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NONEQUIUBRiUM STRUCTURE OF HYDROMAGNETIC 

CAS-IONIZING SHOCK FRONTS IN ARGON 

by 

t 
Martin I. Hoffert 

Polytechnic Institute of Brooklyn 

I 

SUMMARY 

This study deals analytically with the structure of gas-ionising hydromagnetic 

shock waves.   Since these waves, by definition, must have non-electrically-conduct£ng 

upstream states, their existence at very high shock temperatures must be ruled out on 

the physical grounds that forward-radiated precursor ionization makes the unshocked 

gas conducting.   A "'low temperature" collisionally-ionizing shock with ol'ique magnetic- 

field is studied here to deter.nine whether certain concepts which exist in the current 

literature are relevant.    Nondimensionalized equations governing the nonequilibrium 

structure of such a front propagating into un-ionized argon are formulated using 

ionization rates and an electron energy equation developed in an earlier paper. 

Comparison of the magnitudes of viscous and magnetic Reynolds numbers within this 

front indicates that,  if a structure exists, it must consist of a narrow "imbedded" 

viscous shock standing upstream of a much wider hydromagnetic interaction and   oniza- 

tion relaxation zone.    Hence,  a modified form of the Zeldovich-von Neumann-During 

(ZND)   approximation is applicable to the structure problem.   It is shown that in this 

approximation nontrivial steady-ctate structures cannot be constructed for "ia^t" gas- 

ionizing shocks.   On the other hand,  solutions are possible for "slow" waves, and 
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these are obtained numerically for a femily of hydromagnetically oblique shocks at 

Mach number Mx = 20 and Altoin number M^ 1//Z with parametrically varied 

values of the upstream electric field.    In contrast to previous expectations, the 

upstream electric field i, not uniquely defined by the structure.    Because the slow 

solutions are effectively exothermic, to the poim where their post-shock temperatures 

arn associated with radiation-induced precursor lonization. it seems likely that ualy 

the solution with the upstream electric field corresponding to a pure hydromagnetic 

shock ha« physical significance. \ 
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I     I 

1.    INTRODUCTION I 

In recent years,  a number of -nvestlgators have contributed to the formula- 

tion of a theoretical model descriptive of tue so-called gas-ionizing hydromagnetic 
•   c / 7 8 

shock wave (Xulikovskii and Lyubimov  ' , Kunkel and Gross  , Helliwell ,  (Jhu , 

Woods , May and Tendys     and Taussig    '     ).    These waves are thought to exist, 

for example,  in electromagnetic shock tubes.   All the ».forementioned authors either 

postulate or imply that the structure of these waves conforms to the folio nng 

archetype (this d  scriplion can also be taken ae> a definition of a "gas-ionizing 

hydromagnetic shock" in the present context):   Upstream,  the ga* is un-ioniaed, 

electrically non-conducting and hence uncoupled from the magnetic fluids through 

which the shock mr/es.    Consequently,  the leading edge of the front develops pre- 

cisely as an ordinary hydrodynamic shock.   Because of collisional ionizing reactions 

associated with the rising temperature,  an electrically conducting (hence hydro- 

magnetically active) plasma is created somewhere in the shock interior.    It follows 

that the overall structure is hybrid in nature, being partly hydrodynamic and partly 

hydromagnetic. 

The most distinctive implication of this archetype is that the Rankine- 

Hugoniot conditions are no longer sufficient to predict the downstream state of the 

shock in terms of the upstream state and the shock velocity.    This is because, in 

contrast to purely hydromagnetic shocks, the upstream gas-frame electric field is 

not uniquely defined in terms of the upstream velocity and magnetic fields:   As a 

non-electrical conductor, the unshocked gas is incapable of sustaining a current 

flow,  so the upstream boundary condition of no currents in the undisturbed gas is 

automatically satisfied for any electric field. 

It has been argued that an analytic prediction of the electric field requires 

13 
an analytic and physically correct solution for the ionizing wave structure    .   In 

order to gain some insight into the structure problem, prior studies '   '     '      have 

assumed temperature-dependent,  step-function models for the variation of electrical 

■ - 

I 

| 

| 

: 



m 

% 

conductivity 3 witiiin the ahock, i.e., 0=0 for T'<T*' anda^O for T^T*', where T' 

is the gas temperature and T*' is some "reference" temperature.   Analysis by 

May and Tendys     indicates that shock structure integral curve? deduced from this 

mode1 are applicable only when T*' is of the same order-of-magnitude as i..e 

characteristic (firttt)   ionization temperature of ti.a unshocked gas. 

The present study is concerned with obtaining shock-strurture solutions 

(if any exist) which arc consist mt with the gas-ioniziug archetype and which also 

incorporate realistic representa ions of transport and rate processes in a colM- 

sionally-ionizing monatomic gq t,  ar^'on in particular.    It is motivated by a realiza- 

tion that by misrepresenting the physicr of high temperature gases,  the step-function 

temperature-dependent conductivity approach can give qualitatively misleading results 

for two different reasons:   (1)   If the internal shock temperature approaches the 

ionization temperature,  as May and Tendys suggest,  thj gas becomes fully ionized 

aLnoe* immediately (since each interparticlt. collision has enough energy on-the- 

average to "knock off" ar. outeir electron), but at these temperatures radiation- 

induced precurdor ionization levels are sufficiently high so as to preclude any 

14 reasonable interpretation of the upstream state as un-ionized    .    Consequently,  the 

"gas-ionizing" archetype with its implied electric field indeterminacy is violated 

and the shock is not gas-ionizing, in the present context.    (2)   Another nossibility, 

the one actually explot ^d in this piper, is that of a "low temperature" gas-ionizir^ 

shock, i. e., a front creating a nonequilibrium pli ..ma in which photo-ionization is 

realistically negligible compared to co.llisional ionization.    In this latter case the 

conceots embodied in the archetype may still be revelant but the step-function 

temperature-dependent conductivity model is unrealistic.   In fact, the local elec- 

trical conductivity depends on the degree of ionization a. as well as temperature, 

so that ionization-lags in real nonequilibrium flows can have considerable influence 

on the variation of c    ithin the shock transition. 

The macroscopic global conservation and Max-w   1 equations used in the 



present analysis are developed in Sec.  2.    For an electrically conducting upstream 

state, these can be integrated between upstream and downstream states, to give the 

1S -17 
u*  ^1 hydromagnetic jump conditions    '    .   In order to express the dissipation 

fluxes (i.e., the stress tensor, heat flux vector and current density vector) in 

terms of lower-order dependent variables, it is assumed first that the electron 

cyclotron frequency was always much less than the electron collision frequency. 

Secondly, the Navier-Stokes approximation is used, together with a two-temperature 

modification of the Chapman-Enskcg expressions for transport coefficients.    The 

first assumption, which rules out Hall currents, is removable in funeral by Rising 

18 
a more general version of Ohm's law     , but it is justified specificaliy for the flow 

conditions of the calculptions to b« presented later.   It is welJ-^nown that the Navier- 

Stokes approximation is questionable in connection with strong hydrodynamic shock 

structure calculations.   Nevertheless,  its use in the present study is plausible on the 

ground? that qualitative misrepresentation of the structure,  of the sort introduced 

by the aforementioned electrical conductivity models, are unlikely; moreover, 

Navier-Stokes equation, have been used, with some success, to study the structure 

of purely hydromagnetic shocks (Marshall19. Bürgers20,  Ludford21, Germain22'23, 

Bleviss     , and Anderson    ). 

In Sec.   3, the ionization rates and transport properti— of partially ionized 

nonequilibrium argon are developed in terms of fundamental collision cross-sections. 

The sole source of electrons is taken to be collisional ionization by the reactions: 

L + 
Ar x Ar ^»    Ar     +  e" + Ar, 

k   A rA 

(la) 3 

Kfe        + .        . 
e    +Ars£Ar    +e    +e, 

rA 
(lb) 

where k^, kfe are the forward ionization rate coefficients and k k      are the 
rA'  "re 

rr-- ^     , 



reverse three-body recombination rate coefficients.   Tlv   '.inetics of Eqs. (la,b) 

were treated previously in connection with flow in the relaxation zone of a hydro- 

26 dynamic shock    .    It is assumed that the plasma remains quasi-neutral throughout 

so that electrogasdynamic influences on shock structure    "      are negligible compared 

to magnetogasdynamic effects.   Because the reaction rates, transport properties and 

thermodynamics of partially ionized argon depend on both electron and heavy-particle 

temperatures, an appropriate electron energy equation is required. 

Sec. 4 deals with the nature of the shock structure integral curves which are 

consistent with the gas-ionizing archetype.   In this portion, it is suggested that the 

"ZND" approximation of detonation wave theory is applicable to the present problem 

and the consequences of this representation are examined for both "fast" and "slow" 

gas-ionizing shocks.   In Sec. 5, selected numerical shock structure solutions are 

presented and numerical techniques are treated briefly.    The conclusions of this 

investigation are given in Sec.  6, where the applicability and relevance of the 

present results are discussed and potentially profitable directions of future research 

are suggested. 

i 
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2.    GLOBAL HYDROMAGNETIC EQUATIONS IN 

OBLIQUE MAGNETIC FIELD SHOCK GEOMETRIES 

We shall be concerned here with the distribution of flow variables within the 

transition region of the oblique gas-ionizing shock whos** geometry, in shock-frame 

coordinates, is shown in Fig. 1.    This shock may be envisaged as having begun its 

caree» as an ordinary hydrodynamic gas-ionizing shock which lat^r "penetrated" a 

region of nonzero magnetic :ield and subsequertly attained a ste dy-state structure. 

An (x'.y'.z') coordinate system is selected in which the upstream magnetic field 

vector resolves along the x' and z' axes.    For the scalar electrical conductivity 

assumed previously, the shock-frame electric field is in the y' direction and all 

electromagnetic components which are initially zero,  remain zero (the "switch-on" 

shock is an exception not explicitly considered here). 

As a general rule "primes" are used to distinguish physical variables, all 

of which are in mks units, fror, the more convenient nondimen&ionalized variables 

used later in developing the equations;   furthermore,  cartesian tensor notation is 

used to express the general form of the governing equations more concisely.   The 

component directions in the tensor notation are related to the coordinate system of 

Fig.   1 as follows:   x ' = x', x' = y', x' _ , /. (   ), = (   )x. (   )2 = (   )y.  (   )3 M   )s 

In the present rotation f.. is the usual Kroenecker delta:    /|..= 1, if i=j; *.-=0, if i/j. 

The symbol e...   is the permucadon tensor:    ej-v-O, if i=j,  i=k or j=k; e... =1, if ijk 

are in cyclic order (123, 321, ^11) and Pitc--li  if Ijk are unequal but not in cyclic 

order (132,   213,   32l). 

The thermodynamic pressure p' and specific enthalpy i' of partially ionized 

two temperature argon satisfy the equations of state 

p' = C'R(T' + aip , 

i' =4R(T' + aT') + aRQ'    , ^ion' 

(2) 

(3) 

i 

where  p' is the mass density, T' is the heavy particle temperature, T' 

i   5 t 

^ 



is the electron temperature,   a   is the degree of ioalzation.   R = 2.082  x 102 

joule/kg -. K   ia the gas constant for atomic argon and «K       =   183,100 0K 

is a characteristic temperature for the single ionization of argon. 

Using Eqs. (2)   and   (3) to immediately eliminate pressure and enthalpy, 

the global conservation and Maxwell equations for the steady flow of a quasi- 

neutral plasma can be written in divergence form as follows:25 

*%   ^'Ui>   " 0 (4) 

xi 
P'u'u'   +   p'R(T'+aT ')«   .   +-L(6    »".B/B.^ + T/ -0. (5) 

Äx, oV'T* R(T'+ aTe'+  4"   *®Ln)   +   p'u.'.Ji'2 
*     « e 5 ion •*   i        2 

E.'B ' 
+ cijk    "i     +   u^ 

^o 
i. T..    + q.   +    q     . 
J    ij x ^e,x =   0. (6) 

Ijk 7 -oj; - (7) 

'ijk ax! 
j 

= o (8) 

=   0 (9) 



»B.' 

^x' 

=   0 (10) 

where   u.    is the flow velocity,   B.'   is the magnetic induction,   E'   Is the 

electric field intensity,   uo =   4n   x   10*     henry/m   is the free space magnetic 

permeability in  mks   units,   J^   is the current flux density vector,   q.'    and 

qe,i     are the heavy-particle and electron-gas heat flux vectors and   T..'    is 

the viscous stress tensor. 

As indicated in  Sec.   1 ,   a scalar electrical conductivity a it, assumed 

in this analysis, in which case the relevant form of Ohm's law is 

r.'   =   *{£.)   =    ,(£.'+   C-^u/B^), (11) 

where   (E. )    =   E^   +   eyjjttj'B^'   is the electric field in coordinates moving 

vdth the gas velocity   u^^    through a magnetic field  B.'.    Using the Navier- 

Stokes approximation discussed in Sec.   1 ,   and   recognizing that the partially 

ionized plasma is a mixture of monatornic I.eavy particles (atoms and ions), 

and an electron gas which can   in general   maintain     distinct temperatures, 

the heat fluxes and stress tensor can >>e written 

^i m (12) 

= -n Ml + Ä 
Sx.' 

J 
3x i 

J.   ft,. 
3 »J 

lik (13) 



p =      .1 

whore   K  and  K    are the heavy-particl« and electron-gas thermal conductivities 

and    rt is the coefficient of shear viscosity for the entire gas.   Corobhüng 

the Maxwell equation for induced magnetic field, Eq. (7), with Ohm's law, 

Eq. (11). gives an expression for the gas-frame electric field in term of 

magnetic field derivatives 

(E*)'-   E,'+  «yk«»j'Bk' 'I 

e 
(14) 

Eqs. (2) - (14) are applicable within the transition region of Fig.  1.   It 

is useful to re-express the governing equations in terms of new "unprimed" 

variables which have been nondimensionalized with respect to quantities In 

front of the shock.   Define: 

P   ?    -ß-r   .    T 
Pi 

e   » 
e % 

Ion 
ion (15) 

'I   = 
Xl 

B: 
B. . E, 

B 
XI 

u    B 
XI     XI 

(16) 

u   \,J. 
T O    1    X Ji   • -T-r  • «H B 

Xl 
p   u    RT 
Pi    XI       1 

/  '   qe.i   = 
e.i 

o u     RT 
Pi   XI       i 

(17) 

ij 
li 

'      '9 0. U 
^     XI 

(18) 

-,- 



where the relationship between tensor indices and the components of Flg.  i 

has been discussed.   Note also that the subscript   1   in Eqs. (15) - (18) 

denotes upstream conditions generally, and that   >1, i^ the mean free path 

in the undisturbed gas. 

Acoustic and Alfv^n speeds   a^   and   b       are defined which are 

characteristic of the undisturbed { ^   = 0 )   state: 

{-RV '.H 
b       = B      ( p     n   ) xi   5     xi ' ri    'o' 

■H 
(19a) 

These, in turn,   may be used to define the Mach and Alfv^n numbers of the 

shock  K^   and  M^ : 

Mi 
xi x: 

(i RT'.)** 
3 l 

M Al b 

xi 
i 

XI 

(p'  U   '8U   ) 

B 
Xl 

(19b) 

In order to assess the relative significance of   viscosity verses 

electrical conductivity as dissipative mechanisms these transport properties 

must be incorporated into suitable dimensionless numbers, i.e. , fluid dynamic 

and magnetic Reynolds numbers   R«   and  Rm.   Noting that the characteristic 

length scale in the present problem is the upstream mean free path   > 1, 

define: 

Re 
p  u     \ xi   ^ 

(20) 

*™   -   ^ouxx   \ (21) 



furthermore, a Prandtl number  Pr  is defined 'vhich incorporatee the effects 

of heavy-particle thermal conductivity, 

5         Rn 
Pr   5  2   •     (22) 

It is noted in passing chat,  from kinetic theory, in a pure  monatomic gas 

y   =   (15 RT1) /4,    so that when   a-   0 ,   Pr =   2/3 . 

The governing equations, Eqs. (4) - (14) can now be written in terms 

of the dimensionless quanties defined by Eqs. (15) - (22)   as follows; 

  ( pu )  = -a-L =          e      • J_Ji= o 
a xi a Xj,      ax. J     ^Xj 

a 
5 x i 5Mi M Ai 

= 0 . 

äX; 

-[p«i-|(T^aTc + | qßi.    )   +   -  M* us 
4   ion' 6      1 

5       Ml 5      . 
+    e.-u    -          -   • E. B,  + - M,  u.r.. + q. + q ijk     3           3 j    K     3      i    j   ij     Hi     ^e. 

"A! 

0. 

E.   +   P...  a. B,   a i ijk   j    k 

Ji eljk ÖBk 

Rm       Rm        Bx. 

PrRe       Sxj ^ 2\K /     PrRe        ax. 

10 
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1 

Re 

f"   ^u. 

^x 
+ -X -i. • ^ 

36ij ^x k  J 

Bearing in mind the relationship between the tensor notation indices and the 

components of the vector quantities in Fig.  1, and substituting these quantities 

into the above set gives the ordinary differential equations: 

d     , dBx — (pux)   =—iE 
dx dx- 

d£ 

dx 
=   0 (23) 

d 

dx 
pu8   +      3 

5M; 
y-.d^T.,   ♦^-. (B.'.Bx')tTx]1 

2M Ai 
0   (24) 

M 

d 

dx 
p u    u K   X    z 

B   B X     z 

Ai 
xz =    0 (25) 

_d_ 

dx 
pUx-T(T+aTe + |a1on)   +   |    M*{u*   +   ^ 

+ 5    .K 
3       M » Ax 

E   B    + 1    M8, {u Txx+UzTxz) + %c+%( 

(26) 

11 



^^ 

dB  z 

dx h Jy=Rm     uxBz-UzBx-Ey ]• 

1 dT „ 5   A 
PrRe dx e,l 2   \» / Pr?.« 

dT. 

dx 

(27) 

(28) 

/i           i          du                              .du _ _   4  _    1_       x        T      _ _   _1^  z_ 
501 3        Re       dx    ' Re dx 

(29) 

Eqs. (23) - (26)   can be integrated immediately between conditions in the 

undisturbed gas and some arbitrary point   x   in the shock interior.   Note 

first that, using the definitions of Eqa. (15) and (16), the flow variables 

must satisfy the following conditions asymptotically upstream 

@x co   :   uc = B   = T = p = 1   . 

(30) 

a=u     -C,B=B     ,E=E z z zi y        yi 

Now, substituting the fluxes of Eqs. (28) and (29) into Eqs. (24) - (26), and 

performing the aforementioned integrations with the boundary conditions of 

Eq. (30), Eqs. (23)  - (27)   become: 

au     =   B     = I,    E     =   E f   x x '       y yi (31) 

du 
*    =i    Re 

dx 
1 + 

5 Ml 

T + aT 
- 1     + 

2M Ai 

B,3) (32) 

12 
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du z 

dx 
=    R 

dT 

dx 

e   \       e 2 

(B    - B    ) 
2 Zl' 

M 

«    / d x 
-   PrM 

A3 

a   / 4 du 
—   u 
3     x dx 

+   u 
du 

dx 

+   Pr Äe 

(33) 

M 
T + a T     +   i  aa.  n - r+ —L  (u8   + ua -. 1) e 5 ion 3      *   x z ' 

" 

+ i 
M" 

M 3 yi *    z        zi 
Ai 

(34) 

dB 

dx 
=   Rro B    (u L 

Z      X       ,, s M 
)   + 

ZI 

Al M/i 

Rm 

Re 

du  z 

d x 
(35) 

. 

■ 

It is instructive to examine, at this point, the significance of the hydro- 

magnetic boundary condition on the electric field E^. If the boundary conditions 

of Eq, (30) are introduced into Eqs. (32) - (34),    the flow derivatives quite 

properly vanish identically in the undisturbed gas: 

@x oo 
du x 

dx 

du z 

dx 

dT 

dx 

In order to insure that the transverse magnetic field vanishes upstream, i.e. , 

@x —>   " a» '   dBz/dx=0, it is required,   from Eqs. (30) and (35), that 

13 
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@x  - -CD   Rm(B2i-Eyi) = 0 . (36) 

Ä In a pure hydromagnetic discontinuity where the gas is electrically conducting 

upstream, Rn^ / 0,  so that from Eq. (36) E    =B     .   On the other hand,  for the 

gas-ionizing shocks, of interest here, ^sRmjsO,  so that E,     is not uniquely 

defined. 

Eqs,  (32)-(35) are four differential equations in the six unknowns: 

u , u , B , T, T   and a.   In order to mathematically close the set, two additional x      z       z s 

equations are required describing the nonequilibrium behavior of a and T^within 

the shock transition; also the transport-property-dependent dimensionless numbers 

Re, Rrr and Pr must be expressed in terms of local value:  of the flow variables. 

14 
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3.   IQNIZATION RATES AND TRANSPORT 

PROPERTIES IN PARTIALLY IONIZED ARGON 

Formulation of equations which deal specifically with distinct electron, 

atom and ion species is facilitated by introducing the follow ig approximations, 

definitions and derived relations, most of which follow directly from the 

assumptions of Sec. 1; 

m    /m, <  \  , n\l   =   mA , n     =   n. 'A ' 
(37) 

a   = 
n   + n. e       A 

HH • *- *< (38) 

n     = e 
1 + 

JlSL- 
m. 

1 - a 

1 +a 
n    = JJLüLU 

m A 

(39) 

,' (1   +   ~)   ■.-. n   m 
n     m e      e 

m 

A   ' 

nj   mI 

(40) 

where   n.    ,   n     and   nT   are the number densities of  Ar , e     and  Ar     species 

respectively,   r.     is the total number density,    n      is the net electron number 

density production rate from all sources,    j    is the degrej of ionization production 

rate from all sources,    rr<    =  9.107 x 10"      kg  and   m.   = 6.628 x 10        kg e A 

are the masses of an electron and an argon itonr. respectively . 

The one-dimensional conservation of electron mass and euergy equations 
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26 
applicable to the present oroblem can be written 

.     'vex' 'e'A 'e'e 
d x 

=    ^e'l-^-     VeMT'-Te')-(ne')e     k ^     +     ^L-, (42) 
>     A / 1 

where   k=   1.380 x   10'        Joule/'   K   is Boltzmann's constant,    (n    ).    and 

(n ' ) _   are the electron density production rates «resulting from atom-catalyzed 

reactions Eq.  (la),  and electron-catalyzed reactions,  Eq.  (lb),   respectively, 
i 

and   v      is the collision frequency of the electron gas.    The effects of electron 

thermal conductivity •vcre not included in Eq.   (42) in anticipation of a future 

development,  however, a Joule heating term   J     /j   was added to the energy 

equation of Ref. 26 to account for dissipation due to induced currents flowing 

through the gas v. ithin the transition region. 

Making use of Eqs.   (4), (38) and (39). and the fact that R=k/mA,  Eqs. (41) 

and (4-:), in terms of the degree of ioiisation a, become 

;        d   ^ •     ' *    ' 
u      -— =    aA     +   a      . (43) x       .   > A e dx 

, dT du 3 • e      ,      ^ ' x 

& dx dx 
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I 

m 

m (T Te') 9:. ion 
ap R 

'3 

"r- '      (44) 

A ae     ««pectively. can be expreased26 

ron-catalyzed 

^A   =   (1 -a) -—-   • k      (T   ) 
m 

% <T ) - cT 

1  - 
eq (T')    J 

.    {45a) 

A3 

-£- I- k     {Te', _eq  ue' 

1 lei, <Te') 

where 

(45b) 

prevail ^t a given gas densifv      '   A^ 

tne electJ-on temperature T '    The«*.  .•„ * 
e •   -These, in turn, are defined by; 

(46a) 

W1 e')    S    fl   +   -L (1 + r>) 

[ mAK
eq(Te')J 

(46b) 

"»•"   Keq<TWndKe,(Te',   „, „..u,^ , 
the heavy-parucle and ele 

constants" associated with 

ctron temperatures,  respectively.   There 
combination 
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rate coefficients,   kr    (T')   and kr    (T ') , and equilibriuin constants 
A e      ® 

associated.with Eqs. (la.b) behind strong normal shocks, as discussed l,i 

Ref. 26, are: 

kr   (T )   = 5.80   x   10 •49   (135,300    .   \ f47,800    \   ,    ? , 
•l-p—+ 2) ■ exp[—p—j (m Z1 sec),      (47R) 

kre(Te')   = 1.29 x  10-44.   (l^22 + 2^. exp/ilii^   {m*/. sec)  ,      (47b) 

Keo (T,)   =   2-90  x  loZZ- T' 3/' 
8, ion 

8  ■  exp   -   -iüli    (l/mJ) , {48a) 

Keq (Tj) =   2.90 x 1022 • Te'a/8    • exp 
9 ion ^      d/-3). (48b) 

It is convienient to define nondimensionalized "unprimed" variables 

"A '   tte   '    v »      corresponding to the production rates and collision frequencies 

appearing in Eqs. (43)   and   (44): 

'i^A 

Xl 

'       «e    - 
i     e 

xi 
(49) 

m 
^ve 

m.   /       u A / xi 
(50) 
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The prodi.-cuon rates of Eq. (49) are completely specified in terms of local 

values rf n , T'   and   Te'    by Eqs, (45a) though (48b), Relations are now sought 

which express   ve   and also the dimensionless numbers   Re, Rm  and Pr in 

terms of  a , T'and   T ' . e 

In principle, all collision-dependent transport properties needed in 

this analysis are obtainable from a knowledge of the elastic collision cross 

section for the various encounters occuring in a partially ionized gas.   These 

will be briefly summarized for argon. 

The Coulomb cross-sections lor collisions between charged particles 

are 
31 

* 

m 

Q II . Jf n 
'.3 36n(e0kT'r 

12 o 

6 / e   n e 

Qel   =  Qee 
36 n(p kT ')" '   o      e' 

^h iz^f^V3 

6       / e   n 

where   Qu  ,   Q^    and   Q^    are the cross-sections for  Ar + -Ar + . e* - Ar+ 

and e    -   e     collisions respectively,   e= 1.602  x   10 coulomb is the 

charge of an electron and   PO = 8.854  x   10 farad/m   is the dielectric 

permittivity of free space in mks units.   Making the required numerical 

substitutions in the above yields 

'n 
1.95x 10 

,' » 

-10 
1,53 x  10 14     T 

(m"),   (51a) 
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--jj^-:- 

^   =   Qee 
1.95 x IQ -10 

' a 
„   [i.53 xlO14.^-3] (m3) ; (5.1b) 

the remaining cross-sections can be expressed, after Jaffrin 
30 

Q^   =   170   x   lO-20 .    T'-*       (m*)  . (51c) 

Q   '   =   140   x   10'*°   {m9)   . *IA (Sid) 

.-4 >4o, (-0.35   v   0.775   x   10      . T ') x 10       ,  T '   >   10   0K 

'eA 

(m3). 

(0   39 - 0.551   x  10'4. T ' +   0.595 x  10"8. T "> x lO-^. T '< lo' e e   ■ e 
•20   ^ /^ ,„4o. 

(5le) 

where   Q^^ ,    QTA    and   Q^.     are the elastic cross -section for   Ax -   Ar , 

Ar     -   Ar   and   e    -   Ar   collisions,  respectively. 

The electron elastic collision frequency   v      and the electrical 

conductivity of the partially Ionized gas   o     can be   written directly in terms 

of these cross sections 

8kT 

1 -Tin 
<"A    <U + < Qe'l  ) (52) 

esn ne 4    \äs n 

m    v e   e 8mekTe'/       nA'Q^+ne'Qe; 
(53) 
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moreover,     the   thermal conductivities of the atom, ion and electron species 

30 are 

751; 

A   "^ 

nkT 

m. 

rX* 
1     + ».'0* 

nAQ.\A   J 

(54) 

75k 
"I   - 

64QIA n/ 

nkT 

m. 
1 + 

neQU 

nA ^'j 

.    (55) 

75 k nkT 
A^s 

64Qj(l+/2)     I    m# 

£- 

ee 

1   +    ^"AQCA 

1-1 
(56) 

The viscosity coefficients are related to the thermal conductivities by 

A /m 

4    /     e 
A        15R      A        I 15R       1 e     l5K

x \m. 
Ke.   (57) 

The upstream mean free path   \ .   which is used here as a reference length is 

m. 

^V^i      ^n'^i 
(58) 

where  Q^j    is Eq. (51 c) evaluated at   T' = l/ .   Note also that 

«   =   x 
A   +    "I   ,     ^   '   ^A +   'k   »' (59) 
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where the electron viscosity has been dropped from   ^  since   ^\   / T\  is of 

the order   (m  /mA) ^      ^ 1 ;   cf. Eqs. (56)   and   (57), 

Combining Fqs. (20), (39), (54), (55), (56), (58) and (59) ?nd i-;rodacing 

the definition of the upstream Mach number   M     = u   ' / (5 RT    ) gives 

an expression for the fluid dynamic Reynold's number in terms of  a  and   T: 

1*5 
128 

15 IT 
Mi   T 

-i 1 1 - a 
Q
P1*^-

Q
P^    

Qik+^QirQikj 
(60a) 

Uaing the fact that   Q^ / Q^   =   (T'Aj) =   T .  from Eq. (5lc). 

Eq. (60) can be simplified cons.      -ably if the argon remains un-ionized; 

h 
a=   0:   R   =  /Jii\ e v-j 

M^:3/* (60 b) 

Combining Eqs.  (2l), (39). (53) and (58), and using the Mach number, as 

before,  gives an expression for magnetic Reynolds number in terms of   a    and 

Te; 

Rm P    MittT^ 'AAl 

L Q^ + a(Qj - Qjj 'el     ^eA' 

(61a) 

where     p     is a nondimensionalized reference density defined by 

a    5TT   »s     me »5 

*       uoe ( T^     ^ 
0      m       ' 

Pi    WAA1 

8.39x 1 .-40 

Pi   QAA1 

(61b) 
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t       i- 

It may be noted here that while the fluid dynamic Reynold's number 

baeed on mean free path   Re   is density - independent, this is not the case for 

the Magnetic Reynolds number   Rm.    From Eq. (6l) it follows that   p     and 

therefore   Rm   increase with decreasing upstream density   p 

Combining Eqs. (39), (50) (52) and (58) with the definition of Mach 

number gives the following expression for nondimensionalized electron collision 

frequency in terms of c   and   T    : 

M, 

QeA+0<Qe;-Qel> 

"AAi 

(62) 

From Eqs. (22), (57) and (59) the Prandtl number of the Mixture is simply 

Pr   =  — 
3 

(63) 

The conservation of mass and energy equations for the electron gas 

can be   put       in a dimensionless form consistedt with that of the global 

conservation equations of Eqs. (32) - (35).   Note first from Eqs, (17),  (21) 

and (27).    That the term   J ' * / a    can be written 

I 
- - 

- 

.' «       RmB   ^u 
J Xx      XI 

>. 
(u   B 
'    X     z 

u  B   - E   )'  . z    x       y' (64) 

Substituting Eq. (64), together with the dimensionless  production rates and 

collision frequencies of Eqs. (49) and (50) and the unprimed variables defined 
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earlier by Eqa. (15) - (19). into Eqs. (43) and (44) yields32 

d a 

dx 

(1A+ «e 
(65) 

dT 

dx 

2v    T-T ) e e' q on   +  _10_ Rm 

^x^-^^-Ey)8-     (66) X    Z       Z     X 

It is significant that Eq. (66) i, not singular when   * = 0   since from Eqs. (45b) ( 

(49). (61)   and   (62) it follows that   ve . (ae/a)   and   (Rm/a)   are all bounded 

as   n >   0.   Certain formulations of the electron energy equation which 

Uve appeared in the literature have not had this useful and physically reasonable 

property. 
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4, INTEGRAL CURVES IN THE "ZND"   .PPROXIMATION 

Equations (32) - (35), (65)   and   (66), together with the auxiliary 

algebraic expressions for  Re, Rm. Pr,    a*   .    ix        and   v     developed in A e e 

the preceeding section, form a mathematically closed set of six ordinary 

differential equations in the si:: primary variables   u    ,  u    , B   , T , T     and 

n .   The formal solution of these equations as an initial-value problem starting 

from the upstream boundary conditions of Eq. (30) is not possible however 

owii.^ to the mathematical nature of the system.    Briefly, thin can be explained 

as follows.   The leading edge of the gas-ionizing front must begin as an 

ordinary hydrodynamic shock,  but a predominant characteristic of the Navier- 
i 

Stokes hydrodynamic shock structure in a monatomic (Pr =   2/3 )   gas is 

that the integral curve solution in   (u    , T)   phase s(.ace has a singularity of 

the node   type at the upstream state; consequently, the downstream state is 

33 
"unattainable" from the upstream state by numerical integration Since 

the gas-ionizing shock begins its upstream structural development as a pure 

gasdynamic shock, the latter conclusion applies to the present case as well. 

Fortunately, it is appropriate to employ a useful approximation here which 

has been developed in the theory of detonation waves.    Commonly known as 

the Zeldovich-von Neumann-Doring (ZND) approximation,  in the present context 

this amounts to recognizing that ionizing reactions of Eqs.  (la,b) are sufficiently 

"slow" such that gas-ionizing shock structure can be computed in t«vo distinct 

regions;   (1)   a perfect-gas viscous shock wave standing in fro"* of (2)   a much 

longer ionization relaxation zone where finite-rate chemistry and hydromagnetic 

interactions are significant. 
7 P 7 A. 1 A 

It has been recognized,  e.g.,  by Germain     ,  Bleviss      and Leonard   , 

that,  for hydromagnetic shocks, when the magnetic Reynold's number is small 
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compared to the viscous Reynolds number, a viscous shock is imbedded in a much 

wider region of hydrom.   netic interaction.   For the (collisionally ionizing) gas- 

ionizing hydromagnetic   /aves treated in the present paper, this must be '.he -.ase 

since realistic ionization rate-processes yield values of Rrn/Re « 1 within the 

initiating perfect-gas shock regardless of the ultimate electrical conductivity 

34 
level    .   It should also be clearly understood t'-at unlike certain imbedded viscous 

shocks which can occur in pure hydromagnetic wave fronts, the imbedded shock 

here must stand upstream of the hydromagnetic interaction since it creates the 

necessary electrically conducting environment. 

The equations governing flow in the two regions r n be obtained formally 

from Eqs. (32)-(35), (65) and (66) by applying the appropriate limiting conditions. 

In the perfect-gas-shock region we have the limit:   a - 0, Rm - 0, so that Eqs. (65) 

and (66) for a and T   are not relevant a.id Eqs. (30), (32)-(35) become 

du 

dx 
= 0 , u u     =0 zi 

dB z 

dx 
= 0 , B    = B 

'       Z Zl 
(^6) 

du        - . 
-JE = i  Re     u 
d»      4 L > 

• 1 + 
SM^ 

(i->)] (67) 

«..ÜM.ult^+|R.rT.l+^.(ux'.l)]   . 
dx 27 x dx       3 L 3       x       J 

(68) 
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where we have used th? feet that   Pr   = 2/3   in the above.   Clear.7 the 

transverse magnetic field and tansverae velocity are constant across the 

perfect-gas shock.    Eqs. (67)    - {t8)   describe the : ^vier-Stokes shock 

structure of a perfect monaton.ic gas.   Their solution has been treated elie- 

35-37 
where "       , and is discussed here in the Appendix, The upstream and downstrearr 

states implied by these equations can be found by setting   du    / dx   = dT/dx = 0 

in Eqs.  (67)   and   (68), 

1   + 3 T ^ 

1 x 

eliminating the femperature   T   between these to get the quadratic 

and solving for the velocities and corresponding temperatures as-ociated with 

the two roots.   This yields the upstream and downstream states of the imbedded 

perfect-1as shock: 

<SK ->    -   00 :   ux =   T  =   1 . (69a) 

@x + 00 ; ux = i  (1 + ^.) .   T   =   *    (M; - -i-,) +  I 
4 M,8 16 l      5M, 8 

(69b) 

In the relaxation zone region? the governing equations are found by 

applying the limit Re >    oo   to Eqs. (32) - (35) which yields the set 
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3 /T+aTe u    - 1   +    -. I  
* 5M» V      u i \       x 

-l)   +   —,,     <Bz   -BJ)=0' 2M 
(70) 

u     = z 

B    - B  . 
7 Zl 

M A.1 

(71) 

2 M, 
T   +   aTe+   ?    a^-l   +   -i    (a» - l) 

+ 1       ^ '    (B    -B   .)   E      + 
'   z        zi'  I   V 

B   - B , z       zi 
3        M-        "«       zi' I   y 2      ■ 

= 0. (72) 

Ai ^Ai 

dB, 

dx 
-   Rm 

B'K' < 

zl 

M yi 
Al 

=   Rm.  g (ux ,  Bz) (73) 

Eliminating the quantity   (T + a? )   between Eqs. (70)   and (72)   gives a 

quadratic equation in   u     corresponding to   Re  —>   co , 

'^.*.-*.K-l**i;*'>K*hJr ■<,]'*■ (74) 

where 5 

2 

B3  - B   f z zi 

M Ai 
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M: 
n®,       +   — ion 3 

M 

hi Al 

(B    - D ^   z        z .'(■ 
B 

E      +   _£ 
yi 

B 
zi 

2M Al   /J 

In the ionization relaxation zone the flow will proceed along the path   f = 0; 

it is useful to introduce an analogous path,    g   =   0, corresponding to the limit 

Rm-»0 

(75) 

Equation   (74)   has two roots,  given by 

u     =   — +   e. 
M, ,(1-<), + c't(;0^>' 

+ 16G 

(76) 

while solving for   u     from Eq.    (75)   gives 

"A^ 

B 
zi 

(77) 

Prior to discussing numerical shock structure solutions in physical 

space, it is instructive to examine the path of the   ZND   solutions in (u       B » 
' x '     z' 

phase space.   Since the integral curves are more mear'ngful if a distinction is 

made between "fast" and "slow" hydromagnetic waves, these classifications will 

be briefly reviewed in the context of the present work. 

Analysis of the linearized hydromagnetic   equations yields the so-called 
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fast and slow disturbance speeds c^ '    and   cs      which, together with the 

acoustic and Alfven speeds   a     and   hXl   of Eq. (19a), are properties of the 

undisturbed flow.    These speeds are conveniently written in terms of the 

quantity 

b,'  _ (b'.'+b'9)'5   = b ' 

rB ' \   3 

1   + Zl 

B 
xi/ 

b
X\<l + \\^ 

(78) 

as follows 38 

Cfis 

ih 
/ 3. S       ,«    ' a i_   ^5 (»i    + b !   )   + v. (aj   +b1   )   - 4a1   bxi (79a) 

(a1    + bj  ) - ^{aj   +h1 )    - ^   bxi 

1^ 
(79b) 

Pure hydromagnetic shocks are generally classified as either fast or slow 

39 depending on whether they satisfy the inequalities 

xi       >    1 ;   fast shock, 

cf. 

(80a) 

°i 

D 
XI 

xi        < 1 ;   slow shock. 

xi 

(80b) 

'   /    ' Using "he definitions   Ml    ~   ux   /a      ,    M.      s u      /b and Eq. (78), 

the following useful formulas are obtained: 
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cf 
9 i 

M, MA 1 Ai 
Al   / 

M>A! 
(81 a) 

XI 
/ 

'si 

1 + B 
L    x  zi 

M' M. / 
1 

Mi' 

1 + B 
zi 

MAax M'MAi 

(81b) 

For the purposes of this section, attention is restricted to (hydromagnetically) 

oblique shocks in the infinite Much number limit, since hypersonic (M » 1) Mach 

numbers yield ionization levels required for hydromagnetic interaction and this 

particular limit does not change any important features of the Integral curves. For 

V^— co then, Eqs. (81a.b) give u^/c^= M^U + BM"1/» and c^/u^» 0.   For 

the special case when the upstream magnetic Csld is inclined at 45° to the shock 

front (B     = B     =1), the criteria of Eqs. (80a, b) become 

M.      >    Jl    :   fast bhock, 

(82) 

0   <    M.      <   1 
—       Ai 

slow shock. 

It might be observed here that no pure hydromagnetic shocks can exist between 

the weakest (acoustic) fast wave at  M.     =   Jl  and the slowest   (switch-off) Ai 

slow wave at   MA     = I. 
Ai 

Returning to the discussion of integral curves in the ZND approximation, 

the 45   upstream magnetic field and M  —<► OD assumptions (which were introduced 

to make the problem specific) should be borne in minu, as they apply to the balance 

of this section.   From Eqs. (69a, b) one can expect 

f 
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an initial jiunp In strtamwlse velocity from   u     =   1   to   u     =   1/4     while 

B     =   1    remains constant,  corresponding to the perfect-gaa-shock transition. 

ITria imbedded shock transition is denoted;    i - 1   , where   1    is the downstream 

state of the perfect-gas shock.   Subsequently, the flow progresses in the 

relaxation zone along the path   f (u    , B    , a) -■ 0 ,    until  the   downstream 

state of the gas-ionizing shock is attained.    The latter step of the overall shock 

transition is denoted ;    1-2.   As a conseqence of all flow derivati es vanishing 

downstream,  e.g.   du / dx   = dB  /dx   =   0     @x )  oo, the downstream state 
X z 

in the   (u . B ) plane is indicated by the intersection of the curves f (u    , B ) = 0 
X        Z X z 

and   g (u ,  B   )   =   0.   Note that in the infinite Mach number case 

6 oQ. 
lim   M. CD ion =   0 

5 M. 

so that,  from Eq. (74),  f=fi[u ,B ) does not depend on a. X      z 

(a) Fast   Shocks 

Consider now the possible trajectories of the fast shock   M.     = ,/To (>^2) 

shown   in   Fig,    2.      Recall from Eq. (36) that because   t    = Rxn  = 0 , an 

indeterminacv exists in the value of E       for gas-ionizing shocks;   it is there- 
yi 6 6 

fore appropriate at this point to treat the shock-frame electric field as a free 

parameter.   This was done in Fig. 2 which shows the curves   f = 0   and   g = 0 

computed from Eqs. (76)   and (77) for (a)   E      =1.0, (b)   E      = 0.625   and 

(c)   E       =   0.25.   The first trajectory, nam       that with   E       =   B       = 1.0, yx J /• yi zi 

corresponds to the upstream boundary condition on thn electric field in a pure 

hydromagnetic shock,  cf.  Eq. (36),   As indicated previously, the transition, if 

it occurs,  must take place by the path   1-1    - 2 in the ZND model.   It can be 
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shown that this path is impossible   for fast shocks from the following argument; 

Since   g   ^   0   below the curve   g = 0,  it follows from   Eq.  (73) that   dB    /dx < z 

0   at point   1    (Rm > 0, of course) ; but   B      >   1 ,  from the intersection point 

of  g = 0   and   f = 0 ; therefore , the downstream state is inaccesible by the 

path    1-2  along the   f = 0   curve since the magnetic induction equation 

predicts a decrease   rather than the required increase   in   transverse magnetic 

field.    The same reasoning applies for all valves of  E       >   l/4 , cf.  Fig. 

2(b). 

An analogous, but oppositely directed situation occurs when   E      ^   1/4, 

since  B       < 1   and the 1-1-2  transition becomes impossible because 

g   >  0   along   1    - 2 and Eq. (73) predicts an increase of  B     instead of the 

required decrease.   In feet, the only permitted   1-1-2  transition in  a 

fast gas-ionizing shock is the degenerate case of  E       =   0.25 in Fig. 2(c), 

which is nothing more than a pure gas shock with no change in magnetic field; 

(u       =   1/4 .    B       =   B       =1). X XS '       ' Z2 Zl ' 

If the gas were electrically cor^-Tt'«^ •• „tream, but with  Rm/^le < < 1  , 

the pure hydromagnetic transition   i - 2 , along the upper branch of the 

f  =   0   curve in Fig.    ?(a),     would be indicated.   In this regime   g   >  0, 

dB /dx   >  0, and there are no contradictions of the type encountered in the ZND z 

gas-ionizing integral curves. As indicated previously, this branch must be ruled 

out here since it violates the gas-ioaiziug archetype of Sec. 1. 

Although awitch-on (B   =0, B    /0) and transverse (B =B   =0) gas-ionizing 

shocks have not been dealt with specifically, it can be shown that ZND structures 

are impossible in these shocks, for the same general reasons that were given for 

the fast oblique shocks discussed in this section. 
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(b) Slow Shocks 

From Fig.  3 it is evident that the   f = 0 and   g = 0   curves for slow 

shocks take substaitlilly different forms from those of the aforementioned 

fast shocks.    These curves are plotted for the slow shock   M. .= l/Jt  (<l) 

at five difierent values of the shock-frame electric field;   (a)   E       =   0.25, 
V i 

(b)   E       =   0.625, (c)   E       =   1.0. (d)   E       =   1.50   and (e)   E       =   2.0. 
yi yi yx x '     yi 

In this case, Fig. 3(c) is the plot associated with the pure hydromagnetic 

boundary condition on the electric field.   All the electric fields shown have 

'I* 
in common the property that   ZND   structures are  possible.   After the   1   - 1 

perfect-gas-shock transition   the flow is in a region where   g < 0 ; but   B     <   I 

in this case so the derivative   dB  /dx «rO    [from Eq. (7 3)] is in the proper 

direction, thereby permitting the   1-1-2 path to the downstream state.    There 

are two limiting cases of interest:   (I)   E       =   1/4   in Fig.    3(a)   is 

the degenerate case corresponding to the pure gasdynamic shock with constant 

magnetic field and   (2)   E      =2.0   in Fig.   3 (e),   which yields a new kind of 

switch-off shock which can only occur in gas-ionizing fronts.    It follows from 

Eq. (73) that when   E      = B .   / MA     "   2>0'  8 = 0 along the straight lines 

B    = 0 and   u   = I / M.      = 2 .   The latter part of the   g = 0 curve is not visible 

in this   plot because the ordinate is cut off at   u    =1.2.   Since the intersection 

of the   f = 0 curve with   B    = 0 corresponds to the downstream stata, the lab- z 

fiame electric field   E      = B      / M. a    results in a complete switch-off of the yi        zi '     Ai r 

transverse magnetic field.    The sv/itch-off shock is only possible in ordinary 

hydromagnetics when   M.     = 1,  but it is clearly obtainable in slow gas-ionizing 

shock waves propagating at other Alfv^n numbers. 
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5.    NQNEQUILIBRIUM NUMERICAL SOLUTIONS 

It should be clear by this point that the mathematical nature of the problem 

in the present ZND approximation is fundamentally different from that implied 

originally by Sqs. (32)-(35), (65), (66) and the associated initial conditions of 

Eq. (30).    Rather than attempt the solution of six differential equations in the major 

flow variaoles u   ,  u  , B   , T, T    and a, it If proposed instead to solve simpler sets 

of equations in two different regions and to match their solutions at a suitable point. 

Specifically, in the perfect-gas-shock region,  only two differential equations need 

be integrated fEqs. (67) and (68)], while In the ionization relaxation zone there are 

three [Eqs. (65), (66) and (73)] .   In the latter case, the velocity components u   , u 

and the heavy-particle temperature T aro evaluated locally from algebraic relations 

[Eqs, (71), (72) and (76)],   In addition, the local value« of iÄ , et  , Rm r.nd v   needed 

to numerically integrate the relaxation zone differential equations are available from 

relations introduced and developed in Sec,  3  [Eqs, (45a,b), (5lb,c,d), (6la,b) and 

(62)] . 

In order to solve for the distribution of flow variables within the gas-ionizing 

front, two different   IBM 7090   computer programs were created:     one to solve the 

perfect-gas    Navier-Stokes shock structure problem (see Appendix) and the other \.o 

solve the hydromagnetic ionization relaxation zone problenn.   Since the perfect-gas- 

shock structure extends from x=-ootox«+oo and the ionization relaxation extends 

from some finite valuo of x (say x=0) to x» + oo, the two regimes overlap in physical 

space;   consequently, it was necessary to cut the perfect gas shock solution off at 

some arbitrary point, as explained in the Appendix and tack it on again to the 

beginning of the relaxation zone in order to construct a single-valued solution 
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over the entire range of x, from -co to + oo. The somewhat legislated nature of this 

matching procedure is characteristic of so-called singular perturbation problems — 

these are invariably generated by physical processes which involve disparate length 

scales — and is a familiar feature of boundary-layer solutions and detonation wave 

40 structure solutions in the ZND approximation     .    It is possible,  in principl»*, to 

obtain a more rigorous formulation of the connecting region between the two solutions 

41 by the method of matched asymptotic expansions 

For all caloulati^   i discussed in this section it was assumed that the fronts 

propagate into "cold" un-ionized argon which is at a pressure of pi = 1.0 mm Hg = 

1.33 x 102 newton/ma and a temperature of Ti = 300OK and has a corresponding 

-5 upstre un mean free path of Xi = 5. 38 x 13    m; furthermore, all of these fronts 

were considered to be traveling at the same gas dynamic Mach number Mi =20, 

corresponding ►o an upstream flow velocity of u ' = 6.45 x 103m/aec> when viewed from 

a shock-fixed reference frame.   It will become evident that a number of phenomena 

of interest develop at these flow conditions. 

Figure 4 shows the results of a combined perfect-gas-shock and relaxation 

zone calculation for the limiting case of an ordinary hydrodynamic gas-ionizing 

front,  i.e. , with no imposed electric or magnetic fields:   E      =B=B=0. 

The solutions have been jointed at x = 0 and the scale has been stretched by a 

factor of ton for x < 0 compared to x > 0 scale in order to show the relatively narrow 

Navier-Stokes shock structure.    Clearly, the ionization relaxation takes place over 

several hundred upstream mean free paths compared to the few mean free 

paths required by the perfect-gas shock, thus providing an Ä posteriori verifica- 

tion of the assumptionr leading to the ZND approximation.     The relaxation 

zone behavior of a purely hydrodynamic front has been discussed elsewhere 
26 
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It should be mentioned   that   the   initia1   electron   temperature   used 

here in the numerical integration of Eq, (66) in all cases was taken as   T    (0) = 

T (0)   =   T  ,   Although the value of electron temperature immediately behind 

the perfect-gas shock is not well defined (since   * - Q there), it was shown in 

Ref, do that relaxation zone calculations are almost entirely insensitive to 

arbitrarily selected initial values of the electron temperature. 

For reasons explained in  Sec.   4,   it is not possible to compute ZND 

structures for fast gas-ionizing fronts,  so attention has been turned toward 

the family of slow oblique shocks   discussed previously, whose upstream 

magnetic field is inclined at 45    to the front and whose Alfv«n number is   M.     = 
Ai 

I / Je .   In dimensional terms, the corresponding   streamwise magnetic 

field upstream is   B      = 0.473   Wb/m   , a reasonably attainable value in 
Xl 

laboratory experiments.    Structure calculations were carried out with various 

values of the electric field.   These results are displayed in Figs. 5   and   6, 

respectively,  for the pure hydromagnetic boundary condition on the electric 

field   E      = 1.0,    and for the gas-ionizing switch-off shock   E      = 2.0, whose yi * s        «■ yi ' 

somewhat unique existence was discussed earlier in    Sec.   4.   As  the 

nonequilibrium ionization progresses and the gas becor. es electrically conducting 

the transverse magnetic field is decreased.   In the case of Fig.  6 it is completely 

switched off.   The energy associated with the magnetic field is consequently 

transferred into other modes, i.e. , thermal and ionization energy.    The cr   verted 

magnetic energy can be viewed as an effective txothermiclty within the front. 

The scale stretching for x   < 0 discussed previously was also applied to the 

plots in Fig. 5  and   6   so that, even though they appear to be approximately 

the same width, the perfect-gas-shock is still an order of magnitude narrower 

than the relaxation zone in the extreme case of  E       =   2. 0   j Fig.   6 ). 
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As 'ndicated in Sec.  1,  it has been held by certain writers that the electric 

.'ield E     associated with a gas-iciiizing hydromagnetic front will be determined by 

the structure.    ( n the other hand, it was shown in Sec.  4 that, ^lthough structural 

considerations may well rule out the steady-state existence of certain (fasti gas- 

ionizirg shocks, they do not appear to furnish a criteria as to which of the possible 

electric fields will actually be observed in the (slow) shocks whose existence,  in 

\ ZND approximation, is possible.    Fig.  7 illustrates computed distribution of 

downstream  /alues ß      ,   T   ,  a      and Uj corresponding to the upstream conditions 

discussed previously for various values of "he shock-frame electric field £ Also 
yi 

shown is a scale indicating the corresponding nondimensionalized lab-frame  i lectric 

field (which happens to equal the upstream gas-frame    electric field £    = £    -3    , 

since the undisturbed gas is obviously motionl  ss with respect to the laboratory). 

Ev'dently B     decreases almost linearly with increasing electric field until it is 

finally switch-il-off at £    = 2.0.    It is interesting that B     =1.0 occurs at £   '=0.1, 7 yi » zs yi 

rather than £    =0.25 as one might expect from Fig,   3(a).    This is due to the finite 

Mach number used in the present calculations,  so that 6 a^-     /5M     was not zero r ion'       i 

■• o assumed in the Fig.  3 plits.   As B,     decreases in Fig. 7, aa and T    increase as 

energy is redistributed.    Ultimately when the equilibrium gas becomes fully ionized, 

at about E    -1.2, the kinetic energy u   /2 and hence u   increases as well, yi *'    x.' x 

The extent of the relaxa'-ion zone can b« estimated if we define a suitable 

characteristic length /    (strictly sp-aking,  of course,  equilibrium is not attained 

until x - oo).    Consistent with Ref.  26, let: 

lr '- M a=(2; (8 3) 

The upper graph in Fig. 7 shows the variation of this nondimenaioualized relaxation 

length £=£'/* . where ; [ is the physical relaxation length. Since the perfect-gas 

shock is the same thickness,  ^-a 7 ls/\ - 7, in all cases (because it depends only un 
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upstream Mach number) it follov/a from this plot that -ts/t «1 for all values of 

E    , thus justifying the ZND approximation for these particular calculations. 
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6.    CONCLUDING REMARKS 

The prseent study has dealt theoretically with the existeice and structure of 

gas-ionizing hydromagnetic shock waves, as defined by the archetype of Sec.   1. 

In the case singled out for attention, the gat: within the front v/as collisionally 

ionizing argon (by atom-atom and electron-atom impacts) in a n on equilibrium two- 

temperature state.    In view of the relatively low temperature expected, photo- 

icn?iation was ruled out on an ad hoc basis; moreover, the ionization lags associated 

with finite-rate chemistry indicated that the ZND approximation could be employed. 

This model, in turn, led to a number of surprising results;   (1) No steady-state 

structure could be constructed for fast gas-ionizing waves; (2) for the slow waves, 

where numerical solutions were obtained, the ZND approximation was verified 

a posteriori for the shock conditions studied here; and (3) the Rankine-Hu^oniot 

indeterminacy ox the electric field, which is intrinsic to the concept of gas-?onizing 

shocks, was not removed by considerations of structure. 

As to thv  applicability and relevance of these results, it should be first 

recalled that "high temperature" gas-ionizing shocks were ruled out at the outset 

on the physical grounds that they create radiation-induced electron precursors and 

hence make the upstream state electrically conducting; but any "gas-ionizing" shock 

which propagates in the real v/orld must move into a region where there is some 

elec: -?.ral conductivity, however small.   Consequently, the gas-ionizing archetype 

actually presupposes some low threshold below which the gas acts as though it were 

r.on-electricaliy-conducting.    It is not entirely clear that such a threshold exists 

ph>sically.    Furthermore, even in th^ supposed low temperature case considere-i 

here, the post shock temperatures become sufficiently high (since the slow shock 

is effectively exothermic) to indicate a relatively high level of precursor ionization, 

particularly for large electric fields.    For this reason, in lieu of specific experi- 

mental evidence to the contrary,  it set ms quite possible that sohiticns with arbitrarily 

selected electric fidcfe ate not obtained in practice, and that only the solution with a purely 
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hydromagnetic boundary condition on the elctric field has physical sio<iißcance. 

It is- suggested that '.   ture research into tne nature of hydromagnetic shocks 

propagating into "cold" upstream states might profitably include the effects of 

radiative nonequilibrium and photo-ionizing reactions in the analytical models. 

f 
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APPENDIX    •    INTEGRATION OF THE NAVIER-STOKES 

SHOCK STRUCTURE EQUATIONS IN UN-IONIZED ARGON 

The numerical solution of the imboU-4ed perfect-gas viscous shock structure, 

while not entirely straightforward, is well-understood and will be discussed briefly 

here.    The applicable differential equations in u   and T are  [cf. Eqs,  (67) and 

(68)] = 

du x =    Re   •    F (ux . T)   si    Re [ ux - 1 + —L-   (-^.    - l] | , (Al) 

dx 5 M8      \ u 
i       x   x 

dT              o           „.            iv-         16    ».a               x       =    Re-    G(u    ,»)    =   -   —    M      u      
dx x 27 dx 

2 Mi 
+   -    Re   [ T - I   +   —   ( u 2 - 1) ] . (A2) 

3 3 x 

Ordinary, numerical integration of iuch differential equations as an 

initial-value problem would be indicated.   It is well-known,however, that this 

is not possible for this particular system because the derivative   dT / du     = 

G (ux ,  T ) / F(u   ,T) becomes indeterminate, of the form 0/0, at the upstream 

and downstream states where   F = G = 0; moreover, the singular-point is of 

the node type upstream and of the saddle-point   type downstream; 
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consequently, a stable numerical solution is obtained by integrating from the 

downstream state toward the upstream, but not vice  versa.    It might be 

mentioned that the energy equation has an exact integral for   Pr = 3/4, in 

which case singular points in   (u    , T) space are irrelevant to numerical 

integration Remember, however,that in the present problem   Pr = 2/3   so inte- 

gration must proceed backward from the vicinity of the downstream point. 

We can obtain consistent initial values for   (u    , T)   in the neighborhood 

of   (u     , T   )  , where the asterisk   (*) denotes the downstream state of the 

perfect gas shock,  provided we know the value of the derivative asymptotically 

downstream,    viz.    lim   x  —>  oo   dT / du    .    To this end,  consider the situation 

when   a     and   T   are perturbed slightly an amount   A",    and   AT   from their 

downstream values 

r 

: 
r - 

• 

U +      A U 
X "X 

T   =   T     +    fiT , 
t 

* * where   lu   /u      <<   I,    iT/T    <<   1.    To simplify the algebra, we make 

the reasonable (for the present problem) assumption that   M      > > I   so 

that all terms of order   l/M       or less compared to unity will henceforth be 

dropped.    The downstream values,  from Eq. (69b), become   u       =   1/4 , 

T    = 5M1 / 16   and the corresponding near-downptream velocity and temperature 

are 

=    i   +    iu 
4 * 

T   = M' 
16 

+    AT (A3) 
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Substituting Eq. (A3)   Into  Eqs. (Al)    and (A2)    and dropping perturbation 

terms consistent with   iu,   <<   1/4    and   tT   «    SM^/^   yields the 
x 

linearized equations 

^x_   =     3   R     /iu    +   J^    .     iT^   , (A4) 
e  I     x        c xx2 dx 4      c  \     - 5M- 

dT   a     .   _L    Ms    .   fjL.   +   1    R    (-^-   •    ^ux+    AT) . (A5) 
dx    " 27 1 dx 3       e\   6 

Dividing   (A4)   Into   (A5)     gi-es 

K 
^I_ = - .1- Ma +   i \-r + t^/     . (A6) 

4 \   5 M,     Auxy 

M 
du 27 

Now,  making use of the identities 

dT iT    -    /dT\* li.   =     lim   x  —#   oo   ^i-    "       lim   x   —^    oo    —ü-i-   =     lim   x  —»   oo 
du Au \du   . x -'■ x        \     xy 

and evaluating Eq. (A6) at x -oo In the above leads to an equation for (dT/du)* which is 

exact at the dowratream slngular-poiit(accepting,  of course, the approximations related 

to i/M^«!): 
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d T 

du 

7 M' 

36 
=   0 . (A?) 

and which has the two roots 

0 , 
7M 

36 
(A8) 

of which only the latter has physical significance. 

In order to begin numerical integration it was first assumed,  quite 

arbitrarily, that we were at the point where   A u    =   1 /100   < <   1/4 ; the 

consistent value of the temperature perturbation is,  from the linearized analysis, 

A T   =   (dT/du   ) . Au =-TM,1*/3600 .   The initial values of  u     and   T used 

to start numerical integration at this point follow immediately from Eq, (A 3); 

furthermore, it was assumed that  x = 0 here, in order to match the relaxation 

zone solution which   (as   discussed in Sec. 5) proceeds by forward integration 

from   x = 0   toward   x —?   +   co .    Integration of Eqs.    (Al)     and   (A 2)     was 

carried out in physical space by conventional numerical techniques from   x = 0 

toward  x =   -co   until the velocity and temperature came arbitrarily close 

to their upstream values   u     =   T   =   1,   In these calculations the temperature- 

djpend?nce of the Reynolds number was given byR    (T) = 1.65MT"' e i 

as indicated,  for un-ionized argon, by Eq. (60b), 

I 
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Fig.  1.   Sketch of gas-ionising shock •tructur« ge^metr^ in an 
oblique magnetic field.   The cartesian (x ,y',s') coord- 
inate aystem is shock-fixed.   The "primes" denote 
physical (dimensional) quantities. 
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Fig. 2.   Inte||raa curves in (»v.BJ phase space for &st (M1-Q&, 

M^ <JI7) gas-ioaising s&ocks of the 45° upstream mag  
«eld ÄmUy(Bx «B, »1).   Of the three electric fields shown, 
(a) E    «1.0, (b»E    «67^5, (c) E^-0.25, only "(c)" admits 
a solution la the ZRD approximation.   This is actually a 
degenerate case of a hydrodynamic shock. 
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Fig.  3.   Integral curvei in (u^.B,,) phase apace for «low (Mj-oo, MAl = lJ7) 
gas-ionizing shocks of the 45° upstream magnetic field fitmlly 
(BXl=BZl=l).   All five electric fields shown, (a) E^'O 25 
(b) Eyi =0.625, (c) Ey^l.O, (d) Eyi=1.50, (e) £^1=2.0, wlU 
admit solutions in the ZND approxlmatlon.   Case "(;" i« the 
new "gas-ionUlng switch-off shock" discussed In the text. 
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pj- 1.0mm Hg «1.35x10 newtoryrrf 
Ti=300oK;X| = 5,38xlÖ5m 
u xi »645x10^/560 
B^,» 0473 Wb/m2 

M. «20; MAI = 1//^ 

OX)   02    0.4    0.6   0.8     1.0     1.2 
norvdinnensior.olized shock-frame electric 

L   i    ' ■ I—■—I—■—I—«—'—«—»-._ 

1.4     1.6     18    2.0 
field, EyrEy,/ui, Bi, 

-1.0 -0.8 -0.6 -04-0.2    0.0   02 
non-dlmensionolized lab-frame electric field 

0.4   0.6   OS    l.O 
upstream, Eyi « Eyr BZ| 

Fig    7.    Variation of nondlmensionalized downstream streamwise velocity 
ax  , transverse magnetic field, BZa, degree of ionization cx8 and 
nondimenslonalised relaxation length lr, for various shock-frame 
(and corresponding lab-frame) electric fields for a slow shock with 
M, =20, MA,=1/V2. P,sl-0 mm H8 aild temperature Tl='i00oK.   A 
unique value of the electric field Is not defined by the structure. 
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