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FORE WORD

This report covers the second portion of the notes prepared for a seminar, "Mechanics of
Composite Materials," presented at thc Air Force Materials Laboratory in Apriland May 1966.
The work was initiated under Project No. 7340i "Nonmetallic and Composite Materials,"
Task 734003, "Struciural Plastics and Composites." The seminar consisted of Part I -

Introduction, and Part II - Mathematical Theory.

The manuscript of this report was released by the author in June 1966 for publication as an
RTD Technical Report.

This technical report has been reviewed and is approved.

R. T. SCHWARTZ, Chief
Nonmetallic Materials Division
Air Force Materials Laboratory
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ABSTRACT

This ýeport covers some of the principles of the mechanics relevant to the description C
composite materials. The contents of these notes may provide useful informnation for tL
understanding of current publications and reports related to composite materials.

Emphasis is placed on the use of indicial nctatlon and operations. The rules governing t0.
use of the contracted -notation are also outlined. The generalized Hooke's law and its tranc7
formation properties, material symmetries, and engineering constants are also disrussec
The plane strain and plane stress problems are discussed in detail. Finally. the elastic modui
of laminated anisotropic materials, and the strengthof both unidirectional and laminated comr
posites are covered.
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Each tensor can also be arranged'in a matrix form. The indices of each tensorial compo-
neuit can be associated with a specific position In, the matrix. For exaimple, a vector, as can be
... expressed by A, or a column or row matrix form as follows:

.. ... : aI z A a or aO a 0 3 A 2)'): '-1 I 1~ 02 G 2

[- 3

where 1 1, 2, 3, which indicates that the space is three-dimensional. In 2-space.:.= 1. 2,
Equation 2 becomes

0. : A [ or (0 1  a02 (3)

For a second-rank tensor a the -corresponding matrix forms for 2-space and 3-space
are, respectively:

31 3233

* For a fourth-rank tensor, the matrix form in 2-space is:

mmi mi i a ~uaF~aim 6111 ama aain(6)
Lamm a11a ai221

L*21 au0'' 0'2121

A fourth-rank tensor In 3-pae contains 81 components which can be arranged in a 9 xL 9
matrix.

Matrices contain an array 44 numbers. The numbers arranged in, appropriate positions in
a matrix may represent the oomponets of a tensor. This does not mean that tensors and
matrices are identically equal. The components of a matrix may be arbitrary and completely
unrelated. But the components of a tensor,whetherin the Indicial notation or the matrix form,
are not arbitrary. The c3mpone.ts are governed by a set of rules, called the transformation
equations., Therefore, a tensor can be considered as a special type of matrix. Tensors are
in fact defined by the transformation equations. If a set ofl'numbers satisfy certain transfor-
mation equations they are by definition components of a tensor. For each tensorial rank, there
is a corresponding transformation equation. Thus, the coordinate transformation is a basic
feature of tensors.

2
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In a simple geometric term, a coordinate transformation involves the rotation of-ase
reference coordinate system relative to another. The relation between the old and now co-
ordinates, designated by xi and x', are, for i - 1, 2,ý and 3 as follows:

- K,' 11 1 1 a2  13i K3

XI: +tz+ (7)
2s '21 1+t22 2 + 253'

*1*t X +t t a
K.t1 ' 1  32 2 3313

whezre t ijare direction cosines between the i-axis -in the iiew system and the J-axis of the old

one. Equation 7 may be written in a matrix form:

11 22 '3 ''

3 -Lt 3 t32 t933 J X~s

where the usual rule of matrix multiplication' applies 'and this rtile can be expressed in, the

indicial notation as follows:

K;LJ Z 1x 11 a I + t12 2 : + K11

~ * j 3a~t i'2~ 2313(9)
2 + 4 +1214

IL3~2 ~ + 113 I t3K +tI 3t

Two useful onvfentions of the indilutl notation can now be introduced:

1) Range Convention:

Unrepeated index (free indc r)tAkeeall thevalues 1,2,..n, where nis thedimmaiennof
the space.

2) Summation Convention:

Repeated index (dummiy index) -calls for the summation with respect to that index with the
range of summation determined .by the range convention.I

With these conventions, Equation 9 can be written, as:

t.I K 110)

j 3

- -~ 7
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where 115 the -free index and is equal to 1, 2. and 3 in accordance with the range convention,
j is. the: dummy index, as it is repeated in the right-hand side of Equation 10, and a sum-
mation of j with the same range as t, i.e, 1, 2, and 3, Is implied. The use of tunmation
convention replaces the summation sign (capital Sigma) in Equation 9. Both range and sum-
mation conventions are applicable to all square matrices (because all indices must have the
same range) and are therefore not limited to tensors. C,

Equations 7, 8, and 10 are identical equations and it is quite clear that the use of the in-

dicial notation introduces a significant simplif:-ation.

TRANSFORMATION MATRIX

As stated earlier, tij, which for convenience is designated T, are direction cosines between

the old and new coordinate systems. Knowing the angle of rotation between the two coordinate
systems, the direction cosines can be determined limnediately. The components of the trans-
formation matrix T for a rotation about the 3-axis can be derived from Figure 1 and are listed
in Table 1:

0 2

Fi gure 1. Coordinate J1Rotation

4 -
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TABLE I

I1-MATRIX. FOR ROTATION ABOUT 3-AXIS

Components Angles Direction Cosines.,

t11  1'oi01 cos6

1'02 sinG

t1 3  1* 0:1 o0 0

212'O1 90* + 8 -sine8

"22 202-. Cos 8

232'03'=90 0

3101 i goo 0

t32  302 90 0

t 33  j 3'03 01

If M Cos 9and n sinll heT atl above 'can be arranged in a matrix form as follows:

For a rota~tion in the opposite direction of that shown in-Figare 1,981t negative, and the
transformation matrix, deulp'otted T-, is as follows:

T", 01 0(12)

The components of the T-matrix for any otber rJotation can ýbe derived similariy from the
angles listed in Table 1. The subscripts of the t refer to the new and old axes, i.e., the

angle for the direction cosine is that between' the 14th,.Akis of the new coordinateo andth
J-tb axis of the old coordinates.

There are a number bf features of the T-matrix,- as follows:

1) When 6=0.
r1,001

T 01 (13)

5 6

- 7. ~V
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Tits s3Zalled the identity transformation, for which x., x1 . The new and the old coordinates
j are identical.1 2) When - 180",

0 0,
0T1 (14)

This is called the central inversion, for which xI -x'.., x -x *and x = x 3.

3) A proper rotation is defined by a T-matrix with its determinant equal to +1, i.e., iTI =+1.
For a 3 x 3 determinant. its numerical value is the sum of the following products:

t 1 22 33
t t t

12 23 31
t t t
21 32 13

,132
-t t t

21 12 33
"tI t23 t32

"The determinants of the T-matrhx in Equations 11, 12,413, and 14 are equal to +I, and are
thus proper rotations., Geometrically speaking, all of these transformations preserved the
right-hand system of coordinates, as shown in Figure 1. This system satisfies the right-hand
rule, when it is applied to the coordiinate axes, by rotating the 1-axis toward the 2-axis with
the 3-axis as the advancing screw.

If a transformation' changes the right-hand system of coordinates into, a left-hand system.
thiv is called an improper rotation, for which ITI a -1. An example of this transformation is
the reflection of the 1-axis. such that xi -- x, x' - x2 , and x' x 3 . The T-matrix becomes:2: 2]

T [ 1 0J (16)

Note that I T1 -1,' which indicates that the rotation is improper andý the new coordinates X"
are now a left-hand system. This is shown in Figure 2.

6
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2

Figure 2. Improper Rotations

4) The T-matrix must also satisfy a geometric relation known as the orthogonality condition.
If the coordinate axes are orthogonal to one another, the components of the T-matrix, which
are the direction cosines must satisfy

tik t7)ik lk iq

where 8 is the Kronecker delta, and

s I when 'is

Vs 0 when Ij

The Kronecker delta in a matrix form is:

0;.o 1 ] (19)

which Is also a unit zratrix. The use of Kzronecker delta is a very Important tool in tensor
operations.

TENSOR CALCULUS

Three salient features of the indicial, notation mentioned thus far are the range convention.
the summation convention and the Kronecker delta. When they are applied simultaneouuly, one
can~show that N

aI a

8. lk aj 'ik 0k

- . -. ~~~7- ---- '.'
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8.. :2 for�i: 1,2,
SI

(20)
- 3 for j : I, 2, 3I

Another feature of the indiclal notation is a direct correspondence between the number of
free indices. k (not the dummy index, because a11 isascalar, ajjj. a vector) * and the tensorial

rank. The number of components. N, in each term is determined by Equation 1, where k is
the number of freb Indices and n is the number of dimensions.

Finally. in this notation, a comma represents differentiation, as follows:

do
-so (21)
dx. P1'

I

By using the summation convention, one obtains

do1

I
d. do do

I 2 (2�)
dx dx

I 2 3
* V..

dlv a

where, in the last two stepe, the conveational vector notation of divergence is used. Similarly.
for a ucalar function A,

a � .AL4..LA..
Rj 32 dM3 (23)

aVA
grid A

where, in the last two step., the convmntiocal notation for gradient is used.

8



AFML-TR-66-149
Pt li

Finally. 2

2 2 2
1)A + dA + A (24)

2 on2 an2aX a a1 2 3

-div (VAI

- A

which is the Laplacian operator. Since the tensorial rank can be determined by the number of
free indices, a 191 and A,11 are scalars; and AY1 a vector. The fact that the tensorial rank can
be determined by observation is a fe~ature of the indicial notation that does not exist in the:
conventional vector notation.

The divergence theorem can be written, as follows:

a an d A ~ja I dV (25)

where V volume, A =surface. a, exterior normal to A. Substituting a1  A, into Equation 25

lAti ndA fJA~ d V (26)
A V i

This relation canbe used, foroexample. ln te derivation of the Fourier heat conduction equation.
Equation 25 can also be genenhtiasd to a vector equation by using in place of a1

f cr dk f 1  dV (27).-

This relation will be used in the derivation at the equilibrium equation.

STRESS TENSORr

Stress is a measure of the internal forcem in, a ontinuous medium induced ýby surface forces
applied to. a body. The relationship can be defined by

T.3. a-~ (26)

where, T, s surface traction, o, stress tensor, and n1  directional cosines of the surface
on which T "acts. Equation 28 in 2-apace is:

T 2 : 4. 2 2n2 (29)
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The relations can be seen in Figure 3.

2T

T2T

T t

00

22

Figure 3. Stress Tensor in 2-Space

The normal component of the surface traction, T3. can be obtained by

TA T1 n i 'W n. (30)

In 2-space
Tn 2 2 31

flE0jrl +2 V 12n,'n, + 122n 2 (

The tangential component of the surface traction, T , can be obtained as follows: From the
directional cosines n i of the normal to the surface, one can find the directional cosines t i in
the tangential direction by transforming n, through 90'. Since u1 is a first rink tensor,

t tA (32)

where

0~ 0 ii LO 0 1i

10
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Thus
tI -- n2, t3 I , 3 n- (34)

Hence

t z Ti a ' jinjt. (35)

For 2-space

--a n n o+ n2 n + , 2 16

11, 1 2 1212 21 - 2 '222"I

Since

T I Tn -I Ttn2

(37)
T22-Tnt I- +Ttt2

From Equations 31 and 36

T 0' 2 n n2 + 2o n 2i 0 2 ft +(r (n2 -ft In
I II 121 . 2 221l2 +1I112 n 12 2 1 )2

2•2 (38)

22n2 +I a 12 n2

Similarly,

T ~f 2 
,~+r~ 2 3. 2 0t2~ 2.

T qnIn2+ 124r1 ,n2 +22 a2 -ýfI I'I n2 i2122

+ ÷221, 2 n 22 22r.2 n

Equations 38 and 39 agree with Equation 29, as expected., Finally, one can easily show that

T 2 +T 2  (TIn1 )2 + (Tit 1 I 2

T n(T+n-Tn)+T +(TTV

T, Tn + T n12- + (-T t2+ Tzn 1| 1 2 10

TL1 2 2 1 12 (

"I T2

aT2  +T 2

I 2 l
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The equilibrium equation of a continuous medium can be derived from the conservation
principle of linear momentum, as follows:

T fTdA + fe 1dV fP'i dV (41)
A V V

where T1 = surface traction, Bi body force, p density, uI = displacement, double dots =

"o.- vti;uderivative with respect to time, A = surface area, V = volume enclosed by A.

From Equations 27 and 28

f T dA for n dA z $ LdV (42)
A A V

Sinzc-e the volume is arbitrary,

i+ s j; 1(43)

In the absence of body forces and time effect, the static equilibrium equation is

O' 0 (44)

From the conservation principle of anvular momentum that if the resultant moment due to
body and surface forces vanish and there lb no other internal or external sources of moment,
it can be shown that the stress:tensor must be symmetric, i.e.,

OI I(45)

In view of the symmetry property of stress, Equation 44 can be written as

:', 0 (46)

This equation in 3-space can be expmnded. as follows:

Wr3o D 1o'2 0..

DO ~13 0o

3

Ol2 "722 + ' C =23

STRAIN TENSOR

Strain is a purely geometric relation. It is independent of the constitution of a body as long
as it remains continuous during the process of deformation.

12
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*Let points -P and Q, separated by a distance do in an undeformned body, displaoed'to P andý
Q' during a deformation process. The relations between these four points are shown in Fig-

* ure 4.

Q dP 2 (x id (49)

(di),( +B dad 50

If~~ ~igr t4e prcsDfdfr ionplaceferned of theoinal ourin Deformedsateiteoneia o

da x R,dz (42)

(do) 2 Smmdx da% (43)

Wd O 2(i d2e d 'x@ (50)all I ' I

.......f ___roesofdfrmtoieereohfnlor_____sat te ueia o
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Bysubstituting Equations 53 and 54 Into 55. one obtains:,

Sice

j mi -'m'i

Then

By using Equation 56

The Eulerian strain when expanded becomes

Ou 2u
I I

14r - (0
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(3~~4 .iu u dt) d u Ui

12 2- x x 2 1(63) x x ak 2 1 2 1  ~'2 d x 2 /

The physical significance of the, strain components can be illustrated by two exýamples:

1) Normal strain.

Let
ds' dx' , imol)ying dx'2  d xi'3 :0

(64)
ds (I-E )As' I- E I d'Ir

where
ds*- ds

El d (65)

From Equation 55,

.2 2ý .2 .2
(dit' I -I -E) (d it 1 20e d x (66)

therefore

2 (67)

Thus, for infivitesimal diaplaoet

E (68)

which meamo that, In the came of infinitesimal strain, the normal component of strain cor-
respond# to axal elonaption. For, finite strain, Equation 67 will apply.

2) Shear Strain'

Let

ds' dz'2 It with dx* d%' 0 ý(69)2 3

Wi 0.d3 ,with' ex, di,2  0 (70)

15
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The angle 9between the two vectors is

ýcos 8 i ddi /'dsdi

12 x1' 3 x2 d1'3 ds dTF

From Equation 56

~20 9 (& - dx di,/dsdi (71)

Let

go.9

and it represents the change in the angle between, the two elements which was e in the initial
state, and became perpendicular in the final ýstate.,

'from Equation 71

sin *2e2 4212 d~3 /ds di (72)

From Equation 65

$in 2* 2 3 (I-E )(I,-E 1 (73)

From Equation 66

For infinitesimal strain.

x 202 (75)

Thus, the Infinitesimal shear strain corresponds to one half of the change in angle from 900.

The strain-displacement equations for both E ulerian and Lagrangian strains reduce to the
same equation in case of infinitesimal strain as follows:

+( *U.i (76)
2 1, 1~

This strain ts a second-rank tensor. The conventional engineering: strain is different from the
tensorial strain in the shear strain components. The engineering shear strain is related to the,
total change in an angle, rather than one half of the angle according to E~quation 75, For this
reason, engineering shear strain to twice the teniprial shear strain,

16
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SECTION HI

TRANSFORMATION EQUATIONS

Tensors are defined by the following transformation equation:

f. t. t C C7
It. hI im jn... Itoi In n... op

where C'..lis the transformed C ... ; t11, the transformation matrix. In first, second,

and fourth-rank tensors, Equation 77 can be specialized as follows:

C fimCm (78)

C .I C (79)
ij ;m In mn

C. t t t t C (0ijhl im in hto 1p mnop (0

FIRSTr-RANK TENSORS

Equatrnn 78 represents the following simultaneous equations in 2-space and 3-space:

[C~sI tZ Lci

11 1 22 2

C2 21.22 '2 C (82)

Assmig tatthe transfrmtionis j a posijtiv1e 1oatonT+wic ha the component'sshw
in Eqain1,Equations'81uand 82 become

(84)

C n M17

2] n... -: .. ,
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These are the transformation equations of T + for the first-rank tensors (vectors).

SECOND-RANK TENSORS

For second-rank tensors, the transformation Equation 79 in 2-space can be expanded as
follows.

1) When~i 1.jf=1,

C It t C
II M In mn

Summing'm gives

Ct Ii In CIn + 2 1In C 2n (85)

Summing n gives

t (f t C +tI C + I (t, C + t CI
C', 11 11 , 12 12 12 11 21 12 22

2) When i 2,j 2.

a I t C
:22 2m 2n mn

Summing m gives

CIa C +t I t C 8)
22 21 n In 22 2n 2n ~6

Summing n gives

C22 a t 1 C21 C11 +22 C12 ) t22C 2 1 C2 1 +t 2 2 C2 2 )

3),When 1 1. J *2.

C at t C12 IMn af o

Summing m gives

C ', t C +*t t C (712 1I 2n In 12 an Zn (7

Summing n gives

C' t (t C"-, C I +t (IC +t C '
12 1I1 2 1 11 22. 12 12 21- 21 22 22
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4) When I =2, j 1,..'

21 2m I mn

Summing mn gives

C t t, C + t t C (s
21 21 in I n 22 In Zn (8

Summing n gives

t (21 "1C I+ '1 C 12 +t2 "I C2 +1 t2C,221 2 1 1iI 21 2I 1 22

From Equation 11, the components of T-matrix in 2-space are

T n) (89)

By substituting t1 into Equations 85 through 88, one obtains

C mC +nC + MR + Mac
C1 1I 22 C12 21

C a n2C + MZC Mac -Mac
22 1i 22 12 21

(90)

C' -a-mc 4 Mac 2 m2+MC2 -"C 2 1

CP. 2 22C 2+ M221

In a matrix form Equation, 90 becomes

2 ,2 -me -MR c 22

8 (91)

122

21 L21j

if CIs a symmetric tensor,

c 3 C(92)
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jthereore
Equation 91 can be simplified as follows:

m2  ~2 2m C1

C n1 in 2 *mn CI

22 22

2 12

These are the transformation equations of T+ for second- rank tensors which include the, stress
and. inertial tensors.

In 43-space, the range for the indices will be 1,, 2, and 3. If the rovtation remains the same
as T before. the following results will be obtained:

1) When JLj=

~u t (t C +t t CtC

a 1( 11C 11 + 12 12 4 13C 13)

:(94)

+t 12 ( t IIC2 1 +t 12 C2 2 + 13 C2 3 1

+t (t C +t C + t C I13 11131 12 32~ 13 33

Since for the present T-matrtx,

t t E 0 (95)

then

C;1  mC 1  22 + +2mnC 12  (96)

where., is assumed to be a symmetric tensor,, and the results of Equation 96 are the same

as that in Equation 93.

20
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2) When 1 2, j =2,

22 2m2n mn

t I C + tIC +t t C (7
~21 2n in: ~22 ~2n 2n 23 2n 3n

n CI I% +M C 2 2 -2mnC 12

This is the same as Equation 93 because of the relations in Equation 95.

3) When i 3, j 3,

Cý3  t3mt3nCmn

t t 1 (+8
31 3n in t3 2t3nC2 n + t3' 3t3 r.C3n (8

2 33C33 zC33

where Equation 95 is used and t 1.

4)ý When 12. j3,

C2 3  m tt 3 oCon

* 21 t3mCI + t2 2t 3 nC 2 n + t2 3 t3 nC3

(99)
t C + # I C21 3313 2233 23

5) Whea t- 3,j -=1,

Ca t3mtln Cmn

1,31 fin CIn + t3 2 tin C2 mn t3 3 I n C3 n
(100)

11 (t C 41 C
33 1 31 3 ý12 C32

mCi +nCt

31 321
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6) WheV,~1= 1,i2.?tC
C12 IM 2n mn

t I t 2nC I t 1I22nCZn 4t13 .2n 3n

t t 't C )+tC + C
I I (.21C I 22 12' +12 t2: 1C21' 22 22

-mnC + -- 4 (r2-ri2ICIi 22 12

This is the ~arne as. Equation 93. Thus, the transformation equations for 3-space, which are
equivalent to Equation 93 in 2-splice, are

Ic' M2  n2  0 0 0 2mn C

cý2  ~ n -2mn C 2

C 3  0 0, 1 0 0 0 C3

(102)

COC
02  0 0 n rn- 0 23
-3131

C;2  -M" mn 0 0 0 m-n C1

Note that C 33 component to invariant, Le.,~ Cý 33a and C 32 and C 31 interact with each
other and are riot coupled with the remaining components. If C represent. a stress tensor,

S tj
a3  3

Cý
12 *

Cd C
1C2

C 2 3

/ C122
Figure,3. Transformation of Ci -pc

22
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C 3 and C 3would be the transverse shear stresses of a plate with'its plan e parallel to the23 1
1-2 plane. The states of stress before' and after a. transformation. of 9 = 9O* are shown in
Figure 3.

Note that when 6=900, m =0, n =1. These results, when substituted into Equation 102
yield

C C11 22
=i C

C C33 33
C~ =-C 3 (103)

CI 3 C3
31 23

C..12 S 12

The relations in Equation 103 agree with the results shown in Figure 3. The shear components
shown in this figure represent positive quantities (the shear disagonalIs lie between the positive
directions of the coordinate axes).

CONTRACTED NOTATION
A further simplification of the indiclal notation is possible with the contracted notation. In

dealing with fourth-rank tensors, the contracted notation reduces the number of free indices
from 4 to 2 but expands the range from 3 to 9. The number of components, according to
Equation 1, remains at 34 813 and 9 81 for the normal and contracted indicial notation, Z
respectively. But if symmetry properties are introduced, the contracted notation can be used
to obtain a considerable amount of simplification,.

The fourth-rank tensor of. interest now io the elastic stiffness or compliance matrices.
S rC They appear in the generalizsed Hooks's laws as follows:

ijl ijkl-
* C~~eg~(104)

O £ SiJgkQkg (105)

where ai, stress tensor, e t* strain tensor, and-both tensors have the following 9 comn-
ponents in 3-space:

0,22 *22
0,33 033;

0~~ (106)
'731 031

0'32 632
0,12s

23 -.
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The contracted notation is established by arbitrarily replacing the double- index system for
a second-rank tensor with a single-index system. Each component in Equation 106 can be
represented by a single-index system from 1 to 9; e.g., as shown in Table II.

TABLE II

CONVERSION BETWEEN NORMAL AND CONTRACTED NOTATIONS -

Normal Notation Contracted Notation

0. J0

S2 22 0"2 62

033 e33 03 3

1_23 23 0 4
'0.3I 2e31 5 5

a 2 0 2 0 16 1
12

'•032 "2032 0'1°

013 2013 08 'a

'21 2021 '9 I
In contracted notation. engineering strain is used instead of tensorial strain and Equations

104 and 105 can be written as:

e ISy 17 (1-07)

~i Cl j '(108)

where It J 1, 2, . . . , and 9. In this notation, the range and summation conventions are
retained. But some modifications in the interpretation of the indices must be made. First,
the range of free indices no longer corresponds to the number of dimensions in space. Sec-
ondly, the tonsorial rank no longer corresponds to the number of free indices. Finally, the
contracted notation is an artificial notation which happens to provide significant simplification
in the representation of the generalized Hooke's laws but only second and fourth rank tensors
where 3-space is involved. The use of contracted notation for other tonsorial relations should
be limited to special cases.

Returning to Equations 107 and 108, the range of the indices can be reduced from 9 to 6 if
the stress and strain tensors are symmetric i.e.,

aij o 1. andell oji (109)

24
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which, in contracted notation, means

S07 '= 4'08 =°5 ' 09 °'6 (,)

67 04 , e : e, 49 56 1111

Thus, the symmetries, shown in Equation 109 reduce the number of components of S and C

f.t )m 81 to 36 in 3-space, and from 16 to 9 in 2-space. Equation 6 in contracted notation be-
cortes:

I I a012 016 a 19

a2 02 a a0 0
.:.21 o22 026 029 1l1*

aij, ,.
a061 062,• 66 a69]

L 91 @92 196 99

where the replacement of the 4-index system to a 2-index system follows the relationship in

Table IS. If the ajl is a compliance matrix in the generalized Hooke's law and the stress and

strain tensors are symmetric. Equations 110 and 111 can be used:to simplify Equation 112
as follows:

11 12 1I

S. lS S s. ,*
S (113)61 62 i6i1

The Sin 3-space will be:-'So
S11 Sr 813 S14 8155 S16

S2, 825 . 24 s25 826

S3I1 332 33 834 S35 S3
,. ss, (114)

841 942 S43 944 S45 S46

ss1 SUz 5ss 54 %s5 Sss.
S Ssi 62 63, 864 365 S 6

An additional symmetry property can be established from the strain energy consideration.
If the existence of an elastic potential is assumed then an increment work per unit volume is,

dW ":ode; (115)

25
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then substitute

SCijej (116)

SdW ' Cije~de1  (1171

-By integrating, one gets

W •Ij j (118)

Similarly, one can show that

W iISa) (119)W=2 11 '- 1 o|, 1

From the elastic potentials, one can derive the generalized Hooke's law, as follows:

a!.C.C 1 jej (120)

and

"L 4 ei~ a ,CI) r -0.21)

C. .

-Since the order ao differentiation is immaterial, then

C.. mC (123)

i.e., the stiffness matrix must be symmetric with respect b the Indices in the contracted
notation. In a similar manner. one oet show that'

Si as (124)

This additional symmetry will simplify Equations 113 and 114, such that there are only 6 and:
21 independent components in 2-space and 3-space, respectively.

The conversion between the normal and contracted notations for S and C cannot beili Ii
derived directly from Table II. Some correction factors must Fie introduced because of the
difference between the engineering and tensorial strains. The factors can be established by

26
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expanding Equations 104. 105, 107. ard 108, and by comparing them term by term. For
example, for i = 1., from Equation 104,

:= =so,, +s,,1 222  + s, 33o33  i
.011 S11 TIIS +S 22 +( +S it fo

+1S1123 + S132)o'23 + 1Sl131 + SII 13'31 (125)

+1S1112 +lS2 1 2 2 -.

From Equation 107

I S S, i+1 S12 + S1 3a" + S + Si 5 `5 + S16,6 a(126)
01 S110 +122 3 3 14 4 155 66(26

Comparison of Equations 125 and 126, and an assumption that the matrix is symmetrical
yields

S :5I

S :S
S1122: S12 r

1133 13
(127)

2S1123  S 14,

11I31 s15
"2N 11"2 US16

By repeating the process similar to that show in Squations 125 and 126, one can establish
the following oonversioas of the, companets of v, aomplianoe matrix:,

S, Sl %ir for ,I,2,or 3

gSijkl" Sqr for 4" 1,2, or3 i r 4,5, or (

or qa4,5, orB, r.'s 1,2,or 3 (128)

4ijkI Sqr for qr a4,5,or6

The conversion factors for the stiffss matrixC1 can be similarly established. In I =j = 1.,

+ (C,1 3 4 CI p).e 5 + (C II + C, I,)#31 119)

4 (C tj + C/2 s :-• ),
4C111 2 + 11211012

From Equation 56

a" , ClIOI 4. Cl2 op. Cl3,ae3 +L C14e*4 C1 Cs5 *5 C1606 (130)

• w il L I II--- - -1

27 2'
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From Table H,

2e232 4 N 21 •05 , 2 1 6 21311

From the last three numbered equations,

IllI C 1 12 2 - C12 , II 3 3  1 C13
(132)

1123 C'I 4 , C1131 =Cl 1 C11.12 2 C1.6

By repeating the process for the other relations in the generalized Hooke's law, one can
establish that

CIjk= Cqr (133)

Thus, the conversion factor is unity for all components of the stiffness matrix. But for the
compliance matrix, relations in Equations 128 must be followed. The contracted notation must
be handled with care. The tranformation equations must be derived using the normal indicial
notation. The relation between the components of the compliance and stiffness matrix of the
two notations must include the proper conversion factors as shown in Equations 128 and 133.

The use of the contracted notation has often been inconsistent in many current publications
and reports. In, many cases, tensorial strain is retained. In other cases, both single and
double index systems are used simultaneously, e.g., e.e2V and e012 for the strain components

in 2-space. Finally, e02 is sometimes represented by e3 instead of e6.

The conversion between the normal and :contracted notations as listed in Table II and
Equations 110 and Ill are recommended because a consistent notation between 3-space and
2-space, and consistent operations (range and summation conventions) can be retained. In
the contracted notation, fourth-rank tensors are represented by double-index quantities
(C11, SliT; second-rank tensors, by single-index quantities. The range for 3-space is 1, 2, 3,

4, 5, 6, and 2-splce raenge ls , 2, 6. The latter range is probably better than , 2,. 3because
it avoids the similarity between the range of 3-space of the normal notation and the range of
2-space of contracted notations.

Finally. the contracted notation as listed in Table !lmay be considered authoritative
because it follows the notation listed in many textbooks (References 1, 2, and 3).

FOURTH-RANK TENSORS

The transformation equations for fouidth-rank tensors contain 81 equations. With theL aid of
symmetry properties, e.g., taj oj1 ,e 1 = and 8 - and C11 - C1 l (the last two equations

are in contracted notation), there are only 21.equations. A further simplification can be intro-
duced if the T-matrix is limited to a rotation about the 3-axis, as shown in Figure 1. whe 6,

.t -j = 0 (134)

0 2

2-8
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The transformation equations must be derived from the normal indicial notation, not the
contracted notation, because in the latter notation artificial simplifications are introduced.
The number of free indices no longer corresponds to the tensorial rank. Repeating the form
of Equation 80, In which

C! 1 t C-
ijki t imtjn tkel p mnop

Wte transformation of S is, similarlyijkl St  =t t t.tS ( 1351) ..
Sijkl im in ko IpL mnop (135)

Further, in 3-space, by taking advantage of L3 t, 3  t3 1 = t3 2 = 0:

SI t t: t t S

1111 Im In 10 lp mnop

Summing m gives

so tt t t S +t t tt S
iI 'll It Inlo I p lnop_- 12tIn lotlp 2nop

I 3 nlo, ipS3 nop

Summing n gives

S, I Itt tl0 Itl+"k ÷ t1 ot 1t+

12li p ZIop 12 le Ip 2bop " 10lp lp3opL+ t12(l ltlltloIt lp 821op + IIt t lo tIp S 2op +*I*10ot ip S230p)

Summing o gives

Sol [tllt1 ,tI 111', * t 2ttIi1l 12 ,p +"lip 113p)

*12(t11t1,S2IMP I1 t Sp12%; p13
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Summing p gives

( +"r[II I I'l I SlII 1 21." 12 "MS! 123i
÷+',z [+ t ,t Is1211 + t,2s212  +si ,3 12 3

+ (t S +t S +*X Ia1iL it 11 12111 12 1212 11i2l3S{ 12 (tI(IS212 1 + t 12 S2 " 22 +' S2"3)

• +t,2,tS +ts,2 +K..,.S)l]4 3 3 223

- m4l l ni1+ m 4-rnnS1 12 1 t-rn2S12

Lrn1 1  +mnS21 +mn812S 2 12 m 1S
'12(II 2121 2 S22 1222]

+m t 2 s, ,, + 2  1 %,•, +n 2. 2 212 + W2s,13
2 1 21 2112 S2222 "'M 222 (136)

Contracted notation, with the proper ooveresion factors, modifies Equation 136 to

T M, + M 3 22

+4-rn nS 1 21+ m2 n 2 $1'12+ m2 n 2S22-+ mn3 % 122
] .... (136 )

+ M 'S +rn M22 M2
21 2112 S2121 + M"S212

: '° ~From Equation 124, where .81 is sy~umstrlc .. Equation 137 can be further reduced to

S% 1 + "mS~2t2mn12 + "n S2221+n 3 S2*r 2 22(3

By following th rstep deincribed above, the transformation equations for the lemnalnlng 20
-, components of the compliance matrix and all the components of the stiffness matrix can be

derived. The transformation, like Equation 188, applies to a transformation consisting of a
S proper rotation about the, 3-axis. This Is a very special transformation. A general transfor-
S... mation, for which all components of the T-mnatrlx are nonzero will result in transformationSequations considerably more complicated than Equation 138, In which only 6 out of a total of

" 21 components affect the SII component. The transformation equations for Si and Cil hn
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subjected to a proper rotation about the 3-axis, can best be presented in the following tabular
forms. The use of the tables can be seen by comparing Equation 138 with the first row of the i
firstL table. In zase of the stiffness matrix C appropriate factors shown in the column and

row headings must be properly incorporated, as follows:

c; mC1  +2m n C1  + 4m: mC6Sý a C + 4mn3 C +4"m nC (139) fl
C; 1 2 .. 26 66

S (C )S (C )S (2CI6) 2 (C 2 2 ) 2 6(, 6 )S"16)I I 12 12 16 16 22 66JSJ2
4 2n2 3 4 3 22

-1 (C I M 2m n 2m n n 2mn m n

22 4 4 3 2 2 2 2 2
S (C n m +,n minn mn mn.3  -in nl12 ( 12 - M

3 3 4 3' 2 L 3
Si6(2C6 )-2m n 2m n i 2mn 3mn m n
S16(216) 3 m22 4e 3-2mn -3min - n -mn

(140)
4 2,2 3 4 3 2L2

S' (C ) n 2mm -2mm m -2mm-f mmn22 22
2mm3  a 3 4S (P ' -2m 2on W'n sM n'

S~2C 32m 2m 2m3
":-2m ' -mn 7 -r n m

.2C2 2 r 2 3 2 a a
6(6k 4mn -&mn 4ma 4mmn 4mm On

-4m m -4mm -n)

844(C44) ' 45(C45, SM5,C5)

2 2
. 2.'W) -2M" 2mm 2, 21

V4444 45C45) 55(C55

S' (C') In -2mm a

Sý5 (C' 6  mnn m 2 -2-mm (142)

2m2m

V.
31A
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S (C ) S (C
3434 3535

�.6.�I.

�34�34) m -n (143)

S�C�) n m

S1 4C14 ) S15(C15) S24(I�4) S� 5(C25) S�,�(2C�) S� 6(2C56)

s14� c� 4  m3  -m2n j inn2  -n3  mn -inn

S'(C) m2n in3  3 in 2  2I5 IS
2 3 3 2 2 2S'(C') mn -n in -inn -inn mn

24 24
3 2 2 3 2 2 (144)S�(C 25 ) n inn mu in -inn -m

2 2 2 2 5 3
S�J2C� -2m n 2mn 2m n -Zinn in n

-mv,2  -m2n

5' (2C ) -2mn2  2 2 2 2 3
56 � -2mn 2mn 2m n in�i ma

S�3( C53)* 833( C33) (145)

Note that under a particular transtozmatlon, which in this case is a rotation about the 3-axis,
the components of S and C ar� aa'rangedln6groupseachofwbichlmnumberedasan

Ii iJ
equation betw�en Equations 140 and 1.45. The components of each group will interact with one
another, bat a s completely uncauplud from the other groups. This Infoanation is useful in
the stu� of Isatic symmetry. If for a given materiel all the components within a group are
zero, they whi remain zero for all an. lee of rotation about the 3-axis.

INVAJUANTS

There are a number of invariant. associated with the compliance and stiffness matrices
with respect to the rotation about the 3-axis:

laS' +8' 426''I II 12
From EquatIon 140

Cm4  4 22 22 22 44
*i, +2mn )S +(2mm 4-Zmn 4�m �' �I2I II

3 3 So 3 4 4 22
4(2mn-2mn +Zmn -2mn)S1 6 +(n *m 42mn)S�

3 3 5 3 22 22 22 (146)+(2mn -2,nn+2inn-2inn)S +(mn +mn -2mn)S
26 66

25,2
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12 66 4
2 2 2 2 4 22

(4m n 4m n IS 4m +2mnM)S 1

3 3 3 3 22_ 22
(4m 22m (147)

3 3 3 3 f 2- 22 221
n-4m n -nm n +mn )~6 -~ n)4mJ

S -4S
66 12-

13 S' + S'3 44 55

-M (m fn) 2 (2mn-2mn)S + (M2 n 2)S (148)
S44+ 45 55

-S +S44 55

:14~ S 3 + S;3
(in 2 4 S 4(' 2 4 nýS +(mn mn)S3  (149)

S +S
13 23

5s S'42 +.2

* i 2 4f22(F, +fl 2 )3 2IO

(M* 4 3 n 83 (150)

2 2 3p

34 35

The change in volume is the sum: of the normal strains; ix.,.
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The shear strains e4 e., and e, under hydrostatic pressure will not be zero for an aniso-
tropic body. but they do not contribute to any change in volume. Adding the first three equations
of the generalized Hooke's law,

ILI1 12 2 13'3

2 1201 + I 02+W
a SI13Ori + S2302 + S3303

Bv/v: 1 +224833+2 12 + S23+ S3 1)] P

Thus. the compressibility of an anisotropic material is

PV/8Vu Il [1+2+S33+2(S, +S2  +31) (152),

= I M( +1 +21 )(153)
1 6 4

The compressibility is also invariant. Similar invariants for the stiffness matrix can be
established immediately. as follows:,

J iC' +C' 42CI C + C + 2CI 1 22 121I 22 12
C'= - C; -6 Ci

* C44 + C~5  C1  +C

J 4 Sc;+ c 3.c23 +c,3 (154)

J aC 2,C
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SECTION III f.

ELASTIC SYMMETRIES AND ENGINEERING CONSTANTS

The compliance and stiffness matrices in 3-space contain 21 independent components. If
a material contains symmetry properties with respect to certain directions, which can be de-
scribed in terms of coordinate transformations, the number of independent bomponents will
reduce. Ultimately, if a material is isotropic, there are only two independent constants. In
this section, a few commonly encountered material symmetries and the relations between
S or C and the engineering constants for various materials will be examined.

ij ij

ELASTIC SYMMETRIES

A triclinic material is the most general anisotropic material where all 21 elastic constants
are independent. A fourth-rank tensor in 3-space will have 81 components. If both stress and
strain are symmetric tensors, the 81 components can be represented by 36 independent com-
ponents. If the stiffness and compliance matrices are symmetric, which can be demonstrated
by assuming the existence of appropriate elastic potentials, then only 21 of the 36 components -

are independent.

Further reduction in the number of Independent components can be introduced if additional
material symmetry exists. One of the simplest forms of symmetry is the monoclinic material
which possesses one plane of symmetry. Let plane x-y, or equivalently, z - 0, be a plane of
symmetry; then the properties at +z are equal to those at -z. If a coordinate transformation
of

0 t1 0 (155)

0 .. .0 -1 :

will leave the andC liatatthe material by defnition is a monoclinic material. The stress

and strain components will transform with results very' similar to those shown in Equations
'94 through 101. Both the stress and strain oomponents after the transformation will be as
follows:

C~g ,1, 22 . 2 2  C;3 a C3 3 ,-
C•' -C3 C u-'Ci, C'2 l

23 23' 31 C31 C' 12 * C2

where Cij, following Equations 94 through 101. Is a typical second-rank tensor, and is not the

stiffness matrix in the contracted notation. In the contracted notation, only the following corn-
ponents of stress and strain change sips:

4 ' 5
Z,, O , (156)

S4: -e4 * 5 •-e5

35
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Compare the first equation of the generalized Hooke's law written in the new and old
coordinates:

11 12 2 13 3 140 + C15 5 16 C 6

0* CI 'I I C12*2 +C153 0 44 1e5 C166%

If (r, al. it is necessary that

C 4 :C 150 -(157)

By considering the remaining five equations in the generalized Hooke' s law, one can show thiat-

S24 ý 25 3 C4' 3C5 2 64 = 65 20 18

The compliance matrix must allow the same components to vanish as those shown in Equations
-157 and 158. The number of independent components for S and C reduce from 21 to 13 for
monoclinic materials, as follows: i

S S S 0 011 12 13I

S22 S93 0 0 2

33 S30
S44 S45

%5 0

I I C2 2  C13  0 0 Ci6

C22  C23  .0 0 C2 6

C 3 3  0 3 6 (160)
C C 0
44 45

Since both, S ijand Ci are symmetric. the lower half of the matrices is not shown. The corn-
ponents shown above correspond to a monoclinic material with z 0 as the, plane of symmetry.
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If, a different plane of symmetry exists, say x,= 0, the nonzero components of Si and C will
be different from those shown above. The S matrix will be:

ij
S IeIi Se12 Si13 SI14 0 0

S S S S 0 0II 1 13 14 o o-
22 23  o24 0

S3 3 ' S34 (161)

S44 0 0

S- S55 56

S66J

The number of independent components for all monoclinic materials remain at 13 irrespective
of the orientation cf the symmetry plane,

If an anisotropic material possesses two orthogonal planes of syzrametry, say, x = 0 and
z = 0, the independent components must satisfy the S in Equations 159 ,and 161 simultaneously.iiThis material is called orthotropic and must have the following compliance matrix:

! ,: •'--.-Si Si el 0 0 0
S11  12 13 0 0 0

S22~ S23 0 0 0

S33 0 0 0•) s•(162)
S 0 0

" S55 0

The number of independent comomwmts rednoss from 13 to 9. 'If a material has two orthogonal
planes of symmetry. It will automatically have symmetry with respect to the third orthogonal
plane.'

If a material has a plane in which the property Is isotropic, this is called a transversely
Isotropic material. Let us assume that. the x.y (or 1-2) plane Is isotropic, there is no pre-
ferred orientation in this plane. All properties will remain Invariant under a rotation about
the z-axis. The indices 1 and 2 in the Bij and C1 j are interchangeable, thus:

S 
iII S22'C I I C2 2

98' S C 'C
13 23' 13 23

37



14

AFML-TR-66-149
Pt"l

And, the shear moduli 'between' the z-direction and the isotropic plane (x-y) must be equal,
thus

l9442: S5 5  C44 :'C55

Both SII and S must be invariant From the transformation equation of S12 , listed in

Equation 140

2' m 2n2  + 4  4 22 2
S;2 m n S• +(m + n +)SS2 -+ M 2 n

12 1I1 22 66
~S 4mrn n(S +8 -2 -

12, 1: 22 12 S66

Since

S S and S ZS
12 12 II 22'

then

S z(S -x 1) (163)
66 11 12

In a similar way. one can show

C66 (C1- c C 2)i2 (164)

A transverse.y isotropic material relative to the 3-axis will have the following compliance
and stiffness matrices:

S sl I SS 0 •. 0 0II 12 813 0 00

S S '0 011 13

:: 533 0 0 0: (165)
- 0 0

44

44
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_C C C 0 0 0
If 12 13

CI Cl 0 01 0

C3  (166)
0 0 0
44

C4 4  0

I(C iC 1 )/Zj

If the isotropic plane is in the 2-3 plane or with respect to the I-axis, the co~mpliance matrix
becomes

S11  S212 , 0 0

S23  0 0' 0
Sea 0(167)

S 0 0

S555

The number of independent elastic constants for this material is five.

In the case of Isotropic materials. indices 1, 2. and 3, and 4, 5, and 6 are Interchangeable:.
thus,

11 % 1 iI' C2.2 C33

%38%1 a Sit-- C2S aC 3 1 a C12

S44*5 so,* C4 4  C5 5  Off

In addition,

S '2(8/2
44 a I 2(11 C442 (C 11  12
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The final S and C for isotropic materials are

ij ij
SI ! S|2 0 0

_.S S 0 0 0

S 0 0 0
II) (168)

2(SI SI 0, 0
1112 0

2(s 7S 0

2 II - 12

C1 1  C12  C12  0 0 0
C C 0o 0 0

1 I 12

C 11 0 0 0

C..,' (C -C )/2 0 0 (169'

(C 1 2} )/2 0

(C -C12

There are only two independent elastic constants.

ENGINEERING CONSTANTS

Engineering constants usually refer to Young's moduli, Poisson's ratios, and shear moduli.
These material constants can be measured from simple tests, such as the uniaxia] tension
or pure, torsion tests. The constants are therefore more familiar and understandable than
the components of Sij and C1 j. The relationship betwee these oomponents and the engineering

constants will be established in this section.

Since most simple tests are performed with, a known imposed load or stress, the resulting
displacement or strain is measured. The former is the Independent variable; the latter, the
dependent variable. Thus, the components of the compliance matrix S,, can be more explicitly

determined than those of CIj. The following relations between the components of SIj and the
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engineering constants can be established immediately from Lhe nature of uniaxial and pure,,
shear tests:

SI = I/E 1 " S22 : I/E221 S3 3 = I E33

2 J 12 /EII S• 2 -Y/E 2 2  S3 1 = VY3 1 / E 33
z -V /,E :v /E z-,/l 0

21 22 2 32 33 3 I(10

S, IG12- S55 ~ h 13  S44 "" 2 3

16 1)6 '~E 11 S262 Q2 6 /E 2 V S36 z ') 3 6 /E 3

where the 77 ij are the shear coupling ratios. Other components of S j can also be expressed

-in terms of engineering constants. But new and unfamiliar engineering constants must be
invented and it is doubtful that a useful purpose is served by forcing a complete equivalence
between the engineering constants and the components of S.,. In fact, only orthotropic, trans-

versely isotropic, and isotropic materials are being investigated in these notes. The triclinic
and monoclinic materials are being omitted to avoid using unfamiliar engineering constants.
The shear coupling ratios often appear in two-dimensional problems.

For an orthotiopic material, one can express the components of C in terms of the engi-

neering constants. This can be done in a straightforward manner by making a substitution of
Equation 170 into ,'i inverted Sj. The resulting relations are listed below:

+.,.(I OiJVE,3":

C 2 2 a(I -V31 '13?,VE 2 2

C 3 a (I -V WEY

33 12 *v 2 + 2v3 ) 1 33

C 1 3 u4' 3  4V
1

V
2  

It 13•: 2312 33 (171

C44C23'(v~O +W1 V 3  %V3 V2 V 3 VE3

C a 6

C58 G31
166 IF + 1

where"

V 3(1-V V ~-V"V -V V -2"V+ " VJVas)- (172) -:.

221 233 31 1 2 .3

The relations between Ci and the engieering consant areconsilderably more complicated4[

C so

Vi I 12
than those for S Poisson's ratios are responsible for the complicated relations above. If
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all Poisson'sa ratios a~re zer-* w1dich means that there is no ooupling between the normal strains:
or stresses, then

C11  'I E1 ' ' 22  '22 C3 3  E3 3 ,

C :C C 0.12 13 32

If the material is transversely isotropic with plane 2-3 as the isotropic plane, the com-
ponents of Equation 167 can be related to the engineering constants as follows:

S 1/ %2 S l3/E 2

S' =S ~-Y /E -Y - /E13 -12. 12, 11 21 22

S 22--v3 -/E 22(173)

S x 2(1+iv )/E
44 23 22

s55  S6 4 Y 12

The components of -C are

11 "23 11

C 2C 3  (v V )VEx C.2' 22-

C1  *C Iv +14 r V + (1 ) 4YE12 13"'21 23WE 1 12"~ 22 (174)

C23 "23 1V 221 22.E

C 4  (C 22  C2 3 )/ 2u(I-Fts t1 2 v2  )VEZ 22

C *C,* a 1

where

"12"217 23 "12 2 11vP 3) 1

(1l +1 V1)(1- r -211 VF

Simplification of Equation 174 can be made by using Equation 175. If the material in isotropic,

S 1 22 S33 =I/

1I2 S113 2S 2 3 2VE 16

S442 S55 96631 ( J
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The components of C ijare:

0I -Y)E
C =' C _________

11 22 33 0I+00 - 20

C :C ~C y_ _077

12 13 23 (1l+v00-2y)F

C C C =G = E
C44 C55 66 20 +Y)

In this section, the components of S and C for orthotropic, transversely isotropic, and
Ii. ij

isotropic materials are expressed in terms of, commonly encountered engineering constants.
The components of S have simpler relations than thosa of C with the engineering constants.

Ii I

TRANSFORMEDS

The nonzero components of Sfor monoclinic, orthot~ropic, and transversely isotropic ma-
lij

terials in coordinate systems other than their, material symmetry axes can easily be estab-
lished from the transformation equation listed in Equations 140 thro~igh 145. The transformation
being investigated Is restricted to a proper rotation about the axis. All components which
have primes designate transformed components.-

In the monoclinic case with the symmetry plane contain. q the 1-axis and the 2-axis,
Equation 159 represents the iiadependent components of S j A rv ittlon about the 3-axis would
result in the following nonzero components: I

~2 ~ 0 0 8!6

S;1 0 33 'Iý$~ (178)

.84 85 0

0

The Liumber of nonzero components (20) of Equation 178 does not differ from that of Equation
159 beciouse the axis of rotation coincides with the normal to the symmetry plane. The S i
in Equation 161, however, has a plane <of symmetry containing the 2-axis and 3-axis. Wheni
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the same transformation as above is applied to this muonoclinic material,* the resultingS
becomes

S11 12 1* 14 15 16
S-.2 2ý3 S24 S:2 5 :is

S'33 S; 4  S3'5 s36 (79

44 45 4

There are 36 nonzero components, as compared with 20 in the principal direction of S~. But

this is not a triclinic material because of the 36 transformed components, only 13 are inde-
pendent. To distinguish between the S~ ,in Equations 159 or 178 and 179, the former may be

called special monoclinic, the latter, 'Oneral monoclinic. The special monoelinic refers to
the S in its principal axes or the* miterial symmetry axes. All monoclinic materials haveij
only 13 independent components; and 'only the special monoclinic material has 20 nonzero
components, as. shown in Equation' 1159 or 178. A special orthotropic material is shown in
Equation 162. Using the transformatIoi Equations 140 through 145, the general orthotropic
material can be Shown to have the followingS

s' s~ s' 0 0 S'1
I 812 1316

s q~3 0 0 S26

S0 0

;55 0

There are 20 nonzero components, of whi'ch 9are independent. A general orthotropic material
has the appearance of a special monodllnic material.

Aspecial transversely Isotropic matitrial relative'to the 3-axis in shown in Equation 16j.
For this material, I 2 66~I~Z

S S S a
13- 23ý' 544 555

By rvbstituting these conditions' into the transformation equations ta Equation 14 J. 141, and
1.42 one can show. that

5, uS' u;S Si 0

as 4 4
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The general transversely isotropic material corresponding to Equation 165 is

11 S;? S1  0 0 0

SI S6  0 0 0.
ff 13

S33
S..

S4 0

2(s 1 S j

Since the rotatio'n is in the isotropic plane, Equation 181 is the same as 165. An analogous
situation occurre. 1 between Equations 178 and 159 for the monoclinic material'.

For a specia. transversely isotropic material with a different isotropic plane,.e.g.. the
2-3 plane as sb. wn in Equation 167. the corresponding general transversely isotropic ma-
terial will be

* I I 1 S2 S; 3 ý 0 0 '1
S S 2 0 0 S 2

so ' 3  0 0 3;6(12

4 455

There are 20 nonzero components that are similar to the special monoclinic material, but
the number of independent components for a transversely isotropic material remains at 5.

For isotropic material, one can substitute the reation in Equation (176) and readily show
that the S remaina 1tv same"a Equation 168. which has 12 nonzero components (2 independent
components).
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SECrION IV

TWO-DIMENSIONAL COMPOSITES

V Two-dimensional formulations are of particular interest in the study of composite materials.',
In this section, the assumptions of plane strain and plane stress, which represent two special
two-dimensional problems, will be described. Laminated composites as special cases of
plane stress will also be discussed. All two-dimensional problems are reduced from a three-
dimensional special monoclinic material with z = 0 as its symmetry plane. Any rotation about
the z-axis will not make the special monoclinic into a general monoclinic m:terial; this is
shown Lr. Equation 178. The use of this material which possesses 20 nonzero (13 independent -
components will include, as special cases, the general orthotropic and general transversely
isotropic materials, shown in Equations 180 and, 182, respectively.

PLANE STRAIN

\ state of plane strain is obtained by assuming that
i'"'~ .! ( lx, x}

-~ u2" VI(, X2) l•,
U U(

u3 0uwhr u• ar the dipacmnt

where u are the displacements'along 1i 2, and 3 axes and u0 is a constant. From the strain

displacement equation, cne obtains

"When this eopanded,

0 4 02e u 4" 0 (184)

*5 U2I5 Z . :+ ý3

S6

S! ~46
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For a munoclinic material with the following compliance &ad stiffness matrices:

S 1 813 0 0 $I6

S2 2  S23 0 0 S26

S3S.. 0 0 6 (185)
S4 4  S4 5  0 "

S 0
55

C%6

C C3 0 0 C36.

Cl (186)
ij C4  0C44 C45r0 ,

C 5  0

C6 6

it can :be shown by substituting Equation 184 Into the generalized Hc&*e's law in terms of the,
stiffness matrix that

a4 a8`
(1871

M3 1 + Cs• 2 +Cs 6 .

and from the generalized Hooke's law in terms of the compliance matrix,

0' 3  '-0 3 1 ff1 +8 3 e 22  83e6)

-Since Is3 to now dependent on the other stress components, it can be eliminated from the

generalized Hooke's law, The results are:

where

R So - I. I 1., 6
; 1J 8 ll33

47 
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Rjrepresents reduced i.uonstants derivod from S It Is applicable for the case of plane strainij.
imposed on a special mnonoclinic material. The components of Cremain unchanged, s0 that

the generalized Hooke'sa law for plane strain is

:C. (189)

where i. j 1, 2, and 6. Where 1, j =13, 4, and 5, the Hooke's law is expressed'by Equations
187.

For a, special orthotropic material, under a -state of plane strain, the compliance and stiff-
ness matrices can be written down from the results shown in equation 162, so that

S ZS sS ZC C Z:0
16 26 36 16, 26

Thus,

R isR 260S.

L13  - 13S23
-- S 0-

I I S 12 S,
33 33

52

Ri S -- 3 0 (190).
R 22 53

33

S66

C II 0 (191)
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For a special transversely isotropic material shown in Equation 167,

22
S22 22

23

SS

~66-

CC 12 21
C11  66J (193)

Finally, for isotropic material,

2 2

II-S 2 0

2(

R1 1 u S1  0014121

49¶



AFML-TR-66-149
ptuH
The reduced compliance matrix in terms of the engineering constants can be obtained by
direct substitution of Equation 170 Into 190. 192. and, 194. and the results are

1') Orthotropic material:

R 0I' Y
22 23 32 E22

R12 12 '1332) '11

2Y1I% Y3 123lE 22

R S 1/G
66 66 12

2) Transversely laotropic material:

2= `i 22

(197)
R1 1:2 12 23 EI I

122

II i 22 ia 2

122

209 +P3/E

The stiffness matrix in terms of the engineering constants are exactly the same as those
for the three-dimensional case. For the special orthotropic material, they are shown in
Equations 171; the special transversely Isotropic material Equation 174; and the isotropic
material, Equation 177.

It can be shown that

RC 8 (199)jk i k

which Indicates, as expected,, tMat the reduced compliance matrix is the inverse of the stiff-
ness matrix.
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PLANE STRESS

Another two'-dimensional problem can be formulated by assuming

0 0 = =0 260)
3.t4 05z

From the S of the special monoclinic material shown in Equation 185,

*4 -5
(201)

Z~s or + S ar + S or63 31 1. 32 2 366

The generalized Hooke's law becomes

a S.47. where i~j :1, 2, 6 (202)

From C shown in Equation 186
ij

_Z3_ -- (C 311+ C 3 20.2 -C3 6 06 ) (203)

33

in the case of plane strain. Substitute Equation 20)3 into, the generalized Hooke's law ini terms
Of C1~ then

(204)

where

* edued otffns 1 atrh

13M C 3*C11 ~ 3  (205)

and

1,I 2, 6-

Thus, for plane stress, the S~ remains the same as a three-dimetisional material, whereas
the C must be replaced by Q~

For a special orthotropic natderial,

S as a uS uS '0
16 26 36 45

1 '06)
C 14 CM aC 3 6 aS 4 5 0
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The Sand for a state of plane stress are,

[ 11  S12

S1  J 0Z (207)

2 22

1323

'I 0 (20e)

For a transversely isotropic material,

%2z53, 813813(209)
C22 CM C2 C13

Then, is the same as Equation 207. but, is0
C2 Cl2  C2

Qu 0 (210)

Finally, for an isotropic mater."al,

S 12 22' S 1l20 23' S6 6 2S 1 V s II"- 1
(211)

II 2 2' C 2 C2 3 , C6 6 z(C1 1 -C 12 )/2
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Then, and Qare

SS0 (212)
2(S -S)

11 12

2
CI

(C12-C12

H UE 21- v

224

66 12

2) teransvo terselyginetrpingcontns h o he materials:flosEuain10

mateial Eqain14itQ1 for the transversely isotropic material;,n istesf stato h rhtinaly mqatrial.
177gneeinto 1onstane assotrpcizated iaths te3dresution, relag.,n "a13 lis9dbeowntapari h

1) Othotopicmateial3
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plane stress caseo. These constants. however. appear in the plane strain case. Thus,'under
a state of plane stress. orthotropic and transversely isotropic rn'tterials are identical, but
under Owae strain, and three-dimensional problems in general, these two mateialis are of
course different.

3) 'Isotropic materials:

~I2

Q zE/2(1+v)

which indicates that QUis the inverse of S.

COMPARISON OF PLANE STRAIN AND PLANE STRESS

In two-dimensional problems, modifications to the compliance and stiffness matrices may

be necessary. The appropriate Hooke's laws are

1) Plane Strain:

(218)

where

I~j 1 ,72,G

2) Plane Stress:

(219)

where

C c13 13
'J C33

i1j ,2, 6
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In microacopic mechanics, analys~ts of, ccraiposits? mnaterials,, It is a common practice to
* solve an inclusion pz'oalem in plane ctrsiu ari plan stress, from which the efective trans-
verse stiffnesd E2 2 e R., can be:,pred!cted.. Let us assume that a transverse load is im-

posed, while crI = 0. In'a plane strain'case, from Equation 218

EL2 (220)

Thus, the effective atiffness in the transverse direction (the 2-direction) is.

2 /2- %F22

In terms of engineering constarntr, from Equ'itions 196 and 197,

cIs 2 z, /1 22 1 23W32 (2!21)

or

22 2 (222)

for orthotropic or transversely isotropic materials, respectively. For a plane stress case,
with c 01 ( 7 0,

War/. U I/S E (223)
2 2 22 22

This is true for both orthotropic and transversely isotropic materials. A comparison of
Equations 221 or 222 with Equation 223, ohows that the Poisson ratio associated with the 3-
direction enters the plane strain analysis but not the plane stress case.

LAMINATED COMPOSITES

Laminated composites to be considered in thias subsection consist of layers of thin ortho-
tropic plates bonded topgther. Each layer may have arbitrary thickness and orientation of its
material symmetry axes. In general, each constituent layeris a genera! orthotropic material.
Assuming that the coefficients of thermal expansion or contraction are also orthotropic, the
three-dimensional generalised Hooke's law for each layer may be modified as follows:

a :8. (224)

where a, - thermal expansion matrix, T a temperature. The firast term represents mechanical

strain, and the second, thermal strain. The thermal expansion matrix is a second-rank tensor. ,
as indicated by the single index in the contracted notation. For an orthotropic material, the
independent comp.nents of a second-rank tensor are, for example, 1' a 2 and a 3 , while

a =' a5 = a 6 a 0. Ina general orthotropic material with a rotation about the 3-axis, a6 will not

be zero.' Equation 224 can be inverted to have the following form:

o0 :C..(.} - ajT), i,j • I 2, e . ., 6 (225)
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'If we assume that each constituent layer is under a state of plane stress. which is reasonable
-for thin plates subjected to in-plans (plane 1-2) stresses,

0":~ •5 "-0 (226)

From Equations 224 and 225, we can show that

* 0 0
4 5

C3 1  C 3 2  C3 6

- 0 3T - -3s- a T) -(02 a T)-- •(e- a6T) (227)3 C I 1 C3 2 2 C 6 6
3 33 33

From this, reduced coostants can be obtained, following a similar derivation described Wn

the last subsection. The generalized Hookers law in a state of plane stress including the
thermal effect is:

O a iijl - jT), ij = I, 2, 6 (228)

where

a C -r- (229)QIj = 1l C33:[
C3 3

and their relations to engineering constants are shown in Equation 214 or 215.

If a laminie' composIte to thin and the deflection of the composite plate is kept small

relative to itW thicknes, it is reasonable to assume that normals to the middle surface are
nondeformabhl With this assumption,

01 + zk0 + i a I, 2, 6 (230)

where re -in- plane. strain and ki , curvature with the followlng definitions:

. ' • 1 3,11

0
02 u2, k2  3,22

0 U +*k a 2

To be consistent with the use of engineering strains, both the in-plane strain and curvature
are expressed in engineering quantities, as opposed to tmnorial quantities. This is not a
trivial point. The use of engineering strains and curvatures is preferred, particularly In the
contracted notation. A number of symmetries, e.g., in C1j, S1, R1j, and Q j, and later In

A Ij, Bij, and DIj in .Squation 236, can be maintained with the proper use of the contracted

notation. As stated earlier in these notes, some authors have employed their own contracted
notation and may have caused some unnecessary confusion.

56
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Theý substitution of Equation 230 into 228 yields

0
a, 0 ~(01. +zY ak ) (T (231)

In a thin homogeneous or laminated plate, it is convenient to deal with stress resultants and
stress couples, which are defined as follows.

h/2

(NI M 1 )I f q 1(, z)dz (232)

The Integration of Equation 231 gsves

- ~T aN. N.+ N. sA. +8 jk (233)

T 0
M 1  M N+ M z p 41e Dij kj -(234)

where

'T T r(2)
- /2

Equations 233 and 234 are, the basic constitutive equations for laminated anisotropic plates
subjected to small deflections. Them equatiouns an applicable to thin shells, if the radii of
curvature of -the sheila are large in compariuso with the sbell thickness. The effect -of tem-

perature is taken into account by the equivalent thermal loadings. N zand MT . The deforma-

tions induced by a temperature change arseql to those produced by applying the thermal
loads.'

The stress at any point in a laminated anisotropic body can be obtained by inverting
Equations 233 and 234, which in matrix form, are:

13 [A J 1  (237)

r.0 lrA 5 1r II (238)
[-Wo IN O~ k
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N A t

5-A-'B

H*= BA'1

D D: D-8A'B (240)

A': A* - BD*'4Hw

ox: f*D*-'

Din D*

The substitution of Equation 239 into 230 yields

a *~ 4zk 1 (241)

a(A,~ + go,-)N +(B;, 47

From Equation 231, the stress components for the, k-th layer of a laminated composite are

wkI Q i (k() f

a l (ý + tojk)Nk +("k zDk k ~kT 22

Q + zI9 Nh +A( + ZDik Mh

+ l [~.(Ah A Z;k fkOd (243))

+ Q s; B. z )fC~iQ4dz (24

The last equation is derived by assuming a constant temperature in Equation 2,35. In this
case the temperature effect is lumped into one term.

Matrices A. B, and D are the intrinsic: properties of a laminated composite. They depend
on the properties of each const ituent layer Qý,, the thickness h~ (k and the stacking sequence

of the layers.

IL6
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_If all layers are quasi-homogeneous, the integrations of Equation 236 can be replaced by
sunmmations, as follows:

Di = n Q(k)ff( -hk , (244)
hu I 'k+I k

I~(kh (245),lQ. (k+1Ith~

D X I Qa k,)(h34  h3) (246)

Thus, matrices A, B, and D are simple to determine for a laminated composite with a limited
number of layers. But for the determination of stress and strain, from Equations 242 and 241,
respectively, the prime matrices A!, B'. and D' are required. These matrices are obtained
by the matriA inversion operations shown in Equation 240. The inversion of a 6 x 6 matrix is-
very difficult "- do by hand. This unfortunate situation: is unavoidable in the case of a general
laminated composite where all 36 components are nonzero.

A considerable amount of simplification is possible if the B-matrix is identically zero.
This occurs if the lamirated composite is symmetrical with respect to the middle surface,
the z = 0 plane.With B = 0, Equation 240 can be simplified, as follows:

A4 a A 1

"son H* 8r 0 4
D* '0

' In this case, only the inversion of 3 x 3 matrices is involved and this is certainly m anaegeable...r
ri by hand L.omputations. ' •

A laminated anisotropic ComposlIt is governed, by 18 independent constants. This number . .
can be reduced if symmetry in the method of lamination and symmetry In the consti'tuent "
layers exist. For a homogeneous Isotropic plate, thenumber of independent constants reducesr "'

to 2. It is important to know that material properties should be referred to the components of-" ii
A, B,. and D matrices, or equivalently, the star or prime matrices. They cannot be expressed ':
in terms of engineering constants, as homogeneous orthotropic or transversely isotropic
materials ..re expressed.

Because of the complicated coupling effects, due to AI 6 , A2 6 , B1 j etc., the behavior ofs a

laminated composite canesthedescribedusongtheA, B, and D matrices, or their equivalents,
without specific references tom psenineering d constants. For example, the effective in-plane

Sbe 59 1
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shear modulus of a laminated anisotropic material may be A 66 , or /A'6. In general,,

their numerical values' are different. Which component is, being measured depends on the
loading-mnditlon of the test.' For a panel shear test, where only N6 # 0, and NI = N2 = = 0,

A'6 6 is being measured. In a circulartubeundor torsion, the loading conditions are as follows:

N6  0, and N = N2 = k = 0; then A* is being measured. Component A66 can be measured

-directly if the loading conditions satisfj e 6-# 0, and eI = e 2 = k= 0. These conditions may
be difficult to achieve. 6 2

In the case of uniaxial tensionof a laminated composite, say, N 1 k', A11 and A'1 2 are the

components that govern the axial and transverse strains. If a circular tube is loaded along

its generator, A* 1 and Al 2 are related to the axial (longitudinal) and circumferential strains.

In general, A'll • A* and A' 2 Y A* 2 . Components All and A2 are difficult to measure

directly because specified strains rather than stresses must be imposed. This is anologous
to components C1 1 being more diffieult to measure than S1 i.

"To avoid confusion, all properties of a laminate, anisotropic composite should be reported
in terms of the component of A, B, and D matrices. The use of engineering constants should
be avoided.

60-
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.SECTION V.

"STRENGTH OF COMPOSITE MATERIALS

The strength of composite materials, whether unidirectional or laminated, is considerably
more complicated than the elastic moduli. No unified treatment comparable to that of the
elastic behavior is available.

Three common strength theories can be, readily applied to the composite materials. They,
are the maximum stress, maximum strain, and maximum distortional work theories.

In the unidirectional composite, which is aseumed to be orthotropic and quasi-homogeneous,
the maximum stress theory is expressed by three inequalities:

a. 5 Y (248)-
or :5 S7

where, x o- . and a are the stress components (a state of plaue stress is assumed) relative

to the material symmetry axes; X = axial strength (along the fibers); Y = transverse strength;
and S = shear strength. Failure of the composite is induced when one or more of the equalities
in Equation 248 are satisfied.

The maximum strain theory can also be expressed in thrms of three inequalities:

rS ye (241 )
Y

where e e and e are the strain ooanposents: X ultimate axial'strain; Y inultimatee e
transverse strain; and Se = ultimate bear strain. According to this theory, failure is induced

when one or more equalities are satisfied.

The distortional work theory, in plans stress, can be expressed by

S-+ + ( A (250)

This theory can be represented by a smooth quadratic surface in the stress space. The maxi-
mum stress or maximum strain theory can be represented by a cubesin' stress or strain space.
The principal difference between the distortional work and the maximum stress or strain
theories lies in the existence interaction among the anisotroplc strengths. The distortional
work theory contains a high level of interaction,whereas the maximum stress or strain theory (
assumes no interaction. Based on available strength data obtained from glass-epoxy com-
posites, the distortional work theory appears to be more accurate than maximum stress
or strain theory.

V611
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"The strengthof a laminated composite can be predicted, if the elastic moduli and the strengths
of each constituent layer are known. The strain components at each location can be obtained
from Equation 241, and the stress, from Equation 242. Once these components are known, they
can be substituted into appropriate strength theories.

In a -laminated composite, not all layers will fail simultaneously. As one or several of the
layers have failed, the layers which are still intact may be able to sustain the existing load.
The shifting of the stress distribution within a laminated composite may cause an abrupt change
in slope in the stress-strain curve of the composite. This is often referred to as the knee. The
ultimate strength of the coiposite is reached where the still intact layers cannot carry the
existing loud. This strength analysis of a laminated composite agrees reasonably well with
available data obtained from glass-epoxy laminated composite behavior.

A considerable amount of work is still needed for a basic understanding of the strength of
composite materials. The theories just describedac purely phenomenological, and no specific
reference to the actual mechanisms of deformation and fracture is made.

REFERENCES

1. 1. S. Sokolnikoff, Mathematical Theory of, Elasticity, 2nd Ed., McGraw Hill (1956)1

2. R. F. S. Hearmon, '.n Introduction to Applied Anleotropic Elasticity, Oxford University
Press (1961)

3. A. E. Green and W. Zerna, Theoretical Elasticity, Oxford: Clarendon Press (19.54)

1. Stephen W. -Taai, Strength Characteristics of Composite Materials, NASA CR-224
"(April 1965)

62



UNCLASSIFIED
Security Classification

DOCUMAENT CONTROL DATA.- R&D
(lSa-goy cta..ihcatiw. Of Uto*##.*6d .f ebeI,. 8"d 0"MWda~ .WW~g@"n MSCa 60 m.EO,. _%g. OM#W ... s.t to isC~gU0

I ORIGINATIN G ACTIUI-Y (C..pW080 "10w~e) Ze REPORT 8ECuRITY C LAISOIICATION

Nonmetallic Materials Division Unclassified
Air Force Materials Laboratory SCRu

3 REPORT TITLE

Mechanics of Composite Materials. Part II - Theoretical Aspects

4 DESCRIPTIVE NOTES(ty fs.,aRMh.i d.)

Final Report
5AUTHOR(S) (Laet .. in. an#s Rin.. stlf)

Stephen W. Tsai

6 REPORTf DATE ~ .70 TOTAL6 NO. OF .sG. 76. goo OP REpS

November 1966 - 67 4
as CONTRACT OR GRANT NO. 60I ORIGINATOpS RPaOtrT NuNDea(s)

SPRO.0ECT'%NO 7340 AFML-TR-66-149, Pt JI

cTask 734003 Sb 6.~ PR ITNoir m%) (4a My e.,swofm Owl imp.b amilemed

10 AVA ILADILITY/LINITATIOW IOTICES

Distribution of this document is unlimited.

It SUPPLEU4NT1ARV NOlES 12. SPOWS@IOM EUTANY ACTINFITY

Research and Technology Division
Air Force Systems Command

13 AIISTRACT Wih-atwa P.Oi 5S

This report covers some of the principles of the mechanics relevant to the description
of composite materials. The contents of these notes may provide useful information for the
understanding of current publications and'reports related to composite materials.

Emphasis io placed on th, use of indicial rotation and operations. The rules governing
the use of the contracted notatica are also outlined. The generalized Hooke's law and its
transformation proprtiest material symmetries, and engineering cc "'tants are also
discussed. The plane strain and plans stress problems are discussed in detail. Finally,

-the elastic moduli of laminated anisotrcpic materials, and the strengt of both unidirecti
and laminated composites are covered.

D D FA0'#GA.1473 UNCLASSIFIED

secedy cleWe4-"



Security classification____ ___________

KESLINK A LINK 9 LINK C
SOLE UT OLE aT XOLE MIT

Homposite Materials
Flber-Relinforced Composites

MatbematcsI Analy3is>

Indicial Notation

Material Symmetries

Engineering Constanits

11"W3uCrIONS
L ORIGINATING ACTIVITY: Eater the sam. and aieg imposed by securty Classification.i using: standard statements'
Of the coutractor. subcontractor. Cruee. Deprntmwt of Do. sha
to @egs aciiyo . ~~'' (1) "QualIifid requesters may *ktain copies of this

the reort. rport baom VDD
2a. LICT SCIJWT aAFIATIO ~(2)~ "veeigs announcement and d&ssemination of this

anl security claaaiacwimo cc the repert. Iadicate whethersptbDO Isatuhoie."~Restuicted Dota" is lacluds" Making Is to be in accom&b C I uhrzd
sace with Appropriate sectrs y regulationa. (3) 4.1.1 & Govsenoa M it agecias may obtain copies of
26. Gk1t0fl Argomatic downgrading is speciffied ~i DeD vj this report 11ifrcy fiom DCC. Other qualified DDC
tractive 5301110 sand Armed Frorces lmalmid Mmo Ene moeu Anil request through
Uso groop nmber. Also. owoe alplicable, show that alitiemel
muag ae e.ie frCo adGe*4 tUta (4) "U. L. military agencies may obtain copies of this

load.repert directly frome Mr- Other oualified wooer

capiral loners. Tides is ali'ceasa ohm"l he cgmiorlated
V orsaingulI il cannst hoeoca wd o lowei~ve.

tI!^ sho- thae clamsfodat"M se all coobal in PmatheSW (5) "Ai di tsion of this report is coatold Qual-
imdistrely fefleelg 00thewo. iliad DDIC uome shall requesat through

4. DPJCEIPTMV NO. 3f *prephde. owns the twoe so______________
repest% eL&. immerim. P~eogo. m pm. waned or lAwL ff the repeat baa been furnished to the Office of Technical
Glve tIv i nclusive dates ohe. a pec Ifn, trap #ti porldisd ai Umi e..Epeebs of Coerwce. for saet to the poblic. iadi-
cowed cauto tis l atnd after the price. if hines.t
L. A Raw(3 dor t W018 sailof 0e() an elen o IL. suWLontitnAmiDT I~UCUse for ditioe.i eaplama.

oris the rapet. "M. last . Ibrat 0"a W"di some.
mUnmy.aw, 4o sotan d bimb ad sead.. TW o of

the priacipel .*w i Laso abooloe wmiým reqAtomeli IL. 11111111UWI LlTAXT AClVITY T.Elder ithe sameof
RNP T DM am o oleof herivrltheSM dspmgmtal Wpejectofficeor labwaory sponeerfag(pep-

=00. EI -- T wool% raem Ita dae Of rapato dmug %- he) lb ra as sd davetepe t laclude, ad*"&.
as low iear or msat peas. of adwm. th13 dt p. ANSTACT Baker as abstract giving a brief sad factual

Ogge, th rndieativ of date at , some tbm7& ?AL mimi OF PAG The 111 com MA ed_ matIdct~Ofterpr, togitW mop. 1i appea elsewhere in the body of the tochnmicalI re-
should fealem. --m~I=i precedaren a.~ OWth o. Nadt e a"ae@ is rsqiad. a contiauation sheeot shall
amaimore of papse leabomtim b feak

71. ~ ~ ~ ~ ~ ~ ~ ~ ~ I J FEFIC e ettlm~ Is, higly d..Idable that the abstract of classified reports
reformea c etdinto Ill be to oroslceled. Amab famropli of the avstract shall ead with
a.. (DITACT OE GI1ANT NMI M Iftprpiae so ft ldicatie. Ot the military security clessificatiom of the M_-
the appicale om"bof of IN cebc or rem volur tlich 1~m0=tis.I the pragSaph. represeatelt as (TS). (3). (C). or (U)

IN* tpollW" wr"0Therei is no lmitation ad the lesagth of tire abstract. How-
"Ie lk, a WE. PUojzCI iumm Enter the a'pr~ everi th s lhsaed length is free ISO to 225 wroids.
Military d4patmaa ideedlicatie. Such or Pvo=ect 14. 112T W0516., May cords are tochoically meatinagful terms

eepnrject ~ ~ ~ ~ ~ ~ ~ o ~aor syte hoa ts esor te - thamt cliracterize a report sad may he used as
41a. OVISGEWAT1OU'5ELOSNW nn1l late taenof5 lades enbtres for cataloging the repor. Key words must be
cilol report numbe by whith ths dagumet Will he k1@1110011 selected mo that so security classification is required. Identi.
sad controlled by the wornigistl activity. This meber met fleon, each as equipmentt midel deisgnaiston, trade wmae, military
be unique to thia report. - preccdeemoo, geographic location, moy he used an key

@1. THE ELORT UP~): t te reorthas___ words but will be followed by an Indication of technical con-
ass6.e OTHE otherT report1F~l) Ur (ether byO ril Of9t test. 'The assignment of links. rules. and wveights is optional.

orby the sponeor). also ester this eamebmef).
10r.* VAU LABlLrTY/Ll~lATION 111T1CE& Rater say lim,
itatioris on fwth..'g dissminateion of toe report, 01ther than tý4

UNCLASSIFIED
Secrfity Classificaticit


