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ABSTRACT 

A method of computing static and dynamic force and moment coefficients has 

been prepared for the Research and Technology Division. The method provides 

for a complete inviscid flow field solution to be computed on the IBM 7094 

machine. The solution provides values of all pertinent flow field parameters at 

a large number of points in the shock layer surrounding a pointed or spherically 

blunted body of revolution (or the analogous two-dimensional shapes) in super¬ 

sonic or hypersonic flight. Perturbations (of each flow field parameter) due to 

angle of attack, rate of change of angle of attack, and pitch velocity are also 

computed. The force and moment coefficients are obtained by integrating the 

appropriate perturbations in pressure over the body surface. 

The above flow field capabilities have been delivered to the Research and 

Technology Division in the form of magnetic tapes. A sample solution was 

demonstrated on the Wright-Patterson AFB computer installation on June 30 - 

July 1, 1964. The analysis and programming of this solution is described in 

this report. 
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1. BACKGROUND AND INTRODUCTION 

usually ballistic re-entry vehicles enter the Earth's atmosphere at some angle of 

attack. As the vehicle penetrates to regions of increasing density, the magnitude of the 

angle of attack oscillates and should damp out to very small values by the time peak 

dynamic pressure is reached in order to prevent excessive heating and loading. The 

rate at which this damping occurs is dependent on dynamic damping coefficients in the 

equations of motion. Unfortunately these dynamic damping coefficients, which are of 

paramount importance in predicting peak heating and loading along a trajectory, could 

not be adequately predicted at hypersonic speeds by analytic methods available when 

this study was initiated ,e. g., potential theory, Newtonian theory, small disturbance 

theory). 

The potential theory approach to unsteady supersonic aerodynamics has been ex- 

tensively developed In the literature. Van Dyke (Reference 7) has clearly defined the 

first order, and combined firs, and second order (hybrid, theories for simple shapes, 

m these method. Urn boundary conditions are applied at the body and along a Mach line 

originating at the apex of the body. Consequently the solution becomes invalid when the 

Mach number becomes high enough for the Mach lines to coincide with the body. Un¬ 

fortunately, for bodies of practical interest, this condition occurs at relatively low 

Mach numbers, so that this method can only be applied in the hypersonic regime by ex¬ 

trapolation or by assuming Mach number independence. Furthei restrictions exist in 

Manuscript released by author December 1965 for publication 
as an RTD Technical 

Documentary Report. 
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that the geometries which can be considered are limited, inclusion of unsteady boundary 

layer effects is awkward, and frequency dependence is normally indeterminate. 

The Mach number limitation encountered in potential theory can be overcome by 

using hypersonic small disturbance theory, where the boundary conditions are applied 

at the body and at the shock. This method, in conjunction with perturbation theory, has 

been applied to the determination of the hypersonic dynamic stability of oscillating 

wedges (Reference 8). This study has permitted an evaluation of Mach number and 

frequency effects on the stability derivatives for the simple two-dimensional shapes. 

Newtonian impact theory is quite useful in estimating trends with variation in body 

geometry. However, when comparisons are made with experimental data, it is found 

that the predicted levels are considerably in error. * In spite of this, it should be 

possible to make semi-empirical modifications to this theory and obtain reasonable re¬ 

sults, particularly in the case of three-dimensional bodies, since this is the only method 

which can presently account for the influence of complex geometry. 

Because of these limitations in previously available analytical methods for predicting 

dynamic damping coefficients of bodies in hypersonic flight, an inviscid flow field 

approach has been taken, and small perturbation techniques have been applied to it. The 

objective of this work is to provide more reliable analytical means of determining 

^Reference 9 provides experimental data typical of this disagreement with Newtonian 

predictions. 
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>1 

dynamic damping coeft icients of pointed and spherically blunted bodies of revolution in 

hypersonic flight. 

Since the forces and moments acting on a body can be found by a simple integration 

if the pressure at the body surface is known, it is apparent that the stability derivatives 

will result if the appropriate derivatives of pressure are integrated over the body sur¬ 

face. The flow field approach, with small perturbation techniques, provides these 

derivatives of pressure. 

Because the mathematical character of the equations governing fluid flow is dif¬ 

ferent in supersonic and subsonic flows, different methods must be used to solve them. 

For this reason, the flow field about a blunt body has been divided into subsonic, trans¬ 

onic, and supersonic regions (see Figure 1). A description of the solution used in 

each of these regions for flight at zero yaw and in unsteady motion is given in the 

present report. 

Solutions for flow fields about pointed bodies of revolution at zero yaw and in un¬ 

steady motion have been obtained by combining the solutions for the supersonic regions 

(Sections 3. 3 and 4.4) with solutions for pointed cones (Sections 3. 2 and 4. 3). These 

solutions for blunt and pointed bodies have been used to provide flow field information 

for a variety of shapes and flight conditions. 
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BLUNT 
BODY 
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SUPERSONIC 

Figure 1. Regions of Flow Field 
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2. THE FLOW FIELD SOLUTIONS 

Two reports have been written explaining the unsteady flow field solutions about 

pointed cones (Reference 1) and in the supersonic regions of any axisymmetric or 2-D 

bodies (Reference 2). Many more reports have been written about the zero yaw steady 

state flow field solutions (e. g. References 3, 4 and 5). The information provided in 

these reports is compiled here along with additional work to provide a complete 

description of the solution. Section 3 of this report describes the zero yaw solution. 

Sections 4 and 5 explain the analysis of the unsteady flow problem. The remaining 

sections of this report deal with programming of the solution and numerical results. 

5 



3. THE ZERO YAW STEADY STATE SOLUTIONS* 

The General Electric (GE) flow field solution is capable of both real and ideal gas 

computations in shock layers surrounding a variety of axisymmetric and two-dimensional 

bodies. It is a numerical solution of the laws of conservation of mass, momentum, 

and energy: 

V« (pV) = 0 (3.1) 

DV 1 
ÕT + 7 7P = 0 <3‘2> 

and the state relations : 

(3.3) 

-P = ZRT 
P 

S = S( P, T) 

Z = Z( P, T}, Z = Z( p ,8) 

♦Reference 3 provides greater dc^vll on these solutions. 
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P = p( P, S) and 
(3.7) 

h = h( P, S) (3.8) 

The last five of these relations are in tabular form, for air treated as a real 

gas in chemical equilibrium. 

The GE solution alao uses a parameter y*, where y* is defined as: 

Y* = 
P 

F (3.9) 

and is computed as a function of S and p, using the expression: 

. a , Y* = — + b 
P (3.10) 

The coefficients a and b are tabulated as functions of entropy and pressure. Ref¬ 

erence 3 gives a more detailed description of this parameter. 

If it is desired to do an id al gas calculation, Z becomes unity, y* becomes the 

ratio of specific heats/ and the real gas tabulations (Equations 3.5, 3.7 and 3.8) are 

reduced to several ideal gas relations : 

+For an ideal gas a = 0 and b = the ratio of specific heats. 
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constant along streamlines 

Y D 
— — = constant 

Y-l P 

(3.11 ) 

(3.12) 

The boundary conditions imposed on the problem consist of the free stream con¬ 

ditions upstream of the shock wave,* and the condition that no mass flows through 

the body surface. Since the mathematical character of the governing equations is 

different on opposite sides of the sonic line, the solution is carried out in a different 

way in the transonic and supersonic regions of the shock layer. The solution in both 

regions is carried out on an IBM 7094 computer. 

3.1 THE TRANSONIC REGION 

The computation for a blunt body is started in the transonic region, which in¬ 

cludes the sonic line and a small part of the shock layer on each side of the sonic 

line. A coordinate grid of streamlines and the lines normal to them is used. The 

solution is a direct one. It is started by making an initial estimate of the shock 

shape and of the pressure distribution at the body surface. The location of a stream¬ 

line a small distance from this body is then computed (as well as the values of the 

flow field variables on it), to satisfy the governing equations. This process of step¬ 

ping to the next streamline is repeated until a new shock wave, which satisfies the 

conservation of mass law, is reached. The shape cf this new shock wave, as well 

♦Applied through the Rankine-Hugonoit relations. 
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as the pressures just downstream of it, are compared with the shai.e and correspond¬ 

ing pressures for the initial estimate. New estimates of shock shape and body pres¬ 

sure distribution are based on this comparison and on a general inspection of the 

results obtained in the entire transonic region. This iterative cycle is repeated 

until the estimates and computed values agree closely. ♦ It is usually possible to 

obtain pressures downstream of the estimated and computed shock waves to agree 

within 2 percent, and to get the estimated and computed shock waves to coincide 

within 0. 004 of the body radius of curvature at the stagnation point. At each step of 

the iteration the choice of a new estimate of shock shape and body pressure distribu¬ 

tion is made by the operator. All other iterative cycles are automatic. 

3-2 THE POINTED CONE SOLUTION 

When a flow field solution is needed for a pointed body, the supersonic program 

provides it. However, the supersonic program requires a solution along a starting 

line. This starting solution is obtained by approximating a small portion of the nose 

of the pointed body by a pointed cone. Hie solution for a pointed cone is then obtained 

by the method of Taylor and Maccoll (Reference 6), modified to provide a real gas 

solution, if desired. This solution has been included in a single computer program 

with the unsteady solution for the pointed cone (Section 4.3). A detailed derivation of 

this solution appears in Reference 5. 

♦A guide to converging the zero yaw transonic solution is given in Appendix IV. 
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3.3 THE SUPERSONIC REGION* 

The steady state solution in the supersonic region is carried out by the method 

of characteristics for both pointed and blunt bodies. Three basic directions are used: 

the flow direction (constant i|i, constant S) and the directions of the Mach lines. The 

angles between the Mach lines and the flow direction are: 

± M=sln1 ^ (3.13) 

The Mach lines are the characteristics (in the mathematical sense) of the continuity 

and momentum equations. Changes along these lines are defined by Equation (3.14): 

dfl 
df sin M sin B ± 

COt/i 

P 

d£ 
0 (3.14) 

where 0 = the flow angle measured from the axial. 

i = the distance measured along a characteristic. 

The -)- and - signs apply to the left and right Mach lines, respectively. 

In addition to Equation (3.14), the equation of state, the condition of constant total 

energy, and the condition of isentropic flow along streamlines must be satisfied. The 

♦This Section is taken from Reference 3. 
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numerical solution is started from a line along which the solution has previously been 

computed by either the transonic or pointed cone program. 



THE UNSTEADY FLOW FIELD SOLUTIONS 

4,1 description OF THE PERTURBATION SCHEME* 

The now field about a body In night la determined by the solution of the non-linear 

boundary value problem stated in Seetion 4. 2.1. This boundary value problem is stated 

in a coordinate system fixed in the body, and consequently, the motions of the body, 

Vg and Õ. appear as "driving functions" in the problem. For the simple planar 

trajectory considered here, the motions of the body are given in terms of two functions 

Of time, 0, (t) and q (t), and the constant speed V„ = | Vcg | , by equations (4.18). In 

order to solve the boundary value problem defined in Section 4.2.1, it is necessary to 

specify the two functions of time a(t) and q (t). The flow field variables are then 

functionals of the functions oft) and q (t) in that they depend on all the values taken on 

by cdt) and q(t> in the Interval from the Initial time, t = 0, to the current time, t » t 

and are ordinary funcUons of posiUon as given by the three coordinates, (R, oj, ¢). 

In the perturbation scheme utilized in this work, a (t) and 2£LÍ. are taken to be 

small quantities on the order of ^ and c,,, respectively, which thin become the per- 

turbation parameters, with the substitutions: 

^(t) = e. a (t) 
1 (4.2) 

q,t> = f^(t> (T) (4.3, 

♦This section appeared originally in Reference 1. 
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the pressure, for example, wUl be a functional of the functions à (t) and q (t) and an 

ordinary function of the parameters ^ and e,,. It is assumed that p can be expanded 

in Taylor's series in the parameters, el and e2, to give a series of the form: 

p = p0 + Vi + f2P2+ * ‘ ‘ 

The coefficient, pQ , is the pressure field produced by the body in steady flight at zero 

angle of attack and can be found by established methods. The coefficients, Pl and p2, 

give the first order effects of angle of attack and pitching rate, respectively, and are 

to be determined by solution of Equations (4. 21) through (4. 24). They are functionals 

of the functions a (t) and q (t) and ordinary functions of the spatial coordinates. (In 

Section 4. 3) it is shown that they can be represented formally by series of the type 

COS CP = cos Cp (4.5) 

(and a similar series for p2) where the p^ are functions only of the ray angle, w . 

This solution holds after "starting transients" have died out. The coefficient, p^ o 

gives the effect of small yaw in the steady state. The coefficients, p , p , etc 
1» 1 1,2, 

give the effects of time varying angle of attack. 

It is the coefficients, p^, and corresponding quantities for the other flow field 

variables, which are found as a result of this analysis. The method of finding them is 

numerical and is described in the following sections. The pressure coefficients yield 

corresponding force and moment coefficients which are dynamic stability derivatives. 

13 
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4,2 PRIVATION OF THE PERTURBATION EQI'ATtnKK. 

^2-1 g«?*61"8”* °I the Boundary Value Problem In General Form 

The in viscid flow field boundary value problem can be stated to an observer in a 

body-fixed coordinate system, x,y, z, (Figure 2) by a transformation of coordinates 

from an inertial system. Lamb (Reference 10). gives the appropriate transformed 

continuity and Euler equations. 

The continuity equation: 

at 7 .PV = 0 ; 
(4. 6) 

The Euler equation: 

I?4 <V-V)V + 2(flx ?) ijxvcgr-îx^ + (4.7) 

(Í2 X r)x fi . 

The form of the continuity Equation (4. 6) is unaltered by the transformation. The 

form of the Euler Equation (4.7) differs from Equation (3. 2) in that the acceleration of 

a fixed point in the moving frame of reference appears as a body force involving the 

vector velocity of the center of gravity, V^(t), and the vector rotation of the body, 

♦A more detailed derivation appears in Reference 

14 
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( 

Figure 2. Inviscid Flow Field Boundary Value Problem 

O(t), on the right-hand side. The vector rotation causes a given fluid particle to ex¬ 

perience a Coriolis acceleration, 2(0 X V), which is present on the left-hand side. 

The continuity and Euler equations nust be complemented by the energy equation 

for the adiabatic flow, 

3S 

and an equation of state for the gas, here taken to be, 

P = P(P, S) (4. 9) 

/,, . 

y i«W 
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The precise form of the relatios indicated in Equation (4. 9, depends on whether the 

gas is an ideal gas, a gas at chemical equilibrium, or a gas in some "frozen" composi- 

‘lon. The development of the equations can, however, proceed without specification of 

the precise form of the equation of state. 

Equations (4.6, through (4.9, are a complete set of flow equations for the determina¬ 

tion of the pressure, p, the density, p , the entropy, S. and the three components of 

the fluid velocity (measured in the moving frame of reference), V, for prescribed 

motions of the body, Vg and 5 . I» order to solve them, initial conditions at some in¬ 

stant of time and boundary conditions at the body and shock, must be given. 

As initial conditions, it is assumed that at t = 0, the field is the steady-state, 

axisymmetric field produced by a uniform forward translation at speed V„ , of the body 

along its axis of symmetry. 

At the body surface, the flow must be tangent to the body surface and the boundary 

condition is: 

V . n = 0. 
B (4.10) 

On the shock surface, 

(x,y,z,t) =o, 
8 (4.11) 

(which must be found as a part of the solution), the shock equations give the flow 

variables as functions of the relative velocity of the shock and the free stream flow 

16 



and the instantaneous unit inward* normal to the shock, 

n 
s 

+ VF 
- s 

Pm (4.12) 

The shock equations can be reduced to the following set of three algebraic equations: 

P VMa=Pa»VM s Ns N°° 

2 2 

PSVNS + Ps = PaoVNa.+ P- 

V 2 V 2 
hfo p ) + JÍ£ = h(poo, P») + — 

s, s 2 2 

(4.13) 

These equations express, respectively, conservation of mass, momentum normal 

to the shock, and energy, in a form which utilizes the result that the velocity com¬ 

ponents tangent to the shock are unchanged in crossing the shock. In these equations, 

VN » is the component normal to the shock, of the relative velocity between the shock 

and the flow on the upstream side of the shock, and VNg is the corresponding component 

on the downstream side of the shock. 

The flow velocity on the upstream side of the shock is given by: 

V« = - Vcg + ( r X 0 ) 
(4.14) 

♦Either the + or - wül be used in equation (4.12), whichever provides the inward normtí. 

17 



«r 

and the component of shock velocity along its normal is given by: 

âFB 
St 

7 F » 
-*1 

Therefore, , is given by: 

ò F 
_£ 
dt" 

N° 
n + 

s - r8i 
(4.15) 

dF 

= -V • n + (r X n )• n + dt 
eg s ' 'a 7 F 

If Equation (4.13) is presumed to be solved in the form* 

P« = P3 <VN« • P-1 P- » 

P = P. (V , P„. P. ) 8 s N00 00 00 (4.16) 

VNS - V= ^VN= ÄVN(VNco'P-'^> 

The first two equations of Equation (4.16) give the pressure and density down¬ 

stream of the shock explicitly in terms of the function giving the shock, F , and the 
s 

♦There are numerous procedures in the literature for obtaining such a solution numeri¬ 

cally. Reference 11 presents the procedure used in the subsequent numerical work. 

18 
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motions of the body, Vcg andfi by use of Equation (4. 15). The third equation of 

Equation (4. 16) gives the three velocity components of the flow on the downstream 

side of the shock by further use of Equation (4. 17): 

= -Vcg+(r X íT) + AVn^s. 
(4. 17) 

4- 2- 2 Reduction of the Boundary Value Problem to Perturbation Form 

The equations and conditions of Section 4. 2.1 define the boundary value problem 

for determination of the inviscid flow field about a body whose motions, V and Í* 
eg ’ 

are known. In this Section, the boundary value problem is reduced to a perturbation 

form applicable to bodies of revolution which move at constant speed, |v I = const 
eg1 

* Veo » in such a manner that the z-axis is always parallel to a fixed reference direc¬ 

tion. * 

For the type of motion just described, tlic vector velocity and rotation can be 

written in terms of two time variable functions, a(t)(the angle of attack) and q(t): 

vcg = v® (-* cos a + y sin a ) 

fl = q z 
(4. 18) 

♦Although this analysis does not employ stability axes, the force and moment 

derivatives are conventional. 



To put the problem in perturbation form it is assumed that a < < 1 and ^ <<1, 

rt T 

and parameters and c2 which measure the magnitudes of a and are introduced by 

the Equations: 

a = e1 a 

(4. 19) 

In Equation (4. 19), a(t) and q(t) are assumed to be of the order of one in the time in¬ 

terval of interest, and c1 and c (which are constants) are assumed to be much less 

than one. The flow field variables can be regarded as functionals of the functions ã(t) 

and q(t) (in the sense defined in Reference 12) and ordinary functions of the perturbation 

parameters c and c „• 
X £t 

In the perturbation scheme, it is assumed that each flow field variable can be ex¬ 

panded in Taylor's series in the variables, c, and c„. For example, it is assumed 
X ¿i 

that the pressure can be written in the form: 

P = P0 (x,y, z) ♦^Pjfx.y.M) + ^2^,7,2,1) +. . . . H.O.T.. (4.20) 

These expanded forms are then substituted into the equations defining the boundary 

value problem and the resulting set of perturbed equations is separated into a number 

of sets of perturbation equations by the usual process of equating terms in like powers 

of f and f . (Only the three lowest order terms are considered). 
X 4M 



The boundary value problem so defined for the lowest order coefficients, p , p , 
o o 

—• 

Sq and V^, is, of course, the problem of determining the steady-state, axisymmetric 

field produced by the body as it translates with constant speed, Vœ , parallel to its 

axis of symmetry. * 

Substitution of Equation (4. 20) and like expressions for the density, entropy, and 

fluid velocity into Equations (4. 6) through (4. 9) to obtain the two sets of equations gov¬ 

erning the coefficients of c and e9 yields, 

ãf+ (PoVPjV^O; (4.21) 

avj _ ?Pj vp 
+ (V0 • v) Vj + (Vj • ^)V0 + Pj = Fjî 

op 
o 

ÔSj ^ 
~ +V0. ^+^-780 = 0 

Pj=Co pj+eo Sj; 

j = l,2 (4. 22) 

(4. 23) 

(4. 24) 

where: 

.V — ^1 = 1 
» dt y’ J 

F. = 

V» V oo œ _ •¥ . - _ - _ _ . • -* dq 
2(V0X»),—♦ ri y (rxxiY JJ .1-2 

♦The solution of the zero yaw field is described in Section 3. 



The boundary condition at the body surface, Equation (4. 10), separates into the two 

sets of conditions, 

V”b = 0, û = 1’2> 
(4. 25) 

4. 3 THE SOLUTION FOR THE POINTED CONE* 

For the conical geometry, the equation giving the shock, Equation (4. 11), is most 

conveniently expressed in terms of the spherical coordinates, R, cu , p , (Figure 3), in 

a form giving the ray angle, u), as an explicit function of the radial coordinate, R, 

meridional angle, p, and time, t, 

F8S <4'26) 

The perturbation form for the shock is then (to the three lowest order terms), 

(4. 27) 

where: 

oo is the constant shock angle from the steady-state, axisymmetric, conical flow 
SO 

solution. The unit inward normal to the shock is given by: 

2 

(4. 28) 

*This solution is given in greater detain in Reference 1. 
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Figure 3. The Spherical Coordinate System 

and the flow velocity on the upstream side of the perturbed shock is: 

V"'Rr"0 + ei U"1 + e2 U"2} + ^ f Ve! v*l + 

'Í{e1w.1 + e2W„¡¡| 

(4. 29) 

where: 

UodO 

Uml = 

um 2 

= V ® cos uu80 

-V® (Œ sin («go cos cp + u)8l sin uu80) 

V® 
ÎT X eg 8ln ^80 008 'p “ V® sin li), so 

\ 

> (4. 30) 

23 
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V00O = — Va, sin IWgo 

Vool = — Voo (a COflUUso C08CP-t- ll)8l cos uu80) 

(4. 30 

Cont'd) 

Wos i = a Vx sin <p 

Wo°2 =^T" ^ 008 ^60 ~ xcg) sin V 

The consequential perturbation form for the normal component of relative 

velocity between the upstream flow and the shock is obtain from Equation (4. 15) as: 

2 

VVT = -V + > f V 
N® ®o j Nj (4. 31) 

where: 

Substitution of Equation (4. 31) into Equations (4. 16) and (4.17) gives the perturba¬ 

tion forms of the pressure, density, and velocity components on the downstream side 

of the perturbed shock. These resulting expressions must be equated to expressions 

for the corresponding variables in the field, evaluated at the perturbed shock, to 

obtain the proper boundary conditions for the perturbation Equations. The resulting 

conditions are: 

24 
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âPG 
p. (R.ujso, UJ8j + 

'W = %> 

àV, 
N« 

dp. 

Pi(R» ^so* ^ = “ du) 

âp 

“»sj +ÔV 
N“ 

0)=0) 
so 

vNj 

VN® = " V o 

VNj 

V = VooO 

'âu 
a 

Vj (R. '"so, <M) * (U^ R+Vœj U)'+wœj cp) -I— 
\ du) 

R + 

to = i%0 
du) 

U) Psj + 

U)=U)8( 

du), 
1 s%j-\ s4vn 

A VM (-V , p®, p JIR -_ R + . cp I - N 000’ ^ H oc/ \ 3R sinujgQ dcp ^1 àV 
N« 

/ 

VNj 

Vpioc = - Vc 

(4.32) 

j = l,2 

: 

In Equation (4. 32) the partial derivatives with respect to oí arise as a result of 

evaluating the variables in the field at the perturbed shock. The partial derivatives 

with respect to VN<XI are to be obtained by differentiation of the expressions indicated 

in Equation (4.16); expressions for them are given in Section 4. 4. 4. 1. 

To complete specification of the boundary value problem for the perturbation 

variables, it is necessary to give the initial conditions at t=0. Corresponding to the 

assumption stated in Section 4. 2. 1, this condition is that the perturbation variables 

vanish at t=0. 

Equations (4.21) through (4. 24) together with the boundary condition at the body 

surface, Equation (4. 25), the boundary conditions at the shock, Equation (4. 32), and 

the initial conditions, define two separate linear boundary value problems for the 

/ 
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perturbation variables. In these problems, the "motions” of the body, ä (t) and q(t), 

appear in inhomogeneous terms and play the role of "driving functions. " Because of 

the linearity of the problems, the solutions for arbitrarily prescribed functions, ã and 

q, can be divided into two parts which can be called the particular solution and the 

complementary solution. The particular solutions are defined as solutions of the in¬ 

homogeneous problems which reduce to the trivial solution (all perturbation variables 

equal zero) when ä and q are identically zero; the complementary solutions are defined 

as solutions of the homogeneous problems (obtained by setting ä and q equal to zero) 

which cause the complete solution to satisfy the initial conditions. 

On physical grounds, it is known that the complementary solutions must "die out" in 

time, and their decay time is some nominal multiple of the time it takes the body to move 

through its own length, ~ . Subsequent to this decay time the flow field about the body 

is given by the particular solutions alone. It is, therefore, only the particular solutions 

which are of interest here. 

The problem of determining the particular solutions of the boundary value problems 

for arbitrarily prescribed functions, a(t) and q(t), can be approached in several ways, 

e. g., by use of the Laplace transform. The approach taken here is one which reduces 

each problem to a problem of solving an infinite sequence of sets of ordinary differential 

equations having the ray angle, co, as independent variable. The substitutions which 

accomplish this reduction are all of the form: 

26 
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(4.33)* 

00 

In writing these series, it is assumed that 5(t) and q(t) are analytic functions. Also, 

it is recognized that there is no a-priori guarantee that these series are convergent 

for any given functions 5 (t) and q(t). 

The two infinite sequences of sets of ordinary differential Equations for the vari¬ 

ables, Pj>n(u)), etc., which arise from the substitutions of the expressions represented 

by Equation (4. 33) can be written in the common form, (j=l,2), (n=0,l,2,3... ). 

{(PoVJ.n+voP),n)sta"“} 

p w. =4. 
o j,n j,n 

(4.34a) 

V — V V + (n + K )(u u +-Íiü] = y 
o dw o J.n J.o J,n I TJ,n 

(4.34b) 

dv dv 1 d p. P, d p 
v + u v +v u +v —? + — —*P - -4— -r— + o , o J,n o j,n j,n ^ p dw 2 du; 

o o 
du) 

(n + „) u v = G. j»2 o J,n J,n 

(4.34c) 

dW1 P1 
Vo — + Uo\n + VowJ.n — + (nt,J.2»Vl,n ^J>n du; p sin w o 

(4.34d) 

dS 
J,n ♦ (n + ft. 0) u S 

duu 1*2 o J,n J,n 

Pj,n = Co2 pJ,n+ eo2 SJ,n 

d°U 
♦The "zeroth” derivative, — , is equal to a, by convention. 

dt° 

(4.34e) 

(4.34f) 

,, 
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where: 

^ n = ~ JVco i 8ln J»n o,n j,n-l 
UJ 

2 
Yj,n ‘ <1"fio,n)V*Uj,n-l ~5l,n6j,lVao sinu,+ io,nfij,2 V» (2vo + v®8ixiuj) 

Gj,n ' " (1“fio,n) VooVj,n-l ” 6l,n V" ^j.i 008 ^ + \2) + +V“ cosuu) 

^J,n = • Va,Wj,n-l l,nV“ (5j,i + 6j,2 coa^ + 

6o,n Ôj,2 {2 Va> cos ^ - v0 sin uj) -Vte2| 

J. =-(1-0 )V» s , 
o,n' j,n-l 

The uoundary conditions for these Equations can also be written in a common form. 

At the body, co=coB, the condition of tangency of the flow becomes: 

vj,n = 0 at w = wB (4.35) 

At the shock, co= w80, the perturbation variables, pj>n, etc., are related to 

the quantities, u>jfI1, which describe the perturbation in the shock shape by: 

^o 
Kj,n ] âuu 

ÒP„ 

^ = ^ + (n + 1 + 6 „) Y» cos a)80 
so J * “ 

dp *6 
3V. 

N„ 
w + 

j.n 
N = 

CO 
- v®o 

j.n ÖV 
N 

(4.36a) 

N = - v 
00 v 00 O 
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3uu 

âP2 
+ (n + 1 +6 )V« cos uj80- 

^80 J’ % 
N^= - V 

uu + 
3,n 

ooQ 

Ü2 
Xi,n ^vN V 

00 N®=-VooO 

(4. 36b) 

V 
(4.36c) 

U|,n=,n +1+S),2)AVll('v“0' p”’ V“8i""lso 

j.n ÔU), 

SAV, 

) = UJ, 

-(n + 1 + 6 )70.008^80 — 
3.2 av 

N 

so N® 
N00 = -V 00 O 

(I) 

(4.36d) 

j,n 

9AVn 

+ XJ.n5ÿ 
N®= - V ooO 

(4. 36e) 

w 
i»n 

ÛVN (“VooO' P®» P®) 

sin tu 80 
W +6 Voo (6. . +6, o costo ) 
j,n o,n j,l j,2 so 

(4. 36f) 

where: 

X J,n = "».n V" <5J,1 808 ^ so ^it2) + «‘-»o.n» V* “¡.„-1 

Equations (4.34) are ordinary differential equations with variable coefficients, which 

are determined by the solution for the axially symmetric conical field, Uo,v0,Po and p0. 

Jr 

é 
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j 

For j=l and n=0 the equation is equivalent to those derived by Stone (Reference 13) for 

the problem of cones at small yaw. For either value of j and any value of n (except n=0), 

the Equations and boundary conditions are complete, provided that the solution for the 

same value of j and a value of n which is one less, has been previously solved. For 

n-O, the equations and boundary conditions are complete without a knowledge of the 

solution for any other value of j and n. For any values of j and n, the problem is a 

two-point boundary value problem in which the boundary conditions contain an unknown 

constant, The equations have a singular behavior at the body surface where vq = 0. 

4.3.1 The Numerical Solution of The Pointed Cone Problem. 

The numerical method of solution of the problem is based on manipulated forms of 

Equation (4.34a through f). The objective of these manipulations is to reduce as much 

as possible of the numerical work to performing quadratures, and also to provide a 

convenient method of handling the singular point at the body surface. 

. 

j 

The manipulated forms of the equations are : 

from Equation (4.34e), 

where : 

30 

* 



and 

m = n + 6 
2,j 

from Equations (4.34b, c and e): 

H. 
m U y. + V G, + T J 

o + *: / -° ^ ° r ° ^ dU ,4.38) 
J V il) 

U) so 0*0 

and 

dui n y • - mH. + mT SJ 
J. = —f1- = (m+l)v = Ji-j,n 0 J»n 
j*n dw ' 7 j,n y (4.39) 

where: 

Hj,n iS a quantity related to perturbations in the stagnation enthalpy, 

Pi n Il J « H 
H = —— + u u + V V, -f T S, ; 

J,n P0 o J,n o j,n o j,n (4.40) 

from Equations (4.34d) and (4.39), and (4.40), 

ui n „ sin w + = w + l»n _ [ J»n_m+1 
,n j,n (m+1) sin eu "y ^ m+1 y 

W 
0 

m+1 

sin oo 
00=00 

80 

m+1 

sin cu 

j,nsincü+ y j,n ^o^j,n + Vodj,n ) 
_V Tm+TT / 

. m+1 
V ib 
O *0 

dco 

(4.41) 
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and, from the preceding Equations and Equations (4.34a and f ), 

,2 
du. 1 dA 

diïr~+ A d~ du) 

(m+1) r 
+ Bu 

jtn 

sin ou 

(4.42) 

where: 

(sin co) EXP (4.43) 

(4.44) 

(4. 45) 

with: 

r 
1 

P0sinu) 

(m+1) 

p V sino) o o 
H. + V sin col 
j,n o 

ÍP T +e ' 0 o o 
j.n 

(4.46) 
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^,n-CoWJ,„-(ra+2>^ UU 
P U 

O O 
—2— H n + 
n¿ J»n 

p U V J 
-Q O ? J.n 

P T +e 
(4. 47) 

co2 (m+i, ' ““ l 0-°2 ° 1 8 j.n 

Equations (4.37, 4.38, 4.39, and 4.41) give S. , H. , J and W. as linear 
Jtn j,n j,n j,n 

functions of the shock perturbation parameter, co. by substitution from the boundary 
j ,n 

conditions, Equation (4.36). That is, they give the variables in the forms: 

+ uu 
j,n 

+ H(2) id. 
j.n J,n 

+ and 

W. =W(1) + W.(2) uu 
J.n j.n j,n j.n 

(4.48) 

where the superscripted variables are known functions of co (or are known constants in 

some instances) which can be determined numerically by quadratures. With the super¬ 

scripted variables in Equations (4.48) known, the quantities F, and T which deter- 
^ ¿t 

mine the right-hand side of Equation (4.42), are also known in the sense that the 

superscripted quantities in the expressions: 

ri = r1(1) + ri(2) 

(4.49) 
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are known functions of o>. Thus, Equation (4.42) is a second-order ordinary differen¬ 

tial Equation of the form: 

2 
du 1 dA du 

. 2 + Â duT ~^ + n = T1 + T2 ^ n duj J • n i 2 j. n 
(4.50) 

where : 

r i and t2 are known functions of w, and w^n is an unknown constant. The solu¬ 

tion of this Equation involves two additional constants of integration, K and K , and 
1 2 

can be written in the form. * 

(1) (2) 
Uj.^u. + U . w +e K C. K- 

l’n J»n j.n gj,n 1 j,nK2 (4. 51) 

where: 

b isa solution of the equation d^ C 1 dA d^ 

1 ^ -Jiî.BC 
d/~ A duj + Bsj,n 0 

satisfying the conditions C. (a)n) = 0, dC 
j. n B 

(For m = 0, the solution is C • = v ) 
l,o o 

ou 

Li1 
duu 

= - 2^(0¾) 

w = uu 
B 

g , n , n J duu 

Ai \ 
% j*n 

(4. 52) 

♦This form is obtained from the standard form for the general solution of a second 

order ordinary differential Equation - e. g. as given in Reference 14 by performing 

an integration by parts. 
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(k) 
u. =- (m+1) g 

J-n j,n (m+1) C 
j.n 

(k) (k) 

rg " gj,n lÇ (4.53) 

where: 

so 

(k = 1,2) 

uu 

uu 
so 

diiJ (k = 1,2) 

The perturbation variables, Vj>n, can also be expressed in terms of the three constants, 

cOj^n» \ and K2, by use of Equations (4.39), (4.48), (4.51) and (4.53), 

d) (2) 
V. 
J.n 

(m+1) d uu (m+1) duu 

where: 

(m + 1) 

(4. 54) 

(k) (k) 
I* d£. lr dg 
g j.n - b j,n 

duu duu 

The Equations, as written, contain several limiting forms ol the type Ox« and 

as the body surface is approached. With one exception, J these limiting forms have 



I 
fe1" MmNMrMW* ¡itWflli'NlWlM; IMWttl it II tuf |. 

finite values and the final results for the perturbation variables are all finite at the body 

surface. The following limiting forms are encountered. 

m 

1. Equations (4.37), (4.38), and (4.41) contain terms of the type 1 = d 
of . m 

✓ V Itf 

II) 

V 1|/ 
(JU 0 0 

so 
where m ^ 0 (for M=0, F = 0 in all cases) and F(uj) is non-singular at the body 

surface. As Cie body surface is approached ill m-»0 and 
o 

(ui) 
in 

/ 

in V 
so 0 0 

dw 
m •®. How¬ 

ever, use of L'hopitals rule and the equations given in Appendix II gives lim I = 

in - in 
B 

muo<V ' 
These terms are handled numerically by use of a quadrature 

formula having the same singularity as the integral. 

2. Equation (4. 39) requires division by zero at the body surface. For m= 0, the 

numerator of the fraction is identically zero so the limit is zero: for other 

values of m the limit is not finite. However, this infinity does not appear in 

the subsequent numerical work as exp) lined in items 4 and 5. 

3. Equation (4.52) for gj >n approaches the form 0 x œ at the body surface due to the 

boundary conditions imposed on Ç The limit is again finite and is: 
J »n 

gj,n(V = (4.55) 
2uo(V A(uiB) 

The first derivative of g. >n which is needed in Equations (4.53) and (4.54), ap¬ 

proaches the form ® - ® at the body surface and the finite value of this limit is: 
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uu 

dg 
j»n 

duu 

UU=ÜU 

dC. n 
Ai —h"*"” j,n da) 

B 

B 

(2“o)^b)-2“0(“B) / Bdco 

uu 
uu=uu so Vd(" / 

so 

4. In the computation of uW , (Equation 4. 53) integrals of the form: 
J J1 

in 
•B 

I = 
r 
I cp J dir, 
/ j,n 

(4.57) 

SO 

where; 

<pis free of singularities, are required. Although is infinite at the body 

surface, these integrals are finite. By use of the following expression for 

(equivalent to Equation (4.39)). 

d H. dS G. 
_Ml - Tq ),n - j, n (4. 58) 

dm diD 

}.n 

and an integration by parts, the finite values of the integrals can be obtained 

numerically from Equation (4.59): 

I = — Zi S - H \ 
uq y o j.n j,nl ” iH. -T Si ^ u y j,n o ),n J 

ID-W 
SO 

‘■ttäw\Uo/ )ndulVUo/ uo 
d'D 

(k) 

n 

(m+1) 

(4.59) 

UJ 

(k) y*idu) 
F e id J 

5. At the body surface, tie term J— 80 " —appearing in Equation (4.54), 
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assumes the limiting form ® - » (except when m - m u except wnen m- 0). However, when the 

pression for arising fron, EqUation(4.46, Is substitut algebraically ,„to 

this expression, Ibe Infinities canee! M^oul the appUcallon of L.„opita,8 rule 

to give a finite result. 

The numerical solution of the problem proceeds in the following order (the axisym- 

metric conical flow solution Is assumed lo have been pre-computed. 

1. Compute and from the formulas which arise from substituting the 

boundary conditions a. the shoch, Rations ,4.36a, b, and c, into Equation,4.37,. 

2. Compute H< ^ and from the formulas which arise from substituting the 

bomidary conditions a, the shocK Equations ,4.36a through 4.36e, into Equation ,4.36,. 

mpute Wj )0 and Wl o from the formulas which arise from substituting the 

boundary conditions at the shock. Equations,4.36d and4.360, into Equation 4.4,,. 

4- Compute C, and Vo as described following Equation ,4. 51,, using finite 

ex¬ 

difference methods when m ¿ 0. 

d g 
-! 
du 

ïW T<2) r(^)_i t(2) , 

5. Compute and d V from Equation ,4.52, and its derivative 
du 

h. Compute ï Í and and the remaining factors present in Equation ,4. 53). 

7. Compute V ^ and * from Equations ,4. 54). 

8. Compute tee constente. K, and K2f from the boundary conditions, 

Equations ,4.35, 4.36d, and 4.3Gc, and Equations ,4.51 and 4.54,. 

9. Compute u10 from Equation (4.51), v| () from Equatlon (4 ^ ^ ^ H ^ 

and WI 0 from EquaHon ,4.48,. from Equation ,4.41,. Elation 

(4.40) and P ^ g from Equation (4. 34f) 
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10. Repeat the preceding sequence for n= 1, 2, 3,.. nmax, and for j = 2, n= 0, 1,2,... 

nmax to generate as many perturbation coefficients as desired. 

4.4 THE SOLUTION IN THE SUPERSONIC REGION* 

4.4.1 The Coordinate Systems. 

The coordinate systems used in the unsteady supersonic solution, are shown in 

Figures 4, 5, and 6. 

y 

Figure 4. The Coordinate System and Angle of Attack 

This section appeared originally in Reference 2. 
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Figure 5. The Cylindrical Coordinate System 

The X direction coinciden with the body axis. The y axis lies in the plane defined 

by the X axis and the vector direction of the velocity of the center of gravity. 

The z axis is in the direcUon which makes the x. y, z system orthogonal and right- 

handed. The r and <pdirections lie in the y-z plane. The x, r. <p system is an ortho- 

gonal cylindrical coordinate system. 

The flow at any point in the field can be thought of as being composed of two com¬ 

ponents: V which lies in the meridional planes (x - r planes); and w which is normal to 

the meridional planes. The flow direction in the meridional p’anes will be called 6 . 

and the two components of V in the meridional planes will be labelled u and v. These 

quantities are illustrated in Figure 6. 

4 
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Figure 6. The Velocities in the Meridional Plane 

4.4.2 Governing Equations 

The Equations which govern the unsteady flow of an inviscid, non-conducting gas 

Equations (4.21) through (4.24), are written in the triorthogonal coordinate system de¬ 

scribed by the following unit vectors: 

a unit vector, d , in the direction of the projection of the velocity vector (V) in 

the meridional planes 

9 -* U -• V -• -4 

-Ö = X — + r — -= X cos 9 + r sin 9 (4.60) 

-4 

a unit vector, n , normal to and also in the meridional plane. 

—4 “4 V “4 U -4 —4 

n = -x— + r—=-xsin0+r cos 9 (4.61) 

and a unit vector, 0 , perpendicular to the meridional plane (axisymmetric case only). 
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In this coordinate system, with the velocity vector expressed as 

V =vd+ W CD 
(4.62) 

the governing Equations become: 

Continuity Equation ^ 

V« 
L /(1-6 V t -1_ /p y t p V \ d<PoVo) 

( o.nj ),n-l J.n Pi.»o) + 9jin — 

de. 6 d (n w ) uoi n d0r. 6P„V 9i 008 9 
+ Z “ Po j*n' + p V _ J>n - 0 V fi 0 + o o j,n o ^ 

r d® 0 0 dn 0 0 J.n 7J -T- <4* 
63) 

de 6 (p V. + p y ) 

+ to.VJ.n+W7^+ —D Vo 
dn r 

o 

The three components of the momentum Equation: 
** 

V» (1-6 J PV — o 
) O V dP< n dP dV 

.0» P0VJ,D-1 + —J? +e. —2. + ‘’o’o _Ji2 + °oVoPj,n (4.64) 

dV 

+ <PnVi n+V«P1 J -2 = P Fi O j„D O j.n o j.n 

Xs (1-6 )V p e + ^l;n -0 + pV2 /d9J’n 
L °’n ° ° J*n’1 "’n deá 0 ( 

de 

“ W +^— 1^» 
o o 

(2 

2 \ d9° -I- - P G. + |2 p V V +V Pl . 

*n ° J*n/d4 0 J*n 

*The symbol 6 is defined to be 
6 = 1 for the axisymmetric case 

= 0 for the two dimensional case. 
•♦Equation (4.66) does not apply in the two-dimensional case. 
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Yí 
L 

(\ , dP. dw 
1-6 jpw^ +i Ji£+pv -JiiL+pVw 

o,ny j,n-l r d<p Ho o Ho o j,n 

sin 0 
-= p H. (4.66) 
r 'o j,n ' ' 

The energy Equation: 

Y* 
L 

/ \ /dS- ds\ 
fi-6 ) s. , + V [ -iii + e. —Y) = 
\ o,n) j.n-l o I J,n dn / (4.67) 

and the state relations: 

âP . ÒP a 
P),n= ã? Pj,n j,n 

Z. = p, + S 
J»n òp H,n ôS j,n 

ôh òh _ 
H. = ^— p. + T-r- S 

J»n âp j,n òS j,n 

Tj,n Z Rp 
o o 

p4 - p. (z RT + RT p -S. ÍrT p 
j,n ),n \ o o o o Sp/ j,n y o o àS/ 

(4.68) 

(4.69) 

(4.70) 

(4.71)« 

The terms F. , G. and H. which appear in Equations (4.64), (4.65), (4.66) 
j,n j,n j,n 

are acceleration terms resulting from the fact that the coordinate system is moving 

with the body. They are the components of F., Equation (4.22) and are: 

F. = -Ô. Voo sin 0 cos <p for i = 1 
j,n l,n o 

= 6 Voo sin 0 cos <p + 6, r cos 0 - (x-x ) sin 0 1 cos <p for i = 2 
o,n o l,n L o eg' oj 

* Equation (4.71) is derived from tiie equation of state by differentiating with respect 
to the appropriate motion. 
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I GJ,n = " ®l,n V«C0B ®0 cos <P for J = 1 

= ' So,n[2Vo'V«co88o]cos'|,"ii,n [,x‘xCg)cose0+rsin e0] cosVfor)=2 

Hi,n = ôl,nV" 8‘" J = 1 

= So,n [2 Vo cos 6o ' V.] sl"0 + 4i,n(x‘ xcg> sta ® 'or j -= 2 

The following Sections will combine these equations with the boundary condi¬ 

tions and prepare them for numerical solution. 

I 4.4.3 Removal of Dependence on Meridional Angle* 
—--- 

Each of the perturbation parameters, p , p , etc., is a function of the three 
J*n j»n 

variables, x, r, and ¢, the time variable having been removed by means of the per- 

turbation expressions Equation (4.33). Each of the perturbation parameters can be 

expressed as a Fourier series in p. Before doing this, however, certain symmetry 

properties for an axisymmetric body in unsteady motion should be noted. For motion 

about the z axis; i. e., the angle of attack and pitch motions, the following symmetry 

relations can be deduced at any given x and r: 

for j = 1, 2 and n = 0, 1, 2, 3 ... 00 

4 



I 

cal relations exist for all perturbation parameters except w , for which 
j.n 

the following is true 

w. 
j»n 

ldtn 
cp = - w 

jfn 
S, 
dtn 

-CP = - w 
j.n 

>n 

dtr 
TT-J (4.74) 

Consideration of Equations (4.72), and (4. 73), and (4,74) leads to (he conclusion that 

if the perturbation parameters are expanded in Fourier series, it is possible to ex¬ 

press each parameter w,th either a sine or a cosine series. None of the parameters 

requires a complete Fourier series, i.e., they are either even or odd functions. 

For the pitch and angle of attack motions () = 1, 2), the Fourier series expansions 

are: 

œ 

l.n ^j.n, m = l 
m cos mcp j =1, 2 

CO K 

Vj,n ' \n,mC08mcp ) ” = ». 1. 2. ..." 

etc., except for the meridional velocity which requires a sine series: 

00 

Wi n = * j wt sin m cp i = 1 2 j*n j.n.m ^ J a. ^ 

n = 0, 1, 2, ...® 

The purpose of expanding the perturbation parameters in Fourier series is to 

eliminate the <p - dependence from the system of perturbation Equations This is 

done by substituting Equation (4. 75) into Equations (4.63) through (4.71). Before 

doing this, it is useful to note that no terms with m greater than 1 are present either 

(4.75) 

( 

t .,: 

A J.fr 
‘tó ! 
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in tv i governing equations, or In the boundary conditions which are applied to them 

t he absence of terms with m greater than 1 in the governing equations and boundary 

conditions means that all the Fourier coefficients p. V w 
vj,n,m’ wj,n,nv etc., 

except those for m = 1. can be set equal to zen>. Because this leaves only one 

non-zero term In each of the Fourier series expansions (Equation (4.75)) the sub¬ 

script, m, will be dropped from our notation. Substitution of the Fourier series 

expansions Into the governing Equations, Equations ,4.63) through ,4. 71) results 

in the following system of Equations. The results of this substitution are the 

same for both values of j. These equations apply to the axisymmetric case only, 

hence 6 has been set equal to unity. 

*Fj,n’ Gj,n **d Hj,n 
(—) \C08 ip / times Fj>n, Gj>n and Hj n respectively. 
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Yi-ô \p 
I o.ni o 

7 dp< n dP 
V« 0. , + i,n - fl 

0 i--1 HT- 9i. 
O 

dPo zfëi „ - de 
n ¿J +PoVo (— + Ôi — 
H Wo j,n dn0 

+ ^2 p q V + V 2ñ \ d^o — 
W 0 i.n Vo °J.ny 6j0 = Po GJ,„ (4.79) 

L 
4“ô W - PJ»n j. dWi n P V 
( o.^.^ ~-oV0-¿^8toeo,in = PoBj_n (,80) 

T 00 
~L 

[1-6 \s 
\ o.iy j,n-l 

rdS. 

o 

dS 

+ Vo|— + 8- — 
■W0 J'“dnol=» 

ôp p = n w M — âp 1 _ G 
J'D P^^P + SJ.nàs%^ Pjtn-^S 

2 j.n 

(4.81) 

(4. 82) 

h. ^ n ~ + s ^ 
j,n J.n Hj,n ÖP 

(4.83) 

1 r 

•n = ^P'”' (Z“RT» +RTo’o If)- v(»V0 H) (4.84) 

Equations ,4.77, ttrough ,4. S2, are projected „„to the aero-yaw chatoctertattc 

^d ,0™ ^ b““ - ~ -uttou. - Equ.tlon (, 83) 18 ^ ta 

^ boundary condttton. a, .e ahoch wave. ^.UoB (, M) l8 Med ^ __ 

pute «te temperature perron, ^r «m preaaure. dena^, a. entropy penurh.- 

^ ^ CalCUlated- StaCe ^ «o* fle.d parameters appear ta these 
-e reasons tor project*, «,... ^ 0„ ^ ^ 

become apparent In Section a. 4.5 of thl. report. 
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equations, it is apparent that the zero-yaw problem must be solved before the pertur¬ 

bation flow field is calculated. 

4-4-4 boundary Conditions at the Shock Wave 

The pressure and density just downstream of an oblique shock, as well as the 

change in magnitude of the component of velocity normal to the shock, can in general 

be expressed as functions of upstream pressure, density, and normal component of 

velocity: 

PB=Fl(p.,p„, VNJ 

% ' VN„ = •'s6’“" VnJ 

h each case the only argument which is dependent on the perturbations in the motion 

of the body is VN¿ * Hie Taylor series expansions of Equation (4. 85) about their 

values in the zero yaw field then are: 

p8-fi <p.- p.. vn 
“o j n ÒV 

N 

0 j n âVN 
00 

♦The velocity VNoo must be given relative to the shock wave. 

(4. 86) 
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V 

V 

W^^V^EE— 
% d”o 

» j (4.86) 

J n àv 
N d 00 © dt 

n (cont. ) 

ps, ps, and VNg are the conditions which exist just downstream of the perturbed 

shock (point s in Figure 7). 

Since the present calculations are being carried out on the zero-yaw grid, the boundary 

conditions are needed at point 3, rather than at point s. The pressure and density at 

point 3 are given by: 

wfrEE- 
. j n 

where Rs is the value of r at the shock wave. 
8J.n dtn 

(4.87) 
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"W 

ü'tramm 

and 

p = p 
m3 ÔT j n BJ,n dtn 

11 (4. 88) 

From Equations (4.86), (4.87), and (4. 88)* it can be concluded that: 

âF. N 

l'11 äVN /d” ajl 

dt 
n 

0Pn 
T2- R òr s 

j.n 

(4.89) 

and 

ÔF, 
dV, 

N 

j.n aVN / dn 

“i 

dt 

ÔP 

ôr s j.n 

(4.90) 

ÔF. ÔF, 
—. „r P P _1 and - are to be used. Equations 
The zero-yaw values of j- . ÔVM 

r r Noo 

(4. 89) and (4.90) will provide two of the boundary conditions at each shock point, once 

the other derivatives on the right hand side are determined. Expressions for these 

derivatives are obtained in Sections 4.4.4.1 and 4.4.4.2. 

Three other boundary conditions will be needed at the shock points. If expressions 

similar to Equations (4. 87) and (4.88) are written for the velocities u, v, and w, then 

the following statements result: 

♦See also Equations (4.33), (4.75), and (4.76). 
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Equations 4.91 through 4.93 can be put in "perturbation” form through the following 

definitions: 

1 i 
V 

aJ _ 
d vi « ■ 

“3+ ^ j ?Rsj,„ "u” + (\'v^ 

=V ^ 
(4.91) 

u 
"iiÆ ’ 

\TT “"“j ~ - 
v3 sr Rs ¡T = v + F3<"8 • r* j n j,n dt ® J 8 

-,.¾ ES. 
d a. 

S -n ~ W + Fo^ * ^P) 
j n 8j,n dtn » 3' s ^ 

(4.92) 

(4.93) 

ii 

.n 

U_ - V + U 
00 00 i 00 n 

J n j,n dt 

V = 
00 

a 

j n “j.n dtn (4.94) 

1 

w-EEw 

,n 
a. 

j a *i,n dtn 

1 
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(4.95) n . r 
s 

An d a 
j 

Expressions for , v and the other terras on the right hand side 
j,n ®j,n j,n 

of Equations (4.94) and (4. 95) will be derived in Section 4.4.4. 3. If Equations (4. 86), 

(4.94), and (4.95) are used in Equations (4.91) through (4.93), the perturbations in 

u, v, and w can be expressed as: 

dV_ > 
ôF N òu 

T° ^ Rsi,n 

’• <9) 
(4.96) 

v. =v +F0 +r| j,n ®. 3 j,n 
j,n o J 

à v 

or s. 
J,n 

(4.97) 

dV 
dF3 N 

/dnaA 
(4.98) 



: \ 
■ > 

V 'v r \* 

— • ' "% 

The symbol F„ is used above to denote F« (poo, pœ VN ) evaluated at VNœ = . 
"o 00 ® 

Finally, the perturbation scheme can be applied to the trigonometric relations: 

u = q cos 0 

v = q sin 0 10°) 

To get: 

V =1T. cos 9 + v. sin 9 
Vj,n î*n 0 J-n 0 

(4.101) 

u 

j.n 
^,n sin 9 + -lí— cos 9 
V 0 V 0 
vo o 

(4.102) 

-fc 2 2 i/2 
where V, „ is the change in the magnitude of V. It is not (u, n + vi n) 

j, n j i j * 

Note that the 0Q which appears in Equations (4.101) and (4.102) is the zero yaw flow 

direction downstream of the shock. Thr 0œ which appeared in the preceding Equa¬ 

tions is the flow direction upstream of the shock. 

Equations (4.101) and (4.102) together with Equations (4.96) and (4.97) give: 
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mm 

I J.n V, 
ÔF„ dVN àu _ 

— 3 00 o ~ 
u + F. T . + r, --—"— R 

j,n o 
3 j,n o ôr s 

j,n 

sin 0 

(4.104) 

V» +F3 
j,n o 

d V 
N àv 

00 0 

N jn 

(¾ 
^ R or s. 

J,n 
cos 9 

Equations (4. 89), (4.90), (4.98), (4.103), and (4.104) are the boundary conditions 

needed in the shock point calculation. Expressions for T0, r¡o> lQ, Tj n, T)j>n. 

dna 
e and dVN /à-L are given in Section 4.4.4.2. à âFg/òVj^, 

j,n »/ dtn 

and ò F3/â Vn in Section 4.4.4.1. 

4.4.4,1 Determination of d F., /d VN^, dFg/dV^ and from the Govern_ 

ing Relations for a Normal Shock 

The go/eming Equations for a normal snock are: 

continuity: 

Ps VN_ = ^oo VN, 
(4.105) 

momentum: 

Pg VN + P2 = P® VNœ + p® 
(4.106) 
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energy: 

10 10 
hc + 4 = h + 4- VM s 2 Nß 00 2 (4.107) 

and state: 

h = h (p, p) (4.108) 

where subscript œ indicates conditions just upstream of the shock, and the subscript s 

indicates conditions just downstream of the shock. Equations (4.105) through (4.107) 

can be differentiated with respect to VNœ . If this is done, and the definition of F^, 

F2, Fg in Equation (4. 85) used, the following equations reuult: 

ÖF ÒF, 

s av 
N 

ns av = p 
N 

(4.109) 

0F3 o *F2 0Fi 

Ps NS 0VN Ns ÔVN„ 0VN 
= 0 (4.110) 

dF, 

ÒV. 
+ V 

N 
N 

Òhs SF2 

ôp ôvn + òp avN 
(4.Ill) 

Equations (4.109) through (4. Ill) can be solved algebraically for d F /ò VN , 
1 ^ oo 

aVdvN . «nd àF3/dVN : 
GO w 
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äFj ^(Vn.-VnJ 
av 

N 
[VN - V + I 8 oo 8 J 

ÖF2 P-<VNs-V 

ÒV. 
N 

nj rvN8 + 
• =..¾] 

>(4.112) 

ÔF 

ÔV, 

« i r 0hs p» aM 
- - i[vn6 - VN,>+ ^NS (Vn8- vnJ äF (Vns-VnJ^J 

where 

^h,, òh„ s s 
A = vN d - P. —) - P. s òp7 's òp 

(4.113) 

Since the right hand sides of Equations (4.112) and (4.113) require only values that are 

known in the zero-yaw flow field, the three derivatives ò F,/ö VN , ò F2/ò VN , and 
^00 oo 

òFg/ò are completely determined. 

Equations (4.112) and (4.113) will be used in the shock boundary conditions, Equa¬ 

tions (4.89), (4.90), (4.98), (4.103), and (4.104). 

4.4.4.2 Determination of Quantities Dependent on Perturbations in the Shock Wave 

Shape and on the Perturbations hi the Velocity Upstream of the Shock. 

a. Derivation of T0, g0, rj n, T7j>n, ^ n. 
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If the Equation of the shock surface is expressed as: 

dna 
n8 lx, ,, ^ - r = 0 (4,114) 

The unit inward normal to the shock surface is given by: 

VR 

n s |vR 

ÒR 6 ÒR 
—* 3 -* -» S 
X — - r + cp —- T— 

ox R ocp 
_8_ VôR 2 /6 ÔR \: 

Tf -+(h-9t) 

(4.115) 

Equation (4.114) can be expressed in the perturbation scheme: 

R = R (x) + 
s so' 8 

J n j,n 

Hn d a, 

R8 ^ —TT »j ,,n 
dt 

(4.116) 

then 

_£ =_52 + V > _ii2_I 
àX ÔX àx O 

j n dt 
(4.117) 

and 

àR 
_G 

ôcp 

ôR n 

ImJL-J âcp n 
J n * 

(4.118)* 

* Equations (4.118), (4.121), and (4.124) do not apply in the two-dimensional case. 
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am’ 

? -Er. ,n+l 

. 8i j*n+1 j n j,n dt 
(4.119) 

/SR \ 2 /ÒR V y - y + 2 
àR ÒRs. dna 
__soy^Y^_hn_Jy 
òX ò\ dt0 

j n 

and 

ôR \ 2 
U%) 

\\ Ò'V 

(4.120) 

= 0 , if higher order terms are neglected, then"n becomes: s 

(4.121) 

(4.122) 

It can be noted that: 

àR s 
-2. = tan a 

dx o 
(4.123) 

(where a is the local shock angle measured from the x-axis) and that: 
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(4.124) 

to first order accuracy. 

Substituting Equations (4.123) and (4.124), into Equation (4.122) and multiplying both 

numerator and denominator by cos a : 
o 

n = 
s 

sin o + 
o 

cos o 

àR .n 
s. da 

_hn _J 
0 ^ JAn òx dt 

-r cos a + cp 
o 

cos o 

s 
. 0 j n 

J»« s, da, 
J.n J 

ôcp dt n 

sin cr + 2 sin a cos a 

j n 

ÖR dna 

—hi _! f cos2 a 

âx dtn 0 

(4.125) 

The denominator of Equation (4.125) can be rationalized if the numerator and denomina¬ 

tor are multiplied by 1-sin o cos a 
o o 

SR ,n 
s. da, 

_M_J 

dtn 



ÄP*. 

+ cp 

», II 
j n 

s. d a. 
j.n 

ô cd dt 
n 

(4,126) 
(cont. ) 

Comparisons of Equation (4.95) with Equation (4.216), permits the following con¬ 

clusions: 
\ 

T = sin o o o 

T) =-cos a > 
'o o ' 

«0 = 
= 0 

(4.127) 

/ \ 

ÔR 
8 

_ 3 j,n 
T. = COS 0 --r11— 
j,n o ôx cos3 a j.n 

o ÔX cos <p 

ÒRS 0RS 
t). = sin a cos2 a —---11 = sin a cos2 a —* C°8 ^ j.n o o ôx oo 5x 

ÔF COS 0 8. cos 0 
i. o J,n o - t = —- —-J—  --- R sin <p 

> (4.129) 

*j,n Ra d(fi R„ s 8 0 

or after removal of dependence on <p: 

ÒR 

7. = cos3 o ———— 
j,n o òx 

8- “j.n 

/ 

\ 

ÒR 

l, =- cos a - sj,n o r 

T). = sin (T cos2 an — 'j,n o o ôx 

j.n 

(4.130) 

/ 
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b. Derivation of òVN et 

The component of free stream velocity normal to the shock wave consists of the 

normal component of free stream (absolute) velocity, and the normal component of 

the shock wave velocity: 

ÔR 
n • r 

s dt 
(4.131) 

where: 

Voo is the free stream velocity 

—♦ 
ng is the unit vector normal (positive inward) to the shock wave 

p 
s is the shock wave radius. The free stream velocity vector can be ex¬ 

pressed in the terms of its components: 

= MVœ + a.uj + ? + Î 6 (4.132) 

i 1 i i 

where: 

Voo is free stream velocity in the zero yaw steady state case, and 

Uooj* voo j» 811(1 w®j are perturbations in the free stream velocity (see 

Section 4.4.4.3). 

The components of the vector normal to the shock have been expressed in the perturba¬ 

tion scheme: (Equation (4.133) is the same as Equation 4.95) 
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wr 
rp^' 

» 

jn d a 
= t +yy T _ O j.n dtn 

j n 

jn d a. 

0 J,n ^ 

- r = , + VV (4.133) 

► _ dna 
'••cp = ? + W? _L 
8 0 J*« dtn 

J n 

Equations (4.119), (4.126), (4.132), (4.94, and (4.133» can be combined in Equation 

(4.131): 

Vv =V» N 00 
00 

Jn d a. 

j n 

, + n y +Ç w 6 la (4.134)' 
j 0 “j ° "j I J 

v-v-' A4;1' 

j n j,n dt(n + 1J 

*m = n when j = 1; m = n + 1 when j = 2. 
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Differentiating Equation (4.134): 

Æ) ■ àV 

(i-S )ti R 
0,n 0 8j,n-l \ L ) 

Vr, +6 (•ru +riv +§w 6) 
00 j,n o,n o ® o ® o ® 

J J J 

(4.135)* 

Using Equations (4.127) and (4.130), Equation (4.135) becomes: 

'a\\ g âRsi _ 
âVKT /àl-I = V cos a -r—— + 6 (u sin CT - V cos a ) 

N_ ^tn I ® o ox o,n 0 œj 0 

(1-6 )/rs \ V" 
°'n\ j,n-l/ L 

(4.136) 

*fii the equations leading up to Equation (4.134) the term_which appears within 
dt11 

the double summation should, in every instance, be multiplied by (if- order 

to be consistent with our notation (i. e. with Equation (4.33)). It has been omitted in 

order to simplify notation. However, in going from Equation (4.134) to (4.135) we 

divide by| (if (See Appendix VI for a similar step). It is this division which 

causes the quantity to appear in the last term of Equation (4.135). 
JL 
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4.4.4.3 Derivation of the Expression for Free Stream Velocity 

Figure 8 shows a two-dimensional sketch of a right handed rectangular coordinate 

system (x, y, z) with origin a distance Ip forward of the center of gravity of the body. 

The x-axis coincides with the body axis. The y-axis is perpendicular to the x-axis, 

and lies in the plane defined by the x-axis and the vector direction of the velocity of 

the center of gravity. 

Figure 8. * Tw„ -Dimensional Sketch of a Right-Handed 
Rectangular Coordinate System (x, y, z) 

A second coordinate system, (x, r, <p) is shown in Figure 9. The unit vectors, 

r and <p, lie in the y - z plane. The fluid velocity, relative to the body-fixed coor¬ 

dinate systems, at any point in the free stream is: 

Vœ = - Vcg - ñ x (X [x-lp] + rr) (4.137) 

♦The body in the Figure 8 is intended to represent either a pointed or blunt body of 

revolution, or a two-dimensional body. 
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where: 

O = z a2 

VCg = - xVœ coe ax + yœ Vœ sin cy1 

(4.138) 

(4.139) 

Note that Qig is an angular velocity, while is angle of attack. This inconsistency 

in nomenclature is permitted because it results in a considerably simplified notation 

throughout this work. 

) S 
\ ! 

Figure 9. Cylindrical Coordinate System (x, r, <p) 

The y and z unit vectors can be given in the (x, r, <p) system: 

y = r cos (<p Ô) - <p Bin (<p 6) 

z = r sin (p Ô) + V cos (<p 6) 

Substituting Equations (4.138) through (4.141) in Equation (4.137): 

^oo = * Lv® + a2 r 008 ^ 6)1 

+ r [- Y,» ax cos (<p 6) - a2 (x - Ip) cos ((p 0)] 

+ ^ (Vo» sin (<p 6) + a2 (x - Ip) sin (so 6)] 

(4.140) 

(4.141) 

(4.142) 
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The approximations: 

cos a1 = 1 

sin ûj = a1 

have been used in Equation (4.142). 

In Section 4.4.4.2, the free stream velocity was expressed as: 

V« = x(V + ]Caju»j) + ^Sv®jaj + ï ¿LW£0jaj6 (4.143) 

Comparison of Equation (4.142) with Equation (4.143) leads to the conclusion that: 

u = 0 ** oo • 

= + r cos ((f> 6) 

for j = 1 

for j = 2 

(4.144) 

v<»s = -v® 008 (<P0) 
’J 

3 

for j = 1 

= -(X - Ip) cos (<p6) for j = 2 

w.{ = VOT sin «pô) for j = 1 

= (X - Ip) sin (<p6) for j = 2 

(4.145) 

(4.146) 

4.4.5 The Characteristics Solution 

Solution by the method of characteristics entails finding those lines in the flow 

field which may contain discontinuities in the spatial derivatives of the flow field 

parameters, but not in the parameters themselves. This can be done at any point 

in the field by arbitrarily placing a line at an angle ß to the zero-yaw streamline 

direction. If a differential length along this line is called dl, then the relatioiv 
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. f 

dF 

57= cos 0 öo 3in P (4.147) 

is seen to hold, where F represents each of the flow field parameters which appear 

in Equations (4. 77) through (4. 82). Equation (4.147) then represents a matrix of 8 

Equations. In order to determine what values of ß (if any) will determine the desired 

dF dF 
lines along which the various — and — may be discontinuous, Equations (4. 77) 

djJ dn 
o ° 

through (4. 82) and Equation (4.147) must be treated as twelve algebraic Equations in 

dF dF 
the twelve derivatives represented by-« and — . The desired values of ß are 

d>o dn 
O O 

found by setting the determinant of the resulting coefficient matrix equal to zero. 

The values of ß for which this determinant is zero are: 

ß = 0 (4.148) 

and 

/3 = ± sin 1 w= (4.149) 

Equation (4.148) represents the zero-yaw streamlines, Equation (4.149) the zero-yaw 

characteristic lines. If the twelve algebraic Equations are further investigated to deter- 

d F d F 
mine under what conditions the derivatives —r-j— and —— are indeterminate (rather 

^o ^o 
than infinite), no further conditions (beyond Equation .'4.148) are found necessary on 

the streamlines. On the characteristic lines, however, the following conditions must 

hold: 

on the left running characteristic [/3 = + sin 
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d0J’n + ^7+ P V 
oo 

X1C0 

PV2 
0V0 

QVn 0 0 

on the right running characteristic = - sin’ 

= 0 (4.150) 

dej,n dl PrtV o*o 

-2- dPi n 
M -1 —ilü. 

di. 
Xic 1 o 

P V ovo 

■i- M2 
o 

P oo 

0 (4.151) 

b Equations (4.150) and ,4.151) the differential lengths along the left and right running 

characteristic lines are denoted by d| and i¿ respectively. X, and ^ are known 

funcUons of the unknown flow field parameters (but not of their derivatives), which 

result when the Equations being investigated are solved for the derivatives of the 

flow field parameters. They are given in Equations (4.155) and (4.156). 

■me solution can be carried on to solve for eleven of the derivatives -íí> and 
d F dd 

in terms of the six perturbation flow field parameters F, and the twelfth“ 
dp. n 

derivative-^ . Some of these solutions will be in indeterminate form, and 

therefore trivial. The non-trivial solutions are: 

dw 
j.n 

P V 
0*0 

(4.152) 

dS. 
J,R 

d^T 
o 

(4.153) 
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dqi n 1 dpi n 
—4^ =>-iiü- + _i_ 
d«0 CoVo Uo C~v 

(4.154) 
0 0 

\3, X4, and À5> like Xj and X2, are known functions of the flow field parameters. 

The expressions for the five X are: 

dpo d9c sin fU P„ dV„ 
i-vi,nL^-+ ^oïr-+8v 

A = - V ^ ^ «Vol 

r ’ V0 
(4.155) 

- w -- - 0 
j.n Lr J J,n 

V e o o dS 

C 2 dnn 
Co 0 

- P V 
d9 6p y cos 9 

o . O 0 0 

dpft 0 \j tv„a5- -n-di- 1 dp0 
V dn 

o o 
+ 

sin 9 
5 -2 -Oy 

o r - P j,n 

d9 
- V o dn 

* (--) 

p e 
-2. y _— i ñ 
Vn j.n-l r 2 J,n-1 pj,n-l 

6 p V oin 9 + l,n o °°_o 

j 

^ = - y 
2 J,n 

d0 

2P V “ 7T 
° 0 yo 

- P 
J.n 

2 d9 
/ -- ^o dn -9. 

J.n 

„ d9 dp 
l o n p y —-_r 

»» «"0 
4.156) 

(^'o.n^oVj.n-l) 
"61 - p V cos 9 rtn o » o 
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X3 = -WJ.n 

P V sin 9 
oo o 

+ P 
j.n t]- (1-6o,n) (PoWjtn-l^ +6l,„poVw (4. 157)* 

4 j.n 

dS 
_o 

*0 dn 
- /l ? \ S 

^ o,nj j,n-l 
(4.158) 

X5 = -Vj.n o ^ 

Po^ 
- P 

j.n 
, dqo 
vo o 

- e 
j.n 

dp dV 
o o - + P xr -— 

dn o o dn 
o o 

(4.159) 

‘ A“ô0 /p V „ _ôi P V sin 9 
V 0,n/ \ 0 J*n"l / l.n o » o 

Equations (4.150) through (4.154), along with Equations (4. 82) and (4. 84) permit us to 

begin a numerical solution of the flow field. 

4-4- 6 The Numerical Solution in the Supersonic Region 

The numerical solution in the supersonic shock layer consists of the repeated ap¬ 

plication of three "unit processes. " Each unit process requires that all the perturbation 

flow field parameters be known at two points in the flow field, and permits the calculation 

of the same parameters at a third point downstream of the other two. ** If in Figure 10, 

the perturbation flow field parameters are known at points A and B, and are to be com¬ 

puted at point C, the three unit processes are: 

♦Equation (4.157) is not applicable in the two-dimensional case. 

♦♦Values of the flow field parameters which would exist if the body were in steady 

flight at zero yaw, must be known at all three points. 
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Figure 10. Location Of Points A, B and C On The Characteristics Grid 

1. The body point process which is used when points B and C lie on the sur¬ 

face of the body. In this case, C lies on the same zero-yaw right running character¬ 

istic as point A; 

2. The shock point process which is used when points A and C lie on the shock 

wave. In this case, point C lies on the same zero-yaw left running characteristics as 

point B; 

3. The field point process which is used when none of the points lies on either 

the body surface or the shock wave. In this case, point C lies on the same zero-yaw 

right running characteristic as point A, and the same zero-yaw left running character¬ 

istic as point B. 
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A description of these three processes Is given in following sections. The application 

of these three unit processes to the solution of the supersonic portion of the flow field 

requires: 

1* A comPlete description of the zero-yaw flow field in the region where calcula¬ 

tions are to be performed, and 

2. The values of the perturbation flow field parameters along a "starting line" In 

the flow field. 

The former is obtained from the zero-yaw solution (Section 3). The latter Is ob¬ 

tained from a solution for a pointed cone in unsteady motion (Section 4.3). if a pointed 

body is being investigated, or from a transonic solution for a spherically blunted body 

in unsteady motion (Section 4.5), If a spherically blunted body is being investigated. 

The starting line in the case of a pointed body will always be a left running zero- 

yaw characteristic, which intersects the body surface on the conic section. This 

starting line was chosen because it fits in effectively with the sequence in which the 

computations in the rest of the field are carried out. Providing the information along 

this starting line presents no difficulties in the pointed cone solution for flow field per¬ 

turbations. S> figure 11, points 1 through 5 are on the starting line. The solution be¬ 

gins with computation of Ihe perturbation flow field parameters at point 6 using the body 

point unit process and the known perturbation parameters at points 1 and 2. It con¬ 

tinues to point 7, using the field point process and the known values at points 3 and 6. 

It then continues to points 8 and 9 using the same unit process. Finally the solution at 

point 10 Is obtained from the known values at points 5 and 9. using the shock point 



process. The computation then moves to point 11 and continues to points 12, 13, etc., 

until the aft end of the body is reached. 

The computations for a spherically blunted body follow a similar scheme. They are 

only slightly complicated by the fact that the starting line may not be a characteristic 

line. The complications appear only in programming the solution, they do not affect 

the theory. 

Figure 11. Sequence Of Computations In The Unsteady Supersonic Solution 

4.4.6.1 The Field Point Process 

In the field point process, the values of the perturbation parameters are known at 

points A and B (figure 12). The zero-yaw flow field is known at points A, B, and C. 

It is desired to compute the values of the perturbation parameters at point C. Point 

D is defined to lie on the same zero-yaw streamline as point C and on a straight line 



with points A and B. If it is assumed that all the zero-yaw and perturbation parameters 

vary linearly between points A and B, then the values of the perturbation parameters as 

well as the zero-yaw parameters at point D are given by: 

F represents each of the parameters, and the subscripts A, B, C, D refer to the 

points in Figure 12. Equation (4.160) is useful since * = * . 

Figure 12. Grid Points For The Field Point Process 



EttNMdttMii j 

Having obtained values of the perturtation parameters at point D, Equations 

(4.150) through (4.154) can be put in finite difference form, and the final step in the 

computation can be indicated, in the following Equations the subscripts A, B, C, and 

D will again indicate the points (Figure 12) at which the subscripted values are to be 

taken. Combinations of two of these subscripts will indicate an average, e. g. 

V°AC tadlcates 013 overage of the values of Vo at points A and C is to be used. 

from Equation (4.151): 

(4.161) 

= -A ¿ 

P V o o 

(4.162) 
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from Equation (4.152): 

(4.163)* 

from Equation (4.153): 

S. „ -s, =á<¡í i^il 
J."c 1.¾ o [voJ 

from Equation (4.154): 

CD 
(4.164) 

V. - V 
J-nC i feL(H "'•■»)‘[sL^ (4.165) 

Equations (4.161) through (4.165), together with Equations (4.166) and 4.167) which 

are identical to Equations (4.82) and (4.84): 

5j,nc 'hi ^ 

,nC fe]cf).»C - Vc [ZoRTo + RVo lf]( 

jRTooo ||j 

(4.166) 

(4.167) 

* Equation (4.163) is not applicable in the two-dimensional case 
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constitute a set of seven algebraic equations in the seven unknowns n 77 Î7 

H )-nc '•V- 
* yj g , 

jfnC j,nc’ j,n^ * need onlybe solved for the seven unknowns. 

Note that the solution of this set is somewhat more complicated than it may at first 

seem, because the unknowns (but not their derivatives) are present in X through X . 
1 5 

4.4.6.2 The Body Point Process 

Again the values of the perturbation parameters are known at points A and B 

(Figure 13). The zero-yaw field is known at points A. B, and C. It is desired to com- 

pute the perturbation parameters at point C. 

Since Bow cannot pass through the body surface, at point C the How direction must 

be the same as it was in the zero-yaw field. Therefore, 

ej,nc = 0 (4.168) 

This fact reduces Equation (4.162) 



—I 

body surface 

Figure 13. Grid Pointe For The Body Point Procees 

Equations (4.152) through (4.154) In finite difference form 

aero-yaw streamline): 

are (note that line BC is a 

Wi,nc~WjvLvjl^ (4. 170)* 

Sl-”c'W &> 

V, - V. 
j.-c ) '"B+ WJh'h) = Mo 

(4.171) 

(4. 172) 

♦Equation (4.170) is not applicable in the two-dimensional case. 
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Equations (4.169) through (4.172) together with Equations (4.173) and (4. ) 74) (which are 

identical to Equations (4. 82) and (4. 84)) and (4.166) and (4.167), 

(4.173) 

Z RT + 
o o 

RT P 
o o 

ÔZ 

òp 1 (4.174) 

constitute a set of six algebraic equations in the six unknowns Pjf nc* 0j,nc* Vj.nc» wj,ncf 

Sj>nç, and Tj>nç. They must again be solved for the unknowns. Again the unknowns 

are present in through X^. 

4.4. 6. 3 The Shock Point Process 

The values of the perturbation parameters are again known at points A* and B 

(Figure 14). The rsero-yaw field is known at points A, B, and C. It is desired to com¬ 

pute the perturbation parameters at point C. 

♦At the shock wave, an additional parameter, R , enters, and the perturbations in R 
s 8 

must be known at point A and calculated at point C. 
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Figure 14. Grid Points For The Shock Point Process 

Equation (4.150), in finite difference form is valid between points B and C. 

9. -9. + 

J’nC J*nB 

(4.175) 

X 

2 
D V 

o o 
BC 
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The shock boundary conditions (See Section 4.4.4, Equations (4. 89), (4.90), (4.98), 

(4.103), and (4.104) are: 

(4.176) 

(4.177) 

(4.178)* 

Equation (4.178) is not applicable in the two-dimensional case 
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"if 

II 

j*n/ 
U + T, + T 
”j,n 3o^ 

Òun - 
T^~ R òr s 

j.n 
cos 9 

(4.179) 

j.n 

àv 
-r— H ôr s 

j.n 
sin 0 

j.n C voc 
u y «o 

- 0F3 d 
+ F3 Tj,n + To ãv! 

J.n o 

M- òu 

T2 R àr s 
j.n 

sin 9 (4.180) 
°C 

'°c j.n o 

ÒV 

—9 R 
dr s 

j.n 
cos 9 

o. 
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Equations (4.181) and (4.182) which are identical to Equations (4. 84) and (4.82), re¬ 

spectively, apply: 

(4.181) 

(4.182) 

Equations (4.175) through (4.182) constitute a set ot eight algebraic equations in the nine 

ran 
unknowns p . P, „ * v, n • Wi „ » 9i „ » s» n * Ti „ • „ 311(1 

j,nc J»nc j»nc J»nc i*nc i»nc J»nc J*nc 
JiLn 
ox 

JC 

The ninth equation is simply the backward difference expression for R 
V 

(4.183) 

a r 
s. n 

♦Although -r—2— does not ^pear explicitly in Equations (4.175) trough (4.182), 
0 X 

it is included in the terms T. „ and rT j.n Jin 
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t 

This set of nine equations must be solved for the unknowns. Expressions for the terms 

on the right hand side of these equations are given in Sections 4.4.4.1 through 4.4.4. 3. ** 

4’5 BODIESARTING (TRANS0NIC) ELUTION FOR SPHERICALLY BLUNTED 

4.5.1 The Small Yaw (j = 1, n = 0) case 

If the solution for n„w about a spherical body is known i„ the v r0 coordinate 

system in the above sketch, it can be eapressed in the x, r system as follows (as 

long as the angle a is small): 

ÖK ÒF rH 
••Section 4.4.4.1 provides egressions for i-  L „.a *3 „ 

ävN» dvN„ ■ svít: •Section 4-4-4-2 

V 
d N 

provides t , n § - ñ Î ^ 
0 0’ 0’ J.n’ j,n* j,n’ ' Section 4*4*4«3 provides ejçressions 

*0) 
for 

U ''"j.n1 ^11 s^sr terms come from the zero-yaw solution or from thermo- 

dynamic tables. 
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(4. 184) 

òp 
_o 

po + TT 
dx àP, 

da a + âr 
dr 
da a 

dx dr 

where— and — repreeentthe rate of change of the coordmatea of a general 

point P, with a. when going from the xo> ro nystem to the x. r system. Since 

the How field surrounding a spherical body does not change when the body is rotated 

about its center, the above representation will be useful if the xq axis is taken to 

coincide with the axis of a spherically blunted* body at aero angle of attack; and the 

X axis is taken to coincide with the axis of the same body at small yaw. The above 

equation then fits our perturbation scheme: 

P = Po + pl,o a cos 6)» 

if we note that ~ and have a sinusoidal dependence on <p , i. e. that 

dit 

= -r cos (<p 6) 
da 

and 

dr 
= X cos ( Ô ) 

da 

♦For the two dimensional case this discussion is applicable to a cylindrically 

blunted body. 
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4b 

so that 

1,0 
-r 

àP, 

d X 

+ X 

ÒP 

dr 
cos (<p 6) (4. 185) 

all other scalar quantities have the same form as Equation (4.185). Because the 

derivatives of the unit vectors x, r and <p with respect to a are non-zero, the 

velocity components take on a slightly different appearance: 

de Ò0, 

91,0 = '-1 - r 

o *o 
+ X 

ÒX dr 
cos ( <p Ô) (4. 186) 

and 

wi a = V \ cos 6-sin e 1,0 o ) or o sin (<p 6) (4. 187) 

The perturbation in shock radius is obtained from 

R = R + 
s s 

dR , àR , 
so dx so dr 
- - Q, + - - a 

o dx da dr dx 

= R -o<R tano+x 
s J so o 

o I 
cos (<p 6) (4. 188) 

In Equations (4. 184) through (4.188), x is assumed to be measured from the center 

of the blunting sphere, and in equation (4.188) Tan oq is: 

dR 
so 

Tan a = 
o 

dx 
(4. 189) 
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4. 5. 2 The J = 1, n = 1 and j = 2, n = 0 Cases 

Since the angular velocity (due to the ó + q motions) of a sphere* about its 

own center will not affect the inviscid flow field surrounding the sphere, the sum of 

the ¿ and q derivatives of scalar values must be zero. The sum of the derivatives 

of the velocity components must however reflect the fact that the x, r, $ unit 

vectors are dependent on bt and q. Within these requirements and the need to 

make the solution compatible with the solution for j = 1, n = 0 the ¿ and q 

derivaUves may be assigned arbitrary values. For example, p can be given any 
1,1 

value as long as p2 0 is set equal to minus r In the present discussion, the 

following values will be assigned: 

R 
s 

1,1 
0 

> 

0 

(4. 190) 

R R / 

*For the two dimensional case, this discussion is applicable to a cylindrically blunted 

body. 
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1 
4' 

Subsütuting EquaUons (4. 190) into Equations (4. 176) and (4. 177) however, indicates 

that by assigning these values we have implied that 

d<VN > 
CP 

d ct. 
■= 0 

(4. 191) 

dt 
n 

Using this fact in Equation (4.136) leads us to conclude that (note the definition of 

Rg in Equation (4.188): 
1,0 

ÒR 

1,1 
0Rs R0„ sin + x c°s o 

S2,0 80 0 8 0 

dx òx L cos o 
(4. 192) 

Substitution of this equation in EquaUons (4.178) through (4.180) yields: 

1,1 

V sin 0 
00 g 

L cos o 
R, sin g + X cos ct 

so oso ) (4. 193) 

e 

sin 0g sin (cro - 0s ) (Rso sin cto + xs cos cto)(xcos 0q+ r sin 0^ 

1,1 
L COS CT (X cos 0 + R sin 0 ) 

s S SO s 

(4. 194) 

wi.i= 0 (4.195) 

2,0 Vl.l + (r cos 0 - X sin ^ ) (4.196) 
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(4. 197) 

V 
00 

“TT ( r sin 0 + X cos 0 ) 
V L o o 

o 

X 

L 

(4. 198) 

In the preceding equatJons, the subscript s used with x and 0 implies that values 

of x and 0 at the shock point on the starting line are to be used. Unsubscripted 

values of x and r imply local values of x and r at each point on the starting line. 

In the definition of 0^ ^ the ratio: 

(x cos 6q + r sin 0q ) 

(x cos 0 + R sin 0 ) 
's s so s 

is used in order to satisfy the boundary requirement at the body surface, that: 

0 
1,1 

0 

at the body surface. Inspection of Equations (4. 193) through (4. 

^1,1+\o>' <8l,l+«2.0> and<*l,ltS2,0> d0inbCt 

velocities due to the angular velocity of the coordinate axes. 

198) indicates that 

express the apparent 
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5. FORCE AND MOMENT COEFFICIENTS* 

Once the pressure perturbations at the body surface have been calculated, it is a 

simple matter to integrate them over the body surface in order to obtain the force and 

moment coefficients of interest. Figure 15 shows a two-dimensional view of a right- 

handed cartesian x, y, z coordinate system, in which the coefficients will be given. 

The body sketched in Figure 15 is intended to represent either a pointed or spherically 

blunted body of revolution. The normal force Fn will be taken to be positive in the 

negative y-direction. 

Figure 15. Two-Dimensional View of a Right-Handed 
Cartesian x, y, z, Coordinate System 

•This Section appeared originally in Reference 2. 



The pressure is giver, by Equations (4.20) and (4.^3): 

(5.1) 

So that the normal force is: 

where the vector dA is a differential area of the body surface. Similarly, the moment 

about an axis which is parallel to the Z direction and passes through the center of 

gravity is: 

M = //. • 
IP) 

Body Surface 

cos(<p6) 

cos($0) (- y) ' dA 

(5.3) 

where ip is the distance from the coordinate origin to the moment center. 

•AIM 
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The usual force and moment derivatives 

(5.4) 

(5. 5) 

can be obtained by differentiating Equations (5.2) and (5.3) with respect to the appro¬ 

priate motions: 

In obtaining Equations (5. 6) and (5. 7) from Equations (5.2) and (5.3) the integration 

in the meridional (<p) direction has been carried out, since Pj n is independent of <p, 

and the dependence of (-y) • dA on <p is easily expressed: 

(-y) • dÂ = (r cos <p ckp)ödx (5.8) 
13 
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In the two dimensional case (¢ = 0), substitution oí Equation (5.8) In Equations 

(5.2) and (5.3) will result in a force and moment per unit depth in the Z direction. 

The base area, A^, which appears in Equations (5. 6) and (5. 7) must, therefore, be 

base area per unit depth In the two dimensional case. 

The foregoing discussion of force and rr— ent coefficients Is applicable on any 

portion of a body where the various perturbations in pressure are known, and, there¬ 

fore, can be used with both the pointed cone and supersonic solutions. In the case of 

a blunt body, however, the pressure perturbations are not calculated upstream of the 

starting line, hi this case, use is made of the knowledge that ÍP + äP = 
dq ò& 

spherical portion of the body, to conclude that the spherical portion does not contribute 

40 4CMq + CM(j, ) or to <CNq + CN¿ >*• As a result, it is only necessary to compute 

the C% and contributions of the spherical nose. Ms is done by a momentum 

balance as indicated in the following sketch. 

0¾ T 0¾ = 0 on the 

this part of the discussion, rotation is 
assumed to be about the center of the spherical 

nose. 
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Line DEFG is the starting line. The dotted lines CE and BF are the bounding surfaces 

of a differential stream tube. If we define dF to be: 
A 

dF = flux of axial momentum crossing BC + axial force on the stream tube 

due to pressure on BC - flux of axial momentum crossing EF - axial 

force on the stream tube due to pressure on EF, 

then total axial force on the body (due to the portion of the flow field uçstream of the 

starting line DEFG) results from integrating dFx over all the stream tubes between the 

stagnation streamline AHG and the point D. 

If rg is defined to be the radius to point B, r the radius to point F, drg the dif¬ 

ference in radius at points B and C and dr the difference in radius at points E and F, 

the above equation for dFx becomes : 

where dm 
O 

V dm + p o, (2irr ) ^dr 
00 s s s 

- Veos 0 dm + p (2nr)6 dr 

and drti are the mass flow rates across BC and EF respectively. They are 

ô 
dm = Pm V_ (2nr ) 

8 00 00 S 

and 

dm = p (2irr)^djt 

where V is the component of velocity normal to EF, and áí is the distance between E 
n 

and F. 

The conservation of mass law requires that dm = dmg, so that 



(2irr)6cü 
(5.9) 

fi PV 
(2îrr ) dr = —~ 

S g poo Y 00 

We also note that: 

dr = (sin A ) dx 

VN = V sin (A - 0) 

where A is the angle between the line EF and the axial. Substitution into the expression 

for dF yields: 
X 

dF = 
X 

(vœ+ pr_\_ l V cos 0 (5.10) 

sin A 
(2irr) pV sin (A - 0) di pV sin (A - 0) 

Integrating from point G to point D provides axial force: 

F = 
X 

/ Vco+ -£!_ . ( 
J I P00V“ \ V cos 0 + ~ 

pV sin 
sin A \ 

* (A- 0)/ (2irr) pVsin (A -0)dX 

(5.11) 

The normal force coefficient (for the J = 1, n = 0 cane) is obtained by integration 

of the pressure perturbation over the body surface.- 

ÒF 
_T 
Ò0! a ‘ ff f 1,0 (-y)’115 

Body surface 

where -y . dÂ is given in Equation (5.8). The pressure perturbation p on the sur- 
1,0 
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face of the spherical* forebody is given in Equation (4.185) so that: 

ÒF 
_n 
hot 

Xsl 2" 

/1 
axis 

òp òp 
o o -r -+ X —— 

òx âr (r cos d <p ) dx 

The coordinate origin is placed at the center of the sphere in this discussion, and x 

is the x value at the body surface on the starting line. 
si 

Integration with respect to <pyields: 

ÒF 
n 

ha 

"axis 

At this point it is convenient to change to the variable v which is defined in the fol¬ 

lowing sketch 

*For the two dimensional case the present discussion applies to a cylindrical fore¬ 

body. 
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Then 

X = -R cos U 
n 

r = R sin l' n 

and 

\ 

> 

= ^ ax_ + 
öy Sx òy ör ài/ âx 

so that the force coefficient becomes : 

R sin 1/ d l' n 

Integration by parts yields : 

where R is 
n 

the radius of 

the sphere 

ÒF 
_n 
òa 

6 Í -Po (trr) r + / 
6 6 

PQ Rn (ffRn) + !) (sin V) cos V dp 

Ihe integral in the above equation, however, is seen to be the axial force F , 
X 

since 

F = 
X // p X ■ dA 

o -A (2n R sin V ) R cos V dP n n 
Body surface 

so that the normal force coefficient is: 

ÒF 
? = —Ü 
n Ô0! 
a 

- P0 (trr)u r + Fx 

where F is given by Equation (5.11). 
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Finally, It is apparent that In the inviscid case surface pressure on a sphere 

not cause a moment about the center of the sphere, so that M7 = 0 If the moment 

center is taken at the center of the sphere 



6- PROGRAMMING of the zero yaw steady state flow field 
SOLUTIONS ~ -- 

This Section provides a brief outline of the programming of the zero yaw steady 

state flow field solutions. Its purpose is to provide a link between the analysis of the 

problem and the listing of the computer program. * 

CHAIN 1 

A. Main program. 

B. Calling sequence: None. 

C. This program calls in link 1 of the chain tape. 

D. Error indications: None. 

FFSYS 

A. Main program. 

B. Calling sequence: None. 

C. This program is always link 1 on the chain tape. It reads in the first two 

input cards, (FFCASE) and (IDPROG & KENSE) and then calls for the link 

containing the program to be executed. 

D. Error indications: None. 

ATBNTP 

A. Main program. 

B. Calling sequence: None 

♦The listing is to be published as a separate report by RTD. 
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C. This program uses as input the BCD thermodynamic tables tape and writes 

the binary tape which is used in the program. 

D. Error indications: None. 

MNPRNT 

A. Main program. 

B. Calling sequence: None. 

C. This program will print: 

1- Thermodynamic tables. 

2A. Oblique shock tables 0° s CT * 90° in increments of 0. 5° 

2B. Normal shock a = 90° 

D. Error indications: None. 

MNEXP 

A. Main program. 

B. Calling sequence: None. 

C. This program will compute the properties at an expansion corner. 

D. Error indications: None. 

BINT PI 

A. Subroutine. 

B. Calling sequence: (IND) 

C. In this rout ne, the "standard flow field binary tape" is written or read. 

The various options are determined by the value of IND 
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1. IND = 0. The tape numbers (logical) are read in( NBTPW(writing) 

and N3TPR (reading). 

2. IND = -1. Preliminary information is written. 

3. IND = 1. Preliminary information is read. 

4. IND = -2. Streamlines or characteristics are written. 

5. IND - 2. Streamlines or characteristics are read. Also, the 

reference table SREFS is created, when appropriate. 

6. IND - 3. Final record is written (NVAL = 0), and tape is rewound. 

7. END = 3. Tape is rewound. 

D. Error indications: None. 

CLCINT 

A. Integration. 

B. Type 

FORTRAN 2 Function. 

C. Purpose. 

To compute the definite integral of F(X)*DX from X = A to X = B by 

1. Trapezoidal rule. 

2. Simpson's rule. 

D. Usage. 

1. The calling sequence is: F = CLCINT (IND, DX, FX, TEMP) 

A. F is the value of the integral. 

B. IND = 0 Trapezoidal rule. 

IND = 1 Simpson's rule. 
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C. DX = 0 when X. = A. 

DX = X(N) - X(N-1) when X. i A. 

D. FX is the integrand. 

E. TEMP is an array containing 5 cells which must not be used for 

any other purpose while the integration is being performed. 

E. Method. 

1. The first interval is always computed by Trapezoidal rule 

G(l) = DX/2.0* (FX(1) + FX(2) ) 

F(l) = G(l) 

2. Subsequent intervals are computed by Trapezoidal rule when that 

option is specified and when the current and previous values of DX 

are unequal. 

G(N) = DX/2.0* (FX(NH) + FX(N) ) 

F(N) = F(N-1) + G(N) 

3. Otherwise, subsequent intervals are computed by Simpson's rule as 

follows: 

G(N) = DX/3.0* (FX(N+1) +4. 0* FX(N) + FX(N-1) ) - G(N-l) 

F(N) = F(N-l) + G(N) 

Assuming a constant DX, the net effect of this procedure is: if N is 

odd, the integral consists of Trapezoidal rule integration over the first 

interval, and Simpson's rule integration over the remaining N-l inter¬ 

vals. If N is even, the integral consists of Simpson's rule integration 

over the N intervals. This is in keeping with the fact that Simpson's 

rule must be performed over an even number of intervals. 
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F. Restrictions. None. 

G. Additional Subprograms Required. None. 

H. Sample Case 

Suppose we wish to find by Simpson's rule the definite integral of 

X**2*EXP(-X) from X = 1. 0 to X = 5. 0 with a DX of 0. 5. 

Dimension SA VINT (5) 

1 X = l.G 

DO 91 J1 = 1, 9 

If (Jl. = 1) go to 41 

21 DX = 0.5 

Go to 61 

41 DX = 0. 0 

61 X = X + DX 

A = CLCINT (1, DX, X**2*EXP(-X), SAVINT) 

91 Continue 

CLPOLY 

A. POLYNOMIAL Evaluation. 

B. Type 

FORTRAN 2 Function. 

C. Purpose 

To evaluate the Polynomial (SUM (A(I)*X**(I-1), I = lt NU) ). 
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D. Usage 

1. The calling sequence is: 

Y = CLPOLY(X, A, N) 

A- Y is the value of the polynomial. 

B- X is the indeoendent variable. 

C. A is the name of the array containing the coefficients. 

D- N is the degree of the polynomial. 

E* Method 

1- The standard nesting process is used. 

F- Restrictions. None. 

G. Additional Subprograms Required. None. 

CONENT 

A. Subroutine. 

B. Calling sequence: (IND) 

In this routine, the properties o, V. M. S/R, T are computed assuming 

vaiues for P and *. The method of so.ution Is expialned in the write-up 

(Reference 3) of 

V* = -£+ B 

The use of IND is as follows: 

I- |H= 1- The reference properties are taken from the reference 

tables (SREFP or SREFS). 
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2. |iND|= 2. The reference properties are taken from ? previously 

computed point (stored in the SB array). This option is used in the 

pointed cone and expansion comer programs. 

3. IND < 0. This insures that in the expansion comer program, no 

more than one pressure break is crossed at a time. 

Error indications: 

NOVAL = 121: ^ out of range of reference tables. 

NOVAL = 1501: Pressure out of range in A, B tables. 

NOVAL = 1511: Reference pressure out of range in A, B tables. 

NOVAL = 2291: Failed to converge in temperature iteration. 

CRVINT 

A. Subroutine. 

B. Calling sequence: (IND). 

C. If IND - 1, this routine reads in the body curve coefficients and the x- 

coordinates of the intersections, if any. It computes for these points of 

intersections the value of r, the downstream flow angle, and the upstream 

flow angle. It also prints the information on tape. 

If IND = 0 (i. e. a restart), only the printing is done. 

D. Error indications: None. 

CRVOUT 

A. Subroutine. 

B. Calling sequence: (A, J, N) 
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c Given an array of I sets of J curve coefficients of the form A(J, I), this 

routine prints out the first N of these sets. 

D* Error indications: None. 

— AN~ solutio" developed here, does net Include the expan- 

sion corner capability. ) 

A. Subroutine. 

B. Calling sequence: (IND). 

C. This is the routine in which the properties at an expansion corner arc 

computed. There are the following 3 entries to the subroutine. 

1. IND - 1. The information required at each expansion corner (up to 5) 

is read in and the first expansion corner is initialized. 

2. IND = 2. The properties on the first fan of the expansion corner are 

computed. 

3. IND = 3. The properties on the succeeding fans are computed. If it 

is the last fan, the next expansion corner (if any) is initialized. 

D. Error indications: None 

FFCASE 

A. Subroutine. 

B. Calling sequence: None. 

C. This is an initialization routine. It will read input cards until it finds one 

with the letters FFCASE in cols. 1-6. It will print out cols. 7-72 of that 

card and then read the next card which wUl identify which link of the chain 

tape the program is on (IDPROG) and the external parameters (KENSE). 
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D. Error indications: None. 

FLOWRD 

A. Subroutine 

B. Calling sequence: (IND) 

C. This routine reads into core storage: 

A. From the input tape: 

1. RIDEAL, GIDEAL, ZIDEAL, RHOO, RHOOO, GREAL. 

B. From the atmospheric tables tape (real gas only). 

1. S/R = f(p, T) 

2. a, b = f (p, S/R) 

3. Z = f(p, T) (curve fits) 

4. y = f(P. T) (curve fits) 

5. Z = Up, S/R) 

If IND < 0, this information is printed out. 

D. Error indications: None. 

FLOWTL 

A. Subroutine. 

B. Calling sequence: (IND). 

C. This routine computes for real gas: 

1. Z = f(p, S/R) IND = 1 or -1 

2. Up, S/R) IND = -1 
dp 

3. Z = f(p, T) IND = 2 
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4- S/R = f(p, T) 

5- y = f(p, T) 

6- b&a+b.p = f(pt S/R) 

7 — » db 
dS/R & dsTS = f(P, S/R) 

For ideal gas: 

Z = Z IDEAL 

S/R = f(o, T) 

IND = 3 

IND = 4 

IND = 5 or -5 

IND = -5 

y = gideal 

b = GIDEAL 

a + b.p = GIDEAL . p 

da db 
dS/R " dS/R " 0 

O- Error indica««*: Various for arguments being «t of range 

FSSTAB 

Subroutine 

B- Calling sequence: (IND). 

C. This routine calculates: 

1- Certain free stream conditions. 

A. T 
00 

P 

P Z 
00 00 rgas 

Since Z is a function of T, 
an iteration process is required. 
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B. Zoo' Voo» S/Rœ (Table look-ups) 

It also prints alt., P , p , V , T M 
00 oo 00 ’ 03* oo" 

2. Shock and SIGMA Tables. 

The shock tables are merely calculated and printed and consist of 

the properties: 

a, P, p, T, S/R, Z, y, y* V, M, 0. 

computed at increments of . 5° between a = 0° and o = 90°. 

The SIGMA tables consist of a, T, y, and are computed and stored 

for use in the SHOCK routine as a time saving feature. 

The options are as follows: 

L IND = °' the free stream conditions are printed. Used 

only in a restart. 

2. IND < 0. The normal shock values (o = 90*) only are calou- 

lated and printed. 

3. IND = 1. The shock and SIGMA tables are not computed. 

4. IND - 2. The shock and SIGMA tables are computed. 

D. Error indications: NOVAL = 291. Faded to converge on T . 
00 

QUDINT 

A. Function 

B. Calling sequence: (X, Y) 

C. This routine computes the value of definite integral 
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by the four-point quadrature formula: 

a = yi h1 * 

where 

h2 
11 1 

^ h3 
21 1 

« , h3 
31 1 

12 
<Y2h2> 

hl = X2“X1 

h2 = X3-Xl 

y2- yi 

11 ’Vxi 

y3-y2 

12 X3 " X2 

y4-y3 
13 X. - x„ 

4 3 

« - * 
12 11 

21 X - X, 
3 1 

613 - '12 
22 X. - X 

4 2 

31 
622 ' fi21 

X4-Xl 

RF 

The array X contains x,, x_, x„, x . 
1 4 o 4 

The array Y contains yj, yyy^ 

D. Error indications: None. 

A. Function 

B. Calling sequence: (IND, A, X) 

C. Given the general body curve 

= V V * V* * V3+ V4 + V5 * a7x 8 + A9V^ïo 
(X - Au) 

where: x = x - A 
12 
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This routine computes: 

1. r IND = 1 

2. r' IND = 2 

3. r" IND = 3 

If we let u = X - 

Then, 

Therefore, 

r = V V + V2 + V"3 + V4 * Vs * Aj*8 * 
A^-l 

r = A2 + 2A3x * 3A4X2 + 4A5*3 + 5V4 * A7 A8 * * 

r" =2A3t6A47+,2A5i-2 + 20A/tA7A8 (Ag-l)lr 

A is an array containing A -A . 
1 12 

D. Error indications: None. 

SHOCK 

A. Subroutine. 

B. Calling sequence: (IND, SU) 



C. In this routine, the properties behind a shock are computed. The process 

! 
! 
I 

is explained in PROPERTIES BEHIND A SHOCK, * SU is the name of the 

array containing the upstream properties. The use of IND is to determine 

whether the iteration process on T and y is to be performed. If IND = 1, 

the process is performed. If IND = 2, we interpolate for T and y in the 

SIGMA tables calculated in FSSTAB and skip the iteration. 

! D. Error indications: 

NOVAL = 311. a not found in range of SIGMA tables. 

NOVAL = 411. o < 0°. 

NOVAL = 421. a > 90°. 

NOVAL = 1491. Failed to converge on temperature. 

NOVAL = 1691. Failed to converge on y. 

STREFP 

A. Subroutine. 

B. Calling sequence: (IND, N) 

C. In this routine, the reference properties are stored in one of the two refer¬ 

ence tables. 

1. IND.= 1. The properties are stored in SREFP 

1. 

2. P 

3. p 

♦Reference 4. 
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4. S/R 

5A. V 

5B. Z 

2. IND = 2. The properties are stored in SREFS. 

1. i¡) 

2A. K 

2B. S/R 

D. Error indications: 

NOVAL = 311. More than 500 entries in SREFS, exceeding dimension. 

TLU1 

A. Table Search 

B. Type 

FORTRAN 2 Subroutine. 

C. Purpose 

To locate the position in a table of a specified number. 

D. Usage 

1. The calling sequence Is: CALL TLU1(ARG, NT AB, TAB, J, IERR) 

A. ARG is the specified number. 

B. NTAB is the number of elements in the table. 

C. TAB is the name of the table. 

D. J and IERR are outputs as follow j IERR 

1. ARG. < TAb(l) x _1 

2. ARG. = TAB(K) K n 
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J lERR 

3. TAB(K). < ARG. < TAB(K+1) K 0 

4. ARG. > TAB(NTAB) NT AB 1 

E. Restrictions 

1. The elements of the table must be in monotonie ascending order. 

G. Additional subprograms required: None. 

TNT1 

A. Single interpolation (Lagrangian). 

B. Type 

FORTRAN 2 Function. 

C. Purpose 

To do a single table look-up and Lagrangian interpolation of specified 

order. 

D. Usage 

1. The calling sequence is: Y = TNT1(X,NTAB.XTAB, YTAB.NPT, 

IERR) 

A. Y is the interpolated value. 

B. X is the independent argument. 

C. NT AB is the number of elements in the table. 

D. XTAB is the name of the independent variable table. 

E. YTAB is the name of the dependent variable table. 

F. NPT is the number of points over which the interpolation is 

performed. 

G. IERR is an error return as follows: 
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IE RR 

1. X. < XTAB(l) -i 

2. XTAB(l). s X. £ XTAB(NTAB) 0 

3. X. > XTAB(NTAB) 1 

E. Method 

1. The order of interpolation is N = MIN(NPT-1, NTAB-1). The 

best N+l points are selected for the interpolation. 

2. Special cases are: 

A. N = 0 No interpolation. 

B. N = 1 Linear interpolation. 

C. N = 2 Parabolic interpolation. 

3. When the argument is outside the range of the independent variable 

table, TNT1 is set to 0 

F. Restrictions 

1. The elements of the independent variable table must be in monotonie 

ascending order. 

G. Additional subprograms required: TLU1. 

MNSUP1 

A. Main program. 

B. Calling sequence: None. 

C. This program performs initialisation for the supersonic plus the calcula¬ 

tion of all left hand characteristics to and including the first starting 

from the body. 

O. Error indications: None. 
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MNSUP2 

A. Main program. 

B. Calling sequence: None. 

C. This program calculates the properties on all characteristics after the 

first emanating from the body. It includes the calculation of all expan¬ 

sion corners and constant pressure wake as well as regular body points 

on the surface. 

D. Error indications: None. 

BODY1 

A. Subroutine. 

B. Calling sequence: None 

C. This routine computes the properties K, x, r, 0, 0, p, p, V, M, S/R, T 

at a body point in the supersonic region. 

Given the configuration: 

and assuming all properties are known at D and G: 

*c ’ *C 

x , r , and 0 are obtained in SURFIN, 
c c 

Pc = PD " QCD (6 D " 9C + Ç * GCD^ 
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wiiere: 

Q = V2 P 

Vm¿ -1 

G =‘ 
..6. sine 
M r 

Pc. vc* Mc. S/Ho, and Tc are obtained in CONENT. 

K = -1. (Used to identify body points). 

Convergence must be made on 0 and M. 

D. Error indications: 

NOVAL = 691: Failed to converge on 0 and/or M. 

FIELDl 

A. Subroutine. 

B. 

C. 

Calling sequence: None. 

This routine computes the properties K,x,r, 3,0, p, p.i 

T at a field point in the supersonic region. 

Given the configuration: 

and assuming all properties are known at B and Eh 

V WA2-»B-A, 
VA1 
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rc“ VW^i 

8C = 
9P ’ QCP ^ 8b ‘ qbc “ ^ ' °BC ' %c + f ' gcd Q + P 

^CD VB 

qcd + Sc 

+ r) • G 
BC ) 

OUTSUP 

A. Subroutine. 

B. Calling sequence: (IND) 

C. This is the main output routine of the supersonic program. The options 

are: 

1. IND = l. Starting line information is written. 

m. n, X, r, 6, ¢, P, p, V, M, S/R, T. 

Also, P and C are computed: 
max 

Ideal gas: 

^DEAL"1 
2 

^ideal 

VIDEAL_1 

C 
P max 0.5 p V2 

CO 00 
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■" mi-.. u,i, 

: \ . ' i - fP mi 

K 
) I 
\ ! 

Heal gas: 

S =2-t max M 

Pt = °-5 p» v c« + P 1 <*> 00 P rœ 
max 

P': 

L,. 

2. IND = 2. Information at each 

written. 

3. 

point on left hand characteristic is 

m, n, X, r, 6, 0, p, Pt y, M, S/R, T, NITER. 

Shock angle - K. 

Also, the body and shock data is written on a binary tape to be 

summarized at the end of the run. 

IND = 3. The body and shock data is summarized. 

Body data: 

m 
■ "• X' ri P' P/Pf P/P„ . VCP • cx. «(«d). 9 (deg) 

P- P 
max 

where C 
P . 2 .5 • p »V 

00 00 

and 

C = rx 
X 0.5 ri r2 p ^ 

® 00 

Fx * 2T y P . r . tan 0,h * 2„y j rv A_1 
^ ^ U . . J 

-t 
V coa 0 + -Í. • ,lBV jj. 

m ' bId~(y - 0 ) |r°V s|a (V - 9) di 
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PSnNT 

A. Subroutine. 

B. Calling sequence: (IND). 

C. In this routine, the values of the stream function i¡) are calculated at 

each point of the starting line. It is computed by the formula 

^ = J" r • d • V • cos £ djf 
where e is computed as follows: 

(a) Arbitrary line normal to streamlines: 

e = 0 

(b) Arbitrary line not normal to streamlines: 

where: 

2 2 

dy _ [rn+2 rn+l] [ Xn+1 Xn] [rn+l Fn] [Xn+2 " Xn+1 J 
[Xn+2 ' Xn+lJ [Xn+1 ' Xn] " [Xo+l " Xn] [Xu+2 " Xn+1 J 
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(c) Right or left hand characteristic: 

rr -li 
£ ' T ' Bta is- 

There are two options currently available: 

1. IND = l. in this option, the integration goes in one direction 

only. This is to be used for the nozzle program not yet in pro¬ 

duction. 

2. IND = 2. In this option, the integration is done twice, once 

from body to shock, and second from shock to body, and then a 

weighted average of the two integrations is taken. The initial 

values of 0 are: 

'‘'BODY = 0 

* r"+1 
’"shock TTT * p» * Vco 

The weighting formula is: 

t = 
A + *o • /, 

/i 

2 

The integration is done by the quadrature formula described in 

QUDINT. 

SHOCK1 

A. Subroutine. 

B. Calling sequence: None 
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C. This routine computes the properties K, x, r, 6, ¢, p, p, V, M, S/R, 

T at a shock point in the supersonic region. 

Given the configuration: 

and assuming all properties are known at B and G: 

rC-rB + <VXB>- \ 

where: 

[i A, = ton a0G - tan (9C - Mc * eB + 

A2 “ ^ “bc = ^ 

" = «I"'1 (j¡) 

p, V, M, T, S/R, P, 0 are obtained in SHOCK. 
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r¡ 

where: 

G = 6 « sin 8 
M . r 

P • V • r ^00 co Q 

6+ 1 

Ô+ 1 

Convergence must be made on M and 
0 

The iteration is done on K . 
V-/ 

- 0 

D. Error indications: 

NOVAL - 691^ Failed to converge on 0 and/or M. 

STPROP 

A. Subroutine. 

B. Calling sequence: (IND). 

C. This routine calculates at each point on the starting line: 

2. 

3. 

Since Z is a function of T, an iteration process is required. 

*»0 ■ "V V 

, J775: 
1 (Y„-l) ( 
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where : 

H = 2 
(V-i) O 

Mc - Vc 
.i/LÜE 

: Equilibrium. 

: Frozen. 

where: F (Z) = i + 

3 - Z) * (2.5 + J ) 
F 

There are two options; 

1- INO = 1. At the shook pot*, the free stream conditions and 

SIGMA tables are also calculated. 

2- IND = 2. At the field points and body point, only the starting 

line information is calculated. 

D. Error indications: 

NOVAL - 291. Failed to converge on T 
0 

SURFIN 

A. Subroutine. 

E* Calling sequence; (ALPHA). 

C. This routine computes the coordinates and the flow angle a. a pom, 

determined by the Intersection of a left hand characteristic with the 

botfer. If there is an expansion corner between this point and the pre- 

124 



vious body point, a pseudo body point (i.e., the projection of the up¬ 

stream body curve) is used, preparatory to entering the expansion 

corner subroutine. 

Given the configuration: 

D 

G 

A value is assumed for x 

where: 

and 

U = sin 

Iteration is made on x until r ^ and r ^ agree within specified O c c 

limit. 

0C is then obtained in RF. 

D. Error indications: 

NOVAL = 591: Failed to converge on r. 
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MNTRNl 

I ' ' K|| 

A. Main program. 

B. Calling sequence: None. 

C. This is the main control program for the transonic region. 

D. Error indications: NOVAL = 1680. Failed to converge at continuity 

point. 

DERIV 

A. Subroutine. 

B. Calling sequence: (IND, X2, R2, Rj. 

C. This routine computes the first derivative of a function f(x) by means of 

a parabolic differentiation formula based on the points (x , r ), (x , r ), 
X 2 2 

<Y r3>- 

¢= tan 
-1 r3 ~ ri 

X3 " X1 

Xj = (Xj - x^ cos r^ sin <t> 1 s i ^3. 

^ - - (x| - Xj) 8in ^ + (rl - cos <î) 1 s i ^ 3 

A - 
r • x 

2 3 

(x3 -X2) 
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- r 
2 • X, 

3 + r, • X, 
B = 3 2 

X2 * X3 * (X3 - x2) 

dr 
dx A 4 2 • B . X 

f (X) 

1 - tan ¢) • — 
dx 

OUTTRN 

A. Subroutine. 

B. Calling sequence: (INT). 

C. This is the output routine for the transonic program. 

1. IND = l: Continuity point output. 

2. IND = 2: Regular output. 

3. IND = 3: Summary of continuity point output and first two normals 

which are supersonic at body. 

D. Error indications: None. 

SHKEQ 

A. Function. 

B. Calling sequence: (IND, R) 

C. In this routine, information concerning the shock curves is computed. * 

♦Provision has been made for up to 7 shock curves. 
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1. 

«f 

IND - 1. The coefficients of the shock are read in, where 

10 

1=0 

2. 

3. 

IND = 2. The value of x is computed by the above formula. 

IND = 3. The shock angle is computed 

0 = IT 
dr 

D. Error indications: Nonti. 

TRBDY 

A. Subroutine. 

B. Calling sequence: None. 

C. This routine computes information on the body. 

The x and P are read in at each point. 

The r, 0, and K may be read in at each point or may be obtained 

from an analytic body curve (RF). 

The p, V, M, and T are obtained in CONE NT. 

D. Error indications: None. 
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7- PROGRAMMING OF THE UNSTEADY FLOW FIELD 

This Section provides a brief outline of the programming of the unsteady flow 

field solutions. Its purpose is to provide a link between the analysis of the problem, 

and the listing of the computer program. 

7.1 THE UNSTEADY SUPERSONIC PROGRAM 

Using the method of characteristics solution, the program finds the perturbations 

on the zero yaw flow field properties due to arbitrary values of angle of attack, pitch 

velocity, yaw velocity and the various time derivatives of angle of attack and pitch and 

yaw velocity. 

Zero yaw properties are found using the Supersonic Zero yaw program. Perturbed 

properties along an initial line may be obtained from the pointed cone program, input 

cards provided by the user or internal calculations for a blunt body solution. Using the 

zero yaw properties and perturbed properties from adjacent left hand characteristics, 

the perturbations are carried out along left hand characteristics. 

The program is written in Fortran II, General Electric MSD version. It utilizes 

the chain feature, and consists of two links on the flow field system tape. 

A brief description of the flow of the program follows. 

7. i.1 Link I 

1. Read input common to all options. 

2. Initialize parameters for options and tape assignments. 



3. Read thermodynamic tables if real gas. 

4. Decide upon starting line option. 

a. Arbitrary line - input from cards - go to 5. 

b. Arbitrary line - input calculated by program - go to 7. 

c. Left hand characteristic - input from cards - go to 8. 

d. Left hand characteristic - input from binary tape - go to 8. 

5. Locate shock point of left hand characteristic immediately preceding 

starting line shock point from zero yaw input tape. 

6. At each point on starting line, calculate properties not included in input, 

2 2 
1 ’ thr0Ugh K4' C and e ' the" continue out the left hand characteristic 

on which the point lies, until the shock point has been calculated. Each 

point wirh its left hand characteristic is calculated for all J's and N's before 

going on to next point on starting line. After body point on the starting line 

and its left hand characteristic have been computed, go to 11. 

7. In Subroutine STLINE, calculate: 

a. Perturbed properties for all J's and N's at each point on the starting 

line from Shock to body, storing date on binary tape (B-5 if set by pro- 

gram). 

b. Rewind binary tapes containing starting line data and zero yaw solution. 

c. Read preliminary information from zero yaw tape. 

d. Return to main program and re-locate starting line in zero yaw solution. 

e. Proceed as in step 6, except starting line data is read from binary tape 

instead of cards. When body point is reached, go to ll. 

8. Locate starting left hand characteristic from zero yaw solution. 
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a. Input from cards - go to 9. 

b. Input from tape - go to 10. 

9. toad in perturbed properties along starting left hand characteristic. 

a. Calculate Kj through K.,, C2 and e2 at each point on left hand charac- 

teristic. 

b. Do this for all J's and N's. 

c. Go to 11. 

10. Read in perturbed properties from Binary tape <A6 if set in program, along 

starting left hand characteristic. 

Calculate K] through C and e2 at each point on left hand charac- 

teristic. 

b. Do this for all J's and N's. 

c. Go to 11. 

11. Store perturbed properties on one of two temporary tapes (A7 or A8 if set in 

program). 

12. Go to next link on chain. 

7.1.2 Link II 

1. Set temporary tape assignments for reading and writing perturbed properties 

along characteristic for N-l values. Rewind tapes. 

2. Read zero yaw properties along left hand characteristic. 

3. Read perturbed properties along previous left hand characteristic for J , N. 

4. Find perturbations at: 

a. Body point 
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b. Field points 

c. Shock point 

d. Steps 3 and 4 are re-done until all J’s and N's have been calculated 

e. Perturbations are stored on second temporary tape 

i 5. At body point - go to subroutine SUFINT and do integration of forces along I body. If blunt body solution, store force coefficients on binary tape (A-6 

if set by program). 

6. Print output. 

7. Check to see if this is last characteristic to be calculated, 

a. Yes - go to 8 

b. No - go to 1 and repeat process. 

8. Write summation of force integration along body. 

9. Blunt body solution - go to 10. 

Pointed cone solution - go to 11. 

10. Call subroutine SUM1NT and do summary of force integration for a and Q. 

11. Call control subroutine to either get off machine or do another case. 

7.1.3 Tape Assignments. 

The standard Fortran peripheral input and output tapes (A2 and A3) are used to 

read BCD input and write BCD output. 

Because of the storage requirements put on the original program, several 

intermediate tapes are utilized for storing binary information. These tape assign¬ 

ments can be set by the user or set by the program. They are designated, in the 
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program, as NT2, NT3, NT4 a .d NTS. If NT2 is read as zero, all tapes will be set 

by program. If NT2 is non-zero, all tapes must be set by user. The program 

designates these tapes: 

Logical Physical 

NT2 » 17 A7 

NT3 = 18 A8 

NT4 = 16 AG 

NTS = 25 115 

^ A8 are used to store perturbed properties for J, N along a left hand char¬ 

acteristic. 

A6, for a pointed coue body, contains perturbations along initial line. This tape is 

created by the pointed cone program. 

A6, for a blunt body solution, is used to store the properties calculated along the 

starting line. 

B5 is used to store the coefficients from the integration of forces along the body for 

use in final summation tables. 

Two additional tapes are used by the program. They contain (1) the zero yaw 

solution created by the supersonic zero yaw program and (2) the thermodynamic 

tables. 

B7 is used for the thermodynamic table. This tape need not be loaded if atmosphere 

is an ideal gas. The user has the option of designating tape assignment for the zero- 

yaw solution. 
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NBTPR, U input as zero, assigns B6 for the zero yaw solution. 

Sinee the program contains the 10 tables for G. E. M. S. D. FORTRAN, the following 

list must be referred to if the user wishes to change internal tape assignments. 

Logical Physical 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

Al* 

A2* 

A4 

A5 

B1 

B2 

B3 

B4 

B5 

A3* 

Al* 

A2* 

A3* 

A4 

A5 

Logical Physical 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

A6 

A7 

A8 

A9 

A10 

B1 

B2 

B3 

B4 

B5 

B6 

B7 

B8 

B9* 

BIO 

•These tapes are not available for intermediate designation as they are used by the system. 
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7. 1. 4 Restrictions 

1. If terminating along right hand characteristic or constant value of X, either 

must intersect with the shock beyond shock point on left hand characteristic 

from the first body point. 

2. A maximum of 70 points is allowed on a left hand characteristic, including 

body, field, and shock points. For arbitrary line start, maximum value of 

NUMPTS is 35. 

7. 2 BRIEF DESCRIPTION OF G. E. M. S. D. VARIABLE FIET-H INPUT 

Floating point fields must begin with F, each variable separated by a comma, and 

card terminated with an asterisk. 

Ex. to input: 

X = .50 

R = 1. 78 

V = 1700. 06 

p = . 5678X10-6 

On one card it will appear as: 

F0. 50,1. 78,1700. 06,. 5678E-6* beginning in Column 1. 

Fixed point fields must begin with X, each variable separated by a comma, and 

card terminated with an asterisk. 

Ex. to input: 

N = 1 

Nil = 17 
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NUMPTS = 20 

MSTART = 148. 

On one card it will appear as: 

XI, 17,20,148* beginning in Column 1 (no decimal points may appear on fixed 

point variables) 

To input both floating and fixed point fields on same card, fields must be separated 

by a comma. 

Ex. to input above (information on one card) : 

(X, R, V, S, N, NT1, NUMPTS, MSTART) 

Card will appear as: 

F0. 50,1. 78,1700. 06,0. 5678E-6,X1,17,20,148* Beginning in Column L 

Columns 1-72 may be utilized only. If more than one card is needed to complete 

list, terminate card with an asterisk after any convenient variable. Continue on next 

card, beginning card with field designation (F or X) and terminating with an asterisk. 

Any number of cards may be used to complete a list. A separate card must be used for 

each input statement in the program. 

A list may be terminated, all succeeding variables in that list being set equal to 

zero, or entire list may be set equal to zero, with use of $ character. 

To terminate a list after a particular variable, place a comma after the variable 

followed by a $. 

Ex. Array Test (1-10) is to read in where: 



The card will appear aa: 

Fl. OE-5,1. OE-6, $ beginning in Column 1. 

If enure array were to be set equal to zero, the card would appear as: F$. 

Input Supersonic Unsteady Flow 

ID PROG = 7 

Variables 
No, of Cards 

1. FFCASE 
1 

2. ID PROG, KENSE (1-10) l 

3. XEND, XTERM, ELP . 

4. MSTART, NMAX, NTERM, NT2, NT3, NT4, NTS i 

5. NBTPW, NBTPR 1 

6. RIDEAL. GIDEAL. ZIDEAL. RHOO. RHOOO, GREAL l 

1 POlnted b0dy ^ 8. 9. 10. 11 a, in n below (but Card 7 Is omitted for 

the pointed body). 

IL Arbitrary line input (blunt body) - starting line calculated by program 

7. NUMPTS, XO i 

8. DE LX, RN, NRTST, NXINT, NTS ! 

9. RTEST (1-NRTST) x 

10. XINT (1-NXINT) 1 

11. XMAX 
1 

III. Arbitrary line input - starting line input from cards* 

7. NUMPTS, XO 

8. (STARTING LINE DATA - SHOCK TO BODY) 

♦Neither option UI or IV will be needed in the usual unsteady flow field solution 
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A. THCB, VCB, WCB, PCB, RHOCB, SRCB, TCB, DRDX, RX (Shock Pt 

all J's and N's) 

B. THCB, VCB, WCB, PCB, RHOCB, SRCB, RB, $ (Each Field Pt all J's 

and N's) 

C. THCB, VCB, WCB, PCB, RHOCB, SRCB, TCB, $ 

D. COEFN, COEFM (Body Pt. Cards C, D, for each J,N) 

9. DELX, RN, NRTST, NXINT, NT4 

10. RTEST (1-NRTST) 

11. XINT (1-NXINT) 

12. XMAX (1-NRTST) 

IV. l£ft hand characteristic input - starting line input from cards 

7. (STARTING LINE INFORMATION - BODY TO SHOCK 

A. COEFN, COEFM 

B. THCB, VCB, WCB, PCB, RHOCB, SRCB, TCB, DRDX, RX 

(ONE CARD FOR EACH POINT BODY TO SHOCK. ENTIRE CHARAC¬ 

TERISTIC is read in for each combination J, N) 

7. 2. 1 External Parameters for Supersonic Unsteady Flow 

KENSE (1) = 0 

KENSE (1)=+1 

KENSE (1) = -1 

KENSE (2) = 0 

KENSE (2) = ±1 

KENSE (3) = 0 

KENSE (3) = ±1 

Arbitrary line starting line 

Left hand characteristic starting line - input from cards. 

Left hand characteristic starting line - input from binary tape. 

Arbitrary line starting line properties are calculated by program. 

Arbitrary line starting line properties are read from cards. 

Print perturbations of entire flow field 

Print only summation of force integration 
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NMAX 

N UM J 

7'2'2 -PUt Varlable8 1116 0rd« 1» Which They Apnftnr 

ELP Leng«, U8ed m re8trlcting masnlUide oi perturbed terms 

XSTRÏ X-coordinate of body point on initial left hand characteristic. 

XTERM X-coordinate along «Weh left hand characteristics may be terminated. 

Maximum value of n. No restriction on NMAX. 

No. of J's over which solution is to be found. Maximum value of 

NUMJ=2, 

NT2, NT3 Intermediate tape assignments. 

NT4, NT5 Intermediate tape assignments. 

NBTPW Always set to zero. 

NBTPR Tape designation of zero yaw solution. If input as zero the program 

sets NBTPR = 26 (B6). 

RIDEAL Ideal gas constant. 

CIDEAL Isentroplc relationship A + B, for ideal gas = 1. 4. 

ZIDEAL Corapenslbility factor in P = ZR pT. For ideal gas = 1. 0. 

RHOO Reference density in density tables. 

RHOOO Reference density in density tables. 

GREAL Actual value of A + B For lt|eal gas = j ^ 

NOTE: IF RIDEAL, GIDEAL, ZIDEAL. RHOO, RHOOO. GREAL are input as zero, 

the program sets them equal to the constants for air. 

NUMPTS Number of points on starting line. 

«START Value of MC (from zero yaw solution, at shcch point on arbitrary line 

starting line. 

xo Distance from origin of coordinate system to reference center for < 
moments. 
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COEFN 

COEFM 

THCB 

VCB 

WCB 

PCB 

RHOCB 

SRCB 

TCB 

DRDX 

RX 

DE LX 

RN 

NRTST 

RTST 

XMAX 

Coefficient of force normal. 

Coefficient of moment. 

Perturbation on flow angle 0. 

Perturbation on velocity. 

Velocity component perpendicular to meridiana! plane. 

Perturbation on pressure. 

Perturbation on density, p. 

Perturbation on entropy divided by Ideal gas constant. 

Perturbation on temperature. 

Slope of shock wave, tangent of slope angle. 

Radial distance to shock wave. 

Increment for XCG/LB in TABLE II of force summary. 

Nose radius. (Coefficient A^ of body equation of nose). 

Number of interpolations to be done on summary of body data. 

Value of rn/rb at which interpolated values are to be found. 'Diere 

must be NRTST of these. 

Maximum value of XCG/LB in table n. There must be NRTST of 

these. 
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7. 3 BASIC STORAGE ARRAYS 

The basic storage arrays used by program are as follows: 

SP (J, N, M) Dimensions SP(11, 120, 2) contains zero yaw properties along 

left hand characteristic - 

J indicates particular PROPERTY. 

N indicates point on the characteristic. 

M indicates characteristic. 

M = 1 characteristic being solved. 

M = 2 preceding characteristic. 

SPDS(J, N, M) Dimensions SPDS(15, 70, 4) contains perturbed properties along 

left hand characteristic - 

J indicates particular property 

N indicates point on the characteristic 

M indicates characteristic 

M = 1 contains perturbed properties along characteristic being solved, 

N = n. 

M = 2 contains perturbed properties along characteristic being solved, 

N = n-1. 

M - 3 contains perturbed properties along previous characteristic, N = n. 

M = 4 contains perturbed properties along previous characteristic, N = n-1. 

SX(J) Dimension SX(30) "Working" array for using finite difference 

equation for method of characteristic solution 

X - A, B, C, D, E or G depending upon point on characteristic line 

J indicates particular property. 
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7' 3-1 — 0f 88810 Stora8e ôsm to Pi-ovMe ChararterlaHp Method of Solution. 

SP(J,N, 1) 
SPDS(J,N, 1) 
SPDS(J, N, 2) 

Point to be calculated is at C 

Zero yaw properties: SA(J) = SE(J) = SP(J, 2,2) 

SB(J) = SG(J) = SP(J, 1,2) 

SC(J) = SP(J, 1,1) 

NOTE: zero yaw properties along any left hand characteristic remain the same for all 

combinations of j and n along that characteristic. 

Perturbed properties: SA(J+13) = SPDS(J,2,3) n terms 

SE(J+13) = SPDS(J, 2,4) n-1 terms 

SB(J+13) = SPDS(J, 1,3) nterms 

SG(J+'13) = SPDS(J, 1,4) n-1 terms 

SC(J+13) = SPDS(J, 1,2) n-1 terms 

NOTE: SC(J) array is utilized to store n-1 terms at point being calculated until all 

calculations have been completed. Then the n terms are placed there for 

storage in the SPDS(J,N,M) array. 
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SPDS(J, 1,1) - SC(J+13) for succeeding characteristics 

SP(J,N, 1) 
SPDS(J, N, 1) 
SPDS(J,N,2) 

Point to be calculated, point C. 3rd point on left hand characteristic 

Zero yaw properties: SA(J) = SE(J) = SP(J, 4,2) 

SB(J) = SG(J) = SP(J, 2,1) 

SC(J) = SP(J, 3,1) 

Perturbed properties: SA(J+13) = SPDS<J, 2,4) n terms 

SE(J+13) = SPDS(J,4,4) n-1 terms 

SB(J+13) = SPDS(J, 2,1) n terms 

SG(J+13) = SPDS(J,2,2) n-1 terms 

SC(J+13) = SPDS(J,3,2) n-1 terms 
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Calculations are carried out and 

SPDS(J,3,1) = SC(J+13) for succeeding calculations. 

SHOCK POINT 

Point to be calculated, point C-shock point, last point on left hand characteristic. 

Zero yaw properties SA(J) = SE(J) = SP(J, 10,2) 

SB(J) = SG(J) = SP(J, 9,1) 

SC(J) = SP(J, 10,1) 

Perturbed properties SA(J+13) = SPDS(J, 10,3) n terms 

SE(J+13) = SPDS(J, 10,4) n-1 terms 

SB<J+13) = SPDS(J, 9,1) n terms 

SG(J+13) = SPDS(J,9,2) n-1 terms 

SC(J+13) = SPDS(J, 10,2) n-1 terms 
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Calculations are carried out and 

SPDS(J, 10,1) = SC(J+13) for succeeding calculations. 

7. 3.2 Basic Storage Arrays Showing Assignment of Variables Used in Supersonic 

Unsteady Flow Program. 

Flow Program. 

J SX 

X=A, B, C, D, E, or G 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

M 

N 

K, a 

X 

r 

9 

* 

P 

P 

V 

M 

S/H 

T 

0 

V 

w 

p 

SP SPDS 

K, a 9 

X V 

r W 

9 P 

* D 

P S/R 

0 T 

V ôR/àX 

M RX 

S/R 

T 

4 

c2 

2 
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J 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

æç 

p 

S/R 

T 

àR/àX 

Ki 

K2 

K. 

4 
.2 

e 

Z 

Y 

ARYCLC 

A. Subroutine 

B. Calling sequence: None. 

C. This routine computes C (i = 1),5; D (i = 1,19) «ind F. ;G. ;H. .(i = 1,2; j = 1,2) 
1 * i, j 

at A, B, C in body, field and shock point calculation along a left hand charac¬ 

teristic. A, B, and C Storage have been set in BODY, FIELD or SHOCK 

(depending on type of calculation) before entering ARYCLC. 

for n = 0 <5, ^ = 1.0 
K, 1 

\,2 = 0-0 
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for n = 1 

for n > 1 

Vi= 0-° 

\,2 ~ 

Yi = »-o 

Sk,2 ’ O'0 

following e^tioon are aolved UStag aero yaw properUea „ra, a, oolnt C, 

then A and B. 

F1,1 =0-° 

F1 o — v sin 0 C 00 £ 

V 

\r- --f f12 

2,2 l’ pc (rc cos 8 X sin 0 ) c c' 

G1,1 =“-o 

1,2 

2,1 

2,2 

- Pc Vœ CO» 0c 

P V 2 C œ 
n — cos 9 - 2V —2- D 

Z ' c c / , °c 

V P 
00 c 

/' (r sin 0 + X cos 9 ) 
t c c o' 

51,1 '0.0 

Hl,2= 0cV"S 
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V 

H2 1 = ~n~ (2 P V cos e _ p V ) 5 
I C C C C 00 

vœ 

\2=-r~ »cV 

a, and b are found in subroutine THERMO from the thermodynamic tabl e 

1 

V M 
c c 

c 

a s/r 
à iji 

l 
is found from stream function reference tables (zero yaw) 

T r6 p2 V 
c c c c 

âS/R 
Ò * redeal 
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c 

V M 
c c 

c 

D V COS 0 
C C c 

p V2 sin 
c c 

r 
c 

0 
c 

f 
149 
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(1'6k ) 
kll 

o. V 

f 
(G),l>c 

(w^>„ c n- *<Vc 

D. Error Indications: 

NOVAL = 601: Error in finding a or b in FLOWTL 

NOVAL = 621: * i8 outside of reference tables in calculating d S/R 
d * 
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B0DY3 

A. Subroutine. 

B. Calling sequence: (IND) 

C. This routine computes the properties 0, P.p", V, W.T', ^/r at a body 

point on the starting line and at any succeeding body point. 

Given the configuration 

and assuming zero yaw properties are known at A, B, and C and that the pertur¬ 

bations on these properties are known at A and B. 

C B 

ÍBC 
- K2 where tí lAC =^(XC - XA)2 + (RC-RA)2 

A V ^VV2 + 'W2 

dZ âZ 

dS/R ' 5 % 

2 
e and y * are obtained in THERMO. 

C^i = 1,5) at A, B, C 

Djii = 1,19) at A, B, C are found in ARYCLC 



Average Values of 

C. from A to C and B to C 

Di from A to C and B to C are found. 

Body point matrix (a i wherp i - ï 
IJ » * J -, 4 is initialized as a zero matrix. 

Then elements are calculated by: 

V“1- 

( V lKC CAC, ) 
2 C 

AC, 

1,3 

= Accac, - V VA- ) 

a 
1,4 

DAC2 lKQ CAC 

2 C 
AC, 

2,1 ' 2 Vj/bC CBC4 

2,4 1 + _L d 0 r 
2 CBq "BC CBC 
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t/ 

a„ , = C 
3,1 BC. 

a3,2 ‘ 2 DBC ^BCCBC 
U 4 

a3,3 1 + 2 DBC ^BC CBC 
4 

a 
4,1 

*4,2 = I-» 

NOTE: All elements not noted are equal to zero. 

Compute matrix (^), i = 1,4: 

1 * dac Ac cac 

‘1,2 PA - “1.3 VA - “l,4WA 

+ Id._ l 
y AC3 AC AC2 AC7 AC AC3 J 2 CAC1 ^ 0A 

AC 

CAC. I' DaC15 CaC2 + DaC16 CaC3 
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17 

l 
BC 

V 

O 

^ D 
BC BC18 

c 

Invert Body Point matrix: 

(a.j)"1 X (^) = (b.) i = 1,4; j = 1,4 

b 
1 

b 
3 
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i 

Z lio 
c c 

Zr> RTn + Po R log 
âZ 

C C c c ’10 Ölog10 p 

+ 
TcRc0 c 

P 

D. Error Indications: 

NOVAL = 111: Error in thermodynamic properties (Subroutine THERMO) 

NOVAL = 151: Error in finding and Di (Subroutine ARYCLQ 

7.3.3 Initial Line Calculations at Body. (Spherically Blunted Body Only) 

Given the configuration for the body point on the starting line. 
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= o 

= o 

V -~Pl’° 

M °cvc 

0 is found in the same manner as at succeeding body points. 

for j * 1, n = 1 6 =i l. 0 
k, n 

for j = 1, a > 1 = 0.0 

and 

V = - Í V 
l,n k, n SHK 

where VgHK is computed at shock point. 

9l,n ~ " \,n 9SHK 008 6c + rc8in 9C 

where 9gHK is found at shock point. 
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w, = o.o 
l.n 

P, = \0 
l.n 

p = 0.0 
l.n 

T, = 0.0 
l.n 

for j = 2n = 0 6. =1.0 
k,n 

for j = 2 n > 2 6. = 0.0 
k,n 

V. = Ô, V.+ 
6. V k,n » 

2, n k, n SHK ^ rccosec-(xc-xo)8inec 

6„ = 6, 2,n k,n SHK “ i’ V, 
PCc - Xq) cos 9c t rc sin ^ 

w = 6. in- - X_) 6 
2.n k,n J* ' C o' 

P = 0.0 
M i n 

p„ = 0.0 
n 

S/R =0.0 
2,n 

T = 0.0 
2, n 
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FIELDS 1 

A. Subroutine. 

B. Calling Sequence: (IND) 

C. This routine computes the properties 0, p, ■Pi y, w, T, S/r 

at each field point on the starting line, and each field point on succeeding 

left hand characteristics. 

Given the configuration for any field point not on the starting line: 

and assuming zero yaw properties are known at A, B and C and that the per¬ 

turbations on these properties are known at A and B. 

V _ G B 
K> 'TT- BC 

P - p i- 

K~ = —^-— where A¿ac=V(Xc - x^2 + 2 A/ 
AC (Rc - V 

V2 + ««c - V2 

dZ àZ 

d S/R ' «/p 
2 2 

» Kg, K^, C and e are obtained in THERMO 

I 

I 

m. 
» 
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s 

Cl i = 1,5 at A, B and C 

Dl i = 1,9 at A, B, and C are obtained in ARYCLC 

Average Values from A to B and A to C 

Dj from A to B and A to C are found. 

Dj at point D 

D = D + 
Di Bi 

V*c 
*B-*A Ida. - db. 

Average Values D. from D te C are found. 

Field point matrix (a^) (i = 1,5; j = 1,5) is initialized as a zero matrix. 

V - 
(?A- «B + CBCj ( PA - Pg ) 

CACl + CBCl 

CBC2 4c 

2 CACi + CBCl 
E_ = 

/ 
BC BC 

O 
3 C + C 

AC1 BC1 

E„ = 

c H 
AC. AC 

E = --- 
4 C 

ACl + CBCl 

C ^ 
AC. AC 

E = ---- 
5 C + C 

AC1 BC1 
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F, = —( ED + E D ï 
1 2 \ 2 BC8 E4DAC8j 

j. 
2 

l 
AC 

Elements of field point matrix are computed. 

a, = - — C D ^ +—c n / 
1,2 2 BC2 UBC4 BC 2 CBC3 DBC6 BC 

a 
1 £ \ n 

1,3 =TCBC “BC BC + T CBC V BC 
3 5 

2 CBC2 
l 

BC 

1+T CBC, D ^ 
BC? BC 

+ — C 
2 AC, 

l 
AC 

AC, 
+ D 

AC, AC, 

I 
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a2,4 “ 2 DAC2 CAC2 ^AC 
l. 

* 

a2,5 = 1_ 2 AC (DAC3 CAC2 ' DAC7 CAC3 ) 

ac, i = " T ddc10 cdc4 CD 

a 
3,4 

= 1 
2 DDC„ DC, CD 

a = — D C ^ 
a4,2 2 DC13 DC4 CD 

a4,3 = 1 + "2 DDC12 CDC4 ^CD 

a4,5 = 2 DCD CDC. 4d 
14 4 
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a5,1 2 

a5,2 "2 

a_ . = D_C / 
5,5 2 DC DC ^CD 

11 5 

NOTE. All elements of matrix not in list are equal to zero. 

= <2 - a.,5> Sß + <2 Sc, - aM> PB - ai,3 VB ' a.,4 »B - ai, 2 °B 

+ C D & + c. n Í 
BC2 bc15 bc bc3 “bCj/bc 

~ ^ ~ a2 5) 6A + F2 PA " a2 9PA “ ao o VA - a ~ñ " * £ tt a 3 A 2,4 ¿ 

. l 

Ac' AC15 AC2 
D C 

A''iß AC0 16 3 ) 

h = (2 ' \ d* wn “ a<j 1 pr. + C ^ ^ 3,4 D 3,1 D DCi7 DC4 CD 

'4 ~ (2 " a4 Vn + a4 1 Pn - a,i 0 Dr, - aA r + D C ¿ 
D 4,1 D 4,2 D 4,5 D DC DC CD 

19 4 
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V <®/R>D 
a 9 + 
5,5 D DC 

18 
l 

CD 

Invert field point matrix: 

(V =b i 

b 
2 

a P + 
5,1 C 

Dc zcRTc+ “c TC RIo8108 

* <ã/R> C TCR8c(wR) 
0 
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D. Error indicators: 

NOVAL - 111: Error in thermodynamic properties (THERMO) 

NOVAL = 151: Error in finding or (ARYCLC) 

7,3,4 Initial Line Calculations at any Field Point (Spherically Blunted Body Only) 

Given the configurations for a field point on the starting line 



where: 

^AC^C-V^VV2 

4^BC V^C- XB) + (Rc " V2 

CD "V^C " XD) + (HC ' V2 

4^CE ‘ XE)2 * <Ro - V2 

Xq) cos 

- Xq) cos ( 9 

<ec- V^c^^c-Vl- 

ctMc,+Rcsin(Vuc,1 • 

1 . 
sin 2 

1 
sin 2 M 
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p =aÍ2. + b^. 
il* il 

ï = A^i- + b 

'° il* il 

S/R. . = A^S_. B d 'Z" 
1,0 il* di 

w (■ 
1.0 

vc lCos 9c - <XC - xü> Sl" ) 
R 

P 2 _ 
Õ = -M . S 

i-0 c2 c2 /R1,0 

7 = 

ll0 °cvc 

RT 0 
_ç s 
V„ /R1,0 

If j = 1, n = 1 

if J = 1, n > 1 

6. =1.0 
k,n 

6. =0.0 k,n 

Vl.n ' " 6k,nVSHK VSHK fromSHOCK3 

01 n = - 6>— 9 l.n k,n 9SHK pc _ V COB ‘’c + RC 8ln‘’c I 0SHK from 

SHOCK3 
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'tf 

..¿IP'' 

W1 n = 0*0 l.n 

p = 0.0 
l.n 

0 = 0.0 l.n 

T1 n = 0-0 l.n 

if j = 2,n = 0 

j = 2, n > 0 

6. = 1.0 
k,n 

6. = 0.0 k.n 

V2,n = 6k,n VSHK ' f ([^'’tj)81"8 '(RCCOa8C 

^2, n ^k,n SHK - -77 
i Vr 

(Xc * C08 ec + Rc Ein 9C 

] 

W2,n Vn /’ * 6 

P, = 0.0 z,n 

P- n = 0.0 
2, n 

/R9 n = 0*0 Z.n 
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SH0CK3 

A. Subroutine 

B. Calling Sequence: (IND) 

C. This routine computes the properties 0 , P, p . V, w, ï , S/R , **8, — 
àX 

at a shock point on the starting line and at any succeeding shock point. 

'V 
Given the configuration for any shock point not on the starting line. 

and assuming that the zero yaw properties are known at A, B, and C and that 

the perturbed properties are known at A and B. 

^ac'Y^c-V^V11/ 

^BC^VV^C-V 
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K. 
sin (2 |jc - ß) sin 2 Pc " P 
-ií- K + -^ ¿ 
sin ß 1 sin 6 A/ AC 2 

^ Z ô Z 2 2 
, K , K , C , e are found in THERMO 

3 4 as/R ' a p/o 

O 

I. 

C^i = 1,5jat A, B, and C 

D^i = 1,19^ at A, B, and C are found in ARYCLC 

Average Values of 

Dj from B to C 

Cj from B to C 

i. 

V = VC sin <oc - 
N2 

0 p zc pc ec 
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A = VN? " °r y2 P ^ N2 C N2 BP C Bo 

à F PF 
_1 00 3 

a vm 4 
- F + 2 P 

Bh 
N2f3 Ä C àp 

Bf 2 
BV 

P® F3 

N1 A 

(v + V ) V NI N2/ - 2 P 
N2 

M 
C Bp 

bf. 

B V ~ ~ 1 + A 
N1 

Lfv v 
A [ N1 N2 + VN2 (VN2 * 2 VNl) H - 

For n = 0 

C = - V cos a - 
1 00 C 

C2 = “ (RC 8in GC + XC 008 V T 

D = - V sin 9 
1 00 C 

D2 = <RC cos 9C - Xc sin V f 

171 

llkk^iii nilfllllfl1 ir,ii ; 1 '«i1 ii I 11'i1! II *11 



I 

E = V cos 8 
1 ® c 

(Hcsin 9C + X cos 9C) 
l 

= V 
00 

V-'VVt- 

fom>0,ci = Di = Ei = Qi = 0 

t 
BC 

H3 ' 2 iCBC2 ^BC DBC1 + CBC3 BC DBC5) 

H4 2 CBC2 ^BC DBC2 

l 
BC 

V cos 
3 a 

C 
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àF 
H = 2 3 

7 ~ ôv.. V«cos ac 

u c = vc cos ec 

vc = VC sin 0c 

Hfi = 

2 

r 
c 

cos ac 
v" F3<ucC080c + vcslnV + v^T 

N. 
(ucsmac cósam¬ 

eos a cos 9 
H  -£_£ 

9 v_ t- 9C fF3cos2ac + Vœs,„accoa2 ac J- 

N, 

ÖF, 
cos a (F sin o - cos 2 o„ —^ 

3 C c svN 

cos 

H12 "2 cc ) Dc COS 0 + D Sin 9_) - 6 
1 C C5 C 

sin 9ç cos 9C 

rI 

2 
vcC0S CTc 
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"l4 = I <‘VC C0S 9C DCc * VC2 8in 0C DC » 
5 1 

ÒS/ 
find 

òii from reference tables. 

H ÒS/ e 
H - P V R C 0 

Hi3 72 ' Rc pc vc TT" T1 008 ec 
c Cc 

H15 = CC. k*T'c», c) cos ec + vc 
Dc12 810 9c] 

«16 = - <”l «14 + «2 «13 + «3 «15 + «4 «10 + «5 H12> 

«17 = V H2«7 + «3 «8 + «5 «91 

for n=0.6 = 1 for n > 0 6. = 0 
’ k k 

?1 ' ^ CBCl ' "l> - «2 »B' «3 ^B -«4 *B + 9B 

+ ^BC (CBC2 «BOU + CBC3 «BCjg* 

^2 ~ 
- 0F1 8. C 1 

k cj * (1ic> 008acy Rs òv 
n-1 

N1 
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to ^ 

äF, v„ òf2 - 

«r Rs 
ni 

3 = ~ \ Cj W^+,1-V COeöC-J 
n-1 

C = 6. D. - 
4 k ) \ cj - (1-V 008 CTC X Rs 

n-1 

ôF, 

61,E- 
*-L + J_ 
V V 

c c 
Wd-v C0-cTrs 

n-1 

òF 
3 

cos pc-v 
N, 

Ç6 = RS 
- H 

ôR 
__8 

11 ÒX 
n 

Ç =6 Q 
kWj 

Ç8 = Ç1’H1 Ç2“H2Ç3-H3Ç4-H4Ç7-H5Ç5 

âRs 
Tx 

^8 - »16 ^6 

C ' H17 - H16 H11 

S 
ÜS 

C ~ ^6 ■ Hn âX 

PC " ?2 " H14 RS 

ÒR, 
- H 

S 
6 ÒX 
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PC " H13 Rs 

ÒR. 

- H 
7 ÒX 

VC= *4- H16R's 

WC= «T' H10RS 

- H 
8 ÒX 

àRs 

eC = «5 - »12 V - »9 — 
c ÒX 

- 2 - 

- c. ßl 

(-»)c .c= 
c ~c "c 

Tc = 
zcRoc 

PC " |PC zcRTc + °c Tc R lo®10^ _,s( 

,a 108 io <7 \ 

+l7)cTcR^ 
p_ 

D. Error Indicators: 

NOVAL= 111; Error in thermodynamic properties (THERMO) 

NOVA L = 151: Error in finding Cj or (ARYCLC) 

NOVAL = 321: at shock point is not in reference tables. 
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Given the Configuration for the shock point on the starting line (spherically 

blunted body only). 

A¿AC = V<VX/ + <Rc-RA>2 

^bc=V(xc-xb)2 + (rc-rb)2 

"x“- %‘“°c+(xc-xo> 

ÔR 

-X 
X r 
{ =- [l-0+Rl 

da 
C dx * 2 

cos a 
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where: 

da 
dx 

(a 
b - yfrç-y <ac - - X,,) 

XC-XA ' ^-3 

dp 

di+ 

(Fç-^aÍge <pc-pe)a/bc 

a/bc A^CE A^CE-A/BC 

d 8 

d/+ 

(8(,-¾) A/GE (8c-0e)A/bc 

a/bc A^CE ^/CE-A/ BC 

dS/T 
<!s/rc's/rb) û ^ CE ÍS/Vs/re)A ¿BC 

a/bc a/ce Ai CE“A i BC 

dP 

d3 
^C-PA) CD ^d-Pc) Û^AC 

Ai AC + A/ CD 
A /AC + A/CD 

de 

s 

dS/R 

(9c-9a) Ai CD (0d-0c) A/AC 

A/AC A/CD A / AC + A / CD 

(S/Rc-S/Ra) a/CD (S/Rn-S/Rr) AÍAC 

A/AC + ÄJcD- 
A/AC + A^ CD 

, Rc 1,111 V<Vxn>°°B°„ 

•ta - 0C - uc) 

178 

I 



““(VW 

?10 = -aJ^ + bJL 
,0 it 

1,0 
A de „ d 8 A — + B _1 

Í¿ i J 
-1 

^/- hS/t 
+ B S/„ =_A d R ■ « d“'R 

1.« i¿+ d*/ 

w = y 
1.0 VC eos 9 ffc-xo>8111 °c 

R 

P =^-^5/ 1,0 2 2 S/R 
C C Kl,0 

V =.PM RTc s/R 
1,0 p-V- TT- S/Rj o 

CC c ’ 

Tl, 0 is found 10 the 8ame manner as succeeding shock points. 

if j=l, n=l 

J=l, n > 1 

6k, n = L0 

6k,n = 0‘0 



dR_ = . 
dX. . k,n 

1 1 fc» * 
«c 8in °c + cob °c 

1 
’ 3 

^ cos a 

Ri,i = 0-° 

'c c 

W 008 °C + Rc 8Ü1 °c 

^c^o»cos 9c+ Rc sln ec 

V. . = - & V 
k,n 1,1 SHK 

ei,l ~ “ 6k,n 0SHK 
) cos 0C + Rc sin 8C 

w = 0.0 
1,1 

v = »-0 

pl,l=0-° 

S/„ =0.0 
Rl.l 

if j = 2 n = 0 : 6, = 1.0 
’ k,n 

j = 2, n > 0 : 6, = 0.0 
’ k,n 
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dR 
- 5. dX k,n <Vxo>008 ac + RC 8Ü1 üc 

V - 3 cos a. 

R =0.0 
X 

SHK 
Ir /slnec 

-e ' l cos ac (xr - X ) COS a + R, 
C / L C ’ "C *u c 

sin a ] 

SHK 

sin6c sin (ac-0c) 

i’ 2 
COS <7 

^C-Xp) 008 ac + Rc sin Oç 

(Xc-X0) 008 0C + Rr sin 9 c i%c c. 

^c,n SHK ‘ £' • Xo] sin ec “ RC cos ec 
) 

09 » = k,n 
V 

6_2_ 

SHK /’vf ^c'Vcos 9C + RC 8tal 9C 

W2.n = Sk,n ~p~ (Kc'X0) 6 
l 

P2,n=0° 

S/p =0.0 
R2,n 

To =0.0 Z#n 
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ST LINE 

1 

A. Subroutine 

ß. Calling Sequence: JARG, NARG, MARG, NTARG 

C. This subroutine calculates perturbations along an aribtrary line to be 

used as a starting line for a blunt body supersonic unsteady flow run. 

Finds shock point which will be first point on arbitrary line, from zero- 

yaw solution. Assigns storage properties 'or shock point. Goes to subroutine 

SHOCK 3 and calculates perturbations for all J's and N's. Stores perturbations on 

binary tape NT5. Repeats for all field points using subroutine FIELD 3 and body 

point using subroutine BODY 3. After calculating body point, rewinds NT5 and zero- 

yaw tape. Reads preliminary information from zero-yaw tape, and returns to main 

program. 

SUFINT 

A. Subroutine 

B. Calling Sequence 

C. This routine calculates the integration of normal force and moment along 

the bod}'. The integration is done by Simpson's rule. 

L 

i 

X 
s 
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L 

Perturbation Pitching moment: Mz = Mz 
j,n o 

R tan 6 ) dx c o 

force and moment coefficients: C 

C 

Axial Location of center of pressure 

D. Along starting line, integration is done from shock to body to get initial data at 

body point 

at shock point F = 0. 0. 
*K 

at each field point 
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4Íbc- V^c-v^'w 

XK =/ 
B 

V + __ œ P V 
CD 00 

P sin y I 6 á 
- (V coa 9 + -p^- -fr P V sin (y-8) dl 

sin (y- 9)1 

at body point 

V2* \ 

FN a ~ FXK " pr r) 

w _ -R 
Mz Fm 

a cos 9 Na 

ant^ are as in C above, 
a a 

D. Error Indicators: None 

SUMINT 

A. Subroutine 

B. Calling Sequence: None 

C. This routine provides a summary of body data from integration of forces 

along body. 

i. 

Reads Input 

1) DELX, RN, NRTST, NT4 
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i 

2) RTST (Jl), Ji=i> nRTST 

3) XMAX MI), Jl=if NRTST 

Reads binary tape from Supersonic unsteady flow run on blunt body NUMJ, 

NMAX, XEND, RHOUN, VUN, XO, ELP 

Computes TMP = p y 2 
00 OQ 

n = 3.1415926 

for each body point reads from binary tape for each J, N at each body point 

J.N, X R F , Mz 
0 c Nr> a 

Computes C 
N 

N 
a- V TMP R_2 j.n 2 

Mz 

Mz 
-SL 

n :1™p Rr 

Computes Table I 

CN CN 
a = a 

1,0 

2 p - I C. 
M - X-^ C 

or C M ZQrl, 0 
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Stores values in table of two elements. Tests against RTST. When RTST 
RB 

is found to lie between two elements of this table, interpolation is done to find 

above quantities for RTST: 

TABLE 11 is calculated 

is incremented from 0. 0 by increment DE LX until Xmax is reached. For 

each value of 
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Table U is printed ánd calculations return to Table L Process is repeated until 

final body point is computed. 

D. Interpolation above can also be done if a value for XINT (X interpolate) is 

read in as input. The program will use XINT to interpolate as RTST is 

used above. 

E. Error Indicators: None. 

THERMO 

A. Subroutine 

B. Calling Sequence: (IND) 
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C. This routine computes the thermodynamic properties used In calculating 

the unsteady flow perturbations and the small yaw angle perturbations. 

IND - 1 Unsteady ñow perturbations. 

INI) - 2 Small yaw angle perturbations. 

da db 
a, b,— , — 

dz dz 
— « Z _ , - , 

d^- d^- 
SR dR äR 

are found in FLOWTL 

a + b P, 

2_ *.1.L 

Zc ^/Po 

C = 

NOTE: Following equations are not used in supersonic unsteady flow program. 

188 



D. Error Indicators: 

NOVAL = 21: 
da 

Error in FLOWTL in finding a, b,_or 

NOVAL = , ÔZ 
121: Error in FLOWTL in finding Z,_ 

db 

a z 

4) 
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8. NUMERICAL RESULTS AND COMPARISON WITH TEST DATA. 

Some representative results of the unsteady flow field solution are presented in 

this section. Calculations were carried out at four flight conditions along the trajec¬ 

tory shown in Figure 16. Figures 17 through 23 show the dynamic and static force and 

moment coefficients plotted against Mach number and against center of gravity location. 

Test data from Reference 16 is shown on Figures 17 and 18. While agreement is fair, 

two reasons for discrepancies between computed and measured results can be given. 

One is the fact that free stream conditions were not the same. The computations were 

done for entry along a representative trajectory, while the free stream conditions in 

the test cell were restricted to those available in the facility. The other reason for 

discrepancy between computed and measured results is the difference in Reynold's 

numbers. Calculations were carried out for an inviscid fluid while the tests were 

carried out at finite Reynold's numbers. 

The plots demonstrate the wide range of information available from the unsteady, 

flow field solution. It should be noted that for each Mach number, a single solution 

provided all the coefficients over the center of gravity location range, for R^/Rs = 

0.15, 0.3, and 0. 6. 
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Figure 16. Trajectory Along Which Data is Presented 
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Figure 19. Dynamic Force Coefficient vs Mach Number for 
10-Degree Sphere Cone at x„_/L = 0.6 
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Figure 20. Dynamic Force Coefficient vs Center of Gravity Location for 

10-Degree Sphere Cone = 0.3 
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Figure 21. Static Moment Coefficient vs Mach Number for 
10-Degrcc Sphere Cone at x /L = 0.6 
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2.4 

Figure 23. Static Force Coefficient vs Mach Number for 
10-Degree Si)hcre Cone at X /L =0.G 
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Figure 24. Comparison Of Theoretical Results 
10-Degree Cone 
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9. C0NCLUSI0NS/SUM1ÆARY 

An unsteady flow field solution has been developed to enable the Research and 

Technology Division to compute static and dynamic stability coefficients for pointed 

and spherically blunted bodies of revolution (and analogous two-dimensional shapes). 

A small perturbation scheme has been used, together with a zero yaw steady state 

solution, to obtain the flow fields surrounding bodies undergoing small perturbations 

in motion about the zero yaw steady state condition. Force and moment coefficients 

have been obtained by integrating appropriate perturbations in pressure over the 

body surface. 

Results of this flow field computation have been found to agree well with test data. 

Some numerical results of this solution are presented in Section 8. Figures 17, 18, 

21 and 22 provide a comparison with test data obtained in Tunnel C, Arnold Engineer¬ 

ing Development Center (reference 16). 

Figure 24 shows a comparison of theoretical results for derivatives of the normal 

force coefficient, CN. CN and C are shown separately in this figure, and the values 
wq a 

for Cnq are for a center of rotation at the vertex of the pointed cone. The results from 

the Flow Field analysis are compared with results from: 

1) The potential theory due to Tobak and Wehrend, reference 17; 

2) The shock-expansion theory due to Zartarian, Hsu and Ashley, reference 18; 

3) The modified shock-expansion theory due to Fink, reference 19, and; 

4) The Newtonian impact theory. 
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The Newtonian Impact theory gtvea reaulta which are considerably lower than the 

asymptotic values approached by the flow field results. They do not agree as well as 

might be expected based on comparison of the static stability derivatives. 

The results from potential theory agree quite well with the flow field results at the 

lower Mach numbers, where the former theory Is applicable. The only discrepancy 

occurs with CN. at Mach numbers above 3 or 4. CN. fr„m the potential theory goes 

to the Newtonian value of zero at higher Mach numbers, while the flow field result. 

show a value which Increases with increasing Mach number and approaches a value on 

the order of 15% of CN . 
q 

TV results from shock expansion theory (reference 5) are In qualitative agreement 

With the flow field results mid are In good quantitative agreement In the vicinity of 

Mach 8. 
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APPENDIX I 

A GUIDE FOR PREPARING INPUT 

CARDS FOR THE FLOW FIELD COMPUTER PROGRAMS 

first part of this Appendix provide, an outline of the terms which must 

appear on each input card for the pointed cone, transonic. aero-y.„ supersonic 

and unsteady supersonic progrmns. The remainder of this Appendix is a more 

detailed guide to determining what value each term takes on. when earring out 

an unsteady flow field solution. 
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The following terms must appear on the data cards for the pointed cone solution. * 

Card No. Terms No. of Cards Comments 

1. FFCASE (plus title) i 

2. DOPROG, KENSE (1 through 10) 1 

3. TEST (1 through 10) i 

4. PUN, RHOUN, VUN, AM UN i 

5. DEL, RGI, ALT i 

6. OMBODY, DLTOM, NMAX 1 

7. RIDEAL, GIDEAL, ZIDEAL, RHOO, 1 

RHOOO, GREAL 

♦The first character on each card must be either X or F. If the names of the 

terms on a card begin with I, J, K, L, M or N, the letter X must appear in 

column 1. Otherwise, F must be punched in column 1. On cards which contain 

both integers and non-integers, both letters must be used. For example, Card 

6 will begin with the letter F, followed by OMBODY, comma, DLTOM, comma, 

XNMAX*. No commas are to be used between the letters X and F and the num¬ 

ber which immediately follows them. An asterisk must îollow the last number 

on each card (except Card 1), unless a card ends in a series of zeros. The 

symbol $ may be used in place of a series of zeros if no non-zero number appears 

to the right of the zeros. For instance Card 2 wil! usually be: X3, -1, $. 



The following terms must appear on the data carda for the zero yaw transonic 

solution:* 

Card No. Terms 

1. FFCASE (plus title) 

2. IDPROG, KENSE (1 through 10) 

3. NBTPW, NBTPR 

No. of Cards 

1 

1 

1 

4. TEST (1 through 10) 

5. PUN, RHOUN, VUN, AMUN 

6. DEL, RGI, ALT 

7. NUMPTS, NITMX, DLTRUN, TPREV, 

GPREV 

8. RIDEAL, GIDEAL, ZIDEAL, RHOO, 

RHOOO, GREAL 

9A. NEQU, NDEG (1 through NEQU) 

1 

1 

1 

1 

9B. A (1 through NDEG + 1)) 

9C. RDIV (1 through (NEQU-1)) 

NEQU 

1 

♦See footnote on page 206. 

Comments 

Omit Caid 3 

if Kense(l) 

has been set 

equal to zero 

Cards 9A 

through 9C 

describe 

shock. 

Omit Card 9C 

if NEQU < 2 
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Card No. 

10 A. 

Terms 

NCURVE, NTST (1 through NCURVE) 

10B. A (1 through 12) 

(option 1) 

10B. 

(option 2) A (9 through 12) 

10B. A (1 through 8), A(12) 

(option 3) 

IOC. CRV (1 through (NCURVE-1) 

10D. P (1 through NUMPTS) 

10E« X (1 through NUMPTS) 

No. of Cards Comments 

1 Cards 10A 

through IOC 

describe body 

To use this 

option set 

NTST = - 1 

/ \ 

S NCURVE S To use this 

\ / 

option set 

NTST = 0 

To use this 

option set 

NTST = 1 

Omit Card 10C 

if NCURVE < 2 

THe following term, must appear on the data carda for the 

solution* 

Card No. 

1. 

2. 

Terms 

FFCASE (plus title) 

IDPROG, KENSE (1 through 10) 

No. of Cards Comments 

1 

*See Footnote on page 206. 
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Card No. Terms 

aá 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

NBTPW, NBTPR 

TEST (1 through 10) 

PUN, RHOUN, VUN, AMUN 

DEL, RGI, ALT 

NUMPTS, AKAPSH, AKDEL, 

AJFRZN 

No. of Cards Comments 

1 

1 

1 

1 

1 

RIDEAL, GIDEAL, ZIDEAL, RHOO, 

BHCXX), GREAL 

XEND, XTERM, MSTART, NTERM, 

NEXP 

XEXP, REXP, THEXP, PEXP, NDIV NEXP Omit Card 10 

11 A. NCURVE, NTST (1 through NCURVE) 

when doing an 

unsteady 

solution. 

Cards HA 

through lie 

11B. A (1 through 12) 

(option 1) 

11B. A (9 through 12) 

(option 2) 

/ \ 

describe body. 

To use this 

option, set 

NTST = -1 

^ NCURVE > To use this 

/ 

option, set 

NTST = o 
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Card No Terms No. of Cards Comments 

IIB. A(1 through 8), A(12) 

(option 3) 

IIC. CRV (1 through (NCURVE-1) 1 

12. XC, RC, THC, RHOC, PC, $ NUMPTS 

The following terms must appear on the data cards for the unsteady 

solution. * 

Card No. Terms No. of Cards 

1. FFCASE (plus title) 1 

2. ID PROG, KENSE (1 through 10) 1 

3. XEND, XTERM, ELP 1 

4. MSTART, NUMJ, NMAX, NTERM, 1 

NT2, NT3, NT4, NTS 

5. NBTPW, NBTPR 1 

6. RIDEAL, GIDEAL, ZIDEAL, RHOO, 1 

RHOOO, GREAL 

♦See Footnote on page 206. 

To use this 

option, set 

NTST = 1 

Omit Card 11C 

if NCURV < 2 

The first card 

must give 

values at the 

shock, the last 

card values at 

the body. 

supersonic 

Comments 
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Card No. 

7. 

Terms 

NUMPTS, XO 

No. of Cards Comments 

Omit Card 7 

for pointed 

bodies. 
8. 

9. 

10. 

11. 

DELX, RN, NRTST, NXINT, NT5 

RTEST (1 through NRTST) 

XINT (1 through NXINT) 

XMAX 

TRANSONIC PROGRAM (ZERO-YAW) 

— ' 11,6 monltor FFCASE “*»« -wear on the flrst data card. . He re¬ 

mainder of thia card (columna 7 through 72) may be uaed for 

desires to have printed out with the solution. 

any title the user 

Çard_2 - IDPROG identifies which link on the 
chain tape will be used. For the 

transonic solution. 1DPROC mua. be set equal fo 2. For the usual transonic solu¬ 

tion to be used in obtaining .« unsteady flow field solution. Kense (1, through Kense 

(10) should be set equal to zero. 

cutn - NBTPW is the "logical" number of the tape drive on whioh the stmd- 

ard binary Upe will be written (if Kense (1, ,s set equal to 1). A value 26 is pre¬ 

set (this means tape drive B6). Any other tape drive may be used by setting 

•The letters FFCASE must ocoupy columns 1 through 6 of the first card. No „«es 

should appear between them. 
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I 

NBTPW equal to the appropriate ’’logical" number. * The term NBTPR has no 

pi Awning in this program, and should be set equal to zero. 

Card 4 - Test (1) through test (5) are the convergence criteria used in various 

I iterations in this program. If zeros are punched for these terms, certain preset 

values will be used in the solution. These preset values have been found to give 

good results in the past. It is recommended that they be used in production runs. 

Tests (6) through test (10) have no meaning this this program, and should be set 

equal to zero. 

Card 5 - The free stream pressure and density, the flight velocity and Mach 

number, in that order, must be entered on Card 5. The urits of the first three 

quantities are Ib/ft2, slugs/ft3 and ft/second, respectively. 

Card 6 - The term DEL determines whether an axisymmetric or two-dimen- 
.. 

sional solution is to be carried out. (DEL = 0 means a two-dimensional solution; 

DEL = 1 means an axisymmetric solution). The real gas index, RGI, is set equal 

to 1 if a real gas solution is desired, equal to 0 if an ideal gas solution is desired. 

ALT is the altitude. It is merely printed out on the output sheet, and is not used 

in the computations. 

Card 7 - NUMPTS is the number of points on the body surface, at which 

pressure and x will be provided as input (Cards 10D and 10E). An explanation of 

how the number of points and the pressures, etc., are obtained, is given in 

*In the usual unsteady flow field solution, Kense (1) will be set equal to zero, card 

number 3 will be omitted, and no binary tape will be saved. 
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Appendix m of this report. NITMX is the maximum number of iterations which 

will be done in one of the iterative processes in this solution. A preset value of 5 

will be obtained if NITMX is punched in as zero. It is recommended that this value 

be used in production runs. DLTRUN is the spacing between streamlines upstream 

of the shock. The value of DLTRUN determines on how many streamlines foetween 

the body surface and shock wave) computations will be carried out. It is recom¬ 

mended that 40 to 60 streamlines be used. This can be done by setting DLTRUN 

equal to . 015 for the first iterations, and adjusting it upward to decrease the num¬ 

ber of streamlines or downward to increase it for following iterations. TPREV 

and GPREV are initial estimates of temperature and y* used in an iteration at the 

shock wave. Free stream temperature and 1.4 are the preset values. It is 

recommended that the preset values be used (by setting TPREV = GPREV = 0). 

Cards - RIDEAL is the real gas constant for air, preset at 1716.5 ft lb/slug 

°R. GIDEAL is the ratio of specific heats used in ideal gas calculations, preset 

at 1.4. ZIDEAL is the compressibility factor used in ideal gas calculations, pre¬ 

set at 1.0. The remaining terms, RHOO, RHOOO and GREAL, are used in con¬ 

nection with the thermodynamic tables that have been provided with this solution. 

The preset values of these three terms should always be used (unless a different 

set of thermodynamic tables is provided in the future). The preset value of any 

of the above terms will be used, if zero is entered in its place on Card 8. 

ÇarlÊ - This "card" really consists of 2 to 6 cards, depending on how com¬ 

plicated a description of the shock wave shape is used. Some detail on how to 

choose a shock shape is given in Appendix m. They are: 
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1. Card 9A (one card) - NEQU is the number of equations of the form: 

X = A(l) + A(2)R + A(3)r2 + ...+ A(ll)RlO| which ^ be uged ^ descrlbe 

the shock wave shape. * NDEG is the highest exponent of R which has a non-zero 

coefficient. One value of NDEG must be entered on this card for each equation, 

the first value corresponding to the equation which is valid at the axis of symmetry. 

2. Card 9B (one card for each equation) - Each of these cards contains the 

coefficients A(l), A(2), etc. for one equation. The number of coefficients is al¬ 

ways one greater than the value of NDEG which corresponds to that equation. The 

coefficients for the equation which is valid at the axis of symmetry, go on the first 

of these cards. Note that symmetry requires A(2) to be zero for this one equation. 

3. Card 9C (one card if more than one equation is used-otherwise omit) - 

This card lists the R values at the points where the various equations are tangent 

to each other (RDIV), starting with the tangency point nearest the axis of symmetry. 

The number of values of RDIV is always one less than NEQU. 

Card_10 - This "card” really consists of 4 to 10 cards (or more), depending 

on the complexity of the body shape and on the method chosen to express the input 

information at the body. ** 

*As many as six equations may be used, although usually only one is needed. 

**The present discussion will be limited to the usual transonic solution to be used 

in obtaining an unsteady flow field solution. By this is meant the solution which 

results when Kense (1) through Kense (10) on card 2 are set equal to zero. 
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1. Card lOA (one card) - As many as six equations may be used to describe 

the body shape. NCURVE is the number which will actually be used, to the usual 

unsteady solution for a spherically blunted body, only one equation (that of a circle) 

will be needed. NTST indicates which of the coefficients in the equation: 

A (8) 

n -1 

wiU be punched on Card 10B. If NTST is set equal to minus 1, a number must 

appear on Card 10B for each of the 12 coefficients. * If NTST is set equal to zero, 

only A(9) through A(12) are to be punched on card 10B. The latter case is con¬ 

venient for the spherically blunt-blunted body. One value of NTST must appear for 

each equation to be used. 

2. Card 10B (one card for each equation ) - This card must contain the 

twelve coefficients A(n) if NTST was set equal to -1, or the four coefficients A(9) 

through A(12) if NTST was set equal to zero. The latter case is equivalent to 

setting A(l) through A(8) equal to zero. The coefficients of the equation which is 

valid nearest the stagnation point must appear on the first of Cards 10B. 

3. Card IOC (one card if more than one equation is used to describe the body, 

otherwise omit) - This card contains the x values (CRV) at the intersections of the 

*Zero may of course be entered for any of these coefficients. 
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various equations used to describe the body surface. TTiere will always be one 

less value of CRV than the number of equations used, hi the usual unsteady flow 

field, only one curve is needed in the transonic region, and Card IOC will be 

omitted. 

4. Card 10D - This card will contain the values of pressure at the body. 

The number of entries on this card must be equal to NUMPTS. (See Card 7. ) 

5. Card 10E - This card will contain x values corresponding to the points 

at which pressures are given on card 10D. Again, the number of entries on this 

card must be equal to NUMPTS. 

Cards 10F through 10H will be used only if KENSE (3) is not set equal to zero. 

(See Card 2. ) They will be omitted in the usual unsteady flow field solution, and, 

therefore, won't be discussed here. 

B- POINTED CONE PROGRAM. (ZERO YAW AND UNSTEADY) 

Card 1 - The monitor FFCASE must appear on the first data card. * The re¬ 

mainder of this card (columns 7 through 72) may be used for any title the user 

desires to have printed out with the solution. 

Card 2 - IDPROG identifies which link on the chain tape will be used. For the 

pointed cone solution, IDPROG must be set equal to 3. Kense (1) determines 

whether or not the unsteady solution will be carried out, and whether or not a binary 

♦The letters FFCASE must occupy columns 1 through 6 of the first card. No 

spaces should appear between them. 
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tape is to be written (on tape drive A6). If an unsteady solation Is to be done In the 

supersonic region, Kense (1) must be set equal to minus one. * If no solution is to 

be done In the supersonic region, Kense (1) should be set equal to plus one. Kense 

(2) through Kense (10) have no meaning in this program, and should be set equal to 

zero. 

Cards - Test (1) through Test (5) are the convergence criteria used in various 

iterations in this program. U zeros are punched on Card 3 for these terms, cer¬ 

tain preset values will be used in the solution. These preset values have been found 

to give good results in the past. It is recommended that they be used in production 

nms. Test (6) determines when a point is too close to the body surface for use as 

input in the supersonic programs (i.e., when a point should be omitted from the 

binary tape which is written when Kense (1) is set equal to -1,. Test (6) staid be 

set equal to approximately .2 of the spacing DLTOM (See Card 6) converted to 

radians (e.g. set Test (6) equal to . 0035 x DLTOM)**. Tests (7) Sirough (10) 

have no meaning in this program and should be set equal to zero. 

•If Kense (1) is set equal to minus one, the solution will be written on a binary 

tape on tape drive A6. The tape should, oí course, be retained for use in the 

unsteady solution in the supersonic region. 

••Whenever a point is omitted from the binary tape, the perturbations at that point 

are also omitted from the pointed cone printout. The zero yaw values at that 

point, however, appear on the printout. Care must be taken to omit them when 

preparing input for the zero yaw supersonic solution. 
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Çard4 - The free stream pressure and density, the flight velocity and Mach 

number, in that order, must be entered on Card 4. The units oí the first three 

quantities are lb/ft2, slugs/fr'', and ft/second, respectively. 

Carls - The term DEL determines whether an ajdsymmetric or two-dimen- 

sional solution is to be carried out. (DEL = 0 means a two-dimensional solution; 

DEL = 1 means an ^symmetric solution,. Tht real gas index, RGI, is set equal 

to 1 il a real gas solution is desired, equal to 0 if an ideal gas solution is desired. 

ALT is the altitude. It is merely printed out on the output sheet, and is not used 

in the computations. 

Cai^_6 - OMBODY is the cone half angle in degrees. DLTOM is the incre¬ 

ment in angular position where results will be provided; i. e. results will be 

printed out at the shock wave, u> = œB, and at w = a;8 - DLTOM w = w - 2 x 
s 

DLTOM, etc. It is suggested that a value of DLTOM be obtained by estimating 

the shock angle (e.g., Chart 5 of NACA Report 1135), and then choosing DLTOM 

to give 10 to 15 increments between the body and the shock wave. NMAX deter¬ 

mines how many of the coefficients in the series: 

will bo calculated. For example, if the term C^ is desired, (but not C^) 

NMAX should be set equal to 1. 
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Card 7 " RIDEAL is the real gas constant for air, preset at 1716.5 ft lb/slug 

°R. GIDEAL is the ratio of specific heats used in ideal gas calculations, preset 

at 1.4. ZIDEAL is the compressibility factor used in ideal gas calculations, pre¬ 

set at 1.0. Hie remaining terms, RHOO, RHOOO and GREAL, are used in con¬ 

nection with the thermodynamic tables that have been provided with this solution. 

The preset values of these three terms should always be used (unless a different 

set of thermodynamic tables is provided in the future). The preset value of any of 

the above terms will be used, if zero is entered in its place on Card 7. 

C. SUPERSONIC PROGRAM (ZERO YAW1 

Card 1 " The monitor FFCASE must appear on the first data card. * The re¬ 

mainder of this card (columns 7 through 72) may be used for any title the user 

desires to have printed out v/ith the solution. 

Card 2 - IDPROG identifies which link on the chain tape will be used. For the 

supersonic solution, IDPROG must be set equal to 5. For the usual supersonic 

solution to be used in obtaining an unsteady solution for a spherically blunted body 

(input line information is obtained from the Transonic solution), Kense (1) through 

Kense (10) should be set equal to zero. For a pointed body (input line information 

is obtained from the pointed cone solution), Kense (2) should be set equal to + 1, 

and the i emaining 9 Kenses should be set equal to zero. In some cases where a 

supersonic solution has been carried to a certain point in the field, and the appropriate 

♦The letters FFCASE must occupy columns 1 through 6 of the first card. No 

spaces should appear between them. 
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binary tape has been saved (see remarks on Card 3), the solution may be re¬ 

started where it was left off, * and carried on downstream from there. If this 

is the case, Kense (6) should be set equal to -1. The other Kenses should be 

treated as indicated above. 

Card 3 - NBTPW is the "logical" number of the tape drive on which the 

standard binary tape will be written. It is preset to use tape drive B6 if NBTPW 

is set equal to zero. If the unsteady solution is to be used, this tape must be re¬ 

tained and used as input in that solution. NBTPR is the "logical" number of the 

tape drive on which the binary tape from the previous zero yaw supersonic solu¬ 

tion must be placed if a "restart" run in being done (i. e., if Kense (6) has been 

set equal to -1). The normal zero-yaw supersonic solution for use in obtaining 

an unsteady flow field solution will not be a restart run, and NBTPR should be set 

equal to zero. However, whenever the restart option is used, NBTPR must be as¬ 

signed a different tape drive number than NBTPW (e. g., set NBTPW equal to 26 and 

NBTPR to 16, then place a blank tape** on drive B6, and the tape with the beginning 

of the zero-yaw solution on drive A6***). 

Card 4 - Test (1) through test (7) are the convergence criteria used in various 

iterations in this program. Test (5) and test (6) should each be set equal to IE-05 

*It may also be started up anywhere upstream of the point where it was left off. 

See remarks on Card 9. 

**This tape will then be input to the unsteady solution. 

***See Section 7.1.3 of this report. 



for the usual unsteady solution. All other terms on this card (Test (1) through 

Test (4) and Test (7) through Test (10)) should be set equal to zero in order to call 

for preset values. 

Card 5 - The free stream pressure, density, flight velocity and Mach num¬ 

ber, in that order, must be entered on Card 5. The units of the first three 

quantities are Ib/ft2, slugs/ft3, and ft/second, respectively. 

Card 6 - The term DEL determines whether an axisymmetric or two- 

dimensional solution is to be carried out. (DEL = C means a two-dimensional 

solution; DEL = 1 means an axisymmetric solution.) The real gas index, RGI, 

is set equal to 1 if a real gas solution is desired, equal to zero if an ideal gas 

solution is desired. ALT is the altitude. It is merely printed on the output sheet, 

and is not used in the computations. 

Card 7 - NUMPTS is the number of points on the "starting" line* at which in¬ 

put information is given, AKAPSH is the shock angle (in radians) at the point where 

the "starting" line meets the shock wave. The terms AKDLL and AJFRZN should 

be set equal to zero in the usual (chemical equilibrium) calculations done with an 

unsteady flow field solution. 

Card 8 - RIDEAL is the real gas constant for air, preset at 1716.5 ft Ib/slug 

°R. GIDEAL is the ratio of specific heats used in ideal gas calculations, preset at 

1.4. ZIDEAL is the compressibility factor used in ideal gas calculations, preset 

♦When doing a "restart" (Kense (6) = -1), NUMPTS should be the number of points 

on the original starting line. 
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at 1.0. The remaining terme, RHOO, RHOOO and GREAL are used in connection 

with the thermodynamic tables that have been provided with this solution. The pre¬ 

set values of all these terms should always be used (unless a different set of thermo¬ 

dynamic tables Is provided in the future). The preset value of any of the above terms 

will be used, if zero is entered in its place on Card 8. 

Cards - XEND is the x value at the end of the body. XTERM should always be 

set equal to zero. MSTART will be non-zero only in a restart run (in a run where 

Kense (6) has been set equal to -1). It specifies the M number of the last left hand 

characteristic line along which the results of the original run are to be used. Cal¬ 

culations along all characteristic lines downstream of it will be done as usual. 

NTERM should always be set equal to zero. NEXP is the number of expansion cor¬ 

ners present on the body. For the unsteady flow field calculation it must be set 

equal to zero. 

—ard 10 " 11118 "card" really consists of as many cards as there are expan¬ 

sion corners. It gives information about the expansion comers. For the unsteady 

flow field solution it must be omitted. 

Card_n - This "card" really consists of 4 to 10 cards (or more), depending 

on the complexity of the body shape. 

1. Card 11A (one card) - As many as six equations may be used to describe 

the body shape. NCURVE is the number which will actually be used. NTST indi¬ 

cates which of the coefficients in the equation:* 

♦The origin of the x, r coordinate system should be placed at the stagnation point. 
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r=E 
(n-l) 

A(n) x-A(12) 

A(8) 

+ A (7) x-A(12) 

wiU be punched on Card 11B. If NTST is set equal to -1, a number must appear 

on Card 11B for each of the 12 coefficients. * If NTST is set equal to zero, only 

A(9) through A(12) are to be punched on Card 11B. The latter case is convenient 

for the spherically blunted body. One value of NTST must appear for each equa¬ 

tion to be used. 

2. Card 11B (one card for each equation) - This card must contain the twelve 

coefficients A(n) if NTST was set equal to -1, or the four coefficients A(9) through 

A(12) if NTST was set equal to zero. The latter case is equivalent to setting A(l) 

through A(8) equal to zero. The coefficients of the equation which is valid nearest 

the stagnation point must appear on the first of cards 11B. 

3. Card 11C (one card if more than one equation is used to describe the body, 

otherwise omit) - This card contains the x-values (CRV) at the intersections of the 

various equations used to describe the body surface. There will always be one less 

value of CRV than the number of equations used. 

♦Zero may, of course, be entered for any of these coefficients. 
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Card 12 - There will be one Card 12 for each point on the "starting" line 

(NUMPTS). The first of these cards will provide data at the shock, the last one 

at the body. Each card will contain x, r, THC (flow angle in radians), RHOC 

(density in slugs/ft^), and PC (pressure in lb/ft^). The pressure entry on each 

card should be followed by a comma and a dollar sign. The information for Card 

12 will come from the transonic or pointed cone solution. When doing a "restart", 

no card 12 is needed. 

D. UNSTEADY SUPERSONIC PROGRAM 

Card 1 - The monitor FFCASE must appear on the first data card. * The re¬ 

mainder of this card (columns 7 through 72) may be used for any title the user 

desires to have printed out with the solution. 

Card 2 - IDPROG identifies which link on the chain tape will be used. For the 

unsteady supersonic solution, IDPROG must be set equal to 7. Kense (1) should 

be set equal to zero for a blunt body, and equal to -1 for a pointed body, Kense (2) 

should always be set equal to zero. If Kense (3) is set equal to zero, values of all 

the flow field parameters at all points where calculations were performed will be 

printed. If Kense (3) is set equal to 1, only force and moment coefficients will be 

printed. Kense (4) through Kense (10) have no meaning, and should be set equal 

to zero. 

*The letters FFCASE must occupy columns 1 through 6 of the first data card. No 

spaces should appear between them. 
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SHU - HMD is the X value at the end of the body. The sane 

HMD value should be used here as on Card 9 of the aero yaw supersonic 

solution. ITEM should always be set equal to aero. ELP is the 

length used in non-dimensionallaing a and q in part of the output (See 

Appendix III). It nay be set equal to any desired length for the blunt 

body. For a pointed body, it must be compatible with the tape input 

fron the pointed cone solution (i.e., it must be set equal to the tan- 

gent of the cone half angle which was used in the pointed cone solution). 

Sfidjl - KSTART is the M-number of the left running characteristic 

line on which calculations are to begin. Since unsteady flow field 

computations must start at ’least two left running characteristic lines 

downstrean of the body point on the sero yaw starting line, a reasonable 

»ay to determine a value for «START is to find the «-value of the sero 

yaw starting line body point (from the sero yaw supersonic printout), and 

add 8 to it. NUMJ should always be set equal to 2. UMAX governs the 

point where the series: 

p = p0 + p a+ p 
l.o *1,1 

is to be truncated. It should always be set equal to 1 for a ulunt body. 

For a pointed body it must be set equal to the value of UMAX used on 

Card 6 of the input to the pointed cone program. NTEHM, NT2, NT3, NTl*, 
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NT5 should always be set equal to zero.* 

CardJ> - NBTPW and NBTPR govern tape assignments, and should always 

be set equal to zero in order to use the preset values. 

6 - The terms on this card have the same meaning as the corres¬ 

ponding terms on Card 8 of the zero yaw supersonic program. They should 

all be set equal to zero in order to use the preset values (unless an 

ideal gas with y^I.U is being investigated). 

Card 7 - This card is to be used in a blunt body solution only. It 

must be omitted when investigating a pointed body. For a blunt body 

NUMPTS must have the same value as on Card 7 of the zero yaw supersonic 

solution. XO is the distance from the origin of the coordinate system to 

the center of the spherical nose. In the usual solution, the origin will 

be placed at the stagnation point, so that XO will be equal to the nose 

radius. 

Card 8 - At the end of the printout for the unsteady supersonic program, 

a Table of C^, Cj^, + C^) and (Cjja + (¾^) vs Xcg/L is provided for bodies 

with any desired %/Rg ratio, or bodies of any length desired. Cards 8 

through 11 determine how many tables (and how many lines in each table) are to 

be printed out. DELX is the increment in X^/L at which the information is to be 

* There is one exception to this rule. Occasionally the zero yaw supersonic 

solution will not converge at a shock pojnt, and the solution downstream 

of the right running characteristic line which passes through that shock 

point will not be valid. In that case NTEFM should be set equal to the 

N-value of the right hand characteristic line which emanates from the 

shock point immediately upstream of the bad shock point. 
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printed. RN is the nose radius of the (blunt) body. For a pointed body, zero should 

be used. NRTST is the number of Rn/Rb ratios fc r which tables are to be provided. 

A maximum of ten is permitted. NXINT is the number of body lengths for which 

tables are to be provided. A maximum of ten is permitted. * NT5 .s a tape as¬ 

signment which should be set equal to zero in order to use the preset value. In 

no case should NT5 on Card 8 be given a different value than it was given on Card 4. 

Card 9 ~ RTEST are the values of R^/Rg for which tables are desired. The 

number of entries on this card must be equal to NRTST. The largest value of 

RTEST must appear first, followed by the next largest, etc. If NRTST on Card 8 

has been set equal to zero, F$ should appear on Card 9. 

Card 10 " XINT are the values of x for which tables are desired. ** The num- 

tor of entries on this card must be equal to NXINT. The smallest value of XINT 

must appear first, followed by the next smallest, etc. If NXINT on Card 8 has been 

set equal to zero, F$ should appear on Card 10, 

Cardal - XMAX is the largest value of x^/L desired in the tables. Only one 

term will appear on this card. All the tables in a given computer run will then 

terminate at the same value of x /L. 

♦The option to specify body lengths rather than RN/Rb, is provided to permit 

calculations for pointed cones where Rj^/Rg is always zero, and for bodies 

with cylindrical sections where Rn/Rb is ambiguous. 

♦♦If the origin of the coordinate system has been placed at the stagnation point, 

the values of XINT will be equal to the body lengths of interest. 
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1 

Summary of Tape Assignments - Since as many as 7 special tape drives may 

be needed in the unsteady flow field solution, a summary of tape assignments is 

given below. It is assumed that NBTPW, NBTPR, NT2, NT3, NT4 and NTS have 

been set equal to zero. 
« 

Tape drive Description of Tape 

A4 

B7 

A6 

A6 

A7, A8, B5 

B6 

Chain Tape 

Atmospheric Tables (real gas solution only) 

Output of pointed cone program (pointed body only) 

Scratch tape (blunt body only) 

Scratch Tapes 

Output of zero yaw supersonic program. 
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APPENDIX H 

A GUIDE TO READING THE COMPUTER PRINTOUTS 

The meaning of most of the information which 
appears in the various computer 

printouts is self evident. This guide provides information 

the units used) where some additional 

on some areas (such as 

comment is necessary. It is assumed that 

the user will have the various printouts on hand when reading this guide. 

A. ZERO YAW SOLUTIONS - GENERAL 

The following units are used in all zero yaw solutions: 

RHO = density 

P = pressure 

V = VEL = velocity 

angles 

(Th = THETA = flow direction, 

SIGMAC = shock angle, both 

measured from the axial) 

T = TEMP = TEMPERATURE 

S/R = entropy 

PSI = stream function 

- Slugs/ft3 

- lb/ft2 

~ ft/sec 

~ radians (unless marked otherwise) 

— degrees Rankine 

“ non-dimensional (S/R) where R is the gas 

constant 

~ slugs/ft2 sec (e. g. upstream of the shock 

wave the stream function is defined 
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X and R = axial and radial 

coordinates 

^ " (f) r P®V<x>* r is n°n- 
dimensionalized against any reference 

length chosen by the user), 

non-dimensionalized against a reference 

length chosen by the operator (in preparing 

the coefficients of the body shape). 

The first two pages of all three zero yaw solutions (transonic, pointed cone and 

supersonic) show the MUe and values of the constants RIDEAL, GIDEAL, ZIDEAL, 

RHOO, RHOOO, GREAL. (See Cards 1 and 8, Appendix I.) The remainder of the 

printout for each solution must be explained separately. 

1* The Zero Yaw Transonic Solution 

The third page of the transonic solution indicates the coefficients of the shock-equa¬ 

tions ufolch wore used (Card 9, Appendix I). The first column represents the curve 

closest to the axis. 

The fourth page prints the free stream conditions (which were also a part of the 

input). Altitude is in any units the user chose when punching Card 6, Appendix I. 

The fifth page prints the body curve coefficients punched on Card 10A and B 

(Appendix I). If more chan one curve is used, the X and R values at the intersections 

are also printed, as well as the flow direction at each intersection, computed from the 

upstream and downstream body curves. 

The printout of the solution begins on page 6. The paragraph headed M = l repre¬ 

sents the body streamline. The next paragraph (M = 2) represents the next streamline 
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from the body, etc. The line N - 0 in each paragraph provides the flow field 

parameters immediately inside the shock wave on each streamline. The lines 

N - 1, N = 2 etc, provide the flow field solution at the intersections of the 

streamlines with the normals (i.e. with lines emanating from the various points 

at the body where pressures were given (Cards 10D and E, Appendix I), and 

drawn in such a way that they are normal to each streamline they cross). Since 

entropy and stream function are constant along streamlines in the shock layer, 

a single value of each is printed at the top of each paragraph. The shock angle 

at the point where the streamline crosses the shock wave is also printed at the top of 

each paragraph. 

Interspersed with the paragraphs of information on streamlines, are the '’continuity 

points". These are the points where the normals intersect the shock wave. At these 

points, a comparison is made of the pressures and X values at the shock computed from 

the assumed shock wave shape with the corresponding values computed from the pres¬ 

sure distribution (at the body) and the conservation laws. The headings XS, RS, and 

PS refer to values computed from the given shock shape, while XC, RC and PC refer 

to the values computed through use of the conservation laws. The same information 

on the continuity points is repeated near the end of the printout, under the heading 

"Summary of Continuity Points". This summary is useful in the process of converging 

the transonic solution. (See Appendix IV. ) 

The final part of the transonic printout is a "Summary of Normals" which emanate 

from the body at the two points* immediately downstream of the sonic point. This 

* Points where pressure was provided on Card 10D (Appendix I). 
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» 

summary of normals is convenient in preparing input for the zero yaw supersonic 

solution. All information in this summary also appears in the earlier part of the 

printout. 

2* The Zero Yaw Supersonic Solution 

The third page of the supersonic solution prints out the body curve coefficients 

which were punched on Cards 11A and B (Appendix I). If more than one curve is used, 

the X and R values at the intersections are also printed, as well as the flow direction 

at each intersection, computed from the upstream and downstream body curves. 

The free stream conditions appear on page 4. Altitude is in any units chosen by 

the user when punching Card 6. 

The next six pages provide a tabulation of properties downstream of an oblique 

shock against shock angle for the given free stream conditions. The shock angle is 

given in degrees in column 1 and in radians in column 2. 

The eleventh page is headed "Test to Check Conservation Laws". If all the (in¬ 

ternal) iterations in the program converged properly, all numbers on this page (except 

those in the first column) will be equal to 1.0 to at least five significant places. 

Page 12 prints the information provided on input Card 12, and provides some 

additional flow field values computed from that input. Scanning this page (particularly 

the Mach number and entropy cc;umns) for "smooth" variations, generally provides an 

excellent check for input errors on Card 12. 
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The printout of the solution begins on page 13. The first paragraph is a repetition 

of page 12*. The following paragraphs provide the flow field parameters along left 

running Mach lines, each paragraph providing data downstream of the preceding para¬ 

graph. The shock angle on each Mach line appears at the end of the paragraph. The 

values MC (column 1) are constant along left running Mach lines, and NC (column 2) 

are constant along right running Mach lines. The last column in each paragraph 

(NITER) indicates the numbers of iterative cycles performed in the computation. It 

has no physical significance. 

At the end of the printout are two summaries, which provide information at the 

body surface and at the shock wave. In the "Summary of Body Data" the following con¬ 

ventions are used: 

CP = pressure coefficient = —P " po° 
1/2 p V 2 

00 CO 

CPMAX = stagnation point pressure coefficient 

CX = axial force coefficient = Fjy/l/2 p® V“ 2 Afease 

PT = stagnation point pressure in lb/ft2 

The "Summary of Shock" data provides the shock shape, and is self explanatory. 

Wien the restart option is used (See Card 2, Appendix I), the sequence of the in¬ 

formation on the first few pages of the output will be somewhat different (e.g, the values 

* This repetition occurs only when a pointed body is being investigated. It is not there 
for a blunt body. 
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downstream of an oblique shock will not print out). Basically, however, the output will 

be the same as that described above, so that the user will have no difficulty in recognizing 

it. 

3. The Zero Yaw Pointed Cone Solution 

Page 3 of the pointed cone solution prints the free stream conditions. 

The next two or three pages provide a history of the iterative process used in 

obtaining the solution. The number of pages used in this Section of the output depends 

on the number of iterative cycles performed before reaching convergence. The itera¬ 

tive process consists of choosing a shock angle and computing the corresponding cone 

(body) angle, then choosing a new shock angle and repeating the process until the com¬ 

puted body angle is equal to the desired value. For each step of the iteration the shock 

angle and body angle, as well as the flow field properties just downstream of the shock 

and at the body are printed*. In general, this Section of the printout will not be of 

interest to the user. 

The next page after this history, prints the zero yaw solution along conical surfaces 

(at angle OMEGA)**, with vertex at the body vertex. The 1(¾) line of the printout pro¬ 

vides values immediately downstream of the shock wave, the bottom line provides values 

at the body surface, and the remaining lines provide values elsewhere in the shock layer. 

The X and R values are along a left running Mach line emanating from the body at x=l. 

* The values printed in the columns marked X and R have no significance. 

** Note that for a pointed cone the flow field values are constant along these conical 

surfaces. 
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It is this tabulation which must be used as input to the zero yaw supersonic program 

(when the pointed cone represents the nose of a more complex body). 

The remainder of the printout is the unsteady flow solution for a pointed cone, 

and will be discussed in Appendix n.B. 

B. THE UNSTEADY SOLUTIONS - GENERAL 

Printouts of unsteady flow field solutions will result from two programs; the 

pointed cone program, and the unsteady supersonic program. It should be noted that 

the normalizing factors are not the same in the two programs, nor are the velocity 

components taken in the same coordinate systems. The printouts are described 

separately below. 

!• The Unsteady Pointed Cone Program 

The unsteady flow field solution for the pointed cone is performed by the same pro¬ 

gram as the zero yaw pointed cone solution, and the results are printed out immediately 

after the zero yaw results. The j and n combination Is Indicated at the top of each page. 

The force and moment coefficients which appear in the next line are defined by: 

Force Coeff = 9 F 
Normal 1/2 

and Moment Coeff = Ò M /1/2 

7 
n 
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where: m = n for j 

=n+l for j 

and^i^r, , 

a 2,0 = ^ ’ 

All results are for rotation about the body vertex. 

The term DELTA which appears on the next line is used in the denominator in 

several divisions carried out t the program. If it ever is equal to zero, it will serve 

as an error signal. Otherwise, it is of no interest to the user. OMEGA PRIME is the 

perturbation in shock angle. The normalization used in this term, as well as in all the 

perturbation terms printed below it, is indicated in the typical expansion 

It should be noted that the velocity components U, V and W are in the R, 0 and <p di¬ 

rections respectively, in the spherical coordinate system shown in Figure 3, Section 

4. HP is the perturbation in stagnation enthalpy. 

The final page of the pointed cone printout summarizes the force coefficients (N) 

and moment coefficients (M). The usual force and moment coefficients (for rotation 

1 

2 

-1,1= « • »1,2= “ ' et°- 

'2,1 =q • rt2,2 =q ’ etC- 
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about the body vertex) are found in this 

included for j = 3 are defined: 

N3,n = Nlin/ra„eBody, 

summary for j = 1 (a) and J = 2 (q). The values 

M, 
*,n ~ 0 Body 

they will not be of interest to most users. 

2* The Unsteady Supersonic Program 

The unsteady supersonic program printout begins with the «tie and with RIDEAL, 

GIDEAL, etc, like the zero yaw solutions. This is followed by the starting line in¬ 

formation. in the case of the blunt body, this information is computed in the unsteady 

flow program (using the zero yaw solution as input,. The location of this starting line 

18 determÍned by ^ 0h0'Ce 0t MSTART <C“d Appendix 1). In the pointed body case, 

the starting line information represents the input from the pointed cone solution („„ 

binary tape,, after conversion to the cylindrical coordinate system (Figure 9, Section 

4,. and after a change in non-dimensionalizing constants. Note that each point „„ the 

starting line (as well as each point elsewhere in the field, retires as many lines o, 

output as there are , „ combinations. The starting line tabulation can be distinguished 

from the data that follows it. by the absence of the columns headed MC and NC 

The major part of the printout consists of 
paragraphs*, the first line of which 

prints the value of j and n, x and R at a point on the body, force 
and moment (about 

•There are j x » paragraphs for each left running characteristic line. 
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X = xO), the force and moment coefficients and center of pressure location*. The 

next line provides the perturbation in shock radius and in the tangent to the shock 

angle (dR^/dX = Tan a). The remainder of each paragraph provides the perturbations 

in the flow field parameters along a left running characteristic line. It is possible to 

print out only the first line of each of these paragraphs by setting Kense (3) = l (Card 

2, Appendix I). 

The information of greatest interest to most users of this solution, appears at the 

end of the printout. It is tabulated in two forms. The first is headed "Summary of 

Body Data", and the location of the reference axis for that tabulation is indicated. This 

tabulation simply summarizes** C^, C^, (CN¿ + CNq) and (CM¿ + C^) ; center of 

pressure location, and the nose to base radius ratio (for a body with base at the given x 

value). 

* These coefficients, etc. are those which would exist if the body ended at the given x 

value. In the solution for the blunt body, several characteristic lines stretch from 

the starting line to the shock, and do not include a body point. For these charac¬ 

teristic lines, the first line of the paragraph will give only the j and n values, but 

no values for force and moment coefficients, etc. 

** The non-dimensionalizing length in the summary is not the same as the non-dimen- 

sionalizing length in the body of the printout. See the definitions at the end of this 

Section. 
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The second Nation is interapensod betten the „„ea of the It ls headcd, 

"SUmmary °f FOrCe and MOme»‘ C““‘^ 'or RN/RB = ,t_ Cno _ CMo _ 

< N¿ , + CNq) and (CM£. + CM(], are tabulated against center of gravity, for the radius 

ratio or body length indicated in the heading. The 

tabulation for as many as ten radius 

Appendix I). 

user has the option of printing this 

ratios and ten body lengths (See Cards 8, 9, 10 

The coefficients printed in the unsteady supersonic flow field 
p mc llow Held program are defined 

as follows: 

In the body of the printout 

? (Fm/A q \ 
N Base \1 

CN (1,0) = C = 
N 

Or 

CM (1,0) = C 

?ia 

Ò (M„/D„ a 

M 
2 Base Base qa>) 

aa 

per radian 

CN (2,0) + CN (1,1) = c + c 

\ \ 

‘MFN/ABaSeqJ 1 <FN/ABaaeqJ 

Y1! ELP\ 

vT~) t' {—) 

1' • 
ñ 

0,8 Tab,e 18 f°r “ ^ ^ heading wrn Be ..Summary of KorCe and 
Moment Coefficients fcr XINT = >* 

( jl 

. 

<1« ^ 
rnrnrnmimmm ÍT 

J'v: 
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CM (2,0) + CM (1,1) = C + C„ 
M M • 

q T 

In the two tabulations at the end of the printout 

CN - C^ = ^ N /^Base^œj per radian 

d/M_ /An Lq \ 
CM=C„ - V Z Bai,e -J 

M 
a fta 

(CMA + CMQ) = 

where: L = body length 

and = free stream dynamic pressure. 
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appendix in 

CAPABILmES AND Lft,,TAT,0NS UNSTEADY PLOW FIELD SOLUTION IN 

UTING STATIC AND DYNAMIC FORCE AND MOMENT COEFFICIENTS 

™S APPend,X Pre8ems a brief IiS* “f capabilities and l,mltations whlch sh(wld 
be bep. ta ratad when ustag ^ unsteady flow fleld soiut(on ^ ijmitations ^ shape 

llSted are th08e enCW"tered ta (- small yaw) s„,utlo, and do 

not necessarily apply when only a zero yaw soiution is needed. 

!• Capabilities 

Body Shapes: 

Gas: 

1. spherically blunted «.symmetric bodies, with no shan) ex¬ 

pansion or compression comers. The afterbody must be 

tangent to the spherical nose downstream of the sonic line. 

2- Two-dimensional bodies with a right circular cylinder (axis 

perpendicular to flow, nose. The afterbody must be tangent 

to the cylindrical nose downstream of the sonic line. 

3. Axisymmetric pointed bodies with no sharp expansion or 

compression comers. 

4. Two-dimensional pointed bodies may be approximated by 

using a blunted two-dimensional body with very small r^. 

Any 0i ^ ab°Ve Shapes ma* ^ investigated using either real 

air. or an ideal gas with any desired specific heat ratio, y 
il 

Í 
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Altitude: 

Flight 
Velocity 

Outputs: 

Solutions may be carried out at any altitude where the assump¬ 

tion of continuum is valid. They may also be carried out at any 

(continuum) free stream conditions which might exist in a test 

facility. 

Real gas solutions have been carried out at flight velocities 

ranging from 4000 feet/second to 35, 000 feet/second. It is pos¬ 

sible to go to still higher velocities in some cases. (Ideal gas 

solutions can be carried out at much higher velocities. ) Some 

difficulties should be expected in obtaining solutions on bodies 

which are very long compared to the nose diameter (blunt bodies) 

or to the conical nose (pointed bodies), particularly at low Mach 

numbers. 

1. The quantities computed for blunted bodies (axisymmetric 

or) two-dimensional are: 

a a q 

2. The quantities computed for pointed axisymmetric bodies are: 

Altitude: 

Flight 
Velocity 

Outputs: 

' il 11»* il»*« 

a a a a 
, ... 

a a a 
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2- Limitations 

Body Shapes: 

Timing: 

i 

3. to addition, the flow field variabies and the penurbationa 

in them (due to the unsteady motion) are computed at a 

large number of points in the flow field. 

The unsteady solution cannot, at present, handle expansion 

centers or secondary shocks. ï has been used successfully in 

a case where an expansion comer was approximated I* an arc 

tangent to both of the surfaces which intersect in the (expansion) 

corner. 

1. Hie zero yaw transonic solution requires from 5 to 20 

Iterations on the input values (1. e.. inputs must be sub¬ 

mitted to the computer up to 20 times, waiting in each case 

for the output from one iteration to be returned before sub¬ 

mitting the next input). The user should not expect to com¬ 

plete a zero yaw transonic solution in less than two weeks. 

Hils difficulty is usually overcome by making use of the 

zero yaw transonic solutions which have been solved during 

the past six years (usually an old solution is available 

adequately close to the desired free stream conditions). 
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ITve usual unsteady flow field solution is carried out in three 

steps: 

a. Zero yaw transonic solution or pointed cone solution 

(depending on whether the body is pointed or blunt nosed) 

b. Zero yaw supersonic solution 

c. Unsteady supersonic solution 

Output from step a. must be available in order to go on to 

step b. It is desirable (but not usually essential) to inspect 

the output of step b. before submitting the input for step c. 

If inputs for steps b and c are submitted to the computer 

simultaneously, the machine operator must be given special 

instructions for handling of magnetic tapes. 

The pointed cone solution and the transonic solution (one 

iteration) can each be expected to use approximately one 

minute of computer time per run. The zero yaw supersonic 

solution and the unsteady supersonic solution, however, can 

be expected to take five to twenty minutes per run. The 

following factors tend to require longer numing times: 

a. Real gas calculations (as opposed to ideal gas) 

b. Finer mesh grids 

c. Bodies which are long compared to the nose diameter 

(blunted bodies), or to the conical nose (pointed bodies) 
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d. Retaining many terms in ¿he expansion for force co¬ 

efficients and moment coefficients (e. g., c = C <v+ 

This last factor applies to the unsteady flow field 

solution only. 
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APPENDIX IV 

guide for comverong the zero vaw transonic solution 

zero yaw transonic solution requires the user to participate in an iterative 

process ta tEe sense that he raust mal(e a flr(jt estlmate of ^ ^ ^ ^ ^ ^ 

Pressure dfstributto„ a, Ihe „oc,, a„d ,Ee„ make use „I the Wormatlon prov(ded by 

the computer sotution to make repeatedly tetter estimates of these values, ,.,., t0 

approach convergence. A method for making these estimates wil, he indicated in this 

Appendix. 

initia, estimates are probahiy the easiest to make. They can te based on any 

approximate knowiedge of the nw f,eId the uscr ^ ^ For a 

^ Pressure ^n couid te used at the body surface. „ ,8. however, suggested 

that the available solutions given ta Appendix V te used for ibis purpose. A good first 

available solution which was carried out at * 
out at free stream conditions which are similar to 

»e free stream conditions for the new solution. A firs, estima, of pressure distribu- 

the body should be obtained by scaling the pressure distribution from the same 

available solution, by the ratio of free stream pressures. 

Obtaining improved estimates from the previous ,.rat,on is a »„eh more comp,ex 

-far. Agreement between the estima.d shock shape and the compu.d shock points 

•a. o, course, a necessary condition, and a ruie of thumb bas teen developed for im¬ 

proving this agreement. Before stating this rule of thumb, i, . necessary . exp,a. 

ina. grid on which the transonic solution is carried out. The grid consists 

Of approximately 40 to 60 streamlines, and eight to ton lin», a, a 
. nu eignt to ten lines which are normal to the 
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streamlines where they intersect. One of these normals emanates from each point 

on the body where a pressure was given. A shock point ("continuity'' point, is com¬ 

puted at the other end of each normal. When a converged solution has been achieved 

the pressure (and other flow field parameters) at the continuity points, and the loca¬ 

tion of these points, agree well with the corresponding values computed from the 

assumed shock shape. The following rule of thumb has been useful in obtaining this 

agreement:* 

» the pressure at the body surface is raised at any normal, the pressure at the 

continuity point on that normal will also rise, and 

a. The continuity point will move away from the body if the normal is primarily 

upstream of the sonic line, or 

b. The continuity point will move toward the body if the normal is primarily 

downstream of the sonic line. 

♦This rule was established by R. H. Edsall and Mrs. S. F. Hill. 
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The reverse will happen If pressure at the body surface is lowered. This rule ob¬ 

viously is useful only if both pressure (at the continuity points) and location of the 

continuity points dictate the same change in pressure at the body, it is, in effect, 

a rule for adjusting the continuity points to make them "fit" the assumed shock. 

The alternate possibility Is to adjust the shock to make it "fit" the contmuity 

points. Obviously, steepening the shock wUl raise the pressure computed down¬ 

stream of it and making the shock less steep will have the opposite effect. The 

effect a change in shock shape will have on agreement in location between the con- 

tinuity |X)ints ana the shock shape is also apparent. * 

Whether a better solution will result from changing the shock shape or the 

pressure distribution, will become more apparent as the user gains experience with 

the program. Generally, it is better to change one or the other at any step in the 

iteration, not both simultaneously. 

The precedbig discussion applies primarily to a situation where the result of 

the previous iteration is a smooth, complete solution (i. e., the streamlines converge 

smoothly as they approach the sonic line and then diverge; and the solution has con¬ 

tinued until a continuity point is computed at the shock end of each normal). If the 

estimate of the shock shape or of the pressure distribution is not a good one, it is 

possible that the result not be smooth, or that the solution may not go to completion. 

While a small change In shock shape will have some effect on the location and 
pressure at the continuity points, that effect is much less pronounced than the ef- 
r*,°" ‘hc ’‘rcssuro whlch ls oomputed directly from the assumed shock s. 
(by the Rankine Hugonolt equations). F 
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When this happens, it is necessary to combine an understanding of the programming 

of this solution with an understanding of flow field characteristics, in order to de¬ 

termine what needs to be done. No more specific directions can be provided. 



APPENDIX V 

SUMMARY OF AVAILABLE ZERO YAW TRANSONIC SOLUTIONS 

This Appendix contains Figure 25 which is a graphical index of the altitudes and veloci¬ 

ties for which solutions are included. The remaining pages in this Appendix provide the input 

information needed for supersonic solutions (upper part of each page), and the shock shape 

and pressure distribution which were used as input to the converged transonic solution 

(lower part of each page). 
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Meo = 7.7 
Shock Angle = . 97853 
Test Cell 

Real Gas 
Two-Dimensional 

x r 0 o p 

F.03447,.47282,. 8353,. 12989E-4,166.62,$ 
F.03570,.47030,. 8351,. 12520E-4,165.20,$ 
F.04000,.46810,.8345,. 12200E-4,164.00,$ 
F.04500,.46350,. 8332,. 11600E-4,161.80,$ 
F.05000,.45910,.8314,. 11080E-4,159.70,$ 
F.05500,.45460,.8290,. 10600E-4,157.70,$ 
F.06000,. 45010,. 8262,. 10225E-4,155.8o!$ 
F.06500,.44550,.8230,. 99100E-5,154.00,$ 
F.07000,.44100,.8194,. 96600E-5,152.35,$ 

F.07500,.43645,.8152, .94500E-5,150.70,$ 

F.08000,.43160,.8110,. 92750E-5,149.20,$ 
F.08500,.42690,. 8072,. 91250E-5,147.70,$ 
F.09000,.42200,.8038,. 89900E-5,146.20,$ 
F.09500,.41725,. 8010,. 88200E-5,144.75,$ 
F.10000,.41240,.7985,. 87500E-5,143.30,$ 
F.10500,.40740,. 7961,. 86500E-5,141.75,$ 
F.11000,.40240,. 7939,. 85500E-5,140.2o!$ 
F.11500,.39750,. 7918,. 84400E-5,138.55,$ 
F.12000,.39260,.7899,. 83250E-5,136.80 $ 
F.12500,.38760,.7877,. 82300E-5,135.10,$ 
F. 13000,.38270,.7855,. 81250E-5,133.10,$ 

F.13500,.37750,.7832,. 80100E-5,131.00,$ 
F.14000,. 37250,. 7805, . 78400E-5,128.80,$ 

F.14500,.36750,. 7775,. 77600E-5,126.45,$ 
F.15000,.36250,.7732,. 76300E-5,124.00,$ 

F.15267,.35967,.7679,.75612E-5,122.57,$ 

Shock Equation 

A(l) = -.10445148 
A(3) = .42868578 
A(5) = 1.5644642 
A (7) = -5.6965067 
A(9) = 12.413087 
A(ll) = -10.805891 

All Other Coeftf'ïients = 0 

Input 

P® = 3.168 
o® — 1» 26E—6 
Vœ ^ 14190.0 

X 

.009187 

.019369 

.033210 

.050603 

.071416 

.095492 

.122645 

.152671 

.185340 

.220405 

.257595 

P 

241.00 
231.40 
217.97 
202.25 
183.74 
163.00 
141.80 
122.57 
103.95 
85.50 
68.00 

252 



Real Gas 
Two-Dimensional 

M®= 10 

Shock Angle = 1.0368 
Altitude = 40,000 Feet 

F. 02065,. 56853,. 8014,. 41882E-2,35892,$ 
F.02450,.56471,.7970,. 41077E-2,35468 $ 
F.03059,.55868,.7910,. 39890E-2,34838 $ 
F. 03469,. 55461,. 7875,. 39163E-2,34440,' $ 
F. 04128,. 54802,. 7830,.38086E-2,33856,’ $ 

F.04585,.54342, .7793, .37442E-2,33510,$ 
F. 05297,.53618..7747,. 36492E-2,32995,$ 
F. 05821,. 53080,. 7709,. 35853E-2,32630,’ $ 

F.06590, .5228 4, .7654, .349 68E-2,32114,$ 
F.07104,.51748,.7618, .34424E-2,31780,$ 
F.07930,.50877,. 7561,. 33591E-2,31254,$ 
F.08734,.50020,.7508,. 32846E-2,30751 $ 
F. 09190,. 49529,. 7479,. 32441E-2,30468$ 
F.10102,.48541,. 7423, .31667E-2,29902,$ 
F.10609,.47986,. 7394,. 31255E-2,29586,$ 
F. 11572,.46924,.7340, .30496E-2,28975,$ 
F. 12199,.46227,.7306,. 30014E-2,28566,$ 
F.13211,.45091,.7252,. 29249E-2,27880,$ 
F.14248,.43915,.7194,. 28457E-2,27128,$ 
F. 15304,. 42701, .7128,. 27626E-2,26292,’ $ 
F.16375,.41453,. 7049,. 26731E-2,25348,$ 
F.17454,.40172,.6946,. 25740E-2,24265,$ 
F.18534,. 38857,. 6807,. 24606E-2,23000,$ 

Shock Equation 

A(l) = -.146 
A(3) = .520 

All Other Coefficients = 0 

Input 

P® = 393.12 
0»= . 58727E-2 
Vœ = 9680.8 

X 

.009186 

.019369 

.033210 

.050603 

.071416 

.095492 

.122645 
.152671 
.185340 
.220405 

P 

49300 
47400 
44800 
41400 
38200 
34200 
30300 
27000 
23000 
19500 

253 



I 

Moo = 20 

Shock Angle 1.0574 
Altitude = 60,430 Feet 

Heal Gas 

Two-Dimensional 

F.03952,.46990, 
F. 04412,.46581, 
F.04672,.46348, 
F. 65168,. 45901, 
F.05471,.45625, 
F.06021,.45119, 
F.06373,.44793, 
F.06985,.44220, 
F.07374,.43851, 
F.08053,.43202, 
F*08486,.42784, 
F.09238,.42052, 
F.09778,.41520, 
F.10607,.40698, 
F.11479,.39826, 
F.12189,.38909, 
F.13330,.37953, 
F.14293,.36970, 
F.15267,.35967, 

.8885,.22889E 

.8670,.22122E 

• 8600,.21724E 
• 8470,.21032E 
.8410,.20650E 
.8310,. 20023E• 
.8260,.19660E• 
• 8170,. 19094E- 

• 8130,. 18769E- 
.8049,.18255E- 
.8013,.17959E- 
.7956,.17494E- 
.7920,. 17188E 
• 7872,. 16757E 
.7832,.16341E 
.7798,.15931E 

.7766,. 15517E 

.7730,.15086E 

.7679,. 14619E 

-2,56703,$ 
-2,55694,$ 
-2,55155,$ 
•2,54183,$ 
2,53629,$ 

-2,52691,$ 

-2,52127,$ 
-2,51206,$ 
-2,50654,$ 
-2,49742,$ 
-2,49189,$ 
■2,48271,$ ( 
2,47634,$ ’ 
2,46681,$ 
2,45685,$ 

-2,44623,$ 
-2,43465,$ 
-2,42173,$ 
-2,40700,$ 

Shock Equation 

A(l) = -.0970 
A(3) = . 60 

All Other Coefficients = 0 

Input 

P» = 147.31 
o oo = . 22E-3 
Y» = 19,362 

X 

.019369 

.033210 

.050603 

.071416 

.095492 

.122645 

.152671 

.185340 

.220405 

P 

71400 
67500 
63000 
57900 
52400 
46500 
40700 
35200 
29900 

254 



Heal Gas 

Two-Dimensional 

Moo= 30 

Shock Angle = 1.0315 
Altitude = 275,000 Feet 

F.05450,.38391,.9320, 
F.05645,.38245,.9290, 
F.05791,.38135,.9259, 
F.06009,.37970,.9221, 
F.06242,.37793,.9181, 
F.06424,.37654,.9150, 
F.06685,.37452,.9107, 
F. 06897,.37286,. 9072,’ 
F. 07193,.37054,. 9024, 
F*07510,.36803,.8975, 
F.07787,.36581,.8933, 
F.08147,.36289,.8882, 
F.08496,.36004,.8835, 
F.08908,.35665,.8785, 
F.09347,.35298,.8737, 
F.09639,.35054,.8710, 
F.10123,.34644,.8670, 
F.10633,.34210,.8636, 
F.11164,.33754,.8607, 
F.11710,.33283,.8580, 
F.12265,.32803,.8552, 

.32087E 

.31074E 
•30378E 
.29438E- 
.28555E- 
.27959E- 
.27191E- 
.26626E- 
. 25938E- 
•25289E 
.24809E 
.24249E 
.23779E- 
.23296E- 
.22842E- 
.22581E- 
.22181E- 
•21802E- 
•21444E- 
.21091E 
.2073IE 

-, «1, u, y 
•6,8.4606,$ 
6,8.3335,$ 
6,8.2398,$ 

-6,8.1069,$ 
-6,7. 9772,$ 
-6,7.8843,$ 
-6,7.7608,$ 
-6,7.6687,$ 
■6,7.5510,$ 
6,7.4366,$ 
6,7.3452,$ 

-6,7.2367,$ 
-6,7.1407,$ 
-6,7.0373,$ 
-6,6. 9359,$ 
-6,6.8725,$ 
-6,6.7722,$ 
■6,6.6708,$ 
6,6.5665,$ 
6,6.4572,$ 
6,6.3400,$ 

Shock Equation 

A(l) = -.06 
A(3) = .7775 

All Other Coefficients = 0 

Input 

P°0 = .0098 
Pœ= . 1909E-7 
V® = 25,395 

X 

.009186 

.019363 

.033210 

.050603 

.071416 

.095492 

.122645 
• 152671 
.185340 

P 

11.280 
10.820 
10.120 
9. 230 
8.270 
7.250 
6.340 
5.510 
4. 670 

255 



M® = 38,5097 
Shock Angle = . 9228 
Altitude = 200,000 Feet 

Real Gas 
Two-Dimensional 

x r 9 o p 

F.09515,.35234,.8398,, 98167E-5,591.04,$ 
F.09658,.35108,.8399,. 91875E-5,575.82,$ 
F.09827,.34960,.8400,.85721E-5,560.77, $ 
F.10000,.35807,. 8401,. 80669E-5,548.68,$ 
F.10186,.34643,. 8402,. 76277E-5,537.42,$ 
F. 10291,.34549,.8403,. 74225E-5,531.74,$ 
F. 10486,. 34376,. 8410,. 70859E-5,522.15, $ 
F.10608,.34268,.8417,. 69070E-5,516.73,$ 
F.10810,.34088,. 8422,. 66501E-5,508.60,$ 
F.11012,.33909,.8435,. 64292E-5,501.34,$ 
F. 11145, .33791,. 8442,. 63072E-5,496.98, $ 
F.11341,.33616,. 8448,. 61429E-5,491.09,$ 
F. 11472,.33500,.8454,. 60456E-5,487,47,$ 
F.11652,.33340,.8467,. 59247E-5,482.88,$ 
F. 11817,.33195,.8483,. 58236E-5,479.02,$ 
F. 11918,.33106,.8495,. 57698E-5,476.82,$ 
F. 12048,.32992,. 8513,. 57024E-5,474.13, $ 
F.12107,.32940,.8523,. 56726E-5,472.96.$ 
F. 12193,.32865,.8538,. 56314E-5,471.31,$ 
F.12247,.32819,.8548,. 56061E-5,470.33,$ 
F. 12265,.32803,.8552,. 55973E-5,470.00, $ 

Shock Equation 

A(l) = -.028 
A(3) = . 835645 
A (5) = . 638545 
A (7) = 4.68223 
A(9) = -20.7557 
A(l!) = 18.9403 

All Other Coefficients = o 

Input 

P® = .4715 
o oo — . 681180E-6 
Voo = 40,000 

x p 

.002739 930.00 

.009186 896.00 

.019369 857.00 

.033210 802.00 

.050603 735.00 

.071416 650.00 

.095492 560.00 

.122645 470.00 

.152671 385.00 

.185340 311.50 

.220405 242.50 

.257595 187.00 



Mœ = 3.5 

Shock Angle = . 94796 
Test Cell 

X r 0 

F.09081,.51841,.5886, 
F.09250,.51580,.5890, 
F.09500,.51200,.5897, 

F.10000,.50490,.5920, 
F.10500,.49750,.5950, 
F.11000,.49000,.5988, 
F.11500,.48280,.6035, 
F.12000,.47550,.6092, 
F.12500,.46830,.6150, 
F.13000,.46100,.6209, 
F.13500,.45400,.6265, 
F.14000,.44700,.6322, 
F.14500,.44040,.6379, 
F.15000,.43350,.6435, 
F.15500,. 42700,.6492, 
F.16000,.42070,.6550, 
F. 16500,.41440,.6607, 
F.17000,.40770,.6664, 
F.17500,.40150,.6721, 
F.18000,.39500,.6775,, 
F.18250,.39190,.6794,, 
F.18634,.38857,.6807., 

Ideal Gas 

Three- Dimensional 

o P 

.92591E-2,19544,$ 

.91900E-2,19425,$ 

.90900E-2,19275,$ 

.89050E-2,18990,$ 

.87200E-2,18710,$ 

.85500E-2,18450,$ 

.83900E-2,18225,$ 

.82350E-2,17990,$ 

.80850E-2,17750,$ 

.79400E-2,17500,$ 

.77900E-2,17240,$ 

.76450E-2,16950,$ 

.75000E-2,16675,$ 

.73500E-2,16380,$ 

.72000E-2,16060,$ 

.70400E-2,15725,$ 
68700E-2,15J75, $ 
67000E-2,15000,$ 
65150E-2,14610,$ 
63200E-2,14190,$ 
62200E-2,13950,$ 
61105E-2,13705,$ 

Shock Equation 

A(l) = -.09700622 
A(3) = .79591112 
A (5) = -.65590844 
AÍ7) = .47566722 
A (9) = 5.8931018 
A (11) = -.11875398 

All Other Coefficients = 0 

Input X 

P® = 2109.5 .019369 
0® = 2.498E-3 .033210 
V® = 3804.6 . 050603 

.071416 

.095492 

.122645 

.152671 

.185340 

.220405 

.257595 

P 

31864 
29945 
27581 
24926 
22099 
19324 
16446 
13705 
11306 
9182 

257 



M®-= 5 

Shock Angle = . 98482 
Altitude = 25,000 Feet 

X r 9 

F.07936,.44570,.6861, 
F.08100,.44350,.6861, 
F.08200,.44230,.6861, 
F.08400,. 43970,. 6861, 
F.08800,.43460,.6861, 
F. 09200,. 42960,.6863, 
F.09600,.42450,.6868, 
F.10000,.41960,.6876, 
F. 10400,. 41460,.6895, 
F.10800,.40980,.6925, 
F.11200,.40500,.6975, 
F.11600,.40020..7030, 
F.12000,.39550,.7090, 
F.12400,.39080,.7154, 
F.12800,.38630,.7218, 
F.13200,.38190,.7289, 
F.13600,.37750,.7364, 
F.14000,.37200,.7441, 
F.14400,.36870,.7527 
F.14800,.36440,.7613, 
F.15000,.36230,.7660, 
F.15200,.36020,.7675, 
F.15267,.35967,.7679, 

Heal Gas 

Three-Dimensional 

o P 

.52168E-2,15986,$ 

.51450E-2,15880,$ 

.51100E-2,15830,$ 

.50500E-2,15710,$ 

.49600E-2,15485,$ 

.48850E-2,15275,$ 

.48084E-2,15063,$ 

.47280E-2,14860,$ 

.46410E-2,14660,$ 

.45520E-2,14460,$ 

.44570E-2,14260, $ 

.43530E-2,14060,$ 

.42500E-2,13855,$ 

.41450E-2,13655,$ 

.40500E-2,13455,$ 

.39550E-2,13255,$ 

.38630E-2,13040,$ 

.37800E-2,12840,$ 
37050E-2,12625,$ 

.36301E-2,12410,$ 

.35970E-2,12300,$ 

.35650E-2,12180,$ 

.35528E-2,12143,$ 

Shock Equation 

A(l) = -.06968884 
A (3) = .50731073 
A (5) = 4.7113288 
A(7) = -31.137102 
A(9) = 85.974197 
A(ll) = 87.1717 

All Other Coefficients = 0 

Input X 

P® = 786.33 .009186 
O® = 1.0663E-3 .019369 
Y® = 5080.5 .033210 

.050603 

.071416 

.095492 

.122645 

.152671 

.185340 

.220405 

.257595 

P 

24384 
23307 
21814 
19832 
17886 
15926 
14064 
12143 
10416 
8900 
7550 

258 



Mob= 5 
Shock /ingle = . 9593450 
Altitude - 100,000 Feet 

Real Gas 
Three-Dimensional 

r 9 o P 

r.ü/öUb,.44647,.6722,. 15514E- 
F.08100,.44390,.6725,. 15380E 
F.08500,.43880,.6733,. 15075E 

F.08900,.43370,.6745,. 14750E 
F.09300,.42860,.6760,. 14400E- 

F.09700,.42360,.6782,. 14060E- 
F.10100,. 41860,.6815,. 13740E- 
F.10500,.41360,.6864,. 13425E- 
F.10900,.40880,.6915,. 13130E- 
F.11300,.40400,. 6970,. 12890E- 
F. 11700,. 39940,.7026,.12650E- 
F. 12100,.39460,.7083,.12410E- 
F.12500,.39000,.7146,.12190E 

F.12900,.38550,.72¿6,.11960E 
F.13300,.38090,.7286,,11740E 
F.13700,.37650,.7360,.11500E 
F. 14100,. 37220,. 7437,. 11275E 
F.14500,.36780,.7520,.11050E- 
F.14900,.36350,. 6701,. 10810E- 

F.15267,. 35967,. 7679,. 10598E- 

■ù| 404« DD, $ 

-3,449.60,$ 
-3,443.60,$ 
-3,437.50,$ 
-3,431.60,$ 
■3,426.30,$ 
•3,421.40,$ 
3,416.30,* 
3,411.00,$ 

-3,406.00,$ 
-3,400.70,$ 
-3,395.50,$ 
-3,390,00,$ 
-3,384.40,$ 
-3,378.75,$ 
-3,373.00,$ 
■3,367.00,$ 
■3,360.50,$ 
•3,354.10,$ 
3,348.00,$ 

Snock Equation 

A(l) = -.074132599 
A (3) = .73981921 
A (5) = -.55422108 
A (7) = 8.4003366 
A(9) = -31.186169 
A(ll) = 33.588193 

AU Other Coefficients = 0 

Input X 

p» = 23.085 .009187 
°® = 3.2114E-5 .019369 
V® s 5016.0 .033210 

.050603 

.071416 

.095492 

.122646 

.152671 

.185340 

.220405 

P 

718.50 
686.00 
635.00 
577.00 
524.00 
467.46 
406.00 
348.00 
297.50 
250.00 

259 
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= 0 Real Gas 
Shock Angle = .96271 Three-Dimensional 
Altitude = 100,000 Feet 

X r Q o P 

F. 08387,.43880,.7008,. 17214E-3,660.61,$ 
F. 08600,. 43625,. 7004,. 16950E-3,654.00, $ 
F. 09000,. 43145,. 6995,. 16500E-3,642.60, $ 
F.09400,.42650,.6988,. 16050E-3,632.50,$ 
F.09800,.42170,. 6986,. 15610E-3,623.20,$ 
F. 10200,. 41685,. 6990,. 15220E-3,614.50, $ 
F. 10600,. 41210,. 7004,. 14900E-3,605.60, $ 
F.11000,.40725,. 7031,. 14610E-3,597.00,$ 
F.11400,.40250,.7075,. 14300E-3,588.00,$ 
F. 11800,.39790,.7124,. 13960E-3,579.50,$ 
F.12200,.39325,.7176,. 13625E-3,571.00,$ 
F. 12600,.38875,. 7231,. 13300E-3.562.40, $ 
F.13000,.38440,. 7286,. 13010E-3,553.50,$ 
F. 13400,. 37980,. 7345,. 12725E-3,544.50, $ 
F. 13800,.37550,.7407,. 12425E-3,535.00,$ 
F.14200,.37100,. 7475,. 12150E-3,526.00,$ 
F. 14600,. 36675,. 7547,. 11850E-3,516.80, $ 
F. 15000,.36250,.7625,. 11580E-3.507.50,$ 
F. 15267,.35967,.7679,. 11407E-3,501.00, $ 

Shock Eouation 

A(l) = -.065719962 
A (3) = .7791446 
A (5) = .41018938 
A (7) = 3.7485976 
A(9) = -9.8680425 
A(ll) = 6.1913265 

All Other Coefficients = 0 

Input X 

Po° = 23.085 .009187 
P® = 3.2114E-5 .019369 
V» = 6019.2 .033210 

.050603 

.071416 

.095492 

.122646 

.152671 

.185340 

.220405 

P 

1032.00 
986.16 
915.00 
839.50 
760.00 
670.00 
580.00 
501.00 
421.87 
352.85 

260 



Moo = 8 

Shock Angle = . 94912 
Sea Level 

Ideal Gas 

Three-Dimensional 

x r f) p p 

F.08560,.43650,.6946,. 12754E-1,104060,$ 
F.08740,.43440,. 6947,. 12600E-1,103230,$ 
F.08920,.43210,.6948,. 12440E-1,102500,$ 
F.09120,.42975,.6951,. 12275E-1,101700,$ 
F. 09480,. 42540,. 6960,. 12000E-1,100500, $ 
F.09860,. 42070,. 6970,. 11715E-1,99300,$ 
F.10240;.41625,. 6982,. 11435E-1,98000,$ 
F. 10600,. 41180,. 7002,. U160E-1,96800, $ 
F.10980,. 40730,. 7031,. 108/OE-1,95500,$ 
F. 11360,. 40280,. 7073,. 10580E-1,94050, $ 
F. 11720,. 39870,. 7115,. 10315E-1,92800, $ 
F. 12100,. 39430,. 7162,. 10020E-1,91400, $ 
F. 12480,. 39000,. 7212,. 97350E-2,90000, $ 
F, 12840,. 38610,. 7264,. 94750E-2,88650, $ 
F. 13220,. 38150,. 7323,. 92100E-2,87920, $ 
F. 13600,. 37740,. 7383,. 89750E-2,85800, $ 
F. 13960,. 37350,. 7453,. 87650E-2,84500, $ 
F. 14340,. 36950,. 7520,. 85600E-2,83150, $ 
F. 14720,. 36550,.7586,. 83600E-2,81650, $ 
F. 14900,. 36350,. 7618,. 82750E-2,81000, $ 
F. 15080,. 36170,. 7647,. 81900E-2,80350, $ 
F. 15270,. 35970,. 7679,. 81100E-2,79500, $ 

Shock Equation 

A(l) = -.0697619 
A (3) = .63076 
A (5) = 3.3759 
A(7) = -22.369 
A(9) = 65.1042 
A(ll) * -70.2076 

Input 

Po° = 2116.2 
P® = 2.3769E-3 
V® = 8931.2 

All Other Coefficients = 0 

X 

.0027390 

.0091863 

.0193690 

.0332097 

.0506030 

.0714163 

.0954917 

.1226453 

.1526707 

.1853397 

.2204050 

.2575950 

P 

171500 
166370 
157840 
146000 
132400 
117930 
103400 
91530 
79500 
67000 

54200 
42500 

261 



Mod = g 

Shock Angle = . 9984 
Altitude = 100,000 Feet 

X r 9 

F.05675,.39538,.7187, 
F.06000,.39175,.7204, 
F.06400,.38170,.7243, 
F.06800,.38260,.7300, 
F.07200,.37840,.7365, 
F.07600,.37380,.7439, 
F.08000,.36940,.7513, 
F.08400,.36520,.7592, 
F.08800,.36100,.7675, 
F.09200,.35690,.7760, 
F.09600,.35300,.7850, 
F.10000,.34890,.7945, 
F.10400,.34500,.8045, 
F.10800,.34120,.8150, 
F.11200,.33750,.8267, 
F.11600,.33380,.8390, 
F.12000,.33040,.8502, 
F.12265,.32803,.8552, 

Ideal Gas 

Three-Dimensional 

P P 
.17350E-3,1214.1,$ 
.17125E-3,1205.0,$ 
.16810E-3,1193.0,$ 
.164602-3,1180.5,$ 
.16090E-3,1168.4,$ 
.15725E-3,1156.0,$ 
. 15340E-3,1143, 5, $ 

.14975E-3,1130.4,$ 

. 14600E-3,1117.0,$ 

.14240E-3,1103.5,$ 

.13890E-3,1090.3,$ 

.13550E-3,1077.0,$ 

.13250E-3,1063.9,$ 

.12960E-3,1050.5,$ 

.12725E-3,1037.0,$ 

.12475E-3,1023.0,$ 

.12250E-3,1008.8,$ 

. 12121E-3,998.59,$ 

Shock Equation 

A(l) = -.0697619 
A (3) = . 63076 
A (5) * 3.3759 
A(7) * -22.369 
A (9) = 65.1042 
A (11) = -70.2076 

Input 

P® = 23.085 
0«, = .32114E-4 
V„ = 8025.6 

All Other Coefficients = 0 

X 

.0027390 

.0091863 

.0193690 

.0332097 

.0506030 

.0714163 

.0954917 

.1226453 

.1526707 

.1853397 

.2204050 

.2575950 

P 

1871.1 
1815.1 
1722.0 
1592.9 
1444.5 
1286.6 
1128.1 
9985.9 
8673.4 
7309.7 
5913.2 
4636.8 

262 



10 Real Gas 
Shoçk Angle = . 9732098 Three-Dimensional 
Altitude = 20,000 Feet 

F.07098, 
F.07280, 
F.07440, 
F.07800, 
F.08140, 
F.08480, 
F.08820, 
F.09160, 
F.09500, 
F.09840, 
F.10200, 
F.10540, 
F.10880, 
F.11220, 
F.11580, 
F.11920, 
F.12100, 
F.12265, 

.37793, 

.37600, 
.37440, 
.37060, 
.36710, 
.36360, 
.36025, 
.35690, 
.35355, 
.35040, 
.34690, 
.34375, 
.34050, 
.33740, 
.33400, 
.33100, 
.32956, 
.32803, 

• 7863,.91053E 
.7863,.90400E 
.7863,.89550E 
.7863,.86950E■ 
.7864,.84300E• 
.7869,.SlSSOE- 
^SSO.^SgOOE- 
.7915,.76400E- 
»7968,.74000E- 
.8029,.71900E 
.0096,.69800E 
.8164,. 68100E 
.8235,.66600E 
.8815,.65350E■ 
.8407,.64150E• 
.8497,. 63100E- 
.8545,.62600E- 
.8552,.62096E- 

-2,83869,$ 
-2,83050,$ 
-2,82350,$ 
-2,80760,$ 
-2,79260,$ 
-2,77800,$ 
■2,76450,$ 
2,75150,$ 

-2,73940,$ 
-2,72830,$ 
-2,71770,$ 
-2,70820,$ 
-2,69950,$ 
-2,69060,$ 
■2,68150,$ 
2,37820,$ 
2,66900,$ 
2,66500,$ 

Shock Equation 

A(l) = -.046719 
A (3) = .564527 
A (5) = 4.19503 
A (7) = -19.7608 
A (9) = 27.071 
A(H) = 4.729 

All Other Coefficients = 0 

Input 

P® = 972.5 
0 oo = . 12664E-2 
V® = 10,369.0 

X 

.0027390 

.0091863 

.0193690 

.0332097 

.0506030 

.0714163 

.0954917 

.1226453 

.1526707 
1853397 

.2204050 

.2575950 

P 

119850 
119110 
115770 
108400 
98550 
87150 
76000 
66500 
59650 
53000 
47000 
41500 



X r fi pp 

F.08849,.38025,.7730,.40676E-2,33267,$ 
F. 07000.. 37850,. 7725,. 40100E-2,33055, $ 

F.07400,.37440,.7726,. 38900E-2,32535,$ 
F. 07800, .37030, .7757,. 37700E-2,32050,$ 
F.08200,.36630,.7804,. 36600E-2,31610,$ 

F.08600,.36230,.7855,.35550E-2,31185,$ 
F.09000..35830,.7910,.34550E-2,30750, $ 
F. 09400,. 35450,. 7967,. 33600E-2,30355, $ 
F. 09800,. 35070,. 8030,. 32700E-2,29970, $ 
F.10200,.34670,.8102,. 31880E-2,29575,$ 
F. 10600,. 34300,. 8177,. 31100E-2,29200, $ 
F.11000,.33925,.8265,. 30450E-2,28835,$ 
F. 11400,. 33575,. 8360,. 29840E-2,28450, $ 
F.11800,.33210,.8458,. 29280E-2,28065,$ 
F. 12264,.32803,. 8552,. 28645E-2,27620, $ 

Shock Equation input 

A(l) = -.04928334 P® = 393.12 .002739 
A(3) = .63243631 p® = 5.8727E-4 .009186 
A(5) = 2.9626095 V« * 9680.8 .019369 
A(7) = -17.932815 ,033210 
A(9) = 50.928433 O'ïûfiO1) 

A(ll) = -54.532132 ! 071416 

All Other Coefficients = 0 ,095492 

.122645 

.152671 

.185340 

264 
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P 

50400 
49000 
46600 
43700 
39900 
35712 
31445 
27620 
23500 
19400 



Moo= 11.46 

Shock Angle = . 97788 
Altitude-50,429 Feet 

X r fi 

Real Gas 

Three-Dimensional 

o P 

F. 07304,.37576,.7838,.26923E-2,26423, $ 
F. 07400,. 37475,. 7841,. 26790E-2,26275, $ 
F. 07600,. 37275,. 7850,. 26400E-2,26040, $ 
F.07800,. 37075,. 7862,. 25860E-2,25795,$ 
F.08000,.36875,. 7876,. 25340E-2,25550,$ 
F.08200,.36680,.7892,. 24840E-2,25310,$ 
F. 08400,. 36485,. 7910,. 24350E-2,25095, $ 
F.08600,. 36290,. 7928,. 23900E-2,24875, $ 
F. 08800,. 36095,. 7947,. 23480E-2,24680, $ 
F. 09000,. 35896,. 7967,. 23090E-2, 24480, $ 
F.09200,.35700,. 7989,. 22725E-2,24300,$ 
F. 09400,. 35510,. 8012,. 22375E-2,24100, $ 
F. 09600,. 35310,. 8036,. 22020E-2,23925, $ 
F.09800,.35120,.8062,. 21700E-2,23750. $ 
F. 10000,. 34930,. 8090,. 21400E-2,23575, $ 
F. 10200,.34737,. 8119, .21110E-2,23410, $ 
F.10400,.34550,.8150,. 20860E-2,23250,$ 
F.10600,.34360,.8182,. 20625E-2,23100,$ 
F. 10800-. 34180,. 8217,. 20380E-2,22925, $ 
F.11000,.33990,.8255,. 20150E-2,22775,$ 
F.11200,.33800,.8294,. 19940E-2,22625,$ 
F. 11400,. 33610,.8335,. 19725E-2,22460, $ 
F.11600,.33425,.8380,. 19520E-2,22300,$ 
F. 11800,.33240,. 8428,. 19325E-2,22150,$ 
F.12000,.33050,.8480,. 19140E-2,21980,$ 
F.12100,.32960,.8508,. 19030E-2,21900,$ 
F.12265,.32803,. 8552,. 18883E-2,21768,$ 

Shock Equation 

A(l) = -.045543984 
A (3) = .67726273 
A(5) = 1.3225792 
A(7) = .35915569 
A(9) = -18.290546 
A(ll) = 31.481946 

All Other Coefficients = 0 

Input X 

P» = 238.67 .002739 
Poo = . 35653 E-3 .009187 
V® = 11,097 .019369 

.033210 

.050603 

.071416 

.095492 

.122646 

.152671 

.185340 

.220405 

P 

40650 
39420 
37500 
35011 
31960 
28596 
25074 
21768 
18600 
15500 
12500 

265 



M® = 13 Real Gas 
Shock Angle = . 96954 Three Dimensiona] 
Altitude = 100,000 Feet 

x rep P 

F. 08082,.36736,.8098,. 29066E-3,3328.8,$ 
F.08200,. 36620,.8098,. 28695E-3,3295.0,$ 
F.08400,.36430,.8100,. 28000E-2,3242.0,$ 
F. 08600,. 36235,. 8101,. 27325E-3,3194.0, $ 
F.08800,.36045,.8104,. 26675E-3,3194.0,$ 
F.09000,. 35858,. 8107,. 26075E-3,3108.0,$ 
F.09200,.35660,.8112,. 25500E-3,3071.0,$ 
F.09400,.35470,.8119,. 24940E-3.3035.0,$ 
F.09600,.35280,.8127,. 24395E-3,3000.0,$ 
F.09800,. 35092,.8139,. 23880E-3,2967.5,$ 
F.10000,. 34900,.8152,.23400E-3 2936.0,$ 
F.10200,.34715,.8170,. 22925E-3,2907.5,$ 
F.10400,.34530,.8192,. 22510E-3,2880.0,$ 
F.10600,.34340,.8218,. 22125E-3,2855.0,$ 
F,10800,.34155,. 8247,. 21775E-3,2830.0,$ 
F.11000,.33970,.8278,.21440E-3,2807.5,$ 
F.11200,.33785,. 8313,. 21125E-3,2785.0,$ 
F. 11400,. 33600,. 8350,. 20840E-3,2762.5, $ 
F. 11600,. 33420,. 8390,. 20580E-3,2741.0, $ 
F. 11800,. 33240,. 8433,. 20340E-3,2720.0, $ 
F. 12000,. 33050,. 8480,. 20100E-3,2700.0, $ 
F.12200,.32865,. 8535,. 19875E-3,2679.0,$ 
F.12265,.32803,. 8552,. 19811E-3,2672.0,$ 

Shock Equation 

A(l) = -.035654124 
A(3) » .63308299 
A(5) = 3.7249846 
A(7) = -21.642120 
A(0) = 61.998513 
A(ll) = -73.963013 

All Other Coefficients = 0 

Input x 

P® = 23.085 .002739 
0® = 3.2114E-5 .009187 
V«d = 13,041.6 .019369 

.033210 

.050603 

.071416 

.095492 

.122646 

.152671 

.185340 

.220405 

P 

5040.7 
4860.0 
4653.7 
4364.1 
3973.9 
3529.9 
3071.7 
2672.0 
2310.3 
1972.2 
1660.0 

266 



Moo = 15 
Shock Angle = .9460100 
Altitude = 33,000 Feet 

X r fl 

F.07834,.36931,.7920, 
F. 07980,.36780,. 7935, 
F. 08120,.36650,. 7950, 
F.08420,.36360,. 7980, 
F.08720,.36075,. 8010, 
F. 09020,.35785,.8040,, 
F.09300,.35520,. 8070,, 
F.09600,.35240,.8102,, 
F.09900,.34950,.8138,. 
F.10200,.34670,.8175,. 
F.10500,.34380,.8217,. 
F.10780,.34130,.8262,. 
F.11080,.33850,.8317,. 
F.11380,.33580,.8380,. 
F.11680,.33315,.8440,. 
F.11960,. 33065,.8495,. 
F.12120,.32920,.8526,. 
F.12265,.32803,.8552,. 

Real Gas 

Three-Dimensional 

P P 

.70887E-2,101130,$ 

.69500E-2,100300,$ 

.68200E-2,99520,$ 

.65500E-2,97900,$ 

.63000E-2,96250,$ 

.60600E-2,94750,$ 

.58450E-2,93400,$ 

.56300E-2,92000,$ 
, 54350E-2,90750,$ 
. 52650E-2,89600, $ 
51200E-2,88570,$ 
50050E-2,87640,$ 
40908E-2,86680,$ 
48Ô00E-2,85740,$ 
47200E-2,84800,$ 
46550E-2,83950,$ 
46200E-2,83450,$ 
45890E-2,83000,$ 

Shock Equation 

A(l) = -.03287870 
A (3) = .5060770 
A (5) = 4.347600 
A (7) = -17.19080 

A(9) = 21.62380 

A(H) = .00493944 

All Other Coefficients = 0 

Input x 

= 546.6 .0027390 
= 7.938E-4 .0091863 
= 14,722.5 .0193690 

.0332097 

.0506030 

.0714163 

.0954917 

.1226453 

.1526707 

.1853397 

.2204050 

.2575950 

P 

153900 
152340 
147470 
138760 
125930 
111250 
97500 
83000 
69650 
57200 
45000 
33200 



Shock Equation 

Ma = 15 

Shock Angle - .9538400 
Altitude = 50,000 Feet 

X r e 
F.08007,.36830,.7992, 
F.08100,.36730,.8016, 
F. 08200,. 36640,. 8035, 
F.08400,.36450, ,8068, 
F.08600,. 36260,. 8096, 
F.08800,.36075,. 8119, 
F.09000,.35850,.8138, 
F.09200,.35690,.3155, 
F.09400,.35505,.8170, 
F.09600,. 35320,. 8185, 
F.09800,.35130,.8202, 
F.10000,.34945,.8220, 
F.10200,.34760,.8238, 
F.10400,.34570,.8258, 
F.10600,.34385,.8280, 
F.10800,.34210,.8304, 
F. 11000,.34025,. 8330, 
F.11200,.33835,.8360, 
F.11400,. 33640,. 8394, 
F.11600,.33430,. 8428, 
F. 11800,.33240,.8463, 
F.12000,.33050,.8500, 
F.12140,. 32920,. 8527, 
F.12264,. 32803,. 8552, 

Real Gas 

Three-Dimensional 

P P 

32914E-2,45650,$ 
.32400E-2,45270,$ 
.31950E-2,44920,$ 
.30940E-2,44240,$ 
.30050E-2,43550,$ 
.29250E-2,42900,$ 
.28450E-2,42330, $ 
.27750E-2,41800.$ 
.27080E-2,41300,$ 
.26430E-2,40860,$ 
.25800E-2,40430,$ 
.25270E-2,40000,$ 
.24750E-2,39600,$ 
.24290E-2,39200,$ 

.23830E-2,38825.$ 

.23410E-2,38470,$ 

.23050E-2,38125,$ 

.22700E-2,37770,$ 

.22320E-2,37425,$ 

.21980E-2,37090,$ 

.21620E-2,36750,$ 

.21300E-2,36450,$ 

.21080E-2,36240,$ 

.20910E-2,36051,$ 

Input 

A(l) =-.038794354 
A (3) = .81766091 
4(5) = . 22304873 
A (7) = 5.8552453 
A (9) =-31.560219 
A(11) =40.547567 

All Other Coefficients = 0 

P® = 243.61 .002739 
= 3.6391E-4 .009186 

Ve» = 14,521 .019369 

.033210 

.050603 

.071416 

.095492 

.122645 

.152671 

.185340 

.220405 

.257595 

P 

71220 
68854 
65398 
61156 
55482 
49584 
42932 
36051 
30616 
26324 
22237 
18600 



Moo = 15 

Shock Angle = .9642800 
Altitude = 85,000 Feet 

X r 9 

F.08214,.36533,.8147, 
F.08360,.36395,.8137, 
F.08480,.36285,.8133, 
F.08760,.36015,.8130, 
F.09020,.35770,.8135, 
F.09300,.35550,.8149, 
F.09560,.35260,.8167, 
F.09840,.34995,.8192,, 
F.10100,.34755,.8217,, 
F.10380,.34492,. 8246,, 
F. 10640,.34260,.8280,. 
F. 10920,.34000,.8320,, 
F. 11180,.33765,.8361,. 
F. 11460,. 33515,.8410,. 
F.11720,.33280,.8455,. 
F.12000,.33040,.8505,. 
F.12120,.32930,.8576,. 
F.12265,.32803,.8552,. 

Real Gas 

Three-Dimensional 

o P 

.66754E-3,8993.8,$ 

.65400E-3,8878.0,$ 

.64400E-3,8788.0,$ 

.61900E-3,8585.0,$ 

.59700E-3,8421.0,$ 

.57450E-3,8260.0,$ 

.55400E-3,8120.0,$ 
,53450E-3,7980.0,$ 
51750E-3,7864.0,$ 

. 50000E-3,7744.0, $ 
48500E-3,7649.0,$ 
47100E-3,7550.0,$ 
45950E-3,7460.0,$ 
44900E-3,7375.0,$ 
44100E-3,7297.0,$ 
43200E-3,7215.0,$ 
42900E-3,7180.0,$ 
42440E-3,7140.0,$ 

Shock Equation 

A(l) = -.03943039 
A (3) = .8668105 
A(5) = . 1154097 
A (7) = 2.158591 
A(9) = 4.130238 
A(ll) = -52.30871 

All Other Coefficients = 0 

Input x 

P® = 47.0 . 0027390 
P® = 0.698E-4 .0091863 
V® = 14,565 ,0193690 

.0332097 

.0506030 

.0714163 

.0954917 

.1226453 

.1526707 

.1853397 

P 

13930 
13460 
12750 
11850 
10760 
9580 
8330 
7140 
6100 
5160 



Moo = 17.56 
Shock Angle = . 9520200 
Altitude = 50,000 Feet 

X r fl 

F.08173,.36556,.8082, 
F.08300,.36430,.8091, 
F. 1)8420,. 36305,. 8102, 
F.08720,.36040,.8126, 
F.09000,.35795,.8150, 
F.09260,.35535,.8174, 
F.09540,.35270,.8197,, 
F.09900,.35030,.8221,, 
F.10080,.34770,.8247,, 
F.10360,.34510,. 8275,, 
F.10620,.34270,.8302,, 
F.10900,.34020,.8339,, 
F. 11180,.33760,.8380,. 
F.11440,.33525,.8422,. 
F.11720,.33275,.8467,. 
F.12000,.33030,.8511,. 
F.12120,.32930,.8530,. 
F.12265,.32803,. 8552,. 

Real Gas 

Three-Dimensional 

o P 

.35283E-2,62829,$ 

.34550E-2,62100,$ 

.33775E-2,61380,$ 
,32200E-2,59990,$ 
.30700E-2,58690,$ 
.29400E-2,57580,$ 
,28180E-2,56500,$ 
,27125E'’2,55600,$ 
26150E-2,54700,$ 
25300E-2,53850,$ 
24600E-2,53150,$ 
23950E-2,52450,$ 
23375E-2,51780,$ 
22890E-2,51200,$ 
22400E-2,50620,$ 
21960E-2,50500,$ 
21800E-2,49800,$ 
21587E-2,49496,$ 

Shock Equation 

A(l) = -.0386601 pm 
A(3) = .78635600 o» 
A{5) = 1.0005400 Vo, 
A(7) = 2.8262 
A<9) = -31.3266 
A(ll) = 49.6393 

All Other Coefficients = 0 

Input x 

= 243.61 .0027390 
= 3.6391E-4 .0091863 
= 17,000 .0193690 

.0332097 

.0506030 

.0714163 

.0954917 

.1226453 

.1526707 

.1853397 

.2204050 

.2575950 

P 

97750 
94500 
89741 
83924 
76130 
67397 
58298 
49496 
42066 
36566 
30948 
26100 

270 



M® = lg 

Shock Angle = . 9875700 
Sea Level 

Ideal Gas 

Three-Dimensional 

r e D P 

• ^*^1 • 0&Ú I *±t 

F.06000,.39120, 
F.06200,.38890, 
F.06600,. 38450, 
F.07000,.38000, 
F.07400,.37550, 
F. 07800,.37140, 
F.08200,.36700, 
F.08600,.36300, 
F.09000,.35900, 
F.09400,.35480, 
F.09800,.35100, 
F. 10200,.34700, 
F. 10600,.34320, 
F. 11000,.33950, 
F.11400,.33580, 
F. 11800,.33210, 
F. 12000,.33030, 
F. 12200,.32850, 
F.12264,.32803, 

.7350,.13770E 

.7357,.13530E 

.7375,. 13080E 

.7408,. 12700E 
• 7460,. 12330E■ 
.7522,.12000E- 
•7595,.11690E- 
• 7677,. 11410E- 
.7745,.11150E- 
.7827,.10800E- 
.7917,.10670E 
.8013,.10445E 
.8110,.10245E 
.8217,.10045E■ 
.8327,.98500E■ 
.8440,. 96600E- 
.8490,.95700E- 
.8537,.94800E- 
•8552,.94428E- 

1,553500,$ 
1,548900,$ 

-1,540500,$ 
-1,534200,$ 
-1,528500,$ 
-1,523400,$ 
-1,518000,$ 
■1,512900,$ 
1,507600,$ 
1,502500,$ 

-1,497000,$ 
-1,491500,$ 
-1,485600,$ 
-1.479700,$ 
-2,473500,$ 
■2,466750,$ 
■2,463400,$ 
2,459700,$ 
2,458650,$ 

Shock Equation 

A(l) = -.061114073 
A (3) = .73766679 
A(5) = .048917737 
A (7) = 4.6635489 

A (9) = -21.582338 
A(H) = 24.521790 

All Other Coefficients = 0 

Input 

P® = 2116.2 
p® = 2.3769E-3 
V® = 20,095.2 

X 

.009186 

.019369 

.033210 

.050603 

.071416 

.095492 

.122645 

.152671 

.185340 

P 

835000 
791000 
735000 
675470 
604700 
535140 
458650 
385550 
321500 

271 



' ¡-■rfflnMn 

Moo = 18.1 
Shock Angle = .95576 
Altitude 175,000 Feet 

X r e 

F.08945,.35778,.8369 
F.09040,.35690,.8369, 
F.09160,.35580,.8370, 
F.09360,.35400,.8370, 
F.09580,.35200,.8370, 
F.09780,.35020,. 8371, 
F.09980,.34840,.8373, 
F.10200,.34640,.8375, 
F.10400,.34460,.8379, 
F,10600,.34280,.8383, 
F. 10820,.34080,.8390, 
F.11020,.33900,.8401, 
F.11220,.33720,.8419, 
F.11420,.33525,.8445, 
F.11640,.33350,. 8472, 
F.11840,.33170,.8506, 
F.12060,.32980,. 8540, 
F.12160,.32895,.8547, 
F.12265,.32803,.8552, 

Real Gas 
Three -Dimens ional 

o P 

.16746E-4,346.780, $ 
. 16450E-4.343. 400,$ 
. 16100E-4.339.100, $ 
. 15540E-4,332.600, $ 
.14960E-4.326.100, $ 
. 14480E-4,320.600, $ 
. 14030E-4,315.500, $ 
. 13580E-4.310.250, $ 
. 13225E-4,306.000, $ 
.12890E-4,302.000,$ 
. 12550E- 4,297.900, $ 
. 12280E-4,294.500, $ 
. 12050E-4,291.400, $ 
. 11800E-4,288.400, $ 
. 11610E-4,285.800,$ 
. 11450E-4,283.500, $ 
. 11275E-4,281.000, $ 
. 11210E-4,279^900, $ 
. 11141E-4,278.840, $ 

Shock Equation 

A(l) = -.02820980 
A (3) = .7464340 
A(5) = 2.949250 
A(7) = -21.32760 
A(9) = 94.07350 
A(ll) = -188.7800 

Input 

Pod = 1.2334 
°od = . 14123E-5 
Vod = 20,000 

X P 

,0027390 523.97 
0091863 512.84 
0193690 492.23 
0332097 460.79 
0506030 419.64 
0714163 372.41 
0954917 324.41 
1226453 278.84 
1526707 236.78 
1853397 196.57 

All Other Other Coefficients = 0 
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Moo= 19.25 

Shock Angle = . 94404 
Altitude = 200,000 Feet 

Real Gas 
Three Dimensional 

x r 9 0 p 

F. 08986,. 35707,. 8303,. 73945E- 5,147.660, $ 
F. 09100,, 35610,. 8310,. 72950E-5,145.600, $ 
F. 09200,. 35520,. 8316,. 71400E-5,143.850, $ 
F. 09400,. 35340,. 8328,. 68450E-5,140.550, $ 
F. 09600,. 35160,. 8340,. 66050E-5,137.700, $ 
F.09800,. 34985,. 8352,. 63750E-5,135.100, $ 
F. 10000,. 34805,. 8364,. 61650E-5,132.600, $ 
F. 10220,. 34610,. 8379,. 59600E-5,130.250, $ 
F.10420,.34435,. 8392,. 57950E-5,128.400,$ 
F.10620,.34250,.8406,. 56500E-5,126.600,$ 
F.10820,.34075,. 8420,. 55150E-5,125.000,$ 
F.11040,.33880,.8437,. 53800E-5,123.350,$ 

8 F. 11240, .33700,. 8454,.52700E-5,122.000, $ 
F.11440,. 33525,. 8471,. 51750E-5,120.800,$ 
F. 11660,.33330,.8495,. SO^OOE-S,119.850, $ 
F. 11860,. 33150,. 8520,. 50100E-5,118.400, $ 
F.12060,. 32980,. 8541,. 49400E-5,117,500 $ 
F. 12160,. 32895,. 8547,. 49100E-5,117.050,' $ 
F. 12265,. 32803,. 8552,. 48791E-5,116.620, $ 

Shock Equation 

A(l) = -.0272035 
A (3) = .775645 
A (5) = 1.56676 
A (7) = -2.63521 
A(9) = .593935 
A(H) = -28.3261 

All Other Coefficients = 0 

Input x 

= .47151 .002739 
= .6118E-6 .0091863 
= 20,000 .019369 

.0332097 

.0506030 

.C714163 

.0954917 

.1226453 

.1526707 

.1853397 

P 

232.39 
223.01 
211.16 
197.89 
183.13 
162.51 
139.44 
116.62 
97.18 
80.96 
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M®= 19.52 

SBiock Angle = .95119 
Altitude = 150.000 Feet 

X r 0 

F.08833,.35876,.8296, 
F.08940,.35780,.8300, 
F.09060,.35670,.8305, 
F.09300,.35450,.8314, 
F.09520,.35255,.8323, 
F.09740,.35050,.8332, 
F.09980,.34840,.8343, 
F.10200,.34635,.8353, 
F.10440,.34425,.8366, 
F.10660,.34225,.8379 
F.10900,.34010,.8395,, 
F.11120,.33810,.8412,, 
F.11340,.33615,.8434,, 
F.11580,.33405,.8464,, 
F.11800,.33210,.8501,, 
F.12040,.32995,.8539,. 
F.12140,.32910,.8547,. 
F.12265,.32803,.8552,. 

Real Gas 

Three-Dimensional 

o P 

. 40887E-4,994.57, $ 
, 40150E-4,984.40, $ 
. 39300E-4,973.00, $ 
, 37700E-4,952.00, $ 
, 36310E-4,934.40, $ 
, 35050E-4,918.00, $ 
, 33800E-4,902.00, $ 
, 32790E-4,888.00, $ 
131840E-4,874.00, $ 
31050E-4,863.00, $ 
30300E-4,852.10, $ 
29690E-4,842.00, $ 
29175E-4,831.00, $ 
28640E-4,824.50, $ 
28200E-4,816. 60, $ 
27750E-4,808.80, $ 
27600E-4,805.50, $ 
27397E-4,802.00, $ 

Shock Equation 

A(l) = -.028473534 
A<3) = .76620454 
A(5) = 1.3474288 
A(7) = 1.9468755 
A(9) = -16.885667 
A(ll) = 27.864783 

All Other Coefficients = 0 

Input X 

P® = 3.0I>97 .002739 
0® = 3.5642E-6 .009186 
V® = 21,400 .019369 

.033210 

.050603 

.071416 

.095492 

.122645 

.152671 

.185340 

P 

1535.1 
1486.8 
1425.9 
1334.0 
1218.3 
1084.6 
943.21 
802.00 

675,75 
555.00 
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Meo = 20 

Shock Angle = . 951 
Altitude = 60,430 Feet 

Real Gas 

Three -Dimens ional 

Shock Equation 

F.08408, 
F.08540, 
F.08680, 
F.08920, 
F.09180, 
F. 09440, 
F.09700, 
F.09960, 
F.10200, 
F.10500, 
F.10720, 
F.10980, 
F.11240, 
F.11500, 
F.11760, 
F.12000, 
F.12140, 
F.12265, 

.36347,. 8349,. 22413E 

.36225,.8345,. 22040E 

.36090,.8340,. 21600E 
• 35865,.8332,.20875E- 
.35620,.8326,.20120E- 

• 35375,.8321,.19390E- 
• 35130,. 8317,. 18690E- 
.34890,.8316,.18050E 

.34670,.8319,. 17500E 

.34390,.8325,. 16910E 

.34180,.8334,.16545E- 

.33950,.8350,.16150E- 

.33710,.8376,. 15800E- 

.33470,.8412,, 15510E- 

.33240,.8455,.15250E 

.33030,.8500,.15025E 

.32905,.8527,.14910E- 

.32803,.8552,.14816E- 

-2,51485,$ 
-2,50850,$ 
-2,50190,$ 
-2,49150,$ 
2,48180,$ 
2,47325,$ 
2, 46500,$ 
-2,45750,$ 
■2,45125,$ 
•2,44425,$ 

-2,43950,$ 
-2,43450,$ 
-2,42975,$ 
-2,42525,$ 
-2,42100,$ 
•2,41740,$ 
2,41520,$ 
2,41333,$ 

A(!) = -.03248550 
A(3) = . 694825 
A(5) = 4.279610 
A (7) = -28.2064 
A (9) = 89.5846 
A(H) = -115.997 

All Other Coefficients 

Input 

P» = 147.31 
P« = 2.2E-4 
V« = 19,361.6 

= 0 

.0021] 

.0091 

.0193 

.0332 

.0506 

.0714 

.0954! 

.152( 

P 

74948 
73657 
70799 
66207 
60054 
53160 
46921 
41333 
35233 
30100 



M<*> = 20 Real Gas 
Shock Angle = . 9504800 Three-Dimensional 
Altitude 120,000 Feet 

X r 9 p P 

F.08810,.35930,. 8281,. 14453E-3.3336.8,$ 
F.08900,.35850,. 8286,. 14275E-3,3307.0,$ 
F.09100,.35665,.8302,. 13775E-3,3249.0,$ 
F.09300,.35483,. 8312,. 13250E-3,3189.5,$ 
F.09500,.35300, .8317 ,. 12795E-3,3135.0, $ 
F.09700,.35115,. 8322,. 12375E-3,3086.0,$ 
F.09900,.34930,. 8329,. 12000E-3,3040.0,$ 
F.10100,.34750,. 8335,. 11665E-3,3000.0,$ 
F.10300,.34565,. 8344,. 11355E-3,2962.5,$ 
F. 10500,.34385,.8356,. 11100E-3,2927.0,$ 
F. 10700,.34205,.8367,. 10850E-3,2894.0,$ 
F.10900,.34025,. 8382,. 10600E-3,2862.5,$ 
F. 11100,.33850,.8400,. 10425E-3,2834.0,$ 
F.11300,.33670,.8422,. 10250E-3,2805.0,$ 
F. 11500,.33490,. 8447,. 10095E-3,271j.0,$ 
F.11700,.33315,.8476,. 99350E-4,2758.0,$ 
F.11900,.33137,.8512,. 98000E-4,2734.5,$ 
F. 12100,.32950,.8545,. 96850E-4,2712.0,$ 
F.12264,.32803,. 8552,. 95800E-4,2693.2,$ 

Shock Equation input 

A(l) = -.028473534 Poo = 9.8372 .002739 
A(3) * .76620454 = 1.2697E-5 .019186 
A(5) = 1.3474288 Vao = 20,830 .019369 
A(7) = 1.9468755 .033210 
A(9) = -16.885667 .050603 
A(ll) = 27.864783 071416 

All Other Coefficients = 0 • 095492 
.122645 
.152671 
.185340 

P 

5155.5 
4993.3 
4788.8 
4480.1 
4091.5 
3642.4 
3167.5 
2613.2 
2269.2 
1863.6 
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Mao = 20 
Shock Angle = . 9734600 
Altitude = 200,000 Feet 

Real Gas 
Three-Dimensional 

x r 0 o p 

?.09255,.35501,. 8602,. 78322E-5,168.33,$ 
F. 09360,. 35410. .8585,. 7S900E-5,165.95, $ 
F. 09460,. 35315,. 8566,. 75500E-5,163.60, $ 
F. 09660,. 35135,.8531,. 72800E-5,159.40, $ 
F. 09860,. 34955,. 8497,. 70100E-5,155.50, $ 
F. 10060,.34770,. 8467,. 67450E-5,151.95, $ 
F. 10260,. 34590,. 8440,. 65150E-5,148.85, $ 
F. 10460,. 34410,. 8418,. 63000E-5,146.00, $ 
F. 10660,. 34230,. 8402,. 61100E-5,143.30, $ 
F. 10880,. 34050,. 8397,. 59400E-5,140.90, $ 
F. 11060,. 33875,. 8405,. 57900E-5,138.85, $ 
F. 11260,. 33700,. 8425,. 56450E-5,137.05, $ 
F. 11460,. 33520,. 8445,. 55100E-5,135.40, $ 
F. 11660,. 33340,. 8470,. 54000E-5, 134.00, $ 
F. 11860,. 33160,. 84Í J,. 53000E-5,132.80, $ 
F. 12060,.32980,. 8525,.52100E-5,131.70, $ 
F. 12160,. 32898,. 8538,. 51700E-5,131.20, $ 
F. 12265,. 32803,.8552, .51248E-5,130.70, $ 

Shock Equation 

A(l) = -.0641084 
A(3) - .865146 
A(5) = -1.14338 
A (7) = 10.2636 
A (9) = -32.7591 
A(ll) = 26.3273 

AU Other Coefficients = 0 

Input 

P» = .47518 

P»= 6.0583E-7 
V<*> = 20,958.0 

X 

.0027390 

.0091863 

.0196390 

.0332097 

.0506030 

.0714163 

.0954917 

.1226453 

.1526707 

.1853397 

P 

249.70 
242.00 
230.70 
215.00 
194.50 
174.55 
152.60 
130.70 
114.48 
103.75 



“ 20 Weal Gas 
Shock Àngie = .95712 Three-Dimensional 
Altitude = 200,000 Feet 

9 

F.08901,.43181, 
F.09100,.42949, 
F.09300,.42700, 
F.09700,.42220, 
F.10100,.41750, 
F.10500,.41265, 
F.10900,.40795, 
F. 11300,.40325, 
F. 11700,.39850, 
F.12100,.39395, 
F.12500,.38950, 
F.12900,.38500, 
F. 13300,.38060, 
F. 13700,. 37625, 
F.14100,.37190, 
F.14500,.36750, 
F.14900,. 36345, 
F.15100,.36140, 
F.15267,. 35967, 

.7206,.35682E 

.7200,.35120E 
• 7196,.34550E 
• 7184,. 33350E 
• 7182,.32150E 
.7180,.30940E 
.7180,.29780E■ 
.7186,.28730E■ 
.7200,.27740E- 
.7225,.2685ÖE- 
. 7268,.26000E- 
.7325,.25250E- 
. 7384,. 24550E 
• 7445,. 23870E 
.7510,.23220E 
.7575,.22550E 
• 7646,. 21920E• 
.7679,.21600E- 
.7679,. 21338E- 

-5,148.13,$ 
-5,146.50,$ 
-5,144.85,$ 
-5,141.60,$ 
■5,138.60,$ 
■5,135.70,$ 
■5,133.00,$ 
5,130.35,$ 
5,127.70,$ 

-5,125.30,$ 
-5,122.90,$ 
-5,120.45,$ 
-5,118.15,$ 
-5,115.90,$ 
-5,115.60,$ 
■5,111.40,$ 
•5,109.10,$ 
5,108.00,$ 
5,107.00,$ 

Shock Equation 

A(l) = -. 06410840 
A (3) = .8651460 
A (5) = -1.143380 
A(7) = 10.26360 
A(9) = -32.75910 

A(ll) = 26.32730 

AH Other Coefficients = 0 

Input 

V* = .47518 

P® = 6.0583 E- 
V» = 20,958.0 

.0027390 

.0091863 

.0193690 

.0332097 

.0506030 

.0714163 

.0954917 

.1226453 

.1526707 

.1853397 

P 

242.75 
234.41 
221.60 
204.91 
186.56 
167.09 
148.17 
127.03 
107.00 
89.20 
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1 

Mod = 20.7 

Shock Angle = . 94767 

Altitude = 225,000 Feet 

Real Gas 

Three-Dimensional 

x r 9 o P 

F.09126,.35625,. 8382,.29852E-5,57.429 $ 
F.09240,. 35520,. 8382,. 28900E-5,56.775 $ 
F. 09340,. 35430,. 8382,. 28200E-5,56.200,’ $ 
F. 09540,. 35245,. 8384,. 27130E-5,55.100, $ 
F.09760,. 35050,. 8386,. 26180E-5,53.960,$ 
F. 09960,. 34870,. 8388,. 25360E-5,52.980, $ 
F. 10180,. 34670,. 8392,. 24500E-5,51.990, $ 
F. 10380,. 34490,. 8397,. 23850E-5,51.150, $ 
F. 10600,. 34295,. 8404,. 23150E-5,50.325, $ 
F. 10800,. 34120,. 8412,. 22550E-5,49.650, $ 
F. 11000,. 33940,. 8422,. 22025E-5,49.040, $ 
F. 11220,. 33745,. 8437,. 21525E-5,48.400, $ 
F. 11420,. 33570,. 8455,. 21125E-5,47.875, $ 
F. 11640,. 33370,. 8481,. 20740E-5,47.375, $ 
F. 11840,. 33190,. 8508,. 20410E-5,46.930, $ 
F. 12060,. 32990,. 8536,. 20075E-5,46.475, $ 
F. 12160,. 32900,. 8545,. 19930E-5,46.285, $ 
F.12264,.32803,.8552,. 19794E-5,46.100,$ 

Shock Equation 

A(l) = -.0255625 
A(3) = .792294 
A(5) = 1.93497 
A (7) = -12.9126 
A(9) = 57.7919 
A(ll) = -99.9061 

All Other Coefficients = 0 

Input x 

= .15719 .002739 
.23571 .009186 

; 20,000 .019369 
.033210 
.050603 
.071416 
.095492 
.122645 
.152671 
.185340 
.220405 
.257595 

P 

88.750 
85.875 
82.127 
76.893 
70.800 
63.500 
54.000 
46.100 
39.100 
32.600 
26.500 
20.600 
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Shock Equation 

A(l) = -.029720581 

A (3) = .7741153 

A(5) = 1.1871262 

A (7) = .2720463 

A(9) * -13.399047 

A(11) = 19.744798 

M* = 20.933 

Shock Angle = .9493600 

Altitude = 100,000 Feet 

Real Gas 

Three-Dimensional 

X r 

F.08745,.36023, 

F.08900,.35880, 

F.09100,.35695, 

F.09300,.35510, 

F.09500,.35330, 

F.09700,.35145, 

F.09900,.34965, 

F,10200,.34690, 

F.10600,.34327, 

F.11000,.33964, 

F. 11300,.33700, 

F. 11500,.33518, 

F. 11700,.33400, 

F.11900,.33165, 

F. 12100,.32960, 

F.12264,.32803, 

P< 

D < 

v< 

= 0 

o p 

.8240,.35581E 

.8252,.34650E 

.8268,. 33500E 

.8282,.32300E 

.8295,.31350E 

.8307,.30370E 

.8317,.29500E 

.8328,.28344E 

.8350,.27072E 

.8381,.26010E 

.8413,.25370E 

.8439,.24938E 

.8469,.24600E- 

.8505,.24225E 

.8538,.23900E 

.8552,.23616E 

Input 

= 23.085 

= 3.2114E-5 
, = 21,000 

P 

■3,8537.3,$ 

■3,8420.0,$ 

3,8282.0,$ 

■3,8155.0,$ 

•3,8025.0,$ 

3,7905.0,$ 

3,7800.0,$ 

3,7647.2,$ 

3.7469.8, $ 

3,7314.0,$ 

•3,7215.0,$ 

3.7145.1, $ 

3,7085.0,$ 

3.7025.1, $ 

3,6965.0,$ 

3.6916.9, $ 

.002739 

.009186 

.019369 

.033210 

.050603 

.071416 

.095492 

.122645 

.152671 

.185340 

.220405 

.257595 

All Other Coefficients 

P 

13325.0 

12870.0 

12291.0 

11498.0 

10501.0 

9348.0 

8128.9 

6916.9 

5822.8 

4781.7 

3850.0 

3050.0 



•lyfrrfü 

M® = 21 

Shock Angle = .9504200 
Altitude = 74,870 Feet 

Real Gas 

Three-Dimensional 

x r 3 o P 

F. 08459,. 36263,. 8179,. 11810E-2,27951,$ 
.. .08600,. 36120, .8189,. 11480E-2,27640, $ 
F.08800,. 35945,. 8202,. 11150E-2,27245, $ 
F. 09000,. 357 60,. 8215,. 10835E-2,26855, $ 
F.09200,.35575,. 8227,. 10520E-2,26515, $ 
F.09400,. 35400,.8239,. 10250E- 2,26190, $ 
F. 09600,. 35205,. 8251,. 99850E-3,25860, $ 
F. 09800,. 35015,. 8261,. 97200E-3,25500, $ 
F.10000,. 34830,. 8272,. 94900E-3,25250,$ 
F. 10200,.34655,.8284,. 92650E-3,24950, $ 
F. 10400,. 34465,. 8298,. 90450E-3,24685, $ 
F. 10600,. 34280,. 8316,. 88400E-3,24435, $ 
F. 10800,. 34100,. 8336,. 86500E-3,24200, $ 
F. 11000,.33920,. 8357,,f 4800E-3,23975, $ 
F.11200,. 337 45,. 8384,. 83250E-3,23770,$ 
F.11400,.33565,. 8415,. 82100E-3,23600,$ 
F.11600,.33400,. 8450,. 80850E-3,23385,$ 
F.11800,.33275, .8488, .79750E-3,23210,$ 
F. 12000,.33030,. 8525,.78800E-3,23030, $ 
F. 12140,.32915,. 8544, .78200 E-3,22910, $ 
F.12264,.32833,. 8552,.77675E-3,22800,$ 

Shock Equation 

A(l) = -.0333964 
A(3) = .575621 
A (5) = 6.53032 
A (7) = -53.6613 
A(9) = 214.951 
A (11) = -327.995 

All Other Coefficients = 0 

Input x 

= 75.305 .002739 
= 1.125E-4 .009186 
= 20,329.7 .019369 

.033210 

.050603 

.071416 

.095492 

.122645 

.152672 

.185340 

P 

43400 
41871 
40173 
37429 
33916 
29935 
26241 
22800 
19000 
15300 
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Meo = 23.716 
Shock Angle = . 94568 
Altitude = 150,000 Feet 

X r 9 

F.09404,.35358,. 8470, 
F.09500,.35270,. 8445, 
F.09700,.35090,.8421, 
F.09900,.34910,.8409, 
F. 10100,.34730,.8404, 
F.10300,.34550,.8404, 
F.10500,.34370,.8406,, 
F.10700,.34190,.8410,, 
F.10900,.34010,.8416,, 
F.11100,.33840,.8426,, 
F.11300,.33660,.8439,, 
F.11500,.33485,.8458,. 
F.11700,.33310,.8485,. 
F.11900,.33130,.8516,. 
F.12100,.32950,.8543,. 
F.12264,.32803,.8552,. 

Real Gas 

Three-Dimensional 

o P 

.49899E-4,1474.6,$ 

.48800E-4,1458.0,$ 

.46650E-4,1426.0,$ 

.44700E-4,1393.5,$ 

.42800E-4,1363.0,$ 
,41200E-4,1336.0,$ 
.39650E-4,1311.0,$ 
,38350E-4,1290.0,$ 
37150E-4,1271.5,$ 
36100E-4,1254.0,$ 
35200E-4,1240.0,$ 
34450E-4,1226.5,$ 
33800E-4,1214.0,$ 
33230E-4,1204.0,$ 
32700E-4,1194.0,$ 
32416E-4,1186. 2,$ 

Shock Equation 

A(l) = -.02430903 
A (3) = . 68683618 
A (5) = 4.5451286 
A (7) = -32.063228 
A (9) = 113.92778 
A(ll) = -157.14619 

All Other Coefficients = 0 

Input X 

P® = 3.0597 .002739 
o® = 3.5642E-6 .009186 
V» = 26,000 .019369 

.033210 

.050603 

.071416 

.095492 

.122645 

.152671 

.185340 

P 

2269.70 
2198.30 
2108.30 
1972.40 
1801.40 
1603.80 
1394.90 
1186.20 
999.58 
821.08 
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Moo = 25 
Shock Angle = .94102 
Altitude = 225,000 

X r 9 

F.09527,.3o237,.8483, 
F.09600,.35170,. 8479, 
F.09800,.34990,.8470, 
F.10000,.34810,.8463, 
F.10200,.34630,.8458, 
F.10400,.34460,.8455, 
F.10600,.34280,.8453, 
F.10800,.34100,.8456, 
F. 11000,.33930,.8459, 
F. 11200,.33750,.8465, 
F.11400,.33580,.8476, 
F.11600,.33400,.8491, 
F. 11800,.33220,.8512, 
F.12000,.33045,.8533,, 
F.12200,.32870,.8548,, 
F.12264,.32803,.8552,, 

Real Gas 
Three-Dimensional 

o P 

.34798E-5,83,903, $ 

. 34375E-5,83.100, $ 

.32550E-5,81.050, $ 

.30950E-5.79.150,$ 

.29550E-5,77.350, $ 

.28350E-5,75.800, $ 

. 27300E-5.74.400, $ 

. 26500E-5,73.200, $ 

. 25750E-5,72.100, $ 

.25080E-5,71.100,$ 

.24500E-5,70.200, $ 

. 23980E-5,69.450, $ 

. 23500E-5,68.700, $ 
, 23150E-5,68.100, $ 
, 22750E-5,67.550, $ 
, 22625E-5,67.321, $ 

Shock Equation 

A(l) = -.022431390 
A (3) = .85812356 
A (5) = .014637381 
A(7) = 10.910602 
A (9) = -52.590469 
A(ll) = 73.959399 

All Other Coefficients = 0 
• VI V 

.122645 67.321 

.152671 56.888 

.185340 47.000 

.220405 37.050 

.257595 28.200 

Input 

P® = .15719 
c’® = . 23571E-6 
V® = 24156.2 

.002739 

.009186 

.019369 

.033210 

.050603 

.071416 

130.500 
125.730 
120.240 
112.570 
103.030 
92.174 
70 am 



' 
WM' ■■ I <4 :ni||||^;" I 

= 25.031 

Shock Angle = .9329000 
Altitude = 200,000 Feet 

Real Gas 

Three-Dimensional 

9 

F. 09526, 
F.09600, 
F.09800, 
F. 10000, 
F.10200, 
F.10400, 
F.10600, 
F.10800, 
F. 11000, 
F.11200, 
F. 11400, 
F.11600, 
F.11800, 
F.12000, 
F.12200, 
F.12264, 

.35216,.8433, 

.35160,.8434, 

.34980,.8439, 

.34800,.8444, 

.34620,.8449, 

.34440,.8455, 

.34270,.8461, 

.34090,.8466, 

.33910,.8472, 

.33740,.8478, 

.33560,.8486, 

.33380,.8499, 

.33210,.8518, 

.33030,.8541, 

.32860,.8551, 

.32803,.8552, 

.91906E 
.89800E 
. 85100£■ 
.80750E• 
.76950E• 
.73750 E■ 
.71000E- 
. 68700 E- 
.66700E- 
.64900 E- 
. 63400E 
.62050E 
.60800E 
. 57750E- 
.58750E- 
.58460 E- 

-5,249.610,$ 
-5,247.100,$ 
■5,241.400,$ 
■5,235.600,$ 
•5,230.400,$ 
5,225.900,$ 

-5,221.800,$ 
-5,218.200,$ 
-5,215.050,$ 
-5,212.100,$ 
-5,209.500,$ 
■5,207.200,$ 
■5,205:100,$ 

•5,203.150,$ 
5,201.350,$ 
5,200.870,$ 

Shock Equation 

A(l) =-.022431390 
A(3) =.85812356 
A(5) = .014637381 
A (7) = 10.910602 
A(9) =-52.590469 
A(H) = 73.959399 

All Other Coefficients = 0 

Input x 

Pœ =.47151 .002739 
= 6.118E-7 .009186 

Vœ = 26,000 .019369 

.033210 

.050603 

.071416 

.095492 

.122645 

.152671 

.185340 

P 

392.29 
379.50 
361.45 
338.39 
309.71 
277.08 
238.75 
200.87 
16G.36 
134.00 

284 



Mœ = 25.917 
Shock Angle = .94351 
Altitude = 100,000 Feet 

X r 9 

F.09125,.35646,.8366, 
F.09300,.35485, .8365, 
F.09500,.35305, .8364, 
F.09700,.35120,.8364, 
F.09900,.34940,.3764, 
F.10100,.34755, .8365, 
F.10300,.34575, .8368, 
F.10500,.34392, .8374, 
F.10700,.34214,.8383, 
F.10900,.34040,.8394, 
F.11100,.33860, .8408, 
F.11300,.33680,.8427, 
F.11500,.33508,.8450, 
F.11700,.33320, .8478, 
F.11900,.33140,.8511, 
F.12100,.32960,.8540, 
F.12265,.32803,.8552, 

Real Gas 
Three-Dimensional 

P P 

.41298E-3,13149,$ 

.39750E-3,12920,$ 

.38050E-3,12665,$ 

.36490 E-3,12420,$ 

.35080 E-3,12200,$ 

.33860E-3,12000,$ 

.32780E-3,11825,$ 

.31800 E-3,11660,$ 

.30960E-3,11500,$ 

.30200E-3,11370,$ 

.27550E-3,11240,$ 

.28950E-3,11120,$ 

.28450E-3,11020,$ 

.27950E-3,10915,$ 

.27520 E-3,10815,$ 

.27080 E-3,10720,$ 

.26725E-3,10646,$ 

Shock Equation 

A(l) = -.025465172 
A (3) = .79267501 
A (5) = .58500589 
A (7) = 6,1853521 
A(9) = -33.088087 
A(ll) = 40.844931 

All Other Coefficients = 0 

Input X 

=73.784 .002739 
P0o = 1.1022E-4 .009187 
V« = 26,000 .019369 

.033210 

.050603 

.071416 

.095492 

.122646 

.152671 

.185340 

.220405 

.257595 

P 

20520 
19819 
18926 
17704 
16168 
14392 
12513 
10646 
8960 
7356 
5920 
4687 



;.- 

Moo = 26.857 
Shock Angle = .94235 
Altitude = 75,000 Feet 

X r 9 

F.08989,.35780,. 8302, 
F.09100,.35680,.8306, 
F.09300,.35492, .8313, 

F.09500,.35310,.8320, 
F.09700,.35130, .8328, 
F.09900,.34950,. 8336, 
F.10100,.34770,.8343, 
F.10300,.34580,.8351, 
F.10500,.34400,.8361, 
F.10700,.34220,.8371, 
F.10900,.34040,.8384, 
F.11100,.33865,.8401, 
F.11300,.33690,.8420, 
F.11500,.33510,.8445, 
F.11700,.33330,.8474, 
F.11900,.33148,.8508, 
F.12100,.32960,.8538, 
F.12265,.32803,.8552, 

Real Gas 

Three-Dimensional 

o P 

.13469E-2,44851,$ 

.13170E-2,44400,$ 

. 12640 E-2,43575,$ 

.12110E-2,42775,$ 

.11660E-2,42040,$ 

.11240 E-2,41375,$ 

.10880 E-2,40775,$ 

.10575E-2,40220,$ 

.10285E-2,39695,$ 

.10030E-2,39200,$ 

.98100E-3,38775, $ 

.96100 E-3,38350,$ 
94200 E-3,37950,$ 
92550E-3,37600,$ 
91000E-3,37250,$ 
89600E-3,36940,$ 
88200E-3,36600,$ 
87173 E-3,36352,$ 

Shock Equation 

A(l) = -.02725 
A (3) = .79267501 
A(5) = .08500589 
A (7) = 6.1853521 
A(9) = -33.088187 
A(ll) = 40.84493 

All Other Coefficients = 0 

Input x 

Pœ = 73.784 .002739 
P® = 1.1022E-4 .009187 
Vœ = 26,000 .019369 

.033210 

.050603 

.071416 

.095492 

.122646 

.152672 

.185340 

.220485 

.257595 

P 

70228 
67875 
64816 
60630 
55370 
49288 
42852 
36352 
30508 
24994 
19909 
14800 
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% 

M, = 30 
Shock Angle = .93288 
Altitude = 275,000 Feet 

X r 6 

F.09719,.35046,.8529,. 
F.09800,.34975,.8526,. 
F.10000,.34800,.8519,. 
F.10200,.34625,.8512,. 
F.10400,.34448,.8506,. 
F.10600,.34274,.8499,. 
F.10800,.34097,.8494,. 
F.11000,.33920,.8491,. 
F.11200,.33744,.8492,. 
F.11400,.33567,.8496,. 
F.11600,.33390,.8505,. 
F.11800,.33218,.8521,. 
F.12000,.33042,.8538,. 
F.12200,.32860,.8549,. 
F.12264,.32803,.8552,. 

Real Gas 
Three- Dimensional 

P P 

32142E-6,7.483,$ 
31180E-6,7.390,$ 
28900E-6,7.175, $ 
27000 E-6,6.980,$ 
25480E-6,6.816, $ 
24310 E-6,6.670, $ 
23350 E-6,6.542,$ 
22550E-6,6.430,$ 
21870E-6, 6.338,$ 
21300E-6, 6.255, $ 
20850E-6, 6.179, $ 
20450 E-6,6.110, $ 
20100E-6,6.050, $ 
19770E-6, 5.998, $ 
19680 E-6,5.982,$ 

Shock Equation 

A(l) - -.020016780 
A (3) = .83564530 
A (5) = . 63854486 
A (7) = 4.6822268 
A (9) = -20.755696 
A(ll) = 18.940326 

Input 

Pœ = 9.771E-3 
Pœ = 1.909E-8 
Vœ = 25,395 

CO ' 

X p 

.002739 11.660 

.009186 11.276 
,019369 10.784 
,033210 10.096 
050603 9.2394 
071416 8.2654 
095492 7.1268 
122645 5.9819 
152671 4.9975 
185340 4.1300 
220405 3.2500 
257595 2.4600 

All Other Coefficients = 0 
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Mob ~ 35.885 

Shock Angle = . 92413 
Altitude = 100,000 Feet 

X r fl 

F.09270,.35474,.8348, 
F.09340,.35415,.8350, 
F.09400,.35350,. 8351, 
F.09600,.35174,.8357, 
F.09800,.34995,.8363,, 

F.10000,.34815,.8369,, 
F.10200,.34635,.8375,, 
F.10400,.34455,.8382,, 
F.10600,.34280,.0389,, 
F.10800,.34095,.8398,, 
F.11000,.33920,.8410,, 
F.11200,.33735,.8425,. 
F.11400,.33560,.8444,. 
F.11600,.33380,.8469,. 
F.11800,.33200,.8499,. 
F.12000,.33025,.8532,. 
F.12200,.32850,.8548,. 
F.12265,.32803,.8552,. 

Real Gas 

Three-Dimensional 

o P 

.47485E-3,24732.7,$ 

.46520E-3,24560.0,$ 

. 45350 E-3,24345.0,$ 

.42015E-3,23752,0,$ 

.39200E-3,23215.0,$ 

.36750E-3,22740.0,$ 

.34650E-3,22325.0,$ 
,33050E-3,21960.0,$ 
.31600E-3,21635.0,$ 
,30450E-3,21335.0,$ 
29450E-3,21075.0,$ 
28600E-3,20825.0,$ 
27850E-3,20605.0,$ 
27200E-3,20400.0,$ 
26600E-3,20210.0,$ 
26050E-3,20035.0,$ 
25575E-3,19860.0,$ 
25423E-3,19819.0,$ 

Shock Equation 

A(l) = -.02800 
A (3) = .835645 
A (5) = .638545 
A (7) = .468223 
A(9) = -20.7557 
A(ll) = 18.9403 

All Other Coefficients = 0 

Input X 

P® = 23.085 .002739 
D® = 3.2114E-5 .009187 
V® = 36,000 .019369 

.033210 

.050603 

.071416 

.095492 

.122646 

.152671 

.185340 

.220405 

.257595 

P 

39326 
37916 
36222 
33934 
31027 
27480 
23677 
19819 
16344 
13150 
10260 
7900 
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APPENDIX VI 

DERIVATION OF THE GOVERNING EQUATIONS FOR 
THE FLOW FIELD PERTURBATIONS 

The governing equations for the perturbations in the supersonic region of the 

flow field are given in Section 4.4.2. These equations are derived from Equations 

(4. 6) through (4.9) by specializing to thej, n,5, coordinate system of Section 

4. 4. 2 and making use of the perturbation forms (e. g. , Equation (5.1). The de¬ 

tails of the derivation of Equation (4. 63) will be given in this appendix. The 

remaining equations of Section 4. 4. 2 can be obtained through a similar process. 

The continuity equation 

òp 
St 

+ v (4. 6) 

can be specialized to the n, <p coordinate system of Section 4.4. 2 by using 

Equation (4. 6. 2) to conclude that: 

7 • pV = 7 • (fivj + ôpwp) 

-k a ^ 

= PV 7- yv * V(PV) + õpw 7 • p + ôp • T7(pw). 

-X 

The vectors,/ and n have been defined as 

J = X cos 0 + r sin 0 

(A. 1) 

(A. 1) 

n = - X sin 0 + r cos 0 
(4. 60) 



so that 

7 • T = -(008 d) + 0 0 [(r)6 sio 81 
^ öx \r/ TF 

- sin 0 + cos 0 |i - i-îiîi 
ox or r 

0 0 , Ô sin 6 
ân r 

and 

J- 7 m = cos e + sin 0 - ^ 
ox ar 

ö(PV) 
■ôT“ 

\ 

\ 

/ 

/ 

(A-2) 

ò a 
whore ^ and — represent derivatives in the J and n directions. 

Similarly 

õpw V • = o 

\ 

and 

ôp • V(Pw) = 6 (t)^) 
/ 

Equations (A-2) and (A-3) substituted in Equaüou (A-l) result in: 

(A-3) 

7 • pV = PV ~ + 6pV 8ln 6 + ^ A à (Pw) 
r 17 r 1£- (A-4) 
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and Equation (4.6) becomes: 

MPV) , rv öS 6 ò(Pw) 6pv sin 0 _ A (A-5) 
òt + pv ân r +-r- " 0 

The perturbation forms (e. g. Equation (5.1)) can now be substituted in Equation (A-5). 

The perturbation forms will be written in the following notation: 

2 00 / L\m 

-0+ E E ^.n “),» (A-6> 
j=l n=o 

where 

m = n 

= n+ 1 

dn a j 

aj»n= dtn 

and 

PJ.n=5J,n 008 W«). 

When Equation (A-6) and similar expressions* for V, 0 and w are substituted in Equa¬ 

tion (A-5), the following equation results (neglecting higher order terms in the per¬ 

turbations a, J: J.n' 

when j = 1 

when j = 2, 

*It should be noted that w0 = 0, and that sin (¢6) appears in the expression for Wj 

in place of cos (0Ô). 
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Pj.n 

m 
â -° Vq) Vo> /t \m 

2 00 

E E 
j=l n=o 

+V V* a(PoVi.»tV°pi-")n-i 
hJo ' ' aj,n+ Po V0 

j=l n=o 

m 

j=l n=o 

Ô0O 
ÒMo 

+ îï° 
j=l n=o 

^0^,0+voPj,n)f^) aj,n 

2 ® 

- Po V0 
Ò6, , m 

j=l n=o 
9i.->(v^j “¡•"+p°VoEE 

j=l n=o 

00 J.n, 
òn0 \V®/ aj*n 

2 

+f E E 
j=l n=o 

S (Po wj.n) / L\m 6 p0 V0 sin 0O 
dp IV®/ aj»n + 

0 Po V0 cos 0O 2 

£ 2 '...(4" 
j=l n=o 

Ô sin 0, 2 

r £ 2 <PoVj,n+V0pJn, 
j=l n=o 

m 

“j.n'0 (A-7)* 

* An explanation ol the difference between d/^ and d/d/, la gtven at the end of 

this appendix. 
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However, we note that Equation (3.1) implies that the zero yaw terms in Equation (A-7) 

add up to zero, i.e. that: 

Ò (Po V0) Ò0O 6 P0 V0 sin 0O 

+ PoV' ^ + 
(A-8) 

We also rote that the various perturbation motions otj f n are independent of each other 

at any instant, so that Equation (A-7) implies an infinite number of equations, each con¬ 

taining, only one of the motions n. These facts permit us to drop the summation nota¬ 

tion, and to divide each term in the equation by the quantity: 

ÖÖ0 ôflb 
+ (A> vj,n + vo Pj.n ^ - Po vo 0j,n_5^ + ^o vo 

6 0<Powj,n) 6 Po vo(cos ^) 0j>n 
+ - --- + - 

r r 

ô (sin 0o) 

+ r i^v),n+voPj,n) = » 

The above equation is seen to be Equation (4.64). 
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In obtaining the first term of Equation (4.64) from the first term of Equation (A-7), use 

was made of the following identity: 

DERIVATIVES WITH RESPECT TO i AND n 

When taking derivatives with respect to distance along the streamlines or the lines 

normal to them, care must be taken to differentiate between the streamlines and nor¬ 

mals of the perturbed field, and those of the zero yaw steady state field. In Equations 

(A-l) through (A-5) the derivatives were taken in the perturbed field. In carrying out 

the solution, however, it is more convenient to deal with a grid consisting of the zero 

yaw streamlines and normals. It is therefore necessary to express the derivatives 

òF/^J and ôF/ài (where F can represent any variable, e.g. p as given in Equation 

(A-6)) in terms of òF/òJ0 and dF/àn«,, where the subscript zero signifies derivatives 

along the zero yaw grid. 

In obtaining the desired expressions, it is convenient to make use of the x r 

coordinate system by noting that the differential distances in the J and n directions 

are given by: 

di == (cos 0) dx + (sin 6) dr 

dn = -(sin 0) dx + (cos 0 ) dr 
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MiMMW 

f 1 

so that 

ò F , Ä ö F â F 
^ = (cose) (sine) Il 

and 

ã F 
ò n -(sin 8) |^ + (cos 0 ) ~ 

o X ò r 

The variable 0 can be expanded in the perturbation form given by Equation (A-6), so 

that 

ÒF 
òJ f>¿¿ 

\ 1=1 n=0 / 

COE 

j=l n=0 

l¥_ 
â X 

v) 
\ J=1 n=o / 

sin á F 
ò r 

and 

il 
ò n sin f*¿ ¿ 

x j=l n=w / 

O 00 

eos 

ÔF 
Sx 

(vtr VÊ)' 
\ j=l n=o / 

ÒF 
ô r 
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Applications of the «1. known trigonometric identities for the sine and cosine the 

sum of two angles yields*; 

bF = «o ?f E ¿ <„ (~y.,.. 
j=l n=o 

ô F 
2 ® 

+ (8ln 9o> Î7 + (008 9o) II ò r °' òr 
j=l n=o 

9J.n lib 
, m 

a 
J.n 

and 

H = -<•<” «o* If 
m 

-- ^ ft E £ .,. 
j=l n=o 

ô F ÒF 
+ (°°8 *o) 57 - (Sin eo) ,r 

m 

^J*n \V®/ ^j.n 
j=l n=o 

m 

sin I 

t j=l n=o 

also been used. 

®j,n \v®i 

J.n = 1.0 and 

e, 
m 

^1, n have 
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The differential lengths diand dn (when used without subscripts) signify distance 

along streamlines and normals in the perturbed flow. If we use the subscript zero to 

signify the zero yaw steady state field, we note that 

0F , a ÔF ftp 
530 = (C0B eo> 51 + <sta ®o) fT 

OF ftp 

H = "(sin ^ ôT + (cos Q 

Using the expressions for òF/^i0 and 

âF/âi and òF/ân yields: 

o) 
ÔF 
òr 

9 F/dn¿ in the preceding egressions for 

These expressions have been used in Equation (A-7). 
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