
AD

a*
o

TECHNICAL REPORT ECOM-01901-26

GRAPHICAL-DATA-PROCESSING RESEARCH STUDY
AND EXPERIMENTAL INVESTIGATION

FOURTH QUARTERLY REPORT

R. O. Dtnla P. E. Hart J. H. Mmisoti

MARCH 1967

DISTRIBl'TION STATEME

Distribution of this document it unlimited

D D ^ _

MW3 1967 |

;\

UNITED STATES ARMY ELECTRONICS COMMAND * FORT MONMOUTH, N.J.

CONTRACT DA 28-043 AMC-01901(E)

STANFORD RESEARCH INSTITUTE fflgffiKÜ ÜP^
Menlo Park, California

TECHNICAL REPORT ECOM-0 190 I-26 MARCH 19*7

GRAPHICAL-OATA-PROCESSING RESEARCH STUDY

AND EXPERIMENTAL INVESTIGATION

REPORT NO. 26, FOURTH QUARTERLY REPORT

I NOVEMBER 1966 TO 31 JANUARY 1967

SRI Proiac) 5864

CONTRACT NO. DA 28-043 AM C-0 190 1(E)

Continuolion of Conlroct No. DA 36-039 AMC-03247(E)

To.k No. IP6-20S01 A-448-02-4S

Proporad By

R. O. OUOA P. E. HART J. H. MUNSON

STANFORD RESEARCH INSTITUTE

MENLO PARK, CALIFORNIA

For

U.S. ARMY ELECTRONICS COMMAND. FORT MONMOUTH, N.J. 07703

DISTRIBUTION STATEMENT

Distribution of thla documont is unlimltod.

*•"

ABSTRACT

This report describes the continuing development of preprocessing,

classification, and context analysis techniques for hand-printed text,

which are advancing at an accelerating pace.

Experiments have been continued with the Plecewise-Linear learning

machine, using the outputs of two preprocessors: the PREP 24A simu-

lation of the 1024-image optical preprocessor, and the CALMMASK preproces-

sor, which employs both edge-detecting and corner-detecting masks. A

new low test error rate for classification has been achieved on hand-printed

alphabets of FORTRAN characters.

Statistics of the performance of the learning machine during a single

testing iteration are presented, and shed light on several important

questions, such as the distribution of rankings of the desired character

category when it is not In first place.

A discussion of the preprocessing methods used in the topological

approach to preprocessing and classification is begun.

The Initial development of a FORTRAN syntax analyzer is described.

A milestone has been reached with the passage of a snail sample of actual

FORTRAN text from a coding sheet through the scanning, preprocessing,

classification, and syntax-analysis programs.

Ill

CONTENTS

ABSTRACT Ill

LIST OF ILLUSTRATIONS vll

LIST OF TABLES vll

I INTRODUCTION 1

II EXPERIMENTS, WITH TOO TEMPLATE-MATCHING PREPROCESSORS
AND THE PIECEWISE-LINEAR LEARNING MACHINE 3

A. Further Experiments with the Edge-Detecting Preprocessor
and the Plecewlse-Llnear Learning Machine 3

1. PREP-CALM Experiment 8 3
2. PREP-CALM Experiment 9 7

B. Experiments with the CALMMASK Preprocessor
and the Plecewlse-Llnear Learning Machine 7

1. The CALMMASK Preprocessing Program 7
2. MASK-CALM Experiment 2 10
3. MASK-CALM Experiment 3 11
4. MASK-CALM Experiment 4 11
5. MASK-CALM Experiment 5 11

C. Examination of Learning-Machine Statistics
During a Test Iteration 15

III TOPOLOGICAL PREPROCESSING OPERATIONS
FOR HANDPRINTED CHARACTER RECOGNITION 23

A. Introduction 23

B. Current Status of the Topologlcal Preprocessing
and Classification Program 24

C. Discussion of Topologlcal Preprocessing Operations 26

1. Figure Extent and Location 28
2. Connectivity 28
3. Subroutines CONNS and CONN4 30
4. Figure Dissection 32
5. Subroutines GROWS and GR0W4 33

CONTENTS (Concluded)

IV INITIAL DEVELOPMENT OF A FORTRAN SYNTAX ANALYZER 35

A. Introduction 35

B. Structure of the Syntax Analyzer 36

1. Input to the Analyzer 36
2. Breakdown by Statement Types 36
3. Specialist Programs 37
4. Dynamic Programming 38

C. Experimental Results 43

D. Conclusion 44

Appendix A DECISION-THEORETIC FRAMEWORK FOR THE SYNTAX
ANALYZER 47

ACKNOWLEDGMENTS 55

REFERENCES 57

DISTRIBUTION LIST

DD Form 1473

vl

ILLUSTRATIONS

Flg. 1 PREP-CALM Experiment 8 5

Fig. 2 PREP-CAUl Experlmeiu, 3 6

Fig. 3 PREP-CALM Experiment 9 8

Fig. 4 Corner-Detecting Templates 9

Fig. 5 MASK-CALM Experiment 2 12

Fig. 6 MASK-CAIM Experiment 3 13

Fig. 7 MASK-CAIM Experiment 4 14

Fig. 8 MASK-CALM Experiment 5 16

Fig. 9 Histogram of Sufficiencies 18

Fig. 10 Histograms of Deficiencies vs. Ranking 19

Fig. 11 Histograms of Maximum DPU Sums 20

Fig. 12 Combined Histograms of Deficiencies and Sufficiencies ... 22

Fig. 13 Dynamic Programming Graph 40

TABLES

Table I MASK-CALM Experiment 4, Test Iteration 4—Rankings
of Desired Category 17

Table II First Twenty-one Policies 42

vll

■ /

i ,

BLANK PAGE

I INTRODUCTION

The development of preprocesslnR, classification, and context-

analysis techniques for hand-printed text Is progressing at an acceler-

ating pace.

Section II of this report describes experiments with two template-

matching preprocessors and the CALM simulation of the Piecewise-Linear

Learning Machine. One series continues the nine-view experiments with

the outputs of the PREP 24A simulation of the 1024-image optical preproces-

sor. A new low test error rate is achieved as the training set is ex-

panded. In a new series of experiments, CALM Is used on the outputs of

a different simulated preprocessor (the CALMMASK program), utilizing both

edge-detecting and corner-detecting masks, together with the features de-

rived from Clemens' technique.

In an interesting new line of data analysis, detailed statistics

were developed for the performance of the learning machine during a single

testing iteration. These are discussed in Sec. II, These statistics shed

light on several questions important to both the classifier and the context

analyzer--for example, the distribution of rankings of the desired char-

acter category when it Is not in first place.

A discussion of the preprocessing methods used in the topological

approach to preprocessing and classification (formerly called the AD

HOC approach) is begun In Sec. III. An improved classification routine

is being developed, and it is planned that extensive further discussion

of these methods will be presented in the next report.

The initial development of a FORTRAN syntax analyzer, which is the

heart of the context analyzer, is described in Sec. IV. A milestone

has been reached with the passage of a small sample of actual FORTRAN text

from a coding sheet through the scanning, preprocessing, classification,

and syntax-analysis programs. The results of this experiment (presented

in Sec. IV) indicate the power of the syntax analysis in cleaning up

text with misclasslfied characters.

II EXPERIMENT WITH TWO TEMPLATE-MATCHING PREPROCESSORS
AND THE PIECEWISE-LINEAR LEARNING MACHINE

A. Further Experiments with the Edge-Detecting Preprocessor and the
Piecewise-Linear Learning Machine

We have continued the series of experiments described in the Second

and Third Quarterly Reports with two additional experiments. The basic

feature vectors used in these experiments, as in the ones described

previously, were the nine-view, 84-blt binary vectors produced by the

PREP 24A simulation of the 1024-image optical preprocessor. Each of the

84 bits specifies the detection of an edge of a certain orientation In

a certain region of the image field. The classifier used, as before,

was the CALM (Collected Algorithms for Learning Machines) simulation

of the 46-category Piecewise-Linear Learning Machine, with two dot pro-

duct units per category.

1. PREP-CAIM Experiment 8

This was a re-run of Experiment 3 (Described In Sec. II of the

Second Quarterly Report), in which we added to the feature vectors the

24 bits generated by Clemens' technique (also described in the Second

Quarterly Report). The patterns used in Experiment 3 were 9-vlew,

84-bit patterns. In Experiment 8, each of the single-view patterns was

augmented by the addition of 24 bits, broken into eight segments of three

bits each. Within each of the eight segments, the three bits were used

to encode the number of occurrences of extrema of the figure boundary (in

X or Y) in one of the four quadrants of the figure.

The result of combining the edge-detection data with the Clemens'

technique data was thus a set of nine feature vectors (views) for each

character. The feature vectors each had 108 (84 + 24) components. The 24

Clemens' bits were the same throughout all nine views, whereas the edge-

detection bits varied.

The results of the learning-machine experiment on this set of feature

vectors are presented in Fig. 1. The training error rate decreased to

23.4/^ In five Iterations. The one-view Independent test error rate

dipped to 33.9/^, then rose to 39.9/^ at Iteration 4. The nine-view test

error rate was calculated at Iteration 3 (22.6$) and at Iteration 5

(23.7^).

(The graphs of Fig. 1 and similar figures are prepared by a sepa-

rate small program for the SDS 910 computer, called ERROR GRAPH. The

training error rate is the generally lower curve, whose numerical values

are listed below the curve. The test error rate is the other curve. The

precision of plotting the ordinate values is limited to half-line spacing

vertically by the use of the computer's typewriter for preparing the graph;

each vertical half-space corresponds to 1.2 or 1.3^b.)

The results of Experiment 8 may be compared with those of Experiment 3,

in which the training error rate reached 36^ In 5 iterations, the one-view

test error rate reached 45$, and the nine-view test error rate was 23%

(Fig. 2). We see that the addition of the Clemens' technique bits In the

present experiment has considerably Improved the one-view training and

test error rates during the first five Iterations, but has had essentially

no effect on the important nine-view test error rate. This result

would appear to reflect the fact that the new bits, while contributing

valuable information to each view, do not contribute correspondingly to

the majority-voting nine-view recognition process, because the bits are

the same in all views. The improvement in recognition rate using nine

views may be thought of as resulting from the outvoting of a "bad" view

or views by the others, and this cannot happen when the information in

all views Is the same.

In conclusion, we found that the extra information carried in the

Clemens' technique bits did Improve the single-view classification of

patterns, but that without a "9-view generalization" of the Clemens'

technique the improvement did not carry over noticeably to 9-view classi-

fication.

LEARNING CURVES

SRI PROJECT 9860, EXPT NO. S
RUN ON en-BIT 9-VIE« PATTERNS PLUS CLEMENS BITS. TRAIN AUTHORS 1-12, 1EST13-16.
THERE ARE 1656 TRAINING PATTERNS AND »2 TESTING PATTERNS

V ERRCR RATE
V

SUCCESS RATE

♦---—•---—----—•--———-----■—-—--—----■—------------

m

9f

T:

6f

5fi

m

3B

7«

ie

67^.7

51.U

22.6^ 23.9 23.1
9-VIEt
TESTt3]

1(

2«

II

«C

5f

6i

7i

8C

9t

lift

+ - . .___..__——.............—.........4.
TRAIN 12 3*567

TEST 12 3*567
ITERATIONS

9 II
8 9 11

FIG. 1 PREP-CALM EXPERIMENT 8

LEARNING CURVES

SRI PROJECT 58«», EXPT NO, PREP-CALM 3
RUN ON F.C.P.T.B. FROM PREP 2*A. TRAIN ON AUTHORS 1-12, TEST ON 13-16.
THERE ARC 1656 TRAINING PATTERNS AND »2 TESTING PATTERNS

V ERROt RATE
V

SUCCESS PATE

111

9»

8«

7?

61

5«

kf

11

1«

..I
I

.1
I

..I
I

.1
I

..1 2i
I

.1
r

..I 31
I

.1 %l

33.5 33.8
3f .1

23.2
9-VIEt
TEST!*!

23.9 —•■'*",

9-VIE« Af
TESTl 11) y 19.

9-VIE*
TESTt131

II..

.1 5«

..16«
I

.1
I

..I 7«
I

■_.! 8«

.1
I

..I 91
I

.1
(

,.111»
I

TRAIN 1
TEST 1

5 6 7
5 6 7

1 TERATICNi

9 11
9 1(

FIG. 2 PREP-CALM EXPERIMENT 3

2. PREP-CALM Experiment 9

Experiment 9 was a re-run of Experiment 3 with an expanded training

set. The patterns used were the same as those in Experiment 3: 84-bit,

nine-view patterns. This time, in addition to the three FORTRAN alpha-

bets from each of twelve authors for training and four authors for test-

ing, three alphabets from each of eight more training authors had been

preprocessed through PREP 24A.

The results for Experiment 9 are presented in Fig. 3. The training

error rate decreased to 31.4^ at Iteration 10. The one-view test error

r^te ranged between 38 and 42^ from Iteration 3 through Iteration 10.

The nine-view test error rate was 18.8^ at Iteration 5 and 19.6% at Iter-

ation 10. These values represent a new low in test error rate for the

FORTRAN characters, and, apart from statistical fluctuations, appear to

be a couple of percent lower than the results of Experiment 3. It may be

noted that the training and test error curves are quite close together,

indicating that tht expanded traininc set is largely successful in rep-

resenting the test data.

B. Experiments with the CALMMASK Preprocessor and the Piecewlse-Linear
Learning Machine

1. The CAIMMASK Preprocessing Program

As an aid to the development of new templates (or maska) for pre-

processing, and new structures combining these templates, a program

called CALMMASK was written for the SDS 910. CALMMASK implements sim-

ulated optical masks of the type used in the 1024-image preprocessor

and the PREP 25A simulation--for example, edge-detectors. CALMMASK allows

additional flexibility in the use of these templates. The shapes and

threshold values of individual template types may be specified; several

templates of the same or different types may then be combined by logical

OR-ing and AND-ing into a feature; and features may be replicated at

various locations on the pattern image field. Parameters controlling

all of these options are under direct control from the computer console.

LEARNING CURVES

SRI PROJECT 9864, CXPT NO. PREP-CALM 9
RUN ON F.C.P.T.e. FROM PREP 2»A. TRAIN ON AUTHORS 1-12,17-2«, TEST ON 13-16.
THERE ARE 2761 TRAINING PATTERNS AND »2 TESTING PATTERNS

V ERR« RATE
V

SUCCESS RATE

«—..--.———.--..—.——....-...-....-..—.—.-..

IM

91

8f

7?

6t

5i

Hi

31

21

1i

11

2«

31

kt

51

,.l 61

18.8'
9-VIEt
TESTCSl

31.* .1

19.6 '
9-VIEW
TESTMiJI

71

81

91

lift

TRAIN 123*96789 II

TEST 12 3%5678 9 1l
ITERATIONS

FIG. 3 PREP-CALM EXPERIMENT 9

CALMMASK exists in two versions. The "interactive" version allows

an experiment to design features on-line by specifying them at the console,

observing their behavior when presented with test patterns, and modifying

them at will The "production" version provides a more efficient program

for processing large quantities of patterns through an already-designed

preprocessor.

The CALMMASK feature set used in the experiments to be described

here was as follows: There were 16 types of template. Twelve of these

were edge detectors similar to those employed in PREP 24A, oriented at

each 30° of the compass. The remaining four were corner detectors,

designed to detect the corners formed by the meeting of a vertical and

a horizontal stroke (Fig. 4). Each corner template had 14 cells with a

ip Ü 9 wh

m
•M m. wk

m
(c) NW CORNER (b) NE CORNER

THRESHOLD ■ 12

(c) SW CORNER (d) SE CONNER
TA-5M4-2

FIG. 4 CORNER-DETECTING TEMPLATES

weight of +1, 6 cells with a weight of -1, and a threshold of 12. It

may be noted that the templates are more tolerant of the orientation of

the vertical stroke than of the horizontal, reflecting the characteristics

of actual printing.

Each of the 16 template types was placed in each of the four quad-

rants of the image field, giving a total of 64 pattern components (fea-

tures) in the output of CALMMASK. Within each quadrant the template was

presented in every vertical and horizontal location, and a response from

the template in any location caused a positive response for the correspond-

ing feature. (in other words, each feature was a many-way OR function

of all the responses for the locations throughout the quadrant.)

The patterns were not translated before presentation to the tem-

plates, as was the case with PREP 24A; thus, only one-view feature vectors

were obtained from CALMMASK. It was expected that the presentation of

the templates in every location would have much the same effect as the

translation of the patterns to give the nine-view PREP 24A feature sets.

One purpose of the experiments was to compare the two approaches to trans-

lation invariance; the other purpose was to see the effect of the corner-

detecting templates.

2. MASK-CALM Experiment 2

Following a shakedown experiment, a full set of patterns was pre-

processed with CALMMASK and presented to the CALM simulation of the

Piecewise-Linear learning machine. The 24 Clemens' technique bits de-

scribed above were added to the patterns as they were presented to CALM,

forming feature vectors of 88 (64 + 24) bits. In this MASK-CALM Experi-

ment 2 the training and testing setJ were the same as in Experiment 3

of the previous series, which used patterns preprocessed by PREP 24A.

Thus, a direct comparison is possible. The training set consisted of

three FORTRAN alphabets from each of twelve authors; and the test set,

of three alphabets from each of four authors.

10

Figure 5 shows the results of the experiment The training error

rate decreo"^?. to 2 9^ in five iterations. The training error rate dur-

ing PREP-CALM Experiment 3 never improved beyond 30% (however, it must

be remembered that only one-view patterns were used in the present in-

stance, so the identical feature vector was presented at each iteration,

forming an easier training problem). The test error rate decreased to

25.2^, then rose to 27.0% at Iteration 5. These rates may be compared

with the 23^ test error rate of PREP-CALM Experiment 3 at Iteration 4.

The single-view pattern vectors from CALMMASK performed almost as well

as the nine-view vectors from PREP 24A.

3. MASK-CALM Experiment 3

In MASK-CALM Experiment 3, six more authors (18 alphabets) were

added to the training set. Other details stayed the same as in the

previous experiment. As shown in Fig. 6, the training error rate

decreased to 8.1^ in four iterations, and the test error rate reached

24.6^.

4. MASK-CAIJM Experiment 4

In Experiment 4, the first six authors (18 alphabets) in the pattern

file were used for testing, and the seventh through twenty-second authors

for training. Again, all other details of the experiment were the same

as in the two previous experiments. The experiment was carried for ten

iterations to check for any extra long-term improvement in the test

error rate. Figure 7 shows that the test error rate flattened out at

22 to 23^ after the third iteration. The training rate reached 3.5^.

Comparison of Experiments 3 and 4 with Experiment 2 show that the

increased training set has improved the test error rate on the CALMMASK

patterns by a small amount. To date, the best error rate in the experi-

ments on the CALMMASK patterns (22% in Experiment 4) has not matched the

best 9-view rate (19% in Experiment PREP-CALM 9).

5. MASK-CALM Experiment 5

Experiment 5 was performed to Isolate the effect of the Clemens'

technique bits, which had been included with the template features

throughout the other MASK-CALM experiments. In Experiment 5, only the

11

LEARNING CURVES

SRI PROJECT 566», EXPT NO. MASK-CALM 2
RUN ON BS-BIT PATTERNS FROM CALMMASK ♦ CLEMENS. 12 TRAINING AUTHORS, « TEST
THERE ARE 1«< TRAINING PATTERNS AND 992 TESTING PATTERNS

SUCCESS RATE

FIG. 5 MASK-CALM EXPERIMENT 2

12

LEARNING CMVES

SRI PROJECT 58«*, EXPT NO. MASK-CALM 3
RUN ON ee-BlT PATTERNS FRO» CALMMASK ♦ CLEMENS. 10 TRAINING AUTHORS AM) * TEST.
THERE ARE 2*8» TRAINING PATTERNS AW 992 TESTING PATTERNS

V ERRW RATE
V

SUCCESS RATE

FIG. 6 MASK-CALM EXPERIMENT 3

13

UARNI*G CURVES

S«l PROJECT t>8«», EXPT NO. MASK-CALM %
RUN ON 88-81 I «TltRNS FR« GALMMASK ♦ CtEMENS. TRAIN ON AUTHORS 7-22,TEST 1-6.
THERE ARE 22*8 TRAINING PATTERNS AND 828 TESTING PATTERNS

V ERR« RATE
V

SUCCESS RATE

111

91

81

Tl

61

51

%e

31

21

II

..I I

11

21

31

41

51

16.1 19.2 19.1
13.8 13.9

TRAIN 1 2 3 * 9 6 7 8 9 II
TEST 123*96789 II

ITERATIONS

FIG. 7 MASK-CALM EXPERIMENT 4

14

64 template feature bits were used. The training and testing sets were

the same as In Experiment 4. Figure 8 shows that the error rates were

increased by the deletion of Clemens' technique bits: in four iterations,

the training error rate reached 14,5% and the test error rate reached

32.2^.

C. Examination of Learning-Machine Statistics During a Test Iteration

A small modification was made to the CALM program, which allowed

certain statistics concerning the performance of the Piecewlse-Llnear

learning machine to be gathered during the running of an iteration.

Raw statistics gathered included the values of the largest and second

largest category responses (Dot Product Unit sums) for each pattern, the

ranking of the desired (true) category, and its sufficiency or deficiency.

The ranking of the desired category can range from 1 to 46. It is 1

for a pattern if and only if the pattern is correctly classified. If the

ranking is 1, the sufficiency is defined as the difference between the

DPU sum of the desired category and the largest of the other sums (which

will belong to the second-ranked category). If the pattern Is In error,

the deficiency is defined as the difference between the largest sum (the

one in Ihe chosen category) and the sum for the desired category.

The sufficiency (or deficiency) measures the closeness of the machine's

decision, and thus can be interpreted as a measure of confidence In the

category chosen. (if the ranking of the desired category is 3 or greater,

the deficiency does not show how close the second choice was to the

first choice, but this is a small point.)

Since the significance of individual DPU sums is clearer in a one-

view than in a nine-view experiment, we chose a one-view test iteration

for analysis: Test Iteration 4, from MASK-CALM Experiment 4. Figure 7

shows the error rate for this iteration to be 23.1^.

The distribution of rankings of the desired category is shown in

Table I. Rankings 1 and 2 include the correct category almost 90% of the

time; rankings 1 through 4 include the correct category 95% of the time.

15

LEARNING CURVES

SRI PROJECT 986«, E<PT NO. MASK-CALM 9
RUN ON «*-PlT PATTERNS FRCM CALMMASK. TRAIN ON AUTHORS 7-22, TEST 1-6.
THERE ARE 2218 TRAINING PATTERNS AW 828 TESTING PATTERNS

V ERRCR RATE
V

SUCCESS RATE

FIG. 8 MASK-CALM EXPERIMENT 5

16

Table I

MASK-CALM EXPERIMENT 4, TEST ITERATION 4—
RANKINGS OF DESIRED CATEGORY

Ranking Occurrence i Cumulative %

1 637 76.9 76.9

2 96 11.6 88.5

3 40 4.8 93.3

4 14 1.7 95.0

5 9 1. 1 96.1

6 7 0.8 96.9

7 2 0.2 97.1

8 3 0.4 97.5

9 1 0. 1 97.6 1

10 5 0.6 98.2

12 2 0.3 98.5

13 3 0.4 98.9 i

14 1 0.1 99.0

17 2 0.3 99.3

19 5 0.6 99.9

27 1 0.1 100.0

TOTAL 828 100. O 100.0 ~1

17

Thus, presenting the llrst lew choices to the context analyzer leads to

a very high probability of including the correct category.

40 —

30

Ö

3 20
8

10

/

Ln n
ul

In

100 200 3O0 400
SUFFICIENCY

500
-O^Ovjd—

600 660 760 800

FIG. 9 HISTOGRAM OF SUFFICIENCIES

Figure 9 is a histogram of the sufficiencies of the correctly clas-

sified patterns. Figure 10 is a histogram of the deficiencies of the

incorrectly classified patter-is , broken down according to ranking.

Figure 11 is a histogram of values of the maximum DPU sum formed for

every pattern, broken into two parts: for the correctly classified

patterns, and for the patterns in error. A number of interesting con-

clusions can be drawn from these graphs.

The first, and quite surprising fact to be observed from the histo-

grams is the great range of the maximum DPU sums (from approximately 280

to 1310), sufficiencies (up to B00), and deficiencies (up to 600). The

CAUI program records and prints out the overall maximum DPU sum formed

during an entire iteration, as a check against overflow in the computer.

18

4L o I

RANKING > 6

_cn- r^-- X^J.

:b=^Q
RANKING • 4,5,

£ O £12i
RANKING - 3

 ■ ' JZL
13
O

8
20 =L RANKING '2

10
Ln

I GO 200 300 400 500 600
DEFICIENCY

FIG. 10 HISTOGRAMS OF DEFICIENCIES vs. RANKING

19

INCORRECTLY
CLASSIFIED
PATTERNS

320 <»00 600 700 800 900
MAXIMUM DPU SUM

1000 1100 f 1310
160

FIG. 11 HISTOGRAMS OF MAXIMUM DPU SUMS

20

In this case, the largest sum was 1312, and this figure is in the typi-

cal range for experiments run with CALM. We may assume that the most

negative DPU sum formed during the iteration was comparable in magnitude.

This means thai, all of the DPU sums formed for each pattern lie in an

Interval of length approximately 2500.

If the 46 category responses in the machine were randomly distributed

in the range -1200 to 1300, the average numerical interval between

responses would be about 50. Even with fluctuations, we would expect the

sufficiencies, most of the deficiencies, and the variation In maximum

sums all to range up to only 100 or 200. Yet we find spreads of 600

to 1000, and occurrences such as a pattern for which not one of the

DPU sums exceeded (approximately) 280. Such behavior is quite contrary

to our intuition, which expected much tighter distributions of these

quantities. Since the actual performance of the learning machine is an

a priori fact, we do not infer that the observed distributions are in

themselves "good" or "bad"—merely surprising.

A second observation is that the distribution of maximum DPU sums

is higher, on the average, when the pattern is correctly classified than

when It is not. It might be possible to use the maximum sum to adjust

the confidence measures of the chosen and competing categories, unless

the maximum sum is so correlated with the sufficiency and deficiency that

there is little or no independent information to be gained.

Turning to the histogram of sufficiencies, we find a tendency,

which appears to be statistically significant, for depletion in the

region near zero. Since the sufficiency and deficiency are measures

of the same quantity (namely, desired-category response minus the maximum

of other responses), we can further study this effect by combining the

deficiency histograms of Fig. 10, reversing the horizontal axis, and placing

the resulting histogram beside that of Fig. 9. This is done in Fig. 12.

It is evident that the dropoff in sufficiencies near zero is related to

the continuing dropoff of occurrences with increasing deficiency. (Since

there is no reason to expect a discontinuity at zero, the jump there is

probably a statistical fluctuation.)

21

40

30

in
ÜJ o I—1

L

z
I 20 - -J _r

10

n . __r^-rv , 1 i
-600 -SOG -400 -300 -200

DEFICIENCY
100 0 100 200
— 1-— SUFFICIENCY

IB-S«««-6

FIG. 12 COMBINED HISTOGRAMS OF DEFICIENCIES AND SUFFICIENCIES

During MASK-CALW Experiment 4, the training margin was set to S8

(the number of pattern components). This value closely matches the value

of sufficiency at which the dropoff occurs. It is an attractive hypoth-

esis that the margin has tended to 'push" sufficiencies above the 88

level, although this one example is only limited evidence. If the hypoth-

esis is true, the results are quite satisfying, because although the

training governed by the training margin was applied only to the training

patterns, we here see its effect in enhancing the decisions on the test

patterns.

Finally, the study of information such as that in Fig. 10 will be

of value In the future, when more Is known about the needs of the context

analyzer. Figure lO portrays the relation between the ranking of a mis-

classified character and its deficiency. A study of relations such as this

will indicate, for example, how much weight should be given to the ranking,

and how much to the differences in DPU sums, when determining the confi-

dence measures to be assigned to each category.

22

Ill TOPOLOGIGAL PREPROCESSING OPERATIONS FOR HANDPRINTED
CHARACTER RECOGNITION

A. IntroductIon

Let us propose, with the usual risk of oversimplification, the

following ciil'ference among methods of extracting feature information for

the recognition of graphical patterns such as handprinted characters.

On one hand are the "topological" preprocessing methods; on the other

hand, the "non-topological ones.

The topological methods extract from the character imr.ge those types

of leatures that would be commonly used by people asked to describe the

shapes of characters. Typical descriptions are: A letter P has a closed

loop on top, with a stroke sticking down from it—on the left-hand side.

"The difference between a letter O and a letter D is that the 0 is round,

but the D has two corners on the left, and so on. Topological features

Include strokes, loops, hollows, corners, curvatures, connections, etc.,

as well as the relative positions and orientations of the basic features.

In short, these features are primarily concerned with the geometrical and

topological components and relationships of the character as a whole.

We may characterize the non-topological methods, by contrast, as

those which derive information less related to the "natural or intuitive

description of the character at the topological level. Clemens' technique

(described in Ref. 1 and in the Second Quarterly Report), in which the

x and y extrema of the contour of the character are recorded, is an

example of such a method. Integral geometry (Quarterly Reports 3 and 4

of the preceding Contract No. DA 36-039 SC-78343), in which statistical

measurements are made of the intersections of a pattern with randomly

chosen lines, is a prime example of a method seemingly unrelated to the

natural description of the character. The character-recognition litera-

ture provides many more examples of non-topological feature-extraction

•M-
References are listed at the end of the report.

23

techniques, such as random sampling (e.g., Perceptron and N-tuple)

methods,2 md the sequence of Intersections of the character with a

scan line of fixed orientation.*3 Finally, In this framework, the ex-

traction of features by edge-detecting masks (as exemplified by the

1024-lmage preprocessor) falls In the non-topologlcal category.

Non-topologlcal preprocessing methods are often prompted by their

elegance and simplicity, and the convenience of a uniform approach. Most

such techniques are based on elegant or "clever" processes that are quite

simple conceptually, and that are correspondingly easy and straightforward

to Implement in a computer program or In hardware. If a process generates

sufficient information to allow unique classification of well-formed

characters. It becomes a candidate for a preprocessing technique. The

major problem that confronts such methods arises when they are faced with

the Ill-formed characters that do occur in actual input and must be handled.

The method based on a single organizing principle often seems to lack the

"ruggedness" to maintain the constancy of its outputs in the face of

character distortions and aberrations, and no corrective recourse is

available within the framework of the single uniform approach.

The topologlcal preprocessing methods gain their appeal from the

fact that they use the same features used by humans In describing the

characters. It can then be hoped that when faced with distortions that

leave a character still recognizable by humans, such methods will preserve

Information sufficient for classification. As a corollary, human Intro-

spection together with observation of the system's operation can be

used as guides for designing, evaluating, and Improving the preprocessor

and subsequent classifier.

B. Current Status of the Topologlcal Preprocessing and Classification
Program

A preliminary program for the preprocessing of handprinted characters

by the extraction of topologlcal features was described In the third

The Blrdwatch technique, developed by Rabinow Engineering Co.,
described In Ref. 1.

24

Quarterly Report under the heading, "AD HOC Preprocessing and Classifi-

cation of Characters." The preliminary program contained routines for

finding the connected components of a character image, its boundary, con-

vex hull, enclosures, concavities of the boundary, and spurs (strokes that

end at an Isolated tip). The preliminary program consisted almost entirely

of these preprocessing routines. Only a fragmentary classification

routine, with a decision tree for handling single-stroke characters, had

been added.

An extensively modified version of this program, called TOPO 2, is

currently being written. Changes of three types are being made in TOPO 2.

1irst, needed improvements have been introduced into the boundary-

following and stroke-tracing routines. Second, a general cleanup of the

coding was undertaken, primarily to reduce running time and storage

requirements. Third, the decision tree approach to classification that

had been begun in the AD HOC program has been dropped in favor of pro-

ducing alternative classifications with confidence measures.

The change in classification procedure is important in two respects.

On one hand, output providing alternative classifications and their

confidence measures is vital for the operation of the syntax and context

analyzer, discussed in Sec. IV of this report. But in addition, it

appears that the new procedure will be much easier to design and modify.

In the decision-tree approach there was a considerable tendency for all

but the most conservative decisions to send characters down the wrong

branches of the tree. For example, a seemingly obvious dichotomy is one

between characters with enclosures and those without. But many characters

have spurious enclosures due to quantization noise, and many actual en-

closures are filled in. It is impossible to make even such basic dichot-

omies without losing a considerable number of characters from their pro-

per branches. If the alternate branches of the decision tree are patched

up to handle the characters that fall into them, the program becomes un-

manageably complex.

In the confidence-measure approach, however, the decision is made

separately for each character category on the basis of all the preprocessed

25

information. Each case can be decided on the basis of its own merits, so

to speak. There is not the pressure to make binary choices like the

branching of a decision tree, if there is any significant possibility of

losing characters thereby. Furthermore, absolute decisions do not have

to be made in any case. The existence of the continuous-valued confi-

dence measure allows a gradual decrease of confidence in a given category

as the feature values depart more and more from the values expected for

that category. Thus, the natural and beneficial consequence of producing

confidence measures for the context analyzer is that the classifier is

allowed to express degrees of doubt, as it were, about placing a character

in a given category. This situation would seem to mirror the human re-

sponse to ill-formed text.

The addition to TOPO 2 of a classification routine embodying these

concepts is underway. The results of the first preliminary tests are

most encouraging. We shall continue to implement the classification

routine (and add to the preprocessing as necessary) and report move

fully on results in the next report.

The remainder of this section contains the first half of a discussion

of the techniques that have been developed for topological preprocessing.

C. Discussion of Topological Preprocessing Operations

Topological features extracted by preprocessing should not only be

"natural," but should also meet the allied criterion of "ruggedness."

A rugged feature is one whose presence is not changed, and whose charac-

teristics are not greatly altered, by normal variations in the image of

a character in a given category. The processing routines used to find the

features must be tolerant of variations in the source characters and

distortions caused by the scanning process, if they are to produce rugged

features. If the image is affected by salt-and-pepper noise, for example,

a route to find connected figure components must be able to reject small,

isolated figure elements.

The primary feature information concerning a character evidently resides

in the strokes forming the character. In fact, if the strokes are defined

26

as comprising the path(s) that the writing instrument follows in forming

the character, it is a tautology that the strokes contain all the feature

information. But, in a more practical sense, the stroke information suf-

fers two weaknesses: not all stroke information can be recovered, and

other types of features may convey equivalent information in more desirable

form .

We may contrast the available stroke information on the hand-printed

page with that of 'on-line' input to a computer, through, for example, a

cathode ray tube and light-pen or a RAND tablet. Two characteristics of

on-line input are outstanding. First, time-sequence information and

even velocity information about the strokes are available. Second, the

strokes are line drawings; they have infinitesimal width. These charac-

teristics make the recognition of characters on-.1ine an ent irely different

problem from the off-line recognition of characters on a printed page.

It Is a point of major significance that an off-line printed character

must be recognized from its shape alone.

Full stroke information cannot be recovered from an off-line printed

character image, owing to the overlapping of strokes in the body of the

figure and the masking of the stroke path by the finite width of the

stroke. (Thus, it appears that an important quantitative parameter of the

difficulty of a handprinted character recognition problem is the ratio

of stroke width to character size.) We are led, therefore, to define the

stroke information as that information that can be derived from the image

by some processing routine, and to look for auxiliary forms of natural,

rugged feature information.

Two such feature types are concavities of the figure boundary, and

enclosures (holes) within the figure. Others are Junctions, or blobs—

regions in which strokes come together to form nodes, masses, or areas of

confusion. The overall size and location of the character as a whole and

of its connected components are important features. We may also add to

the list foataros that are derivable from the stroke information: direc-

tions, curvatures, and corners. Finally, the relations among features

can be features in themselves, such as the connections of strokes and

27

the relative placemenl of strokes, concavities, and enclosures. It

appears that the features just listed represent a natural, and profitable,

way of presenting handprinted characters.

We turn now to a discussion of the feature types and the computer

routines we have used to calculate them (working from a 24 X 24 binary

matrix representation of the character Images).

1. Figure Extent and Location

The subroutine EXTENT (NFIG, JT, JB, KL, KR) finds the indices of

the topmost (JT), bottommost (JB), leftmost (KL), and rightmost (KR)

figure points in the image NFIG. (Rows are numbered 1-24 going downward;

columns 1-24 from left to right.) NFIG may be a character, a connected

component, or any Image at all. EXTENT is fast In operation because it

need merely scan the image once by rows (computer words) to find the top

and bottom of the figure, then scan the word it has collected meanwhile

(by OR-ing the rows of the image) to find the left and right boundaries.

The location of a figure is determined by the row and column indices

of its center. The center of an object is typically defined as its

centroid or center of gravity. Finding the centrold, however, requires

a lengthy computation. We prefer the definition

JC = (JT + JB)/2

KC = (KL i- KR)/2

which locates the center of the smallest rectangle enclosing the figure.

This calculation can be performed far faster than finding the centroid.

It generally gives values close to the centroid, and may be equally

desirable or even preferable for our purpose.

2. Connect ivity

A figure Is connected if any two of its elements can be joined by

a chain of neighboring figure elements. Two definitions of "neighbor,"

and thus of connectivity, are at hand. We shall call them 4-connectivity

and 8-connectlvity. In 4-connectivity, the neighbors (N) of an element (X)

28

are the four adjacent elements vertically and horizontally:

N
NXN
N

In 8-connectivlty, the four elements adjacent diagonally are Included

as neighbors:

NNN
NXN
NNN

Rosenfeld and Pfaltz describe the two types of connectivity in a

recent article.4 They point out the "paradox," or inelegance, in the

connectivity of figure (l) and ground fo) elements related thusly:

1 0

0 1

The figure and ground are both 8-connected, but neither is 4-connected.

The authors fail to remark on the satisfjing duality that results from

specliying one entity to be governed by 4-connec1.i vi ty and the other

by 8-connectivity, so that only one is connected at a crossover.

It Is generally in our Interest to maximize figure connectivity,

so we choose the figure to be governed by 8-connectivity, and the ground

by 4-connectivity. (Often a single marginal figure element will lie

diagonally adjacent to the body of the figure, and we can thus avoid

having to treat it as a separate figure. Marginal elements and isolated

elements due to salt-and-pepper noise can be eliminated by a smoothing

operation.5 Since we seldom receive such noise from the vidicon camera,

we avoid the smoothing operation, which represents extra work and is not

without some danger of losing significant detail.)

Our choice of figure and ground connectivities means that concavities

and enclosures, which are ground areas, will be 4-connected. Thus, in

the following image, the figure is connected but the ground is not.

29

One ground element is an enclosure in the figure.

110 0

1 O 1 0

110 0

3. Subroutines CONN8 and CONN4

Subroutines C0NN8 and CONN4 embody the basic connectivity operation.

CONNH works with 8-connectivity; CONN4, with 4-connectivity . Their

action is otherwise identical, so only CONNÖ will be described. The

function of CONN8 is to find those connected components of a figure (FIGA)

that include elements of another figure (FIGB). The image composed of the

components found is returned by the subroutine as (FIGC). CONNS has two

modes of operation:

CONNS (FIGA, FIGC, FIGB, 0)

and

CONNS (FIGA, FIGC, J, K)

where J and K range from 1 to 24. In the second mode, the figure in FIGB

is taken to consist of a single element located at (J, K).

The operation of CONNS begins with storing in FIGC an image that is

the element-wise logical product of FIGA and FIGB:

FIGC (J,K) = FIGA (J,K) AND FIBG(j,K)

This image contains all the 1-bits (usually figure elements) common to

FIGA and FIGB. In the second step, an image is formed which includes as

1-bils all the elements of FIGC and all the neighbors of all i le elements

of FIGC. This image represents the growth of FIGC by one unit over all

its perimeter. In the third step the logical product of this "growing"

image with FIGA is returned to FIGC, thus restraining the growth of FIGC

to elements within 1IGA. The second and third steps are repeaued until

no new elements are generated in FIGC. At this point, FICG has filled

out the connected components of FIGA containing elements of the original

FIGC.

30

The elementary operations required by CONNS are the element-wise

logical AND and logical OR functions performed over two 24 X 24 image

fields, and operations that shift an image field right, left, up, and

down. Such operations are available to us separately in the form of

subroutines:

ANDFIG
ORF IG
XORFIG
DIFFIG

(INFIG 1, INFIG 2, OUTF1G)

(i n 2)
(1 U 2)
(1 ® 2)

[(i n 2)

and

RSHFIG
LSHFIG
USHFIG
DFHFIG

(INFIG, COUNT, OUTFIG)

For the sake of speed and compactness in CONNS, however, these operations

are performed directly by machine-language coding.

The operations Just listed are examples of parallel operations,

which can be applied in parallel to the elements of an image field (or

two) to produce an output image field. The attractiveness of parallel

operations in terms of speed is such that entire computers—notably the

ILLIAC III at the University of Illinois—have been devised with a bank

of processors capable of working in parallel. (Our own 1024-Image pre-

processor performs a specialized type of parallel operation on the image

field.) It should be noted that a conventional computer such as the

SDS910 is capable of partial parallel processing by using the logical

operations that deal in parallel with the bits of a computer word, re-

presenting a row of the image. An operation on a 24 X 24 element field

that would require 576 steps sequentially, or one step in a parallel

computer, can be performed in 24 steps by the conventional computer,

affording a considerable saving in time relative to purely sequential

operation.

The CONNS routine, as it is actually programmed, also takes advan-

tage of the fact that each row of the growing FIGC is immediately available

31

for the calculation of the next row. This allows the connected region

formed in FIGC to cascade in one direction (downward) during the execution

of steps 2 and 3, above. If the original FIGB is at or near the top of

the appropriate connected component of FIGA, FIGC can be found in very

short order. This is a limited example of the sequential processing dis-

cussed in the paper by Rosenfelü and Pfaltz.4

CONNS and CONN4 are basic building blocks for other operations

described below.

Although we have associated CONN4 with the ground (rather than

figure) components of the image, C0NN4 is programmed to work on regions

composed of elements with the value 1, as does CONNS. Since the figure

is normally assigned the value of 1 and the ground the value of 0, a

figure-ground complementation is necessary if CONN4 in its present form

is to be used on ground regions. This complementation can be per-

formed by the subroutine

CMPFIG (INFIG, OUTFIG).

4. Figure Dissection

An arbitrary figure can be dissected into its 4- or 8-connected

components by subroutine

DISE48 (INFIG, KOUNT, NFIGS, MAXNT, MODE).

DISE48 places individual connected components in NFIGS, which is an

array of image fields, and returns the component count in KOUNT. DISE48

first searches the input image to find an element with value 1. (This

search can be performed by subroutine WNPT, which finds the northmost of

the westmost of the figure points.) Elther CONN4 or CONNS is then

called, depending on MODE, to find the entire connected component including

this element. This component is removed from the input image and placed

In the first image field of NFIGS. The process is repeated, filling

successive fields of NFIGS, until the input image is exhausted or MAXKNT-1

components have been dissected.

32

5. Subroutines GROW8 and GROW4

Subroutine GROWS (iNFIG, OUTFIG) expands the figure INFIG by one

element in each of the eight major directions. GROW« performs an

operation equivalent to the operation applied to FIGC in the second step

of CONNS. GROWS is useful for finding parts of an image field immediately

adjacent to a given area. GROW4 is a routine analogous to GROWS, but in-

volving 4-connectivity.

A routine SHRINK, which strips away the outer layer of iigure,

could be devised. SHRINK is, in a rough sense, the Inverse of GROW.

The two operations are not truly inverse, however, nor are they commuta-

tive with each other. For example, the sequence (SHRINK, GROW) eliminates

isolated figure points, thvs changing the image.

SHRINK can be realized by applying GROW to the complement of the

figure to be shrunk, obtained with CMPFIG. Just as there are 4-connected

and 8-connected versions of GROW there could be analogous versions of

SHRINK.

The GROW and SHRINK operations are quantized analogs of the "grass-fire"

method of Dr. Harry Blum of Air Force Cambridge Research Labs.

This description will be resumed in a future report, with a descrip-

tion of routines for finding the perimeter, convex hull, concavities,

enclosures, and strokes of a connected figure.

33

If ^ _— -....._ .- .

BLANK PAGE

IV INITIAL DEVELOPMENT OF A FORTRAN SYNTAX ANALYZER

A. Introduction

Some brief experiments, described In the Second Quarterly Report,

Indlcnted that humans achieve error rates In the range from one to five

percent when presented with hand-printed characters in random order.

When presented with text materlal--i.e., printed matter organized into

words, sentences, equations, etc.--humans achieve error rates of a small

fraction of one percent. Clearly, the human makes use of context In

recognizing the individual characters, and it is obvious that a success-

ful FORTRAN text reader will have to do likewise. Accordingly, we under-

took the development of a FORTRAN syntax analyzer, which would accept

partially mis-identified input from the single-character classifier and

produce clean text,

The word "syntax" refers to the formal grammar of the FORTTIAN

language: hence, the syntax analyzer would make use of the fact that

every statement in FORTRAN must obey the rules of FORTRAN grammer. One

can also Investigate the use of context. The word "context," as opposed

to "syntax," refers to the fact that a particular word or character must

fit in with the words and characters surrounding it in order for the

whole tc make sense. Thus, one could construct a statement in FORTTIAN

(or in any natural or computer language, for that matter") which obeyed

the rules of grammar (syntax) but made no sense because some of the

words were meaningless in their particular context. It is anticipated

that the text analyzer will eventually make use of contextual information

as well, but the current effort emphasizes the grammatical aspects of

the FORTRAN language.

35

B. Structure of the Syntax Annlyzer

1. Input to the Analyzer

A pattern classifier Is usually thouftht of as a device that accepts

a pattern and decides which class It belonRS to. In order to make the

most efficient use of the syntax analyzer, however, the classifier will

produce not a single decision, but a list of alternative decisions.

Moreover, each alternative will be accompanied by a number giving the

confidence in that alternative. For example, if the oriKlnal character

ftrue classl was the letter "O", the classifier might produce the list:

("CD 40) (O 30) fQ 10) TU 10) fp 10)) meaning that the classifier decided

that the character was a "D" with confidence 40, an "O" with confidence

30, a "Q" with confidence 10, the numeral "0" with confidence 10, or a

"P" with confidence 10. We have called such lists L-lists.

The number of alternatives for any given character to be recognized

will vary, depending upon how uncertain the classifier was. If the

classifier used is the 9-view piecewise linear machine described in

previous reports, for example, then each view might contribute 10^ to

the total confidence. fNormallzation to 90^, 100$, or any other number

Is Immaterial, since the analyzer deals with relative confidence levels.)

A single FORTRAN statement would be represented at the input of the syntax

analyzer by a list of L-lists, one for each character of the text, where

each L-llst has the form of the example given above. We have called

such lists P-llsts. A P-llst is the basic Input to the syntax analyzer.

2. Breakdown by Statement Types

The FORTOAN language is divided into approximately 35 different

statement types. Some of the more common types are the DO statement,

arithmetic assignment statement, GO TO statement, and IF statement. The

analyzer attempts first to find the statement type that the P-list

belongs to, and then calls in a "specialist" program to clean up that

statement type and produce the final answer. The determination of the

statement type is based on the fact that the syntax of each type, with

one exception, requires that the statement begin with a special control

word or words. In the examples above, DO, IF, and GO TO are the control

36

words. The arithmetic nsslRnment statement Is the single exception.

Thus, the analyzer first finds the average confidence of a match with

each of the FORTRAN control words. If the match Is sufficiently high

with a given control word, then the statement type corresponding to that

control word Is assumed. If no match Is sufficiently high, then the

arithmetic assignment statement Is assumed. A detailed explanation

and theoretical Justification for this procedure Is given in the Appendix.

3. Specialist Programs

One the statement type has been determined, the specialist program

for that type must be called in to produce the final clean FORTRAN

statement. We are currently in the process of writing these programs,

and to date have completed eight. Of these eight, three are represen-

tative of the difficulty we expect to encounter In writing the remainder.

It is difficult to describe these programs in detail without first

specifying the syntax of each statement type. Loosely speaking, however,

the specialist programs try to break the P-list into small pieces by

attempting to find delimiters called for by the syntax. Thus, for

example, If the syntax of a given statement type calls for a comma at

a certain place, the program will look for the existence of a possible

comma, and see if the pieces on each side can be made into the appropriate

segments of the statement. If they can be, they are; otherwise, we

continue searching for a possible comma. This breakup process can be

carried out only to a certain degree of fineness; beyond that point,

one must examine a segment of the P-list as an entity, and try to make

sense of it. Examples of these "entities" are variable names, numbers

(not necessarily single digits), and arithmetic expressions.

At this level in the program we again appeal to the confidence

attached to each alternative. For any segment of a P-llst, we can

find the string of characters it most confidently represents by simply

choosing the most confident alternative for each character. Similarly,

one could find the second most confident string, third most confident

string, etc. Thus, if we arrive at a point where a segment of the P-list

must be examined as an entity, we consider the most likely string of

3 7

chnrncters, the second most likely, etc., until either a strlnf? Is

found which agrees with the FORTHAN syntax or we are forced to stop

because the combinatorial growth In the number of possible strings

exceeds our computing power. This process Is essentially the same ns

the method In determining statement type, and the analysis presented

In the Appendix applies here as well. The problem of finding the 1st,

2nd, 3rd, . . . most confident string of characters is by no means a

trivial -roblem. A solution to this problem involving a modification

of the technique known as dynamic programming was proposed by R. E. Larson

of SRI and is described in the next section. ^ program implementing this

solution is currently being written.

4. Dynamic Programming

Consider the followinp; P-list that might have been produced by the

classifier working on the list of integers 19,8:

(((/ 601
((.50)
((, 50)
((B 40)

(1 30))
(9 40))
(7 30) (9 10))
(8 30x (3 20))) .

This P-list indicates that the first character was classified as a slash

with confidence 60 and as a one with confidence 30, etc. By taking the

first choice for ench of the four characters, we obtain the string /, ,E

having the maximum confidence, 200. A brief examination shows that

there are two strings having confidence 190—namely /,,8 and /9(B--but

even with this simple problem it soon becomes difficult to find all

strings of confidence 180, 170, 160, etc.

The dynamic programming solution to this problem uses only the matrix

of confidences:

60 30 -

SO 40 -

50 30 10

40 30 20

38

In general, the l.j element of this matrix Is the confidence associated

with choosing the ,i alternative for the 1 member of the string. A

selection of a particular string corresponds to a function .jfi), and Is

called a policy, and for each policy there Is a total confidence. Our

problem is to rank the policies so that if m < n then the total confidence

for the n policy is less than or equal to that for m policy.

This ranking is accomplished In two steps. First the possible choices

for each row of C—I.e., for each stage of the decision process—are

considered and the possible partial confidences are systematically re-

corded. This is done for each stage in succession until all of the

possible total confidences have been obtained. 3econd. the total confi-

dences are considered in succession and all of the possible policies

yielding those total confidences are obtained.

The details of this procedure are best described by using our simple

example. Consider the possibilities of Stage 1. The first decision

yields a partial confidence of 60 and the second yields a partial confi-

dence of 30. These values are recorded as the two lower-left-most nodes

of the graph in Fig. 13. Here the numbers by the two lower-most branches

indicate which decision was made at Stage 1, and the numbers inside the

circled nodes indicate the number of policies that yield the corresponding

partial confidences.

Now consider Stage 2. Had we reached the partial confidence of 60

from Stage 1, at Stage 2 the first decision would yield a pnrtlal confi-

dence of 60 <- 50 = 110 and the second would yield 60 + 40 = lOO; on the

other hand, had we only reached 30, the results of the Stage 2 decision

would be either 80 or 70. All four of these partial confidences obtainable

at Stage 2 are shown on the graph.

So far the basic advantage of this approach has not become apparent,

since all possible combinations of decisions and partial confidences are

exhaustively represented. Were there D possible decisions at each stage,

one might fear that an N-stage process would have to show all D possible

results explicitly. The discrete nature of the process prevents this

39

zoo —
1 I 1 1

-

180 - 4 -

160 -

fJVy />^.f (T)

-

140 - m W -

120 - /, —

- 'ft
1*7/ */ ^Jrj
/ / *&//
^T7 Jrj w -

100

_
//// IMA p>

_

80 —

T
^ —

60 ""
1 /

/
40

/ //

'/ -

20

n / 1 1 1 1

-

2 3
STAGE

FIG. 13 DYNAMIC PROGRAMMING GRAPH

TB-5864-S

40

1rom happeninR, however. In particular, note that at Stage 3 there are

two ways of obtninlnR a partial confidence of 130, either by using the

policy ,i(l)=l, J(2) = 2, J(3)=2, or the policy j(l) = 2, j(2)=l, j(3)=l.

Systematic consideration of the partial confidences that can be obtained

at Stage 3 finally leads to the complete set of total confidences that

can be obtained at Stage 4 shown on the graph. Note that there are only

eleven distinct total confidences, which is considerably less than the

2X2X3X3= 36 possibilities that could be obtained if all of the

possible combinations of choices gave different total confidences. In

general, when the individual confidences are Integers, there can be no

more total confidences than the value ol the n.aximum total confidence,

and this usually represents a considerable reduction ir computation.

To find all of the policies yielding the highest total confidence,

one merely traverses the graph from the corresponding terminal node

back to the origin. In this case, there is only one optimal policy:

j(4) = l, J(3) = l, ,i(2)=l, j(l)=l. Two policies yield the next highest total

confidence: J(4)=2, j(3)=l, J(2)=l, j(l)=l and j(4)=l, j(3)=l, j(2)=2,

and j(l)=l. Continuing in this way, one obtains the policies in order of

descending total confidence, and results down to confidence 150 are

listed in Table II.

This example illustrates two important considerations. First, this

systematic procedure will indeed yield candidate strings that can be

tested for syntactic legality in order of confidence. Thus, for example,

the 19th policy yields the string 19,8 which is the syntactically valid

Integer list having highest confidence. There are several other legal

integer lists, such as 1,78 and 1978, but they all have lower total con-

fidence and need not be considered.

Secondly, however, it is clear that this procedure, as it stands,

will generate many strings that have no hope of being legal integer lists.

Its efficiency could be improved markedly by doing such things as deleting

from the P-list any symbols other than digits or commas, retaining jn

each L-llst only the digit having highest confidence, etc., or perhaps

even incorporating a dictionary of possible statement labels obtained

41

Table II

FIRST TWENTY-ONE POLICIES

Total Confidence Number
Policy

Correspond!ng String
J(l) J(2) J(3) J(4)

200 1 1 1 1 / B

190 2 1 1 2 / 8

3 2 1 1 / 9 B

180 4 1 1 3 / 3
5 2 1 2 / 9 8

6 1 2 1 / , 7 B

170 7 2 1 3 / 9 3
8 1 o 2 / , 7 8

9 2 2 1 / 9 7 B

10 1 1 1 1 B

160 11 1 2 3 / , 7 3

12 2 2 2 / 9 7 8

13 1 1 2 1 8

14 1 3 1 / , 9 B

15 2 1 1 1 9 B

150 16 2 2 3 / 9 7 3
17 1 1 3 1 3
18 1 3 2 / , 9 8

19 2 1 2 1 9 8
20 2 3 1 / 9 9 B

21 2 1 2 1 1 ■ 7 B

Irom other parts of the program, and only considering combinations of

digits that correspond to possible labels. All of these modifications

are specific to integer lists, however, and it would be a digression to

discuss them further. The major conclusion is that the dynamic pro-

gramming technique, together with constraints appropriate to the partic-

ular problem, offers a systematic, general method of obtaining the legal

string of characters having highest total confidence.

42

C. Experimental Results

AlthouRh the syntax analyzer Is far from complete and the final form

of the classifier has not yet been determined, we decided to do a small

experiment to see If the basic approach of the analyzer were sound. Five

handprinted GO TO statements were written and scanned using the TV camera.

The patterns were preprocessed using the simulation of the 1024 Image

preprocessor, and classified using the nine-view piecewlse-linear learnlnft

machine. Each vote for a class accrued a confidence of lO for that class.

Since the analyzer makes use of spaces In the text and the current scan

propram does not output spacing Information, this Information was inserted

manually. This Is a small point, since we believe that a simple modi-

fication of the scan program will enable us to obtain space information

with essentially 100^ reliability.

The classifier was considered to be incorrect whenever its first--

i.e., most confident—choice was in error. On this basis, the classifier

made 15 errors out of a total of 34 characters for an error rate of 44^c,

which is considerably higher than is usual for this classifier. At the

output of the syntax analyzer, however, the error rate dropped to 3%.

We reproduce the experimental results for the first statement in

their entirety:

Original statement

GO TO 1150

P-list returned by classifier

(((F 40)(E 10) (G 10) (9 10) (- 10) (5 10))

((0 40)(C 20) (2 10) (0 10) (, 10))

((SP 100))

((T 60)(- 30))

((3 30)(0 30)(C 20)(P 10))

((SP 100))

((1 60)(/ 30))

((1 70)(/ 20))

((5 90))

((P 50)(/ 20) (0 10)))

43

First choices ol cInsslticr

FO T3 115P

Ou tpul oi syntax ;in;> 1 y/or

GO TO 1150

The experimental results lor the

be -ow:

Statement 2

Classifier's 1st choices

Analyzer output

Statement 3

Classifier's 1st choices

Analyzer output

S tatement 1

Classifier's 1st choices

Analyzer output

Statement 5

Classifier's 1st choices

Analyzer output

nnlnlnR four statements are summarlzed

GO TO 2(i

5C T^ 2(5

GO TO lit)

GO TO 9HH

-() TC 7/H

GO TO 7HH

GO TO 59

KO FC 59

GO TO 59

GO TO 123

GO TC /23

GO TO 12 3

D. Cone luslon

The experiment lust described illustrates dramatically the power of

syntax analysis for cleaning up text In which individual characters are

misclassifled. It is to be recognized, of course, that only a portion of

the syntax analysis program has been developed to date, and 'hat corre-

spondinftly only a limited specimen of text represrnting one of the simplest

FORTRAN statement types was used in the experiment. We are currently

expand! np the syntax analyzer, and this activity will continue with the

objective of encompassinR the several FORTRAN statement types. At a later

date we plan to begin incorporatinp contextual analysis beyond the purely

syntactical.

44

This small experiment also represents a milestone, in that for the

iirst time we have carried actual text from a codinR sheet throuRh

scanning, preprocessing, classifications, and syntax analysis. TTius

we have, in an embryonic sense, demonstrated the complete chain of

analysis.

45

Appendix

A DECISION-THEORETIC FRAMEWORK FOR THE SYNTAX ANALYZER

47

Appendix

A DECISION-THEORETIC FRAMEWORK FOR THE SYNTAX ANALYZER

In Sec. IV of this report we described the ways in which we ore using

the syntax of FORTRAN to reduce the error rate in recognizing handprinted

text. Abend6'7 has recently pointed out that compound decision theory

provides a natural mathematical framework for- incorporating context in

pattern recognition. Unfortunately, a rigorous implementation of com-

pound decision theory requires the estimation of too many high-order

.joint probabilities to warrant considering this approach seriously.

Nevertheless, viewing the problem from the vantage point of statistical

decision theory serves to clarify the problem and partially to Justify

our more pragmatic approach.

As a prelude to considering the compound decision problem, consider

the problem of clnsslfying a single pattern represented by a set of

measurements. These measurements, which might indicate such things as

the presence or absence of edges, corners, etc., make up the components

of a pattern vector x. For any given "pattern" x, we must pick a

category 6, where 9 designates one of the possible categories. For the

case where x is an allowable FORTRAN character, 6 can assume any of 46

different values, corresponding to the 26 letters, 10 numerals, and 10

special characters.

It is well known8 that in order to obtain a mlnlmum-error-rate

classifier, one should compute p(9|x) for every possible value of 9,

and choose that value of 9 for which p(9|x) is maximum. By Bayes' rule.

p(e|x) = P(
X

I
6

) P(
9

) (A-
1
)

where p(9) is the a priori probability for 8. Thus the optimum procedure

reflects the fact that some characters appear more frequently than others

through the presence of p(9) in the numerator of Eq. (A-l).

49

In most of our work to dnte, we have trnlned clnsslllers such ns

piecewise-linear mnchlnea to Rive as low on error rote ns we could obtain.

We have tacitly assumed the a priori probabilities pfö^i to be equal,

inasmuch as we have represented each character type with equal frequency

in both the training and the testinR data. Thus, to the extent that the

performance of these classifiers is optimum, we can soy that for any

pattern x we compute the 46 functions

P(*le) -k p*(6|x) = P^xl0' 46 rA-2^
—törr~

and assign x to the cateRory for which p fö|x is maximum.

Consider now the compound decision problem resultinR from scanning;

o syntactically valid FORTRAN statement containing, soy, m characters.

The result is to obtain a set of m pattern vectors x,, x„, x , which 12 m
can be thought of as the components of another vector, x. Our problem

is to select a corresponding set of categories 6 90, S —i.e.,

a vector 9 such that p(8|x) is maximum. Were the Q's statistically in-

dependent, we would merely select the best 9 for each x . However, the

very reason tor considering this problem is that the syntax constraints

prevent the 9's from being independent and allow us to obtain a better

decision by considering the compound problem than can be obtained from

considering each of the component problems separately.

There is one kind of independence assumption we can invoke, however,

to obtain a significant simplification of the results. We assume that for

any i the 1 set of measurements, x , depends solely on 9 , the category

of the i character--!.e., that

P(*ilxi xi-r xi.i xm- e
1 V = P^JV- ^-3)

This Is actually a very reasonable assumption; it merely states that

the types of variations seen in a handprinted character—say, the letter A-

depend only upon the fact that it is an A, and not at all upon the fact

that It is surrounded by other characters. The fact that certain strings

50

of charncters nre illeKal, or rarely occur, will be introduced throUKh

the a priori probability p(6).

As was stated previously, to obtain a tnlnimum-error-rate classifier,

we must compute p(9|x) for all possible vectors 6 and select the 6 for

which p(9|x) is maximum. By Bayes' rule,

p(9|x) = P^ ^1 ■ (A-4)
P(x)

It is easy to show by induction that our conditional Independence assump-

tion, given by Eq. (A-3), leads to

m
P(X|9) = n P(XJe > . (A-5)

1=1 1

Substituting this and Eq. (A-2) into Eq. (A-4) yields

p(e|x) = <|) n [46p(x)p*(91|x1)j . (e)
p(x) i=l i

This can be simplified further, however, since we are only interested

in the variation of p(e|x) with 9. Thus, if we drop constants and factors

dependent solely on x, we obtain an equivalent compound decision rule by

selecting that 9 for which

m
q(9, x) = p(9) n p*(e |x) (7)

1=1

is maximum.

Consider now the application of this result to a segment of a FORIHAN

statement that we wish to treat as an entity, such as a number or a list

of integers separated by commas. Any given 9 corresponds to a string of

m characters and either is or Is not a syntically valid entity. We

assume that we are always dealing with valid FORTRAN statements, and

hence that p(9) = 0 for invalid entitles. Thus we need only consider 9*3

corresponding to valid strings.

51

Whot ein we assume nbout p^6) for valid strlnRS? In some clrcum-

stnnc-es. It seems rensonnble to invoke the principle of Insufficient

renson und consider nil vnlid strings to lie equally likely. For example,

if the entity Is supposed to be a number, liiere is little reason to expect

one number more than another. In such cases p^6) Is n constant factor

that does not Influence the decision; one merely selects the 9 for the

valid strinp for which

m
n p*fe.|x.i

i-i ' '

is ii-.axlmum. I f we define the confidence cfQ, X) as the loßarithm of

p (9, |x), this is equivalent to selecting the 9 for the valid strlnR for

which the total confidence

m
L c(e |x i

i-i

Is mjxlmum. Thus the dynamic proRrammlnp; approach described in Sec. IV

is applicable in this situation. StrinRS are considered in order of

decreasing confidence until a valid strinK is encountered, this valid

strinp; corresponding to the optimal statistical decision.

There are other common situations, however, in which it is not at

all rensonnble to consider all valid strings to be equally likely. When

denllnK with an entire FORTRAN statement, for example, we are much more

likely to lind the statement startinf? with a string like DIMENSION or

GO TO 913 than XMZQR = VUS. Thus, rather than generatinK strings of

successively lower confidence and rejecting them until we obtain a valid

string, we can immediately compute the confidence associated with those

strings for which p(9) is known to be large a priori--namely, the control

words associated with the various statement types. If the string does

indeed happen to begin with XMZQR = VUS, then none of these strings is

likely to have a high confidence--that is, a confidence that is reasonably

close to the maximum possible confidence. On the other hand, if the

true string corresponds to any statement type other than an arithmetic

assignment statement, we are very likely to obtain a high-confidence

52

match with the correspondlnK control word(s) quickly, since we hove to

consider only one 9 for each statement type. Since it is impossible,

in practice, to estimate the n priori probabilities for all syntactically

valid strinRs, so that some approximate procedure must be used In any

case, this appears to be a very reasonable procedure that does not do

violence to the Kuiding ideas of compound decision theory.

53

ACKNOWLEDGMENTS

The authors would like to express their deep appreciation for the

assistance of the following people in the work described in this report:

Mr. Michel Henry, a researcher visiting the group from the Centre d'Etudes

Nuclealres de Grenoble, France, who developed the corner-detecting masks

through many patient hours at the SDS 910 console; Miss Helen Chan,

programmer, who has contributed in many ways, notably In writing the

CALMMASK program; Mrs. Ann Robinson, programmer, who wrote the ERROR

GRAPH program and is assisting the writing of the syntax analyzer; and

Mr. Michael Sullivan, technician and programmer, who has performed

the continuing task of collecting data from coding sheets with the

SCAN 2 program.

55

REFERENCES

1. M. M. Chodrow, W. A. Bivona, and 0. M. Walsh, "A Study of Handprinted
Character Recognition Techniques," Technical Report RADC-TR-65-444,
Rome Air Development Center, New York (February 1966).

2. W. W. Bledsoe ar.d I. Browning, "Pattern Recognition and Reading by
Machine," Proc. Eastern Joint Computer Conference, pp. 225-232 (1959).

3. D. M. Stern and D. W. C. Shen, "Character Recognition by Context-
Dependent Transformations," Proc. IEE, Vol. ill. No. 11,
pp. 1923-1931 (November 1964y!

4. A. Rosenfeld and J. Pfaltz, "Sequential Operations In Digital Picture
Processing," J. of the ACM Vol. 13, No. 4 (October 1966).

5. G. P. Dlneen, "Programming Pattern Recognition," Proc. Western
Joint Computer Conference, pp. 94-100 (1955) .

6. Kenneth Abend, "Compound Decision Procedures for Pattern Recrgnltlon,"
Report PR-344, System Sciences Laboratory, Phllco, Blue Bell,
Pennsylvania (April 1966).

7. Kenneth Abend, "sequential Compound Decision Procedures for Dependent
States of Nature and for Unknown Distribution," Proc. 1966 IEEE
Pattern Recognition Workshop ^o be published).

8. H. Chernoff and L. D. Moses, Elementary Decision Theory (John Wiley
and Sons, New York, 1959).

57

rv.iA.ssinKD
St-t-unty CiaMaiftcation

DOCUMENT CONTROL DATA -R&D
iSerunty clatailicmtion ol tttlm, body of ttbttrmct mnd inarming monottttton munt be mnlmrma! when th» ovmrmll rmport IM clmm»Ht9ft)

ORiCiNATiN'-. ACTIVITY (Cotpotmim muthor)

Stanford Hcsffarch Institute
333 Ravenswnod Avenue
Menlo Park. California 9402S

2«. REPORT SECURITY CLASSIFICATION

UNCUSSIFIED

2b. CROUP

J REPORT TITLE

GRAPHICAL-DATA-PBOCESSI.NG RESEARCH STUDY AND EXPERIMENTAL INVESTIGATION

4. DESCRIPTIVE NOTES (Typm of rvporf mnd Inelumivm dmtmm)

Report No. 2(>. Fourth Quarterly Report - I November 19bb to 31 January 1967
« AU TMORISI fFJraf MOT», middlm initial. Imml nmmm)

Richard 0. Duda Peter E. Mart John II. Munson

e REPORT DA TE

March l%7
7«. TOTAL NO. OF PACES

72
7b. NO- OF RCFS

8

9m. CONTRACT OR GRANT NO

DA 28 013 AMC-01901 (E)
b. PROJCC T NO.

' IP6-20501 A-Mb-02-45

d.

9m. ORIGINATOR** REPORT NUMnCRfS»

SRI Project 5864

9b. OTHER mw*0*r NOW (Any othmr numbmrm Ütml mmy bm mmtltnmd
thlm rmport}

EO0M-01901-26

10. DISTRIBUTION STATEMENT

Distribution of this document is unlimited.

SUPPLEMENTARY NOTES II. SPONSORING MILITARY ACTIVITY

U.S. Army Klectronics Command
Fort Monmouth, New Jersey 07703
Attn: AMSKL-NL-A-1

This report describes the continuing development of preprocessing, classification, and context
analysis techniques for hand*printed text, which are advancing at an accelerating pace.

Experiments have been continued with the Piecewise-Linear learning machine, using the outputs
of two preprocessors: The PREP 24A simulation of the 1024-image optical preprocessor, and
the CAUMASK pr«processor. which employs both edge-detecting and corner-detecting masks. A
new low test eiror rale for classification has been achieved on hand-printed alphabets of
FORTRAN characters.

Statistics of the performance of the learning machine during a single testing iteration are
presented, und shed light on several important questions, such as the distribution of rank-
ings of the desired character category when it is not in first place.

A di srussi on of the preprocessing methods used in the topologica 1 approach to preprocessing
and classification is begun.

The initial development of a FORTRAN syntax analyzer is described. \ milestone has been
reached with the passage of a small sample of actual FORTRAN text from a coding sheet through
the scanning, preprocessing, classification, and syntax-analysis programs.

DD .'.r..l473
S/N 0101.«07.6801

(PAGE I) IHCLASSIFIED

Baeurity CUsaineatlon"

INCIASSIKIKD

Security Classification

KEY WOftDS

Pot tern Becogn i t ion
Adaptivc Systems
I,on rni tig Mach i ties
Preprocessing
Classification
Context Analysi s
KOHTHAN Syntax Analysis

DD pom
< MOV •(

(PAGE 2)
1473 (BACK) UNCLASSIFIED

Sacurity Clasaiflcation

