becomes difficult to find all 

strings of confidence 180, 170, 160, etc. 

The dynamic programming solution to this problem uses only the matrix 

of confidences: 

60 30 - 

SO 40 - 

50 30 10 

40 30 20 
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In   general,    the   l.j        element  of   this   matrix   Is   the  confidence   associated 

with   choosing   the   ,i alternative   for   the   1        member  of   the   string.      A 

selection  of   a   particular   string   corresponds   to   a   function   .jfi),    and   Is 

called   a   policy,    and   for   each   policy   there   Is   a   total   confidence.      Our 

problem   is   to   rank   the  policies   so   that   if  m  <  n   then   the   total   confidence 

for   the   n        policy   is   less   than  or   equal    to   that   for   m        policy. 

This   ranking   is   accomplished   In   two   steps.      First   the   possible   choices 

for   each   row   of   C—I.e.,    for   each   stage   of   the   decision   process—are 

considered   and   the   possible  partial   confidences   are   systematically   re- 

corded.     This   is   done   for  each   stage   in   succession  until   all   of   the 

possible   total   confidences  have   been  obtained.      3econd.    the   total   confi- 

dences   are  considered   in  succession   and   all  of   the  possible   policies 

yielding   those   total   confidences   are  obtained. 

The   details   of   this   procedure   are   best   described   by  using   our   simple 

example.      Consider   the   possibilities   of   Stage   1.      The   first   decision 

yields   a   partial   confidence  of   60   and   the   second  yields   a   partial   confi- 

dence  of   30.       These   values   are   recorded   as   the   two   lower-left-most   nodes 

of   the   graph   in   Fig.    13.      Here   the   numbers   by   the   two   lower-most   branches 

indicate   which   decision  was  made   at   Stage   1,   and   the   numbers   inside   the 

circled   nodes   indicate   the  number  of   policies   that   yield   the   corresponding 

partial   confidences. 

Now  consider   Stage   2.      Had  we   reached   the  partial   confidence  of   60 

from   Stage   1,    at   Stage   2   the   first   decision  would   yield   a   pnrtlal   confi- 

dence  of   60   <-   50   =   110   and   the  second  would   yield   60   +   40   =   lOO;   on   the 

other  hand,   had  we  only   reached  30,    the   results  of  the  Stage   2   decision 

would   be   either   80  or   70.     All   four  of   these   partial   confidences   obtainable 

at   Stage   2   are   shown  on   the   graph. 

So   far   the   basic   advantage  of   this   approach   has   not   become   apparent, 

since   all   possible  combinations  of  decisions   and  partial   confidences   are 

exhaustively   represented.     Were   there  D  possible  decisions   at   each   stage, 

one might   fear   that   an  N-stage  process   would  have  to  show  all   D     possible 

results   explicitly.      The   discrete   nature  of   the   process   prevents   this 
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1rom happeninR, however.  In particular, note that at Stage 3 there are 

two ways of obtninlnR a partial confidence of 130, either by using the 

policy ,i(l)=l, J(2) = 2, J(3)=2, or the policy j(l) = 2, j(2)=l, j(3)=l. 

Systematic consideration of the partial confidences that can be obtained 

at Stage 3 finally leads to the complete set of total confidences that 

can be obtained at Stage 4 shown on the graph.  Note that there are only 

eleven distinct total confidences, which is considerably less than the 

2X2X3X3= 36 possibilities that could be obtained if all of the 

possible combinations of choices gave different total confidences.  In 

general, when the individual confidences are Integers, there can be no 

more total confidences than the value ol the n.aximum total confidence, 

and this usually represents a considerable reduction ir computation. 

To find all of the policies yielding the highest total confidence, 

one merely traverses the graph from the corresponding terminal node 

back to the origin.  In this case, there is only one optimal policy: 

j(4) = l, J(3) = l, ,i(2)=l, j(l)=l.  Two policies yield the next highest total 

confidence:  J(4)=2, j(3)=l, J(2)=l, j(l)=l and j(4)=l, j(3)=l, j(2)=2, 

and j(l)=l.  Continuing in this way, one obtains the policies in order of 

descending total confidence, and results down to confidence 150 are 

listed in Table II. 

This example illustrates two important considerations.  First, this 

systematic procedure will indeed yield candidate strings that can be 

tested for syntactic legality in order of confidence.  Thus, for example, 

the 19th policy yields the string 19,8 which is the syntactically valid 

Integer list having highest confidence.  There are several other legal 

integer lists, such as 1,78 and 1978, but they all have lower total con- 

fidence and need not be considered. 

Secondly, however, it is clear that this procedure, as it stands, 

will generate many strings that have no hope of being legal integer lists. 

Its efficiency could be improved markedly by doing such things as deleting 

from the P-list any symbols other than digits or commas, retaining jn 

each L-llst only the digit having highest confidence, etc., or perhaps 

even incorporating a dictionary of possible statement labels obtained 
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Table II 

FIRST TWENTY-ONE POLICIES 

Total Confidence Number 
Policy 

Correspond!ng String 
J(l) J(2) J(3) J(4) 

200 1 1 1 1 / B 

190 2 1 1 2 / 8 

3 2 1 1 /   9 B 

180 4 1 1 3 / 3 
5 2 1 2 /   9 8 

6 1 2 1 /    ,    7 B 

170 7 2 1 3 /   9 3 
8 1 o 2 /    ,    7 8 

9 2 2 1 /   9    7 B 

10 1 1 1 1 B 

160 11 1 2 3 /    ,    7 3 

12 2 2 2 /   9   7 8 

13 1 1 2 1 8 

14 1 3 1 /    ,    9 B 

15 2 1 1 1   9 B 

150 16 2 2 3 /   9   7 3 
17 1 1 3 1 3 
18 1 3 2 /    ,    9 8 

19 2 1 2 1   9 8 
20 2 3 1 /   9   9 B 

21 2 1 2 1 1    ■    7 B 

Irom other parts of the program, and only considering combinations of 

digits that correspond to possible labels.  All of these modifications 

are specific to integer lists, however, and it would be a digression to 

discuss them further.  The major conclusion is that the dynamic pro- 

gramming technique, together with constraints appropriate to the partic- 

ular problem, offers a systematic, general method of obtaining the legal 

string of characters having highest total confidence. 
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C.  Experimental Results 

AlthouRh the syntax analyzer Is far from complete and the final form 

of the classifier has not yet been determined, we decided to do a small 

experiment to see If the basic approach of the analyzer were sound.  Five 

handprinted GO TO statements were written and scanned using the TV camera. 

The patterns were preprocessed using the simulation of the 1024 Image 

preprocessor, and classified using the nine-view piecewlse-linear learnlnft 

machine.  Each vote for a class accrued a confidence of lO for that class. 

Since the analyzer makes use of spaces In the text and the current scan 

propram does not output spacing Information, this Information was inserted 

manually.  This Is a small point, since we believe that a simple modi- 

fication of the scan program will enable us to obtain space information 

with essentially 100^ reliability. 

The classifier was considered to be incorrect whenever its first-- 

i.e., most confident—choice was in error.  On this basis, the classifier 

made 15 errors out of a total of 34 characters for an error rate of 44^c, 

which is considerably higher than is usual for this classifier.  At the 

output of the syntax analyzer, however, the error rate dropped to 3%. 

We reproduce the experimental results for the first statement in 

their entirety: 

Original statement 

GO  TO 1150 

P-list returned by classifier 

((( F 40)(E 10) (G 10) (9 10) ( - 10) (5 10)) 

(( 0 40)(C 20) (2 10) (0 10) ( , 10)) 

(( SP   100)) 

(( T 60)( - 30)) 

(( 3 30)( 0 30)( C 20)(P 10)) 

(( SP   100)) 

(( 1 60 )( / 30)) 

(( 1 70 )( / 20)) 

(( 5 90)) 

(( P 50)( / 20) ( 0 10))) 
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First choices ol cInsslticr 

FO  T3  115P 

Ou tpul oi syntax ;in;> 1 y/or 

GO  TO  1150 

The   experimental    results    lor   the 

be -ow: 

Statement   2 

Classifier's 1st choices 

Analyzer output 

Statement 3 

Classifier's 1st choices 

Analyzer output 

S tatement 1 

Classifier's   1st   choices 

Analyzer  output 

Statement   5 

Classifier's   1st   choices 

Analyzer  output 

nnlnlnR   four   statements   are   summarlzed 

GO TO 2(i 

5C T^ 2(5 

GO TO lit) 

GO TO 9HH 

-() TC 7/H 

GO TO 7HH 

GO TO 59 

KO FC 59 

GO TO 59 

GO TO 123 

GO TC /23 

GO TO 12 3 

D.  Cone luslon 

The   experiment    lust   described   illustrates   dramatically   the   power   of 

syntax   analysis   for   cleaning   up   text   In   which   individual   characters   are 

misclassifled.      It   is   to   be   recognized,   of   course,    that   only   a   portion   of 

the   syntax   analysis   program   has   been   developed   to   date,    and   'hat   corre- 

spondinftly  only   a   limited   specimen  of   text   represrnting   one  of   the   simplest 

FORTRAN   statement   types   was   used   in   the   experiment.      We   are   currently 

expand! np   the   syntax   analyzer,    and   this   activity   will   continue  with   the 

objective  of   encompassinR   the   several   FORTRAN   statement    types.      At   a   later 

date  we   plan   to   begin   incorporatinp   contextual   analysis   beyond   the   purely 

syntactical. 
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This small experiment also represents a milestone, in that for the 

iirst time we have carried actual text from a codinR sheet throuRh 

scanning, preprocessing, classifications, and syntax analysis.  TTius 

we have, in an embryonic sense, demonstrated the complete chain of 

analysis. 
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Appendix 

A   DECISION-THEORETIC   FRAMEWORK   FOR   THE   SYNTAX ANALYZER 
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Appendix 

A DECISION-THEORETIC FRAMEWORK FOR THE SYNTAX ANALYZER 

In Sec. IV of this report we described the ways in which we ore using 

the syntax of FORTRAN to reduce the error rate in recognizing handprinted 

text.  Abend6'7 has recently pointed out that compound decision theory 

provides a natural mathematical framework for-   incorporating context in 

pattern recognition.  Unfortunately, a rigorous implementation of com- 

pound decision theory requires the estimation of too many high-order 

.joint probabilities to warrant considering this approach seriously. 

Nevertheless, viewing the problem from the vantage point of statistical 

decision theory serves to clarify the problem and partially to Justify 

our more pragmatic approach. 

As a prelude to considering the compound decision problem, consider 

the problem of clnsslfying a single pattern represented by a set of 

measurements.  These measurements, which might indicate such things as 

the presence or absence of edges, corners, etc., make up the components 

of a pattern vector x.  For any given "pattern" x, we must pick a 

category 6, where 9 designates one of the possible categories.  For the 

case where x is an allowable FORTRAN character, 6 can assume any of 46 

different values, corresponding to the 26 letters, 10 numerals, and 10 

special characters. 

It is well known8 that in order to obtain a mlnlmum-error-rate 

classifier, one should compute p(9|x) for every possible value of 9, 

and choose that value of 9 for which p(9|x) is maximum.  By Bayes' rule. 

p(e|x)   =   P(
X

I
6

) P(
9

) (A-
1
) 

where p(9) is the a priori probability for 8. Thus the optimum procedure 

reflects the fact that some characters appear more frequently than others 

through the presence of p(9) in the numerator of Eq. (A-l). 
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In  most   of   our   work   to   dnte,   we   have   trnlned   clnsslllers   such   ns 

piecewise-linear  mnchlnea   to   Rive   as   low   on  error  rote   ns  we   could  obtain. 

We   have   tacitly   assumed   the   a   priori   probabilities   pfö^i    to   be   equal, 

inasmuch   as   we   have   represented   each   character   type  with   equal    frequency 

in   both   the   training   and   the   testinR  data.      Thus,    to   the   extent   that   the 

performance  of   these   classifiers   is  optimum,   we   can  soy   that   for   any 

pattern  x  we  compute   the  46   functions 

P(*le)   -k p*(6|x)      =     P^xl0'   46 rA-2^ 
—törr~ 

and   assign   x   to   the  cateRory   for which   p   fö|x      is  maximum. 

Consider now  the   compound  decision   problem  resultinR   from  scanning; 

o   syntactically   valid   FORTRAN   statement   containing,   soy,   m   characters. 

The   result   is   to   obtain   a   set   of   m   pattern  vectors   x,,    x„,    ....    x   ,   which 12 m 
can   be   thought   of   as   the   components   of   another   vector,   x.      Our   problem 

is   to   select   a   corresponding  set  of  categories   6       90,    ....   S   —i.e., 

a  vector   9   such   that   p(8|x)   is  maximum.      Were   the  Q's  statistically   in- 

dependent,   we  would   merely   select   the   best   9      for   each   x   .      However,    the 

very  reason   tor   considering   this   problem   is   that   the  syntax  constraints 

prevent   the   9's   from   being  independent   and   allow  us   to  obtain   a   better 

decision   by  considering   the  compound   problem   than  can   be obtained   from 

considering  each  of   the  component   problems   separately. 

There   is   one  kind of   independence assumption we  can   invoke,   however, 

to  obtain   a   significant   simplification of   the   results.      We   assume   that   for 

any   i    the   1 set   of   measurements,   x    , depends   solely   on   9    ,    the   category 

of   the   i        character--!.e.,    that 

P(*ilxi xi-r xi.i xm- e
1 V    =   P^JV-    ^-3) 

This   Is   actually   a   very   reasonable   assumption;   it  merely   states   that 

the   types  of   variations  seen   in  a  handprinted  character—say,    the   letter A- 

depend  only   upon   the   fact   that   it   is   an  A,    and   not   at   all   upon   the   fact 

that   It   is   surrounded   by  other  characters.      The   fact   that   certain  strings 
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of  charncters   nre   illeKal,   or   rarely  occur,   will   be   introduced   throUKh 

the   a   priori    probability   p(6). 

As   was   stated   previously,    to   obtain   a   tnlnimum-error-rate   classifier, 

we  must   compute   p(9|x)   for   all   possible   vectors   6   and   select   the   6   for 

which   p(9|x)    is   maximum.      By  Bayes'    rule, 

p(9|x)      =     P^   ^1 ■ (A-4) 
P(x) 

It is easy to show by induction that our conditional Independence assump- 

tion, given by Eq. (A-3), leads to 

m 
P(X|9)   =    n   P(XJe >     . (A-5) 

1=1      1 

Substituting this and Eq. (A-2) into Eq. (A-4) yields 

p(e|x)   =   <|)   n   [46p(x )p*(91|x1)j     . (e) 
p(x) i=l       i 

This can be simplified further, however, since we are only interested 

in the variation of p(e|x) with 9.  Thus, if we drop constants and factors 

dependent solely on x, we obtain an equivalent compound decision rule by 

selecting that 9 for which 

m 
q(9, x)    =   p(9)   n    p*(e  |x ) (7) 

1=1 

is maximum. 

Consider now the application of this result to a segment of a FORIHAN 

statement that we wish to treat as an entity, such as a number or a list 

of integers separated by commas.  Any given 9 corresponds to a string of 

m characters and either is or Is not a syntically valid entity.  We 

assume that we are always dealing with valid FORTRAN statements, and 

hence that p(9) = 0 for invalid entitles.  Thus we need only consider 9*3 

corresponding to valid strings. 
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Whot ein we assume nbout p^6) for valid strlnRS?  In some clrcum- 

stnnc-es. It seems rensonnble to invoke the principle of Insufficient 

renson und consider nil vnlid strings to lie equally likely.  For example, 

if the entity Is supposed to be a number, liiere is little reason to expect 

one number more than another.  In such cases p^6) Is n constant factor 

that does not Influence the decision; one merely selects the 9 for the 

valid strinp for which 

m 
n   p*fe.|x.i 

i-i '    ' 

is ii-.axlmum.  I f we define the confidence cfQ,    X   )   as the loßarithm of 

p ( 9, |x ), this is equivalent to selecting the 9 for the valid strlnR for 

which the total confidence 

m 
L   c(e |x i 

i-i 

Is mjxlmum.  Thus the dynamic proRrammlnp; approach described in Sec. IV 

is applicable in this situation.  StrinRS are considered in order of 

decreasing confidence until a valid strinK is encountered, this valid 

strinp; corresponding to the optimal statistical decision. 

There are other common situations, however, in which it is not at 

all rensonnble to consider all valid strings to be equally likely.  When 

denllnK with an entire FORTRAN statement, for example, we are much more 

likely to lind the statement startinf? with a string like DIMENSION or 

GO TO 913 than XMZQR = VUS.  Thus, rather than generatinK strings of 

successively lower confidence and rejecting them until we obtain a valid 

string, we can immediately compute the confidence associated with those 

strings for which p(9) is known to be large a priori--namely, the control 

words associated with the various statement types.  If the string does 

indeed happen to begin with XMZQR = VUS, then none of these strings is 

likely to have a high confidence--that is, a confidence that is reasonably 

close to the maximum possible confidence.  On the other hand, if the 

true string corresponds to any statement type other than an arithmetic 

assignment statement, we are very likely to obtain a high-confidence 
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match with the correspondlnK control word(s) quickly, since we hove to 

consider only one 9 for each statement type.  Since it is impossible, 

in practice, to estimate the n priori probabilities for all syntactically 

valid strinRs, so that some approximate procedure must be used In any 

case, this appears to be a very reasonable procedure that does not do 

violence to the Kuiding ideas of compound decision theory. 
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