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ABSTRACT 

A new method is presented for the analysis of MHD 
flow in the entrance region of a parallel plate channel 
including the Hall effect.  The method involves a linear- 
ization of the inertia terms and the introduction of a 
stretched axial coordinate.  A solution is obtained for 
the velocity distribution in an incompressible fluid which 
is valid from the duct inlet to the fully developed region. 
In practice, flows in which the Hall effect is significant 
will be compressible.  Since the primary objective of the 
present analysis is to develop the analytical technique 
for extending the linearization scheme to MHD flows with 
Hall effect, the constant density assumption is justifiable 
as a first approximation.  From this solution numerical 
results are obtained for the entrance length, pressure 
distribution, boundary layer thickness, and wall shear stress 
distribution in the entrance region for various values of 
the Hartmann number and the Hall parameter. 

Two different methods of analysis of fully developed 
MHD channel flow with variable conductivity are presented. 
Calculated velocity profiles are presented by the two methods 
for several conductivity variations across the channel. 

A new experimental MHD channel flow facility designed 
to use potassium chloride (KC1) as the working fluid is 
described.  Experimental data for the inlet region pressure 
distribution in this facility without a magnetic field are 
presented, and a comparison between the experimental data 
and analytical prediction is made.  The agreement between 
the experimentally measured entrance region pressure drop 
and the theoretical curve is considered as satisfactory 
verification of the theoretical model employed in the 
present investigation. 
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I 

INTRODUCTION 

In recent years, two promising areas of engineering 
applications of magnetohydrodynamics (MHD) have been defined, 
namely MHD power generation and MHD acceleration.  A recent 
survey of the MHD channel flow literature by Pai (Ref. 1) 
indicates that most of the analytical studies performed to 
date are for the fully developed region, the region far 
downstream from the entrance to the channel.  For an in- 
compressible fully developed flow at constant area, flow 
conditions are independent of the spatial coordinate in the 
flow direction. 

In practice, it is likely that a significant portion 
of the flow in MHD generator and accelerator channels will 
occur in the entrance region in which the flow undergoes an 
adjustment from a set of initial conditions to the fully 
developed state.  In addition, the practical range of oper- 
ation of MHD devices indicates that the Hall coefficient will 
be significant (Ref. 2). 

In the analytical portion of the present investigation 
the MHD flow in the entrance region of a parallel plate 
channel with Hall effect present is analyzed.  A linearization 
technique developed by Sparrow, Lin and Lundgren (Ref. 3) 
for non MHD flows is employed.  The method was recently ex- 
tended to MHD flows without the Hall effect by Snyder (Ref. 4). 

In order to determine the validity of the analytical 
solution, experimental data are presented giving measured 
velocity profiles and pressure distributions in the entrance 
region of a parallel plate channel.  The working fluid for 
the experiments was water.  A comparison between analytical 
and experimental data is presented which verifies the validity 
of the analytical method. 
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PREVIOUS WORK 

Relatively few studies of MHD entrance problems are 
available in the literature.  One of the first efforts 
made to estimate the MHD entry length was by Shercliff 
(Ref. 5).  He considered a linear transient problem in 
which a flow is initiated from rest in an infinitely long 
channel by imposing an initial condition of constant mass 
flow rate.  There is a transient period in which the flow 
settles to a steady state flow with a constant pressure 
gradient.  The time required for the flow to settle to a 
steady state condition is converted to an entry length by 
multiplying by the mean velocity.  This method is not 
precise, as acknowledged by Shercliff himself, and even 
though the entry length may be given to the correct order 
of magnitude by this method, the details of the flow for 
the transient problem would not be expected to agree with 
the flow in the actual steady state entrance problem. 
Roidt and Cess (Ref. 6) analyzed the entrance problem by 
applying the boundary layer technique of Schlichting (Ref. 7) 
Since nonsimilar velocity profiles are obtained in the 
boundary layer portion of the flow, a series solution for 
the stream function is necessary.  The labor involved in 
obtaining higher order terms in the series becomes excessive. 
Shohet, Osterle, and Young (Ref. 8) obtained a numerical 
solution to the entrance problem by writing the governing 
equations in finite difference form and solving them on 
a digital computer.  The same problem was solved also by 
Hwang and Fan (Ref. 9) by direct numerical integration of 
the governing equations in finite difference form. 

All of the above analyses used the simple Ohm's law 
in the form J = a(E + v x B), thus excluding the Hall 
effect.  The analysis of Chekmarev (Ref. 10) appears to 
be the only one in the open literature in which an effort 
is made to include the Hall current.  Chekmarev considered 
an approximate linearized version of the entrance problem 
which will be subsequently shown to be a special case of 
the present analysis.  The principle intez*est of Chekmarev 
was in the formulation of the problem with no numerical 
results given. 

In the present analysis, the postulation of a boundary 
layer model in the entrance region is not necessary.  A 
solution for the velocity distribution is obtained which 
is continuous over the cross sectional area of the duct 
from inlet to the fully developed region.  From the velocity 
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distribution the  physical quantities of interest such as 
the entrance length, pressure distribution, wall shear 
stress distribution, and electric current distribution 
may be determined.  Because of the presence of the Hall 
current, two components of the equation of motion must be 
retained to account for the Hall induced transverse velocity, 
Solutions for both the longitudinal and transverse velocity 
components are obtained. 
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III 

THEORETICAL INVESTIGATION 

3.1 FORMULATION OF THE PROBLEM AND SOLUTION 
FOR ARBITRARY INITIAL PROFILE 

The geometry of the MHD parallel plate channel is 
shown in Fig. la.  The relative orientations of the elec- 
tromagnetic quantities in the (x-y) plane are shown in 
Fig. lb for generator and accelerator modes of operation, 
A constant magnetic field Bz is applied in the z-direction 
and the channel is assumed to be infinite in the y-direction, 
The electric field E' relative_to the moving fluid is 
related to the electric field E in the stationary system 
by the relation 

E' = E + V x B (1) 

The generalized Ohm's law including ion slip and 
Hall effect has been discussed by Cowling (Ref. 11) and 
may be written as 

J - — E' 22— (J x B) +  -  (B • J)B    (2) 
1+b     (l+b)B B2(l+b) 

The ion slip term, b, becomes significant only for OJT > 10. 
If no component of J is parallel to B, the term J • B 
vanishes.  Assuming the magnetic Prandtl number to be small 
relative to unity implies that the induced magnetic field, 
Bx, is small compared to the externally applied field, Bz. 
With these assumptions, the x and y components of J may 
be obtained from Eq. (2) as 

Jx =  2— [E' - fiE'] (3) 
X   (1+ft2)   X    y 

3y • Ä [rai + ^ (4) 
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where a -        u -    
1+b        1+b 

The governing equations of motion in the x and y 
directions may be written as 

p(u a« + w öu) « _ OP +    of« + (5) 
ox   az   öx   dz2  y z 

p(u av +w avj = _ öP + M,ö!V _        (6) 

dx    dz     dy    dz2 

The assumptions implied by Eq. (5) and Eq. (6) are 
as follows: 

(1) A = o except for — 
dy        '      by 

d ^ (2) Terms involving -r— are negligible compared to ^~- 
dx dz 

(3) The contribution to the body force by the 
induced field Bx is negligible 

(4) The fluid density and viscosity are assumed 
constant. 

Assumption (1) is a consequence of the infinite channel 
dimension in the y-direction.  Assumption (2) is a standard 
boundary layer assumption and is valid except in the im- 
mediate vicinity of the channel entrance.  Assumption (3) 
implies a small magnetic Reynolds number, a valid 
assumption for most laboratory conditions of MHD flows. 
Assumption (4) is made for simplicity because the primary 
objective of the present analysis is to evaluate the 
effect of the Hall current on the entrance region flow 
development,  A constant property assumption is reasonable 
as a first approximation to study the qualitative features 
of the flow although the quantitative results would certainly 
be influenced by variable properties. 

It is convenient to combine Eq. (5) and Eq. (6) into 
a single equation by introducing complex notation.  Multiplying 
Eq. (6) by i ~~\f-  1, adding the result to Eq. (5), and 
substituting for the current components from Eq. (3) and 
Eq. (4) gives 
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dV 
p (u   4- w 

ävc    dp   äp   *% c) = - (2P + i 2£) + u 
dx dy öz: 

CJB. 

1+fT 

[E m-i) + E„(l+ifi) - B V (l+ift )] 
A y zi c 

(7) 

where Vc = u + iv is the complex velocity. 

In (Ref. 4), the MHD entrance problem without Hall 
effect is analyzed by extending the linearization technique 
of Sparrow, Lin and Lundgren (Ref, 3) to the MHD case. 
Eq. (7) has the same form as the equation of motion in 
the absence of Hall effect and thus the same linearization 
technique will be used.  Following the procedure of (Ref. 4), 
Eq. (7) is linearized to the form 

oV, d2V 
e(x)U —£ = A(x) + v —- 

ox dz' 

oB. 
+ 

p(l+JT) 
[E (ft-i) + Ew(l+±n) - B V (1+ifl)] 2\   x        y z c      J (8) 

where Ü is the mean velocity defined as 
h h 

U = -/vdz = -/ udz (9) 

The mean value of the complex velocity V  is equal 
to the mean value of the x-component of velocity u because 
of the physical restraint of no net mass flow in the y- 

h 
direction, i.e. J vdz = 0.  Thus Ü is a real quantity.  As 

0 
in (Ref. 4), e(x) is a weighting function and A(x) includes 
the complex pressure gradient dP/dx + i • dP/dy plus the 
residual of the inertia terms after linearization.  In- 
tegrating Eq. (8) over the upper half of the channel cross 
section determines A(x).  Performing the integration and 
utilizing Eq. (9) gives 
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0  =   hA(x)   +  V 
OV 

az z=h 

crhB 
+  — [E   (ß-i)   + Efl+ifl)   - B U(H-iH)] 

p(l+Q2)       X y Z 
(10) 

Substituting  for A(x)   from Eq.   (10)   into Eq.   (8)   gives 

+ v 

- äVc           v ÖVc 
dx            h   dz z=h 

ö2Vn       aB2(l+ifi) 
 £ + —5  
öz2          p(l+£22) 

(ü - vc) (11) 

It is convenient to introduce dimensionless quantities 

V 
a = H    5 = v    0 = _c    n=z    R   £Dh. 

U        U        Ü        h     e   p. 

Ha2 = 
öB2h2 z 

M,(i+a2) 
Hac2 = (l+iß)Has dß = dx 

eR h e 

(12) 

The dimensionless form of Eq. (11) becomes 

he =  afe _ 09 
ap    an2    an n=i 

+ Hacz (1 - 0) (13) 

with boundary conditions, 

9(T!=1) = 0   M (ri=0) = 0 
an 

0(ß=O) = eo(n) (14) 

Eq. (13) and associated boundary conditions given 
by Eq. (14) are identical to Eq. (9) and Eq. (10) of 
(Ref. 4) and thus will have the same form of solution. 
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The solution to Eq. (13) satisfying the boundary conditions 
of Eq. (14) is 

e 

UJ 

I 
n=l 

Hac(cosh HacTi - cosh Hac) 

sinh Hac - Hac cosh Hac 

-(7*+Hac2)ß 
Cne (cos 7nT] - cos 7n) (15) 

where the 7 are real eigenvalues and are the roots of the 
transcendental equation 

7n = tan 7n     n = 1, 2, ... (16) 

The 7n are the same eigenvalues that occurred in (Ref. 3) 
and (Ref. 4), and the first twenty-five eigenvalues were 
tabulated in those references.  During the course of the 
present investigation, a computer program was written to 
evaluate the 7n since more than twenty-five terms were found 
to be necessary to obtain convergence under certain con- 
ditions.  After these calculations were performed, a 
reference by Reisman (Ref. 12) was found in which the first 
hundred values are tabulated.  The values of 7n are tab- 
ulated in Table 1.  For large n, the 7n obey the recurrence 
relation, 

limit  (7   - 7n) = it (17) 
n -> 00 

The constants Cn are complex and depend on the initial 
velocity profile 0O(T]).  The functions fn(T)) = cos7nr)-cos7n 
form an orthogonal set over the interval 0 < r\  < 1 which 
allows determination of the Cn with the result 

Cn = (7^ + Hac2)cos7n 

(Equation continued) 



AEDC-TR.67-79 

1 

+    J   SQC'IXCOSY  n  -  COS7   )d^ (18) 
sin27 n 'n 0 

The first term of Eq. (15) represents the fully 
developed velocity profile in complex form.  It is seen 
to be identical to the fully developed Hartmann profile 
in terms of the complex Hartmann number Hac.  That the 
fully developed velocity profile with Hall effect present 
could be put in the form of the Hartmann profile with a 
complex Hartmann number was first pointed out by Yen 
(Ref. 13). 

It should be emphasized at this point that Eq. (15) 
must be separated into real and imaginary parts to be 
physically meaningful.  Even though the form of the complex 
solution is identical to that contained in (Ref. 4), this 
apparent simplicity of the complex solution is deceptive 
because the separation of Eq. (15) into real and imaginary 
parts is a rather tedious exercise im complex algebra. 
This separation is done in the next section for the case 
of uniform initial velocity profile. 

3.2 VELOCITY SOLUTION FOR UNIFORM INITIAL PROFILE 

For a uniform initial velocity profile, 90(i) = 1 and 
Eq. (18) becomes 

Cn =  (19) 
("y^ + Hac2)cosyn 

The real part of Eq. (15)_gives the dimensionless longitudinal 
velocity component a =  u/U_and the complex part gives the 
transverse velocity 6 = v/U.  Because of the lengthy ex- 
pressions involved, it is convenient to list the fully 
developed and the entrance region portions of the velocity 
profile separately.  The first term of Eq. (15) is the 
fully developed profile and the series term is the en- 
trance region profile.  Thus the dimensionless velocity 
components will be written 

a = - = a„ + a (20) 
Ü 

5 = 3 = 6 -f + 5P (21) 
U 
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where subscripts f and. e refer to the fully developed, and 
entrance portions respectively.  After a considerable 
amount of complex algebra manipulations, the real and 
imaginary parts of Eq. (15) may be written as 

. Wj t w> (22) 

D E (TI) - C F (n) 
= _o_j^ o_oU_ (23) 

f       C 2 + D 2 

o    o 

i          [cos7  T) - COS7  ][\ cosYß  -  YsinYß] 
a    =  2   )      ^ 2 2  (24) 

7 [*n
e + *a]cos 7n 

n=l 
I 

[Xn
2 + f2]cos 7n 

6^ = - 2 V :—l~~'n''   — .nJL»n—K——^   C25) 
e  n^[COs7nri - COS7 ][X sin¥ß - fcos^ß] 

'e      / . r-4 2 . «,2 

n=l 

C - sinh A  cos B  - A cosh A  cos B 
o        000      00 

+ B  sinh A  sin B (26) 
o      00 

D^ = cosh A sin B - A sinh A sin B 
o       000      00 

- B cosh A cos B (27) 
000 v  ' 

E (ri) = A (cosh A ri cos B n - cosh A  cos B ) o '    o      o '     o1        o     o 

- B (sinh A n sin B n o      o '     o ' 

- sinh AQ sin B ) (28) 

10 
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F (-n) = B (cosh A r\  cos B r\  -  cosh A  cos B ) o '    o      oJ     o1        o     o 

A (sinh A ri sin B *\ o      o1     o ' 

sinh A sin B ) (29) o     o 

Ao . Ha-VEZI (30) 

Bn =   -  HaU^ 1 (31) 
° 2 

r =Yl + tt2 (32) 

Hac = A  - iBQ (33) 

Xn = V +  Ha2 (34) 

¥ = fiHa2 (35) 

The longitudinal and transverse velocity components, 
given by Eq. (22) through Eq. (25) may be used to calculate 
physical quantities of interest in the entrance region. 
Before these calculations are presented the limiting case 
of a T =0 will be considered first.  From the definitions 
0 = to T /(l + b) and ¥ = QHa2, it is clear that ¥ = 0 for 
CD T  =0.  From the definitions contained in Eq. (26) 
through Eq. (35), the following expressions apply for 
Oil T  =0. 

ß = 0 (36) 

r = 1 (37) 

11 
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B  = 0 (38) o 

A0 = Ha (39) 

C = sinh Ha- Ha cosh Ha (40) o 

Do - 0 (41) 

E (T]) = Ha(cosh Harj - cosh Ha) (42) 

F0(-n) = 0 (43) 

Hac = Ha (44) 

Substituting Eq. (36) through Eq. (44) into Eq. (22) 
through Eq, (25) gives 

Ha (cosh Han, - cosh Ha) 

sinh Ha - Ha cosh Ha 

oo  -(7n
2 + Ha2)ß 

e            (cos 7 T) - cos 7 ) 
+ 2 >   2 2_      (45) E (7^ + Ha2)cos 7M 

n=l n n 

5=0 (46) 

Eq. (45) is identical to Eq. (18) of (Ref. 4).  Eq. (46) 
confirms the anticipated result that the transverse velocity 
vanishes for CD T = 0. 

3.3 EVALUATION OF e[x) 

The velocity solution given by Eq. (22) through Eq. (25) 
is in terms of the stretched axial coordinate ß.  The 
physical coordinate x is related to the stretched coordinate 
ß from Eq. (12) by the relation 
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R. 
X 

h 

ß 
(47) 

0 

Therefore a knowledge of the variation of e with (3 is 
required in order to transform from the ß to x variable, 

In (Ref. 4), the procedure used to evaluate e was 
based on the assumption that the pressure gradient cal- 
culated from the equation of motion is equal to the pressure 
gradient obtained from a mechanical energy equation.  This 
procedure will be used in the present analysis.  To facil- 
itate the operations which are to follow, it is convenient 
to write the inertia term of Eq. (5) in the form 

u ^ + w^H 
äx    öz 

duu   duw (48) 
dx dz 

Eq. (48) is the result of combining the continuity equation 
with the inertia term.  Combining Eq. (5) with Eq. (4) and 
Eq. (48) gives 

p ( \-  ; = 
dx dz 

M+^äfu 
ox    dz2 

aBz 
+ —^-r [fi(Ex + vBz) + (Ev - uBz}] i + az        x   z   y 

(49) 

Integrating Eq.   (49)   over  the half width  of  the channel 
from z  =  0  to z =  h gives 

i^aij u*dz - i in 
p  dx       h  dx 0 h  dz z=h 

öB  2Ü 

pd + a2)      x       y 
(50) 

where 0     = x 

E x 

UB 
«BL- 

UB. 
(51) 

13 



AEDC-TR-67-79 

A mechanical energy equation may be obtained by 
multiplying Eq. (5) by u with the result 

i du"2 . i dwu2 _  u ÖP  vu d
2u 

2  5x   2  3z     p 5x     dz2 

aB 
+  5  [Q(uEv + uvB ) + (uE„ - u2B )]       (52) 

p(l + ft2)     X     Z      y     Z 

Integrating Eq. (52) gives 

_löP,Ü_/ü!dz+^L/ (öu)2dz 
p äx  hÜ öx 0 2      hü 0  dz 

*Bz2ü 1  rh 2    [ft(4> + -±- J uvdz) 
p(i + a2)   x  hu2 0 

h 

+ <*„ - — /u2d2)] (53) y  hü8 0 

Equating the pressure gradient expression from Eq. (50) 
and Eq. (53) and introducing dimensionless quantities gives 
the following expression for e. 

A. / (a2 - ^)dn 

e(Ha,0,ß) = -j ^~°- ^ j   (54) 

^ (|^)2dT1+äT]Ti=i+Ha2^ Ca^-Ddn-ö Jaedn] 

The right side of Eq. (54) is a known function of ß, 
Ha, and Q  from Eq. (22) through Eq. (25).  The physical 
coordinate x is then given by Eq. (47). 

Eq. (54) shows that €, the weighting function, is a 
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function of ß as well as the electromagnetic parameters Ha 
and £1.  The integrals appearing in Eq. (54) were evaluated 
numerically.  The relation between the physical coordinate 
x and the stretched coordinate ß was determined from Eq. 
(47) which involves a numerical integration of e with respect 
to ß.  The results are shown in Figs. 2, 3, and 4.  Shown 
also for comparison are the curves for e = 1, an assumption 
made by Chekmarev (Ref. 10).  The assumption e = 1 is seen 
to be a poor one as Ha increases at cur = 0.  For tun: = 10, 
the e = 1 curve is approached more closely.  Basing the 
entrance length determination on the assumption € = 1 results 
in a longer entrance length prediction than that based on 
a variable € given by Eq. (54). 

3.4 THE ENTRANCE LENGTH 

For incompressible, constant area flow, a fully 
developed velocity profile is approached which is independent 
of the axial coordinate.  Because the fully developed pro- 
file is approached asymptotically, the definition of the 
entrance length is arbitrary.  The customary definition of 
the entrance length is the distance required for the center- 
line velocity to become a specified fraction of the fully 
developed centerline velocity.  The difference between the 
fully developed centerline velocity and the centerline 
velocity at any position ß may be written from Eq. (24) as 

I 
-X ß 

e  n (cos7 -1)(X cosfß - fsin^ß) 
afdv=0)-a(n.=0) = 2 )  (55) 

' (\z  +  *2)cos 7r 
n=l n *n 

The entrance length will be defined as that distance 
at which a-f(rj = 0) - a(n, = 0) = 0.05.  This definition 
corresponds to the location at which the centerline velocity 
is 95% of the fully developed centerline value.  Entrance 
length values are shown in Fig. 5 for Hartmann number 
values of Ha = 2, 4, 6 and in Fig. 6 for values Ha =8, 10. 
For a given value of Ha, the entrance length is seen to 
increase with increasing values of oyr.  For the smaller 
values of Ha, the entrance length values appear to be 
approaching an asymptotic limit as COT increases.  The 
asymptotic limit is not so obvious for the larger values 
Ha - 8 and Ha - 10 since oyr = 10 was the largest value 
used in the calculations.  However, an examination of the 
complete equation of motion given by Eq. (7) shows that 
in the limit as COT -* oo with B and E held constant, the 
electromagnetic body force term vanishes.  Thus as COT -> <», 
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the entrance region flow approaches the non MHD entrance 
region as a limit.  Additional justification of this con- 
clusion is provided by an examination of the influence of 
CDT on the fully developed velocity profiles. 

3.5 INFLUENCE OF wON FULLY DEVELOPED VELOCITY PROFILE 

Fully developed velocity profiles are shown in Figs. 
7, 8, 9 for Ha values of 2, 6, 10 and oyr values of 0 and 
10.  Shown also for comparison is the profile for fully 
developed flow in the absense of a magnetic field, the 
well known parabolic distribution given by the relation 

r = - [1 - <-)2] (56) 
U   2       h 

As oyr increases, the curves approach the parabolic dis- 
tribution.  Thus the parameters Ha and CUT distort the 
velocity profiles in opposite trends.  Increasing Ha tends 
to flatten the profile in the center of the channel, re- 
sulting in an increased shear stress at the wall, whereas 
increasing tor causes the profile to become more nearly 
parabolic in shape , resulting in a decrease in the wall 
shear stress.  This trend in the fully developed region 
suggests that in the entrance region, the boundary layer 
thickness should increase as an  increases. 

3.6 INFLUENCE OF wrON ENTRANCE REGION BOUNDARY LAYER THICKNESS 

The definition of the boundary layer thickness in 
either external or internal flows is arbitrary because of 
the non-uniqueness of the boundary layer thickness.  In 
internal flows, a frequently used definition is the distance 
from the wall at which the velocity becomes a specified 
fraction of the centerline velocity.  In the present 
analysis, the boundary layer thickness will be defined as 
the distance from the wall at which the local velocity is 
90% of the centerline velocity.  This definition, although 
arbitrary, will serve the purpose of illustrating the 
influence of COT on the boundary layer thickness. 

The entrance region boundary layer thickness is shown 
plotted in Figs. 10, 11, 12 for Ha values of 2, 6, 10 and 
COT values of 0 and 10.  The curves are terminated at the 
end of the entrance region that was previously defined as 
the position at which the centerline velocity is 95% of 
the fully developed centerline value.  The boundary layer 
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thickness so defined is seen to increase as <X>T increaseSj 
a result qualitatively compatible with the observed effect 
of COT on the fully developed velocity profiles. 

3.7 ENTRANCE REGION PRESSURE DISTRIBUTION 

The pressure distribution in the entrance region may 
be obtained by integrating either Eq. (50) or Eq. (53) 
from the entrance, x = 0, to any position x.  Because of 
the simpler form of Eq. (50), it will be used to determine 
the pressure distribution.  To emphasize the entrance region 
effect on the pressure distribution, it is convenient to 
separate the pressure drop into a fully developed portion 
and an entrance region portion.  This separation can be 
accomplished by using the identity 

ez z=h 

öuf 

dz 
+ 

z=b 

ö(u - uf) 

dz 
(57) 

z=h 

where Uf is the fully developed velocity.  Substituting 
Eq. (57) into (50) and integrating from x = 0 to x = x 
gives 

P - P x öu 

p    h 0 h 0  dz 
dx 

z=h 

x 
v r d<u - uf) 

h  n dz 
dx - 

z=h 

aB 2Üx z  

p(i + a2) 
[fi«" + (<*  - 1)]  (58) 

Writing Eq. (58) in dimensionless form gives 

Po -p 

ipü2 
2  x \  öaf 2  (X) /   L 

Re  h l ä ] T^l 
+ Ha[Q*x + ($y - 1)] 

+ 2   / asdn  - 1 - / 
P d(a - af) 
e 

0 0 br\ n=l 
dß (59) 
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The first bracketed term of Eq. (59) is the pressure 
drop resulting from the fully developed flow and the second 
bracketed term is an entrance region correction term.  Re- 
writing Eq. (59) in terms of a fully developed friction 
factor and an entrance region correction term gives 

- P 

iplT 
= f ~  (-) + K 

Re  h 
(60) 

where 

t  = - 2 | ^ 
T)=l 

+ Ha2[fi$x + ($y - 1)] (61) 

K - 2 / cc2dn - 1 - / 
ä(a - Qo) 

0 ÖT1 1=1 
dß (62) 

The fully developed friction factor, f, is a function 
of both components of the electric field 3^ and §y.  The 
entrance region pressure correction, K, is independent of 
the electric field, however.  It is interesting to observe 
that the Hall current induced transverse velocity component, 
5j does not appear in the longitudinal pressure distribution. 
It would appear in the transverse pressure distribution, 
however, since the transverse velocity induces a transverse 
pressure distribution. 

The entrance region pressure correction is shown in 
Figs. 13, 14, 15 for Ha values of 2, 6, 10 and cm values 
of 0 and 10. An examination of the curves shows that for 
a fixed value of Ha, K increases with increasing ayr. The 
influence of ayr becomes more pronounced as Ha increases. 
For a fixed value of CDT, K decreases with increasing Ha. 
The curves are terminated at the end of the entrance region. 

For the fully developed region, the pressure gradient 
becomes constant and is given by the fully developed 
friction factor defined by Eq. (61).  Thus it is clear 
that the value of K should asymptotically approach a con- 
stant value in the limit as x -> o°.  This conclusion is 
also evident from the definition of K given by Eq. (62). 
The asymptotic values of K are shown on Figs. 13, 14, 15. 
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Since the curves were terminated, at the arbitrarily defined 
entrance length, i.e. the position at which the centerline 
velocity becomes 95% of the fully developed centerline 
velocity, the asymptotic value is not reached by the curves. 
The total pressure in the entrance region should be based 
on the asymptotic value of K.  The variation of the asymp- 
totic value of K with CUT is shown in Fig. 16 for Ha values 
of 2, 6, 10. 

3.8 ENTRANCE REGION WALL SHEAR STRESS DISTRIBUTION 

The shear stress at the wall is given by the 
expression 

T  = - LL   
jxU da | 

z=h     h C3T||T)=1 
(63) 

The negative sign is used to make T  a positive quantity 
since the velocity gradient at the Wall is negative.  De- 
fining a dimensionless shear stress as 

T* = —— (64) 

and evaluating the velocity gradient from Eq. (20), (22), 
and (24) gives 

T* = 
[sinh  A     cos B   ][C   (B  2   - A  *)   -  2A B D   ] L o oJLoo o oooJ 

w C  2  + D 2 

o o 

("cosh A  sin B ][D (B 2 - A 2) + 2A B C ] 
L o oJL oK  o o ' o o oJ 

C 2 + D 2 o    o 

DO -X ß 
e  n 7 2[X  cos Yß  - Y  sin ¥ß] 

+ 2 >    - 2  (65) 
[\n

2 + Y2] Z 
n=l 
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The first two terms in Eq. (65) give the wall shear stress 
in the fully developed region and the summation represents 
the contribution due to the entrance region. 

The variation of the wall shear stress in the entrance 
region is shown in Figs. 17, 18, and 19.  The results are 
plotted as a ratio of local wall shear stress to the fully 
developed value.  Since the initial velocity profile at the 
channel entrance was assumed to be uniform, a discontinuity 
in the velocity distribution at the wall occurs, resulting 
in an infinite value of shear stress at the inlet.  This is 
not a physically meaningful result but is a consequence of 
the assumption of an initial uniform profile, a physically 
impossible condition for a viscous fluid. 

3.9 INFLUENCE OF INITIAL VELOCITY PROFILE ON ENTRANCE LENGTH 

The solution for the entrance region velocity profile 
is given by Eq. (15) with the constants Cn given by Eq. 
(18).  The Ö0(r|) appearing in Eq. (18) is the initial 
velocity profile at the channel entrance.  The results 
presented so far have been for uniform initial profile, 
i.e. dQ =  1.     In an actual MHD channel, the initial pro- 
file would not be uniform. 

In order to assess the influence of the initial 
velocity profile on flow development in the entrance region, 
a family of initial profiles was assumed described by the 
relation 

9 (T,) = a (itf = Z+-1  [i - ^} (66) 
N 

where N is a constant.  This profile is seen to satisfy 
the relation 

1 

/0o(T])dn = 1 (67) 

0 

which is required by the definition of mean velocity and 
the condition of no net mass flow in the transverse direction. 
This family of initial profiles was chosen because it allows 
representation of the laminar fully developed non-MHD flow 
as well as flows with steeper velocity gradients near the 
wall than the laminar fully developed gradient.  Thus a 
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turbulent type profile could be approximated by taking N 
sufficiently large. The uniform initial profile is also 
included as a limiting case in the limit N -*■ <x>. 

Numerical results were obtained for the three values 
N = 2, 6, 10 with COT = 0.  This latter condition implies 
that the transverse velocity component vanishes and thus 
9 = a.  The entrance length variation with N and Ha is 
shown in Fig. 20.  For N = 2, corresponding to a parabolic 
initial velocity profile, the variation of entrance length 
with Ha is seen to begin at 0 for Ha = 0, reach a maximum 
value at Ha = 4, and approach asymptotically a value in- 
dependent of Ha for Ha > 10.  This qualitative feature of 
a maximum value of entrance length occurring is present 
only for the case N = 2 and can be explained as follows. 
For a non-MHD flow, N = 2 corresponds to the fully developed 
laminar profile.  Thus for Ha = 0, N = 2, the inlet flow is 
already fully developed, giving an entrance length of zero. 
As N increases, the entrance length variation with Ha is 
seen to approach the curve corresponding to a uniform 
initial profile. 

A measure of the influence of the initial velocity 
profile on the entrance region flow development can be 
obtained by comparing the wall shear stress of the initial 
profile with the fully developed wall shear stress for a 
given value of Hartmann number.  From Eq. (66) the dimension- 
less shear stress at the wall is given by 

xj0 - N + 1 (68) 

The fully developed MHD wall shear stress for cor ~  0 is 
given by 

T* =  Säf  (69) 
Ha coth Ha - 1 

For large Ha, the difference between Eq. (69) and Eq. (68) 
may be written 

Tw - Two - Ha - N (70) 

Eq. (70) shows that for large values of Ha, the fully 
developed wall shear stress and the initial wall shear 
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stress become equal when Ha = N.  This conclusion is 
illustrated in Fig. 21 in which the entrance region center- 
line velocity is plotted for N = 2, 6, 10 and Ha = 2,   6, 
10.  From the curves it is clear that when Ha = N, there is 
very little change in the centerline velocity.  Since the 
primary mechanism involved in adjusting an initial velocity 
profile to a fully developed profile is the diffusion of 
vorticity generated at the wall into the central portion of 
the flow, if the inlet wall shear stress is equal to the 
fully developed wall shear stress, there will be no signif- 
icant adjustment of vorticity necessary and hence no velocity 
entrance length.  This conclusion would not be valid for 
a compressible flow with variable properties, however. 

3.10 A GENERALIZED MOMENTUM INTEGRAL ANALYSIS 

The previous analysis of the MHD entrance region 
problem did not use a boundary layer - core flow model. 
Instead the equation of motion was linearized in such a 
way that a solution for the velocity profile was obtained 
which is continuous from the entrance of the channel to 
the fully developed region.  If a boundary layer - core 
flow model is used, two techniques are available, (1) the 
momentum integral method and (2) a non similar series 
expansion. 

Several investigations of the MHD entrance region 
problem based on the momentum integral method have appeared 
in the literature in recent years,  Moffatt (Ref. 14) was 
the first investigator to apply the momentum integral 
method to the study of MHD boundary layer formation over 
a flat plate.  He assumed a parabolic velocity distribution 
in the boundary layer. 

Maciulaitis and Loeffler (Ref. 15) applied the momentum 
integral method and got a closed form solution by assuming 
the velocity distribution to have a parabolic variation 
and the centerline velocity to vary down the channel. 

Tan (Ref. 16) also found a closed form solution by 
using the momentum integral method and assuming a Hartmann- 
like velocity distribution previously used by Moffatt 
(Ref. 14) who had solved the problem numerically. 

Dhanak (Ref. 17) applied the classical Karman-Pohlhausen 
method to the entrance region and solved the resulting 
equation by an iterative scheme. 

Although several authors have applied momentum integral 
methods to MHD entrance flow, using simple parabolic, 
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Hartmann-like or Karman-Pohlhausen velocity distributions, 
these works, rather than establish the validity of the 
momentum integral method, have created controversy as to 
whether or not one can validly apply such a method to MHD 
flows,  Hugelman and Haworth (Ref. 18) reasoned that the 
classical Karman-Pohlhausen method does not take into 
account enough boundary conditions.  They suggested using 
a fifth-degree polynomial.  Heywood and Moffatt (Ref. 19) 
state that integral method results are too much dependent 
upon the velocity profile assumed and that Dhanak's solution, 
in particular, did not proceed far enough downstream to 
show clearly the effect of the magnetic field. 

One of the most severe limitations of the classical 
momentum integral method in which fourth-degree polynomial 
profiles are assumed is that the solution cannot be 
obtained over the entire range from entrance to the fully 
developed region.  This is a limitation for an MHD entrance 
region flow as well. 

In the present investigation the momentum integral 
method has been generalized to include a polynomial velocity 
profile of arbitrary degree.  It is found that increasing 
the degree of the assumed polynomial velocity profile per- 
mits a solution which is continuous from the entrance region 
to the fully developed region. 

The method will be developed for the case CUT = 0 
which means that only the x-component of the equation 
of motion is needed.  Eq. (5) with uyr = 0 becomes 

p(u ÖH + w SU) = - » + p. öfu +   (  _   ,     {71) 
dx    dz     dx    dz2       y 

with the continuity equation given by 

^. + &  = 0 (72) 
dx  dz 

Eq. (71) is integrated over the boundary layer thickness 
A to obtain the momentum integral equation in the form 

.«*   T     29*c?B 2   fl*     c*  dU   oB 
2 

^ « —*- +  5- - L_   (2 + £-)(-£ + -*-) (73) 
dx  Pus

2   Pus   us    e* dx   p 
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where 5* and 0* are the displacement thickness and 
momentum thickness respectively, defined as 

5* = / (1 - —)dz (74) 

0 u s 

A 
0*   - -   /-  (1 - -^)dz 

0 us us 

(75) 

The velocity us is the uniform core velocity outside_the 
boundary layer.  A relationship between 6*, us, and Ü, 
the average velocity may be obtained from a mass balance 
given by the expression 

A      h 

Üh = / udz + / udz (76) 

0      AA 

Adding and subtracting the term J  u dz to the right side of 
Eq. (76) and rearranging gives  0 

£Ü = 1 - JL (77) 
h       u_ 

To solve Eq. (73) requires an assumed velocity profile. 
The conventionally used profile, following the classic work 
of von Karman and Pohlhausen, is a polynomial of degree four. 
The fourth-degree polynomial profile has certain limitations, 
however, the most serious being that a solution cannot be 
obtained which is valid from the entrance region to the 
fully developed region.  At a certain distance downstream 
from the entrance, a velocity overshoot occurs in the 
boundary layer, that is the local boundary layer velocity 
becomes larger than the local free stream velocity.  Although 
such an overshoot is possible in a compressible, variable 
property fluid, there appears to be no physical mechanism 
which would allow a velocity overshoot in an incompressible, 
constant property fluid.  Thus the momentum integral solution 
is considered to be valid only to the position at which 
boundary layer overshoot occurs. 
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In the present investigation, the momentum integral 
method is generalized to allow a polynomial velocity 
profile of arbitrary degree.  It is shown that for a 
given Hartmann number, taking a polynomial profile of 
sufficiently high degree will always allow a solution 
which is valid over the entire entrance region- 

Consider a boundary layer profile expressed as a 
polynomial of degree N of the form 

7 = L Vl (78) 

n=l 

where 
*   z 

The coefficients an will be functions of x and N boundary 
conditions are required to determine the N values of an. 
In the present analysis, three boundary conditions are 
applied at the wall, r\*  =  0, and the remaining N - 3 are 
applied at the outer edge of the boundary layer, n* = 1. 
In particular the boundary conditions become 

at i)*  = 0 u = 0 v = 0 

d2u 

dz2 
1 ÖP 

p dx 

aB  E        du 

~2-* = -«s(— 
p       S dx 

aB 2 

(79) 

at ii* = 1 u = u. 

dz 

d2u 

dz2 
o u 

dz m 
= 0 m = N - 3 (80) 

The first two conditions of Eq. (79) are the velocity 
non slip conditions and the third condition is the equation 
of motion evaluated at the wall.  The first condition of 
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Eq. (80) requires the boundary layer velocity to match the 
free stream velocity at the outer edge of the boundary layer 
and the remaining conditions require the first N - 3 de- 
rivatives of the velocity profile to vanish at the outer 
edge. 

Substituting the boundary conditions from Eqs. (79) 
and (80) into Eq. (78) gives 

a - - A (81) 
2 2 

N 

Is- = 1 (82) 

n=l 

N-(m-l) 

\   [(n+m-l)(n+m-2). _n]an+m_1 = 0 m=l,2,...N-3   (83) 

n=l 

where „2 du   aB 2 *  V  ,  s ,   z X* = ^_ (—5. + —±-) (84) 
v  dx    p 

The parameter X*  defined by Eq. (84) is the boundary 

I 
of x. 

layer shape factor and it is clear that each of the a_ 
coefficients will be a function of \*  and thus a function 

Eqs. (81) through (83) are a set of N equations for 
the N unknown an coefficients.  For large N, the direct 
solution of the equations in explicit form is not feasible. 
By starting with a different form for the polynomial velocity 
profile, however, it is possible to obtain an exact re- 
currence relation for all the a in terms of X*, valid for 
arbitrary degree N. 

For this purpose, consider the function 

JL = (1 - T!*)^1 (Cn* - 1) + 1 (85) 
u 
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where C is a coefficient to be determined.  It is clear 
that Eq. (85) is a polynomial of degree K and that the 
outer edge condition U/US(T]* = 1) = 1 is automatically 
satisfied.  The non slip condition at r\* ~  0 is also 
automatically satisfied.  It may be shown by differentiation 
that the N - 3 outer edge conditions given by Eq. (80) are 
also automatically satisfied.  The remaining boundary 
condition is the second condition of Eq. (79) which can 
be used to determine C with the result 

C = (N - 1)(N - 2) 

2(N - 1) 
(86) 

Substituting Eq. (86) into (85) gives 

u 
1*)] N-l [\*  - (N-l)(N-2)  * '1 2(N - 1) 

n -■] + l (87) 

as an equivalent form of the Nth degree polynomial profile 
which satisfies all the required boundary conditions.  Ex- 
panding the term (1 - TJ*)N-1 by the binomial theorem then 
gives a polynomial of degree N.  Equating the coefficients 
of successive powers of r\*  from Eqs. (78) and (87) gives 
exact recurrence relations for the an with the result 

an = (-1) 
n+1 N-ll 

n-l 
X* - (N-lHN-2) 

2(N - 1) V] (88) 

for n = 1, 2,   3 ...N-l   and 

aN = (-1) 
[\*   - (N-1)(N-2)1 

L   2(N - 1)    J 
(89) 

where 

N-l 

n-l 

(N-l).'  n 

n: (N-n): 

N-1J = (N-l): (N-n) 
n     n: (N - n): 
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The wall shear stress, TW, appearing in Eq. (73) can 
now be explicitly related to A* and N with the result 

6u 

ÖZ 
w 

M-U, 

z-0 
(- 
2(N-1) 

+ *) (90) 

Physically meaningful boundary layer results can be 
obtained for X* values in a well defined range.  For 
sufficiently small values of X*, separation occurs where- 
as for large values of X*, velocity overshoot in the 
boundary layer occurs.  The condition for boundary layer 
separation at the wall is 

äu 

dz 
= 0 

z=0 

which gives 

Sain = - N(N - 1) (91) 

Velocity overshoot occurs in the boundary layer if — 
at some intermediate value of z between 0 and A. °z 

Applying this condition gives 

= 0 

Xmax = N<N " D (92) 

Thus the physically allowable- range for X* becomes 

- N(N - 1) < X* < N(N - 1) (93) 

where the negative lower limit corresponds to separation 
and the positive upper limit corresponds to velocity over- 
shoot. 

With the expressions for an now known in explicit form, 
the displacement and momentum thicknesses may be evaluated 
from Eqs. (74) and (75) with the result 

1*= 3N(N - 1) - X* 

A    2N(N2 - 1) 
(94) 

28 



^EDC-TR- 67-79 

0*=  (N-l) (N-2)C C2 (g5) 

A   N(2N-1)   N(N+1)(2N-1)   N(2N+1)(2N-1) 

where 

C - X* - (N-lHN-2) 

2(N-l) 

Combining Eqs. (73), (77), (94) and (95) leads to a 
single differential equation involving X* and 0* which 
can be written in the form 

dX*  m„* 

do* 
= F(X*, 0*) (96) 

The derivation of Eq. (96) is quite lengthy and will not 
be presented here.  Eq. (96) is non linear and must be 
integrated numerically.  Once the numerical relationship 
between X* and 0* is established,   one may then obtain 
numerically the variations of 8*,   X*, 6*, TW, US, and P 
with x.  Of particular interest here is the variation 
of us, the free stream velocity, which gives a measure of 
the entrance length.  The influence of the degree of the 
polynomial, N, on the entrance length is shown in Table 2. 
The entrance length is defined as the distance at which 
the centerline velocity becomes 95% of the fully developed 
centerline velocity,  From the table it is clear that 
increasing N from 4 to 60 does not have a strong effect 
on the calculated entrance length.  The influence of N is 
more significant for smaller values of Ha, and for Ha = 1, 
the difference in the calculated entrance lengths for N = 4 
and N = 60 is 8%.  The entrance length decreases slightly 
as N increases. 

3.11 THE INFLUENCE OF VARIABLE CONDUCTIVITY ON MHD CHANNEL FLOW 

The analysis presented thus far has been based on the 
assumption of constant fluid properties, including the 
electrical conductivity.  The electrical conductivity is a 
strong function of temperature, however, and any flow with 
large temperature variations will have a spatially non 
uniform conductivity. 

The direct solution of variable conductivity MHD flows 
requires the simultaneous solution of the energy equation 
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and the equation of motion.  An iterative procedure is 
normally used in which a tentative solution to the equation 
of motion is obtained using an assumed spatial variation of 
the conductivity.  Using this solution in the energy equation 
then gives a first order solution for the temperature pro- 
file.  From the temperature profile and a prescribed temper- 
ature-conductivity variation, a corrected conductivity 
profile can be obtained.  Using the corrected conductivity 
profile in the equation of motion allows the procedure to 
be repeated as many times as desired. 

The effectiveness of the iteration procedure depends 
on the difficulty involved in solving the equation of 
motion with a spatial variation in conductivity.  Exact 
solutions can be obtained for only a limited number of 
conductivity variations for fully developed, incompressible 
flow.  Kieffer (Ref. 20) obtained exact solutions for three 
cases of conductivity variation, namely a linear variation, 
a parabolic variation, and a step function variation. 
These solutions appear to be the only closed form solutions 
in the literature for variable conductivity channel flow. 

In the present investigation, two techniques of analysis 
of variable conductivity channel flows are presented.  Both 
of these methods are capable of handling an arbitrary spatial 
variation of conductivity in the z-direction.  The two 
methods employed are the use of Fredholm integral equation 
theory and the B. G. Galerkin method.  The analysis is 
restricted to the fully developed flow region. 

The Application of Fredholm Integral Equation Theory to 
Variable Conductivity MHD Channel Flows 

The equation of motion for fully developed flow in 
the absence of. Hall current may be written from Eq. (5) as 

0 =  - & + y,— +  °B fEv - uB ) (97) 
dx    dza    z y    z 

The origin z = 0 as shown in Fig. la is located at the 
centerline of the channel.  For the present analysis it 
is more convenient to locate the origin at the lower sur- 
face.  Also, non dimensionalizing the velocity in terms 
of the pressure gradient is convenient.  Thus the following 
dimensionless quantities are defined. 

aF ' " 
u 

(2h)2 d£ 
j_L  dx 
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,2„ D 2 (2h)2o B 
Ha*2 = 

a 
r = _S_    Ha*

2 =  5_5- 

o 

a_B_E 

*y 
** =* _   ° z y n* = -2- (98) 

d£ 2h 

dx 

where a0 is a constant reference value of conductivity. 
The notation ctjr indicates the velocity profile obtained by 
using the Fredholm integral equation theory.  The dimen- 
sionless form of Eq. (97) becomes 

d2aT 
.«p/^!«   , **r/„* 

dty *2 
Ha*2r(T1*)a„ + **r(rf ) +1-0 (99) 

Eq. (99) can be converted to an integral equation by in- 
tegrating the equation twice, subject to the boundary 
conditions aF(n* = 0) = 0 and ap(r}* =.1) = 0.  The resulting 
integral equation may be written 

1 

OpOi*) = f(T)*) + Ha*2 /K(if,t)a*(t)dt        (100) 
0 

where * 

f <TI*) = / (t - ri*)[**r(t) + l]dt 

0 
1 

+ 7i* / (i - t)[$*r(t) + i]dt (loi) 

0 

xc^.t) = t(-n* - Drct)  o < t ^ n* 

K(T]*,t) = TJ*(t - l)r(t)    T|* < t < 1 

(102) 
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Eq. (100) is a Fredholm integral equation with kernel 
K(T)*,t) defined by Eq. (102).  To arrive at the standard 
form of the Fredholm integral equation, it is necessary 
to define the kernel differently in different regions of 
the interval as shown by Eq. (102).  The kernel is con- 
tinuous, however, over the entire interval. 

The fact that the kernel vanishes at the end points 
of the interval t = 0 and t = 1 suggests a sine series 
expansion of the form 

00 

K(n*,t) = \  an(n*)sin(mrt)dt (103) 

n=l 

The functions an(n*) may be evaluated using the ortho- 
gonality of the sine function with the result 

1 

an(T|*) = 2 /K(Tj*,t)sin(nirt)dt (104) 

0 

Substituting the definition of the kernel from Eq. (102). 
into Eq. (104) gives 

* vr 
an(r)*) = 2[ /t<Ti* - l)r(t)sin(nirt)dt 

0 

1 

+ / ri*(t - l)r(t)sin(mrt)dt] (105) 

For a degenerate kernel consisting of a finite number 
of terras, an exact solution to the Fredholm integral 
equations may be obtained.  A degenerate kernel is defined 
as a kernel in which each term consists of a product of 
two functions, each function depending on only one of the 
variables in the kernel.  K(r|*,t) as given by Eq. (103) 
is seen to be degenerate, and if the Fourier series is 
truncated after a finite number of terms, an exact solution 
to- the integral equation can be found.  In the present 
analysis the series given by Eq. (103) is truncated after 
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M terms.  This results in an integral equation which is 
an approximation to the original integral equation.  How- 
ever, an exact solution to the approximate integral equation 
can be obtained. 

The solution details for the Fredholm integral equation 
are described in Lovitt (Ref. 21) and only the results 
will be presented here.  With the kernel of Eq. (103) trun- 
cated after M terms, the solution to Eq. (100) is 

M 

OJ,(TI*) = f (r,*) + Ha*2 V C*an(n*) (106) 

n=l 

The C*  coefficients  are  the solutions to the  set  of  linear 
algebraic  equations 

M 

i=l 
Y,  Bi*Ci =  *» " =  1'2'-"U C*  -  Ha*2    >      B^C^   =  I„ n  =  1,2,...M (107) 

tn+l $*       1 

I     = L±Jc±>  + _JL_   f r(t)sin(mrt)dt (108) 
0 n37T3 n2ir2 

1 

B.     = —   f r(t)sin(iirt)sin(mrt)dt (109) 
1   Tl r^ T~I *f 

0 n  7T 

Prescribing a conductivity profile T(t) permits 
evaluation of the terms In and B-^n,  It should be noted 
that r(t) appears only within integrals in the above ex- 
pressions and thus a conductivity profile in tabular form 
could also be handled. 

Numerical results were obtained for three cases of 
conductivity profile, uniform, linear, and parabolic.  The 
assumed conductivity variations for the three cases are 

Case I r(r|*) = 1 
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Case II T(r\*)  = 2q*        0 < r\*  £ 0.5 

TCn*) - 2(1 - if)   0.5 < if < 1.0 

Case III        r(r\*)  = 4(T]* - T)*2) 

In cases II and III, the reference conductivity a0 has 
been taken as the centerline value.  These profiles were 
chosen because exact solutions to the differential equation 
of motion can be obtained with which to compare the ap- 
proximate results of the present analysis. 

Velocity profiles for the three cases of conductivity 
variation are shown in Figs. 22 through 29.  Each of these 
curves is based on a truncation of the kernel expansion 
given by Eq. (103) after three terms, i.e. M = 3.  Shown 
also are the results from an exact solution of the dif- 
ferential equation.  The agreement between the exact solution 
to the differential equation and the solution to the integral 
equation using a kernel series truncated after three terms 
is excellent. 

To investigate the effect of the number of terms re- 
tained in the kernel expansion, M was varied from 3 to 20 
with several intermediate values.  In all cases, the dis- 
crepancy between the 3 and 20 term solutions never ex- 
ceeded 3% and in most cases was less than 1%. 

The application of the Fredholm integral equation 
theory to variable conductivity MHD channel flows appears 
to be a powerful technique for obtaining an accurate 
approximation to the fully developed velocity profile for 
an arbitrary spatial variation of conductivity.  Since the 
conductivity profile r(^*) always appears in an integral, 
tabulated conductivity data could also be used, requiring 
only that the integrals be evaluated numerically. 

The Application of the B. G. Galerkin Method to Variable 
Conductivity MHD Channel Flows 

Another method suitable for analyzing variable con- 
ductivity channel flows is the B. G. Galerkin method.  The 
B. G. Galerkin method is discussed extensively in (Ref. 22) 
and only the essentials of the method as it applies to the 
present problem will be discussed here.  It is convenient 
to non dimensionalize Eq. (97) in a manner slightly different 
from that used in the application of the Fredholm integral 
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equation theory.  The following dimensionless quantities 
are defined. 

u      „a 
a    = -       r = — 
G    hf. dP 

[x dx 

a o 

h2a  B 2 
Ha2 =  2_£_ 

a B E 
A* OZV Z / i i •, N $v = T1 = - (HI) y      dP h 

dx 

The origin z = 0 will once again be taken at the center- 
line of the channel.  Since the B. G. Galerkin method is 
most amenable to two point boundary conditions, it is 
convenient to obtain the solution over the entire channel 
instead of the half channel.  Thus the range of T| will be 
- 1 ■£ T| < 1.  The dimensionless form of Eq. (97) becomes 

d2qG 

dn2 
- Ha2r(r1)ar = - [**r(Tj) + 1] (112) 

with boundary conditions O.Q(.T\ -  -1) = 0 and O>(T) = 1) = 0. 

The essential idea of the B. G. Galerkin method is to 
construct an approximate solution to Eq. (112) as a sum of 
functions each of which satisfies the boundary conditions. 
Let Gk(-"]) be a set of continuous functions which satisfy 
the boundary conditions 

Gk(Ti = - 1) = Gk(T! = 1) = 0  k = 1,2,...S      (113) 

An approximate solution to Eq. (112) can be constructed 
from a linear combination of the G, (-]) functions as 
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<*G = ]T bn°n(Tl) (114) 

n=0 

From Eq. (113) it is clear that the boundary conditions 
of Eq. (112) are satisfied by the solution given by Eq. 
(114).  It remains to determine the coefficients b_ such 
that the differential equation is satisfied.  Substituting 
Eq. (114) into Eq. (112) gives 

S S 

Zb G  " - Ha2r   )      b G    =  -   [<D*r + 1] (115) nn /        n n Ly J 

n=0 n=0 

Multiplying Eq. (115) by each function of the set and 
integrating over the range of n. gives 

n=0  -1 n=0  _1 

1        1 

= - $* / TGkdn - / Gkdn  k=0,l,2,...S (116) 

-1       -1 

Once a set of approximating functions Gn(rj) is chosen, 
the definite integrals in Eq. (116) can be evaluated.  Eq. 
(116) represents a set of S + 1 linear equations for the 
S + 1 unknown coefficients bn.  With the bn determined, the 
approximate solution to the differential equation is completed, 

For the case of fully developed MHD channel flow, a set 
of approximating functions which satisfy the boundary con- 
ditions may be taken as 

Gn = (1 - Ti2)T}n   n=0,l,2...S (117) 

The approximate velocity profile for this set of functions 
becomes 
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aG = Y; bn 
S 

2N n Ji - i2)n (us) 

n=0 

Substituting Eq. (117) into EqP (116) and performing 
the integrations gives the following system of linear 
equations for the b 's. 
i n     ■      • 

[i- (-Dk+1i+^iI(0,k)) + 

° ' (k+l)0t+3)     4 

b .[If (-D
k+1j +HajI(1,k)| , 

1   (k+2)(k+4)     4 

I 
n=2 

b I [i + (-i)n+k] n(k+1) + k(n+1) - 1  - s^ I(n>k)l 
n| '(n+k-l)(n+k+l)(n+k+3)   4 

= 1 [l - (-l)k+1l _ *■ * I(k)   k=0,l32...S      (119) 
2  (k+l)(k+3)     4 

where   the  integrals  I(n,k)   and. I(k)   are  given by 

1 

I(n,k)   =   /r(71)(rl
2  -  l)aTin+kdr, 

-1 
1 

i(k) = / r(T))(-n2 - D^dr, 

-l 

(120) 

For any given F(TJ) conductivity profile the integrals 
of Eqs. (120) can be evaluated either analytically or 
numerically and the linear set of equations given by Eq. 
(119) solved for the unknown constants b n 
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Velocity profiles for Cases I and III were also ob- 
tained by the B. G. Galerkin method using a set of 20 
approximating functions as defined by Eq, (117) with S = 19. 
The agreement between this approximate solution and the 
exact solution to the differential equation was excellent. 
For Case I, the maximum difference between the exact and 
approximate solutions was 0,003% whereas for Case II, the 
maximum difference was less than 1%. 

In addition another non uniform conductivity profile 
was investigated by the B. G. Galerkin method.  Because of 
the strong dependence of conductivity on temperature, in 
the vicinity of a highly cooled wall the conductivity may 
drop to essentially zero.  A profile which exhibits a zero 
conductivity layer on each wall is given by the expression 

Case IV   r(n.) = 0    - 1 < n < £ 

r(^) = 1   - %  < T) < % 

r(r|) = o    i  < n ^ l (i2i) 

The profile given by Eq. (121) is discontinuous with a 
central portion of uniform conductivity of thickness 2£ 
and zero conductivity layers of thickness £ on each B wall. 

Numerical results were obtained for Case IV for £ - 
0.5 which corresponds to a zero conductivity layer of 
thickness one quarter of the channel height.  The resulting 
velocity profiles are shown in Figs. 30 and 31 for short 
circuit and open circuit conditions and for Hartmann numbers 
Ha = 6 and 10.  Shown also for comparison are the profiles 
corresponding to uniform conductivity. 

The profiles shown in Fig. 30 are for the short cir- 
cuit case, i.e. Ey = 0 = $*  A large velocity overshoot 
occurs in which the maximum velocity is not on the center- 
line of the channel but occurs near the wall.  The profiles 
shown in Fig. 31 are for the open circuit condition.  The 
velocity overshoot does not occur for this loading con- 
dition, but the profiles are qualitatively quite different 
from the uniform conductivity profiles.  In particular the 
shear stress at the wall is smaller for the non uniform 
conductivity case.  Also the width of the central core of 
essentially uniform velocity is decreased due to the non 
uniform conductivity. 
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It should be noted that the velocities in Figs. 30 and 
31 are normalized in terms of the pressure gradient instead 
of the mean velocity.  This means that for a given value 
of Ha, the curves for uniform and non uniform conductivity 
correspond to different values of the mean velocity but the 
same value of the pressure gradient. .The areas under the 
curves, which would give the mean velocity, are therefore 
different at the same value of Ha.  A relation between the 
mean velocity and the pressure gradient is derived in the 
next section. 

Operational Characteristics of the Channel 

In analyzing variable conductivity channel flows, it 
is convenient from a mathematical viewpoint to non 
dimensionalize the velocity in terms of the pressure gra- 
dient instead of the mean velocity.  This results in a 
loading parameter $y defined by Eqs. (98) and (111) in terms 
of the pressure gradient.  For uniform conductivity, the 
loading parameter is_normally defined in terms of the mean 
velocity as $ = Ey/UBZ.  It is desirable to obtain a re- 
lation between $* and $v< 

The mean velocity is defined as 

h 

V = — j udz (122) 
2h . -h 

which may be rewritten in terms of dimensionless quantities 
as 

1 
Ü = _ ^1 ^E f adT[ (123) 

2U. dx, 

Eq. (123) relates the mean velocity to the pressure gradient 
in terms of the integrated velocity profile, the velocity 
being non dimensionalized in terras of the pressure gradient. 
For specified values of Ey and Bz, the relation between <i> 
and $* becomes 

y 
1 

0* = — $y /adn (124) 
2   -1 

where Ha2 is the Hartmann number defined by Eqs. (111). 
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The other physical quantities of interest are the open 
circuit values of $>    and $y.  For uniform conductivity, 
the open circuit value of $y is 1 but will be different 
from 1 for non uniform conductivity.  The open circuit 
condition can be established by considering the total cur- 
rent flowing in the y direction.  The total y component of 
current per unit length of the channel in the x direction is 

h        1 

Iy = / Jydz = h / a(Ey - uBz)dT) (125) 

-h        -1 

Writing Eq. (125) in terms of dimensionless quantities 
gives 

1 

I  =---/ r(<&* - Ha2a)dn (126) 
y    B dx ,   y z   -1 

The open circuit condition corresponds to L = 0,  Solving 
for $* with 1=0 gives 

y y x 

Ha2 / TadTj 

$*)  =  Zl  (127) 
y oc     l 

/rdt! 

-l 

A value of <£* must be assumed to obtain a solution 
for a by either the Fredholm integral equation method or 
the B. G. Galerkin method.  Since the right side of Eq. 
(127) depends on the value of <J>y assumed, the equation 
must be solved by trial and error for $y)Qc.  That is, 
for a fixed value of Ha, the right side of Eq. (127) is 
evaluated for different assumed values of <t>y.  The 
particular value of <t>y for which the right side of Eq. 
(127) equals $y is the open circuit value ®§)0c>     Com- 
bining Eqs. (126) and (127) gives 

/ radt! 
-1 

$ )   =2   (128) y oc     i x 

/ adT! / TdTi 

-1    -1 
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It is clear from Eq. (128) that <£y)oc = 1 for r = 1, 
corresponding to uniform conductivity. 

Values of $Ooc calculated from Eq. (128) are tab- 
ulated in Table 3 for several values of Ha for Case IV. 
The value of <J> )  is seen to decrease slightly with in- V oc creasing Ha. J 

The relations contained in Eqs. (122) through (128) 
are valid for either the Fredholm integral equation theory 
or the B. G. Galerkin method of analyzing variable con- 
ductivity, fully developed, MHD channel flow. 
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IV 
EXPERIMENTAL INVESTIGATION 

4.1 EXPERIMENTAL FACILITY 

There is very little experimental data available in 
the open literature for the entrance region of channels, 
even for non MHD flows.  No experimental velocity profile 
data for MHD entrance region flows appear to be available. 
In order to obtain such data for determining the validity 
of the analytical results presented in previous sections, 
a new experimental MHD facility was designed and constructed 
as part of the present investigation.  The design and fab- 
rication of the facility was done by the Engineering Support 
Facility of ARO, Inc.  The experiments were conducted by the 
Experimental Research Group, Technical Staff, OMD of ARO, 
Inc . 

A schematic drawing of the flow loop is shown in Fig. 
32.  The loop is closed with a pump used for circulating 
the working fluid.  The major components of the loop as 
shown in Fig. 32 consist of a test section, a downstream 
section joining the test section to the piping, flowmeters, 
a circulating pump, a pump bypass loop for flow control, a 
transition section from the piping to the plenum chamber, 
a plenum chamber, and appropriate valving for controlling 
the flow rate.  The maximum capacity of the circulating 
pump is approximately 40 gpm which gives a maximum test 
section Reynolds number of 11,600.  The channel and test 
section are designed for use with an electrolytic solution 
of potassium chloride (KC1) as the working fluid.  The test 
section is made of plexiglass and the circulating piping is 
stainless steel.  The system has venting ports and valves 
at several locations on the top side of the loop, particularly 
in the vicinity of abrupt cross sectional area changes, for 
removing entrapped gas from the system» 

A cross sectional view of the test section in the x-z 
plane is shown in Fig. 33.  The test section is rectangular 
and is constructed as a channel within a channel.  The inner 
channel walls in the x-y plane, the so called B-walls since 
they are perpendicular to the magnetic field, are constructed 
with a sharp leading edge to provide a well defined inlet 
section with a reasonably flat initial velocity profile. 
The inner channel is provided with a total of 22 static 
pressure measuring stations one inch apart, the first static 
pressure station being located 2 inches from the inlet.  At 
each pressure measuring station in the channel, the pressure 
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taps on opposite sides of the channel are interconnected 
with a common pressure line leading to the manometer. 

The dimensions of the inside channel are 3/4 x 5 1/2 
inches giving an aspect ratio of 7 1/3.  This value of aspect 
ratio should be large enough to closely approximate a parallel 
plate geometry in the center portion of the channel.  The 
two surfaces of the inner channel in the x-z plane are 
electrode surfaces.  The electrodes are continuous platinum 
sheets 0.001 inch thick which are cemented to the channel 
walls.  Electrical leads are attached to both electrode 
surfaces. 

The pressure lines from the 22 static pressure measuring 
stations are.individually separated from a common manifold 
by a needle valve.  The pressure from any station can be 
communicated to the manifold by opening the appropriate 
valve, the remaining valves being closed.  A pressure line 
from the manifold is communicated to one leg of a micro- 
manometer. 

A pitot probe with traversing mechanism is installed 
for measuring velocity profiles.  The tip of the probe is 
located at the last static pressure measuring station which 
is 23 inches from the entrance to the inner channel.  The 
probe can be traversed across the channel in the z direction 
and can be positioned to an accuracy of 0.001 inch by means 
of a micrometer screw.  The probe cannot be moved in the x- 
direction.  By adjusting the flow rate and thereby the 
channel Reynolds number, the length of the entrance region 
can be varied.  In this way the pitot tube can sense different 
portions of the entrance region flow by remaining at the 
same x-position. 

The magnetic field is provided by an electromagnet 
with rectangular pole pieces.  The pole pieces are 6 x 30 
inches with several sets of different thickness available 
to vary the gap width.  The maximum gap width obtainable is 
2 inches.  The magnet dimensions are such that the entire 
test section can be inserted in the air gap.  The magnet is 
powered by D.C. electric welders.  The maximum power rating 
of the magnet is 600 K.W.  At maximum power, a field strength 
of 22,000 gauss can be produced in a 2 1/2 inch air gap. 
Magnetic field uniformity has been measured to indicate less 
than 5% non uniformity along the centerline of the magnet 
over the central 24 inches of pole piece length.  The test 
section inlet is located 4 inches from the magnet so that 
the entire entrance region of the channel is in a magnetic 
field with less than 5% variation in the field strength 
uniformity. 
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A photograph of the test section, flow loop, and 
micromanometer is shown in Fig. 34.  In the interest of 
clarity, the electromagnet is not shown. 

4.2 INSTRUMENTATION 

The principal measurements involved in the experiment 
are the fluid flow rate, the static pressure distribution in 
the channel, and the velocity profile across the 3/4 inch 
dimension of the inner channel in the z-direction, i.e. the 
velocity profile in a plane normal to the B-wall.  The flow 
rate is measured by variable area flow meters, calibrated 
by the Instrumentation Branch of Engineering Support Facility 
of ARO, Inc.  Two flow meters are used, one for low flow 
rates and the other for high flow rates.  The pitot probe, 
located at the last static pressure station 23 inches from 
the channel inlet, is used to measure velocity profiles by 
communicating the probe pressure to one leg of a micro- 
manometer and the channel wall static pressure to the other 
leg.  In the vicinity of the channel wall, the velocity 
head to be measured is extremely small as will be demon- 
strated subsequently. 

To maintain laminar flow in the channel, the Reynolds 
number must be kept sufficiently low.  Using a liquid with 
the density of water as the working fluid, the relationship 
between the velocity head and the Reynolds number may be 
written as 

H = ^- = 1.92 x 10~8(Re)2 (inches of water)     (129) 

The characteristic dimension used in the definition of the 
Reynolds number is the channel half height in the z-direction, 
h = 0.375 inches.  Eq. (129) can be used to calculate the 
velocity head, i.e. difference between total and static 
pressure, to be measured.  For example a value of Re = 5,000 
gives H = 0.48 inch of water corresponding to the mean flow 
velocity in the channel.  As the pitot probe approaches the 
channel wall, the velocity head decreases to zero at the 
wall.  The minimum velocity measurable would be with the 
pitot probe touching the channel wall.  The outside diameter 
of the pitot probe is 0.063 inch which means the closest 
position at which a velocity measurement can be made is 
0.031 inch from the wall.  For fully developed non MHD flow, 
the velocity head at this location in terms of the Reynolds 
number is 

Kmin  = 1.11 x 10~9(Re)2 (inches of water)     (130) 
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For Re = 5,000, Hmin = 0.028 inch of water.  Thus in the 
vicinity of the wall, extremely small pressure measurements 
are involved in determining the velocity head. 

Initial efforts were made to measure the velocity head 
using a commercially available Hass micromanometer.  This 
instrument is capable of measuring a pressure difference as 
small as 0.0001 inch of mercury.  The Hass micromanometer 
is in principle a very sensitive U-tube manometer.  Two 
glass cylinders containing the manometer fluid are inter- 
connected through a tube.  Applying a pressure differential 
to the free surfaces of the manometer fluid in each cylinder 
results in a deflection.  The fluid level in each cylinder 
is determined by rods, sharpened to a needle point, actuated 
in the vertical direction by micrometer screws.  When the 
needle points touch the liquid surface, a small dimple is 
formed on the surface which can be observed through a mag- 
nifying glass.  With no pressure difference applied across 
the manometer, the micrometers are read for the rod positions 
at which the needle points touch the surfaces.  When a pressure 
differential is applied, the liquid surfaces deflect and 
the deflections of the two surfaces are determined by the 
rod travel required for the needle points to touch the 
surfaces again. 

Considerable difficulty was experienced in obtaining 
reproducible pressure measurements with the micromanometer. 
The difficulty was attributable to leaks in the manometer 
and connecting lines and to the extremely slow response time 
of the manometer.  Generally four to five hours were required 
to obtain one data point due to the slow response of the 
manometer. 

Several weeks time were devoted to attempting to 
solve the leak problem.  After ascertaining that all valves 
and connections on the pressure lines were leak free, it was 
finally discovered that the tygon tubing was defective, being 
sufficiently porous to allow leaks to occur while waiting 
for the manometer to stabilize.  Consequently, all tygon 
tubing was replaced by metal tubing. 

Leaks were also detected at the "0" ring seals on the 
movable rods in the micromanometer.  New ,T0,T rings of smaller 
diameter were installed and the packing nuts were tightened 
as tight as possible and still permit movement of the rods. 
By retightening the packing nuts before each run, it was 
possible to obtain a limited number of pressure measurements. 

Because of the severe problems experienced in using 
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the micromanoraeter system, an alternate method of pressure 
measurement was explored.  A considerable effort was ex- 
pended in attempting to use an electrokinetic pressure 
transducer.  The theory of this device is discussed in 
(Ref. 23).  The electrokinetic transducer has the advantage 
of an extremely fast response time.  However, a severe 
drift problem was encountered in using the transducer which 
appeared insoluble without going into an extensive elec- 
tronic circuitry development program.  Consequently, no 
reproducible pressure measurements were obtained with the 
electrokinetic transducer.  Because of its high sensitivity 
and fast response, however, the electrokinetic transducer 
shows some promise as a pressure sensor if the drift problem 
can be solved. 

The use of a gas laser for measuring low velocities in 
liquids has received considerable attention in recent years. 
The laser velocimeter has virtually an instantaneous response 
to changes in flow velocity.  Limitations of time and 
financial rescouces did not permit the exploration of the 
use of a gas laser in the present investigation.  Because 
of the serious difficulties encountered with the micromano- 
meter, however, it was concluded that the use of a micro- 
manometer for measuring small velocities in liquids is not 
practical.  The use of the gas laser should be considered 
in future experiments of the type described in this inves- 
tigation. 

4.3   EXPERIMENTAL RESULTS 

During the course of the experimental investigation, 
it became apparent that velocity profiles could not be 
measured using the micromanometer because of the slow 
response and leak problem previously described.  Consequently, 
the experimental effort was concentrated toward static 
pressure distribution measurements in the entrance region. 
A limited number of data points were obtained with no mag- 
netic field using water as the working fluid.  The experi- 
mental results are shown in Fig. 35. 

A theoretical curve of entrance region pressure drop 
was calculated as a function of liquid flow rate from Eqs. 
(60) through (62) and is shown as the solid curve in Fig. 
35.  The agreement between the experimentally measured 
entrance region pressure drop and the theoretical curve 
is considered as satisfactory verification of the theoretical 
model employed in the present investigation. 
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V 
SUMMARY 

In this investigation an analysis of the influence of 
Hall current on flow development in the entrance region of 
a parallel plate MHD channel has been presented.  Numerical 
results have been presented showing the influence of ü>T 
on the entrance length, the entrance region boundary layer 
development, the entrance region pressure distribution, 
and the entrance region wall shear stress distribution. 
Constant electrical conductivity was assumed in this portion 
of the analysis.  A new linearization scheme was developed 
for analyzing MHD entrance region flows which has features 
superior to a conventional boundary layer - core flow model 
of the entrance region.  As an alternate method of analyzing 
the MHD entrance region flow, the von-Karman-Pohlhausen 
integral method was generalized to accommodate an assumed 
polynomial velocity profile of arbitrary degree.  Closed 
form expressions for the velocity profile coefficients were 
obtained, and the range of values of the shape factor X* 
for which the integral method is valid was established as 
a function of the degree of the polynomial assumed. 

In addition to the entrance region results, two methods 
of analyzing fully developed flows with arbitrary variation 
of conductivity were developed.  These methods are the B. G. 
Galerkin method and the Fredholm integral equation method. 
Numerical results of calculated velocity profiles were 
presented for several conductivity profiles across the 
channel.  Although limitations of time and financial re- 
sources did not allow these methods to be extended to the 
entrance region, it is felt that such an extension is 
possible. 

A new MHD channel flow facility was designed and built 
for obtaining pressure distribution and velocity profile 
data in the entrance region of a parallel plate channel. 
The facility is designed to use potassium chloride (KC1) 
as the working fluid with a maximum magnetic field strength 
achievable of 22,000 gauss.  Because of serious instrumen- 
tation problems encountered in measuring total velocity 
pressures, velocity profile data was not obtained.  Only 
entrance region pressure distribution data was obtained. 

This channel appears to be unique in that no other 
experimental facilities have been described in the open 
literature for obtaining MHD entrance region velocity pro- 
files.  The use of a gas laser velocimeter appears to be 
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promising, and a future experimental effort using a laser 
for measuring the velocity profiles would represent a 
significant contribution to a detailed understanding of 
MHD entrance region flows. 
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Fig. 34   Photograph of MHD Flow Loop and Test Section 
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TABLE 1 
EIGENVALUES OF tan yn = y„ 

y n n 7 7 n 
1 4.4934127 33 105.23392 66 208.91127 
2 7.7252596 34 108.37579 67 212.05293 
3 10.904133 35 111.51764 68 215.19459 
4 14.066202 36 114.65947 69 218.33625 
5 17.220769 37 117.80130 70 221.47790 
6 20.371314 38 120.94311 71 224.61956 
7 23.519473 39 124.08491 72 227.76121 
8 26.666072 40 127.22676 73 230.90286 
9 29.811615 41 130.36854 74 234.04451 

10 32.956418 42 133.51031 75 237.18616 
11 36.100648 43 136.65207 76 240.32781 
12 39.244457 44 139.79383 77 243.46945 
13 42.387936 45 142.93557 78 246.61109 
14 45.531176 46 146.07731 79 249.75286 
15 48.674183 47 149.21905 80 252.89450 
16 51.817019 48 152.36077 81 256.03613 
17 54.959713 49 155.50250 82 259.17777 
18 58.102287 50 158.64422 83 262.31941 
19 61.244761 51 161.78593 84 265.46104 
20 64.387179 52 164.92764 85 268.60268 
21 67.529490 53 168.06935 86 271.74431 
22 70.671740 54 171.21104 87 274.88594 
23 73.813931 55 174.35274 88 278.02757 
24 76.956076 56 177.49453 89 281.16920 
25 80.098176 57 180.63621 90 284.31083 
26 83.240237 58 183.77789 91 287.45246 
27 86,382265 59 186.91958 92 290.59408 
28 89.524307 60 190.06126 93 293.73571 
29 92.666274 61 193.20293 94 296,87734 
30 95.808220 62 196.34460 95 300.01897 
31 98.950141 63 199.48627 96 303.16059 
32 102.09204 64 202.62794 97 306.30222 

65 205.76961 98 309.44384 

86. 



TABLE 2 

EFFECT OF THE DEGREE OF THE POLYNOMIAL VELOCITY 
PROFILE ON THE ENTRANCE LENGTH 

CD 

N 

4 

8 

16 

40 

60 

Ha - 1 

0.09588 

0.09212 

0,08985 

0.08835 

0.08801 

Ha = 6 

not reached 

not reached 

not reached 

0.03348 

0.03307 

Ha 10 

not reached 

not reached 

not reached 

0.00875 

0.00865 

Ha = 20 

not reached 

0.00118 

0.00110 

0.00106 

0.00105 

Ha = 100 

0.000026 

0.000026 

0.000026 

0.000026 

0.000026 

> 
m 
D 
n 
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TABLE 3 

VALUES OF OPEN CIRCUIT <£y FOR CASE IV 

Ha Voc 
2 1.3712 

4 1.3588 

6 1.3492 

8 1.3388 

10 1.3281 
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