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ABSTRACT

T:us is the second report of an investigaticn to determine how 1mplicit parallelism
in programs written in compiler languages can be recognized and exploited by
machines with highly parallel organizations. An algorithm is described which
identifies tre complete serial ordering among parts of a program based on the
input-outpi.t s2ts of these parts, the ordering given by the programmer. and any
known essential order among the program parts. The algorithm is proved and a
demonstration given that a minimum number of comparisons of input-output sets
are made. Application o1 the parallel recognition procedure {c¢ subroutines, loops,
conditionals, recursive subroutines, and serial input-ocutput device calls is ex-
plained. The eftect of particular .z2atures of several compiler languages on paral-
lelism are discussed, These features include loops, transfers of control, con-
ditionals, and conditional sequences. Requirements for replacing iterative loop
control by parallel paths of control are given. Alternative algorithms for
recognizing essential ordering are suggested which can be executed more effec-
tively on a highly parallel machine, Application of the given algorithm to the
syntactic definition of a context.free language is also considered.
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INTROGDUCTION

The objcct of this study is to deiect instances of para’lelism implicit in programs
written in compiler programming languages, The m: hod chosen is to recognize
the essential partial ordering between program parte since only parts which are
not essentially ordered can be execuied concurrently

In this report an algorithm for formel] analysis of pr¢ rams is presented and
proved which yields all instances of implicit parallel. sm between program parts
based on input-output set intersections. Any initiall: <nown essential ordering
18 used, The number of input output set comparisons is minimal, At most, two
consgecutive iterations of a loop are necessary to determine the essential order
for all iterations of the loop. ©(mnly one iteration need be analyzed for intra-loop
essential order, The inter-loop essential order is determined by using both
iterations. Sufficiency of this analysis is shown through application to language
independent formal translator structv:-es, including subrouiines, loops,
conditionals, recursive subroutines, and serial input or output calls,

Special features of particular programming languages sffecting implicit
r>cognition of essential ordering include loops, unconditional tranafers, con-
ditional statements, and parallel evaluation of a sequence of conditionals. The
loop statements yield potentially the greatest opportunity for parallelism. Con-
ditions for replacing iterative control by a number of parallel paths of control
are given. Unconditional transfers may create loops or cross boundaries of
scopes of variables, Data d.pendent conditions are a principal cause of essen-
tial ordering. The duration of definition of an instance of a variable provides
essential information for efficient memory allocation.

Alternative algorithms which can be executed in parallel to achieve results
comparable to the main algorithm are suggested. A method ie indicated for
reducing the complexity of syntactic definition in context-free languages by
establishing classes of productions which can be recognized in parallel,

Most present programming languages presume that programs are to be written
as a sequence of instructions. This permissible sequence, while it contains the
essential ordering {i. e., it computes each value before that value is used), also
contains much extraneous order (i. ¢ , it orders computations for which the
order is completely immaterial). In the previous report! we gave an algorithm
which detects the essential ordering given a permissible ordering. In this
report we extend the algorithm to permit detection of essential ordering given

a consistent combination of essential and permissible ordering,

e —
Superacript numbers refer to references in the Bibhliography.
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In order to describe the algorithm, the meaning of some ierms shouid be given:
) A process is a transformation which generates a fir.te set of outputs
from a finite set of inputs.
An output is the information possibly written into a register dvring
a process.
An input ig the information contained in a regist r ai time of access by
a process.
A program is a finite set of processes which can be partially ordered
by their input-output set intersections,
A process executicn is the application of the process transformation
to its input set to produce its output set,
An ordered pair of inputs and outputs will be ideatified with each process, For
process Pi' this pair will be represented as (I,, O.), It will be assumed that all
outputg are unique, that is, every time a regiscer is written in.o, a new name is
1 created. This is done to keep separate the recogrition of implicit parallelism in
names from the potentially many-to-one mapping of names into registers,

The tollowing relations between process pairs are used in this report:

; o‘l"i Py must precede P, is given,

g os: Pi may precede P, is given.

;i Tl: P; must precede Pk.

! S’: Pi 1nust directly precede Pk'

If neither 'r: aor T?, then processes P1 and Pk can be executed in either ?rderior
g; co‘ncurren:l.y. oTs oS T, and S are, respectively, the sets of all true o Tk osk'
L

Ty and Sk The algorithm uses the given T and oS to produce T and S,

5 A graphical representation of the effect of applying the algorithm was presented in
H the first report,! This representation is still appropriate for the revised algorithm
4 with the following substitution. Each relation P; R P, was labeled as a directed

" R-arc from process i to process k. Replace each R gy 8. To distinguish between

: these S arcs and the S arcs used in the graphical illustrations in the first report,

% note that the reference process pair being analyzed partitions S into three disjoint

% sets: process pairs already analyzed, the reference process pair, and process

¢ paire to be analyzed, Consequently, there is no need for separate symbolg, The

graphs used as illustrations in this report consider only OS and oT.
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ALGORITHM FOR DETECTING ESSENTIAL
SERIAL ORDER

This section descuibes the algorithm (Figures la and 1b) for detection of
essential serial ordering of processes from their input and output sets,

From previous partial analysis or explicit indicators, essential order 1s
sometimes known to exist between prccesses of a program. Consequently, the
algorithm of the previous report! has been exiended to include any innially known
essential order among processes as parameters to the algorithm. Therefore,
the corresponding 1nput-output set comparisons are avolded daring the algorithm,
Whea no essential serial ocder .s known initially, the algorithm is equivalent to
the previous one * The extended algorithm together with formal definitions of
1ts pacarmnete~s and the relations among them are now given, A proof of the
algoritam 1s also provided. The number of input-output set comparisons made
by the algc 1thm is snown to be mini.nal. The reader who does not wish to
engage 1n the detalis of the proof can obtain the essar.ce of the algorithi» and
minimal comparison argument from the defimtions and subsection introductions.

*When oT i8 empty, then any T arc identified in step 3, Figure la, will not be

in S, This will be explained later.
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Civen: oS, oT, N. Ij (1<jsN), OJ. (1<3< N) and oSk implies i<k
Find: MS' MT
Method:
Step 1, fork=2,3,..., Ndo
Step 2. fori =k-1, k-2,..., 1ldo
r- 1
Step 3. if Tk = falge then
Step 4. if s}: = true then
Step 5. if o n I # ¢ then
Step 6. Ti ~ true
Step 7. go to step 15
Step 8. otherwise \'()i n Lo
Step 9 Sl: ~ false
Step 10. for)=1, 2,...,1i-1do
o glygiaTd
Step 11. [Sk Sk Si 'I‘k
Step 12. for ) = k+1, k+2,...,Ndo
Step 15. s'-stvsk
& L_ L ] i J
i
Step 14. ! :t-nerwlu ('rk = true)
Step 15, forj =1, 2,..., i-1dc
S P Y
Step 16. Sy sx”‘I
) |
Step 17. T~ TV ri
=
Figure la. Algorithm for Essential Order Detection
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PARAME .
OS : initially given permissible ordering relation
T : initially known essential ordering relation
N : number of processes in program
I : input set for process )
O : output set for process )
S: coverl .g relation for the complete essential ordering

T: the complete essential ordering relation

SYMBOLS
¢ : the empty set
N : set intersection

~, V, A, T are respectively the binary operators ''replaced by",
"logical inclusive or', '"logical and', and "logical complement',
given in in:reasing binding order

SUBSCRIPTS AND SUPERSCRIPTS
indicates transitive closure of mR

t_ i +-———= indexes the predecessor process
For any relation ———&

K = indexes the successor process

\——> indicates the iteration of the algorithm

which produces R; m does not appear

in the algorithm description
i

i
Rl: = true if and only if oRk and no assignment has been made into Rk‘

or the last assignment into R, was true

k

Figure 1lb, Syrabology for Algorithmn
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DEFINITIONS
Definition 1, Process, Pj'

A process Pj is an ordered pair of sets (I;, Oj). IJ is called the input set for

PJ. OJ is called the output set for P;

5+
Definition 2. Program, P,

By a program P is meant a finite set of processes {P]1 (j=1,2, ..., N), for
which the intersection of the input and output sets can be used to define a st* ongly
anti-symmetric relation, That is, P can be ordered so that for any

€ n i i <
P, P €P O NI # ¢ implies1 < k,

Definition 3. R;, the arc from Pi to P..

For any relation R € (PX P} we will write Rl: if and only if Pi, P, €Pand R

K
reiates Pi to Pk in that order,

Definition 4. tR the transitive closure of R,

For any relation R C (PX P) we will write R to mean that relation suckh that
tF{k if and only if there is a sequence of R arcs: R RJ' . RI=-! , RJ,‘.

Jl J' e Ja
Note that R is always transitive.

Definition 5, T, the cssential serial ordering,

The relation T c (PX P) is the essential serial ordering among the processes
of P, This order is imposed by the input-output set relation, That is, ‘or any
P € P, 'I'k if and only if there is a sequence 0 N IJ £e, O iy n Ij £,
Oj n L # ¢. Thus T is the transitive closure of the input- output set
relation. Then T is transitive and since the input-output sat relation is strongi,

anti-symmetric, so is T,

Definition 6, S, the cover for the essential serial order.

K} is the covering relation for T. llatis, for any P;, Py € P, S1 if and only if
k

T, and there is no P, € P guch that both TJ and Tj. Note that ts =T,

AL
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Definition 7. c)T, the known essential serial order,

The relation T is any subset of the relation T.

Definition 8, 0S, the given permissible order,

The relation S is the given ordering of the processes in P supplied by the
programmer, S is any stronglv anti-symmetric relation S(PX P) such that

t
Tg S and T < ( TN S) Note that T satisfies the requirements for oS.

Definition 9, mR' the relation R after m iterations,

For any relation R, we will write mR to meaun the value of that relation after

th
the m  iteration of the "for i'' loop (steps 3 to 17) in the algorithm,

Convention 1. N, k, 1, and M,

Hereaftcr we will write N to mean the nv ber of processes in P; k and i will
mear respectively the values of k and i during the (m + 1)""t iteration of the

"for : ' loop; because N is finite (Definition 2) and the only loopg in the algorithin
arz at steps 1 and 2, the algorithm terminates in a finite number of steps and

we will write M to mean the total nunmber of iterations of the "'for i'' loop,

Definition 10, mC, the compared process pair relation,

We will write mC {1 £ m £ M) to mean that relation such that mcg if and only if

Pg' Ph €Pandi =g and k = h for some iteration j (1 s j £ m) of the "for i" loop,
g <

Note that MCh if and only if Pg' Ph €Pand g <h,

For any program P and any relations Q, Rz(PXP), Q< R if and only if
for all P P €P, Q implies Rk

e

. P S . P .
U U o . . = S S ’ o
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PROOF OF ALGORITHM

The algorithm (Figures la and lb) generates the relations MS and MT given the

relations c,S and oT‘ the input sets Ii (1 <: ¢ N), and the output sets 01, (1<i<N).

It will be shown that MS =S and MT = T. The algorithm functions as foilows.

The body of the ''for i'' loop (steps 3 to 17) 18 executed once fo: each arc from
Pi to Pk such that Pi‘ Pk€ P and i < k. These arcs are sufficient because

OS, OT, S, and T are strongly anti-symineiric. The order of the arcs (steps 1
and 2) guarantees that all sequences of arcs connecting two processes will be
determined before the single arc connecting the processes 18 considered,
Therefore, all indirect T paths can be determined without comparing the input-
output sets of the end processes, For each iteration of the ''fo1 3' loop, 1if the
arc from Pi to Pk is not already in m'r (step 3), then it must either be 1n S, or

Pi and Pk can be executed concurrently. Therefore, if the arc i8 not in :ns

(step 4), then l"1 and Pk can be executed concurrently, If the arc is in ntxs (step 4),
then the input -output comparision must be made (step 5). If the intersection 18
non-empty, then the arc is in S and T, and is added to me+ 1'1" (step 6), 1f the
intersection is empty, then Pl and Pk can be executed concurrently and the arc
will be deleted from ms (step 8). To ensure that the arc from P1 to Pk is the
only arc deleted from n:s, arcs are added to m :s (steps 10 through 13). Steps

10 and 11 guarantee that there is a sequence of m“S arcs connecting to Pk from
all PJ where mS‘I, while steps 12 and 13 guarantee that there are m+lS orcs

connecting Pi to all PJ where ms';. Whenever there is an T arc from Pi

m+l

to Pk (step 14 or step 6), then steps 15 through 17 are performed, Since S is a

cover, step 16 is included to ensure that no sequence of m+.T arcs ending in
Y

-
— R v VST v
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an arc from P1 to Pk is an arc in m+ls. Similarly, since T is transitive, step

17 includes all sequences of m+‘T arcs ending in an arc trom Pi to Pk as arcs
+

n .
! m+1T

Lemma 1. For all m{(0 <m s M), mTE T.

Proof, O'I‘ < T by Definition 7. Assume for any m(0 £ m < M) that mT:i T,

During the (m + I)St iteration of the "for 1" loop (steps 3 to 17), arcs are added

i,
to m+1T only at steps 6 and 17, If m+1Tk is added at step 6, then Oi nlk #¢
o i - j .
(step 5) and by Definition 5, Tk' If the arc m+1Tk is added at step 17, then

i
k
(step 5) or mTl: (step 14). But Ti and T; imply Ti, gince T is transitive

ng {step 17). By hypothesis m’l‘; '‘mplies I’: T, since either 0i n Ik #0

(Definition 5)., Therefore, all me 1T arcs added during the (m + 1)St iteration
are in T. Since by hypothesis, all other m+lT arcs are in T it follows that

- C < <
m+1T = T. By induction on m, mT S Tforallm{0 sm = M).

Lemma 2, For all m (0 m <M), mTC_ t(mT ﬂmS),

Proof. Tg ‘(OT N_S) by Definition 8. Assume for any m(0 < m < M) that

- b t
T2 (T N_S). If not Tc (

m+1T S T

TN m_“S), then either some

m ratl m+l

arc was added or some I_S arc was deleted during the (m + 1)'t iteration of the

" 11 l i
for ' loop., If m +1Tk was ¢ ‘ded at step 6, then et lsk (step 4) and thus
t i i -1
(mHT n it xS)k. bid mSk is deleted at step 8, then mTk (step 3), aad since no

- gt c t
m+1T arcs are added during the (m+1)™ {teration, mT < (mT n mS) implies

t i J
m+lT < (m+1T n mHS). It ms,‘ is deleted at step 16 or m+lTk is added

i i
m+lsk (step 4) or mTk (step 14),

But if S'i was deleted or
mk

. i
at step 17, then either m+1Tk {step 6) and

i J
K T, added

S) m+17k

, t
In either case (m_”T n m+1

7
b
8
)>

1
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1
|
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Lemma 3. Forall m(0sm<sM), TC mS.
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(steps 16 and 17), then m'xd and thus by hypotheais ‘(mT n mS)i. But j < i< k and

1‘
all mS arcs deleted during the (m + l)st iteration are of the form ms: where

h = k (step 16), and no T arcs are deleted. Therefore, t( TN S)‘:. Then

m+i m+1l
t J ] i
(m+lT n m+ls)k' since both ( T n +ls)i and ( T n m+ls)k’ In all
t ) . -t
cases then, m+1T = (m+1Tﬂ m‘“S). By induction on m, mI‘ c (mT n mS)

for all m(0 s m < M),

t

Proof, Ifm =0, then by Definition 8, T c ;S. The only mS arcs which are deleted

during the (m + 1)st iteration of the ''for {'' loop are at steps 9 and 16, If mS; is

deleted at step 9, then with the exception of ms; itself all sequences of mS arcs
. i .
beginning with msk are retained in m+ls (steps 12 and 13). All sequences of mS

arcs ending with msli are retained in m+ 1S (steps 10 and 11), with the exception

of mS: and mSi (step 11) where 1 s j < i (step 10) and TJ (step 11). The arc

ms: need not be retained since 0i n lk = ¢ (stcp 8). That is, Tk' By Lemma 2,

3 t 3 L1
mTk (step 11) implies (mT n mS) . But mTk (sicp 3) so that the sequence of

(mT n m8) arcs from Pj to Pk cannot contain an arc from P1 to Pk' Thus the arc

ted , i i
msk is retained whea msk (step 8) is deleted. 1If msk (1 j < i) is deleted at

i t i
step 16, then mTk (step 3) and mT} (step 18), By Lemma 2, (mT n mS)k
and t( TN S)j, which implies there is a sequence of _ S arcs from P, to P

m m m b k
other than the single arc msﬁ. Therefore, deleting the arc msli does not delete
s ted t t
the arc msk‘ Then in all cases T C ms implies T C m+ls' By induction on m,

T_C_-“tsmranm(OsmsM).

10
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lemma4., Forallm(0sms<M), SN Cc TN C.
— m m - m m

Proof. Ifm =0, then oC = ¢ and we are finished, Assume for any m(0 < m < M)

that SN _Cc TN _ C, Leti,k be respectively the values of i and k during ihe
m m - m m
(m+ 1)st iteration of the 'for i" loop, Then consider any Pg‘ Ph € P such that

c8 and s€ ct (Definition 1¢) implies that eitherng, org =iand h =k,

m+l1-h m+l1°h" m+l1 h

m_“S arcs are added only at steps 11 and 13, and during the (m+ 1)St iteraticn none

. o g 4
of the m+ 1S arcs added are in m+1c (ateps 10 and 12), 1f mch’ then m+ lsh

msh m h’

implies

g and by hypothesis Tg but no T arcs are deleted, so 'I‘8 Otherwise,
) m m+l"h

g =1 and h = k, and by the above argument s’ implies Sl. Then if mTlt

m+l K m K

i

—_ . i i .
(step 14), m+1Tk‘ If mTk (step 3;, then msk (step 4) and m+ 1Sk (step 9) require
that step 6 and not step 9 be executed. But by step 6, m+1Tli’ Then in any case,

any arc in both . 1S and m+lc is also in T. By induction on m,

m+1
SN Cc TN Ctforallm (0 smsg<M).
m m_ = m m

g )
Lemma §. For all m(0 £ m < M) and for any Pj' P‘. Ph EP. it mch' ng
J sJ
and m'r:. then both | T) and _§J,
Proof, Ifm =0, then oC = ¢ and we are finished.
Assurne Lemma 5 to be true for any m(0 <« m < M), Then consider any P

m+lh mel g m+l1 h’

since T is strongly anti-symmetric (Definition 3), g <h, Similarly, m+1’

implies j < g. If mC:, then ij since j<g <h, Then Tj and _ T8, since none

g mg m h'

of the T arcs added during the (m+1)® iteration (step 6 and 17) are € .C- By

g 4 i g
hypothesis mCh, m'lg' and mTﬁ imply mTh and mSh. But no m’r arcs are deleted,
i ] r3 J .
so . lTh' 1If m+ioh then since msh' mﬂsh must have been added during the
11

r

P

'
€ P such that C‘ Tj, and 1‘“ Ky Lemma ], m”'r: implies T:, and

J
¢

lph

ar
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st
(m+1)"" iteration (step 11 or stcp 13). But it could not have been added at step 11,

since then m?g (step 11). Neither could +IS)'1 have been added at step 13, since then

. 4 . g e .
h > k (steps 13 and 14), lut by mCh' h < k, Otherwise, m+ 1Ch and mCh, that is,
g=iand h =k, Then mTli (step 14) or +1Tk was added (ctep 6), In either case

. J - ) J
for any j < i (step 15), ng (that is T., implies +lsk (step 16) and +1Tk

. g ) : ) s!
(step 17). Then in all cases +lch' m+1Tg and m+1T: imply m+1Th 304 o lsh'

. . g 1
By induction on m, for all m(0 < m < M) and any Pj' Pg' Ph €P, mch’ ng and

Tg {mply T and sJ

Leinma 6. MS [ MC.

Proof. From the algorithm we see that all S arcs added during the execution of

the algorithin are of the form Msli (steps 10 and 11), where 1 <sj<i < k <N, or of

the form MSJi. (steps 12 and 13), where 1 i <k < j s N, Then since (,SE MC
(Definition 8), all arcs of MS must be in __C,

g M

«x Theorem 1 T=T

L Teorem L M T

. Proof, By Lemma 4, MS n MC < MT‘ but since MS c MC (Lemma 6), then

v t t t . t

5 MS [=4 MT. Therefore, Ms_c_ mT and since T c MmS (Lemma 3), we have T ¢ mT
" c c

K MTE T(Lemma 1) and TS MC {Definition 5), so MmT S MC: Therefore, MY 8

5 = ¥ if
transitive since mT n Mc is transitive (Lemma 5) and MT n MC M’l, But if MT
¥ t t - et
;; is transitive, then MT = MT, and since we already have T ¢ MT, TC MT‘ Finally,
b by Lemma 1,  TC T, 80, T=T.

- Theorem 2, MS =8,

: Proof, MS c T since MS n MC S mT (Lemma 4) and MS c MC (Lemma 6), But
: MS [ MT implies S c T and since MT = T (Theorem 1), h:ls < t~'I‘. Then since
’ 12
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T is transitive (Definition 5), T = T, and therefore 'S= T. But Tc 'S (Lemma 3) |

t . g b} i
S T. By Lemma 5, for any PJ,Pg, Ph €P, if Mch' MTg' and MT:’ then

S 1 But . T = T (Theorem 1) and T¢ MC (Definition 5), so for any Pj' Pg‘ P

Mnh M
: J £ ) t
G 2 S = =
P, if Tg and Th' then MK We already have MS T. Therefore MS S by

h

Definition 6,

PROOF OF MINIMAL COMPARISONS .

It will now be shown that no algortihm can produce S and T from c‘S and oT with
fewer comparisons between input and output sets, This will be done by first
showing that one comparison must be made for each arc that i8 in S and not in 0'1,
and that one comparison must be made for each :,S arc which is not in T, It will
then be shown that each input-output set comparison in the algor:*hm identifies a
unique arc which is either in S and not in oT' cr is in :)S and is not in T, and that

no comparison is made more than once,

Lemma 7. For allm(0 £ m < M), mSSOS :
Proof, Sc :;S, by the definition of transitive closure, Assume for any
m(0 <m < M) that _SC 's. During the (m+1)" iteration of the "for 1" loop, arcs

are added to m+ 1S only at steps 11 and 13, It “82 is added at step 11, then

) (step 11) and 8! (stop 4). Therefore, by hypothests tsj and ‘sl. Then by
the definition of transitive closure, osé. Similarly, if mt lsj is added at step 13,

i k t i t k
then mSk {step 4) and Sj (step 13), so that by hypothesis 08k and osj, and

i
therefore ;Sj. Then m+ 3< S since au S arcs added during the (m+ 1)‘t

iteration are in ;S and by hypothesis all mS arcs are in ;S. By induction on m,

mSS;Sforallm(OsmsM). !

13
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Theorem 3. The number of input-output set comparisons is minimal.
Proof. Llet P, P, € P suchthet 'S.
i' "k ok
{ .

not Sk, it must be at least able to determine whether T;, since S& T. Unless
it is given that Tl: (that is, unless oTl:)' it must be shown that either Oi n lk # 0

For an algorithm to establish whetker or

or that there 18 a P, € P such that both T; and Ti (Definition 5), If 51:' then
there is no P, €P such that both 'r; and T, (Definition 6). Thus, the comparison

=i

oi n Ik must be made, If Tk’ then since T is transitive there can be no PJ €P such
that both 'I‘Ji. and Tl‘:. Thus, the comparison Oi n Ik must be made, That is, one

input-output set comparison must be made for each arc that ig in S and not in oT,

and one comparison mugf: be made for each ;S arc which is not in T,

If during the (m+ 1)"t iteration of the '"for i'" loop (1 < m < M), the comparison Oi n Ik
i t i t

is made (step 5), then mSk(ltep 4). But then osk' since mS [ oS (Lemma 7). Also,

'f: {step 3), and therefore o-'fi, since the algorithm does not delete any arcs from

T. I it happens that 0i n xk # ¢, then the arc ms: is not deleted during the (m+ 1)at

iteration, But S: (steps 9 and 168) can not be deleted during any subsequent

m+1l

iteration of the ''for i'' loop. That is, S‘ and therefore S;, since . 3 sS(Theo-

MK M
rem 2). fO NI =9, thenmfr':(mp 3) and step 6 is not executed during the (m+1)"

iteration, so T i

i ,
m+1Tk But Mrk (steps 6 and 17) can not be added during any sub-

sequent iteration of the ''for {'' loop, Thus, M?I:‘ and therefore 71";, since MT-T
{(Theorem 1). That is, each input-output comparison O1 n I.k in the algorithm

identifies a unique arc (from P1 to Pk) which is either in S and not in oT, or is in

:)S and is not in T. Finally, none of these comparisons is made more than once

14
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since only the sets O, and Ik are compared during the (m+ l)Bt iteration
(step 5), and no two iterations of the "fur i'" loop have tae same value for the

pair i, k (steps 1 and 2).

Therefore, every input-output comparison made by the algorithm is necessary.
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ANALYSIS OF FORMAL PROGRAM STRUCTURES

The ability to apply the algorithm for detection of essential serial order with a
nonempty oT aillows move freedom in the use of the analysis, This fac:lity is
investigated relative to certain formal program structures and the advantages
which are relevant to subroutines, conditionals and serial input-output calls are
explained. With he explicit exclusion of arrays, 1t is shown that loops and re-
cursive subroutines can be completely analyzed with only two instances of each
process, Arrays will be considered in the next repor..

SUBROUTINES

The advantages of the non-empty o’I‘ arise in the analysis of program structures
such as subroutines, A subroutine (whether open or closcu) need not be znalyzed
for each call, but may be analyzed only once and the results of that analysis used
at each call on the subroutine. This is accomplished by first analyzing the sub-
routine and then using the resulting S and T relating the intra-subroutine pro-
cesses as oS 1nd ,T, respectively, for each program call on the subroutine. The
program analysis will then identify all instances of parallelism without duplicating
any comparison of the intra-subroutine input-output sets at the various

subroutine calls.

An alternative method for handling subroutines reduces the number of processes
used in the analysi1s and, therefore, the size of S and T. In this scheme, the
subroutine is analyzed or.ce separately from the program. Then rather than
inserting the subroutine analysis results into the program at each call, the pro-
gram is analyzed with each subroutine call serving as a single process. In this
scheme, parallelism will not be found between processes where one of the pro-
cesses is external to the subroutine but cannot be executed in parallel witl. the
entire subroutine, and where the other process is interior to the subroutine,
The above methods are not applicable - ~ recursive subroutines, since the
subatitution process is nonterminating

LOOPS

The algorithm as described can be used to analyze a lo - by stretching it out into
a sequence of iterations, This analysis, however, cannot be performed until

run time if the number of iterations is data dependent, Even if the number of
iterations can be determined at compile time, the number of processes produced
by flattening out the loop may exceed the nandling capabilities.

A method for loop handling which takes advantage of the similarities between
successive iterations of a loop and still recognizes those instances of parallel-
1sm determined by input-output set relations is now developed. Init.ally we will
assume that the programs under consideration either do not contain arrays or
that each array is treated as a single variable, This restriction guarantees that

16
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1input-output sets are not a function of the iteraticn, That is, for any iteration of
a loop, if an instance of a variable appears in the input (or output) set for some
process, then for any other iteration ot \*e Loop, another instance of tha:
variable will appear in the input {or output) set of the corresponding process.

ince each iteration of a loop has the same processes in the same given order
and with the same input-output names, analysis of any iteration of a loop will
1dentify the intra-iteration parallelism for all iterations of the loop. The array
handling technique mentioned above guarantees that analysis of any tvo coasecu-
tive iterations of a lcop will 1de~tify all inter-iteration parallelism, since direct
essential ordering of processes can exist only between processes in the same or
consecutive 1terations. Therefore, 170ps cu.n be handled 'y analyzing only two
censecutive 1terations of each loop.

CONTITIONALS

There are several run-time philosophies wnich may be used in conjunction with
conditionals. One approach permits both branches of the conditionals and the
condition 1itself to be executed concurrently. When evaluation of the condition
18 complete, one of {..e branches will then be inhibited. This method
reduces the duration of the program at the expense of performing some
computation whose outputs will not be used.

An alternative approach will, however, be taken here. The goal will be to
initiate each process as soon as possible without executing processes unneces-
sarily. This may be done by evaluating the condition before either branch of
the conditional is initiated and then executing only the single necessary branch.
This approach does not prohibit processes common to both branches of the
conditional from being execuied concurrently with the evaluation of the condition,

Conditionals can be analyzed 28 any other processes, except that the given T
will be nonempty. For example, let process P) be the condition, P5 and P3 be
local to one branch of the conditional, P, and Pg be local to the other branch of
the conditional, and Pg be common to both branches. Then o3 Will be the given
order of the processes as shown in Figure 2. T, however, will have four arcs,
one arc each to indicate the serial ordering between the condition evaluation and
the processes local tto the conditional branches. os; and osg are included to
guarantee that ,TC (SN T). *

*
The need for the requirement o'I‘ < t(OS n OT), introduced in Definition 8, is
1llustrated by this example. If 08; were not included and O2 n 13 = ¢, then

the algcrithia would not generate MS;' since OT;, and consequently

S#_ o since

=1 1
M S,. even though S3.

M
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Figure 2. Graph For Conditionals

REC(/RSIVE SUBROUTINES

The analysis of recursive subroutines may be handled similar to loops, Since each
level of call on a recursive subroutine has the same processes in the same given
order and with the same input-output names, analysig of any level of recursion will
identify the intra-level parallelism for all levels of recursion, Treating arrays as
gingle variables guarantees that analysis of any two congecutive levels of recursion
will identify all parallelisni between processes i1n the same level, hetween pro-
cesses in consecutive levels, and between processes in nonconsecutive levels where
that parallelism also exists between consecutive levels, Therefore, recursive sub-
routines can be handied by analyzing two consecutive levels of recursion in the
subroutine,

An example of 8 for a recursive subroutine is shown in Figure 3, Each level of
the given subroltine consists of a condition Py, followed by alternative processes
Py and P, and, in eitiier case, terminating with Py, The process P, 18 a recur-
sive call on the subroutine, Figure 3a shows .8 for intra-level analysis, while
Figure 3b shows _8 for inter-level analysis. The primed and nonprimed P's
represent procugn in two consecutive levels of the recursion, Note that the
proceas number for P, must be less than that of P’, while the number of Py

|

must be greater than that of P é. .
’ ’ '
Pb 1’. Pc Pd
— - —ﬂ
-l Q- \
P
P, P P, P, P A
a. Intra-level b, Inter-level

Figure 3. 08 Graph for Analysis of Recursive Subroutines
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SERIAL INPUT-OUTPUT CALLS

Many oneway input and output devices, such as card readers or line printers, are
read or written serially. To ensure that the information received from (or trans-
mitted to) these devices is interpreted (or displayed) as intended, the given

order of reference must be maintained

and T for this program will then appear as shown in Figure 4,

For example, if lines were sent to a line
printer in any order other than that given by the programmer, the intended format
would be disrupted, Thus, for each serial device a o’I‘ arc will connect those

pairs of processes which include consecutive references to that device,
P, P, P, P, P, and P_, in that order, comprise a prog.ain, and let Pz. P3
and Pj5 include reference to a particular serial input or output device,

2 3 4 5
TN
P, 3 P, Py

Figure 4, Serial Input-Output Calls
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PROGRAMMING LANGUAGE FEATURES EFFECTING
PARALLELISM

The language -independent approach to recognizing parallelism through study of
formal transiator structures permits identifying general aspects of essential
ordering without getting involved with features of particular languages.

Specific language -dependent features are also important since the intended
applications are programs written in actual languages. By considering the
specific differences in actual languages, a comparative basis can be established
for recommending that particular features be used for parallel recognition, that
features be used as essential order indications, and, indeed, that lungaages contain
particular features to aid in the recognition of parallelism,

Some specific features of languages will now be investigated, Lecap statements
yield the largest potential for parallelism, since each set of embedded locis
multiplies the number of opportunities for parallel execution., The FORTRAN DO-,
ALGOL FOR-, and COBOL PERFORM- statements are analyzed, 1'rcondi‘ional
transfers cause problems in the recognition of loops and in croseing the scope
boundary of variables, Conditionals which are data-dependent pose the principal
impediment to parallelism, Evaluating groups of conditionals in parallel, rather
than scattering them through a program, minimizes the numbe. of separately
ordered parts of a program. Duration of definition of an instuuce of a variable is
important to the mapping of instances into memory on a noninterfering basis, A
beginning on this analysis 18 reported,

LOOPS

Loops play a dominant role in programs written in preseni program:nung languages.
They permit programmers to iteratively expross repetitive p1ocesscs with economy
of program., The iterative nature of loop control is adequate {uv° sequential execu-
tion. However, ths iterative form impedes parallel setup of the control for lonp
bodies. Qosden® has concentrated on explicit loop constructs as the most promising
sourcea for parallel activity, He proposes that a large fraction of all .oops are
paralle]l, both in the control and the loop bodies, and reconmends explicitly adding
the ability to specify loops as either parallel or iterative in the programming
language.

We will now consider the contral of loops and paraliel establishment of muitiple
paths of control even when the control mechanism is iteratively expressed in the
programming langusge,

Some opportunities to establish in parallel more than one execution of a loop body
are determined by the algorithm, The algorithm requires for concurrent execution
that not only must the control variable be independent of its predecessor control
variable, but also independent of its predecessor loop body. The loop control
statements in FORTRAN, ALGOL, and COBOL will be compared to see what other
opportunities exist for establishing concurrent paths of control for loop bodies,
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At compile time, if the number of executions of a loop is recognizable as an integer,
then parallel paths may be established. If the number of executions is recognizable
at execute time upon encouniering the loop entry, then parallel path controls may

be established at that time to initiate that number of loops,

Conditional statements within a iocp body that can lead outside the loop with no
intent to return are possible in ALGOL and FORTRAN, COBOL and ALGOL have
explicit forms of loop control including condition evaluation to determine loop
completion, Evaluating such a condition generally depends on loop-created data
(otherwise an explicit form for indicating the number of iterations of the loop
wouid have been used). Consequently, there is an essential order between cycles
of the loop when a condition determines the exit. In some cases it may be possible
to reformulate the looo to separate all condition evaluations from loop body
execution,

FORTRAN and COBOL program units are characterized by static storage require-
ments determinable at compile time. ALGOL program units, on the other hand,
assume dynamic storage requirements. The effect of this difference on loop
control 18 to allow significantly more ways to defer to execute time the decision on
number of loop executions in ALGOL, and to make loop executions essentially
ordered.

Further interpretations and restrictions on these general ideas are developed in the
following three descriptions of the particular loop statements in each language.

FORTRAN DO Stltement'

A DO statement is of the form
DOni *m,, mz. m3

where: n is the statement label of an executable statement occurring as the
terminal statement of the associated DO, The statement must follow
the DO and be in the same program unit, The terminal statenent may
not be a GO TO of any form, arithmetic IF, RETURN, STOP, PAUSE,
DO statement, nor a logical IF containing any of these forms, In cffect,
this allows only the DO loop control to follow execution of the terminal
statement,

i is an integer variable name of the control variable,

m, is the initial parameter,

my is the termination parameter,

mg is the incrementati- . parameter if presdent, otherwise +1 is implied,

*This description of the FORTRAN DO statement is adapted from reference 3.




statement. Procedure actions required within the range are assumed to be
temporarily within the range.

Redefining (by assigning of a new value to) any of i, m;, m3, m, is prohibited
during the execution of the range of the DO, This means that the maximum number
of executions is always known before first executing the range.

‘The DO statement execution sequeace is 1) i = m,; 2) execute range, if the terminal
statement is reached; 3)i =i+ m,, ifi <my, GO TO 2); 4) exit with DO satisfied.

Exiting from the range of a DO may occur by execution of a GO TO statement or an
arithmetic IF, that is, exiting may occur without satisfying the DO,

A GO TO or arithmetic IF statement may not cause control to pass into the range
of a DO from outside its range, except as described below for the extended range.

All values of the control variable can be assigned at compile time if the following
two conditions hold: 1) m,, m,, and my are integer constants, 2) there occurs
no exit from the range of the DO by execution of a GO TO statement or an arith-
metic IF statement. If these conditions hold, it is possible to establish k = 1 plus
the greatest integer in (m, - m,)/m, parallel assignments,

If condition 1) is relaxed to permit integer variables for any of the m;, m,, or m,'s,
then at compile time it is possible to add the above computation for k as a control
process which can then establish that number of paraillel control paths for executing
the ranges

Nested DO statements are possible 80 long as the range of the contained DO is a
subset of the containing DO. Execution order ie inside out, A complete nested nest
of DO statements occurs when the first occurring terminal statement of any DO
statement follows the last occurring DO statement and the first occurring DO
statement of the set is not in the range of any DO statement. For such a completely
nested nest of DO statements, an extended range is permitted for the innermost of
the DO statements, from which control may pass external to the next and return to

< PRI e ¢ R L A R el o Rp——— SO RN
Eachm,, m,, and m, is either an integer constant or integer variable reference,
At time of execution each must be positive and m, < m,, The range of the DO is
the set of exccutable statements following the DO statement through the terminal
!

? the innermost. No recursive use of the extended range is permitted,
It is not necessary that the range of an embedded DO state. 2nt be parallel for the
range of an outer DO to be parallel, A nest of DO statements may be totally
parallel, if all DO statements in the nest are parallel, In this case the product

3 k) # kg X ... xk, paths of control may be established,
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*
ALGOL FOR Statement

The syntax of the ALGOL FOR statement elements (given in a modified Backus
normal form) which are important for tnis loop discussion are as fcllows,

(for list element) ::= (arithmetic-expression) |{arithmetic-expression) step 5
(arithmetic-expression ) untjl (arithmetic-expression} | e
¢

(arithmetic-expression) while (Boolean-expression}

(for list)::= (for list element) | {for lists, {for list element) e
(for clause) ::= for (variable):= (for list) do %
(for statement) ::= (for clause){statement)|{lahel®: (for statement)

A for clause causes the statement which it precedes (the forloop body) to be
repeatedly executed 0 or more times, In addition, it performs a sequence of

assignments to the control variable from the for list, 4
The sequential execution expected is the following: 1) initialize the control variable ¥

by assignment from the value of the first for list element, 2) test for an invalid
assignment; if it is invalid, go to the successor statement of the for statement,

3) exccute the statement (exit if a go to leading outside the statement is encountered),
4) perform the next assignment ‘rom the next for list element in the order written

10 the control variable doing any necessary evaluation of arithmetic expressions,
using the current values of primaries, and then go to (2) again,

g gy A

In order to establish parallel paths of control for all executions of the loop body,
the number must be known belore any are executed, For this number to be known,
there must not be any condition which is dependent upon loop-created data that can
change this number, Consequently, for lists made up from: for list elements of the
AE or AE step AE until AE types (categoryl) are potentially unordered. Each for
list element of the AE while BE type (category 3) imposes an essentially ordered
sequence of loop body executions. A for list may consist of an alternating sequence
of for lists from categories 1 and 2, in which case a similar sequence of potentially
unordered and essentially ordered exezutions of the loop body exist. Any data-
dependent conditional in the for which can cause exit from the loop body

imposes essential order. Hereafter, we assume no such conditional and,

thus, we consider only for list elements of category 1.

If no assignment ie made into the control variable by uny statement in the loop body, b
then all its values are obtained from the for list. ALGOL permits assignment to N,
the control variable or to primaries in the arithmetic expressions of the step AE

until AE parts of a for list element to be made in the loop body, If such assignments

*This is a partial syntax from reference 4 adapted by leaving undefined some
non-terminal syntactic elements such as "(arithmetic-expression)",




are unconditionally made, and if they are a function of only values existing prior to
the for statement, or of the prior control variable of these primaries, then the loop
control may be separately analyzed from the rest of the loop body.

An apparently iterative sequence for establishing the vaiues of the control may be
replaced by parallel enumeration through recognition at compile time of the avail-
ability of the values of all primaries necessary for determining all for list elements.
Should the values of all primaries be unsigned numbers, then the paths can actually
be established at compile time., If any of these primaries is a variable and all such
variable primaries have assignments into them restricted as stated, then the number
of paths of control can be determined prior to first execution of the noncontrol
portion of the loop body.

The control variable becomes undefined if exit results frorn exhaustion of the for
list. The last value of the control variable is preserved if exit from the for
statement occurs because of a go to in the loop body.

Side effects of a procedure cail can cause assignments outside its body or exite
other than the return to point of call. Such procedure calls occur in the for body or
in the for list. Eit}>r of these can prevent or make indeterminate at compile time
the establishment of parallel execution of the for body. Huxtable® has classified
procedures as follows: normal - having no side effects, coaditional sneaks - side
effects are conditional on context, and unconditional sneaks, The conditions

for recognizing normal procedures are as follows: nc OWN variables, nonlocal
assignments, abnormal exits, nor use of any switch; internal procedure calls
limited to normal procedures; parameters exclude label and switch; and no explicit
assignment to parameters called by name. Conditional sneaks are the same as
normal except that explicit assignment to parameters called by name is permitted,
All other procedures are assumed to be unconditional sneaks, He describes a
technique for classifying procedures which involves discovering the total of all
possible run-time procedure call structures of the program, Although further
analysis might show that unconditional sneaks would not require essential
ordering, the effort would likely be greater than the benefit gained,

COBOL PERFORM Statement®

The PERFORM statement is used to depart from the normal sequence of execution
in order to execute one or more procedures either a specified number of times or
until a specified condition is satisfied and then return control to the normal
sequence - the statement following the PERFORM.

The four general formats are as follows:
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1) PERFORM procedure-name-1 [ THRU procedure-name-2]

ifier-
2) PERFORM procedure-name-1 [ THRU procedure-name-2] ::::;ef:fi l} TIMES

3) PERFORM procedure-name-1 [ THRU procedure-name-2] UNTIL condition-1

4) PERFORM procedure-name-1 [ THRU procedure-name-2]

identifier-1 —— )identifier-3

g index-name-2 .
VARYING {‘"de"'“ame'l} FROM {liteml-z }BY {hte’ al-3 UNTIL condition-1

identifier-2
5\

identifier-4 dentifier-6

identifier-5

! index-name- .
AFTER {‘"de"'"a“‘e"} FROM ({ literal-5 } BY {:‘t"‘l's UNTIL condition-2

[AFIER. . .]

Each procedure-name is the name of a section or paragraph in the Procedure Division,
Each identifier represents a numeric elementary item described in the Data Division.
In formats 2 and 4 with the AFTER option, each identifier represents a numeric item
with no positions to the right of the assumed decimal point. Each literal represents

a numeric litersal,

There is no necessary relationship between procedure-name-1 and procedure-nnme-2,
except that a consecutive sequence of operations is to be executed in every cise be-
ginning at procedure-name-1 and onding with procedure-name-2, In particalar, GO

TO and PERFORM statements may occur in the sequence, If there are two or more
direct paths to the return point, then procedure-name-2 may be the name of a paragraph
consisting of the EXIT statement, to which all of these paths must lead,

Format 1 corresponds to a call of a procedure without actual parameters, In format 2,
the procedures are performed the number of times specified and, therefore, parallel
paths of control may be unconditionally established. At PERFORM execution, the value
of identifier-1 or integer-1 must not be negative, If the value is zero, control passes
immediately to the statement following the PERFORM statement, Once initiated, any
ceference to identifier-1 has no affect on varying the number of times the procedures
are executed, 1If given as integer-1, the control may be set up in parallel at compile
time as long as the procedures in separate iterations are parallel, If given as
identifier-1, the number of control setups may be determined from the value of
identifier-1 on encountering the PERFORM at execute time,

The UNTIL condition parts of formats 3 and 4 preclude parallel execution, except in
those cases where the conditions are fully evaluatable at compliie time, or the or-
dered set of results of condition evaluations are determinable prior to executing the
procedures. To achieve thc equivalent of the ALQOL construct until AE, the condition
would compare the index name (or identifier with the value of the desired limit),
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Format 4 permits setting up one, two, or three control variables, testing their
corresponding conditions, and if all are false, executing the procedures, After this,
the last data-name is altered by the appropriate amount and the corresponding
condition retested. Whon a condition is true, other than the first, that data-name is
reinitialized, and the next preceding data-name is augmented and tested, When
condition-1 is true, the PERFORM is finished.

In addition to the restriction on parallelism caused by the UNTIL condition parts,
control variables other than the first are reinitialized tc the FROM value during the
PERFORM. Their values may be altered by the procedures from the values when
the PERFORM was encountered; likewise, the index-names and identifiers occur-
ring in the BY part of any of the control variables and any variables occurring as
part of the conditions may be altered. Any such 2lteration will prevent parallel
execution unless either numeric literals {or identifiers whose values are constrained
similarly to the ALGOL primaries used in AE) are used for these alterations,

UNCONDITIONA L, TRANSFERS

An unconditional transfer of control to another part of the program causes the
following problems: 1) possible creation of loops and 2' crossing a boundary of
scope of variables,

Potential creation of loops is detectable. An algorithm for detecting loops given
the procceas connection matrix has been given by Marimont, ” All program loops
created by unconditional transfers include a backward jump, Not all backward
jumps indicate loops, since the order of sequential programs can be scrambled
using unconditional transfers. At compile time, the possible paths of control must
be indicated. If paths are mutually exclusive, not only should the mechanism for
enabling one path be provided, but also the outputs from paths not taken should be
made invalid and the particular need for inputs required by such paths should be
released.

‘.*'l During the execution of a serial program. crossing a boundary into the scope of a
ky variable serves to reserve space for, but assign an undefined value to, any
locally named (non-OWN) variable until soms value assignmert has been made to
it. In ALGOL, in particular, a variable globally named the rame as & locally
named variable is inaccessible in the local block, Crossing a boundary out of the
scope of a defined variable as a result ~* ~n uncorditional transfer (or otherwise)
snould result in that local variable t undefined and the storage allocated to
it being rel ased.

H

g In parallel program execution, on the other hand, several instances of variables in

¢ diffe rent scopes having the same name may be accessed concurrently. Consequently,
separate internal registers are required for all valid instances. Als», exiting a
score Jf a variable i3 not sufficient for making invalid or undefining 11e variable
since some other process may still require it, Consequently, either a variable
must remain dufined until all segments of programs are executed which require it;

or separate copies of the variable should be created for each use, in which case use

becomes synonymouns with release of the storag. .or the variable.
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CONDITICNALS

Language constructs for conditional establishment of paths of control based upnn the
result of a single condition are used in most programming languages. The form is
to first evaluate the condition and then set up a path of control for the single path
corregsponding tc the result. N-way branching constructs can be reduced to
seiection of one of N alternatives also based upon a single condition,

Conditional establishment of a single path of control presents a problem in deciding
which instance of a register is referenced by a process following the condition when
several instances .ould be meant, depending on the actual path executed. Alterna-
tives for solution of this problem are based on the duration of definition of an
instance,

SEQUENCE OF CONDITIONALS

Languages that group conditionals for evaluation with action selected as the first to
be true (decision tables), or languages that have a list of condition - action pairs of
which the first condition to be true selects the action (LISP) - provide opportunity
for executing the conditionals in parallel. When logical relations :mong a group of
conditions are evaluated to select a particular actioa process, the irdividual con-
ditions may be evaluated in parallel as long as 1) evaluation cf any conditional
does not modify the result of some other conditional ir the same group, and 2) all
operands required for evaluation are defined,

The first qualification may be met by having temporary storage locations into which

all instances of store operations associated with conditional evaluation are niade, %
with stacking or tugging to indicate the creatiny condition. A conflict may occur 1
because of name reuse in store operations temporary to or incidental to the con-
dition evaluations. This conflict may be resolved by reference to a stack or tag
associated with the name occurring in the nearest condition rot following the con-
dition being evaluated. By this means proper conditional evaluation will take place,
The values of named variables that are later required and are created during
evaluation of the satisfied condition may be permanentiy stored prior to continuing,

The second qualification requires defined (valid) operands for conitional

evaluation, To permit recognition of these we must know which inataace of each A
name is appropriate. For somea conditionals, no instance of an operand need be )
appropriate. For axample, assume that crestion occurs as an action following

some conditional evaluted earlier in the given sequence, That prior conditional §
must have become true and that action taken before the current conditional can be

true, Therefore, in this case the conditional is inconsequential, Several creation g
points may be appropriate, With sequential evaluation, a stack can be used to

show the order. With parallel evaluation, the cunpletion order may be arbitrary,
80 an indication of the creating process is required to preserve the sequence as
originally given, Parallel evaluation of conditionals appears generally (0 result in
unnecessary work for the sake of finding the desired single action more rapidly,
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When sufficient conditionals are evaluated to uniquely select the following action
process, any other conditional evaluation can be suspended (and the temporaries
there created can be released).

The single action selection is appropriate to sequential languages. If this is the
case, the sequential language has implied false conditions as inputs to all but the
first occurring condition The opportunity to sequentially test a particular con-
ditional only occurs when all prior conditionals are false. Parallel evaluation of
conditionals in such a case should select the first occurring true conditional for
action. There are applications where multiple actions may be appropriate and
therefore parallel action paths may be executed, The algorithm will identify these,

DURATION OF DEFINITION OF AN INSTANCE

Creation of instances of registers suggests that such registers are defined for all
time after creation. In practical application, these instances have a last use as
process input. At completion of this last use, the instance 1s of no further use and
may be "unnamed', which serves to make it undefined thereafter, The interval
between naming at creation and unnaming after last use is the duration of definition,
This study has not been primarily concermed with que stions regarding duration of
definition. since such questions are morvre properly related to the allocation or
mapping of names 1nto memory without conflict. In order to exploit the duration of
necessary definition among variables, a many-to-one mapping of names into a
memory lc_ution on a non-overlapping duration basis is required.

The algerithm for determining essential process ordering uses less information than
is required for determining the last use of a name. For exaumple, the T relation
between multi -input, multi-output processes e'iminates a number of process com-
parisons, any of which may include the last use of any particular variable, Also,
determination of any one name in the intersection of output and input sets is sufficient
to establish essantial order between two processes without completing all possible
name comparisons in these sets. Determining the last use of a name requires
checking all input sets of processes that are T successors of the creating process
for occurrence of the particular created name, Some reduction in the amount of
checking can be achieved in those cases where the language provides a limit on the
scope of a variable and the durations are extended to this limit even if last use is
earlier Other reduction may occur when only one of several separate instances
may be refrrenced by an execution, in which case the originally formulated program
muit have included conuitionals. The naming could be the same for al! such
mutually exclusive instances,

r-e recognition program for last use in present programming languages is impeded
by the implicit reuse of names as outputs of processes with actual independent
n.eaning Umgquely renaming thes. names having multiple meanings as proposed
achieves separate registers for each so that no name has more than one meaning.
The expense of doing this 18 tt«t no ~egister becomes undefined and thus no register
c~ be reused i a program,
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A comparison in the programmer-givcn name space of O; N Oy # ¢ is an indication
of multiple use of names. Each such name in the original order of processee
determines a partition zcross the set oi processes that use that name as input If
a last use of a variable occurs i1n a particular statement, the use should b= early
in the statement evaluation so that the location can be freed, or so that the
variable can be reassigned by a parallel path, Other variables having later use
may be postponed in the particular statement evaluation. A suggested algcrithm
may be (o minimize the duration in storage for any var:able, since the duration is
loosely related to the freedom to parallel process,

Duration of instances will be considered in more detail in a future report, where the
problem of 1dentifying the instances from names will be treated,
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RELATED INVESTIGATIONS

The algorithm is sequentially formulated. Application of the 2lgorithm to itself
is suggested for analysis done on a highly parallel machine, Several alternative
ways to view this algorithm are suggested,

Application of the algorithm to the syntactic definition of context-free languages
to ciassify productions of the language that might be done in parallel is described,
A method of determining the "essential complexity" of a programming language
is suggested.

PARALLEL APPLICATION OF THE ALGORITHM

An alternative way of applying the algorithm is to analyze at each step in parallel
all previously unanalyzed S relations then existing. For each, the result may be
S, in which case T is extended; or the result may be unordered, in which case a
new set of unanalyzed .S relations will be created. This new set of S relations,
if nonempty, connect processes furt!. r apart in the given order, If empty, then
analysis is complete. Thus, for N total processes, there are no more than
(N-1) sets of compariscns required to detect all instances of parallelism, If we

are given a linear ordering of N prc-esses, the worst case is N parallel processes,

The first step would perform (N-1) input-output comparisons and produce (N-2)
relations in |, S. Each of these relations connect procegses two apart in the ini ial
order The second step would thus have (N-2) comparisons, and so on for (N-1)
steps. until all #N(N-1) comparisons are made. It is necessary to retain the
ability to link between any two disconnected chains of S-linked processes {(each
chain having 0 or more processes) until it is certain that there is no connectirg

S relation betwean the chains.

It is possible to develop T initially, and from T develop S. If all #N(N-1)
ccmparisons are conceded as being required, they could all be done in parallel,
Any nonempty intersection causes an entry in T. Alternatively, there may be a
significant advantage in completing in parallel all coniparisons of a particular
process output (or output set) with all successor input sets. When done for all
processes, T may be completed by for:ning the transitive closure,

PARALLELISM IN LANGUAGE SY¥N "ACTIC DEFINITION

One question which has been explored is the applicability of the algorithm for the
detection of parallelism to the syntactic definition of certain languages, such as
ALGOL. The results might be classification of the productions of the language
which can be applied in parallel, so that the syntax recognition part of the com-
pilation process itself could be speeded up by the application of multiprocessing,
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This would be essentially an experimental study, which tc be effectively carried out

would require a computer program for the algorithm because of the large number
of syntactic classes to be considered. It appears likely that empirical ssparation
of the syntactical elements of a compiler language would achieve results not much
worse than those achieved by application of the algorithm.

‘Thecretically, it might be useful to have a description of classes of productione
which can be performed in parallel. Scme insight into the "'essential complexity"
of the language might be obtained in this way.

The "essential complexity” of the syntax of most programming languages may be
reduced considerably by applying an algorithm developed by Parikh,® He shows
that an: context-free language can be replaced by an ambiguity preserving
grammar, with all productions except S (the initial non-terminal) in the form:

A-aAb

A-c
where A 1s any specific nonterminal #S, and a, b, and ¢ are strings of terminals
with both a, b not null,

As an exarnple of the effect of application of this replacement, jet an arithmetic
statement be defined by:

A % (arithmetic rtatement) :: = (variable) = (arithmetic expression)

Ay (arithmetic expression) :: = (term } | (arithmetic expression) {add op) (term)
Ag: (add op)::=+ | -

T: {term):: ={factor)|(term) (mult cp) {factor)

M: (mult op)ui= |/

F: <(factor)::= (integer) | (variable) | (arithmetic expression)

If we use the capital abbrevistions cading the nonterminal syntactic classes,
the non-terminal vocabulary V,, « LAy, Ay, As. M, T, F}), If we abbreviate
integer by i and variable by v, the terminal vocabulary V, = (i, v, +, -, %, /1,

In our language syntax subset, the initial nonterminal 8 is A;. In effect, Parikh
asserts that the only other nonterminals required arc those which are directly
recursive. In what fnllows, we show that the given definition of arithmetic
statement. involving six syntactic classes (A, Ay, Ag, M, T, and F), can be
written in terms of only two syntactic classes (A, T). Of course, A; is neces-
sary since it is the "'sentence. ' The single recursive syntactic ~lass is not
necessarily T (F or Ay would have done as weli). This illustrates the
recognition and elimination of indirect recursion,

Table I shows the original productions rewritten as individual productions, and
successive replacements yielding in the right column the redaction to two syn-

tactic classes Ay and T. Productions of the form T« T are eliminated as redundant,
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Table 1
Reduction of Syntactic Classes
Replace Az by For two righthand T's
Original Re;;lac':; Az Rep;ac; F + and - ; M by aubstitute i and v for
¥ y #* and / one T, then the cther

Al-. v-A2 Al-v-T Al-v-’r Al-v=T Al-v-T

Az -T

Az - A2A3T T = TA3T T~ TA3T T -« T+T T = i+T

A3-o+ A3-+ A3-0+ T = v+T

T - T+i
T = T+v
Aa-— A3~- A3-- T=-T-T T = i-T
T=-F T=-F T = v-T
T = T-i
T -« T-v
T = TMF T = TMF T - TMT T » T*T T = i*T
M=% Maot Mo T = v*T
T=T*
T - T*v
M/ M/ M/ T« T/T T -1i/T
T ~v/T
F = Az FaTl T~ T/
T~ Tlv
Fei Fei T-1 T-1 T=-1i
Faov Fav T=v Tev Twv
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Application of the algorithm ior the detection of parallelism to the syntactic
definition of a programining language requires that the order of application of the
productions be specified. The order chosen by the programmer in the syntax
recognition portion of a compiler for a particvlar language presumably provides
niore nearly efficient recognition of the more likely strings. Therefore, some
value judgment is required in selecting this order which is unrelated to the
actual syntax. Experimental determination of the relative occurrence cver a
large set of programs of the various strings allowed by a language could be used
as an aid in finding improved ordering for productions. Following all possible
production paths will obviously recognize the string if correct, at the expense of
following mnstly incorrect production paths. A compromise in the number of
levels in the syntax that matches the number of parallel paths tha* can be con-
currently followed may be desirable. Introduction of other equivalent sets of
productions {in other ourders) may be done without reducing the power of the
language. However, as our example indicates, such introduction may increase the
number of productions very rapidly and complicate the recognition procedure so
much that application cf Parikh's result would be necessary to practicably reduce
the number of syntactic classes to a minimum,
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PROGRAM FOR THE NEXT INTERVAL

1

o

Develop techniques for recognizing instances of registers given the names
in a program.

Continue to investigate formal program structures with emphasis on arrays.
Continue to identify the effect of language features on parallelism,

Examire criteria for partitioning a program into processes,

Discuss implementation of parallel anaiysis.

Describe a language for simulating the essential order detection given the
instances.
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index entries for catatoging the report  Key word  muat be
selected so that no security classification 18 required 1den
Tiers, such as equipment modef designation teade nar e 1h
1aty Project code name geopraphic locstion may be uted as
key words but will be (nflawed by an indicanon of techn sl
context  The assignmem of Links rules and weights 14
whional
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