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FOREWORD

This report covers the secord portion of the notes prepared for a seminar, ‘‘Mechanics of
Composite Mavrerials,’’ presented at thc Air Force Materials Laboratory in April and May 1966,
The work was initiated under Project No, 7340, *“Nonmetallic and Composite Materials.”
Task 734003, ‘‘Struciural Piastics and Composites.”” The seminar consisted of Part | -
Introduction, and Part II - Mathematlcal Theory. =

The manuscript of this report was released by the author in June 1966 for publication as ‘an
RTD Technical Report. oL . : L

This technica.l report has been reviewed and is approved, ’ ‘ ' !
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R, T. SCHWARTZ, Chief
Nonmetallic Materials Division
Air Force Materials Laboratory
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ABSTRACT =+

This* réport covers some of the principles of the mechanics relevant to the description é‘
composite materials. The contents of these notes may provide useful information for th
understanding of current publications and reports related to composite materials,

! : g Emphuls is placed on the use of indicial nctation and operations. The rules governlng t!
R “use of the contructed .notation are also outlined. The generalized Hooke’'s law and its tran:
) formation properties, material symmetries, and engineering constants are also discussec
1 " The plane strain and plane stress problems arediscussed in detail. Finally, the elastic modu!
- of laminated anisotropic materials, and the strengthof both unidirectional and laminated com:
posites are covered. '
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. Equation 2 becomes

feature of tensors.
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" Each teasor can also be ari-aixged in a matrix form. The indices of each tensorial compo~
nent can be associated with a specific’ posltlon in the matrix. For example a vector a; can be:

o expressed by A, or a column or row matrix fovm as follows

. : | 03 ‘:Av.'. ‘., 02‘ 1 or (Q' ' oz 03, ke : ) .o (2
a < ‘

L

where i = 1, 2, 3, wl;_ich indicates that the space is three-dimensional ln 2-space, .= 1,2, - ‘

- ¢ B o . E
S ‘ :
% < As [ “‘J it %! 3 ;i

For a second-rank tensor Ay the ~‘09rNBDOhdlng matrix forms for 2-spsce and 3-space
are, respectively: ‘ o :

- ~[°|| °|z] . |
. e, = ‘ o (4)
=t
L% % g |

200

i %2 '| .
| o W % %2 % | s
S °§| 52 ss_| :
l’-‘or nfourth-rm uluor. thomtrlx form lnz-spnce la 5
% %iaa- % %un
a, ] ‘ o
> 2201 %2222 %2212 %212,
s | T I N N o (6)
& S L ! 202 lua Tzas

g

A fourth-rn;k tensor ln s-lpcco contauu 81 eomponentl which can be arranged in a 9 x 9

~matrix,

’

- Matrices contain an array of numharo. The numbers arranged in. appropriate positions in
a ma'rix may represent the components of a tensor. This does not mean that tensors and -
matrices are identically equal. The components of a matrix may be arbitrary and completely

" unrelated. But the components of a tensor,whetherin the indicial notation or the matrix form,

are not arbitrary. The c¢ompone.ts are governed by a set of rules, called the transformation
equations. Therefore, a tensor can be considered as a special type of matrix. Tensors are

" in fact defined by the transformation equations. If a set of numbers satisfy certain transfor~

mation equations they are by definition componentsof a tensor. For each tensorial rank, there
is a corresponding transformation equation., Thus, the coordinate transformation is a basic

P
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, In a simple geometric term, a coordinate transformation involves tbe rotatlon of one S
reference coordinate system’ relative to another. The relation between the old mdnew co- '
ordinates, designated by x a.nd x|, are, fori =1, 2 and 3 as follows
; N v ’ . L :
.t ' * o i x| 4,5+ Ou z + g o ' ;
. | X, = 2. X+ ‘t 'z + taky | (7)
Ry E l b, Ty, o .
N where tij are direction cosines between the i-axis in the new system and the j-axis of the old
one. Equatlon 7 may be written in a matrix form:
* ot s Y ‘ . ,
L F e taz tas ] %2 S e
Xy st ‘sz 'ss s
where the usual rule of matrix multiplicntlon npplles nnd this rvle can be expressed in the
indicial notation as follows: _
f: " [ b hpnp x.
| i | 12 *2 1373 |
) ‘ | | T e
E, 'zt "ttt ] /
? 'Sl x s l ' + '32'2 + '33'3 |
é B A v_.'l:\ ’
' Two useful convenuou ot the 1ndlotsl notltlon can now e lntroduced RS .
1) Rnnp Coaveation: ;" 5;» . ;, - "' ﬁw‘*" W S
Unrepeated index (free lnde-. () takes all the vnlnen 1,2,...,n,wheren is the dlmenssion of . \
the space. N : . : 4 i
2) Summation Convention. . ; S \ _ R i
. ¢
Repeated index (dummy index) - cslls for the summation \vith respect to that index with the 4
range of summation determined Oy the rnnge convention. ‘
With these conventlona. Equation 9 can be written as:
X, * '”lj - (10)
1
g ¢ 'f

/".f
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"mation ‘of j with the same range as i,
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where i is the-free index and ls equal to 1, 2, and 8 in arcondance with the range conventlon.
J is. the dummy index, as it is repented in the right-hand side of Equation 10, and a sum-~
i.e, 1, 2, and 3, is implied. The use of swmmation
convention replaces the summation sign (capital Sigma) in Equation 9. Both range and sum- -

" mation corventions are applicable to all square matrices (because all indices must have the

same range) and are therefore not limited to tensors.

Equa tions 7, 8, and 10 are identical equations and it is quite clear that the use of the in-
dicial notation introduces a significant simplif cation. ,

TRANSFORMATION MATRIX

As stated earlier, t ij° which for convenience is designated T, are direction cosines between

the old and new coordinate systems. Knowing the angle of rotation between the two coordinate
systems, the direction cosines can be determined im.nediately, The componexts of the trans-
formation matrix T for a rotationabout. the 3-axis can be derived. from Figure 1 and are listed
in Table 1: -

* Figure 1. Coordinate Rotation
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TABLE'I.

’l-MATRlX FOR ROTATION ABOUT 3-AXIS

- '

Compoixents |

* Angles 7

‘Diiecti’on Cosines . '

4

101=8
roz2= ¢

108 = 90°

2'01=90°+ 6

< 202=6

“9'08'= 90°
3'01 S90°
3 02 = 90°
303 = 0

cos @
sin 8
0
-sin 8
“cos 6
0

0

0

1

i o WY S e T
.. i -~ . L - A - 7 N

If m = cos 8 andn = 8in 8, the T-matrix above can be irrﬁnggd in & matrix form as follows:

.. [ m.ao07, L

T s OJ" s+ | -2 mo | “ ' o ",hii
N A 4

-
i k

For a rotation in the oppostte dlrootion of that lhmvn in- Fl;are 1,81s negnﬂve. and the
transformation matrlx. designated T, ll as tolluwl = o e

m 'ﬂ | o : Lo - - . .
Telamoo | w2
° I I B S

The componenta of the T-mtrlx for any ‘other roution can be derived similzriy from the
angles listed in Table 1. The subscripts of the t’ refer to the new and old axes, i.e., the

angle for the direction cosine is that between: the l-'h axls of the new coordinates and the
j-th axis of the old coordinates. : ;

There are a number of features 'of the T-mntrlx.fn:a follovu: : R
'1) When 8=0. o e

[1.007 ’
T2 [o ' o] o _ o (3) Y
oo 14 . ' o (

/
}

‘
- N
) v
B R S — T T e e U3
! . N v 77 .
’ P RN



Ve

LT

.y

2) When§ = 180°, -

u'e now n ldt-hnd nyltem. 'rm- is shawn in thuu 2.
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e Thxa ls ealled the identity transformatlon. for which x = x The new and the old coordinates
' _are identical. . . , ' _

P

e T=[O -1 o]“ T (7 N
. Lo o 1 L

‘This is called the” central inversion, for WMch x‘ ==X, xé = =Xy, and xé = Xg. .
3) A proper rotation is defined by a T-matrix with its determinant equal to +1, i e. |T| =+1.
Fora 3 x 3 determinant, its numerical value is the sum of “the following products

o o 1.

22 33
"2 a3 '
TR TINE
.'3.1 22 13
'zn 12 33

23 32

-

(15)

- - - -
- . - -

t

" The determinants of the T-metﬂx in Equatione 11. 12,13, and 14 are equal to +1, and are
thus proper rotations. Geometrically speaking, all of these transformations preserved the
right-hand system of coordinates, as shown in Figure 1. This system satisfies the right-hand

rule, when it is applied to the coordinate axes, by rotating the l-axis toward the 2-axis with
the 3-axis as the advancing screw.

If a transformauon ehangel the rlght-hend lyltaem of coordinates into a left-hand system,
this is called an improper rotation, for whlch ITI -1 An example of this-transformation is.

the reflection of the 1-axis, such that x ==Xy X 2 n.nd :g Xg. The T-matrix becomes:
: | y oL " o oi o ‘ 'l o
v o Tsl1'0 1 O ‘ (16)

v .0 0 A

Note that |T| = =1, which indicates that the roution is Qmproper ‘and the new coordinates "l, .

w - ,
L. . P
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‘Figure' 2. Improper Rotations

4) The T-matrix must also satisfy a geometric relation known as the orthogonality condition. ‘

If the coordinate axes are orthogonal to one another, the components of the T-matrix, which
are the direction cosines must satisfy -

- : SR T T 3, - 0r

where 8ij is the Kronecker delta, and C ' ) o

3” 21 whenis

L (18)
B-j'OanH‘l ’ R o

The Kronecker delta in a matrix form is: o “‘ ‘ T o =

. . " o o 1 J ‘ ‘ - B
' which is slso a unit matrix, The use of Kroneckor delta isa very importam tool in tensor
operations. o e
TENSOR CALCULUS - R i
d ' v v N ‘? ’
i ‘Three salient features of the indicial notation mentioned thus far are the range convention, A
- the summation convention and the Kronacker delu. When they are applied stmultaneously. one +

can show that k. oz
iy b ‘
8...‘“ a0, - | (29

‘Bc

ik %" %k %i

7
T e e A o RS - S = it s s WAL . . o . '
’ " ] . - . o . : ol LN
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K- tori=1, 2,
o “(20)
=3 forist, 2,3

 Another feature of the indicial notation is a direct correspondence between the number of
free lndices. 'k (not the dummy index, because an isascalar, a ﬂl' a vector), and the tensorial

) rank, The number of components, N, in each term is determined by Equation 1, where k is

the number of {ree. lndices and n is the number of dimensions.

Finally, in this notauoe.‘a comma repreeents differentiation, as follows:

Ooi M
;l—i = oi‘,‘] - - (21)

By using the summation convention, one obtains

R .

L]
+
+

V'G <
dlvﬁ'o )

\vhere. in the last two steps, the oonvenﬁonelveohor nohtlon of divergence is used. Similarly,
for a eoeler function A, - ) §

A‘t';—.

GA
' ) . . N ‘
,7‘._‘.A.+._QA.;.£A. “ .
, 0: ‘l,‘z‘ Ous (23)
2 VA
s gved A
where, in the last two steps, the conventional notation for gradient is used.
\8 T
> T e < .
. e

3 (22)
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Finally, 2
4. s 9B
.ot Oliaxi
o 2 2 2 |
d A + ¢ A 4 A o (24)
Oxz anl axd -
I 2 3
: div(VaA)
IS . va ;:.
which is the Laplacian operator. Since the tensorial rank can be determined by the number of :

free indices, a

conventional vector notation.

Sy

The divergence theorem can be written'as follows:

{ainidA z fc' v ) , (2%) -

where V = volume, A ='sur'mce.n1 = exterior normal to A, Subetituting a = A into Equation 25
‘ fA,in dAaIA v R (26)

This relation can be used, for example, lnthederlvatlon of the Fourier heat conduction equation.
Equation 25 can also be.generalired to a vootorequuuon by uctng ”ﬂ in place of 8

i

Fxd
5
‘

This relatlon will be uled in the derlntlon of t.he equlllbrlum equation,

-

Streas is 8 measure of thelntorul foroel ln . oontlnuoua modium induced by surfo.ce forcu
applied to.a body. The relnuonlhip can be defined by

T, = c, ‘ni _ i (28)
where T surface tractton. ji = atreu tensor. and o, = dlrectlonal cosines of the surface
on which T ‘acts, Equation 28 in 2-space is:

T, =9y, o + o

T2 "% 72"

(29)

Ic“ ‘u I ,” av - o (27,

4 and A, are scalars; and A, a vector. The fact that the tensorial rank can - * )
be determined by observation is a feature of the indicial notation t.hat does not exist in the:
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The relations can be seen in Figure 3.

- The normal componeat of the nir!ch traction, T, can be obtained by

In 2-space

2

3

1

Figure 3. Stress Teansor in 2-Space

: Tn

T
"

-Tn T o an,

ll]l

R

nso nz +20"zn n2+ ’22"22

(30)

(3n

AThe tangential component ot the sur!ace traction, T can be obtained s follows; From the
directional cosines n, of tbe norm:l to the surface, one can find the directional cosines ti in

the tangential directlon by trmsformlng n, through 90°,

‘where

U} By

o_ 0O

1
00 —
- -
[ S———1

10

Since n

is a first rank tensor,

{32)

(33)
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‘ Thus X P e
f L PR PR 03= noo : «.‘\(34) §
1 Hence - ’
To= Ti"‘l = ’iini'i co } ’ (35) -
For 2-space
T e ‘ ‘ ‘
3 ¢:r“n:l t' + a"z "|. 12 + a'2| nztl:"&- 622"2'2 36
P + 2 -2 : ‘
T T 92" 1% * %Y :
SinceQ -
T. = ]’".ﬂl - T' nz .
(37)
Tzz-rntlf '
From Equations 31 and 36
. S, .. 2 . 2 2 2_ 2
T 2o+ 20,0 0, 00 0, +0, 00y O, = in, (38)
- 2 .4
%2""% "t %" %
Similarly, A R Co ’
ISR o, 3 2 2 2
27 %N M2t 20M i F % TN P %Rl TN
'2 1 : (39)
M U T MR T R |
Equations 38 and 39 agree with Equation 29, as expecte‘d‘, Finally, one can easily show that
’ 2, .2 2L .2
T"‘ + T' z (TI‘"I’ -0’-‘(',7‘ "r ’
(T +Ta 24T 1 +T 102
(| 22 (] 22
- - .2 ‘ 2 ‘
] (T. ", + ‘T:‘."'.f‘.’ + (-T. n2+ Tzn N . (40)
2, .2
s T. + Tz
R &
1
"-‘ T ' .- e ‘ -n»:m-ar; -




¥
3

Cat e

AFML-TR-66-149
PtI

. The equilibrium equation of a continuous medium can be derived from the conservation
princlple of linear momentum, &s follows: A A

deA+fs¢v=fpb‘dv (4
A v v

" where Ti = surface traction, Bi = body iorce, p = density, Uy = displacement, double dots =
‘octunu derivative with respect to time, A = surface area, V = volume enclosed by A,

From ‘Eduations 27 and 28

deA Jcnusfa | - (42)

} lhl

Since the volume is arbitrary, :
+8, =pi ' - (43

i‘nl

In the absence of body forces and time effect, the static equilibrium equstion;‘ls‘

[ 2 = 0 v‘ : (44)

i

* From the conservation prlnoiple of angular momentum that if the resuitant moment due to
body and surface forces vanish and there 15 no other internal or external sources of moment,
it can be shown that the stress tensor must be symmetric, i.e.,

o i 2 ci P (45)
In view of the symmetry property of stress, Equstion 44 can be written as
] O . - (46)
e - ‘ L

RIS

This equation in 3-space can be expanded, as follows:

oo ‘de a&
" 12, "%

Rppar._prani Ly > =0
as'l | 0!2 613
do, do. do. :
6'2""0—22*_0'&:0' &7
ll '2 l3
aq"s 00'23 00'33 o
Ox * ox * ox,
] 2 3

STRAIN TENSOR

Strain is a purely geometric relatlon. It is independent of the constitution of a body as long
as it remains continuous durlng the process of deformation.
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Let points ‘P and Q,. separated by a dlstance ds in an undeformed body. displaced to P' and
Q during a deformation process.. The relations between these four points are shown in Fig- .
ure 4, .

*Q (xi+‘dx“l

Figure 4. Displacements of Points During Deformation

From Figure 4, .
up = x" - X _ ' (48)

(as? = Byamey 49)

(an z 8 c- ul - (50)

If the process of deformation is referred to the final or deformed state (the Eulerian co-
ordlnatee) o«

5 i' 8,‘,.‘('.'.) R o | (5!)‘ ‘ ’

" Then

'dl! *x "dlj : (82) |

dn' ds

(d8)% = x I

i ‘ (53)

‘(as')z"za;:,qx‘,dx'i o “ o ser

Strain tensor, e, ,, i8 defined by

(4892 - (as)? = 20, dx",dx] 55)

T YT NIRRT

.
w
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By substituting Equations 53and 54 into ,55, one obtains:

1230 Amitmg R

Since

Then | o ' -

(57} _,.
mim,i

By using Equation 56

2‘1;'“:,;" “‘j,i‘-‘!m,i um,“l : " (58} .

The Eulerian strain when expanded becomes
‘2

R (RN ) I

_‘.(“' E Ouz' )_’-L(’Ou' Gui . Ouz a‘uz .Qus ags)(m
2\ ox 4, O‘x: ox :

In' a similar way, one can derive the Lagnnglm strain which refers to tne initial or un-
deformed state, as follows: L , ' y

(60

,2,0” ”-fu, +ml "

In expanded form

R (A REI ) -

14
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e dx| O‘xz 0x| 6:2 dxl dxz

The physical gignificance of the straih components can be illustrated by two examples‘: .

1) Normal strain.

Let ,
le = dx | imnll‘ying dx 2 ° dx 3 ° 0
ds = (1-E)ds’ = (1-E 1ax,

where
ds'— ds

€ = ——— ‘ .. (e8]
From Equation 55, . : i

(dx' ) -u-e; o ’z r20 dx' o (66)

therefore

Thus, for infipitesimal displacement,

e *E
e

e _(68)

which means that, in:the case of infinitesimal strain, the normal component of strain cor-
responds to axial elongation. I-‘or finite strain, Equation 67 \vﬂl apply.
2) Shear Strain

Let

o

ds’ : dl'z ' ‘\vlm d:" s dx'

,gi' : di'S L with dF = d%

15

- W du ./ Ou du | 3u.” du, L Quy duy |
e %( ' 4 2)+-"-,( Loty 2. 2, 3 _ 3)(63)'

- (64)

12 o (67)

0 (69)

: 0 (70)

-

i - -

.



TNy rum e e : . LT .

i

* ‘From Equation 71

AFML-TR-66-149
Pt

The angle 9 between the two vectors is

.cos 8 = dx 4% /7 dsdi
2 ‘7l,‘2‘i,3“2‘d‘3‘l‘ds 43 -
From Fquation 56 ‘ ' | .
w , cos 8 =(\82\§-2°23?d‘2d!3,dsd’ o ' (TN

Let ‘ :
- ¢ =8-90°

and it represents the change in the angle between the two elements which was @ in the initial
state and became perpendicular in the final state..

sin ¢ = 20, dx’, d%', /ds ;:“‘ - ) (72)
‘From Equation 65 ‘
| sin = 20,0/ (1-E, 1 (1=-E) » (73)
From ‘Equauon 66 | ‘
.m¢ é‘zctz"s/,“/u '?‘zz’“ ST (79)
For infinitesimal strain, ] | |
| $ = 20,y o o (75)

Thus, the infinitesimal -near ltraln corresponds. to one hall of the change in angle from 90°,
The strain-displacement equnttonl for both: Eulerian and Lagrangtan strains reduce to the

same equation in case of lnﬂniteslmnl strain as follows:
yo,s—‘-‘~("u,.+u. ). “ (76)
2 } ! - L
This strain is a second-rank tene‘or‘.‘ The conventional engineering strain is dlfferent“from the
tensorial strain in the shear strain compounents, The engineering shear straia is reiated to the

total change in an angle, rather than one half of the angle according to Fquation 75. For this
reason, engineering shear strain is twice the tensorial sbear strain,

16
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" SECTION II ‘ o F
| TRANSFORMATION EQUATIONS . = = =7

. Tensors are defined by the following trihéfor,mation‘ equation:

. ¢ Ve K1 'im"jn..."koflpcmn...op

(77)
’ | )

where Ci ikl is the transformed Cmn"'Op; tij' the transformation matrix. In first, second,

and fourth-rank tensors, Equation 77 can be specialized as follows: A ‘ o

Ci * HimCm \ (7).

‘ozt C (79)
i) im jn mn
c'iikl 'im'j‘n'ko"lpcmnop BRI . (80)

FIRST-RANK TENSORS

Equation 78 répresents the following simultaheous' equations in 2-8pace and 3-space:

. 'T .
Sl v N2 | &
Ll ] (8l -
ol f e N2 hs ;
AL A (82) '
Sl L' "2 'ss

- Assuming that the transformation is a positive rotation T*, which has the components shown T
in Equation 11, Equations 81 and 823 become ) .

 ‘ c‘.'\ ‘m oo |¢ . |

m o |fe | - - (84
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Summing n gives

Cha "ty O * 122620 + 411,65 + 1,0,

18
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These are the transfbrxhation‘ equaf:tions of 'lf+ for the first-rank tensors (“(‘vectors).
SECOND-RANK TENSORS T
‘ For second-rank tensors, the transformation Equation 79 in 2-space can be expanded as
follows: .
1) Wheni=1,j=1,
‘ ¢ tm In ¢ mn
Summing 'm gives.
cll='l‘ll'inc‘ln“.—'IZ'lncZ.n : (85)
Summing n gives
c“-f'( c +t'zc|2) "‘zn c 12 22)
2) Wheni=2,j=2,
:C 22 ZM'Zn mn
. Summing m gives -
€22 ° '21'2n%n * '22'20 %2n 186}
Summing n gives
Ca2® 22, €1y * 122 G2 ) * t22l" Cay * %2222
3)Wheni=1,j=3, ,
°|z * "‘ln 'chmn
Summing m gives _
C'.st 1, C_ 4+t 1 C (87)
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4) When1=2,]=1, ° ' ‘ o f
|

lin Can®

Summing m gives

Cor T % Na Cin Y Y22 tin Con - (88

Summing n gives s ; R | .
c, =t (1 C 4+

21 S U6 H G, +

i€ Y 260! "

From Equation 11, the componehts of T-matrix in 2-space are

m n . ] :
T = ( , ) ' (89)
-n m ,

into Equations 85 through 88, one obtains

¢ = mzC” +n

By substituting t‘ §

C

22 + umc'2 +mnC |

1 2

o> i .

C,

\ -
22" " %y +ac,, mnC,

2 maC,,

2, 2.
s ~mnc' "-ttqmczz +m c'z n FZ'

(90) S
€12

e .2, c .
- Cpy = -maC, +mnCyp-n °|z;}""z:fz| ‘

In a matrix form Equation 80 becomes . .
- - - o K B ‘ (.

1€ | m a2 wome | [ C,
o 2 2 . - o
ca ! n m mA  -mA | czz -
-8 2 2 ‘ . ' -1} Lo
‘ c'z _ |=mn  mn ‘ -n ‘ C“z SR

Cz"- 1 mn mp -n m | ,"Czu 5

=3

If Clj

is a symmetric tensor, y o ‘

Ciy* G o e (

19
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Equation 91 can be simplified as follows: . i
' P ' 1. 7
‘C“ { F 2 n2 2mn 'C‘l
O T 2 ‘ oy
sz sl n m ,,Zm'n sz (93) . .
Y| 2 2 ‘
Co, | [~mn mn m-n. C., |
2 | || %2 |

'rhese are the transformation equations of T for second-rm tensors which include the stress
and inertial tensors. .

‘In +3-spn1ce. the range for the indices will be 1, 2, and 3. If the rotation remains the same
as T  before, the following results wili be obtained: :

1) Wheni=j=1"

. CII ‘T"Im'lnct;m

ol tN2tinCan t N3 tinCm

TR S PP R ITLTY .
‘ {94)

bl o)+ 15 Cop 4 1 3Co8)
hoT | . . * ‘

ucsa * °3z§9'us°,ss’

Since for the present T-matrix,

# i
PR

AT Pt R T PR (95)

. 2 2

C“!mc +nc +2mnc (96)

where .. C ij ls assumed tobea symmetric tensor, and the results o! Equation 96 are the same
as that in Equatlon 93.
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2) Wheni=2,j=2, 2 s ;
c‘.ZZ s 1‘.‘!miz ncinn ‘

* %20Cn * Y2200 'és'ZnGSn (97) ‘:

. . _ nzc +miC, - 2m‘nc'2“

This is the same as Equation 93 'becadse .of the relations in Equation 95.
3) Wheni=3,)=3, |

335 "3m'3nCmn

'31'%30%00 ¥ 132'30 %0 * Y33'3Can (%8

fitas * Cys

where Equation 95 is used and t83 - 1 : ' ) o

4) Wheni=2,§=38,

23" %m'snmn

120”3058 * 122'30%20 * Y2330

(99)

BRI U PR PR I 5 L

=z
“

-:nc's-o-ncu

~

5) Wheni=3,j=1, . ) ‘ ;

*sm'in Cmn : - . ‘ .

| ‘ RINTA T AT TRAT LT Pl o
- | o o woy
4‘133(1“ 63! +1 c,.)

mCy, * nCy2

21
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6) Wheni=1,}=2, :
‘ G2 im %20 Cmn -

'l 3 'chln + ‘IZ'Z‘nCZn + 'I‘B'anCSn‘

.aon -

TaltaC * 1282 e M2 Gt 1225

- - ns -ne
mnc + mal, 2 + (m )C 12 A A
This is the same. as. Equation 93. Thus. the transformatlon equations for 3-space, which are

_equlvalent to Equation 93 in 2-space. are

‘ b - r =
c;' m a2 0 O O 2mn c,

¢ ~ 2 2 _ . l
vczz_: Aam o O 0 -~2mn | czz
t.‘.33 {© o 1 o o o | C33
} (102)

‘Czs ‘ 0 0 (4] m -n O ‘ Czs’

Sl | o o o m o Gy,

| ' o 2 2|
Cc -mn mn O 0 O m-n c
LIZ ‘ L . J L 12

—

~ Note that Cyq component is invariant, i.e., Cgq = Cgq, and Cy, and Cy, interact with each

othar and are not coupled with the remalninc oompononta If Cll represents a stress tensor, -

/" | %2

i Figure 3. Transformation of é“ in 3-Space
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23 -apd C31 would be the transverse shear stresses ot a plate with’ its plane parallel to the

1-2 plane. The states of stress before and a.fter a transformation of 6 = 90° are shown in
Figure 3.

Note that when 9 90°. m = 0, n =1, These results, when substituted into Equation 102
yield o ) S «
= G
C22® Gy

Caz=® C33

; . (103)

. G ’03;‘

Ca1 * c‘zsr

C2 * %2

The relations in Equation 103 agree with the results shown in Figure 3. The shear conibonents
shown in this figure represent positive quantities (the shear diagonals lie between the positive
directions of the coordinate axes).

CONTRACTED NOTATION : S

A further simplification of the indicial notation is possible with the contracted notation, In
dealing with fourth-rank tensors, the contracted notation reduces the number of free indices
from 4 to 2 but expands the range from 3 to 9. The number of compoanents, according to

Equation 1, remains at 3‘ = 81 and 9z = 81 for the normal and contracted indicial notation,
respectively. But if symmetry properties are introduced, the contmcted notation can be used
to obtain a considerable amount of slmpllflcstlon.

The fourth-rank tensor of .interest now is the elastic stitfness or compliance matrices,

)

© Sy OF Cygy1- They appear in the geaeralized Hooke's laws as follows:
o | %G * Ciymou ~ {104)
% S o ) (108)

where 0} = stress tensor, e, = strain tensor, and:both tensors have the following 9 com-
ponents in 3-space: - ’

9% L)

22 02,

O3 LFT)

Tg3 G293 ‘
{106).

L4 1] L] ‘

T2 L7

4 1] €32

O3 €3

= 1] 024

23
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‘The coatracted notation is. establisbed by arbitrarily replacing the double- index system for
a second-rank tensor with a single-index system. Fach component in Equation 106 can be
; reprooeuted by a single-index system from1to 9; e. g., as: shown in Table II,

TABLE II

- CONVERSION BETWEEN NORMAL AND CONTRACTED NOTATIONS <

Normal Notation Contracted Notation.
I i % e
%2 22 72 )
“"343 33 %3 °3
. J"‘z;3 2e,5 Ty e,
T3 2% s *s
2 2% % %
%32 23 bt Y ¢
%13 20,4 %8 ‘s
i %% % ‘%

In contracted notation, engineering strain is used instead of tensorial strain and Equations
104 and 105 can be written as: ' ‘
=89, o (107)

o, = Cyy (108)

where 1, - = 1,-2, ., . ., and 9, In this notation, the range and summation conventions are
retained. But some modifications in the interpretation of the indices must be made. First,
- the range of free indices no longer corresponds to the number of dimensions in space, Sec~
ondly, the tensorial rank no longer corresponds to the number of free indices. Finally, the
contracted notation is an artificial notation which happens to provide significant simplification
in the representation of the generalized Hooke’s laws but only second and fourth rank tensors
where 3-space is involved. The use of contracted notation for other tensorial relations should
be limited to special cases..

Returning to Equations 107 and 108, t.ho range of the indlces can be reduced fnom 9to 6 if
the stress and strain tensors are symmetric i.e., _

%ij * Ojir 9 o) = ¢ (o)
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P

,Thus. the symmetries shown in Equation 109 reduce the number of components of S
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Pt
~which, in contracted notation, means 7
O, 30,4, Og =0, 09‘7 =0 {11o)-
°7 * % %" ’5" €9 %

1 i
fiom 81 to 36 in 3-space, and from 16 to 9 in 2-space. Equation 6 in contracted notation be-
con es:

. )
r —‘
, % %2 %6 Y9
1 a a a 0, | C
0y | 2t 22 26 ‘29 S(H2)
% %2 %6 %69 | |
| %91 %2 %6 999

where the replacement of the 4-index system 'to a 2-index system follows the relationship in
Table II, If the 8y, is a ‘complia.nce matrix in the generalized Hooke’s law and the stress and

strain tensors are symmetrlc. Equations 110 and 111 can be used to simplify Equa'ion 112
as follows: :

r? s S.é |
[s Spe o | T3
7 S, 2 See -
'fhe SU in 3-space will be:-" ( 5
. ; , 814 812 843 sug‘.‘fi‘sis\ Sie | ,
Sa1 S22 :’ze 24 %25 %26
g * 251 :sz :33 234 ssss :sc T
s %42 %43 %44 a5 Bae
S51 %2 Se3 Ssa %8s Sse
L.’fsl "‘oz %3 %4 Ses See |

- An additional symmetry property cnn ‘be established from the strain energy consideration.

If the existence: of an elastic potential is assumed then anincrement work per unitvolume s,

m (b}

B L T AL e

dW =.0de, - S e
et e ‘ - 23 e e S et ommi M
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then substitute =
o= Cyey . ns)
AW s Cuqldoi . . (n7
By Lntegrating, one gets’ -
4 ‘ s U‘| ‘ ‘
Similarly, one can show that < >
‘ .y |
W= zsu"'t"); B (1)

- From the elastic potentials, one can derive the generalized Hooke’s law, as follews:

| %‘."—*w; = Cyjo;  U20)
‘ et . . : . .
and
, C AW
; do;de; )
‘Similarly, | | e
T '_r: LT y | w2z
Since the order of differentiaticn is lmmeeeqnl. then
| G *Cy - - (1

i.e., the etitfnese matrix must be symmetric with reepect tn the indices in the contracted
notation. In a similar manner, one can show that

‘s” .s“ ‘. o . | (124)

‘his additional aymmetry will simplify Equations 113 and 114, such that there are only 6 and.
21 independent components in 2-space and 3-space, reepectively.

The conversion between the normal ‘and contracted notations for S 15 and C i cannot be
derived directly from Table Il Some correction factors must be introduced because of the
difference between the englneering and tensorial strains, The factors can be eatabllehed by

26
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" expanding Equatlons 104, 105, 107, and 108, and by comparing them term by term. For
example, fori=i= 1 from Equation 104, -

“':l snn"u +‘°‘||22"22 +S|133 33

08, o3+ 51132193+ (5,3, + 5,37 3 - 23

et ||2|’°'|2
From Equation 107

el s 0' +s'202+sao'3+s4o'4+5565+ 3'60'6””‘ : ‘(l26)

Comparison of Equations 125 and 126, and an assumption that the matrix is symmetrical
yields

S = 8y

Sii22* S
Suss* Si3 |

2523 * Se -
xS

u2n

B |s‘f
Be _
By repeating the process ltmthr to that shown in. Bquauono 135 and 126, one can estabush
the tollowln; oonvontou of tho oompononu of h oomplunoo matrix:

s.m =8y for' =i, Z.of3

zsuul s Sqr for q'l 2 or3; ¢ 4,8, 0r6 u‘zve)‘

“ e qs45,or0,r=l?ot3

“Ukl s 8 for q.r -4 S,or8
The converslon factors for the -umm- mtﬂxc jcan be -lmlhrly .established. In i =§=1

'°uu’ l"’cuzz'zz“cuss‘ss 7 |
+(Ciien ¢ °usz’°as"' (Cy g + °m3"31 | 129
Y2t Criate
From Equation 56 B o

U N O 12°2 1373 1474 1879 1676

27

o =C e +C.e +C_e.+C o +C_o_ FC o (130)

b
B
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From Table 11,

20,3 = 04 31 "% %27 g

. From the last three numbered equations,

*Chur o %22 %2 C3ztCi3 e

Chiz* %6 .

S

o Cr2a®Car Sz TCEr

(132)

By repeating the process for the other relations in the generalized Hooke’s law, one can
establish that

Thus, the conversion factor is unity for all components of the stiffness matrix. But for the
compliance matrix, relations in Equations 128 must be followed. The contracted notation must
be handled with care, The tranformation equations must be derived using the normal indicial

20, =, 20,6 | sy

notation. The relation between the components of the compliance and stiffness matrix of the |

two notations must include the proper conversion factors as shown in Equations 128 and 133,

The use of the contracted notation has often been inconsistent in ‘many current publications
and reports. In many cases, tensorial strain is retained. In other cases, both single and
double index systems are used simultaneously, e.g., €89, and 012 for the strain components

in 2-space. Finally, 3 is sometimes represented by ey instead of eg

The conversion between the normal and ‘contracted notations as listed in Table II and
Equations 110 and 111 are recommended because a consistent notation between 3-space and
2-space, and consistent operations (range and summation conventions) can be retained. In
the contracted notation, fourth-rank teasors are represented by double-index quantities
(C iy U). second-rank tensors, by‘ltngle-lndox quantities, The range for 3-space is 1, 2, 3,

4, 5, 6, and 3-space range is 1, 2, 6. The Iatter range is probably better than 1, 2, 3 because

it avoids the similarity between the range of 3-space of the normal notation and the range of A

2-space of contracted notations.

Finally, the contracted notation as llltod in Tubla '! may be considered authoritative .

because it follows the notntton listed in many textbooks (Relerences 1, 2, and 3).

FOURTH-RANK T“NSORS - -
The transformation equations for fourth-rnnk tensors contain. 81 equatlons. With the aid of
symmetry propertles. e.g., o'“ “. “ “. “ 8“ and C ‘ j (the last two equations

are in contracted notation), there are only 21 oquatlon.. A further simplification can be intro-
duced if the T-matrix is limited to a rotation about the 3-axis, as shown in Figure 1, whe 3,

m an. 0] C
.z]l-n m" 0 ' T (134)
b ‘ ‘

¢ o0 |

28
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The transformation equations must be derived from the normal indicial notation, not the

contracted notation, because in the latter notation artificial simplifications are introduced.

The number of free indices no longer corresponds to the tensorial rank. Repeating the form -

of Equation 80, in which

‘cijki' im m'ko'l pcmnop

tae transformation of S jxq 18+ similarly "
it .
Sljkl = 'am'jn'ko'lpsmnop ’ s (135)

Further, in 3-space, by taking advantage of L'li = t23‘= t31‘ = t32 = 0:
. . | ' z
Stit ® it Io"lpsmnop
Sumnming m gives -
s . .= S +1..t ¢t ¢t S

Lt II In lo Ip Inop 12 in Io Ip 2nop
IS'In ‘l‘o lp‘ 3nop ‘
Summing n gives
S Mt ipStiop * Miz'ie'1p 120 \(uo 19°130p
AP 'lpszlop *12"10"0%220p *Nlo Ip 230p ‘
Summing o gives |

nn"® n['u"n e rnp ¥ M2Np3n2e Y Nl ip1isy
100,00 8121p * N2 8122 "\l'lp 1235

"2 ['u"u 1320 * 12 wl22p Y alist23p)

et ' oS221p * 'lz'lp'zzzp 'uszz;p’]

L 8 $e 1 8 ¥ )

29
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N ‘Summing p g'lvea

u|| n{'n[ S ""nzsmz" 7:5- |3’

“lz('usnal 2522 \'Nsnzs’] -
1o [0S oSz NSz
oM Sz ¢ "lzsuézz"*\istées’] }
e {'u‘l"n"uszm 125012 Y haS2n3!
4205212, * 11252122 "\qszjqzs’f]‘
Yz [ sSz2n e N3 !

AP nszzzl t1252222 ‘t\fzzzs']}

4 3 3 22
T omSy tm "smz tm "suzl tmaS oo
3 22 3

tm “slzu +mnls,, +aln sl22l-‘+ mr 1222

‘ 2, .
tm "szm tm "2szuz +mes 52I2I‘* me S22

3 3. . &
+més® 2211 ¥ ™ Spai2 ¥ MM Spa0) " Spop2

Contracted noution: with the proper conversion fa}:ton."'modtfles Equation 136 to

4 22

s""i- m O” . nl“lz +m n%/z + mns,

(136)

+m’ns 12+ et /a4 it sa mn’s /2 ~
. (137)

| +m ul.|/2+m azl..n-fmznz!../d-b mn 8‘2/2

+mn28 + mnl“/z+ mn!z‘/z+ nszz

" From Equation 124, whora 81 18 -y.'nmotrlc. Equation 137 can be further reduced to

n 8‘. {138)

s, = m%,) +2mtod,, 4 2m0n8 g 4 o agnm 806 + M

By following the: staps delcrtbed‘ above, tho transformation eqtutlons for the xemamlng 20
components of the compliance matrix and all the components of the stiffness matrix can be
derived. The transformation, like Equation 138, applies to a transformation consisting of a
proper rotation about the 3-axis. This is a very special transformation. A general transfor- ‘
mation, for which all components of the T-matrix are nonzero will result in transformation )
equations considerably more complicated than Equation 138, in which only 6 out of a total of
21 componenta affect the S1 component, The transformation equations for S and C“, when

30
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subjected to a proper rotation about the 3-axis, can best be presented in the following tabular
forms. The use of the tables can be seen by comparing Equation 138 with the first row of the
first table. In case of the stiffness matrix C 1y° appropriate factors shown in the column and

row hea.dings must be properly incorporated as follows

. o4, 22 .3 . 4 3 C22
(,:II =m C” +2m n c‘l2 + 4m "CIS’;:} n F22+‘ 4mn‘cg6 +4mn (:66
St Y [5121%2 ] 516" 26! | S22t 22! 26! 26 [P %66
S'I “(C'“) m? 2m2n® '!stn at 2mn° " men?
ey | 22| 4, 4 3 22 3 |_22
S|2(0|2).; mn m +n| .m:‘sn L t_nm:3 man
(chs) -2m>n '2m3n3 | md 22 2mn> * 'Slninz\ mohn
" | -2mn -3m n -n. -mn
R 4 22 3 4 3 2.2
22(022) ,n‘ amn '-Zmn‘ m -2m-n . mon
(Zf‘ 6) -2,,",3, z»m3 sznz m’n‘ m4 mﬂ3
2 | 3. 4 . RS 2 2 3
c=2mn | -n oo |o3mTe “mn
s6!4Cae annt |-amen? [amn> | amZnZ | amon, | (mS .
. 3 Pl 2 2
, -4m°n R -4mn -n)
, 13618’ S23(C28 26/%C3¢’
v et k3 2 '
sw(cw) m> . mn.
g 2 2
23 Gy " m ~mn
8'”(26'“) -2mn 2mn- »mz‘ - “2
s ‘(c“) 8‘5(6“) 355(655)
4(6' ) m? -2mn - a2
as’ 45) mn m2 - nz -mn
2 2.
S(CSS) L 2mn m
31

S e

(139) -

(140)

(14

(142)
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" R : . 834“:34) . L o 535'((:35)",
,su ’ ] ) . m —n = ) ' . .
534 %4 o | el
5‘35(035)_ ‘ | A ‘ ‘m‘
S14 %4 Sis! Cis)| Sodl oq! 525‘ Cos!| 5062 % 55612Cs)
s (¢ | ‘m -m%n | mn® Za> m?n | -mn®
£ ,c|4‘ S ‘
‘S"'S(C" ) mizn | m 0> mnz | mnz“: mn
2“( 024)  mn? -n> N m> | -m% | -m®n | m?
‘ | x| (144)
(c.) ,n‘s‘ mn2 mén | m | -mn2 -mn
szs 28 |- ‘ | -
(2C 6) ! ;Zmzn : 2mn2 zm?n., -thz : m;‘z : n§
1 - : ‘ } =mn~ | -m"n
2 2 2 -2 1 .2 3 3
s -2 -2mn - 2m! :
56( 2656) mn 2mn 2mn [ 2mn| map m,
' Lo ; -n ~-mn
sss‘ °53’ * S5 °53’ ' (145),

Note that under a parttculu tranafoxmatlon. which in this case ia a rotation about the 3-axis,
the components of S’ and Cj am arranged in 6 groups, each of which is numbered as an

equation betw.en Equuou 140 and 145. The components of each group will interact with one
another, but a ‘s completely uncouplod from the other groups. This info.rmation i8 useful in
the study of «lastic symmetry. If for a given material all the components within a group are
zero, they wi.l remain zero ﬁor all aq'lel of mtation about the 3-axis, :

INV ARIANTS

There are a number of invariants .ulocuted wtth ‘the oomplime and stiffness matrices
with respect to the rotation about the a-vdr ,

I, .8 +szz+zs

From Equation 140
1,2 (m*+a*+2nnds |§'1+ @ma® + 2m'n> 42m* eanis
4 (2mon -2mn 4 zm‘ { 2mn)s +(n +m*s 20on )s

+ (2mr‘|3 stn + 2m3n t"l- 2mn )S + (m2n2+ mznz - Zm?"n‘ )S66

(146)

= Sy +S5,125, ;

33
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- [ ' R ) ‘ . ¥ he .
T° Ses- 4’?12 - . L S , - ;
=5 (“mzn2 - 4m2n2~)s - 4(m4+.n4 +2m2n‘2)s|2- | ‘ |

1 .
mn> + mOnS g + (mn’ - 4mnS,, 1an [ ;

22] B

-+ 4(mn3 - m“sn

[ )

S

~+4(‘m3n - mn3 msn +mn )S26 [(mz- n ) .+ 4 66

* Ses ™ *Si2. :
I3% SaatSss . «‘

) 2, 2 _ 2, 2 ; L

= {m"+n ‘)544}0- (2mn Zmn)S45 +(m” +n .)555 . (148) -

C® S44% Sss 7

1, 523+ sI3 4‘;;; |
(m% 4 a5, -Hm +n2)s sHlmn - ma)Sye s (149)

"

Si3tSs g,‘_‘

2
158 344‘3‘

2 (m +n )35‘4 (m +n )355 ” R (ISO) ‘

1= 8. *3 o T usn

An anisotropic body is aubjected to hydmlutlc prenure so that :

o 20, ’3 s p

and N ‘;ﬁz :
LA ‘crs;s 0. » B

-s‘ . A

The change in volume is the sum ot the normal strains. i, v.. ' ' :

8v1v=. +0

I *2 3

o
< L
.y
p ~
‘ : & -
- Rl B SR B - —— " . A ’
e
- . .
¥ v
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The shear sti-ains e, €5 , and e under hydrostatic pressure" will not be zero for an aniso-
tropic body, but they do not contribute to any change in volume. Adding the first three equations

of the generalized Hooke’s law,

a= So’+$¢r+Scr

I 12% ¥ °13%

KPR PG R PC R N

ey =S4 +szs’a+333‘3 I
8v/sv = [s” +S, 22 ¥ S33 H2(S;, + Sy +ss|)] )

Thus, the compressibility of an anisotropic material is
V/BVE 1/ [5, 45,48, 426, +5,,+5,] (152)
x I/‘(I +I +2‘I ) i (153)

The compressibility is also invariant. Similar invariants for the stiffness matrix can be
established immediately, as foilowa

l-c +c22+zc sc, +C,+2C,

2" Ces~ Ci2 " Ces~ Ciz

I3* Cout °so' Caa * Css

.l ce. ic (154)
Ya Ci3 * Cay +C 5
. z 2. . 2 2
Vg * C3q tC3p *C3q *Cyp
Yo * C33 * Cu3
34
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SECTION Il | |
ELASTIC SYMMETRIES AND ENGINEERING CONSTANTS -

The compliance and stiffness matrices in 3-space contain 21 independent.components. If
a material contains symmetry properties with respect to certain directions, which can be de-
‘scribed in terms of coordinate transformations, the number of independent components will
reduce. Ultimately, if a material is isotropic, there are only two independent constants. In
this section, a few commonly encountered material symmetries and the relations between

S, i or C ij and the engineering constants for various materials will be examined.

ELASTIC SYMMETRIES

[

A triclinic material is the most general anisotropic material where all 21 elastic constants
are independent, A fourth-rank tensor in 3-space will have 81 components. If both stress and
strain are symmetric tensors, the 81 components can be represented by 36 independent com-

ponents, If the stiffness and compliance matrices are symmetric, which can be demonstrated

by assuming the existence.of appropriate elastic potentials. then only 21 of the 36 components
are independent,

Further reduction in the number of independent components can be introduced if additional
material symmetry exists. One of the simplest forms of symmetry is the monoclinic material
which possesses one plane of symmetry. Let plane x-y, or equivalently, z = 0, be a plane of
symmetry; then the properties at +g are equal to those at -z, If a coordinate transformation
of .

A o0 \ 0]
’ t“ =|0 1«0 A (155)
o o0 -I
will leave the slj md C“ lnuot.thmﬁrhl by wtton is a monoclinic material, The stress

and strain components will transform with results very similar to those shown in Equations
‘94 through 101, Both the stress nd strain oomponanu after tbe transformation will be as
follows:

] ' v ' e,
Sl Cppe Cpp Cppv °33' css'

] (] . 1
23" %23+ %51 " "Cu Cr” cqz

Py

where Cij’ following Equations 94 thxwgh 101, isa typlcul second-rank tensor, and ig not the

stiffness matrix in the contracted notation. In the contracted notation, only the followlng com-

por.ents of stress and strain change sigus:

Tg* "T4r 95 %

. : S use)

. . N .
= - e, 2 -0 [

4" % % 5

“35 | ,
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Compare the first equation of the gene/:ralized ‘Hooke’s law written in the new and old
coordinates: - ‘
12% * 3

+C e.4+‘C"e +,C‘se

o 2Ce *C 37 Y s°s 6

+C . 0.+C 6.

1 1 Cia0atCiaes ~Cg0s ~Cist

14°4 "~ e

o= Cpe 5% Cie%

~

If o) = 0}, it is necessary that o o

C|47= ¢ 15 =0 it (157)

By considering the remaining five equations in the generalized Hooke’s law, one can show that

024"= C25 z (.73'4 -?‘Css = C64= c65 = 0., (158}

The compliance matrix must allow the same components to vanish as those shown in Equations
and Ci reduce from 21 to 13 for

monoclinic materials, as follows: 1 )
o (S Sz Sis © 0 S
S;2 S3 0 O S
Sy 53 so : 3306 (159)
aa a5
%s ©
L % J
(S G2 S3 © O Cg ]
C22 C3 0 0 Gy
cu | . . Cag cO‘ cO C:'s 601
44 Cas
s 0 |
= CGQ .J

Since both S; i and Cu are symmetric, the lower half of the matrices is not shown. The com-
ponents shown above correspond to a monoclinic material with z = 0 as the plane of symmetry.
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If a different plane of symmetry exists, say x = 0, the nonzero components of S and C L will
be different from those shown above. The S matrix will be: 1 ij

1
7S, S S5 SM o0 ]
S22 Sz S24 0 O
O 53 :“. : : |. © uen
as 0
: t Sss  Ss6 |
_ : e

The number of independent components for all moroclinic materials remain at 13 irrespective
of the orientation ¢f the symmetry plane,

If an anisotropic material possesses two orthogonal planes of syrumetry, say, x = 0 and
z = 0, the independent components must satisfythe S i in Equations 159 and 161 simultaneously.

This material is called orthotropic and must have the following oompliance matrix:

Sy S 83 o o 0O
% S3 ©0 O O
T o o o
s“ L 33 o ‘ - (162)
LA S O O
‘8% ©
S o See

The number of independent componeats reduces from 13 to 9. If a material has two orthogonal

planes of symmetry, it will automatically have lymmetry with respect to the third orthogonal
‘plane,’

If u material has a plane in which the pmperty is isotropic, thts is called a transversely
isotropic material., Let us assume that the X-y (or 1-2) plane is isotropic, there is no pre-
ferred orientation in this plane, All properties will remain invariant under a rotation about

the z-axis, The indices 1 and 2 in the Su and Clj are interchangeable, thus:
Sp*S2 C1 %2
s . =8 C.*C

13 23 43 23

37
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~ And, the shaar moduli 'between’ the z-directioa and the isotroplc plane (x-y) must be equa.l
‘thus . ,
%447 %5 %a” Css o
Both S11 and Slz must be invariant. From the transformation equation of 812' listed in
Equation 140
Sl'z-mznas +(m +n)S +mn$ —ngS E
. 2.2 _
= Slz,f mn (s“‘+ 22 2S SGG)
Since
S12 7512 M 5y "Sg
then.
sss= Z(S‘. - §'2) {163)
In a similar way, one can show
c »=‘(C”"— c|z e ‘ (i164)

A transverso.y isotropic material relative to the 3-axis will luve the following compliance.
and stiffness matricel g

[30 %2 % % ° ° |
. 3 °o o °
‘ " 0 0 o
s, *| - % e (165)
s“ (o)
L . 28y - 82) |
38
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[ S

becomes

31 12

'

. i

%

x4 e Y

N el it

VF

o .
~ e “w - R o

(€, -2 |

Sa O 0
S Sz O
S22 o

2(522,4- 823)

s 0
.o o
- 0 |

c 0.

5‘55 J;o

Sg5 _

The number of lndependent elastic constants for this material 18 five.

(166)

.If the isotropic plane is in the 2-3 plane or with respect to the 1-axis, the compllance matrix

(167)

In the case of isotroplc materluls. indices 1. 2,and 3, and 4, 5, and 6 are interchangeable

thus,

In addition, ..

3|"22"5 3' v ® G2 Ca3

.P‘ZQ"SI "He o " C23" % "Cee

844735 %¢g: Ceq™Cop * Cop

=2(s a'z). Caq® (€, = Cp)/2

i

e el o -

o x
PR T .
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The final Sil‘ and C, j"for isotropic materials are
| . - . . -
1 S Si2 B2 O ° 0
8, S, 0 0 o
‘ g S, 0 o} o
5, ° | I (168)
| ) 2s,,-s,) 0 0
2(s, - s‘?) 0
| 28, -5,,) |
- i B0
S G2 G2 O 0 °
C,, %2 O 0 0
¢, © 0 9
(€,,-C2 o -

There are only two ‘independentAelutlc\ constants,

]

ENGINEERING CONSTANTS

Engineering constants usually refer to Young’s moduli, Poisson’s ratios, and shear moduli.
These material constants can be measured from simple tests, such as the uniaxial tension
or pure torsion tests. The constants are therefore more familiar and understandable than
the components of S“ and CU’ The relationship between these components and the engineering

constants will be established in this section.

Since most simple tests are performed with a known imposed load or stress, the resulting
displacement or strain is measured. The former is the independent variable; the latter, the
dependent variable. TkLus, the components of the compliance matrix S“ can be more explicitly

determined than those of C“. The following' relations between the components of 8, and the

40
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shear tests:

S = I/E S._=I/E S..=1/E

Si e 22 22° 337V E3;3
Si2 = Vip/E 1 Sp37 %alEyp Sy T vy Ey ,
= v, /E,, ‘ -V, Eyy - "13’5 (170)
Asssf 176 12! sss‘ BHG 300 Su4° "623
Sie "us’Eu ' S26 ¥ M2e’€22+  S36” M3e’Esa

where the 7 ij are the shear coupling ratios. Other components of S 4 ‘can aiso be expressed

in terms of engineering constants But new and unfamiliar enginzering constants must be
invented and it is. doubtful that a useful purpose is. served by forcing a complete equivalence
between the engineering constants and the components of q . In fact, only orthotropic, trans-

versely 1sotropic, and isotropic materials are being’ mvestlgated in these notes. The triclinic
and monoclinic materials are being omitted to avoid using unfamiliar engineering constants.
The shear coupiling ratios often appear in two~-dimensicnal problems.

For an orthotiopic material, one can express the compohents of C‘j in terms of the engi-

neering constants. This can be dope in a straightforward manne> by making a substitution of
Equation 170 into.<n inverted S iy The nesulting relations are listed below:

< - VaasVE,

Caa® (1 —vy, 93VE,

A - Cag Ul =¥yp¥p VEgs

Cig =y ¢ 'zs’sl"" = +Y g IVE,,
Cig * Uy, 44, sz"‘ sy, +v23v'2)vt ' _ (arn

Cay * Uzp +¥)¥3 VEzy = i35 4, "3)VEs3

Cas ™ %23 | |

Ces* %3

Cee * %12

where , ‘
| Vs s mabe Vadse as AN Pedn ura)

The relations betweea C,, and the engineering constants are considerably more complicated

‘ 1§
than those for S 1y Poisson’s ratios are nesponsible for the eomplicated relations above, 1

41

engineering constants can be established immediately from the nature of ‘uniaxial and pure. . "
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all Poisson’s ntloa are zern v :uchmem that there is no ooupllng between the normal stmlns :

If the material is transversely isotrdplc\ with plane 2-3 as the isotropic plane, the com-
ponents of Equation 167 can be related to the engineering constants as follows:

Sy FVE s 0 S =855 /By

$137 %127 "M2/80 7 T B

s v23’(E‘22‘ . (173)
o Spq’ a(‘|+‘v23)“'/s‘22
: Sgs = Sg6 /12 -
The components of ;»(.:ij are
Cpy = U1 - v e .
cn s c“s’(‘l '2 "z|WEzz .
clz.'cs"’ (14 vp3)VEy, (”'?.3’ V€22 (174)
Cu (v +v'zvz|)vt 22 |
c%”"‘? )/2'“ “Yes~ 2, zuws
- .Ces” Coe G? )
where J ‘A '
: v .t '”cz":l ‘ :3 2v|zv2|v23) k&
| (175)

o *“"z‘s”"’ 2y, z.’]-l

Stmplification of Equation 174 can be made by using Equation 175. If the material is.isotropic,

S“ =z S.&i 533= I/E

8§, = |3-s.‘,3=~v/s ‘ (176)
s‘“=“555‘-.‘ 55?' 176 =2(4 +v)/E
..... — S — -
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The components of C‘1j are:
- " (1 -vIE
%% T Trmu-am
< __VvE___ (177)
‘c|2 ' cl3 ”023 T+ viti-2v) h
= =f =6 = E
Coa™ C55" Ces™ © 2014w )

In this section, the components of ‘Su and Cij for orthotropic; transversely isotropic, and
isotropic materials are expressed in terms of commonly encountered engineering constants.

The components of Si ] ‘have simpler relations than thosé of’ Ci j' \Qitb the engineering constants.

. TRANSFORMED §,,

The nonzero components ‘of‘S i for moxi‘oclinic.‘ orthotropic, and ‘trans"\’rer\sely tsotropie ma-

terials in coordinate systems other than their material symmetry axes can easily be estab-

lished from the transformation equation listed in Equations 140 thmngh 145. The transformation
being investigatcd is restricted to a proper rotation about the axis. All components which
have primes. designate transformed components o

In the monoclinic case with the symmetry plane coatain. g the 1-axis and tbe 2-axis,
Equation 159 represents the independent. eomponents of S ‘A ro'ation about the 3-axis would

result in the tollowlng nonzero componeats: . iy
(), Sz S)s5 O 0 S - ..
82 Sz O 0 Sy
s;i s | ‘ Sys O }o‘ S3e (178)
84y B4z O -
8y O
| o s,“;—_

_‘The number of noniero components (20) of Eﬁuatlon 178 does not differ from that of Equation
. 169 becuuse the axis of rotation coincides with the normal to the symmetry plane. The su

in Equation 161, hawever. has a plane cof symmetry containing the 2-axis and 3-axis. When
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‘the same tranaformation as above’ ie applied to this monoclinlc material the resulting S
- becomes 0 ‘ o ‘
| F-fs;l %;'2‘ 83 Sie S |5 S\e |
N s.’z Sy Sae S2s  S26
: . . S“ S“’5 846
Suw s:&s .
L  See

There are 36 nonzero components. as compared with 20 in the principal direction of S iy But

this is not a triclinic material because of the 36 transformerd components, only 13 are inde-
pendent To dlstnnguish ‘between the Si j in Equations 159 or 178 and 179, the former may be.

called special mono«.linic. the latter, ‘;eneral monoclinic, The ‘special monoclinic refers to
the S, ij in its principal axes or the material symmetry axes. All monoclinic materials have

aly 13 independent coznponents .and ‘only the special monoclinic material has 20 nonzero
components, as shown in Equation 149 or 178. A special orthotropic material is shown in
Equation. 162, Uaing the transformatioa Equations 140 through 145, the general orthotropic
material can be shown to have tbe follou lng g i

, r' [ ﬁ_‘ . 3
% slz_: ;sus °o o sus |
) ’ oy s
322; szs 0 0 , 326

©y Sy 0 0 S

rs;' sl ~ ' 1 - (180)
N N B4 % ©
- ; / ) .
R S5 O
Lo | Sge |

There are 20 nonzero compooents, of which 9are ‘independent. A general orthotropic material
has the appearance of & special monocl'nlc material,

A special transversely laotropic mamrlal relative to the 3-axis is shown in Equation 16.:
For this matertal,
)

S £ 2(8

zz- Sge 32
- 813%85 8 "'5

By fvbstituting these conditions into the transformation equatlons in Equation 140. 141, and

142 one can show that

28 =8 s"so

Si6 *S26 " S36 " Sas

- - - ’ e B e N 1
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i The general transversely isotrop‘i'c‘ mate:r!{al co:regpondi’ng to ‘Equatiﬂon‘ 165 is ;
: S [sii  sie - S o o 0]
o IR R P P
: | ) ) | | sga.rl'o o0 o ) -
Si 7| s, o o wen
Saa O | &ﬁ
L sy |
Since the rotahon is in the isotropic plane, Equatioh 181 is the same as i65 An analogous’ . “
situation occurre  between Equations 178 and 159 for the monoclinic materlal

For a specla ‘transversely isotropic material with a different isotropic plane, e.g., the

2-3 plane as sh: wn in Equation 167, the c.,orresponding general transversely isotropic ma-
terial will be ‘ - . 7':‘,‘
[Si1 Sz Si3. O 0 Sie

. ] . T i

S22 Sa3s O 0 S | s

| Sia. 0 0 . S| L ot

s *]. LA A wea .

S Sea S5 O ;

There are 20 nonzero components tlut are similar to the special monoclinic material, but o
the number of independent compomnu for a transversely isotropic material remains at 5. ¥ Pl

" For isotropic material, ooe can wbotitute ‘the relation in Equnuon (176) md remduy show i
that the Sij remaina tro sameas Equuuon 168 whlch has 12 nongzero components (2 independent

- components), ' ‘ .
N . g_
. e

45 B
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~ SECTION IV |
TWO-DIMENSIONAL COMPOSITES

~

Two~dimensional formulations are of particular interest in the study of composite materials.~
In this section, the assumplions of plane strain and plane stress, which represent two special
two-dimensional problems, will be described. Laminated composites as special cases of
plane stress will also be discussed, All-two-dimensional problems are reduced from a three-

. dimensional special monoclinic material with z = 0 as its symmetry plane. Any rotation about

the z-axis will not make the special monoclinic into a general monoclinic m:terial; this is
shown ir. Equation 178. The use of this material which possesses 20 nonzero (13 independent -
components will include, as special cases, the general orthotropic and general transversely
isotrppic materials, shown in Equations 180 and 182, respectively.
PLANE STRAIN o e
\ state of plane strain is obtained by assuming that
v, = "l"l’ le
183)
u, * 02(:|,:2) ues

0380‘0

where u are the dlsplacementé‘ 1‘axong 1,2,and'3 axea“an’(:i uy is a constant, From the strain
displacement equation, one obtains ~ '

R LFACTY

" 'When this is expanded, ""f.f

K

(] ' - (184)
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'For a mounoclinic material with the following compliance aad stiffness matrices: R

8 82 83 © 0 S
Sz2 %3 0 0 Syg

'S 0 0o S

33 36
Sea S¢s O

s )
55

c, = \ T (186)
: - “a44 “as -

L - | Ces |

it can be shawn by aubetltuting Equaﬂon 184 into the generalized Hooke's law in terms of the,' -

stlffness matrix that

o‘s crsto

Oy* Oyt csz‘é + Cygt

(187)

and from the generallud Hooke's law in terms of tbe compliance matrix,

ct-"‘ c+3¢+s c)

3 Syy

- -Sl:{ce oy is now dependent on the other stress componehts. it can be eliminated from the
-generalized Hooke’s law. The results are:

lll

where
s Wi I 2 6
Ry * UJ S =12,

47

(185)

TN A a ‘l (es)

%
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b
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imposed on a special monoclinic material. The components of ¢
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Ri ] represents reduced constants derived from Si j.lt is appncable for the case of pla.ne strain

i)
the generallzed Hooke's law for plane strain is

remain unchanged, so that -

g = clj'j (189)
where i, j = 1, 2, and 6. Where i, j =3, 4, and 5, the Hooke's law is expressed by Equations:
187. o

For a special orthotropic rhaterial, under a state of plane strain, the comﬁiiance and stiff-

ness matrices can be written down from the results shown in equation 162, so that"

Si6 56 5%6"C% 16 C26°°

Thus,
Rie™Rag=0
Si3 - Si13323
TR S " "s. 0
33 33
2
R l: . 522 - -:32 0
' , : 33
| | Ss6
< C2 0
€ . C22 0
Ces _
48
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(190}
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Finally, for isotropic maferial,

| S2_
s S

49

12

For a special transversely isotropic material shown in Equation 167,

S,.S; ]

_ 212923
S,

0
22 ‘

A

(193)

(194)

B
B

C(198)



9

B -

B Arm,'-"rn‘-ss-us

Pt 1
The reduced compliance matrix in terms of the englneertng constants can be obtalned by

-direct substitution of Equation 170 lnto 190. 192 and 194, and the results are
1) Orthotropic mater;al: '

Ry = (- 3/E

|3 Y3

R R22= -y ‘32”522

+
R!? (l/2 vl3v32) E'

=yt "31"23) /€0

Ree™ %6 = !/C12

1196)

SR, = 1 - leVZl)/E

R22’= ‘ - V )/Eaz

‘ 197)
R =—v (l+v )/E (

=-v (I+v )/E'22

Res* %6 ” '/%i2

3) Isotropic material:"

3 .
Ry s Ry, = (1-v5)E

R ®=V(I 4V VE ‘ IR (198)

RCQ' 2(1 +v )/E

The stiffness metrlx in’ terms of the englneerim constants are exactly the same as those
for the three-dimensional case. For the special orthotropic material, they are shown in
Equations 171; the special transversely llotroplc material Equation 174 and the isotropic
material, Equation 177.

It can be shown that

R" ” | 199) -

.»

which indicates, as expected that the reduced compliance matrix is the lnverse of the stiff-
ness matrix, ; N

.50
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PLANE STRESS

Another two-dimensional problem can be formulated by assuming :

q‘s _-,..04 ?5 =0 . ‘ ' -(200)

From the S 1 -of the spec ial monoclinic material sbown in Equation 185

. °4"5‘°°‘ R
ot e ‘ ‘ {201)
3 'S 53 o, + 5320’ + 53606

The generalized Hooke’s law becomes

¢ =S ,whersij 1,26 ’ (202)

From C i -shown. in Equation 186

. --——(c . +c32o2+c3 0 T (208
Ca3 6 |

The €, is not an independent component, Tkis is analogous to 0-3 being a depeudent cumponent

in the case of plane strain. Substitute Equatlon 203 into the (;enerallzed Hooke’s law in terms
of C iy ; then . B
i (204)

where

0.; . r‘oducodﬁumhn&{‘méiﬂg:

i3 /3 J,:,‘
33

s c"

Thus, for plane stress, the SU remains the same as a three-dimeasional material, whereas

the CU' must be replaced by Q“.

For a special orthotropic muterlnl L .
e sae 36" %4s"

Cis*Coq = Cyg™ 8457 0

51

(205)

{206)
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" The le‘ and ij for a state of plane stress are
S S ©

e -z i’
n Ty 127 T

i} | ‘ 22 C

L T e

L
For a transversely isotr:opic‘ material,
| %2°533: 512°53
| | %" s, %%
'rhen‘. S, l8 the same as Equation 207, but Q, is

r
: _— e c. - 92t
{ | Pl L IS ‘022 12 czz

L

Finally, for an isotropic material,

A S11%521 81275230 See* 25 -8
.4‘; €1 % C127C3 Ceg™ i - C
52

cGG _

- (207)

{208)

. (209)

(210)

(2amn)
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Then, sij ami Qi y are 7
Sin Si2 0
: : S ° Sy o | (212)
B e T P
: cC., - =—— . - = 0
n-e, -2 T ¢
| ) ¢ i ) (213)
‘ Q= n T, :
i (G672 |
In terms of the engineering constants, the S 1y for all three materials fouows Equation 170. ’
The Qij can be obtained by substituting Equntlon 172 into Equation 208 for the orthotropic o
material; Equation 174 into 210 for the transversely isotropic material; and finally, Equation :
177 into 213 for the isotropic materia.. The resulting relatlons are listed below:
1) Orthotropic materials: “
‘Ql E /(l vm vz‘) : o
Q2* B/l = ¥ 12 7)) Lo
O t214)
T TIAL(PS zl" 12 zz’“ Yi2%2¢) B I
%" %2
2) Transversely isotropic materials:
Qpy = /- mpvy)
Q2= Ex/ 1 -vp¥p) :
~(218) i
Qiz =218 /1= %2 % ) ‘a’" "2 %)
%" ‘G(é - S : . B

The Q ;j for the transversely isotropic material is the same as that of the orthotropic material, - ‘ s

.ngineering constants associated with the 3-direction, e. g.. and Y,

3" do not appear in the

%
4
Y
g
R
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plane stress casen. These consumts. however. appear in the plane ntraln case. Thus, under

_a state of plane stress, orthoiropic and transversely isotropic materials are identical, but . ‘
under plane strain, and three-dimensional problema in general ‘these two matertals are of ’

course different.
3) lnotmplc materials:

.8 _,2
Q“ s szsE/(‘l ve)

| 06682/2(l+v)
) Again, it can be shown that.

. = : ?.
Q8 8"‘ (21m

which indicates that Qu is. the inverse of S‘i )
COMPARISON OF PLANE STRAIN AND PLANE STRESS

In two-dimensional problems, modifications to the compliance and stiffness mstrices may
be necessary. The appropriate Hooke's laws are

1) Plane Strain:

where

2) Plane Stress:

%" A

" %%

(219)

q’:' . : 12'3(2‘3
Q,s -
iy i Csa

. o4

Q. =vENI-v?) .‘ (218)

(218) (



posed, while cr =g,=0.Ica plane strain case from Equation 218
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. In microscopic mecha.nics analysis of ecmpositﬁ -materials, it is a common practice to
solve an inclusion pzoblem in ‘plene ctrain ar i plane stress, from which the effective trans-

verse sttffness E g0 €%y’ can be - pred*cted Let us assume that a transverse lcad o, is. im-

2 2

6

2

Thus the effective atiffness in the transverse direction (the 2-direction) is.

: a,/e, =|/r¢22

In terms of engineering constantr from Equ'nttons 196 and 197,

~ This is true for both orthotropic and transversely isotroptc materials, A comparlson of

Equations 221 or 222 with Equation 223, shows that the Poisson ratio assoclated with the 3-

direction enters the piane strain analysis but not the plane stress case.

LAMINATED COMPOSITES R :
Laminated compesltes to be considered in this subsection consist of layers of thin ortho-

tropic plates bonded together. Each layer may have arbitrary thlckness and orientation of its

material symmetry axes. In general, each constituent layeris a genera! orthotropic material.

Assuming that the coefficients of thermal expansion or contraction are also orthotropic, the

three-dimensional generallud Hooke's law for each layer may be modified as follows:

o *80 +aT, ij=1,2,...,6 o (224)

where a = thermal expanston matrix, T -temperature. The ﬂrst term represents mechanlcal

strain, and the second, thermal strain. The thermal expanston matrix is a second-rank tensor.
as ‘indicated by the single irdex in the contracted notation. For an orthotropic material, the
independent components of a second-rank teasor are, for example,- 1° 8¢ and 8, while
84
be zero. Equation 224 can be inverted to have the following form:

=C. (o, -eT), hi=Le, ..., 6 | (225)

55 |

[ Rzzz N £

= aﬁ g = 0. Ina general orthotroptc material with a rotation about the 3-axis, ag will not - ‘

, ..z E - : . 2
o’z‘/ ., =.‘E22/(I vzsysz) . - (2an
‘or
sE _s1-¥2) S " 222)
22 23 - ‘
for orthotropic or transversely isctropic materials. respectively. For a plane stress case,
with a, #0 Oy = b=0"
: szv/o2 s l/szzt ”Ezz - - (223)

e e v o
i — ...“—.....". IR '; .
. . LT -
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i we aeeume that each constituent layer is under a state of plane stress, which is reasonable , .
for thin- plntee .subjected to in-plnne (plane i-2) etressee.

0y 0, ® 51-0 » ’ ‘(226)

i

From Equations 224 s,nd 225, we can show ‘that.

04 = e5 O |
c c Cag
oy - 03T z - -6-3-'(0' ~-a T)*--‘ c_3_2(. -a T)-E——(e-a T) (227)
. 33 33 ~33

From t.his reduced constants Qil can be. obtained following a similar derivation described in

" the last subsection.” The generalized Hookes law in a state of plane stress including the

thermal effect is:-

SQle moT) =, 2,6 (228)
where S .
C.oC
' 1313 Co |
9= % e : e

. 33 ‘ gt

~ and their i'elations to engineering conetante are shown in Equation 214 or 215.

If a lamina .’ composite is thin and the deflection of the composite plate is kept small

relative to it: thickness, it is reasonable to assume that normale to the middle surface are .

nondeiormnhh . With this. zeeumption. o

K o Tel +ak is1,2,6 (230)

l ]
where;e:’ = ln-ir}hneetnin and k' - cnrniure with the toll‘owing definitions:
‘ ‘0

AT K I BLTERLE XY
- ° s ' ‘ ) ‘ N ‘)“

0 Ve L Ky By,
% " Y2t iz, | ke * 293,12

To be consistent with the use ol en‘ineerini(.ltnine. both the in-plane strain and curvature

are expressed in engineering quantities, as opposed to tensorial quantities. This is not a
trivial point. The use of engineering strains and curvatures is pre{erred. particularly in the

contracted notation. A number of eymmetrlee, e.g., in C iy U' U’ and QU' and later in

‘ 5 B i j' ‘ § in ‘“quation 236, can be meintnlned with the proper use of the contracted

notation. As stated earlier in these notes, some euﬂiora have employed their own contracted
notation and may have caused eome unnecessary confusion.
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The substitution of Equatlon 230 into 228 ynelds

In a thin homogeneous or laminated plate itis convanient to deal with strers resultanta and

stress couples, which are defined as follows:

M2 -
Nz [ ot aier (232
-h/2
The integration of Equation 231 fgcitiiéi B
T 0 ‘ . ‘
N + N' 2 Aij.] + Bljk] (233)
‘ T o ‘ B 7
“i z N' + “i z B".‘ + D“ K‘ . . -{234)
~where = l .
m ' My )- f Q 0T (l,z)d . (235)
| i l :
~hs2 .
‘ 973 . |
A I' D,)= Q,(,z2,2. )dx : (236)
i By O )
" j, ] ) -as2 A T i h

Equations 233 and 234 are the basic coastitutive equations for laminated anisotropic plates
subjected to small deflections. These equations are applicable to thin shells, if the radii of

ccurvature of -the shells are large in comparison with the shell thlclmeu. The effect of tem-~-

perature is taken into account by the equivalent thormal lowdlm. N and M . The deforma-
tions induced by a’ tempenture clnn;o are oqml to thon produced by l.pplylng the thermal

' The stress at point in a lunlmud mllotropic body can be obtained by lnvertlng
Equations 233 and 234. which in matrix torm.

ke 51 *[?f] o
KT
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{(239)

-1 .

o*= b -8A"'B o | T (240

" The substitution of Equation 239 into 330 yields

“* .| i (241
= (A fze,‘)ij +(8) +20 )M,

From Equation 231, ' the stress componenu for the k-th layer of a laminated composite are

ot e o{,“’u - al¥r) |
| (242)
N2 o, 0
[tﬁ,‘«r»”m +(5u-no.m 1]
L o
- S [(Ai“ 0N, RN +zD”)M ]
"". (A + 28 )fomolaz - o " (243)

The last equation is derlved by assuming a conetant temperature in Equation 235. In this

case the temperature effect is lumped into one term

Matrices A, B,and D are the intrinsic. propettlee of a laminated compoelte. They depend
on. the properties of each constltuent layer QU ’. the thickness ' h‘k) and the stacking eequence
of the layers. .

58
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. If all layers are quasi-homogeneous, the tntegrations of Equatlon 236 can be replaced by
‘ summatlons as follows ,

SR S T W B RO
Ay = I A gy sy : (244)
R 22 i : ‘

B, =3X Q. 't —n) T (248,

- 1 (k)3
Oy * 3..;;.0'1 ey -

Thus, matrices A, B, and D are simple to debermine for a laminated composite with a limited
number of layers. But for the debermlnation of stress and strain, from Equations 242 and 241,
respectively, the prime matrices A', B, and D' are required. These matrices are obtained
by the matrix inversion operations shown in Enuation 240. The inversion of a 6 x 6 matrix is:
very difficult *> do by hand. This unfortunate situation is unavoidable in the case of a general‘
laminated composite where all 36 components are nonzero,

- A -considerable amount of slmpliﬁcntion is posslble if the B-matrix i8 identically zero,
This occurs if the lamirated composite is symmetrical with respect to the middle surface,
the 2 = 0 plane, With B = 0, Equstion 240 can be simpliﬂed as !ollows

A“-A‘
s'-n’-o

o‘:o
I (247)
A“'A”

s‘so~‘

-0 s‘b-‘

In this case, only the lnvsrslcn of .3 x 3 matrices is involved and this is csrtslnly manageable‘

by hand computations.

A laminated anisotropic composite is ‘govs"x"nedf w 18 independent constants, This number -

can be reduced if symmetry in the method of lamination and symmetry in the constituent
layers exist. For a homogeneous isotropic plate, the number of independent constants reduces

to 2. It is important to know that material properties should be referred to the components of ~
A, B, and D matrices, or equivalently, the star or prime matrices. They cannot be expressed .

in téx-ms of engineering constants, as homogeneous orthotropic or transversely isotropic
materials are expressed ‘ ~

Because of the compllcsted coupllng stfects. due to A16' g Bu etc., the behavior of a

‘laminated composite. can best be described usingthe A, B, and D matrices, or their equivalents,

without specific references to vengmeering constants. For example, the effective in-plane

3, . .
34 (246)

dowe o
. - “‘ ) 8 :
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L . shear modulus of a laminated anisotropic material may be A66' /A 66’ °F 1/A66 In general,, fon

their numerical values’ are different. Which component is being measured depends on the

loading uondition of the test. For a panel shear test, where only N #£0, and N 2 Mi 0,

A66 is being measured In a circular tube undor torsion, the loading conditions are as follows:
N # 0, and N1 2 i = 0; then Ags is  being measured., Component A66 can ke measured

directly if the loading conditions satis./ e # 0, and e,

e, = ki = 0, These conditions may
be ditficult to achieve.

In the case of uniaxial tension of a laminated composite say, N #£0, All and Alz are the

components that govern the axial and transverse strains fa circular tube is loaded along

' its generator, A11 and A12 are related to the axial (longitudinal) and circumferential strains.

In general, A,, # A}, and Al" # A},. Components A,, and A,,

directly because specified strains rather than stresses must-be imposed. This is anologous
to components C being more difficult to measure than S ‘

are difficult to measure

To avoid confusion, all properties ofa laminatec‘ anisotropic composite should be reported
in terms of the component of A, B,and D matrices. The use of engineering constants should
be avoided. ’

60.
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STRENGTH OF COMPOSITE MATERIALS = . .

The strength of .composite materials, whether unidirectional or laminated, i8 considerably

elastic behavior is available.

more complicated. than the elastic modull, No ‘unified treatment comparable to that of the

-/

Three common strength theories can be. readily applied w0 the‘composite materials: They;.

are the maximum -stress, maximum strai‘n. and maximum distortional work'theories.“

In the unidirectional composite, which is assumedtobe orthotropic and q.iasi-homogeneous.
the maximum stress theory is expressed by three inequalities

jal

o, £ X R
s R - .
T o, <Y : {248)"
o £ S

where. O o;, and g, are the stress components (a state of plaue stress is assumed) relative

to the material symmetry axes; X = axial strength (along the fibers). = transverse strength,
and S = shear strength. Failure of the eomposite is induced when one or more of the equalities
in Equation 248 are satisfied. .

The maximum strain theory can also be expressed in tirms of three inequalities:

0y S Xy
o 'S Y, - S (243)
0y S8,

where °x'*-«y and e, are the strain components* -ultimnte nxiai ‘strain; Y = ultimate

tmsverse strain; and S = ultimate shear ltrs.n. Aooording to this theory. miure in induced -

when one or more equalitie- nre satisfied. S L. \‘3

<
Ay

3

The distortional work theory. in plane stress,_ can be expressed by
o\ e.@ o o

( X ) - L +( L ) +(——3-) 51 “(250)
x 7 XY Y -] Co

Ix

I

This theory can be represented by a smooth quadratic surface in the stress space. The maxi-
mum stress or maximum strain theory can be represented by a cube in stress or strain space.
The principal difference between the distortional work and the maximum stress or strain
theories lies in the existence interaction among the anisotropic strengths. The distortional
work theory contains a high level of interaction, whereas the maximum stress or strain theory
‘assumes no interaction. Based on available strength data obtained from gluss-epoxy com-
posites, the distortional work theory appears to be more accurate than maximum stress
or strain theory -

et

- »,‘,,wvuipﬁw . v . . ' J‘W *""'*
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The. strength of a laminated composite can be predicted’ if ihe elastic moduli and the strengths
of each constituent layer are known. The strain components at each location can be obtained
from Equation 241, and the stress, from Equation 242. Once these components are known, they
can be substituted into appropriate strength theories.

In a laminated composite, not all layers will fail simultaneously. As one or several of the
layers have failed, the layers which are still intact may be able to sustain the existing load.
The shifting of the stress distribution within a laminated composite may cause an abrupt change
in slope in the stress-strain curve of the composite This is often referred to as the knee. The
ultimate strength of the comiposite is reached where the still intact layers cannot carry the
existing loud. This strength analysis of a laminated composite agrees reasonably well with
available data obtained from glass-epoxy laminated composite behavior.

" A considerable amount of work is still needed for a basic understanding of the strength of

. composite materials. The theories justdescribed ace purely phenomenological, and no specific

reference to the actual mecha.nisms of deformation and fracture is made.
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