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NONEQUILIBRIUM STRUCTURE OF HYDROMAGNETIC

CAS-IONIZING SHOCK FRONTS IN ARGON‘r

by

Martin I, I*ioi.'iert:t

Polytechnic Institute of Broolklyn

SUMMARY

This study deals analytically with the structure of gas-ionizing hydromagnetic
shock waves, Since these waves, by definition, must have non-electrically-conducting
upstream states, their existence at very high shock temperatures must be ruled out on
the physical grounds that forward-radiated precursor ionization makes the unshocked
gas conductirlxg. A '"low temperature' collisionally-ionizing shock with ol'ique magnetic
field is studied here to deterinine whether certain concepts which exist in the current
literature are relevant. Nondimensionalized equations governing the nonequilibrium
structure of such a front propagating into un-ionized argon are formulated using
ionization rates and an electron energy equation.developed in an earlier paper.
Comparison of the magnitudes of viscous and magnetic Reynolds numbers within this
front indicates that, if a structure exists, it must consist of a narrow ""imbedded"
viscous shock standing upstream of a much wider hydromagnetic interaction and ‘oniza-
tion relaxation zone, Hence, a modified form of the Zeldovich-von Neumann-Disring
(ZND) approximation is appliccble to the structure problem. It is shown that in this
approximation nontrivial steady-etate structures cannot be constructed for '"fa st gas-

ionizing shocks, On the other hand, solutions are possible for "slow' waves, and
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these are obtained numerically for a family of hydromagnetically oblique shorks at
Mach number M, = 20 and Alfvén number M. = 1/J/Z with parametrically varied

values of the upstream electric field, In contrast to previous uxpectations, the
upstream electric field i3 not uniquely defined by the structure, Because the slow
solutions are effectively exothermic, to the poini where their post-shock temperatures
are assoclated with radiation-induced precursor ionization, it seems likely that culy

the solution with the upstream electric field corresponding to a pure hydromagnetic

shock has physical significance.
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1. INTRODUCTION

In recent years, a number of ‘nvestigators have contributed to the formula-
tion of a theoretical model descriptive of tiie so-called gas-ionizing hydromagnetic

shock wave (Kulikovskii and Lyubimovl's, Kunkel and Gross6, Helliwe117, Chue,

Woodsg. May and Tendysm and Tauasig“' Lo

). These waves are thought to exist,
for example, in electromagnetic shock tubes. All the «forementioned authors either
postulate or imply that the structure of these waves conforms to the follo /ing
archetype (this d scription can also be taken at a definitior. of a ""gas-ionizing
hydromagnetic shock'' in the present context): Upstream, the gas is un-ionized,
electrically non-conducting and hence uncoupled from the magnetic ficlds through
which the shock mcves. Consequently, the leading edge of the front develops pre-
cisely as an ordinary hyd;odynamic shock. Because of collisional ionizing reactions
associated with the rising tempe-ature, an eiectrically conducting (hence hydro-
magnetically active) plasma is created somewhere in the shock interior. It follows
that the overall structure is hybrid in nature, being partly hydrodynamic and partly
hydromagnetic.

The most distinctive implication of this archetype is that the Rankine-
Hugoniot vonditions are no longer sufficient to predict the downstream state of the
shock in terms of the upstream state and the shock velocity. This is because, in
contrast to purely hydromagnetic shocks, the upstream gas-frame electric field is
not uniquely defired in terms of the upstream velocity and magnetic fields: As a
non-electrical conductor, the unshocked gas is incapable of sustaining a current
flov, so the upstream boundary condition of no currents in the undisturbed gxas is
automatically satisfied for any electric field.

It has been argued that an analytic prediction of the electric field requires

an analytic and physically correct solution ior the ionizing wave structure13. In

1, 8, {0, 13

order to gain some insight into the structure problem, prior studies have

assumed temperature-dependent, step-function models for the variation of electrical
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conductivity 7 within the shock, i.e., 9=0 for T'<T*/ and 940 for T'>T*', where T’
is the gas temperature and T*’ is some "reference' temperature. Analysis by
May and Tendysw_ indicates that shock structure integral curves deduced from this
mode’ are applicable only when T*' is of the same orier-of-magnitude as \.e
characteristic (first) ionization temperatu.e of ti.2 unshocked gas.

The present stucv is concerned with sbtaining shock-structure solutions
(if any exist) which are ccnsist:nt with the gas-ionizing archetype and which also
intorporate realistic representa:ions of transport and rate procesases in a col'i-
sionally-ionizing monatomic gas, arygon in particular. It ie mciivated by a realiza-
tion that by misrepresenting the physicrs of high temperature gases, the step-function
temperature-dependent conductivity approach can give qualitatively misleading results
for two difierent reasons: (1) If the internal shock temperature approaches the
ionizatinrn temperature, as May and Tendys suggest, th: gas becomes fully ionized
alinos* immediately (since each interparticle collision kas enough energy on-the-
average tu "knock off' ar outer electron), but at these temperatures radiation-
induced precursos ionization levels are sufficiently high so as to preclude any
reasonable interpretation of the upstream state as un-ionized 14. Consequently, the
'"gas-ionizing" archetype with its implied electric field indeterminacy is violated
and the shock is not gas-ionizing, in the present context, (2) Another nossibility,
the one actually explo: »d in this piper, is that of a "low temperature' gas-ionizir;
shock, i.e., a front creating a nonequilibrium pk sma in which photo-ionization is
rea'istically negligible compared to collisional ionization. In this latter case the
conceots embodied in the archetype may still be revelant but the step-function
temperature-dependent conductivity model is unrealistic. In fact, the local elec-
trical conductivity depends on the degree of ionization g, as well as temperature,
so that Ionization-lags in real nonequilibrium flows can have considerable influence
on the variation of ¢ ithin the shock transition,

The macroscopic global conservation and Ma¥w ! equations used in the
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present analysis are developed in Sec., 2, For an electrically conducting upstream
state, these can be integrated between upstream and downstream states, to give the
us' 2l hydromagnetic jump condit.*.ons15 -17. In order to express the dissipation
fluxes (i, e., the stress tensor, heat flux vector and current density vector) in
terms of lower-order dependent variables, it is assumed first that the electron
cyclotron frequency was always much less than the electron collision frequency,
Secondly, the Navier-Stokes approximation is used, together with a two-temperature
modification of the Chapman-Enskcg expressions for transport coefficients, The
first assuinp..on, which rules out Hall currents, is removable in f-neral by using

a more general version of Ohm's la.wle, but it is justified specifically for the flow
conditions of the calculations to be presented later. It is well-<nown that the Navier-
Stokes approximation is questionable in connection with strong hydrodynamic shock
structure calculations, Nevertheless, its use in the present study is plausible on the
groundr that qualitative misrepresentation of the structure, of the sort introduced

by the aforementioned electrical conductivity models, are unlikely; moreover,
Navier-Stokes equation. have been used, with some success, to study the structure

of purely hydromagnetic shocks (Marshallw. Burgcrszo, Ludfordzl, Germainzz’ 23

Blevissz'4, and Andersonzs) .
In Sec. 3, the ionization rates and transport properti~~ of partially ionized
nonequilibrium argon are developed in terms of fundamental collision cross-sections,

The sole source of electrons is taken to be collisional ionization by the reactions:

ke 4

Ar + Ar = Ar + e + Ar, (1a)
=
krA
k

- £ - -

e tArz= Art + e+ e, (1b)
k
rA

where k., , k. are the forward ionization rate coefficients and k ., k are the
fA’ “fe rA’ “re
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reverse three-body recombination rate coefficients., Th. inetics of Eqs, (la,b)
were treated previously in connection with flow in the relaxation zone of a hydro-

dynamic shock26. It is assumed that the plasma remains quasi-neutral throughout

3o that electrogasdynamic influences on shock sstructurez-"30 are negligible compared
‘o magnetogasdynamic effects, Because the reaction rates, transport properties and

thermodynamics of partially ionized argon depend on Loth electron and heavy-particle

temperaturas, an appropriate electron energy equation is required,

Sec, 4 deals with the nature of the shock structure integral curves which are
consistent with the gas-ionizing archetype, In this portion, it is suggested that the
"ZND'" approximation of detonation wave tneory is applicable to the present problem
and the consequences of this representation are examired for both '"fast'" and "slcw"
gas-ionizing shocks. In Sec. 5, selected numerical shock structure solutions are
presented and numerical techniques are treated briefly, The conclusions of this
investigation are given in Sec, 6, where the applizability and relevance of the

present results are discussed and potentially profitable directious of future resecarch

are suggested,
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2, GLOBAL HYDROMAGNETIC EQUATIONS IN

OBLIQUE MAGNETIC FIELD SHOCK GEOMETRIES

We shall be concerned nere with the distribution of flow variables within the
transition region of the oblique gas-ionizirg shock whose geometry, in shock-frame
coordinates, is shown in Fig, 1. This shock may be envisaged as having begun its
caree~ as an ordinary hydradynamic gas-ionizing shock which later '"penetrated'" a
region of nonzero maguetic ield and subsequertly attained a ste .dy-state structure,
An (x’,y’,z ') coardinate system is selected in which the upstream magnetic field
vector resolves alung the x’/ and z/ axes, For the scalar electrical conductivity
assumed previously, the shock-frame electric field is in the y’ direction and all
electromagnetic components which are initially zero, remain zero (the ""switch-on"
shock is an exception not explicitly considered here).

As a general rule ''primes' are used to distinguish physical variables, all
of which are in mks units, fror. the more convenient nondimensionalized variables
used later in doveloping the equations; furthermore, cartesian teusor notation is
used to express the general form of the govarning equations more concisely. The
component directions in the tensor notation are related to the coordinate system of

Fig- 1 as follows: x1’=x,l x5=Y'l x/ =zl;( )1 = { )xl( )a‘_‘( )yl( )3:( )

3 z’

In the present rotation 6ij is the usual Kroenecker delta: 5ij=l, it i=j; 5ij=0, if ifj.

The symbol tijk is the permucaiion tensor: eijk'_'o' if i=j, i=k or j=k; eijk=l' if ijk
are in cyclic order (123, 32],3}2) and cijkz-l, if ijk are unequal but not in cyclic

order (132, 213, 32]),

The thermodynamic pressure p’ and specific enthalpy i’ of partially ionized

two temperature argon satisfy the equations of state26
p’ = o/R(T’ + aT)) , (2)
 _ 5 ! . ’
1’ =SR(T" + aT)) + aRe/ , (3

where p' is the masgs density, T/ is the heavy particle temperature, Té
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is the electron temperature, o is the degree of irnization, R = 2,082 x 10Z
joule /kg -.°K is the gas constant for atomic argon and m’ion = 183,100 °k
is a characteristic temperature for the single ionization ofargon,

Using Eqs. (2) and (3) to immediately eliminate pressure and enthalpy,

the global conservation and Maxw =11 equations for the steady flow of a quasi-

ncutral plasma can be written in divergence form as follow s:ls

-1 "y’) = 4
3] (o ui) 0 (4)
2 w'u' + p'R(T'+aT ') + L (s B'.-B"B'Hx 10, (5
g T Tow e’ T Uy TR B Ul N
A ' 5 ’ ) 2 ¢ b u’z
—A—x—i- o) \ll T R(T + ﬁI‘e + '5~° Cl@ion) + Dui .—Z-
E.'B '
k ’ ’ ’ ’ -
+€1jk"""“' tuir bag e qe,i] = 0, (6)
3
[3)
BB}Q ’
€ o= =4 J. , {(7)
l_]k ax.[ o 1
AE;
e, -—K=0, (8)
j
a—EL’ = 0 . (9)
axi
6

:u

; "
g ' ’m
I




P

A

= 0 , (10)

where ui' is the flow velocity, Bil is the magnetic induction, Ei' is the

electric field intensity, b, = 4m x 10.7 henry/m is the free space magnetic

permeability in mks units, Ji' is the current flux density vector, qi' and

9, li are the heavy-particle and electron-gas heat flux vectors and 'rij' is

the viscous stress tensor.

As indicated in Sec, 1, a scalar electrical conductivity O is assumed

in this analysis, in which case the relevant form of Ohm's law is

* ’ ’ ’
3 = o(E)) = ofE/+ €k Y5 By ) o (11)

*
where (Ei ) "= Ei' + eijk uj' Bk' is the electric field in coordinates moving

with the gas velocity ui' through a magnetic field Bi. Using the Navier-
Stokes aporoximation discussed in Sec, 1, anrd recognizing that the partially
ionized plasma is a mixture of monatornic !.eavy particles {fatoms and ions),
and an electron gas which can in general malintain distinct temperatures,

the heat fluxes and etress tensor can he written

) T
r AT v 3 e
9 = -x = | qe,i R (—3;7 : (12
i i
\
u' ! ’
A u Z
s e[ s XL ULy 3% ) gy
J a 4 4 3 lJ 4
xJ axi AX)
7
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where x and x, are the heavy-particle and electron-gas thermal conductivities
and [ is-the coefficient of shear viscosity for the entire gas, Combining
the Maxwell equation for induced magnetic field, Eq, (7), with Ohm's law,

Eq. (11), gives an exgression for the gas-frame electric fleld in term of

magnetic field derivatives

€ 3B,
(Ep'= E + € Yy By ® Lk (k). (14)
Olo axj

Eqs. (2) - (14) are applicable within the transition region of Fig. 1. It
is useful to re-express the governing equations in verms of new "unprimed"

variables which have been nondimensionalized with respect to quantities in

front of the shock, Define:

’ ’ T' '
T e M
b T Ty e = B = T (15)
Py Tx Tx b
? ! I
xi uy Bi Ei
X, pp ==, U g = , B _ e  E . —=—0m (16)
i = 1 i1 5 4 i & B ’ { = 7 ’
1 x1 X1 X1 X1
‘ J ' ’
uo'x i qi qe,x
Ji = 7 D q{ T T7 7 ¢ e = ' (17
B u’RT o3 u’ PRT
N fa xa7 % Pixa %
'1"
Tij = 7 13 ° (18)
iU
x1

i i
‘,..,mmunu\||:|||m||u||m||mmmm: R
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where the relationship between tensor indices and the components of Fig. 1
has been discussed. Note also that the subscript 1 in Eqs. (15) - (18)
denotes upstream conditions generally, and that },, i~ the mean free path

in the undisturbed gas.

Acoustic and Alfwén speeds 31' and bx'x are defined which are

characteristic of the undisturbed ( @, = 0) state:

’ 5 ’ ;i + ? ’ -}5
a.i = (—; RTI) 0 bx1 Bxx (PI Llo)

(19a)

These, in turn, may be used to define the Mach and Alfvén numbers of the

shock M; and M, :

oly o ol (eluluy’
Mig == ==y » My, =7 = ; - (190)
a, (*3— RTI) le BXI‘

In order to assess the relative significance of viscosity verses
electrical conductivity as dissipative mechanisms these transport properties
must be incorporated into suitable dimensionless numbers, i.e., fluid dynamic
and magnetic Reynolds numbers Re¢ and Rm. Noting that the characteristic

length scale in the present problem is the upstream mean free path L

define:
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furthermore, a Prandtl number Pr js defined ‘vhich incorporates the effects

of heavy-particle thermal conductivity,

: (22)

5
Pr ='E'

It is noted in passing that, from kinetic theory, in a pure monatomic gas
v = (15RN) /4, sothat when g= 0, Pr = 2/3,
The governing equations, Eqs. (4) - (14) can now be written in terms

of the dimensionless quanties defined by Egs. (15) - (22) as follows:

3B, E
2 (pupy = B € ik 3%k -9,
Bxi Bxi axi axJ

piJ 2 ij 2

u, + = o o (T +aT,) 8, +—l(6..-B—=-B.B.)+T.. =0,
SMf e Vij M, ij ij

3 x

5 5 2 2
[pui ST toT += am ) + = M; u
F\xi
M
1 5 ]
+ ele —3- . Ej Bk+ — M1 u.‘\’ij + qi + qe’i = 0’
A,
J €,: 9B
E, + e u B = — = 28 .k
¥ d Rm Rm axj
q.=-2- 1, aT q -_él"’!!. 1 AT
! 2  PrRe 3xi e.i Z\K PrRe ax; ’
10
LY "‘;‘_
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Bearing in mind the relationship between the tensor notation indices and the

components of the vector quantities in Fig. 1, and substituting these quantities

into the above set gives the ordinary differential equations:

dB_ dE
(puy) = —= = L = o, (23)
d x dx dx

< 3 3 1 3 2 =
—d-;[P“x"'TM: p(T+qT)) +;1\-4-’ (Bz~-Bx)+Tu} = 0 (24)
Ay
d [pu u Bsz + 7 = 0 (25)
R z Xz =
dx X 2z Ma
Al

d . 5 2 5 2 2 8
dx [pux 7(T+"Te+§ QRon! t 5 M, (o, 4 4y )

]

5 Mi 5 2
+3 ——Ma -Esz+; Ml(ux'rxx+ uszz)+qx+qe,i]'0
Ay
(26)
11
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i
de

= - = B - B -E , 27
= JY Rm [“x 5" Y By Y] (27)
ISP S - AP B 7% I S (20

2 PrRe dx i 2 \x /PrRre dx

du du
Txx=-i-_l_._’.‘,7xz=-_l_.. z. (29)

3 Re dx Re dx

Eqs. (23) - (26) can be integrated immediately between conditions in the
undisturbed gas and some arbitrary point x in the shock interior. Note
first that, using the definitions of Egs. (15) and (16), the flow variables

must satisfy the following conditions asymptotically upstream

(30)
a=u =2, Bz= Bz:.’ LY=EY1
Now, substituting the fluxes of Eqs. (28) and (29) into Eas, (24) - (26), and
performing the aforementioned integrations with the boundary conditions of
Eq. (30), Eqs. (23) - (27) become:
= = = 3
Pu" B, =1, EY E“ (31)
du T 4+ aT
=%Re[ux-l+ . S -1+, (B2 -B7)| 32
dx 5 M} u, ZMA; 1
12
X ! .J‘ )

!



i

du r (B.-B_)
SCaamg z = Re uz - z r =1 ' (33)
. _dx MA.:L
" dT du du
aT _ (_e e-Eper S %
d x ¥ [dx 3 3 X ax Z dx
Miz 2
+ Pr Re T+ﬂTe+;umi°n-l+—(u +u -1)
2
2 M
+ £ -E_ (3 -B (349)
3om2 o nioEoE
Al
de 1 B21 Rm du
=Rm B (4 - —) + 2L _E |. S (35)
dx " M,° J Re d x

It is instructive to examine, at this point, the significance of the hydro-

magnetic boundary condition on the electric field Ey,_ . 1f the boundary conditions

of Eq. (30) are introduced ‘into Eqs, (32) - (34), the flow derivatives quite

properly vanish identically in the undisturbed gas:

du du
@x - x _ z _ dT 0

dx dx dx

In order to insure that the transverse magnetic field vanishes upstream, i,e,

@X —) - o de/dx=0, it is required, from Eqs. (30) and (35), that
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@x - -m Rm(Bz‘

a

-Eyl) =0, (36)

In 5 pure hydromagnetic discontinuity where the gas is electrically conducting
upstream, Rm, # 0, so that frorn Eq, (36) Ey1=Bm . On the other hand, for the
gas-ionizing shocks, of interest heres, 5, =Rm, =0, so that li‘y1 is not uniquely
defined,

Eqs. {32)-(35) are four differential equations in the six unknowns:
Ues U Bz’ T, 'I‘e and 3. In order to mathematically close the set, two additional
equations are required deacribing the nonequilibrium behavior of a and Te within

the shock transition; also the transport-property-dependent dimensionless numbers

Re, Rm and Pr must be expressec in terms of local value: of the flow variables.

14
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L 3. IONIZATION RATES AND TRANSPORT

PROPERTIES IN PARTIALLY IONIZED ARGON

Formulation of equations which deal specifically with distinct electron,
atom and ion species is facilitated by introducing the follow 1g approximations,

definitions and derived relations, most of which follow directly from the

assumptions of Sec, i

- ’ = d ! = .l ! -~ - 37
me/mA << 1, m m, , n, ng . ng ny ny (37)
ne' , ’ ,
a T ~ , 0, = n, ( a ) , n = 2n_ + nA , (38)
n_ + n, a
' = _ ?
ne/: n n': 2p_ ' nA/= 1 -a n' = _(_I_E'..LQ_ , {39)
1+ 4 mA 1 +qa m a
' e Mg e nll my
e’ bt ~) =0 omy o, y = A, — = O, {40)
£ mA £

where nA' : ne' and nI' are the number densities of Ar , ¢  and Ar species

’ - » * - .
respectively, r is the total number density, n " is the net electron number

’
density preduction rate from all sources, 3 is the degre: of ionization production

rate from all sources, m_= 9.107 x 10731 kg and m, = 6.628 x 10728 kg
are the masses of an electron and an argon aton. respectivei, .

The one-dimensional ccrservation of ¢clectron mass and euergy equations
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applicable to the present oroblem can be written26

d ’ ! -t ’ ! ‘4
d\c (ne ux) - lne)A + (ne)e » . 1)
du’
d 3 ’ " ' ', X
n,u ___dx' = kT iong kTe T
’ me ’ ' . : J"a
= 3n_ |—- |V k(T -T_ ) -(a.), k= + ) (42)
e e e’‘'e on c
LN

-2 , . c
where k= 1,380 x 10 3 Joule °K is Boltzmann's constant. (ne')A and

(ﬁe' )'J are the electron density production rates 'resulting from atom-catalyzed
reactions Eq. (la), and electron-catalyzed reactions, Eq. {1b), respectively,
and ve' is the collision frequency of the electron gas. The effects of electron
thermal conductivity ‘vere not included in Eq. (42) in anticipatior of a future
development, however, a Joule heating term J ! 2/ 7 was added to the energy
equation of Ref, 26 to account for dissipation due to induced currents flowing

through the gas within the transition region,

Making use of Eqs. (4), {38) and (39). and the fact that R:k/mA, Eqs, (41)
and (4J), in terms of the degree of ioiization ¢, become
' d~ . 7 '
u _— = g + 2 . (43)

X dx £ <

5 aT ' du’
e '
— u - + 7T . =
2 x dx € dx
16
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4
m a /2
= 312l v (T'-T')-_e e ' +1 .37 (44)
m € ion /
A & 1p R a

reactions, ?y and o reéspectively, can be expresged?®
2 2 ’ 2
' g {(T) - 4° .
r!A = (1'(1) ‘P 'krA(T,)- < ’ (45&)
m
A - (T
”eq

2 2 ' 2

l\ [ad (T ) - A

o | N eq e <
e = a _L/ kre (T,)

M

-3 !
1 ey (T.)

' (45b)

where Geq (T') and Geq (Te') are reference degrees of ionization which
-\
would prevail 5¢ 3 given gas density F ', degree of fonization a and either the heavy-

particle temperature T’ or the electron temperature ”.‘e'. These, in turn, are defined by:

~'(1+a) -k

’ |

ueq(T) = |1+ “\I- ' (46a)
mAKeq(T)

?
{_ mA eq(Te)

where Keq (T ') and Keq (Te') are equilibrium "constants! associated with

the heavy-particle and electron temperatures, respectively, The recombination

17
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rate coefficients, krA (T ') and k , (Te') , and equilibriun constants
e
associated.with Eqs. (1a,b) behind strong normal shocks, as discussed ia

Ref, 26, are;:

ke (T') =5.80 x 10729, (132,300, o) . ) (ﬁ.“,_"- (m® /sec), (47a)
T

T

kg (TJ) =1.29 x 10738 (123300 4 5}, o0 (AT.800) (10 /eq) ,  (47)
Te e
OI
Ko (T) = 2.90 x 10, 7' ¥/, « exp[- 222} (1/m?), (48a)
- T
@ !
22 - i \
eq (T) = 2.90 x 1022 . 1/ ey o o (= T°‘,‘ (1/m%). (48b)

e

It is convienient to define nondim ensionalized "'unprimed" variables

~

A’ Qe ' vy . Corresponding to the production rates and collision frequencies

appearing in Eqs. (43} and (44):

. H“A . A e
‘A = T ' % = T (49)
X1 X3
m A \;'
e 1 e
Ve = - o (50)
A X1

18
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The producuon rates of Eq. (49) are completely specified in terms of local

values of , , T  and T by Eqs. (45a) though {48b). Relatiors are now sought
1 e g

which express Ve and also the dimensionless numbers Re, Rm and Prin
terms of o, T'and Te' .

In principle, all collision-dependent iransport properties needed in
this analysis are obtainable from a knowledge of the elastic collision cross
section for the various encounters occuring in a partially ionized gas. These

will be bricfly summarized for argon.

The Coulomb cross-sections for collisions between charged particles

31
are

, e‘ r; kaT' 3\ ] -I
QII 5 Ln |l2n J
X} ’ / ’

367 cokT ) e n, /
3 b

’ 4 € 3 L
QeI = Qee, = e * Lna 12 . —o—uﬂ_ .
36 ::okTe'). e n’

where Qn' , Qei and Qe; are the cross-sections for Ar+-Ar+, e -Ar+

and e” - e  collisions respectively, e = 1,602 x 1071? coulomb is the

charge of an electron and £g = 8.854 x 10'12 farad/m is the dielectric

permittivity of free space in mks units, Making the required numerical

substitutions in the above yields

n

-10 ra
Qu' - L9%x10 . [1.53 x 1014 T
e

——] (m"), (51a)
T2
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o ' 3
Q! =Q Do) £ 1 tn [1.53 x 1014 —TL] (m%) ; (5.1b)
el ee T" ,
e ne

.30
the remaining cross-sections can be expressed, after Jaffrin

r -20 '-l‘ d 1
Qun = 170 x 10 . T (m ), (51c)
’ -20 ]
QIA = 140 x 10 (m") , (51d)
(-0.35 + 0,775 x 107, Ty x107%, T > 10%°K
’ mz)’
QeA =
(0.39 - 0.551 x 1075 T+ 0.595 x 1073, 1% 1072, T /< 10%°K
(S5le)
where QA.IA\' QL; and Qe‘:\. are the elastic cross -section for Ar - Ar ,
Ar' - Ar and e - Ar collisions, respectively.

The electron elastic collision frequency \)e' and the elactrical
conductivity of the partially ionized gas ¢ can be written directly in terms
of these cross sections

seT ' \¥%
! e 4 ! 4 [
ve = (ny Q. +n Qr) , (52)
m
e
e ne' ne4 £ n;
o = 3 = 5 kT 7 7 7 . p H (53)
Me Ve Me* e %A QeA + e QeI
20
LS ! ~"
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moreover, the thermal conductivities of the atom, ion and electrcn species

30
are

A n' Q.. =5
14
_ 5k nkT [, 4 e ’ (54)
5 64Q, . m [ ’ '
AA A n, QA.A.
-1
’ }5 ’ )
75k R m kT e 9 .
T - . — . | , (55)
642,y mp np Qa
75 k kT, < J2 s Qea o
He = Vi nkTe 1+ Daeh (56)
64Q_ _(1+./2) m ’ '
ee e (1+.J2) n, Q..
The viscosity coefficients are related to the thermal conductivities by
4 4 4 [Me
= Ka o = LK B U (57)
TR AT YT R T e Tem m, | ©

The upstream mean free path )‘l which is used here as a reference length is

b

m
N T l : 2 : (58)
4 4 4 '
ﬁ“l Qaa J? P Qaal
where QA.AI is Eq, (51c) evaluated at T' = Tl' . Note also that
=t o, E ey (59) s
=
21 =
EE‘;:'.
%
&
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where the electron viscosity has been dropped from = since 'qe/ n is of
the order '(me/mA) % 1; cf, Eqs. (56) a2nd (57).
Combining Fqs, (20), (39), (54), (55), (56), (58) and (59) 2ad i: :roducing
the definition of the upstream Mach number M, = ux1’ /(5 RT1’ );i gives
an expression for the fluid dynamic Reynold's number in terms of a and T:
-1
% 1
Re= 11528 MIT- 'Qll Qll;aQr ,+Q’iﬁQ,Q,
W AA, | Qan tlQa-Qp,)  Qut 2(Qp-Qp
(60a)
Using the fact that Q,, /Q,’, = (T'/T/ -d T4 Eq. (51
[4 } A AAL T 1) = , from Eq, (51¢),
Eq. (60) can be simplifiad cons." -ably if the argon remains un-ionized;
2 b
®@a=0;: R_= [L2&) M,TI¥s (60b)
e
15 ﬂl
Combining Eqs, (21), (39), (53) and {(58), and using the Mach number, as
before, gives an expression for magnetic Reynolds number in terms of ¢ and
T @
e
* ) Qal
Rm = p MlaTe' . [ ] , (61a)
t ’ ’
Qe T 2(Qgp - Qp)
where p* is a nondimensionalizea reference density defined by
a2, 57k mek
» Ut (5l lmp  g39x107® (61b)
2 = =
t 2 ’ 12
P1 “aal P1 Qa1
22
Y -y -"m‘_,
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It may be noted here that while the fluid dynamic Reynold's number

baced on mean free path Re is density - independent, this is not the case for

*
the Magnetic Reynolds number Rm. From Ey, (61) it follows that p and

therefore Rm increase with decreasing upstream density pll .

Combining Eqs, (39), (50) (52) and (58) with the definition of Mach
number gives the following expression for nondimensionalized electron collision

frequency in terms of & and Te 3

;5 8 15 ’ ! ?
o o[ e 12 T Qoat Qg - Q)
=° . : .
ma) \®T M, Qn

(62)

From Eqs. (22); (57) and (59) the Prandtl number nf the Mixture is simply

2
Pr = — ., 63
5 (63)

The conservation of mass and energy equations for the electron gas
can be put in a dimensionless form consisted with that of the global

conservation equations of Eqs, (32) - (35). Note first from Eqs. (17), (21)

and (27). That the term J ! 3/ G can be written

' Rme':’ ux'1 .
= o ) (4, B, -u B -E)°. (64)
}lo 1

[

Substituting Eq. (64), together with the diriensionless production rates and

collision frequencies of Eqs, (49) and (50) and the unprimed variables defined

23
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earlier by Eqs, (15) - (19), into Eqs, (43) and (44) yields32

e
a ap * a
d S A =L , (65)
dx ux
dT Zv, T-T ) a Rm
€ - & e 28 q°“+l°_._ (u B -u B _-E )2, (66
dx ux 3 a 3 9 a X z zZ X Yy

It is significant that Eq. (66) is not singular when 4 =0 since from Eqs. (45b),
(49), (61) and (62) it follows that Ve (&e/q) and (Rm/a) are all bounded

as ~——p 0, Certain formulations of the electron energy equation which

Lave appeared in the literature have not had this useful and physically reasonable

property,
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4, INTEGRAL CURVES IN THE "2ND" \PPROXIMATION

eq:lations (32) - (35), (65) and (66), together with the auxiliary
algebraic expressions for Re, Rm, Pr, F;A C r'ze and Ve developed in
the preceeding section, form a mathematically closed set of six ordinary
differential equations in the six primary variables u_ , u_ Bz. T, Te and
o . The formai solution of these equations as an initial-value problem starting
from the upstream boundary conditions cf Eq. (30) is not possible however
owil , to tie mathematical nature of the system. Briefly, this can be explained
as follows., The leading edge of the gas-ionizing front must begin as an
ordinary hydrodynamic shock, but a predominant characteristic of the Navier-
Stokes hydrodynamic shock structure in a monatomic (Pr = 2/3) gas is
that the integral curve solution in (ux , T) phase space has a singularity of
the node type at the upstream state; consequently, the downstream state is
"unattainable' from the upstream state by numerical integration”. Since
the gas-ionizing shock begins its upstream structural development as a pure
gasdynamic shock, the latter conclusion applies to the present case as well,

Fortunately, it & appropate to employ a useful anproximation here which
has been developed in the theory of detonation waves. Commonly known as
the Zeldovich-von Neumann-Doring (ZND) approximation, in the present context
this amounts to recognizing that ionizing reactions of Eqs, (la,b) are sufficiently
"'slow' such that gas-ionizing shock structure can be computed in two distinct
regions: (1) a perfect-gas viscous shock wave standing in fro~* of (2) a much
longer ionization relaxation zone where finite-rate cheinistry and hydromagnetic
interactions are significant.

It has been recognized, e.g,, by Germainzz, BlevisaZ4 and Leonard“?

that, for hydromagnetic shocks, when the magnetic Reynold's number is small

25
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compared to the viscous Reynolds number, a viscous shock is irnbedded in a much
wider region of hydrom. mnetic interaction. For the {collisionally ionizing) gas-
ionizing hydromagnetic .7/aves treated in the present paper, this must be the zase
since realistic ionization rate-processes yield values of Rin/Re << 1 within the
initiating perfect-gas shock regzrdless of the ultimate electrical conductivity
1eve134. It should also be clearly understood t'.at unlike certain imbedded viscous
snocks which can occur in pure hydromagnetic wave fronts, the imbedded shock
here must stard upstream of the hydromagnetic interaction since it creates the
necessary electrically conducting environment,

The equations governing flow in the two regions ¢. n be obtained formally
from Eqs, (32)-(35), (65) and (66) by applying the appropriate limiting conditions,
In the perfect-gas-shock region we have the limit: & -0, Rm ~ 0, so that Eqs. (65)

and (66) for ¢ and Te are not relevant and Eqs, (30), (32)-(35) become

duz de
:=°,uz=u21=‘-‘i';=o,Bz=Bm; (£6)
du
23 pefu-1+ 2 (Z.y] (67)
dx 4 5M3 u
dT _ 16 du, L2 M,
ar _ 16y __+-Re['r-1+__(u3-1)] , (68)
dx 27 Xax 3 3 x
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where we have used th2 fact that Pr = 2/3 in the above. Clear.: ihe

transverse mays,netic field and :-ansverse velocity are constint across the

perfect-gas shock. Eqs. (67) - (¢8) describe the . .vier-Stokes shock

structure of a perfect monaton.ic gas, Their solution has been treated el:e-
35-.37

where , and is discussed here in the Appendix, The upstream and downstream

states implied by these equations can be found by setting du_ /dx =dT/dx =0
in Eqs. (67) and (68),

)
3 T 1 a
-1 + — -1) =0, T-1+ L - 1) = 0,
u 5M12 (ux ) 3 (u, )

eliminating the temperature T between these to gat the quadratic

and solving for the velocities and corresponding temperatures aa-ociated with

the two roots. This yields the upsiream and downstream states of the imbedded

parfect- as shock:

% = ’ (69&)
A SO R SR RO,
@x —» + o0;u -4(1+Ma), '.'[’-16 (M1 ST;’)*I-E. (69b)
1 1

In the relaxation zone regionr the governing equations are found by

applying the limit Re —3 w to Eqs, (32) - (35) which yields the set
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T+aT
u -1+ — e )+ L (B .8 =0, (70)
-]
SMl u, ZMA‘
B? -le
u, = - (71)
MAx
]
2 1 2
T+ aTg+ 3 G0~ 1+ — (s -1)
M? B -B_ .
+§ 1 (B, -B,,) [E, + —= =) -0, (72)
MAx ZMA:
B
3B, . Rm !B fu - LY+ 2L _E | _ Rm.g(u ,B) (73)
dx z X M ] M 2 yl - X z
Al Al

Eliminating the quantity (T + aTe) between Eqs. (70) and (72) gives a

quadratic equation in u corresponding to Re —) ® ,

2 3 3 -
f(ux,Bz,.'x)g4ux-5‘l>--—a+(.:l ux+ 1+ — -¢ =0, (74)
Mx M 2
1
2 2
where € = 2 z Bzx
1 : 3 :
Z 3
MAx
28
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o 2 = 2 [_l “®on * +. = - (By - BZI)(EW + = :1
M, 5 3 My, \ ZMAI

In the ionization relaxation zone the flow will proceed along the path f=0;

it is useful to introduce an analogous path, g = 0, corresponding to the limit

Rm—e(
1 BzI
g(ux,Bz) =Bz .lx‘ M—a— + Ma - ny=0. (75)
Al Al

Equation (74) has two roots, given by

* Bt
_ 1 3 1 3 . 6 !
ux = 8— S + Nil—a + E:l t [9( - ;3:) + Cl +<.0+ E)el‘l‘ 16€4 , ’

(76)
while solving for u from Eq, (75) gives
E 1 B 0
u, = 2L 4 — {1 - 2. 77
* B M, B
z Al z

Prior to discussing numerical shock structure solutions in physical
space, it is instructive to examine the path of the ZND solutions in (ux ; Bz)
phase space. Since the integral curves are more mearingful if a distinction is

made between 'fast' and ''glow" hydromaguetic waves, these classifications will

be briefy reviewed in the context of the present work,

Analysis of the linearized hydromagnetic equations yields the so-called
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fast and slow disturbance speeds cfl' and csll which, together with the

’

, and bx'1 of Eq. (19a), are properties of the

acoustic and Alfven speeds a

undisturbed flow, These speeds are conveniently written in terms of the

quantity
P\ 2%
b’ (b""'bl’)%:b[ 1+ z1 =b'(l+Ba)%
1 = Vx1 z1 X1 x1 z1
X1
(78)
as follows:38
Y
crr= |2 ] @ 01" + @37 4d b " , (79a)
]
' 1 ra ra [, 18 2.9 ra. ra
Cs, © {'z (a, "+b,%) '»/(31 +b,%) - 4a, b,“ ] . (799)
Pure hydromagnetic shocks are generally clagsified as either fast or siow
depending on whether they satisfy the inequa.lities39
M ?
x1_ > 1; fast shock, (80a)
’
cf,
’
g m
1 s x1 < 1; slow shock, (80b)
b’ b !
x1 X1

o . = ’ ’ = ’ ’
Using *he definitions M, Uy /a1 , MA1 Uy /'bxI and Eg, (78),

the following useful formulas are obtained;

iithis

o ,._.»_.,.ﬁi L"*‘;sq"‘
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u a 2 Y n
- _:_c___'l_le‘ ‘:+‘+Bf4+/1 , 1+By A } -
°f, (Mo My, M, My ) MM,
’ 2
1+B 3 2 -
Tk [.‘. s 2 f 1, 1+ B, 4 (81b)
’ 2 2 » - M ¢ 2 - F] F]
sy M1 MA1 2 M Mi My,

For the purposes of this section, attention 1s restricted to (hydromagnetically)

numbers yield lonization levels required for hydromagnetic interacticn and this

particular limit does not change any important featuraeg of the integral curves, For
1 ! et = 3,"1/3 ' ' -

M, — @ then, Eqs. (8la,b) give u_ /ct'= M, (1+B2)7/2 and ¢! ful =0. For

l

l

l

\\ oblique shocks in the infinite Mach number limit, since hypersonic (M1>> 1) Mach
!

|

1 the special case when the upstream magnetic sld is inclined at 45° to the shock
l

|

front (Bx1 = B21 = 1), the criteria of Eqs, (80a,b) become

MA1 > J-f : fast shock,

(82)
0 < MA < 1 : slow shock.
1

It might be observed here that no pure hydromagnetic shocks can exist between

the weakest (acoustic) fast wave at MA1 = J_Z.' and the slowest (swvitch-cff)

slow wave at I:/IA =1,

Returning to the discussion of integral curves in the ZND approximation,
the 45° upstream magnetic fleld and M1 —e o assumptions (which were introduced

to make the problem specific) should be borne in min.. as they apply to the balance

of this section. From Eqs, (69a,b) one can expect
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an initial jump in streamwise velocity from u =1 tou = 1/4 whiie

Bz = 1 remains constant, correspcading to the perfect-gas-shock transition,
Trs imbudded shock transition is denoted: 1 - i*, where l* is the do'wnstream
state of the perfect-gas shock. Subsequently, the flcw progresses in the
relaxation zone along the path f(ux : Bz , &) =0, until the downsatream
state of the gas-ionizing shock is attained, The latter step of the overall shock
transition is denoted : i* - 2, As a conseqence of all flow derivati es vanishing
downstream, e.g. dux/ dx = de/dx = 0 @x-—) o, the downstream state

in the (ux, Bz) plane is indicated by the intersection of the curves f(ux , Bz) =0

and g (ux, Bz ) = 0. Note that in the infinite Mack number case

6 2@,
im M, — © ——= 0,

5M,

so that, from Eq. (74), £=f(ux, Bz) deoes not depend on ¢,

{(a) Fast Shocks

Consider now the possible tirajectories of the fast shock MA: = ./-1-6 (>ﬁ)
shown in Fig, 2, Recall from Eq. (36) that because 1 = le= 0, an
indeterminacy exists in the value of EYx for gas-ionizing shocks; it is there-
fore appropriate at this point to treat the shock-frame electric field as a free
parameter. This was done in Fig, 2 which shows the curves f=0 and g=0
computed from Eqs. (76) and (77) for (a) Ey1 =1.0, (b EY1 = 0,625 and
{c) ny = 0,25. The first trajectory, nam that with ny = Bz1 =1.0,
corresponds to the upstream boundary condition on tha eiectric field in a pure

hydromagnetic shock, cf, Eq. (36), As indicated previcusly, the transition, if

it occurs, must take place by the path 1 -1 "L 2 in the ZND model, It can be
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shown that this path is impossible for fast shocks from the following argumeant:
Since g < 0 below the curve g = 0, it follows from Eq. (73) that dB, /dx <
0 at point 1* (Rm > 0, of course) ; but Bzz > 1, from the intersection point
of g=0 and f=0 ; therefore, the downstream state is inaccesible by the
path 1 -2 along the f=0 curve since the magnetic induction equation
predicts a decrease rather than the required increase in transverse magnetic
field. The same reasoning applies for 21l valves of EY1 > 1/4, cf, Fig.
2(b),

An analogous, but uppositely directed situaticn occurs when ny < 1/4,
since Bzz < 1 and thel - 1*- 2 transition becomes impossible because
g > 0 along 1* - 2and Eq, (73) predicts an increase of B, instead of the

"
required decrease, In fact, the only permitted 1 - 1 - 2 transition in a

fast gas-ionizing shock is the degenerate case of EY = 0,25 in Fig. 2(c),
1

which is nothing more than a pure gas shock with no change in magnetic fieid:

to, = 1/4, B, =B, = .

1f the gas were electrically cordeting - _¢ream, but with Rm/Re < <1 ,

the pure hydromagnetic transicion i - 2, aiong the upper branch of the
f = 0 curve in Fig. 2(a), would be indicated. In this regime g > 0,
de,’dx > 0, and there are no contradictions of the type encountered in the ZND
gas-ionizing integral curves, As indicated previously, this branch must be ruled
out here since it violates the gas-iouiziug archetype of Sec, 1,

Although switch-on (B, =0, BzJ{O) and transverse (Bx=Bx;:0) gas-ionizing
shocks have not been dealt with specifically, it can be shown that ZND structures

are impoasible in these shocks, for the same general reasons that were given for

the fast oblique shocks discussed in this section,

e
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{b) Slow Shocks

From Fig, 3 it is evident that the f =0 and g =0 curves for slow
shocks take substaatially different forms from those of the aforementioned
fast shocks., These curves are plotted for the slow shock MA1= l/J_Z' (<)
at five difierent valucs of the shock-frame electric field: (a) ny = 0,25,
{b) EYl = 0,625, (c) Eyl = 1.0, (d) ny = 1,50 and (e) ny = 2,0,
In this case, Fig, 3(c)is the plot associated with the pure hydromagnetic
boundary condition on the electric field. All the electric fields shown have
in common the property tlat ZND structures are possible. After the 1 - l’:g
perfect-gas-shock transition the flow is in a region where g < 0 ; but Bza < 1
in this case so the derivative de/dx <0 [from Eq. (73)] is in the proper
direction, thereby permitting the 1 - 1*- 2 path to the downstream state. There
are.two limiting cases of interest: (1) E“ = 1/4 in Fig. 3(a) is
the degenerate case corresponding to the pure gasdynamic shock with constant
magnetic field and (2) E“ = 2,0 in Fig. 3 (e), which yields a new kind of
switch-off shock which can only occur in gas-ionizing fronts, It follows from
Eq. (73) that when E_ =B / MA’x = 2,0, g = 0 along the straight lines
B_=0and u =1 / MA:" = 2, The latter part of the g = 0 curve is not visible
in this plot because the ordinate is cut off at u, = 1. 2. Since the intersection
of the f =0 curve with Bz =0 correspond.s to the downstream stata, the lab-
frame electric field Ey; = le / MA: results in a complete switch-off of the
transverse magnetic field. The switch-off shock is only possible in ordinary
hydromagnetics when MA; = 1, but it is clearly obtainable in slow gas-ionizing

shock waves propagating at other Alfvén numbers,
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5. NONEQUILIBRIUM NUMERITAL SOLUTIONS

It should be clear by this point that the mathematical nature of the problem

i

in the present ZND approximation is fundarnentally different from that implied

LBt

originally by Eqgs. (32)-(35), (65), (66) and the associated initial conditions of

Eq. (30), Rather than attempt the solution of six differential equations in the major

UL syt

flow variaoles U U, Bz, T, Te and o, it s proposed instead to solve simpler sets
of equations in two different regions and to match their solutions at a suitable point,
Specifically, in the perfect-gas-shock region, only two differential equations need
be integrated [Eqs. (67) and (68)], while in the ionization relaxation zone there are
three [Eqs. (65), (66) and (73)] . In the latter case, the velocity components Uy
and the heavy-particle temperature T are evaluared locally from algebraic relations

u =
z

[Eqs. {(71), (72) and (76)]. In addition, the local values of &A' &e, Rm ¢nd Ve needed

to numerically integrate the relaxation zone differential equations are available from

IR | PRI

relations introduced and developed in Sec, 2 [Eqs. (45a,b), (51b,c,d), (61a,b) and
(62)].

HITERMITH Y

In order to solve for the distribution of flow variables within the gas-ionizing

front, two different IBM 7090 computer programs were created: one to solve the

i Sl G U st

perfect-gas Navier-Stokes shock structure problem (see Appendix) and the other o

solve the hydromagnetic ionization relaxation zone problem. Since the perfect-gas-

o

.I'u;

shock structure extends from x=- 00 to xs+ o and the ionization relaxation extends
from some finite valuc of x (say x=0) to x= + 0, the two regimes overlap in physical
space; conserquently, it was necessary to cut the perfect gas shock solution off at
some arbitrary point, as explained in the Appendix and tack it on again to the

beginning of the relaxation zone in order to construct a single-valued solution

35
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over the entire range of x, from - to + 0, The somewhat legislated nature of this
matching procedure is characteristic of so-called singular perturbation problems —
these are invariably generated by physical processes which involve disparate length
scales — and is a familiar feature of boundary-layer solutions and detonation wave
structure sclutions in the ZND approximation4o. It is possible, in principle, to
obtain a more rigorous formulation of the connecting region bctween the two solutions
by the method of matched asymptotic exparxsiorxs41

For all calculatic : discussed in this section it was assumed that the fronts
propagate into "cold" un-ionized argon which is at a pressure of p{ = 1,0 mm Hg =
1.33 x 10° newton/m® and a ternperature of Ty = 300°K and has a corresponding
upstre un mean free path of \; = 5,38 x 10‘5m; furthermore, all of these fronts
were considered to be traveling at the same gas dynamic Mach number M; = 20,
corresponding *o an upstream llow velocity of ux'1= 6.45 x 10°m /sec, when viewed from
a shock-fixed reference frame, It will become evident that a number of phenomena
of interest develop at these flow conditions,

Figure 4 shows the results of a combined perfect-gas-shock and relaxation
zone calculation for the limiting case of an ordinary hydrodynamic gas-ionizing
front, i.e., with no imposed electric or magnetic fields: E =B =B =0,
The solutions have been jeinted at x = 0 and the scale has been stretched by a
factor of ten for x <0 compared to x > 0 scale in order to show the relatively narrow
Navier-Stokes shock structure, Clearly, the ionization relaxation takes place over
several hundred upstream mean free paths compared to the few mean free
paths required by the perfect-gas shock, thus providing an é posteriori verifica-

tion of the assumptions leading to the ZND approximation. The relaxation

zone behavior of 2 purely hydrodynamic front has been discussed el:sewlxere26

36




i

It should be mentioned that the initia! electron temperature used
here in the numerical integration of Eq, (66) in ull cases was taken as Te (0) =
T(0) = T*. Although the value of electron temperature immediately behind
the perfect-gas shock is not well defined (since n~ = 0 there), it was shown in
Ref, 26 that relaxation zone calculations are almost entirely insensitive to
arbitrarily selected initial values of the electron temperature,

For reasons explained in Sec, 4, it is not possible to compute ZND
structures for fast gas-ionizing fronts, so attention has been turned toward
the family of slow oblique shocks discussed previously, whose upstream
magnetic field is inclined at 45° to the front and whose Alfén number is MAx =
1 /ﬁ . In dimensional terms, the corresponding streamwise magnetic
field upstzeam is B = 0.473 Wb /mz, a reasonably attainable value in
laboratory experiments, Structuvre calculations were carried out with various
values of the electric field. These results are displayed in Figs. 5 and 6,
respectively, for the pure hydromagnetic boundary condition on the electric
field Ey1 = 1,0, and for the gas-ionizing switch-off shock Eyl = 2,0, whose
.omewhat unique existence was discussed earlier in Sec. 4, As the
nonequilibrium ionization progresses and the gas becor es electrically conducting
the transverse magnetic field is decreased. In the case of Fig, 6 it is completely
switched off, The energy associated with the magnetic field is consequently
transferred into other modes, i.e., thermal and ionization energy. The cc-verted
magnetic energy can be viewed as an effective exothermicity within the front.
The scale stretching for x < 0 discussed previously was also applied to the
plots in Fig. 5 and 6 so that, even though they appear to be approximately

the same width, the perfect-gas-shock is still an order of magnitude narrower

than the relaxation zone in the extreme case of E =)

2.0 , Fig. 6),
Y1 \ g )
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As Indicated in Sec, 1, it has been held by certain writers that the electric
Jeld EY: associated with a gas-iciizing hydromagnetic front will be determined by
the structure, ( n the other hand, it was shown in Sec, 4 that, zlthough structural
considerations may well rule out the steady-state existence of certain (fast; gas-
ionizirg shocks, they dec not appear to furnish a criteria as to which of the possible
€lectric fields will actually be observed in the (slow) shocks whose existence, in

* ZND approximatior, is possible, Fig. 7 illustrates computed distribution of

downstream ralues an o T:' u_g and G; corresponding to the upstream conditions
discussed previously for various values of *he shock-frame electric ficld EYx' Also
shown is a scale indicating the correspcnding nondimensionalized lab-frame . lectric
field (which happens to equal the upstream gas-frame electric field E;: EYI-B“.
since the undisturbed gas is obviously motionl 'ss with respect to the laboratory).
Evidently Bz; decrecses almost linearly with increasing electric field until it is
finaliy switch~c-off at E“: 2.0, Tt is interesting that B, ,=1.0 occurs at Eh"z' 0.1,
rather than E“:O.ZB as one might expect from Fig. 3(a). This is due to the finite
Mach number used iu the present calculations, so that 6 a@ion/SM: was not zero
~c assumed in the Fig. 3 plots, As Bza decreases in Fig, 7, a, and T, increase as
energy is redistributed, Ultimately when the equilibrium gas becomes fully ionized,
at about Eyl-' 1.2, the kinetic energy u:/Z and hence u  increases as wcil,

The extent of the relaxa‘ion zone can ba estimated if we define a suitable
characteristic length 1. (strictly spcaking, of course, equilibrium is not attained
until x - o), Consistent witk Ref, 26, iet:

Lr = [x]

a=(2)" 4 o (83 ‘

The upper graph in Fig, 7 shows the variation of this nondimensioialized relaxation
length 1 = Lr’ /l1 , where ! is the physical relaxation iength. Since the perfect.gas

shock is the same thickness, {s ¥ Ls/)\1= 7, in all cases (because it depends only un
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upstream Mach number) it follows from this plot that Ls/{,r<<l for all values of

E“, thus justifying the ZND approximation for these porticular calculations,
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6. CONCLUDING REMAREKS

The prasent study has dealt theoretically with the existeice and structure of
gas-ionizing hydromagnetic thock waves, as defined by the archetype of Sec. 1.

In the case singled out for attention, the gar within the froat was collisionally
ionizing argon (by atom-atom and electron-atom impacts) in a “onequilibrium two-
temperature state, Inview of the relatively low temperature expected, photo-
icnizatinn was ruled out on an_a_dl_x_o_c basis; moreover, the ionization lags associated
with finite-rate chemistry indicated that the ZND approximation could be employed.
This model, in turn, led to a number of surprising results: (1) No steady-state
structure could be constructed for fast gas-ionizing waves; (2) for the slow waves,
where numerical solutions were Lbtained, the ZND approximation was verified

a posteriori for the shock conditions studied here; and (3) the Rankine-Hu,oniot
indeterminacy o. the electric field, which is intrinsic to the concept of gas-ionizing
shocks, was not removed by considerations of structure.

As to th. applicability and relevance of these results, it should be first
recalled that ""high temperature' gas-ionizing shocks were ruled out at the outset
on the physical grounds that they create r.diation-induced electron precursors and
hence make the upstream state electrically c.nducting; but any "gas-ionizing" shock
which propagates in the real world must move into a region where there is some
elec: -ical conductivity, however small. Consequently, the gas-ionizing archetype
actually presupposes some low threshold below which the gas acts as though it were
uon-electrically-conducting. It is not entirely clear that such a threshold exists
physically, Furthermore, even in tk2 supposed low temperature case considere-!
here, the post shock temperatures become sufficiently high (since the slow shock
is effectively exothermic) to indicate a relatively high level of precursor ionization,
particularly for large electric fields. For this reason, in lieu of specific experi-
mental evidence to the contrary, it seems quite possible that solutias with arbitmrily

seected electric fields are na ottained in practice,and that only the solution with a purely
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hydroma gnetic boundary condition on the elctric field has physical sijuficance.
It is suggested that ! ture research into tne nature of hydromagnetic shocks
propagating into '"cold' upstream states might profitably include the effects of

radiative nonequilibrium and photo-ionizing reactions in the analytical models,
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AFPPENDIX - INTEGRATION OF THE NAVIER-STOKES

SHOCK STRULTURE EQUATIONS IN UN-IONIZED ARGON

The numerical solution of the imbteuied perfect-gas viscous shock structure,
while not entirely straightforward, is well-understood and will be discussed briefly

here, The applicable differential equations in u, and T are [cf. Eqgs, (67) and

(68)) :
du
X - Re - F(a ,T) =3 Re[u -1+ 3 = -)], (A1)
dx o 5M21 ux
du
dT . Re c;(ux.:)'—f-l—6 MY ou X
dx 27 dx
L]
2 M, 2
+ = Re [T-1+ — (u’°-1)]. (A2
3 3

Ordinary, numerical integration of such cifferential equations as an
initial-value problem would be indicated, It is well-known, however, that this
is not possible for this particular system because the derivative dT / du =
G (ux , TY/ F(ux,T) becomes indeterminate, of the form 0 /0, at the upstream
and downstream states where F = G = 0; moreover, the singular-point is of

the node type upstream and of the saddle-point type downstream;
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consequently, a stable numerical sclution is obtained by integrating from the
downstream state toward the upstream, but not vice versa. It might be
mentioned that the energy equation has an exact integral for Pr = 3/4, in

which case singular points in (u.x , T) space are irrelevant to numerical
integration35. Remember, however,that in the present problem Pr = 2/3 so inte-
gration must proceed backward from the vicinity of the downstream point,

We can obtain consistent initial values for (ux , T} in the neighborhood
of (u: R T*) , where the asterisk (%) denotes the downstream state of the
perfect gas shock, provided we know the value of the derivative asymptotically
downstream, viz, lim x — o dT / dux . To this end, consider the situation
when a and T are perturbed slightly an amount Au, and AT from their

downstream values

& %
where 'Sux/,ux << 1, AT/T << 1. Tosimplify the algebra, we make

the reasonable (for the present problem) assumption that M: >>1 so
that all terms of order 1/M °  or less compared to unity will henceforth be
1
2
dropped, The downstream values, from Eq. (69b), become u, = 1/4,

T =5 Mi / 16 and the corresponding near-downetream velocity and temperature

are

+ bu T=_5-M"‘1+A'r. (A3)
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Substituting Eq. (A3) into Eqs. (Al) and (A2) and dropping perturbation
terms consistent with Aux << 1/4 and AT << SM: /16 yields the

linearized equations

du
x - 3R [ru 4 12 ATY , (A4)
dx 4 ¢ x SM;"
du M?
ST . .4 m3d + 2 R ...L.Aux+A,T. (AS5)
dx 27 ! dx 3 %\ ¢
Dividing (A 4) into (A5) gives
2
2 (Mx + A T)
dT  _ . 4 Mm% + 3\6 E U . (A6)
du, 21 ¢ 3 12 A
-~ {1+ =
4 5M, U
Now, making use of the identities
dT . dt \*
lim x — =1imx—¢m£={— ,
du AU \du
X x p'd

and evaluating Eq, (A6) at x = oo in the above leads to an equation for (dT /du)* which is

exact at the dowmstream singular-poirt (accepting, of course, the approximations related

to 1/M12<< 1):
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£ * a
M2
dT dT )} 4 — 2| =0, (A7)
du du 36
X X

l and which has the two roots

§;
%

%

[}
L]
[

|

=0, - ——— , (A8)

of which only the latter has physical significance.

In order to begin numerical integration it was first assumed, quite

arbitrarily, that we were at the point where A u =1 /100 << 1/4; the

whiwadbidly

consistent value of the temperature perturbation is, from the linearized analysis,

~ % «
AT T (dT/du_) -bu =-7M,°/ 3600 . The initial values of u  and T used

furthermore, it was assumed that x = 0 here, in crder to match the relaxation

i

zone solution which (as discussed in Sec, 5) proceeds by forward integration

‘ to start numerical integration at this point follow immediately from Eq, (A 3j;
| from x=0 toward x—» + oo . Integration of Eqs. (Al) and (A 2) was

carried out in physical space by conventional numerical techniques from x = 0
cowa.rd x = - oo until the velocity and temperature caine arbitrarily close
to their upstream values u = T = 1. In these calculations the temperature-

depend=nce of the Reynolds number was given by R, {T)=1.,65 M1 T'3/4

as indicated, for un-ionized argon, by Eq. (60b).
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Fig, 1. Sketch of gas-ionizing shock structure gepmetry in an
oblique magnetic field. The cartesian (x ,y’,z ) coord-
inate system is shock-fixed, The 'arimes" denote
physical (dimensional) quantities.
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Fig. 7. Variation of nondimensionalized downstream streamwise velocity
uy,, transverse magnetic field, B,,, degree of ionization a, and
nondimensionalized relaxation length 4., for various shock-frame
(and corresponding lab-frame’) electric fields for a slow shock with
M1=ZO, MA1=1/f28, p1=1.0 mm Hg and temperature T, =300°K, A
unique value of the electric field is not defined by the structure,
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