R a aa—e’%&wwwﬁm mw e

e

THE CXPQ COMPUTER
A PRELIMINARY DESCRIPTION FOR PROGRAMMING

o}
PURPOSES
AERODYNAMIGS DDC
I
5 1967 ||
o By 5‘-,APR2 1957q
Barbara R. Sherar “‘:""‘""éu%
STRUCTURAL
MECHANICS
‘Operations Research Division
> Appliad Mathematics Laboratory
July 1959 Report 1356
APPLIED !
THEMATICS Distributs
WA 1s u:um;t::. f tm? LG
" W

.

"

FDISCLAIM E

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

4

L
g
£

. S

_—— A -

THE CXPQ COMPUTER
A PRELIMINARY DESCRIPTION FOR PROGRAMMING
PURPOSES

by

Barbara R. Sherard

¥
July 1959 Report 1356 4

f

W
y

IV,

CONTENTS

INTRODUCTION
COMPUTER CONFIGURATION

. Magnetic Core Storage
. Magnetic Tape Units

. Paper Tape

. Card Reader

. Magnetic Drum

. Machine Word Size

O U b O D) e

CONTROL SECTION

1. Instruction Format
2, Index Registers
3. Control Sequence

ARITHMETIC SECTION
INSTRUCTION CODE

Arithmetic Instructions
Data Transfers

Shifts

Jumps

Miscellaneous Instructions
. Logical

. Input-Output

COMPUTER CONSOLE AND
OPERATIONS

QQU:&&ONH

Appendix
Table of Instruction Codes
Machine Codes
Programming example

ii

7 e

Page

LS4 YN ol WWLWh NN

(=}

12
13
15
17
18
18

23

28
28
32
34

B s e

Sy

e
\d-.
)

-t

g et

TG — IrUre—— Ai‘w*urmvw ‘wﬂ“" ﬁ ” -_I : i

INTRODUCTION

This report is intended to be a preliminary programming manual for the
Philco CXPQ Computer. This computer was developed under BUSHIPS
Contract NObsr-72609, during the period 1955 to 1968, Members of the
Operations Research Division, Code 830, David Taylor Model Basin, co-
operated with BUSHIPS' Engineers in the logical and programming design
of the computer, The design of the CXPQ was orieated for use in real time
military control systems. It is inherently suitable for solving comp utational
problems and for feasibility research programming in areas not requiring
excessive quantities of input-output equipment,

The CXPQ computer will be installed in the Iatter half of 1959 at the
David Taylor Model Basin, It will be assigned to the Operations Research
Division of the Applied Mzthematics Laboratory for use in research program-
ming for the Operations Control Center Project, It will be maintained by
the personnel of the Engineering and Development Division, The Operations
Research Division intends to make the computer available to all groups
involved in the Operations Control Center Project, to the other divisions of
the Applied Mathematics Laboratory and to other Iaboratories of the David
Taylor Model Basin, whenever pogsibie,

The report contains a general description of the computer and sufficient
information on the Instruction Code to permit programming to be performed,
The information contained herein has been made available by the Philco
Corporation in the form of Engineering Progress Reports and in the course
of oral discussions, The author is grateful for the cooperation of the |
personnel in the Phiico Corporation. The author holds herself responsible |
for any misinterpretation of the information thus obtsined,

I. COMPUTER CONFIGURATION

The CXPQ is a large scale, fully transistorized, binary computer,
It is a sing’e address machine and operates in a parallel, asychronous mode.

1, Magnetic Core Storage

Access time,

Acces3 to words in any unit of the core memory takes place in
paralle! in 12 microseconds, Words are read from, or stored in the
memory in two cycles - a 5 microsecond read cycle, and a 7 micro-
second write cycle. When a word is read from memory the read cycle
reads and clears the memory location, and the write cycle restores the
contentz of the memory location, When a word is stored in memory,
the reas cycle clears the memory location and the write cycle stores
the word in the accessed memory location,

Storage,

The present magnetic core contains 4096 words with tape, drum,
: and paper tape as auxiliary storage.

: 2, Magnetic Tape Units (Potter - Model 905)

The tzpe i8 Mylar, 1 inch wide, 1 mil thick and approximately
3600 feet long. The speed of the tape is 75 inches per second for read
and write operations; for rewind operations the speed is 150 inches per
second, The density of information on the tape is 200 bits per inch per
channel, The start and stop times have not been accurately 11easured,

Each tape will consist of blocks of 128 words of 48 bits eack.

The blocks will be self-addressed and are not program addressable,
The present system contains 3 magnetic tape units,

| 3. Paper Tape
! The paper unit comprises:
(a) A Ferranti Reader which is capable of reading paper tape at a

speed of 200 characters per second (transfer time of 40 milli-
seconds per word) .

Y
—_.‘_.._4-70

(b) A teletype punch which is capable of punching paper tape at a speed
of 60 characters per second (access time of 133 milliseconds per word).

(c) A Flexowriter with a capabil ity of punching and/or printing at a
speed of 10 characters per second (transfer time of 800 milliseconds
per word), It is capable of reading at the same rate, A provision is
alsc made for direct input from the keyboard.

4, Card Reader and Punch (IBM 528)

The Model 528 will be used only in its card read and punch operations;
all data processing will be carried on within the CXPQ system proper.
The IBM 528 operates at a reading rate of 200 cards per minute (300

milliseconds per card) and a writing rate (punch) of 100 cards per minute
(600 milliseconds per card),

5. Magnetic Drum

The magnetic drum is operated in the parallel mode with a storage
capacity of 18, 384 words on four bands of 4086 words each, and with a
total of 192 information tracks. The maximum access time is 34 milli-
| seconds with a transfer time of 16 microseconds and a speed of 1740
revolutions per minate.

The four bands on the drum are continuously addressed such that:

4096 of band % follows 4095 of band 1
8192 of band 3 follows 8191 of band 2, etc,

The addressing is cyclic such that 0000 of band 1 follows 16, 384 of
band 4.

6. Machine Word Size i‘

A word is composed of 48 binary digits, numbered from left to right.
The word may be 8 binary coded characters, a 47-bit number with a sign 35
bit, or an instructicn word containing two instructions.

II. CONTROL SECTION

The control section selects and executes instructions in an ordered
sequence; i.e., the left half followed by the right half of an instruction
word until a jump instruction is executed.

1. Instruction Format

Each instruction contains 24 bits divided into a 16-bit address
part and an 8-bit command part,

16 bits 8 bits
Address Command

The command part is further sub-divided into a 7-bit command, C,
and a function bit, J.

[1]c] cTeICTCTCTE]
J C

Some instructions require ail 8 bits to define an instruction, and others
are defined by the 7 bits mcdified by the function bit. (The function bit
specifies which instruction is to be performed first in a jump instruction,
If Jis 0, the instruction in the left half of a word is executed first, I

J is 1, the right instruction is execated first).

The address part is also subdivided into a 13-bit variable field, V, and
a 3-bit index register field, IA.

F1 K 2 al ad) ;1113;‘19
4 |zalcdlv WV Vv v v v v

\ 4 specifies:ti:e memory address oz‘-’in the shift instruction V1 through

specifies the number of places to be shifted and JA specifies the
! index register involved, (If an index register is involved V is modified

by IA).

1 2, Index Register

; In the present system seven Index Registers are available, Each
index register is a 12-bit register. Index Registers are specified in the
following manner:

Index Register 1, JA° = 1
Index Register 2, =1 1
Index Register 3, JA° = land JA" =1

4

Index Register 4, IA2 =1, etec, L

All instructions which involve an index register use the L
J bit of an instruction. (J = 0 refers to the left-hand instruction,
J =1 refers to the right hand instruction).

3. Control Sequence,

Instructions are sequenced through various control registers.
The Program Register which is a 48-bit register, stores the selected
pair of instructions to be executed, The Program Address Register -
13 bits - contains the address of the next instruction word. The
Memory Address Register - 13 bits - contains the address of the
memory location to be accessed.

Procedure:

1. Contents of Program Address Register goes to Memory
Address Register,

2. Contents of Memory Address Register goes to Program
Fegister,

3. Contents of Program Address Register plus one goes to
Program Acdress Register,

4, Left half of Program Register is executed,
5. Right half of Program Register is executed,

6. Steps 1 - 5 are repeated until a half instruction is i
executed, an error is detected, or a jump is effected,

™

)
*

!

m, ARITHMETIC SECTIO.J

The arithmetic section comprises three 48-bit registers and
are:

i, The Accumulator or A-register
2, The Multiplier -~ Quotient or Q-register
3. The Data or D-register (Distributor)

a. Receives all data transferred between
the memory and the arithmetic unit,

b. Receives all data transferred between
Arithmetic Registers.

Since the CXPQ is a fixed point machine, the binary point of a data
word lies immediately to the right of the sign or zero position,

o[1]2]s 4; i43 44 | 45 | 46 | 47

The binary point

The maximum positive number is iess than one - as far:as the
computer is concerned - and the small est computer negative number is
minus one. Any arithmetic result which would be outside the above
Iimits produces overflow, which sets the overflow indicator. (The
overflow indicator or flip flop is cleared at the beginning of the
execution of all arithmetic operations with the exception of the overflow
jump, which clears the overflow flip flop after the jump is performed),
The computer ignores the occurrence of overflow unless one instructs the
computer to make one cognizant of its occurrence.

i

'.!;,]
%’»‘J 2 ORI, “Ca5=S 3

1V, INSTRUCTION CODE

Nomenclature

A - A register - 48 bits

D - D register - 48 bits

Q - Q register - 48 bits

V - Memory location V - 48 bits - 12 bit address

IA - Index Register (subtractive process)

c() - Contents of a register or memory Iocation

OF - The overflow flip flop - considered a one bit register

OVR - Ccnsidered a one bit register which remembers to inhibit clear-
ing of overflow,

*PA ~ The place which remempers the address following the last
jump - 12 bit address plus one bit for half words.

** . Indexable

Toggle Switch - External awitch which is manually set and is on
corresponding to a down position and off
corresponding to an up position

Instruction codes are represented in quaternary code, (bits 17 - 24),
e.g., the instruction add Q (1021) has the following format:

| IA V J COMMAND
£ olololo< —olol1o]o]1{o]o[
; 123 4 17191 021 1213
i

7

| —

1, Arithmetic Instructions

** 1000 - Aaa Vv
Add the C{V) to C(A).

** 1001 - Add V and store
Add the C(V) to C(A) and store in V,

** 1002 ~ Clear and add V
Clear A to zero and add C(V).

** 1003 ~ Clear and add V and store
Clear A to zero and add C(V) and store in V,

** 1010 - Add nmiagnitude of V
Add the magnitude of C(V) to the C(A).

** 1011 - Add magnitude of V and store
Add the magnitude of the C(V) to the C(A) and store in V,

5 ** 10i2 ~ Clear and add magnitude of V
& Clear A to zero and add the magnitude of the C(V).

** 1013 - Clear and add magnitude of V and store
Clear A to gero and add the magnitude of the C(V) and store
magnitude in V,

** 1020 - Add Q
Add the C(Q) to the C(A).

** 1021 - Ad4Q and store in V
Add the C(Q) to the C(A) and store in V,

' ** 1022 - Clear and add Q
! Clear A to zero and add the C(Q) .

** 1023 - Clear and add Q and store
Clear A {0 zero and add C{Q) and store in V,

*x 1030 - Add magnitude of Q
Add the magnitude of the C(Q) to the C{A) and replace A with
this sum,

** 1031 - Add magnitude of Q and store
Add the magnitude of the C(Q) to the C(A) and store in V,

i
8

g =g

—— e e \‘.

** 1032 - Clear and add magnitude of Q ‘
Clear A to zero and add the magnitude of the C(Q).

** 1033 - Clear and add magnitude of Q and store in V
Clear A to zero and add the magnitude of the C(Q) and
ctore in V.,

** 1100 - Subtract V
Subtract the C(V) from the C(A) and replace A with the
difference,

** 1101 - Subtract V and store in V
Subtract the C(V) from the C(A), replace A with the difference
and store in V.,

** 1102 - Clear and subtract V
Clear A to zero and subtract the C(V) from the C(A).

** 1103 - Clear and subtract V and store in V
Clear A to-zero and subtract the C(V) from the C(A) and
store in V,

** 1110 - Subtract magnitude of V
Subtract the magnitude of C(V) from the C(A) and replace A
with the difference.

** 1111 - 8:btract magnitude of V and store in V
Subtract the magnitude of C(V) from the C(A), replace A
with the difference and store in V.

** 1112 - Clear and subtract magnitude of V
Clear A to zero and subtract the magnitude of C(V) from the C(A). |

** 1113 - Clear and subtract magnitude of V and store in V
Clear A to zero and subtract the magnitude of the C(V) ,
from C(A) and store in V.

** 1120 - Subtract Q
Subtract the C(Q) from the C(A) and replace A with

the di*ference. ‘

** 1121 - Subtract Q and store in V
Subtract the C(Q) from the C(A), replace A with {
the difference and store in V., ,

** 1122 -

** 1123 -

** 1130 -

** 1131 ~

** 1132 -

** 1133 -

** 1200 -

*x 1201-

** 1202 -

** 1203 -

Clear and subtract Q
Clear A to zero and subtract the C(Q) from the C(A).

Clear and subtract Q and store in V
Clear A to zero and subtract the C(Q) from the C(A)
and store in V,

Subtract magnitude of Q
Subtract the magnitude of C(Q) from the C(A) and
replace A with the difference.

Subtract magnitude of Q and store in V
Subtract the magnitude of C(Q) from the C(A),
replace A with the difference and store in V,

Clear and subtract magnitude of Q
Clear A to zero and subtract the magnitude of the C(Q)
from the C(A).

Clear and subtract magnitude of Q and store in V
Clear A to zero and subtract the magnitude of the C(Q)
from the C(A) and store in V,

Multiply by V

The contents of Q are multiplied by the C(V) to yield

a double Iength product.

The major product is left in the A-register and the minor
product is left in the Q-register.

The sign of the A-register is repeated in the Q-register.

Multiply by V and store in V
Same as 1200 with the exception the major product
is stored in V.

Multiply by V and round

The contents of Q are multiplied by the C(V) to yield a
single rounded product, The major product (rounded)
is in the A-register and the minor preoduct plus 2-1

is in the Q-register,

Method: A one is always added to Q resulting in a
carry over to position A if Q contains a
one or increasing Q by one if position Q
contains a zero.

Multiply by V, round and store
Same as 1202 with the exception the major product

is stored in V.
10

** 1210 - Multiply by magnitude of V
The magnitude of the contents of V are multiplied by
the C(Q) to yield a double length product,
The major product is left in the A-register and the minor
product is left in the Q-register.

** 1211 - Multiply by magnitude of V and store inV
Same as 1210 with the exception the major product
is stored in V.

** 1212 - Multiply by magnitude of V and round
The magnitude of the contents of V is multiplied by
the C(Q) to yleld a single rounded product.

Method: Same as 1202,

** 1213 - Multiply by magnitude of V, round and store in V,
Same as 1212 with the exception the single product
(contents of A) is stored in V,

** 1220 - Multiply by A
Same as 1200, except A-register involved rather than V.

** 1221 - Multiply by A and store in V
Same as 1201, except A-register involved rather than V,

*% 1222 - Multiply by A and round
Same as 1202, except A-register involved rather than V.

*% 1223 - Multiply by A, round and store in V
Same as 1203, except A-register involved rather than V.

*% 1230 - Multiply by magnitude of A
Same as 1210 except A-register involved rather than V,

“* 1231 - Multiply by magnitude of A and store in V
Same as 1211 except A-register involved rather than V,

** 1232 - Multiply by magnitude of A and round
Same as 1212 except A-register involved rather than V.,

** 1233 - Multiply by magnitude of A, round and store in V
Same as 1213 except A-register involved ratlier than V,

** 1300 - Divide by V
This instruction divides the contents of A by the contents of V
and leaves the quotient in the Q-register and remainder in
the A-register. The sign of the remainder is the same as the
sign of the dividend,

11

** 1301 - Divide by V and store in V
Same as 1300 except the quotient is stored in V,

** 1302 - Divide by V and round
The contents of A are divided by the contents of V
leaving the remainder in the A-register and a rounded
quotient, In rounding Q is set equal to one,

**1303 - Divide by V, round and store in V,

** 1310 -~ Divide A by the magnitude of V,

*% 1311 - Divide A by the magnitude of V and store in V,

** 1312 - Divide A by the magnitude of V and round,

** 1313 - Divide A by the magnitude of V, round and store,

** 1320 - Divide A by Q
The contents of A are divided by the contents of Q
leaving the remainder in A and the quotient in Q.

** 1321 ~ Divide A by Q and store in V.,

** 1322 - Divide A by Q and round,

** 1323 - Divide A by @, round and store in V,

** 1330 - Divide A by the magnitude of Q.

** 1331 - Divide A by the magnitude of Q and store in V,

** 1332 - Divide A by the magnitude of Q and round.

** 1533 - Divide A by the magnitude of Q, round and store in V,

2. Data Transfers

*x 0102 - Transfer Vtio Q
Transfer the C(V) to Q-register,

** 0103 - Transfer Vto D
Transfer the C(V) to the D-register.

** 0110 - Transfer Ato V
Transfer the C(A) to V.

12

e

** 1210 - Multiply by magnitude of V

The magnitude of the contents of V are multiplied by

the C(Q) to yield a double Iength product.

The major product is left in the A-register and the minor
product is left in the Q-register,

** 1211 - Multiply by magnitude of V and store inV

Same as 1210 with the exception the major product
is stored in V,

** 1212 - Multiply by magnitude of V and round

The magnitude of the contents of V is multiplied by
the C(Q) to yield a single rounded product,

Method: Same as 1202,

** 1213 - Mu!tiply by magnitude of V, round and store in V.

Same as 1212 with the exception the single product
(contents of A) is stored in V,

** 1220 - Multiply by A

Same as 1200, except A-register involved rather than V.

** 1221 - Multiply by A and store in V

Same as 1201, except A-register involved rather than V.

** 1222 - Multiply by A and round

Same as 1202, except A-register involved rather than V,

*# 1223 - Multiply by A, round and store in V

Same as 1203, except A-register involved rather than V,

** 1230 - Multiply by magnitude of A

Same as 1210 except A-register involved rather than V.

** 1281 - Multiply by magnitude of A and store in V

Same as 1211 except A-register involved rather than V,

** 1232 - Multiply by magnitude of A and round

Same as 1212 except A-register involved rather than V,

** 1233 - Multiply by magnitude of A, round and store in V

Same as 1213 except A-register involved rather than V,

** 1300 - Divide by V

This instruction divides the contents of A by the contents of V
and leaves the quotient in the Q-register and remainder in
the A-register. The sign of the remainder is the same as the
sign of the dividend,

11

¥
= = e

e —

*% 1301 - Divide by V and store in V
Same as 1300 except the quotient 1s stored in V,

** 1302 - Divide by V and round
The contents of A are divided by the contents of V
leaving the remainder in the A-register and a rounded
quotient. In rounding Q is set equal to one,
* %1303 - Divide by V, round and store in V,
** 1310 - Divide A by the magnitude of V,

** 1311 - Divide A by the magnitude of V and store in V.

%
2
5.

** 1312 - Divide A by the magnitude of V and round,

i i

————

** 1313 - Divide A by the magnitude of V, round and store,
** 1320 - Divide A by Q
The contents of A are divided by the contents of Q
leaving the remainder in A and the quotient in Q.
** 1321 - Divide A by Q and store in V,
** 1322 - Divide A by Q and round.
** 1323 - Divide A by Q, round and store in V,
** 1330 - Divide A by the magnitude of Q.
** 1331 - Divide A by the magnitude of Q and store in V,
*% 1332 - Divide A by the magnitude of Q and round,
** 1333 - Divide A by the magnitude of Q, round and store in V.

2. Data Transfers

** 0102 - Transfer Vto Q
Transfer the C(V) to Q-vegister.

** 0103 - Transfer VtoD
b Transfer the C(V) to the D-register,

** 0110 - Transfer Ato V
Transfer the C(A) to V,

12

|~ - o PR - e

0112 - Transfer A to Q
Transfer the C(A) to the Q-register

0120 - Transfer Qto V
Transfer the C(Q) to V

0130 - Transfer Dto V
Transfer the C(D) to V

3. Shiits
It is possible to use two types of shifts, namely:

a. Ordinary - treats every bit in the effected register or registers
b. Numerical (sign shift) - treats words in such a way as to
preserve the sign,

0201 - Ordinary shift left Q and A
The contents of the Q and A registers are shifted left
V places. Bilts shifted past the sign bit of the A-register
! enter bit 47 of the Q-reg_ister.

ouvT : Sl c
o[[2[3]4) fusletusteeln] o] Te[3]ulsTe] fecfulen
| X AnzE j

0203 - Sign shift left Q and A
The conients of Q1-.47 and A 1.47 are shifted left V places.
Bits shifted past bit 1 of the A-register enter bit 47 of the
Q-register,

0210 - Ordinary shift right A
The contents of Ao, 1-47are shifted right V places.
Bits shifted past bit 47 of the A-register are lost.

0220 - Ordinary shift right Q

The contents of Qo, 1-47 are shified right V places.
Bits shifted past bft 47 of the Q-register are 10st,

0211 - Ordinary shift left A

The contents of the Ao, 1-47 are shifted left V places.
Bits shifted past the sign bit of the A-register are lost.

13

=i i

k]
'\mjy-&""‘“
*

0221 - Ordinary shift Ieft Q
The contents of 1-47 are shifted left V places.
Bits shifted past the sign bit of the G-register are lost,

0412 - Sign shift right A
The contents of Ag, 1-47 are shifted right V places.
Unlike an ordinary right shift which fills in bits shifted
out of with zeros, the sign right shift takes the sign bit and
fills in bits shifted out of with it,

C‘d oV) — -
r0j112]3 ip 42 | 43| 44 45i46 47i out

0222 - Sign shift right Q
The contents of Qo, 1-47 are shifted right V places.
(Method same as 0512)

0213 - Sign shift left A
The contents of Aj.47 are shifted left V places.
Zero replaces bit 47 of the A-register when a bit is shifted
out of Agq7. Bits shifted out of bit 1 are lost.
- = N N N 9
out | 0 1i2i3i4|f {|41i42 43| 44| 45| 46 | 47
0223 - Sign shift left Q

The contents of Q.47 are shifted left V places,
(Method same as 0213)

0230 - Ordinary shift right A and Q
The contents of Ay 1-47, and Qo, 1-47, are shifted right V places.
Bits shifted out of A4 enter bit 0 of the Q-register,
Bits shifted out of Q47 are lost,

b

A

0231 - Ordinary shift left A and Q
The contents of Ag 1-47 and Qo, 1-47 are shifted left V places,

(Method same as 0230)

0232 - Sign shift right A and Q

The contents of A, 1-47 and Qj_47 are shifted right V places.
The A-register 1s°{reated in the same mauner as the instruction

sign shift right A-register with the exception bits shifted out of
bit A gfnter bit 1 of the Q-register. Bits shifted out of Q47 are lost.

14

(LN .-""’ZC"-NCN : =¥ ~ T
o of1]2'al fa3:44 45.46;477?65‘-;1'!2{3[}r/]424344454647
Q

e

5

— e - ~

0233 - Sign shift left A and Q
The contents of A]-47 and Q;_47 are shifted left V places.
Bits shifted out of Q1 enter A 47 and bits shifted out of A are lost.

4, Jumps

** 0300 - Jump (unconditional)
Jump to either the right or left-hand instruction and store the
address of the next instruction following the jump instruction
in the *PA.

** 0301 - Jump if Overflow flip flop equals 0,
If the overflow flip-flop equals 0, jump to the specified memory
location, If jump occurs store address in *PA and set the 1 bit
register OVR equal to 0. This in effect ends the inhibiting of
clearing the overflow flip flop on arithmetic instructions,

** 0303 - Jump if overflow flip flop equals 1,
If overflow flip equals 1, jump to the specified memory location,
If jump occurs store address in *PA and set the OVR equal to zero.

** 0302 - Breakpoint jump
Jump to the specified memory locations if the toggle switch is off,
If toggle switch is on, halt andjump to the location specified by the
ingtruction when the advance key is depressed.

*x 0210 - Jump if A equals 0
Jump to the specified memory location if the contents of

Ao, 1-47 equals zero, If not proceed to the next instruction
in sequence,

** 0311 - Jump if A is positive
Jump to the specified memory location if the contents of A are
positive, If not proceed to the next instruction in sequence,

** 0312 - Jump if A equals D
If the contents of the A-register equals the contents of the
D-register, jump to the specified Iocation and store address
following jump in the *PA. I test is not satisfied proceed to
the next instruction in sequence,

** 0313 - Jump if A is minus.
If Ay is equal to one, jump to the specified memory location and

store address following jump in the *PA, If A, 18 unequal to one,
proceed to the next instruction in sequence,

15

** 0320 - Jump if low order position of Q equals 0
K Q47 i8 equal to zero, jump to the specified address and
store address following the jump in the *PA. (The Q-register
is circular shifted right 1 bit following the jump). I Q47 is
unequal to zero proceed to the next instruction in sequence,

** 0321 - Jump if Q is positive
I Qg is equal to zero, jump to the specified address and store
address following the jump in *PA. (The Q-register is circular
shifted left 1 bit), If Qo (sign bit) is unequal to zero, proceed
to the next instruction in sequence,

** 0322 - Jump if low crder pcsition of Q ejuals 1
If Q47 is equal to one, jump to the specified address and
store address following jump in the *PA, (The Q-register is
circular shifted right 1 bit following the jump).

?

** 0323 - Jump if Q is minus

If Qois equal to one, jump to the specified address and store
e the address following the jump in the *PA, (The Q-register is
circular shifted left 1 bit). ¥ Qo (sign bit) is unequal to one,
proceed to the next instruction in sequence.

e
-

** 0331 - Jump if D is positive
X D, 1s equal to zero, jump to the specified address and store the
address of the next instruction following the jump in the *PA. If
Dy is unequal to zero, proceed to the next instruction in sequence.

** 0333 - Jump if D is negative
If Dy is equal to one, jump to the specified address and store
the address of the next instruction following the jump in the *PA.
If b is unequal to one, proceed to the next instruction in s~quence.

NOTE:
1. A jump is made to the left or right-hand instruction
according to the function bit. For example, if one wishes
to jump to a right-hand instruction the instruction 0300
\ becomes 2300,

2. Whenever the Q-regisier is involved in a jump, the

contents of the Q-register are shifted circularly after
the jump sensing is complete,

16

5. Miscellaneous Instructions

0000 - Halt
I the function bit, J, is equal to 0, hait,

I J = 1 and the toggle switch is on, the instruction becomes a
breakpoint halt,

0001 - Transfer control to Input-Output Controls,

0002 - Inhibit clearing overflow flip flop,
Sets the 1 bit register (OVR) which remembers to inhibit
clearing of the overflow flip flop equal to one and the
overflow flip flop equal to zero.

0003 - Set overflow flip flop equal to one if the contents of the
specified index register are equal to the address portion
of memory location V; i,e., the address portion of the
memory location specified by V and the function bit, J.

0010 - Add the contents of the address portion of the spec:ified
memory location to the contunts of the specified index
register and replace the index register with this sum.

0011 - Subtract the contents of the address portion o1 the
specified memory location to the contents of the

specified index register and replace the index register
with this difference.

0012 - Transfer the contents of the specified index register
to the address portion of the specified memory location,
For example: if it is desired to transfer the contents
of the specified index register to the address of the

right-hand instruction of memory location V, 0012 beccmes
2012.

0013 - Transfer the contents of the address portion of memory
location V (left or right half depending on J) to the
specified index register,

** 0020 - Address substitution
Bring the address (from *PA) following the last jump

to specified memory location (left or right half depending
on J),.

0021 - AddAtoD
Add the contents of D to the (A) and replace A with the sum,

17

&
£

R R B RN b R R

s

e TN

i

** 0022 - Increment V by 1
The address portion of the specified memory location
(left or right half depending on J) is increased by one,

0023 - Subtract D from A

The contents of D are subtracted from the C(A) and A is
replaced by the difference.

6. Logical Instructions

** 0030 - And Q to V and store in D
Each bit of the Q-register is matched with the
corresponding bit of V. When the corresponding bit
of both Q and V is a one, a one replaces the contents
of that position in the D-register,
When the corresponding bit of Q or V is a zero,
a zero replaces that position in the D-register,
The contents of Q and V are unchanged,

** 0031 - And Q and V and store in A,

Same as 0030 with the exception the A and D-1 registers
contain the results,

**0032-0OrDto V
Each bit of the D-register is matched with the corresponding
bit of V. When the corresponding bit of either or bouwn is a
one, a one replaces the contents of that position in V. When
the corresponding bit of D and V is a zero, a zero replace. that
position in V. The contents of D are unchanged.

** 0033 - Clear V
Zeros replace the contents of the specified memory location,

7. Input-Output

When the input-output instruction transfer to input-output controls
(0001) occurs in the program register, it is assumed that the
D-register contains a 48-bit input-output instruction to be executed,
The input:- output word is divided into four fundamental parts, as
follows: 15

D (2° through 2°*°) = Dg (16 bits)

D (2'”?1 through 2-23) = Dy (8 bits)

D (274, through 2739y _p_ (16 bits)

D (2~% through 2-47) = D (8 bits)

18

Dg stores the starting address of the magnetic drum or magnetic tape,

if either is involved.

Dy designates the tape or drum unit involved.

D, determines the quantity of information involved such as - number
of words, number of magnetic tape blocks, or number of punched
cards,

D¢ resembles the command portion of an instruction, in that it

designates the input-output function that is to be performed,

A TypeA
DRV m nO.
— echo'o START — = cF COMMANDJ
: ADD r: WORDS

0— |, L —3, 4—————> 15, 16 }17}24-—-)37, Y pu—T

0102 - Transfer from Core to Drum
This instruction transfers the specified number of words
from core to the specified drum address and band number,

020! - Transfer from drum to core
This instruction transfers the specified number of words
starting at the designated drum address and band number
to core.

0210- Transter from Drum to Paper Tape
This instruction transfers the specified number of words
starting at the designated drum address and band number
to the paper tape reader,

1002 - Transfer from Paper Tape Reader to Drum

B. Type B

A BAND prRum i woRrROS[VD, oF - e e e —
. Ress PE mmAnD
L nE bggfaéss CQQ% CARDS C—O

L 3, By 15, 0 Y, 24— 20 'y)\-——-h 77

0211 - Transfer from Drum to Card Punch
This instruction punches on IBM cards the specified
number of words starting at the designated drum
address and band number,
(From one to two words may be punched on one card).,

1102 - Transfer from Card Reader to Drum

19

-

doe f vt 4

e AR A e

RN

NSRSk T

S W

\

C. Type C
| NOL OF
WORDS commAnD
c 237, 27=—3), $0—————sy]

0110 - Transfer from Core to Paper Tape Punch,
This instruction punches onto paper tape a specified number
of words starting at the designated memory address.

1001 - Transfer from Paper Tape Reader to Core,

0113 - Transfer from Core to Flexowriter,

13V1 - Transfer from Flexowriter to Core,

D. Type D
woRDsS| NO. oF C;'m =
FEE | cthros AL
5) DT, G4 —W1, A7 —— 339, #0 —— 4]

0111 - Transfer from Core to Card Punch,
This instruction punches a specified number of words on
cards from the designated memory locations or Iocations.

1101 - Transfer from Card Reader to Core.

E. Type E
MAac VETIC TAPE ThHPE | 0. oF | -
—_— 7 G
STARTING ADORESS e BLocks|C oM™ 90
) > 7 e, 1o—»a3).14.-;7o,’5‘§-7a,31" , #C- >¥7

2001 - Transfer from Magnetic Tape to Core, Forward, Mode 1,
This instruction reads the specified number of blocks into
the computer and then returns control to the computer, If
the first block address is not the specified address, a search

is automaticaily made for the specified address and when found
continues to read forward,

3001 - Transfer from Magnetic Tape to Core, Forward, Mode 2
(Opposite of 2001, See Note 3 for explanation of Mode 2).

20

|

2201 - Transfer from Magnetic Tape to Core, Reverse, Mode 1,
This instruction starts the tape in reverse, verifies that the
first block address is the specified address, and read the
specified number of blocks into the computer, ¥ the first
block is not the specified address, a search is automatically
made for the specified block address.

3201 - Transfer from Core to Magnetic Tape, Reverse, Mode 2,

0120 - Transfer from Core to Magnetic Tape, Forward, Mode 1,
This instruction verifies that the first block address is the
specified address and writes the specified number of blocks
on the designated tape unit number. If the first block address is
not the specified address, the unit will automatically search for
the specified address.

0130 - Transfer from Core to Magnetic Tape, Forward, Mode 2,

F. Type F
MAGNETIC TAPE T?VPE 0 .
— | umiT CLCoOmm
STARTIVNG ADDRESS MO, 1 4
) > K5; 1613, 2023, 293, ¥ o——yi?

2020 - Search forward on Magnetic Tape, Mode 1,
The tape is brought to a position such that when started
in a forward direction the first block read is tiie specified
block., This is preparatory to reading forward,

3020 - Search forward on Magnetic Tape, Mode 2,

2220 - Search reverse on Magnetic Tape, Mode 1,
The tape is brought to a position such that when started in a
reverse direction the first block is the specified block.
This is preparatory to reading reverse,

3220 - Search reverse on Magnetic Tape, Mode 2,

2022 - Rewind Magnetic Tape,
Runs the tape in reverse untii the end of tape is reached at
which time the tape stops.
Any number of tapes may be rewound at the same time.
A single tape unit which is not being rewound is free to
operate with the computer while the other tape is rewinding,

21

R
)

2
=
i
3
N
?
:
S
i
g 0301 - Transfer from Toggle Register to Core,
{ This instruction transfers the contents of the toggle register
to the specified memory address,
(Toggle Register) goes to D-register and core.
NOTE:
g 1, Writing on magnetic tape can occur in a forward direction only,
& 2. The memory address for any input-output instruction is
i specified in the address portion of the input-output
instruction (0001),
A 3. The two modes on magnetic tape have the following meaning:
' a. Mode 2 indicates if a parity check error occurs
: the computer halts

b, Mode 1 indicates if a parity check error occurs
} the error is ignored. On writing in preparation
of block addresses, the block that is written is
read back for parity check - if an error exists, the
area that is physically bad is not assigned a block
address and the next block is assigned the specified
address. On reading the block is ignored,

4, Whenever an input-output instruction refers to core memory the
A-Register is automatically cleared to zero after control has
been transferred to the I/0 control; - the reason being that a
check sum is automatically computed in the A-Register and is

available to the programmer when the I/0 controls have been
released,

22

e —— T R TORMARRI e S, —— - -

vl

S p—

COMPUTER CONSOLE AND OPERATION

A. Registers and Displays

Program Register

An instruction word can be manually entered directly into the Program
Register by means of the key switches, numbered corresponding to bit
positions.

PR is cleared to zero by the CLEAR switches alongside the display
neons, Four switches enable changing information in only part of the
register; i.e., the address or instruction parts of the program register,

D Register

Manual entry directly into the D Register is provided by CLEAR and
key switches similar to those for PR.

A and Q Registers

The A and Q registers are manually accessible by transfers from D,
Manual transfer switches (to the left of the display neons for the A and Q
registers) control the transfer from D,

Manual transfers from A or Q to D are controlled by the switches
to the right of the register display neons,

Toggle Registe:

This register, whose contents are manually selected, can be transferred
to the D register and core under control of the program; namely, the trans-
fer from Toggle Register to Core (0301). The TR cousists of 48 two-position
toggle switches having a binary value of "0'* in the down position,

M Register

The M Register is used solely for displaying the contents of any single
memozy location, The location is manually selected by the Memory Preset
toggle zwitches on the console,

PA, MA, Index Register Displays

These console neons are connected to the registers indicated and
display their -ontents. '

23

.,

NI

Wi o e i

ta

MP Switches

These select a memory location for display in the M register. The
down position cf these switches is the binary '0' position. When the
address selected by the MP switchies coincides with the address used by the

program, or program control, an option of stopping the computer is
available,

MA=MP

The switch immediately to the right of the Memory Preset toggle switches
and labell~d ON, OFF, will cause the computer to halt if in the ON position
and MA=MP. The computer will hait at the end of the memory cycle,

Overfiow

The neon is lit when the overflow flip-flop is in the one state, indicating
overflow, If the switch1s8 on, the computer will stop at the end of the
iastruction during which overflow occurred, unless the following instruction
is an overflow jump instruction.

Faults

1f the Command fault Iight is on, it is the result of au illegitimate
Command code in the instruction,

Memory fault is the result of incorrect temperature range within the
core stack,

Input-output fault is a type due to a control failure in any of the I-0
equipment that prevents it from completing its operation. Generally,
computer operations are not stopped. Thus, the faulty sector cannot do
succeeding operations having failed to complete one. However, other types
of I-0 equipment can be operated.

Breakpoint Switch

When the breakpoint switch is in the "on' position, the computer will
stop before performing the breakpoint instruction,

Stop Key

When stop is depressed the computer will stop before performing
the next instruction,

Advance key

The Advance key sets a flip-flop when depressed providing a steady
advance signal; 1. e., sequence each instruction in a lIogical order.

24

B. Operational Modes

The mode sel ection switches, on the Iower section of the console,
determine the operation rate of the basic machine cycle, In the RUN
mode the computer operates continuously, from one program cycle to
the next, in the absence of fault. In the step mode the computer stops
each cycle., The stop key is used to manually intervene in the operation,
The computer is stopped at the completion of the current program cycle
when the stop key is depressed,

The Advance key, when depressed, will initiate the RUN mode of
operation, if the RUN key was previously depressed, I1f the Step key is
depressed, the Advance key is used to start the computer off on each
cycle. The Advance key is Ineffective when Stop is depressed. In the
Step Mode the Step Oscillator can be substituted for the Advance key to
make the program cycle repetition rate that of an osciliator whose
frequency can be varied between one and ten pu;::es per second,

C. Operating examples

1. To initiate a program:

a. Depress the stop key

b. Manually enter into the D-Register the input/output
instruction, - cards to core, magnetic tape to core, etc.

c. Manually enter into the PR the instruction transfer control
to input/output with the proper address.

d. Depress the Run key.

e. Depress the Advance key.

2. To change information in the A-Register when the computer has
halted as a result of an error;

. Clear D-Register

. Manually enter into the D-Register the desired information
. Depress the transfer switch (D to A)

. Depress the Advance key

0 0o

3. To perform new instructions before proceeding to the next
instruction in sequence (the computer has halted or the Stop key
has been depressed):

a. Put computer in the step mode
b. Clear PR
c. Manually enter into PR the desired instruction(s)

25

i:&
A
® 4

R T L T s

d. Depress Io - left half (if desiredq)
e. Depressll - right half (if desired)

f. Depress Iy - which win display in PR the next pair of
instructions to be performed

(The sequence of 4-6 may be rearranged to suit specific needs).,

26

gy

14

noswod wyxd

“FEETER .

llu‘.ql Fa
. E¥o o _

mmnhmnu Oo_ I

-

I _<cIo o#o SISIEIc © oo o olo 0 6]o o ol o o[olCT)

o R RO R R S OIS T S RO R I

s | 524 () o_o oIoJol0 o0 616 ¢ oo 0 olo o oJo o oJo)]
« 3 4 9 1 % 3 @ n vV & 9% & @ o

¥ . v a

0000,
5
~" 0oo00O0OV
om0
e 0000
TR ARG
“T ooo0o01
:
0000
Avsia

-
‘44 0OTOCTDOTDOO T

Y 0OQDOODRQDON ("
fy 0OCDOTVOTOOC LY
Wy 0OQ0OADOCDOC L i

- m— ——r 8 A sPas

W 0O00OIOME W . O 000000660000 &

.......

.......

ey R o

27

>Th—ov_ /7 >4l¢-$_ x(®) A—®) - Ae—im) 0 >andop ® puv vy IB1 ys udts A 191D
(131 34! £e1T ££01 £6€0 $£20 £500
o) /v v kvy x@) ve—o) - ve—1Io) ® pue v 14811 yws wdrs A—() n@
zes T 434 gelr zeo1 820 £800
Ae—[BY /(V) A (v} x(®) A—i®d) - (V) Ac—D) +(V) 0 = a p dup b pue v 331 Iy Lrempio ve—i(A) U (®)
1881 1621 11341 1601 1860 1520 1800
bl /() B v [v) x®) ve—io) -(v) ve—|®)f +(v) © pue v 1481 YTYe LIETRI0 Ae—(@ a— Q) UD)
0ss T (34 0811 080T 0£20 010 0500
>.’m@\3 >.!¢3n@ AS—®) - vV pae Ae—— () 0 > & pdmp D 11 14s uBdig —={a) - (V)
vesl £221 £T11 £2o1 €280 £220 £200
>d@)/m ove—vixe) ve—0®) - ve—®) 1= 0 5 owmr " qus o Vae—1+(Ya)
zZe T zeet zTII zz0t 2280 2220 2200
A—d)/ (V) A (V)X () A——@)- (V) Ae—(O)+ (V) 0z dndur 0 151 s Areupio ye— (@ (V)
1281 1zl 1zt 1201 1280 1220 1200
O—(®)/ (V) O W—(V)x®) Ve—@®)- (V) Ve @)+ (V) o= ¥ 1 dwr DY) Y HETFIO Ae—®) VA<—(Vda)
0zl ogz1 0z11 0zo1 0zeo 0220 0210 0200
a2 7w At Ay x@) A—a) - A—Al 0>V 5 dup VhHRIHITIE A VI<—(¥A)
£Is1 g1zl SIT1 s101 £1£0 £120 £100
o2 /tn vi—a) x®) we—a) - w—ia] (@)= (V) i dmp ¥ 1813 357us s oe—(V) Yae—(vD)
ZIst 484! zInt zro1 2Ic0 z120 ZI10 2100
A—A) /v Ac—|A) x®) A—fA) - (v) A—HAl +(v) 0. v i dmr V 391 1jiys Lreanp10 VieVa - v1
Ter 1121 111 1101 1180 1120 1100
o—fa) /v b ‘ve—fa] x®) Ye—kal -(v) v—A) +(¥) 0=(V) i dwr v 181 e Srempao A— (V) vi—W+wi
o1et o1zt 00T1 o101 01€0 ot1zo0 oT10 0100
a8y W Ae—H(A)x @) A—(A)- A pus y—rI(A) e 40 AT V PUE B 3531 yTs uBig Qe—-~a) 20e—1 “(VA)=(VD) B
5081 £021 so1T Soot £0£0 £020 £010 £000
o—Ha/m ve—H @ax®) ve—i{a)- ve—Ia) SRR de—A) A #uiseal> anuy
zos1 zogl zO11 2001 2080 2010 2000
A——A)/ (V) A——)x ©) Ae—{A) - (V) Ace—(A)+ (V) 0-40 1 dmp V pue B 3591 148 Aseupao YIJSNVUL TOUINOD 01
1061 1081 1011 1001 1080 1020 1000
/Y B ve—Wx®) | V@) - ve—(a)r (v) ' dwr T
0081 00T1 0011 0001 0080 0000
G RPN o o s o (S IR AT

28

M VT g ST

e

T e

Al T i, l}
®) X - | k- | N - x—KoN - | gerr ®) ko)) o) A—d) | ecot
®) i®) - ®) (a) v—i@N - | zem ®) ko) ®) (a) v—i(®) | €01
®) |[I®) -(vi| fo)l - ko) (V)| A—KdN -(V) | 1emn ®) (kD) + W@ <] 1) +v)| A—KOY «(v) | T€OT
® |- o () Vo) - | et ®) [loi+wm] ©)) ve—i®) +(v) | ogor
®) ®)- ®)- ®)- A—®)- | ez11 ™) () ®) ®) V pue A—(®) | €201
®) ©)- ®)) ve®)- | gem ®) () ®) () w—®) | 2zor
®) ®-(v' | ®)-(v) | ®)=(V) A—D)-(V) | tEmn ®) ®)» (V) | ®)H) | (®+(V) Ae(O)+ly) | T2OT
®) ®)-(v) ®) () ve—®)-(v) | ozur ®))+ (V) ®) (a) ve—(®)+(y) | 0c0T
®) [(a) - ia) - [a) - A—fAY - | erm ®) ICAN Ka) KAl Ae—¥A) | ero1
®) Ka) - (a) (a) ve—Ka)l - | zri1 ®) I(a) (a) (1) v—1i(a) | zror
®) [-v) | Ka) -0 ka) -(W)| A—HA¥ -(¥) | 11T ®) [(aY +v) [HaN (V) | AN +(V) | ae—Fa) +(v) | 10T
®) i)l -twv)|) (a) v—Ha} -(v) | ormr ®) | +(v) (a) (a) ve—iA) +(v) | oror
®) - | @) (a)- A—)- | ot ®) (a) (a) W | Apwew——qn) | E001
®) (a)- (a) (A) w—(a)- | zolt ®) {a) (a) (a) ve—(a) | zoot
®) A)»-v) | ()-(v) | (a)-(v) A—A)-(v) | TOTI ® |W+ W[+)+ (W A—(A)+(y) | ToOT
®) (A)-(V) (A) (a) v—(A)-(v) | 0oTT ®) (a) +(v) (A) (a) Ve—{A)* (V) 0001
o v a A NOILYNVYdX3 [¥3auo! © v a A NOILVNVIdX3 [43QHO

SH3QYO DJILINHLIYV

- —orergm—

29

\

sopurvaret | ¥iemy /vy | ¥y 2w Aol W | geer vy x@) | ¥ kv x@®) a—gvi x@) | sem
pepunod = 1onpodd pIpunoy -
Wwenond | sopuysman ®) (A) o—kvy Av) | zest zemn vl x@))) ve—{v)l x(®) | ¥6ET
pepunoy | Jepupwmey | I AV) o 7ev) | ae=kBd /v TeeT wnpord vl x@®) | (v} x®) A—AV) x®) {141
©N Jonpoad 200¥R 2
KON /) JepuTemVY O-I_a‘ /() ossT JOUTN znav w (a) aili x(®) otel
®))
sopuvmay | By/y |) v | A2®)/(w) | szer Yyx®) | T(vxo) A vxay | se
pepuncl y m-n,, pepunoy
R0t | sepuywaay ®) 7\ o-2m/v) | gt 2ot V@)) () ove—TvxE | T
pepupoy | SPETSHIOH oY ®) /(v Ae—®O)M(V) | TECT Janpord (v)x®) (v)x®) A—(V)x(®) i2 1
N Ynpord Jofel
®IAVY) | sepuremon ®)) b—m)/(V) | ozel JouT (vix®) v)) O Ve (V)x(®) ozt
sopareasy | Fyay qv) | Fay sp | aehal aw | ST8T) popmoy | KAX x®) | KaX x) Ay x| 1z
pepunod _g+ 1onpoad
wenond | epureman)) oyl Av) | gier | 1T o | KANX))) Sap x@) | e
o | soparemen [AN /(v) | KA) /(v A—KAY /(W) | 1181 | onDOIg J0UIM papumoy 10N Ay x@®) | Ka) x(») A—A) x@) | 11EN
pepunod) pnpnad Jofel
AN AV) | sopupesaan W w d—KaY /v) | oy | PrEoid O HaX x®))) O ve—iA] x) | orer
swpurvma | YA/ | Vv | w—Ba)w | sost S popumoy | Sx®) | Hamxo) aM—nx®) | soet
o J0UTI jonpord Jofel =
".__.uao..ai sspuremiey ()) Be—(A)/(v) | zoST (A)x (®) (A)x (®) (a) (a) Ye—{A)X(D) zoz1
uapondy | sepurewoy (a)/(v))y mw Ae—(A)/v) | 1081 papunod 10N (A)x(®) (A)x(®) A—{A)x (D) 1021
_ jJonpodd I0UTN | yonporg Jofel |
wepondy | sspmemay (a) () B——(a)/(V) | oo0E1 (i) wx ® (a)) B Ve—{An) 0021
o] v a A NOLULYNVY 1dX3| Y30 o] a A NOILYNV 1dX3 §_

? ih.@»wﬁ.%zmﬁﬁ Mg A NI

SY3QYO DILINWHLINYY

® | ion- | k-] - Kol - | eenr ®) ko) i) A—i®) | esot
®) i) - ®) () v—o)N - | zeur ®) ko) ®) (A) v—i) | 280t
®) [I®) -] o) -V koON (V)| Ak} ~(V) | 1emn ®) kY + (W] O] ()] Y «(v)| A—KD) +(v) | TEOT
®) o) -tv)| ®) (A) v—i®X -(v) | ocrr ®) | ioN+w)) (A) ve—i(®) +(v) | ogor
®) ®)- ®)- ®)- A—®)- | ezl ®) ®) ®) ®) vV pue A—(®) | gzo1
) ®)- ®) () Ve—®)- [zzn ®) ®) ®) (A) ¥——(®) | czo1
®) ®)-(v) | ®)-(v) | ®)-(V) Ae—(@)-(V) | 1211 ®) ®)+(v) | ®)Hv)] @)+(WV) A—O)* (V) 1201
®) ®)-(v) ®) (a) v—(®)-(v) | ozrr ®) ®r(v)| ©®) (a) ve—(@®)+(v) | o020t
®) fay - | laX- laX - A—fA) - | e ®) AN IcaX Kall A—A) | ero1
®) Ka) - (a) (A) v—Kal - | zix ®) la (a) (A) v—i(a) | 2101
®) |k -ov) [KaY -(Wf ka) -(v) >M|z>g (V) | 11 ®) AN +v) [AN + (V) | AN + (V) | a—Ha) +(¥v) | 1101
®) Ll -) () ve—HKa) -(v) | or1r ® | 15. (a) (a) ve—AA) +(V) | oror
®) (A)- (a)- (a)- A—A)- | gort ®)) ()) A pue v——(a) | €007
®) (- (a) () w—A)- | zotr ®) (a)) (a) ve—(a) | 2oor
®) | W | @a)-v) | - a—A)-(v) | ToIT ® |W+@| | W] acqa)yqy | 1001
®) (A)-(v) (A) (A) V—{A)-(v) | oo1r ® |-+ @) (A) ve—(A)+(y) | ooot
o) v Q A NOILVYNVYIdX3 | ¥3QHO0 o] v Q A NOILYNVYIdX3 {¥3GHO

SY3AYO DILINWHLIYYV

Lo

aopuyemey | ¥y /(v z_@_ AV AN W) | ot Yyvy x) | ¥ U x) Al @) see1
popuncy . o yonpoxd papupcy P
WeNond | zepurwmey ®) () o—I®) Av) | zest JouTm (v)l x@) v) a) v—v) x@) | eser
pepunoy | sepurewey | @) AV) | 1) /(W) | A—I®N AV | 1681 yopaxd vl x®) | vy =@) A—EV) x®) 153
N yonpod il -

o) AV Jepuremon ®) W >—|®d] /Av) | oser Jouyl K x @) (8 2]) B ve—{V) x®) (714
awpawan| ¥y | Bm) v | aEo)/v | s Yype) | Evxw) A—2vxe) | sz

pepumod ' B+ pIpunoy
RS | aeperenen ®) 7y o-2m)/v | et Jour (vx(®) v) 7\ ove—(vx@) | T
pepupoy | JePUTSWOA V) ® /v Ae—®)/AV) | 1E01 19001 Vx®) (Vix(d) A—(V)x (®) €44

WN wnpoad Jofvl
OINY) | epuremen ®)) de—mAY) | ozer 20Ut (V)x®) (v)) O Ve—(V)x®) ozt
soparvanit | Yoy av) | By son | Al Avy | STST . popmoy | KAX X®) | KaX x®) A x®) | s

pepuncy | Dl oo Ka) x @
wenond | zepuremoy 7y) 7y eZKAY A | TIST douTs Q) @) vl x|z
popunoy joN | JoPuTvwe | JA) /(v) | KA) /(v) | A<—KAY /(V) | 1161 | 0nposd Joumm vo!:&..oﬂ!z A x®) | Ka) x) A—KA)] x@) | 1121

: wnpoxy I
AN /Y) | zepuremaoy) W AN /) | orgr | PIPOIE IO Ka x@®) (a)) ®ve——a] x@) | orzt
Zepuremay ¥/ v qp)/y) L A)/{v) | soet y q..ho u«m popumoy Yax®) Bax) >.|z¢cn ®) sGR1
- J0UTN pnpord Jo{eN
08 ..Saz 1epuremoy () W) Be——(A)/(v) | ToOST (A)x(®) (a)x) () (a) v—Sax@) | zoer
(A)x(®) (A)x (D)
juapond | zepurewmed | (A)/(V) a)/(v) A+——{A)Av) | 081 Taspozrriore | .wwh_ﬂ.cnoﬁﬂ x A—{A)X(O) 1021
— pre— W | s——t/w | oot ax® | wx e) W BV—AD®) | oopr
<) v Q A <) v a A NOILVYNVYIdX3 | Y30

s_h(Z(Jaxu_ HXMO

. amtﬁigﬁf NETRPE BERCH PR RS e

SH3QYO DILINHLIYY

30

TRANSFER ORDERS MISCELLANEOUS ORDERS
ORDER| EXPLANATION vV |D | A | Q JORDER EXPLANATION I v 1) A Q
0103 (V)—q A) |« Halt if J=0
AN AN KA) BPT Hait if J<I
0103 (V)—D W A, =
0001 1/0 Control Transfer
0110 A—wv w|Wwl(Ww @
0112 A)yr—q v | A 1 @) | (] w02 Inhibit Clearing OVR
0130- Q—v Q| @:.|W | Q0003 | yaryayy), —oF
0130 (Dy—v RRIR RIS]
4 0010 1A + Vi IA
SHIFT ORDERS
0201 | Ordinary shift left Q and A oo11 W-vpr,
0203 | Sign shift Ieft Qand A
0012 TA)—v,
0210 | Ordinary shift right A
0013 (VA)>IA
0211 | Ordinary shift Ieft A N
0212 | Sign shift right A 0020 R ZVE
0213 | Stign shift 1eft A 0021 (A) {(D)— A 0] D) (W+«D)! @
0220 | Ordinary shift right Q =
0022 (V,)s1—>V
0221 Ordinary shift Ieft Q A A
0222 Slgn shift rlght Q 0023 (A)'(D)_"A (v) (D) (A)'(D) (Q)
0223 | Sign shift left Q 0030 Q)n (VV—D ™ |{@.(m] @A Q
0230 |Ordinary shift right A and Q
. Q) n (V)—A
0231 | Ordinary shift Ieft A and Q 0031 v Q.WM@Q.v Q@
0232 | Sign shift right A and Q 0032 Dy (V}—v @uw| ® W | @
0233 | Sign shift left A snd Q o Clear v ") F‘” Q@
JUMP ORDERS
0300 Jmp
o3 JmpHgR0 BPT ~ Breakpoint toggle switch
Halt and Jmp If BPT on, V, ~~ Address portion of V
oL Jmp f BPT off, &
0303 Jmp i OF=1
0311 Jmp if AP0
0312 Jmp if (A)=(D)
0313 Jmp if AO
0320 Jmp Q70 f
| -
0321 Jmp i Q) (o]
0322 Jmp if Qg7 =1 .
0323 Jmp i Q{0 g
0331 Jmp U DPO
0333 Jmp if DLC

31

Tl Lo g R, W X f"%"zw‘mm \ﬂ

Ya

3\

CXIONBLPHO NKNE<CHNIOWOZENR“~moNEDOW >

Machine Code

MACHINE CODES

011000
010011
001110
010010
019000
010110
001011
000101
001100
011010
011110
001001
000111
000110
000011
001101
011101
001010
010100
000001
011100
001111
011001
010111
010101
010001

011111
101010
111100
111000
110100
110010
110110
111010
110000
011011

Octal

30
23
16
22
20
26
13
05
14
32
36
11
07
06
03
15
35
12
24
01
34
17
31
27
25
21

37
52
74
70
64
62
66
72
60
33

32

Paper Tape Code

110000
100110
011100
100100
100000
101100
010110
001010
011000
110100
111100
010010
001110
001100
000110
011010
111010
010100
101000
000010
111000
011110
110010
101110
101010
100010

111110
010101
111001
110001
101001
100101
101101
110101
100001
110110

wr.!”-%"‘

MACHINE CODES (Cont'd)
Typewriter Cperations

Space

Upper
Case

Lower
Case

Tab.

Carriage
Return

Auto,
Carriage
Return

UcC

000100

100111

101111
101001

100101

001000

(Open parenthesis

) Closed parenthesis .

* Multiply

- Minus

/ Virgule

___Unde rline

7 Level (Control)

03
47
57
51
45
10
Symbols

LC

Comma

Period

Equal

+

Hyphen or minus

Plus

! Apostrophe

33

001000
001111
011111
010011
001011
010000
Machine Code Octal Tape Code
100110 46 001101
100010 42 000101
100100 4 001001
101110 56 011101
101100 5¢ 011001 [
101000 50 010001
0000001 ¢

B ﬂ%‘é’:ﬁ &

(Y]

B2,

i ke

\

SAMPLE PROGRAM

2 -3
PROBLEM : Compute ¢xy™” for n neeeral valvS cF X andy

Set
Starg | TAz= m

Kead

.,,(9.; zandy
vo.lees

Compute Eom,darc
- b} = 2.2 |
Fy ry

TA.~/ >

TVpe
Lesi/re

ZA;

34

Ap bt
clearing |
of

verP/ow

Gmp- te i(:)
x&

—C

¢
-

PEILCO CONTGRATION, Gov't. & Industrial Divisicn, Phila., 44, Pe. Computer Laboratory
Proaam Sheet 4 Subroutine No. 1 :
onouter CxPQ Droryanm No. L
Programer Ag Date 7-2#-5¢ | Paze No. ._’('
gi:w l;xzvious M. L'.m Ia Vio | J |Cozmnd Explonation
0 1,12 loog2l 1 loogs] Set I4=rv
1) 0 |0013] 0 0203 V7ransear I/0 iastrucTion 20D |
L 1.V oloo14!| 0 l0s01 Vranssercanteal ta T/0 Cantrals |
I,y 0 lopool 010002 YInacbit Cleariag OF
2 Io) 0 loo2s | 0 ooz QX—=2¢
110 0 10024 [0 1200 X.X — 4
3 1. lolootzlolo1s0] B>V
Lo lgo 0 lofo2 \ V— @
+ 1. 01001285 011200 Q - ¥ A4
Y O looys) o (0102) Vv— @
. S To} 0 logoolo ls220 $A).Q) —> A
L) o loosz o lotoz Y(r)—> ¢
¢ To| 0looool o 12208 (). (Q)— A
Inl 010042 0 lo3as) OF =/, Yes
paial W AVYYYAWRPYIZE V) EY"
1.0 0 loogbl 0 L2002} 4 —24
3 10| 0 0000 | 0 1322 | “Vig)
Lo {1zl 0101208 (Q)—> V
9 o1 0 l0018]| 0 |0208 Crwg
I} 010017 | 0 {poot VTrans far Contrat 2o 1/0 Controls |
20 I3 2 10079\ L 10022374, Vo —> 14,
L2 1opz9! 0 10008 LA, Va
11 1.0 0 1004210 1030380F =/, Yes :
D1 0 {oooald (03008 Ao
2 11 0 1000010 100008 Hatt ¥
Llol m 010000 ¢
/3 1o
I;1 2 jooot | 0 110 ngﬁ_@_m;___ L/
G &1 Form No. 203 ”
25 !

i

RO S

A

PHILCO CORPORATION, Gov't. & Industrial Divieion, Frila,, 44, Pe. Computsr Laboratory

Pro-ran Sheet 2 Subroutine lio.

ommier DProoran Noa

Propramer Date Pare HNo. 3£

TI"loviPrevious

Box | M. L. M. L. Ia v J [Command Explanation

(£ 1, 2__ X
Iy {

/85 1, 42)/

/b Io L4

/
Iy %
Vi |4

18 1 0000

Q200

i g

010004 10 10:43 8 Corc Co flepowriter
/7 10} 010000 |0

0 g

0004 4000

G & I Form No. 203

36

