
TECHNICAL REPORT ECOM -02463-2

DETECTION OF ESSENTIAL

* ORDERING IMPLICIT IN

COMPILER LANGUAGE PROGRAMS

SECOND QUARTERLY REPORT
S

: By

** HARVEY W. BINGHAM

** ~~DAVID A. FISHER •- -
** ~~WARREN L. SEMON '"

; FEBRUARY 1967

DISTRIBUTION OF THIS DOCUMEN•T IS UNLIMITED
S0M

S

UNITED STATES ARMY ELECTRONICS COMMAND" FOPT MICSM•OUTH,

CONTRACT DA -28- 043-AMC- 02463{E)

Burroughs Corporation
Defense, Space crld Special Syst*ems Grovp

Pc~oli. Pennsylvania

0r

SA

N 0 T I C E S

NOTICES

i/,

Disclaimes

The findings in this report Sre sot to be construed as &n
official Dep.t4tent of tUe Army positlov, unless so desig-
nated by other authorized documeats.

The citation of trado names abd names of mar-ufactarers in
this report is not to be construoed as official Government
indorsement or approval of commercial products or services
referenced herein.

Disposition

Dosutroy this report when itis no longe needed. Do not
return it to the originator.

. A X
"

Technical Report ECOM 02463-2 February 1967

DETECTION OF ESSENTIAL

ORDERING IMPLICIT IN

COMPILER LANGUAGE PROGRAMS

Quarterly Technical Report

15 October 1966 to 20 January 1967

Report No. 2

Contract No. DA-28-043-AMC-02463(E)

DA Project No. 1E6-20501-A485-03-01

Prepared by

Harvey W. Binghanm

David A. Fisher

Warren L Semon

Burroughs Corporation
Defense, Space and Special Systems Group

Paoh, Pennsylvania

for

U.S. ARMY ELECTRONIC COMMAND
Fort Monmouth, N. J.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

ABSTRACT

TVus is the second report of an investigation to determine how implicit parallelism
in programs written in compiler languages can be recognized and exploited by
machines with highly parallel organizations. An algorithm is described which
identifies th-e complete serial ordering among parts of a program based on the
input-outpLt sets of these parts, the ozdqring given by the programmer. and any
known essential order among the program parts. The algorithm is proved and a
demonstration given that a minimum number of comparisons of input-output sets
are wade. Application oi the parallel recognition procedure ',(subroutines, loops.
conditionals, recursive subroutines, and serial input-output device calls is ex-
plained. The effect of particular ,-atures of several compiler languages on paral-
lelism are discussed. These features include loops, transfers of control, con-
ditionals, and conditional sequences. Requirements for replacing iterative loop
control by parallel paths of control are given. Alternative algorithms for
recognizing essential ordering are suggested which can be executed more effec-
tivelyon a highly parallel machine. Application of the given algorithm to the

syntactic definition of a context. free language is also considered.

V

I

I

ii

CONTENTS
Page

ABSTRACT ii

INTRODUCTION

ALGORITHM FOR DETECTING ESSENTIAL SERIAL ORDER 3

Definit ions 6
Proof of Algorithm 8
Proof of Minimal Comparisons 13

ANALYSIS OF FORMAL PROGRAM STRUCTURES 16

Subroutines 16
Loops 16
Cor ditionals 17
Re,-ursive Subroutines 18
Serial Input-Output Calls 19

PROGRAMMING LANGUAGE FEATURES EFFECTING PARALLELISM 20

Loops 20

FORTRAN DO Statement 21
ALGOL FOR Statement 23
COBOL PERFORM Stateme 24

Unconditional Transfers. 26
Conditionals. 27
Sequence of Conditionals 27
Duration of Definition of an Instance 28

RELATED INVESTIGATIONS 30

Parallel Application of the Algorithm 30
Parallelism in Language Syntactic Definition 30

PROGRAM FOR THE NEXT INTERVAL, 34

BIBLIOGRAPHY 35

DISTRIBUTION LIST 36

0ii

ILLUSTRATIONS

Page

Table

I Reduction of Syntactic Classes 32

la Algorithm fcr E3sential Order Detection 4

lb Symbology for Algorithm 5

2 Graph for Conditionals 18

3 °S Graph for Analysis of Recursive Subroutines 18

4 SerA&l Input-Output Calls 19

iv

2 r

INTRODUCTION

The objcct of this study is to detect instances of para'lelism implicit in programs
written in compiler programming languages. The rn, hod chosen is to recognize
the essential partial ordering between program parts since only parts which are
not '.ssentially ordered can be execu'Led concurrently

In this report an algorithm for forme] anialysis of prc romq is presented and
proved which yields all instances of ixnplicit parallel. ;m between program parts
based on input-output set intersections. Any initiall' cnown essential ordering
Ss used. The number of input output set comparisonb is minimal. At most, two
consecutive iterations of a loop are necessary to determine the essential order
for all iterations of the loop. (,hily one itcratlon need be analyzed for intra-loop
essential order. The inter-loop essential order is determined by using both
iterations. Sufficiency of this analysis is shown through application to language
independent formal translator structv:-es, including subroutines, loops,
conditionals, recursive subroutines, and serial input or output calls.

Special features of particular programming languages affecting implicit
r.-,ýognition of essential ordering include loops, unconditional transfers, con-
ditional statements, and parallel evaluation of a sequence of conditionals. The
loop statements yield potentially the greatest opportunity for parallelism. Con-
ditions for replacing Iterative control by a number of parallel paths of control
are given. Unconditional transfers may create loops or cross boundaries of
scopes of variables. Data dpendent conditions are. a principal cause of essen-
tial ordering. The duration of definition of an instance of a variable provides
essential information for efficient memory allocation.

Alternative algorithms which can be executed in parallel to achieve results
comparable to the main algorithm are suggested. A method i. indicated for
reducing the complexity of syntactic definition in context-free languages by
establishing classes of productions which can be recognized in parallel.

Most present programming languages presume that programs are to be written
as a sequence of Instructions. This permissible sequence, while it contains the
essential ordering (I. e., it computes each value before that value is used), also
contains much extraneous order (I. e , it orders computations for which the
order is completely immaterial). In the previous report' we gave an algorithm
which detects the essential ordering given a permissible ordering. In this
report we extend the algorithm to permit detection of essential ordering given
a consistent combination of essential and permissible ordering.

Supezscript numbers refer to references in the Bibliography.

v1

In order to describe the algorithm, the meaning of some terms should be given:

A process is a transformation which generates a finte set of outputs
from a finite set of inputs.

An output is the information pos3ibly written into a ,'egister dti-ing
a process.

An input is the information contained in a regist r ai time of access by
a process.

A program is a finite set of processes which can be partially ordered
by their input-output set intersections.

A process execution is the application of the process transformation

to it3 input set to produce its output set.

An ordered pair of inputs and outputs will be identified with each process. For
process Pit this pair will be represented as (1I, 0.). It will be assumed that all
outputs are unique, that is, every time a -egisler is written ino, a new name is
created. Th~is is done to keep separate the recognition of implicit parallelism in
names from the potentially many-to-one mapping of names into registers.

The following relations between process pairs are used in this report:

A'k Pi must precede P is given.t
I

SoS Pi may precede Pk is given.

Tk Pi must precede Pk.
4k

Sj P iP must directly precede Pk"

I k
If neither Tk nor Tit then processes PI and Pk can be executed in either order or

concurrently. oT, 08, T, and S are, respectively, the sets of all true 0oTk, oSk#
I i

Tk, and Si. The algorithm uses the given oT and oS to produce T and S.

A graphical representation of the effect of applying the algorithm was presented in
the first report.' This representation is still appropriate for the revised algorithm
with the following substitution. Each relation Pi R Pk was labeled as a directed
R-arc from process i to process k. Replace each R by S. To distinguish between
these S arcs and the S arcs used in the graphical illustrations in the first report,
note that the reference process pair being analyzed partitions S into three disjoint
sets: process pairs already analyzed, the reference process pair, and process
pairs to he analyzed. Consequently, there is no need for separate symbols. The
graphs used as illustrations In this report consider only 0S and 0 T.

2

ALGORITHM FOR DETECTING ESSENTIAL
SERIAL ORDER
This section desc.-ibes the algorithm (Figures la and Ib) for detection of
essential serial ordering of processes from their input and output sets.

From previous partial analysis or explicit indicators, essential order is
sometimes known to exist between processes of a program. Consequently, the
algorithm. of the previous report ' has been extended to include any initially known
essential order among processes as parameters to the algorithm. Therefore,
tne corresponding input-output set comparisons are avoided daring the algorithm,
Whea no essential serial order ýs known initially, the algorithm is equivalent to
the previous one * The extended algorithm together with formal deflnitions of
its pa.-arnete-s and the relations among them are -.ow given. A proof of the
algorith.rm is also provided. The number of input-output set comparisons made
by the algc ithm is shown to be minahal. The reader who does not wish to
engage in the details of the proof can obtain the esserce of the algorithi 1 and
minimal comparison argument from the definitions and subsection introductions.

*When oT is empty, then any T arc identified in step 3, Figure la, will not be

in S, This will be explained later. I

3

.ir.

Given: S, T, N, I (Icjs N), 0O.(Iic N) and S implies i<k
00 0ok

Find- MS, MT

Method:

Step 1. for k =2, 3. N do

Step 2. for i = k-l, k-2,..., 1 do

Step 3. if Tk false then

Step 4. if Sj utrue then
F k -

Step I 5. i~f 0nI k#O0then
Step 6. k t

Step~, .FT true

Step 7. Loto step 15

Step 8. otherwise oi r I k 0)

Step 9 S i- false
k -

Step 10. for j - 1. 2,... i-I do

Step ll. k S• kv S i^A T

Step 12. for I -k+l, k+2,...,Ndo

Step 15. 1 V- S vk

Step 14. otnerwise (Tki• true)

Step 15. oj 1, 2.... i-I dc

Step 16. F k i-T
Step 17. L kTT~ T

Figure Ia. Algorithm for Essential Order Detection

4

V V

PARAME.

°S initially given permissible ordering relation

T: initially known essential ordering relation

0

N number of processes in program

1 3 input set for process j

0; output set for process j

MS: cover .g relation for the complete essential ordering

MT: the complete essential ordering .-elation

SYMBOLS

Sthe em pty set

Sset intersection

-, V, A. are respectively the binary operators "replaced by".

"logical inclusive or", "logical and", and "logical complement",

given in in -reaslng binding order

SUBSCRIPTS AND SUPERSCRIPTS

indicates transitive closure of R7 m
t .-.----.-- indexes the predecessor process

For any relation A
fnm k -- o. indexes the successor process

"indicates the iteration of the algorithm
which produces R; m does not appear
in the algorithm description

i Ri i
Rk true if and only if Rk and no assignment has been made into Rk,

or the last assignment into Rk was true

Figure lb. Syrnbology for Algorithm

5

DEFINITIONS

Definition 1. Process, P.

A process Pj is an ordered pair of sets (Ij, OP). i3 is called the input set for

Pi. O is called the output set for Pi.

Definition 2. Program, P.

By a program P is meant a finite set of processes (P 1 (j= 1, 2 ... , N), for

which the intersection of the input and output sets can be used to define a st" ongly

anti-symmetric relation. That is, P can be ordered so that for any

Pi, P E p, 0) 1I # 0 implies i < k.
1k ' k

i
Definition 3. Rk. the arc from P. to P

k if k' nyi i0P n

For any relation R c (PX P) we will write RI if and only if P., P E P and R
kk

relates Pi to Pk in that order.

Definition 4. tR, the transitive closure of R.

For any relation R C (P) P) we will write B to mean that relation such that

t if and only if there is a sequence of R arcs: R, , J.., , RJ.

Note that tR is always transitive,

Definition 5. T, the essential serial ordering.

The relation T c (PX P) is the essential serial ordering among the processes

of P. This order is imposed by the input-output set relation. That is, *or any

Pi P, E P, Tk if and only if there is a sequence Oi M l1. # 0' O (i1 #0,

..Ojf a Ik # 0. Thus T is the transitive closure of the input-output set

relation. Then T is transitive and since the input-output set relation is strongly

anti -symmetric, so is T.

Definition 6. S, the cover for the essential serial order.
i

S is the covering relation for T. '1:i.- is, for any Pil Pk E P, S if and only if

Tk and there is no P E P such that both T. and Tk. Note that S x T,S

6

- -p.
"Off

Definition 7. T, the known essential serial order.0!
The relation OT is any subset of the relation T.

Definition 8. °S, the given permissible order,

The relation S is the given ordering of the processes in P supplied by the
0

programmer. oS is any strongly anti-symmetric relation S_(PX P) such thattS t oT

T c S and T C_ (T n s).* Note that T satisfies the requirements for S.
0 0- 0 0 0

Definition 9. R, the relation R after m iterations.

For any relation R, we will write R to meaih the value of that relation afterm

the th iteration of the "for i" loop (steps 3 to 17) in the algorithm.

Convention 1. N, k, i, and M.

Hereafter we will write N to mean the ntu ber of processes in P; k and i will

mear respectively the values of k and i during the (m + 1)at iteration of the

"for loop; because N is finite (Definition 2) and the only loops in the algorithm

are at steps 1 and 2, the -algorithm terminates in a finite number of steps and

we will write M to mean the total number of iterations of the "for i" loop.

Definition 10. mC, the compared process pair relation.

We will write C (1 I m • M) to mean that relation such that C9 if and only if
mi m h-

pg Ph E P and i - g and k - h for some iteration j 0 r j A m) of the "for i" loop.

Note that Cg if and only if P P E P and g < h.
M h 9 h

For any program P ana any relations Q, R (Px P), Q c: R if and only if

for all P Pk P. P implies

7

PROOF OF ALGORITHM

The algorithm (Figures la and ib) generates the relations MS and MT given the

relations °S and °T, the input sets Ii (I - '• N), and the output sets 0. (1 ! i ! NM).
0 1 1

It will be shown that AS = S and MT = T. The algorithm functions as follows.

The body of the "for i" loop (steps 3 to 17) is executed once fo: each arc from

Pi to Pk such that P, P kE P and i < k. These arcs are sufficient because

°S.0 °T, S, and T are strongly anti-symme, ric. The order of the arcs (steps 1

and 2) guarantees that all sequences of arcs connecting two processes will be

determined before the single arc connecting the processes is considered.

Therefore, all indirect T paths can be determined without comparing the input-

output sets of the end processes. For each iteration of the "foi i" loop, if the

arc from P to Pk is not already in mTr (step 3), then it must eiLher be in S, or
k

P. and P can be executed concurrently. Therefore, if the arc is not in S
I k m

t
(step4), then Piand Pk can be executed concurrently. If the arc is in mS (step 4),

then the input-output comparision must be made (step 5). If the intersection is

non-empty, then the arc is in S and T, and is added to m+iT (step 6). If the

intersection is empty, then P and P can be executed concurrently and the arc

will be deleted from mS (step 9). To ensure that the arc from Pi to P k is the

only arc deleted from m ,S, arcs are added to m S (steps 10 through 13). Steps

10 and 11 guarantee that there is a sequence of m+lS arcs connecting to Pk from

all P where S1, while steps 12 and 13 guarantee that there are r S rcs

connecting P. to all P where S.. Whenever there is an T arc from Pi m l

to P (step 14 or step 6), then steps 15 through 17 are performed. Since S is a
k

cover, step 16 is included to ensure that no sequence of +T arcs ending in

8

an arc from P to Pk is an arc in m+lS. Similarly, since T is transitive, step

17 includes all sequences of M+ T arcs ending in an arc from Pi to Pk as arcs

in m+ 1 T.

Lemma 1. For allm(O0 !m M), Tc T.m -

Proof. T c T by Definition 7. Assume for any m(O ! m < M) that T - T.O - m

During the (in + 1)st iteration of the "for i" loop (steps 3 to 17), arcs are added
i €

to T only at steps 6 and 17. If T is added at step 6, then 0i I # 0 .
m+1 rn+1 k i k

(step 5) and by Definition 5, T If the arc T is added at step 17, then

TI (step 17). By hypothesis T. 'mplies I3. T since either 0 n k # 0
in m i I k i k

(step 5) or T 1(step 14). But 7i and TI imply T 3, since T is transitive
in k 1 k k

(Definition 5). Therefore, all M+IT arcs added during the (m + 1)at iteration

are in T. Since by hypothesis, all other T arcs are in T it follows that
M+1

m+lT'- T. By induction onin, TC T for allm(O sm '- M).

tLemma 2. For a1lm 0•m WC) m T I . T C(MT nreS).)

Proof. oTc t(T nl S) by Definition 8. Assume for any m(O • m < hQ that

T- tmMT r.S). If noOm+ TC t(r,. T n m+IS), then either some m+lT

arc was added or some S arc was deleted during the (m + I)t iteration of the

"for i" loop. If + k was c ,4'ed at step 6, then m+S k (step 4) and thus

tm+T n +) Iif rS is deleted at step 9, then m-'f (step 3), and since no

m+1T arcs are added during the (me+1)st iteration, m T c t(mT n mS implies

(T n S). If S is deleted at step 18 or Tj is added
M+l m- nI m+ I D m m+l k

at step 17, then either Ti (step 6) and si (step 4) or T (step 14).
m+ I k m+j k m k

In either case t T m+ S) But if S was deleted or T+ITadded
M+1 n+1 k i k m+1 k

9

(steps 16 and 17), then 7j, and thus by hypothesis (T r, S) But j < i < k and
min 1In mi

all S arcs deleted during the (m - 1)at iteration are of the form S wheremmh

h w k (step 16), and no T arcs are deleted. Therefore, t(T n iS). Then
tSjsince both (T l)3adt Tn

t t

(lT rn+ S) siceboh T n s)J and iT n) In all
M+1 M +1 m+l i tM+ 1 M+I)k"

cases then, m+lT C t(m+l T M+IS). By-induction onom. mT _c (mT) mS)

for all m(0 !cm S M).

lemma 3. For all m(O nm <M), Tc tS.

ts
Proof. If m a 0, then by Definition 8, T c S. The only S arcs which are deleted

0t i
during the (m + 1)at iteration of the "for i" loop are at steps 9 and 16. If mSk is

i
deleted at step 9, then with the exception of S itself all sequences of S arcs

m k in
i

beginning with Sk are retained in +1 S (steps 12 and 13). All sequences of SS~m m st

arcs ending with S k are retained in m 1S (steps 10 and 11), with the exception

of S and S3 (step 11) where 1 s j < i (step 10) and T (step 11). The arc
In k ink m k

S ineed not be retained since 0 That is, "T B
i k t -I -(st ,p To k

St i -T (step 11) implies (T flmS) But mT (ap 3) so that the sequence of
ink mIn Itk ik

I Tnfl IS) arcs from Pj to Pk cannot contain an arc from Pi to P Thus the are
in in J ki c

iS isretained whezi m3 (step 9) is deleted. If S (I1 j < J) is deleted at
ik m I 'kTi •T (step 16). BImm , tf 5)

step 10, then u k (step 3) and By Lemma 2, nkS)

and t T n s)i, which implies there is a sequence of S arcs from P to P
In md. Tiher In j k

other than the single arc Therefore, deleting the arc S does not delete
ink'le T• r+1s yindutoknm

t j t t
the arc Sk. Then in all cases T c S implies T c S By induction on m,

Tc ts for all m (0 it m % M).
-In

10

-w , .. - M-,

- * -'-- rtA ,.,j [

Lemma 4. For allm(O g m M), S Cc M T- MC.

Proof. If m = 0, then C = 0 and we are finished. Assume for any m(O i m <M)

that S nf C c T nl C. Let i, k be respectively the values of i arid k during ihem m -- m m

(m+ 1)*t iteration of the "for i" loop. Then consider any Pg0 Ph E P such that

Sandm Sg. ChR(Definition 1) implies that eithermCg. or g-i andh-k.m+1 h m+1 h m+1 h m h'

M+1S arcs are added only at steps II and 13, and during the (re+l)st iteraticn none

of the S arcs added are in C (steps 10 and 12). If Cg, then S, implies
m+ 1 rn+l n h rn+l h

Sg and by hypothesis T but no T arcs are deleted, so 1g. Other-wise,
mn h - r h In m+1I h

i i i
g =rand h = k, and by the above argument r+1Sk implies ruSik Then if mTk

i -i' Si

(step 14), T If mT (step 31, then S (step 4) and S (step 9) require
rn-sI k mk min m+ 1 k qur

that step 6 and not step 9 be executed. But by step 6, T k Then in any case,

any arc in both m+1S and m+IC is also in m+IT. By induction on m,

Sf(Cc Tfl Cforallm(0 !9m M).
m m -m mi

Lemma5. For a~lm(O % m •M) and for any PP P EP. If, . I
a n d Tj , th e n b o th T hj a n d ra s h'.

mnh in h mnh*

Proof. If n a 0, then 0 C and we are finished.

Assume Lemma 5 to be true for any m(O a m < M). Then consider any P , P P

E P such that C9 Tj and T7h By Lemma 1, nT implies Tg, and
m+n hW m+1 and W m+1 h m h

since T is strongly anti-symmetric (Definition 3), g < h. Similarly, m+r

impliesj < g. If C h then C sincej<g<h. Then Tgand Tgh 3ince none
iinc m J9 m g mh

of the m+T arcs added during the (rn+l)st iteration (step 6 and 17) are E eC. By

hypothesis mC9, T JT and m7gh imply mThj and rj. But no T arcs are deleted,
so in 9 m h' mih m

so m I if 8 then since .J S must have been added during the

11

(M+l)'t iteration (step 11 or stLp 13). But it could not have been added at step 11,

since then (step 11). Neither could + S have been added at step 13, since thenm h m+1 h
h > k (steps 13 and 14), .-ut by C h k. Otherwise, g and thatm h m+ 1 h nM h'

i
guiandh -k. Thenm'ri (step 14) or m+lTk was added (itep 6). In either case

in k (step
for any j < i (step 15), Tj (that is Ti1) implies S3 (step 16) and Tk

rn g m I m+1 k m+1 k
(step 17). Then in all cases C9 TJ and 1T imply Tj and S-"

m+1 h m+1 g" m+1 h m+l h M+I h
By induction on m, for all m(0 rs m M) and any P., P .P EP, Cg T, and

j g h ' h m ng

STihim ply m T .d

Lemma6. MSC MC.

Proof. From the algorithm we see that all S arcs added during the execution of

the algorithm are of the form MS (steps 10 and 11), where I !j <i < k ' N, or of

the form S i(steps 12 and 13), where 1! i<k< j r N. Then since Sc C

(Definition 8), all arcs of MS must be in MC.

STheorem 1. MT a r.

Proof. By Lemma 4. s n C MT, but since MS C c (Lemma 6), then

t •m TMS_ MT. Therefore, MS M:T, and since T cMS (Lma3,w ae T T

STcT (LmmaI) and Tc MC (Definition 5), so MT MC. Therefore, Tis

transitive since T 0 C is transitive (Lemma 5) and T 0 C * T. But if T
M MMM M M

is transitive, t T, and since we already have T c MT, T c: T . Finally,

by Lemma , MTl c T, soMT T.
'M T5MTT

Theorem 2. MS a S.

Proof. Sc Tsince S A CC T(Lemma4) and S Mc (Lemma 6). ButM-M M M-M M-M
t t t tMS MT implies MS C: MT, and since MT - T (Theorem 1), MS C T. Then since

12

I_7

!-:o

Tis transitive (Definitin5), tT T, and therefore M S T. But T J (3)emma3

so MS=T. ByLemma5, for any PP P EP, if MC g" and M then

M§h But MT = T (Theorem 1) and T c MC (Definition 5), so for any Pj, Pg, Ph

E P, if TJgand Tgo then Mj" We already have MtS = T. Therefore S = S byg h K h M

Definition 6.

PROOF OF MINIMAL COMPARISONS

It will now be shown that no algortihm can produce S and T from S and T witho 0

fewer comparisons between input and output sets. This will be done by first

showing that one comparison must be made for each arc that is in S and not in '0
0

and that one comparison must be made for each t S arc which is not in T. It will
0

then be shown that each input-output set comparison in the algor'+hm identifies a

unique arc which is either in S and not in T, or is in tS and is not in T, and that
0 0

no comparison is made more than once.

t
Lemma7. For all m(O0 mc M), Sc Os.

In
Proof. S C tS by the definition of transitive closure. Assume for any0 0

t t
m(O ! m < M) that S C S. During the (m+ 1)t iteration of the "for i" loop, arcs

are added to m+iS only at steps 11 and 1. If m+1$ is added at step 11, then

S1 (step 11) and S (stop 4). Therefore, by hypothesis o and o Then by
mli m k o okW

the definition of transitive closure,-otsk ' Similarly, if m+iS is added at stop 13,
i k ok m JI t kmSk (step 4) and S (step 13), so that by hypothesis Sk and S B andthen mkmj (se ha yol ki s otkJad

t i t stherefore tS. Then mS c 0S, since all m+1S arcs added during the (r+ 1)st

iteration are in ts and by hypothesis all S arcs are in tS By induction on m,

iSnC tSfor allm(O im 'M).

mZ -- O

Theorem 3. The number of input-output set comparisons is minimal.

Proof. Let Pi Pk E P such that S I For an algorithm to establish whether or
k 0oW

no i j
not S it must be at least able to determine whether Tk, since S c T. Unless

it is given that Ti (that is, unless oTh, it must be shown that either o0 n 0

or that there is a P. E P such that both Ti and TkJ (Definition 5). If Sk, then

there is no P. EP such that both T and T (Definition 6). Thus, the comparison
(6e

o n I must be made. If T' then since T is transitive there can be no P EP such
i k' 3s1 3

that both T1 and T . Thus, the comparison o. n Ik must be made. That is, onej

input-output set comparison must be made for each arc that is in S and not in 0T,

and one comparison mue, be made for each tS arc which is not in T.

If during the (m+ 1)at iteration of the "for V" loop (I ! m i M), the comparison 0 n Ik

i t i tm
is made (step 5), then mS (step 4). But then oSk' since S c S (Lemma 7). Also,m• k ' m -0
-i -i
Tk (step 3), and therefore oTk, since the algorithm does not delete any arcs from

T. If it happens that Oi (Ik # 0. then the arc mS is not deleted during the (n+ 1)st

i t SI (steps 9 and 16) can not be deleted during any subsequent
m+ I k

iteration of the "for I" loop. That is, M k' and therefore Si since S-S(Theo-
M k k M

-i s
rem 2). U i nk 0. thenm T (step 3) and step 6 is not executed during the (m+!)st

-i k

iteration, so T+l. But MT (steps 6 and 17) can not be added during any sub-

-i I
sequent iteration of the "for i" loop, Thus, MTk, and therefore , since MToT

(Theorem 1). That is, each input-output comparison 01 n Ik in the algorithm
Sidentifies a unique arc (from P i to Pk) which is either in S and not in °T, or is in

S and is not in T. Finally, none of these comparisons is made more than once
0

I14

since only the sets 0. and I are compared during the (m+1)st iteration
I k

(step 5), and no two iterations of the "fur i" loop have tie same value for the

pair i, I, (steps I and 2).

Therefore, every input-output comparison made by the algorithm is necessary.

1
(

2I

15

ANALYSIS OF FORMAL PROGRAM STRUCTURES

The ability to apply the algorithm for detection of essential serial order with a
nonempty oT aLlows mo-e freedom in the use of the analysis. This facility is
investigated relative to certain formal program structures and the advantages
which are relpvant to subroutines, conditionals and serial input-output calls are
explained. With he explicit exclusion of arrays, it is shown that loops and re-
cursive subroutines can be completely analyzed with only two instances of each
precess. Arrays will be considered in the next reporL.

SUBROUTINES

The advantages of the non-empty 0 T arise in the analysis of program structures
such as subroutines. A subroutine (whether open or clob-u) need not be analyzed
for each call, but may be analyzed only once and the results of that analysiq used
at each call on the subroutine. This is accomplished by first analyzing the sub-
routine and then using the resulting S and T relating the intra-subroutine pro-
cesses as oS •id OT, respectively, for each program call on the subroutine. The
program analysis will then identify all instances of parallelism without duplicating
any comparison of the intra-subroutine input-output sets at the various
subroutine calls.

An alternative method for handling subroutines reduces the number of processes
used in the analysis and, therefore, the size of S and T. In this scheme, the
subroutine is analyzed or.ce separately trom the program. Then rather than
inserting the subroutine analysis results into the program at each call, the pro-
gram is analyzed with each subroutine call serving as a single process. In this
scheme, parallelism will not be found between processes where one of the pro-
cesses is external to the subroutine but cannot be executed in parallel witi. the
entire subroutine, and where the other process is interior to the subroutine.
The above methods are not applicable' recursive subroutines, since the
substitution process is nonterrninatine'

LOOPS

The algorithm as described can be used to analyze a lo by stretching it out into
a sequence oIf iterations. This analysis, however, cannot be performed until
run time if the number of iterations is data dependent. Even if the number of
iterations can be determined at compile time, the number of processes produced
by flattening out the loop may exceed the handling capabilities.

A method for loop handling which takes advantage of the similarities between
successive iterations of a loop and still recognizes those instances of parallel-
ism determined by input-output set relations is now developed. Inil.ally we will
assume that the programs under consideration either do not contain arrays or
that each array is treated as a single variable. This restriction guarantees that

16

Yp* L - ~ , -H .:T777T-'T:

input-outp-jt sets are not a function of the iteraticn. That is, for any iteration of
a loop, if an instance of a variable appears in the input (or output) set for some
process, then for any other iteration ot t.e loop, another instance of that
variable will appear in the input (or output) set of the corresponding process.

Since each iteration of a loop has the same processes in the same given order
and with the same input-output names, analysis of any iteration of a loop will
identify the intra-iteration parallelism for all iterations of the loop. The array
handling technique mentioned above guarantees that analysis of any two consecu-
tive iterations of a loop will identify all inter-iteration parallelism, since direct
essential ordering of processes can exist only between processes in tne same or
consecutive iterations. Therefore, loops c.n be handled ky analyzing only two
ccnsecutive iterations of each loop.

CON- TIONA LS

There are several run-time philosophies wnich maybe used in conjunction with
conditionals. One approach permits both branches of the conditionals and the
condition itself to be executed concurrently. When evaluation of the condition
is complete, one of 1.,e branches will then be inhibited. This method
reduces the duration of the program at the expense of performing some
computation whose outputs will not be used.

An alternative approach will, however, be taken here. The goal will be to
initiate each process as soon as possible without executing processes unneces-
sarily. This may be done by evaluating the condition before either branch of
the conditional is initiated and then executing only the single necessary branch.
This approach does not prohibit processes common to both branches of the I
conditional from being execuied concurrently with the evaluation of the condition.

Conditionals can be analyzed as any other processes, except that the given OT
will be nonempty. For example, let process P1 be the condition, P 2 and P 3 be
local to one branch of the conditional, P 4 and P 5 be local to the other branch of
the conditional, and P 6 be common to both branches. Then S will be the given
order of the processes as shown in Figure 2. oT, however, will have four arcs,
one arc each to indicate the serial ordering between the condition evaluation and
the processes local xo the conditional branches. S 1 and oS are included to
guarantee that o0' C (0oS () OT). o

* tThe need for the requirement T C (oS 9 oT), introduced in Definition 8, is
0 0 0

illustrated by this example. If SIwere not included and 0 I a 0, then
o 3 2 3

1 1
the algcrithrn would not generate MS3, since oT 3 and consequently

-l

soM3 s Mnce even though S3.

17

0: S.2p 3 0 T: P2

P6 P1 P3 6
P4

P5

°:p2 P3oP

P4 P5

Figure 2. Graph For Conditionals

REC (USIVE SUBROUTINES

The analysis of recursive subroutines may be handled similar to loops. Since each
level of call on a reci'rsive subroutine has the same processes in the same given
order and with the same input-output names, analysie of any level of recursion will
identify the intra-level parallelism for all levels of recursion. Treating arrays as
single variables guarantees that analysis of any two consecutive levels of recursion
will identify all parallelism between procesces in the same level, between pro-
ceases in consecutive levels, and between processes in nonconsecutive levels where
that parallelism also exists between consecutive levels. Therefore, recursive sub-
routines can be handled by analyzing two consecutive levels of recursion in the
subroutine.

An example of 8 for a recursive subroutine is shown in Figure 3. Each level of
the given subro%tine consists of a condition &a. followed by alternative processes
Pb and P and, In eitimer case, terminating with Pd. The process Pb is a recur-
sive call on the subroutine. Figure Sa shows o8 for intra-lovel analysis, while
Figure 3b shows 8 for inter-level analysis. The primed and nonprimed P's
represent processes in two consecutive levels of the recursion. Note that the
process number for Pa must be less than that of P, while the number of Pd
must be greater than that of P a

ba a c
do P P0

Pa PC d P a Pc d
a. Intra-level b. Inter-level

Figure 3. 0S Graph for Analysis of Recursive Subroutines

18

SERIAL INPUT-OUTPUT CALLS

Many oneway input and output devices, such as card readers or line printers, are
read or written serially. To ensure that the information received from (or trans-
mitted to) these devices is interpreted (or displayed) as intended, the given
order of reference must be maintained For example, if lines were sent to a line
printer in any order other than that given by the programmer, the intended format
would be disrupted. Thus, for each serial device a 0 T arc will connect those
pairs of processes which include consecutive references to that device. Let
P 1 1 P 2 . P3, P 4 . P 5, and P 6. in that order, comprise a prog.-amn, and let P-° P 3
and P5 incIude reference to a particular serial input or output device. The S
and OT for this program will then appear as shown in Figure 4.

°S:
0

0
PIP2P 3 p 4P5p

p p4

o4

3 4 P5 P6

Figure 4. Serial Input-Output Calls

".9

- -

PROGRAMMING LANGUAGE FEATURES EFFECTING
PARALLELISM
The language-independent approach to recognizing parallelism through study of
formal translator structures permits identifying general aspects of essential
ordering without getting involved with features of particular languages.

Specific language-dependent features are also important since the intended
applications are programs written in actual languages. By considering the
specific differences in actual languages, a comparative basis can be established
for recommending that particular features be used for parallel recogrition, that
features be used as essential order indications, and. indeed, that langaages contain
particular features to aid in the recognition of parallelism.

Some specific features of languages will now be investigated. Loop statements
yield the largest potential ftr parallelism, since each set of embedded lo'cops
multiplies the number of opportunities for parallel execution. The FORTRAN DO-,
ALGOL FOR-, and COBOL PERFORM- statements are analyzed. TTrcordi'ional
transfers cause problems in the recognition of loops and in croseing the scope
boundary of variables. Conditionals which are data-dependent pose the principal
impediment to parallelism. Evaluating groups of conditionals i' parallel, rather
than scattering them through a program, minimizes the numbe,- of separately
ordered parts of a program. Duration of definition of in instanue of a variable is
important to the mapping of instances into memory on a noninterfering basis. A
beginning on this analysis is reported.

LOOPS

Loops play a dominant role in programs written in present program, ung languages.
They permit programmers to iteratively express repetitive piocesacs with economy
of program. The iterative nature of loop control is adequate fu" sequential execu-
tion. However, the iterative form impedes parallel setup of the control for loop
bodies. Goeden* has concentrated on explicit loop constructs as the momt promising
sources for parallel activity. He proposes that a large fraction of all ocpt are
parallel, both in the control and the loop bodies, and recommends explicitly adding
the ability to specify loops as either parallel or iterative in the programming
language.

SWe will now consider the control of loops and parallel establishment of multiple
paths of control even when the control mechanism is iteratively expressed in the
programming language.

Some opportunities to establish in parallel more than one execution of a loop body
are determined by the algorithm. The algorithm requires for concurrent execution
that not only must the control variable be independent of its predecessor control
variable, but also independent of its predecessor loop body. The loop control
statements in FORTRAN, ALGOL, and COBOL will be compared to see what other
opportunities exist for establishing concurrent paths of control for loop bodies.

20

"1 - •. . . • -,_ _ _ • I _Ii I _ I I

At compile time, if the number of executions of a loop is recognizable as an integer,
then parallel paths may be established. If the number of executions is recognizable
at execute time upon encountering the loop entry, then parallel path controls may
be established at that time to initiate that number of loops.

Conditional statements within a loop body that can lead outside the loop with no
intent to return are possible in ALGOL and FORTRAN. COBOL and AL4.0L have
explicit forms of loop control including condition evaluation to determine loop
completion. Evaluating such a condition generally depends on loop-created data
(otherwise an explicit form for indicating the number of iterations of the loop
would have been used). Consequently, there is an essential order between cycles
of the loop when a condition determines the exit. In some cases it may be possible
to reformulate the loop to separate all condition evaluations from loop body

execution,

FORTRAN and COBOL program units are characterized by static storage require-
ments determinable at compile time. ALGDOL program units, on the other hand,
assume dynamic storage requirements. The effect of this difference on loop
control is to allow signific:antly more ways to defer to execute time the decision on
number of loop executions in ALGOL, and to make loop executions essentially
ordered.

Further interpretations and restrictions on these general ideas are developed in the
following three descriptions of the particular loop statements in each language. ,

FORTRAN DO Statement*

A DO statement is of the form

DOni .m 1, m V2, m 3

where: n is the statement label of an executable statement occurring as the
terminal statement of the associated DO. The statement must follow
the DO and be in the same program unit. The terminal statement may
not be a GO TO of any form, arithmsetic IF, RETURN, STOP. PAUSE,
DO statement, nor a logical IF containing any of these forms. In effect,
this allows only the DO loop control to follow execution of the terminalstatement.

i is an integer variable name of the control variable,

m is the initial parameter,

m2 is the termination parameter,

m 3 is the incrementat 4, , parameter if predent, otherwise + I is implied. -•

This description of the FORTRAN DO statement is adapted from reference 3.

21

Each ml, mi,, and ms is either an integer constant or integer variable reference.
At time of execution each must be positive and mI < m.. The range of the DO is
the set of executable statements following the DO statement through the terminal
statement. Procedure actions required within the range are assumed to be
temporarily within the range.

Redefining (by assigning of a new value to) any of i. m j, ma, M3 is prohibited
during the execution of the range of the DO. This means that the maximum number
of executions is always known before first executing the range.

The DO statement execution seque.,ace is 1) i = ml; 2) execute range, if the terminal
statement is reached; 3) i - i + ma, if i < mi GO TO 2); 4) exit with DO satisfied.

Exiting from the range of a DO may occur by execution of a GO TO statement or an
arithmetic IF, that is. exiting may occur without satisfying the DO.

A GO TO or arithmetic IF statement may not cause control to pass into the range
of a DO from outside its range, except as described below for the extended range.

All values of the control variable can be assigned at compile time if the following
two conditions hold: 1) ml, mi, and ma are integer condtants, 2) there occurs
no exit from the range of the DO by execution of a GO TO statement or an arith-
metic IF statement. If these conditions hold, it is possible to establish k - 1 plus
the greatest integer in (m., - M 1)/mM parallel assignments.

If condition 1) in relaxed to permit integer variables for any of the m1 , m2, or m Is.

then at compile time it is possible to add the above computation for k; as a control
process which can then establish that number of parallel control paths for executing
the range s

Nested DO statements are possible so long as the range of the contained DO is a
subset of the containing DO. Execution order is inside out. A complete nested nest
of DO statements occurs when the first occurring terminal statement of any DO
statement follows the last occurring DO statement and the first occurring DO
statement of the set is not in the range of any DO statement. For such a completely
nested nest of 00 statements, an extended range is permitted for the innermost of
the DO statements, from which control may pass external to the next and return to
the innermost. No recursive use of the extended range is permitted.

It is not necessary that the range of an embedded DO statt.. -nt be parallel for the
range of an outer DO to be paraleL A nest of DO statements may be totally
parallel, if all DO statements in the nest are parallel. In this case the product
k' k. x... x k, paths of control may be established.

22

1

7

ALGOL FOR Statement

The syntax of the ALGOL FOR statement elements (given in a modified Backus
normal form) which are important for tnis loop discussion are as fellows.

(for list element ::arithmetic-expression) I (arithmetic -expression) step

?arithmetic-expression) until (arithmetic-expressio) Io

(arithmetic -expression) while (Boolean-expression)

(for list) ::= (for list element) I (for list), (for list element)

(for clause) ::- for (variable) :a (for list) do

(for statement)::, (for clause ',(statement) I (label : (for statement)

A for clause causes the statement which it precedes (the forloop body) to be
repeatedly executed 0 or more times. In addition, it performs a sequence of
assignments to the control variable from the for list.

The sequential execution expected is the following: 1) initialize the control variable
by assignment from the value of the first for li3t element, 2) test for an invalid
assignment; if it is invalid, go to the successor statement of the for statement,
3) execute the statement (exit if a So to leading outside the statement is encountered),
4) perform the next assignment frowa the next for list element in the order written
.o the control variable doing any necessary evaluation of arithmetic expresaimas,
using the current values of primaries, and then go to (2) again.

In order to establish parallel paths of control for all executions of the loop body,
the number must be known before any are executed. For this number to be known,
there must not be any condition which is dependent upon loop-created data that can
change this number. Consequently, for Usts made up frosT for list elements of the
AE or AE step AE until AZ types (categoryl) are potentially unordered. Each for
list element of the 71'while BE type (category 2) Imposes an essentially order"eT

sequence of loop body executions. A for iHst may consist of an alternating sequence
of for lists from categories I and 2, in which case a similar sequence of potentially
unordered and essentially ordered executions of the loop body exist. Any data-

dependent conditional In the for which can cause exit from the loop body
imposes essential order. Hereafter, we assume no such conditional and,
thts, we consider only for iHst elements of category 1.

If no assignment is made into the control variable by any statement In the loop body,
then all its values are obtained from the for list, ALGOL permits assignment to
the control variable or to primaries in thearithmetic expressions of the step AE
until AE parts of a for list element to be made in the loop body. If such assignments

This is a partial syntax from reference 4 adapted by leaving undefined some
non-terminal syntactic elements such as "(arithmetic-expression)".

23

"4. $

are unconditionaily made. and if they are a function of only values existing prior to
the for statement, or of the prior control variable of these primaries, then the loop
control may be separately aiialyzed from the rest of the loop body.

An apparently iterative sequence for establishing the values of the control may be
replaced by parallel enumeration through recognition at compile time of the avail-
ability of the values of all primaries necessary for determining all for list elements,
Should the values of all primaries be unsigned numbers, then the paths can actually
be established at compile time. If any of these primaries is a variable and all such
variable primaries have assignm-ents into them restricted as stated, then the number
of paths of control can be determined prior to first execution of the noncontrol
portion of the loop body.

The control variable becomes undefined if exit results from exhaustion of the for
list. The last value of the control variable i- preserved if exit from the for
statement occurs because of a Lo to in the loop body.

Side effects of a procedure call can cause assignments outside its body or exits
other than the return to point of call. Such procedure calls occur in the for body or
in the for list. Eit" 3r of these can prevent or make indetermirate at compile time
the estab-lishment of parallel execution of the for body. Huxtables has classified
procedures as follows: normal - having no side effects, conditional sneaks - side
effects are conditional on context, and unconditional sneaks. The conditions
for recognizing normal procedures are as follows: nc OWN variables, nonlocal
assignments, abnormal exits, nor use of any switch; internal procedure calls
limited to normal procedures; parameters exclude label and switch; and no explicit
assignment to parameters called by name. Conditional sneaks are the same as
normal except that explicit assignment to parameters called by name is permitted.
All other procedures are assumed to be unconditional sneaks. He describes a
technique for classifying procedures which involves discovering the total of all
possible run-time procedure call structures of the program. Although further
analysis might show that unconditional sneaks would not require essential
ordering, the effort would likely be greater than the benefit gained.

COBOL PERFORM Statement"

The PERFORM statement is used to depart from the normal sequence of execution
in order to execute one or more procedures either a specified number of times or
until a specified condition is satisfied and then return control to the normal
sequence - the statement following the PZRFORM.

The four general formats are as follows.

I

F
1) PERFORM procedure-name- I THRU procedure-name-2:2

ridentifier- Ii
2) PERFORM procedure-name-i E THRU procedure-name - 2 integer-I TIMES

3) PERFORM procedure-name-I ETHRU procedure-name-2] UNTIL condition-i

4) PERFORM procedure-name- I THRU procedure-name-2]

index-name- findex-name-21 fliteral-3
VARYING id 1) FROM literal-2 .7 BYUN7L condition- I

A indlex-name_4. Jtrne~ame_5• Byliteral. 6 -21

(index-name-5) -
AFTER idenaie-4 FROM ;literai-5 jBY UNTIL condition

identnfierer -5iJ identifier-6-j

LrAFTER .. .

Each procedure-name is the name of a section or paragraph in the Procedure Division.
Each identifier represents a numeric elementary item described in the Data Division.
In formats 2 and 4 with the AFTER option, each identifier represents a numeric item
with no positions to the right of the assumed decimal point. Each literal represents
a numeric literal. A

There is no necessary relationship between procedure-name -I and procedure-nrme-2,
except that a consecutive sequence of operations is to be executed in every ca.se be-
ginning at procedure-name-I and anding with procedure-name-2. In particilar, 0Ci
TO and PERFORM statements may occur in the sequence. If there are two or more
direct paths to the return point, then procedure-name-2 may be the name of a paragraph
consisting of the EXIT statement, to which all of these paths must lead.

Format I corresponds to a call of a procedure without actual parameters, In format 2,
the procedures are performed the number of times specified and, therefore, parallelpaths of control may be unconditionally established. At PERFORM execution, the value

of identifier-I or integer-I must not be negative. If the value is zero, control passes
immediately to the statement following the PERFORM statement. Once initiated, any
reference to identifier- I has no affect on varying the number of times the procedures
are executed. If given as integer-i, the control may be set up in parallel at compile
time as long as the procedures in separate iterations are parallel. If given as
identifier- 1, the number of control setups may be determined from the value of
identifier-I on encountering the PERFORM at execute time.

The UNTIL condition parts of formats 3 and 4 preclude parallel execution, except in
those cases where the conditions are fully evaluatable at compile time, or the or-
dered set of results of condition evaluations are determinable prior to executing the
procedures. To achieve thc equivalent of the AL43OL construct until AE, the condition
would compare the index name (or identifier with the value of the"esired limit).

25

Format 4 permits setting up one, two, or three control variables, testing their
corresponding conditions, and if all are false, executing the procedures. After this,
the last data-name is altered by the appropriate amount and the corre3ponding
condition retested. Whon a condition is true, other than the first, that data-name is
ivinitialazed, and the next preceding data-name is augmented and tested. When
condition-i is true, the PERFORM is finished.

In addition to the restriction on parallelism caused by the UNTIL condition parts,
control variables other than the first are reinitialized to, the FROM value during the
PERFORM. Their values may be altered by the procedures from the values when
the PERFORM was encountered; likewise, the index-names a'id identifiers occur-
ring in the BY part of any of the control varlables and any variables occurring as
part of the conditions may be altered. Any such alteration will prevent parallel
execution unless either numeric literals (or identifiers whose values are constrained
similarly to the ALGOL primaries used in AE) are used for these alterations.

UNCONDITIONAL TRANSFERS

An unconditional transfer of control to another part of the program causes the
following problems: 1) possible creation of loops and 2' crossing a boundary of
scope of variables.

Potential creation of loops is detectable. An algorithm for detecting loops given

the prccess connection matrix has been given by Marimont. ' All program loops
created by unconditional transfers include a backward jump. Not all backward
jumps indicate loops, since the order of sequential programs can be scrambled
using unconditional transfers. At compile time, the possible paths of control must
be indicated. If paths are mutually exclusive, not only should the mechanism for
enabling one path be provided, but also the outputs from paths not taken should be
made invalid and the particular need for inputs required by such paths should be
released.

During the execution of a serial program. crossing a boundary into the scope of a
variable serves to reserve space for, but assign an undefined value to, any
locally named (non-OWN) variable until some value assignmert has been made to
it. In ALGOL, in particular, a variable globally named the rame as a locally
named variable is inaccessible in the local block Crossing a boundary out of the
scope of a defined variable as a result -' -,i uncorditional transfer (or otherwise)
snould result in that local variable b undefined and the storage allocated to
it being re]. ased.

different scopes having the same name may be accessed concurrently, Consequently,

separate internal egisters are required for all valid instances. Also, exiting a
score :,f a variable 13 not sufficient for making invalid or undefining i le variable
since some other process may still require it. Consequently, either a variable
must remain d..ined until all segments of programs are executed which require it;
or separate copies of the variable should be createl for each tise, in which case use
becomes synonymouns with release of the storag.. ior the variable.

26

yWe-

0 4

CONDITIONALS

Language constructs for conditional establishment of paths of control based upon the
result of a single condition are used in most programming languages. The form is
to first evaluate the condition and then set up a path of control for the single path
corresponding t(the result. N-way branching constructs can be reduced to
selection of one of N alternatives also based upon a single condition.

Conditional establishment of a single path of control presents a problem in deciding
which instance of a register is referenced by a process following the, condition when
several instances -ould be meant, depending on the actual path executed. Alterna-
tives for solution of this problem are based on the duration of definition of an
instance.

SEQUENCE OF CONDITIONALS

Languages that group conditionals for evaluation with action selected as the first to
be true (decision tables), or languages that have a list of condition - action pairs of
which the first condition to be true selects the action (LISP) - provide opportunity
for executing the conditionals in parallel. When logical relations .xnong a group of
conditions are evaluated to select a particular action process, the irdividual con-
ditions may be evaluated in parallel as long as 1) evaluation of any conditional
does not modify the result of some other conditional in the same group, and 2) all
operands required for evaluation are defined.

The first qualification may be met by having temporary storage locations into which
all Instances of store operations assiociated with conditional evaluation are rmiade, 3
with stacking or tagging to indicate the creating condition. A conflict may occur
because of name reuse in store operations temporary to or incidental to the con-
dition evaluations. This conflict may be resolved by reference to a stack or tag
associated with the name occurring in the nearest condition not following the con-
dition being evaluated. By this means proper conditional evaluation will take place.
The values of named variables that are later required and are created during
evaluation of the satisfied condition may be permanently stored prior to continuing.

The second qualification requires defined (valid) operands for conlitional
evaluation. To permit recognition of these we must know which instaace of each
name is appropriate. For some conditionals, no instance of an operand need be
appropriate. For axample, assume that creation occurs as An action following
some conditional evaluted earlier in the given sequence. That prior conditional
must have become true and that action taken before the current conditional can be
true. Therefore, in this case the conditional is inconsequential. Several creation
points may be appropriate. With sequential evaluation, a stack can be used to
show the order. With parallel evaluation, the completion order may be arbitrary,
so an indication of the creating process is required to preserve the sequence as
originally given. Parallel evaluation of conditionals appears generally ,o result In
unnecessary work for the sake of finding the desired single action more rapidly,

27

When sufficient conditionals are evaluated to uniquely select the following action
process, any other conditional evaluation can be suspomnded (and the temporaries
there created can be released).

The single action selection is appropriate to sequential languages. If this is the
case, the sequential language has implied false conditions as inputs to all but the
first occurring condition The opportunity to sequentially test a particular con-
ditional only occurs when all prior conditionals are false. Parallel evaluation of
conditionals in such a case should select the first occurring true conditional for
action. There are applications where multiple actions may be appropriate and
therefore parallel action paths may be executed. The algorithm will identify these.

DURATION OF DEFTNITION OF AN INSTANCE

Creation of instances of registers suggests that such registers are defined for all
time after creation. In practical application, these instances have a last use as
process input. At completion of this last tise, the instance is of no further use and
may be "unnamed", which serves to make it undefined thereafter. The interval
between naming at creation and unnaming after last use is the duration of definition.
This study has not been primarily concerned with qu(stions regarding duration of
definition, since such questions are more properly related to the allocation or
mapping of names into memory without conflict. In order to exploit the duration of
necessary definition among variables, a many-to-one mapping of names into a

memory lc-,tion on a non-overlapping duration basis is required.

The algorithm for determining essential process ordering uses less information than
is required for determining the last use of a name. For example, the T relation
between multi -input, multi-output processes eliminates a number of process com-
parisons, any of which may include the last use of any particular variable. Also,
determination of any one name in the intersection of output and Input sets is sufficient
to establish essential order between two processes without completing all possible
name comparisons in these sets. Determining the last use of a name requires
checking all input sets of processes that are T successors of the creating process
for occurrence of the particular created name. Some reduction in the amount of
checking can be achieved in those cases where the language provides a limit on the
scope of a variable and the durationa are extended to this limit even if last use is
earlier Other reduction may occur when only one of several separate instances
ma) be referenced by an execution, in which case the originally formulated program
mu-t have included conuitionals. The naming could be the same for all such
-nutually exclusive instances.

pije recognition program for last use in present programming languages is impeded
h>• the implicit reuse of names as outputs of processes with actual independent
meaning Uniquely renaming thes, nameq having multiple meanings as proposed
achieves separate registers for each so that no name has more than one meaning.
The expen;e of doinp this is tý" tt no ..egister bf.comes undefined and thus no register
c- be reused ir, a program.

28

*A- - - - - -

A comparison in the programmer-givcn name space of oi n Ok 0 € is an indication
of multiple use of names. Each such name in the original order of processes
determines a partition Zcross the set o: processes that use that name as input If
a last use of a variable occurs in a particular statement, the use should bee early
in the statement evaluation so that the location can be freed, or so that the
variable can be reassigned by a parallel path. Other variables having later use
may be postponed in the particular statement evaluatian. A suggested algorithm
may be to minimize the duration in storage for any var-able, since the duration is
loosely related to the freedom to parallel process.

Duration of instances will be considered in more detail in a future report, where the
problem of identifying the instances from names will be treated.

.2I

29

RELATED INVESTIGATIONS

The algorithm is sequentially formulated. Application of the algorithm to itself
is suggested for analysis done or a highly parallel machine. Several alternative
ways to view this algorithm are suggested.

Application of the algorithm to the syntactic definition of context-free languages
to classify productions of the language that might be done in parallel is described.
A method of determining the "essential complexity" of a programming language
is suggested.

PARALLEL APPLICATION OF THE ALGORITI-IM

An alternative way of applying the algorithm is to analyze at each step in parallel
all previously unanalyzed S relations then existing. For each, the result may be
S, in which case T is extended; or the result may be unordered, in which case a
new set of unanalyzed mS relations will be created. This new set of S relations,
if nonempty. connect processes furtrY r apart in the given order. If empty, then
analysis is complete. Thus, for N total processes, there are no more than
(N- I) sets of comparisons required to detect all instances of parallelism. If we
are given a linear ordering of N pre-esses, the worst case is N parallel processes.
The first step would perform (N-I) input-output comparisons and produce (N-2)
relations in r.S. Each of these relations connect processes two apart in the ini.ial
order The second step would thus have (N-2) comparisons, and so on for (N-i)
steps, until all *N(N-1) comparisons are made. It is necessary to retain the
ability to link between any two disconnected chains of S-linked processes (each
chain having 0 or more processes) until it is certain that there is no connectirg
S relation between the chains.

It is possible to develop T initially, and from T develop S. If all IN(N-1)
comparisons are conceded as being required, they could all be done in parallel.
Any nonemply intersection causes an entry in T. Alternatively, there. may be a

significant advantage in completing in parallel all comparisons of a particular
process output (or output set) with all successor input sets. When done for all
processes, T may be completed by forming the transitive closure.

PARALLELISM IN LANGUAGE SIN rACTIC DEFINITION

One question which has been explored is the applicability of the algorithm for the
detection of parallelism to the syntactic definition of certain languages, such as
ALGOL The results might be classification of the productions of the language
which can be applied in parallel, so "hat the syntax recognition part of the com-
pilation process itself could be speeded up by the application of multiprocessing.

30

This would be essentially an experimental study, which to N- effectively carried out
would require a computer program for the algorithan because of the large number
of syntactic classes to be considered. It appears likply that empirical separation
of the syntactical elements of a compiler language A ould achieve results not much
worse than those achieved by application of the algorithm.

Theoretically, it might be useful to have a description of classes of product-.ons
which can be performed in parallel. Scme insight into the "essential complexity"

of the language might be obtained in this way.

The "essential complexity" of the syntax of most programming languages may be
reduced considerably by applying an algorithm developed by Parikh.1 He shows i
that an- context-free language can be replaced by an ambiguity preserving
grammar, with all productions except S (the initial non-terminal) in the form:

A-aAbAb

A-c

where A is any specific nonterminal iS. and a, b, and c are strirgi of terminals
with both a. b not null.

As an example of the effect of application of this replacement, let an arithmetic
statement be defined by:

A (arithmetic Ftatement) : (variable) - (arithmetic expression)

A2 : (arithmetic expresslonN :: (termfl(arithmetic expressionO (add op) (term!

A 3 (add op)::u'+t-
T: (term)n:: (fsctor)l terrnm (mult op) (factor)

M: (mult op):: - * I I

F: (factor) :: -(integer) I (variable) I (arithmetic expression)

If we use the capital abbreviations preceding the nonterminal syntactic classes,
the non-terminal vocabulary VI A I A,. A@. As. M, T, 1. IF we abbreviate
integer by i and variable by v. the terminal vocabulary Vt (i, v, +, ., ,, / "

In our language syntax subset, the initial nontermninal S is A,. In effect, Parikh
asserts that the only other nonterminals required are those which are directly
recursive. In what follows, we show that the given definition of arithmetic
statement. involving six syntactic classes (A1 , A2 , A 3 - M, T, and F), can be
written in terms of only two syntactic classes (A 1, 71. Of course, A1 is neces-
sary since it is the "sentence. " The single recursive syntactic class is not
necessarily T (F or A 3 would have done as weWl. This illustrates the
recognition and elimination of indirect recursion.

Table I shows the original productions rewritten as individual productions, anc'
successive replacements yielding in the right column the rediction to two syn-
tactic classes A, and T. Productions of the form T-T are eliminated as redundant.

31

%@

Table I

Reduction of Syntactic Classes

Replace A2 Replace F Replace A3 by For two righthand T's
byT by T + and- ; M by substitute i and v for* and / one T. then the other

AI -v=A2 AI - v=T AI - v=T AI -v •T AI - v-T

A 2 -T

A2 -A2A3T T - TA3T T - TA3T T - T+T T - i+T

A3 + A3 - + A3 -+ T - v+T
T - T+i

T - T+v

A 3 A 3 - - A 3 - - T-T-T T- i-T

T"F T-F T - v-T

T- T-i

T - T-v

T - TMF T - TMF T-. TMT T - T*T T - i*T

M M M T - v*T

T - T*i

T - T*v

m-I U-" T- T/T T-.i/T

T - v/T

F A F- T T-" T/i

T- T/v

F- i F" i T- i T- i T- i

F_ v F. v T- v T- v T- v

32

44l

Application of the algorithm for the detection of parallelism to the syntactic
definition of a programming language requires that the order of application of the
productions be specified. The order chosen by the programmer in the syntax
recognition portion of a compiler for a particular langu:age presumably provides
more nearly efficient recognition of the more likely strings. Therefore, some
value judgment is required in selecting this order which is unrelated to the
L.ctual syntax. Experimental determination of the relative occurrence over a
large set of programs of the various strings allowed by a language could be used
as an aid in finding improved ordering for productions. Following all possible
production paths will obviously recognize the string if correct, at the expense of
following mostly incorrect production paths. A compromise in the number of
levels in the syntax that matches the number of parallel paths thal can be con-
currently followed may be desirable. Introduction of other equivalent sets of j
productions (in other oreers) may be done without reducing the power of the
language. However, as our example indicates, such introduction may increase the
number of productions very rapidly and complicate the recognition procedure so
much that application of Parikh'& result would be necessary to practicably reduce
the number of syntactic classes to a minimum.

3.

33 4÷

PROGRAM FOR THE NEXT INTERVAL
1. Develop techniques for recognizing instances of registers given the names

in a program.

2. Continue to investigate formal program structures with emphasis on arrays.

3. Continue to identify the effect of language features on parallelism.

4. Examire criteria for partitioning a program into processes.

5. Discuss imv!ementation of parallel analysis.

6. Describe a language for simulating the essential order detection given the
instances.

43

I
x 00-0IW

9- If347 k

A!

BIBLIOGRAPHY
1. Detection of Implicit Computational Parallelism From Input-Output Sets,

H. W. Bingham, D. A. Fisher, and W. L. Semon, December 1966, To'chnical
Report ECOM-02463-I, Burroughs TR-R66-4, AD645438.

2. Explicit Parallel Processing Description and Control in Programs fox Multi-
and Umn-Processo~r Computers, J. A. Gosden, 1966, FJCC, AFIPS, Vol. 29,
pp. 651-660.

3 FORTRAN vs. Basic FORTRAN, October 1964, CACM, Vol. 7, No. 10,
pp. 591-625.

4 REvised Report on the Algorithm Language ALGOL 60, P. Naur Ed., 1962-3,
Computer Journal, Vol. 5, pp. 349-367.

5. On Writing an Optimizing Translator for ALGOL 60, D. H. R. Huxtable, ch. 9,
in Introduction to System Programming, P, Wegner, Ed.. 1964, Academic
Press, pp. 137-155.

6 COBOL Edition 1965, Department of Defense, GPO.

7 A New Method of Checking the Consistency of Precedence Matrices,
R. B. Marimont, 1959, JACM, Vol. 6, pp. 164-171.

8. On Context-Free Language, R. J. Parikh, October 1966, JACM, Vol. 13,
No. 4, pp. 570-581.

I

35

AMSEL-NL-P-1 30 March 1967

DISTRIBUTION LIST

Second Quarterly Report
Contract DA 28-043 AMC-02463%E), Burroughs Co,.poration

No. of Copies

Defense Documentation Center, ATTN: DDC-IRS, 50
Cameron Station (Bldg 5), Alexandria, Virginia, 22314

Office of Assistant Secretary of Defense (Research and I
Engineering) ATTN: rechnical Library. Rm. 3E1065,
Washington, D.C. 20301

Director, Defense Atomic Support Agency, ATTN: Document 1
Library Branch, Washington, D.C., 20301

Defense Lintelligence Agency, ATTN: DIARD. Washington, D.C., 1
20301

Director, Defense Communication Agency, ATTN: CODE 333, 1
Washington. D. C., 20305

Naval Ships Systems Command, ATTN: CODE 6312 (Tech: ica] 1
Library), Main Navy Building. Pan. 1528, Washington,
D.C., 20325

Naval Ships System3 Command. ATTN: CODE 6686B, 1
Department of the Navy, Washington, D.C., 20360

Naval Ships Systems Command, ATTN: CODE 6454, 1
Department of the Navy, Washington, D.C., 20360

Naval Ships Systems Command, ATTN: CODE 6745B, I

Department of the Navy, Washington, D.C., 20360

Director, U.S. Naval Research Laboratory, ATTN: CODE 2027 2
Washington. D.C., 20390

Commanding Officer and Director, U. S. Navy Electronics I
Laboratory, ATTN: Library, San Diego, California, 92101

Commander, U.S. Naval Ordnance Laboratory. ATTN: 1
Technical Library, White Oak, Silver Spring, Maryland, 20910

AFSC STLO (RTSND), Naval Air Development Center, I
Johnsville, Warminster, Pennsylvania, 18974

* 30

"*

.4 - J
1

W", LINN

Distribution List, Contract DA 28-043 AMC-02463(E),
Second Quarterly Report

No. of Copies

Rome Air Development Center (EMTLD), ATTN: Documents 1
Library, Griffiss Air Force Base, New York, 13440

Headquarters, Strategic Air Command, ATTN: DOCE, 1
Offutt Air Force Base, Nebraska, 68113

Systems Engineering Group (SEPIR) I
Wright-Patterson Air Force Base, Ohio, 45433

Electronic Systems Division (ESTI), L. G. Hanscom Field, 2
Bedford, Massachusetts, 01731

Headquarters, Ground Elct Engrg Installation Agency. 1
ATTN: GEETR, Griffiss Air Force Base, New York, 13442

HQS, Air Weather Service, ATTN: AWSAE/SIPD, 1
Scott Air Force Base, Illinois, 62225

U. S. Air Force Security Service, ATTN: ESD, 1
San Antonio, Texas, 78241

Air Proving Ground CTR (PGBPS- 12) ATTN: PGAPI 1
Eglin Air Force Base, Florida, 32542
Rome Air Development Center, ATTN: Morris Knapp, 1

Griffiss Air Force Base, N. Y.. 13442

Headquarters, U.S. Army Munitions Command, 1
Dover, New Jersey, 07801

Commanding Officer, 52D USASASOC, Fort Huachuca, 1
Arizona, 85613

Commanding General, U. S. Army Comoat Developments I
Command, ATTN: CDCMR-.3 Fort DAlor, Virginia, 22080

Commanding Officer, U. S. Army Sec Agcy Combat Dev Actv, I
Arlington Hall Station, Arlington, Virginia, 22212

Technical Support Directorate, ATTN: Technical Library 1
Bldg 3330, Edgewood Arsenal, Maryland, 21010

Commanding Officer, U.S. Army Nuclear Defense Laboratory, 2
ATTN: Library, Edgewood Arsenal, Maryland, 21010

Commanding General, U. S. Army Electronic Proving Ground, 1
ATTN: Technical Information Center, Fort Huachuca,
Arizona, 85613

3

ZZ.,
"37Mý;

% - .• ..

A*%

Secunty ClassificationI DOCUMENT CONTECL DATA • R&D

rfSecuny cleoele,.oR of tieee bedy of obesnect and ndexng amflolelO must be eoneed wh.en 1h. -v 11.ll r.pr. . .d)

I ORIINATING ACTIVITY (Cope~ele oatetoh) 20 NRPORT 9ICUVRTV C . C*''C TO.

Burroughs Corporation Unclassified
Defense,Space and Special Systems Group GO
Paoli. Pennsylvania None

3 REPONT TITLE

Detection of Essential Ordering lmplicit in Compiler Language Programs

4 DESCHIPTIVE NOTES (Ty"p of mp.., and ,nc/u.,ve de#*.)

Quarterly Progress Report,October 15, 1966 - January 20. 1967
S AUTHOR(S) (Le' -no lIfet ree -lIttil)

Bingham. Harvey W.
Fisher. David A.
Semon. Warren L.

6 REPORT DATE 7e TOTAL NO O r AGE[7T NO O7 6EFS
February 1967 42 8". **I NO 0109)

So CONTRACT ON GRANT o-O 90 ONIGINATON'S R N ORT NUMOWS)

DA 28-043-AMC-02463(E)
6 Po.jC,, No TR-67-3

1E6 20501 A 485
-j3 1.-1 Tv5N OU O(S) (Any .101el ,,ub.e. Nhee &Ye be eeem do

d -01 ECOM-02463-2
10 AVAIL ABILITY LIMITATION NOTICE$

Distribution of this document is unlimited.

I1 SUPPLIEMENTARY NOTES It SPONSORINO MILITARY ACTIVITY

U. S. Army Electronics Command
Fort Monmouth, New Jersey 07703

- • tAMSEL-NL-P- I
13 ABSTRACT WMELNL,-P--

This 1.3 the second report of an investigationkto determine how implicit parallelism
in programs written in compiler languages can be recognized and exploited by
machines witi highly parallel organizations. An algorithm is described which
identifies the complete serial ordering among parts of a program based on the
input-output sets of these parts, the ordering given by the programmer, and any
known essential order among the program parts. The algorithm ;s proved and a
demonstration given that a minimum number of comparisons of input-output sets
are made. Application of the parallel recognition procedure to subroutines, loops,
conditionals, recursive subroutines, and serial input-output device calls is ex-
plained The effect of particular features of se'eral compiler languages on paral-
lelisn are discussed, These features include loops, transfers of control, (,On

ditionals, and conditional sequences. Requirements for replacing iterative loo- Znr -
trol by parallel pathe of control are given. Alter T-itive algorithms fcr recognizing
essential ordering are suggested which can be executed moie effectively on a
highly pataliel machine. Application of the given algorithm to the syntactic
definition of a context-free language is also consiaered.

DD FOM 1473
i JAN CA

41 ItCuluity CIsaificatiofi

_71

m - .~ ..- .- -

~~A

44

14KY OOS_ LINK A J LINW a I.

Parallel Programming 41

Program Flow Anal~sis 4 1
Program Languages2
Context-Free Grammar's1
MAulit iprocessing

INSTRUJCTIONS

I ORIGINATING ACTIVITY Enter the name and addies,% 10. AVAILABILITY LIMITATION NOTICES Enitr -1,~ Iti
of the contractor. subcontractor grantet. Department of I itations on further disseminatioo 0, the rePott other thil th, S.

lath repot.v$o te raiii. croa@ato)totn imiposed by as, 'ftt) cas i(ication, us'ng standdr.) state cot,
the epor It such an

2a REPORI SECUNTY CLASS1IrICATIO1N Enter the o% tr- (11 "Quialified reaiie'ttens mut) obtain cps ifthi,
all security classificat ion of the report. Indicate whetherreot(m D "
"Restricted Data' is included. Mtarkitng ts to be in ac-ord- eotfo D.
ance with appropriate seciwitty regulations. ()"Foreign annouinceme~nt and dissemnination Of this

2h GROUP Automratii downgrading is specified in Doll re- ool by DDC is not authorized.'
rective S200. 10 and Armed Forces Industrial Manual. F.ntfer 11'U S GoOrnmetr atsencies may obtlin copies .,t
the group number Also. wheni applicable, show that optional .his report drIretl from D1Wi Other quttr OCK
markings ha,,' been used for Group 3 and Group 4 as alithor. users %hall reqea through
red-

3. REPOR'k TITLE Enter the complete report title in alt (4) "Ui 5 nultry agencies may obtain copies of this
,apital tettere. Titles in all cases should be unclassified. report directly from DrIC'. Other crualifieid joers

If a meaningful title cannot be selected without classifica. shot! request through
l ion. show title classification in all capital* in parenthesis
immediately following the title. 'f'.
4. DESRIPTIVE NOTE& If appropriate. enter the type of (4t) "All distitbuitioni of this rapiort is controlled. Quat.
reitort. e.g., interim. progress. summery. ainnual. or final. iftad DDC users shlall reAoust through
Give the inclusive dates when a specific reporting period is
covers&I I h ed.a enfrihe oteOfceo ehi.a

IAUTHOR(S). Enter the same~s) of suthot(a' as eltshow on I Iftervcg D~rtpe l ha f beenaeriaed tor thle toffice pubf c ani%.
or in the rot :irl. Enter last namew, first nama, aidtes initial. caetlepfart &it sof thmeprice. i fo~rbsl otepbi.mi
It military, show rank and branch of Service The no of aet~ at i ne h pie fk~n
the principal otasthe is an absolute minimum remuirelment. 11 II PPLMMENTARY NOTES Use for additional cirplane.
I REPORT BAiTL Enter the dre of the report as day,..".
month. year, or month.l, year. If more than one date appearsr I?. UPONUOINIW MILITARY ACti-VIT'I Enter the name of
on the report, use date of publication. t'ey doeparmental No,rct offices ar Ilsbniatot) Slionsorint (Patr.

7a. TOTAL HUMUES OF PAGES: The total Page couant i~ o)tersac n esoiet ild dea
ohould follow normal paiginatlion Proceduress. i~e.. enter itt. I4 AINSTRACT Entererf abstract gs tinp a brief and ftcrtual
number of paget CoNtaknifng informat1i A. sumntarv Of the doc ument Indic serve of Ore report. #esen though

it may oleo appear elsewhere in th. bridy of the technicaol re
76 NUMBER OF REFERENCE& Enter the total numbier Of port If a~dtlltinal apace is requir-df. a continuation sheet
refeetces cited in the report. shall be attached
S. CONTRACT Oft GRANT NtJMUER: If appropriate, enter It itv higthly desirable thalt tIII* abstrcti o 16000 lsifter
the applicable number of the contract or itranc. under whitc h rports he unclassifieit Each parrorato' of the .4bstra' t shall
the report was written. .nd oith an indication Of the miltitarseat irity clsa'sifica~on
Sh. d. Is Sd PROJECT NUMBER- Enter the apprtopriate, of the informat i-n int the Piaragrapth repreosenreat ~s(TS f
military department identifice ion, such at project number. (Co (U)
subproject number. sysitern numbers, teask number, etc. ITh1ere is no limitat, ,r no the length of the abstract Nots

9o ORIGINATOR'S REPORT NUJMBER(S) Enter the offi. I ci r. the suggested length is fro~m ISO to 225 word'
cial report nutmber by which the clocumetut wilt be identified 14 KEY 16aNDS Key word" AN'e tehrically nieanirlgful terms
and -onrottoled by the originating activity. This number mutt or short phrao. s that charactei'e a reort, and t-a tie used as
be a uque to this report. ondes entries for cataloainrt the report Kos vord 'rust be

Ob OlIERREPRT NMI3E IIIf te rvortbaa een selectvei so that no necurit, ctassifirat ion it roqot-i Id-n
9b OHERREPOT NMHE 3) f te man hs b" ,rg, such as equipoert model itesignatist trade oasr e it.

assigned any Other report numbers (either by the oridineror tn rtc oenm etthclcto a i~ctu

icontest The assignment .f links nut.. anrd aeight. ci

-A2Ptionual rsll:10"

7:

