
«'•■

,';

•X '

o

*0

)

iKIlili^«* IX;
!-**'.-:'"^'.'V>-*.°-V.H'.V «WJ^P. . WTT;. •

I

■':::

THE CXPQ COMPUTER
A PRELIMINARY DESCRIPTION FOR PROGRAMMING

PURPOSES

AERODYNAMICS

STRUCTURAL
MECHANICS

({/•
*•:%'

1
•:■:■;

By

Barbara R. Sheran

D D C

I
APR 2 5 1967

M

"Operations Research Division
Applied Mathematics Laboratory

APPUED
MATHEMATICS

1 July 1959 Report 1356

Distribution of this document
is unlimitArt Ul

unlimited.

PMC-TW-M8* (»»v. 9-90) ffellMMW/itf

tf.

i
Ml

·•·

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLYo

-
I

■■

:*/ "^. _
V1

\

THE CXPQ COMPUTER
A PRELIMINARY DESCRIPTION FOR PROGRAMMING

PURPOSES

July 1959 Report 1356

\

,
i

by

Barbara R. Sherard

*•'

.'.

CONTENTS

INTRODUCTION

I. COMPUTER CONFIGURATION

1. Magnetic Core Storage
2. Magnetic Tape Units
3. Paper Tape
4. Card Reader
5. Magnetic Drum
6. Machine Word Size

Ü. CONTROL SECTION

1. Instruction Format
2. Index Registers
3. Control Sequence

m. ARITHMETIC SECTION

IV. INSTRUCTION CODE

1. Arithmetic Instructions
2. Data Transfers
3. Shifts
4. Jumps
5. Miscellaneous Instructions
6. Logical
7. Input-Output

V. COMPUTER CONSOLE AND
OPERATIONS

Appendix
Table of Instruction Codes
Machine Codes
Programming example

Page

1

2

2
2
2
3
3
3

4
4
5

6

8
12
13
15
17
18
18

23

28
28
32
34

ii

I

 . _. ■:. .

INTRODUCTION

V
\ i

•>

This report Is intended to be a preliminary programming manual for the
Philco CXPQ Computer. This computer was developed under BUS HIPS
Contract NObsr- 72609, during the period 1955 to 1958. Members of the
Operations Research Division, Code 830, David Taylor Model Basin, co-
operated with BUSHIPS' Engineers in the logical and programming design
of the computer. The design of the CXPQ was oriented for use in real time
military control systems. It is inherently suitable for solving comp utational
problems and for feasibility research programming in areas not requiring
excessive quantities of input-output equipment.

The CXPQ computer will be installed in the latter half of 1959 at the
David Taylor Model Basin. It will be assigned to the Operations Research
Division of the Applied Mathematics Laboratory for use in research program-
ming for the Operations Control Center Project. It will be maintained by
the personnel of the Engineering and Development Division. The Operations
Research Division intends to make the computer available to all groups
involved in the Operations Control Center Project, to the other divisions of
the Applied Mathematics Laboratory and to other laboratories of the David
Taylor Model Basin, whenever possible.

The report contains a general description of the computer and sufficient
information on the Instruction Code to permit programming to be performed.
The information contained herein has been made available by the Philco
Corporation in the form of Engineering Progress Reports and in the course
of oral discussions. The author is grateful for the cooperation of the
personnel in the Philco Corporation. The author holds herself responsible
for any misinterpretation of the information thus obtained.

• -.'V

:.■

■

.-•

._,

■

1

I. COMPUTER CONFIGURATION

The CXPQ is a large scale, fully transistorized, binary computer.
It is a single address machine and operates in a parallel, asychronous mode.

1. Magnetic Core Storage

Access time.

Access to words in any unit of the core memory takes place in
parallel in 12 microseconds. Words are read from, or stored in the
memory in two cycles - a 5 microsecond read cycle, and a 7 micro-
second write cycle. When a word is read from memory the read cycle
reads and clears the memory location, and the write cycle restores the
contents of the memory location. When a word is stored in memory,
the reac' cycle clears the memory location and the write cycle stores
the word in the accessed memory location.

Storage.

The present magnetic core contains 4096 words with tape, drum,
and paper tape as auxiliary storage.

2. Magnetic Tape Units (Potter- Model 905)

The tape is Mylar, 1 inch wide, 1 mil thick and approximately
3600 feet long. The speed of the tape is 75 inches per second for read
and write operations; for rewind operations the speed is 150 inches per
second. The density of information on the tape is 200 bits per inch per
channel. The start and stop times have not been accurately Measured.

Each tape will consist of blocks of 128 words of 48 bits each.
The blocks will be self-addressed and are not program addressable.
The present system contains 3 magnetic tape units.

3. Paper Tape

The paper unit comprises:

(a) A Ferranti Reader which is capable of reading paper tape at a
speed of 200 characters per second (transfer time of 40 milli-
seconds per word).

S- ttmrttmt*

7

sSSF" i. . V
\;

(b) A teletype punch which is capable of punching paper tape at a speed
of 60 characters per second (access time of 133 milliseconds per word).

(c) A FI exowriter with a capabil ity of punching and/or printing at a
speed of 10 characters per second (transfer time of 800 milliseconds
per word). It is capable of reading at the same rate. A provision is
also made for direct input from the keyboard.

4. Card Reader and Punch (IBM 528)

The Model 528 will be used only in its card read and punch operations;
all data processing will be carried on within the CXPQ system proper.
The IBM 528 operates at a reading rate of 200 cards per minute (300
milliseconds per card) and a writing rate (punch) of 100 cards per minute
(600 milliseconds per card).

5. Magnetic Drum

The magnetic drum is operated in the parallel mode with a storage
capacity of 16,384 words on four bands of 4096 words each, and with a
total of 192 information tracks. The maximum access time is 34 milli-
seconds with a transfer time of 16 microseconds and a speed of 1740
revolutions per minute.

The four bands on the drum are continuously addressed such that:

4096 of band % follows 4095 of band 1
8192 of band 3 follows 8191 of band 2, etc.

The addressing is cyclic such that 0000 of band 1 follows 16,384 of
band 4.

6. Machine Word Size

A word is composed of 48 binary digits, numbered from left to right.
The word may be 8 binary coded characters, a 47- bit number with a sign
bit, or an instruction word containing two instructions.

. , -
--

■_ -

H. CONTROL SECTION

The control section selects and executes instructions in an ordered
sequence; i.e., the left half followed by the right half of an instruction
word until a jump instruction is executed.

1. Instruction Format

Each instruction contains 24 bits divided into a 16-bit address
part and an 8-bit command part.

16 bits 8 bits

Address Command

The command part is further sub-divided into a 7-bit command, C,
and a function bit, J.

1 C C C C C C C
J c

Some instructions require all 8 bits to define an instruction, and others
are defined by the 7 bits modified by the function bit. (The function bit
specifies which instruction is to be performed first in a jump instruction.
If J is 0, the instruction in the left half of a word is executed first. If
J is 1, the right instruction is executed first).

The address part is also subdivided into a 13-bit variable field, V, and
a 3-bit index register field, IA.

IA XM
// it q il 1

V i v

V specifies üie memory address or in the shift instruction V1 through
V*5 specifies the number of places to be shifted and IA specifies the
index register involved. (If an index register is involved V is modified
bylA).

2. Index Register

In the present system seven Index Registers are available. Each
index register is a 12-bit register. Index Registers are specified in the
following manner:

Index Register 1, IA° = 1
Index Register 2, IA1 = 1 1
Index Register 3, IA° = 1 and IA = 1

'=*-

?

"'

 ., ZES -

Index Register 4, IA =1, etc.
All instructions which involve an index register use the
J bit of an instruction. (J = 0 refers to the left-hand instruction,
J = 1 refers to the right hand instruction).

v
■■

>.

3. Control Sequence.

Instructions are sequenced through various control registers.
The Program Register which is a 48-bit register, stores the selected
pair of instructions to be executed. The Program Address Register -
13 bits - contains the address of the next instruction word. The
Memory Address Register - 13 bits - contains the address of the
memory location to be accessed.

Procedure:

1. Contents of Program Address Register goes to Memory
Address Register.

2. Contents of Memory Address Register goes to Program
Register.

3. Contents of Program Address Register plus one goes to
Program Address Register.

4. Left half of Program Register is executed.

5. Right half of Program Register is executed.

6. Steps 1-5 are repeated until a half instruction is
executed, an error is detected, or a jump is effected.

..

I
T~

\ .%
t ■'

 . i

HI, ARITHMETIC SECTIOxx

are:
The arithmetic section comprises three 48-bit registers and

i. The Accumulator or A-register
2. The Multiplier - Quotient or Q-register
3. The Data or D-register (Distributor)

a. Receives all data transferred between
the memory and the arithmetic unit.

b. Receives all data transferred between
Arithmetic Registers.

Since the CXPQ is a fixed point machine, the binary point of a data
word lies immediately to the right of the r.ign or zero position.

0 1 2 3 4
1

43 44 45 46 47
7<

■ -T hel Din aryj point

The maximum positive number is less than one - as far as the
computer is concerned - and the small est computer negative number is
minus one. Any arithmetic result which would be outside the above
limits produces overflow, which sets the overflow indicator. (The
overflow indicator or flip flop is cleared at the beginning of the
execution of all arithmetic operations with the exception of the overflow
jump, which clears the overflow flip flop after the jump is performed).
The computer ignores the occurrence of overflow unless one instructs the
computer to make one cognizant of its occurrence.

■nq *» 6

i

*f~3_ a ■ _ V
\ :

IV. INSTRUCTION CODE

Nomenclature

A - A register - 48 bits

D-D register - 48 bits

Q - Q register - 48 bits

V - Memory location V - 48 bits - 12 bit address

IA - Index Register (subtractive process)

c() - Contents of a register or memory location

OF - The overflow flip flop - considered a one bit register

OVR - Considered a one bit register which remembers to inhibit clear-
ing of overflow.

*PA - The place which remembers the address following the last
jump - 12 bit address plus one bit for half words.

|

** - Indexable

Toggle Switch - External switch which is manually set and is on
corresponding to a down position and off
corresponding to an up position

Instruction codes are represented in quaternary code, (bits 17 - 24),
e.g., the instruction add Q (1021) has the following format:

IA V J COMMAND

0 0 0 0<- +0 0 0
12 3V Uli \t \1 iOH 11 KM

s

■ HI—mamwii—ii

- ■ g

■'•

1

-

1. Arithmetic Instructions

** 1000 - Add V
Addthe C(V) toC(A).

** 1001 - Add V and store
Add the C(V) to C(A) and store In V.

** 1002 - Clear and add V
Clear A to zero and add C(V).

** 1003 - Clear and add V and store
Clear A to zero and add C(V) and store In V.

** 1010 - Add magnitude of V
Add the magnitude of C(V) to the C(A).

** 1011 - Add magnitude of V and store
Add the magnitude of the C(V) to the C(A) and store in V.

** 1012 - Clear and add magnitude of V
Clear A to zero and add the magnitude of the C(V).

** 1013 - Clear and add magnitude of V and store
Clear A to zero and add the magnitude of the C(V) and store

magnitude in V.

** 1020 - Add Q
Add the C(Q) to the C(A).

** 1021 - Add Q and store in V
Add the C(Q) to the C(A) and store in V.

** 1022 - Clear and add Q
Clear A to zero and add the C(Q).

** 1023 - Clear and add Q and store
Clear A to zero and add C(Q) and store in V.

** 1030 - Add magnitude of Q
Add the magnitude of the C(Q) to the C(A) and replace A with
this sum.

** 1031 - Add magnitude of Q and store
Add the magnitude of the C(Q) to the C(A) and store in V.

8

*<>■»■

.

-} „ . .*-.-*;

** 1032 - Clear and add magnitude of Q
Clear A to zero and add the magnitude of the C(Q).

** 1033 - Clear and add magnitude of Q and store In V
Clear A to zero and add the magnitude of the C(Q) and
etore in V.

** 1100 - Subtract V
Subtract the C(V) from the C(A) and replace A with the
difference.

** 1101 - Subtract V and store in V
Subtract the C(V) from the C(A), replace A with the difference
and store in V.

** 1102 - Clear and subtract V
Clear A to zero and subtract the C(V) from the C(A).

** 1103 - Clear and subtract V and store in V
Clear A to-zero and subtract the C(V) from the C(A) and
store in V.

** 1110 - Subtract magnitude of V
Subtract the magnitude of C(V) from the C(A) and replace A
with the difference.

-

1

\
1

•-

\

** 1111 - Subtract magnitude of V and store in V
Subtract the magnitude of C(V) from the C(A), replace A
with the difference and store in V.

** 1112 - Clear and subtract magnitude of V
Clear A to zero and subtract the magnitude of C(V) from the C(A).

** 1113 - Clear and subtract magnitude of V and store in V
Clear A to zero and subtract the magnitude of the C(V)
from C(A) and store in V.

** 1120 - Subtract Q
Subtract the C(Q) from the C(A) and replace A with
the difference.

** 1121 - Subtract Q and store in V
Subtract the C(Q) from the C(A), replace A with
the difference and store in V.

i

<

y
'/

iiinw.HI iwriwwmi* --.~« m

4*'

- **■'

.

I

1

** 1122 - Clear and subtract Q
Clear A to zero and subtract the C(Q) from the C(A).

** 1123 - Clear and subtract Q and store in V
Clear A to zero and subtract the C(Q) from the C(A)

and store in V.

** 1130 - Subtract magnitude of Q
Subtract the magnitude of C(Q) from the C(A) and
replace A with the difference.

** 1131 - Subtract magnitude of Q and store in V
Subtract the magnitude of C(Q) from the C(A),
replace A with the difference and store in V.

** 1132 - Clear and subtract magnitude of Q
Clear A to zero and subtract the magnitude of the C(Q)
from the C(A).

** 1133 - Clear and subtract magnitude of Q and store in V
Clear A to zero and subtract the magnitude of the C(Q)
from the C(A) and store in V.

** 1200 - Multiply by V
The contents of Q are multiplied by the C(V) to yield
a double length product.
The major product is left in the A-register and the minor
product is left in the Q- register.
The sign of the A-register is repeated in the Q-register.

** 1201 - Multiply by V and store in V
Same as 1200 with the exception the major product
is stored in V.

** 1202 - Multiply by V and round
The contents of Q are multiplied by the C(V) to yield a
single rounded product. The major product (rounded)
is in the A-register and the minor product plus 2~*
is in the Q-register.

Method: A one is always added to Q resulting in a
carry over to position A if Q contains a
one or increasing Q by one if position Q
contains a zero.

** 1203 - Multiply by V, round and store
Same as 1202 with the exception the major product
is stored in V.

10

A

F" i — .-.-^aßW' '■■-.. fggra _
V1

v. ;

** 1210 - Multiply by magnitude of V
The magnitude of the contents of V are multiplied by
the C(Q) to yield a double length product.
The major product is left in the A-register and the minor
product is left in the Q-register.

** 1211 - Multiply by magnitude of V and store in V
Same as 1210 with the exception the major product
is stored in V.

** 1212 - Multiply by magnitude of V and round
The magnitude of the contents of V is multiplied by
the C(Q) to yield a single rounded product.

Method: Same as 1202.

** 1213 - Multiply by magnitude of V, round and store in V.
Same as 1212 with the exception the single product
(contents of A) is stored in V.

>

** 1220 - Multiply by A
Same as 1200, except A-register involved rather than V.

** 1221 - Multiply by A and store in V
Same as 1201, except A-register involved rather than V.

** 1222 - Multiply by A and round
Same as 1202, except A-register involved rather than V.

** 1223 - Multiply by A, round and store in V
Same as 1203, except A-register involved rather than V.

** 1230 - Multiply by magnitude of A
Same as 1210 except A-register involved rather than V.

** 1231 - Multiply by magnitude of A and store in V
Same as 1211 except A-register involved rather than V.

** 1232 - Multiply by magnitude of A and round
Same as 1212 except A-register involved rather than V.

** 1233 - Multiply by magnitude of A, round and store in V
Same as 1213 except A-register involved rather than V.

** 1300 - Divide by V
This instruction divides the contents of A by the contents of V
and leaves the quotient in the Q-register and remainder in
the A-register. The sign of the remainder is the same as the
sign of the dividend.

11

*
.

*

■ -■'

■

1

** 1301 - Divide by V and store in V
Same as 1300 except the quotient is stored in V.

** 1302 - Divide by V and round
The contents of A are divided by the contents of V
leaving the remainder in the A-register and a rounded
quotient. In rounding Q is set equal to one.

* *1303 - Divide by V, round and store in V.

** 1310 - Divide A by the magnitude of V.

** 1311 - Divide A by the magnitude of V and store in V.

** 1312 - Divide A by the magnitude of V and round.

** 1313 - Divide A by the magnitude of V, round and store.

** 1320 - Divide A by Q
The contents of A are divided by the contents of Q
leaving the remainder in A and the quotient in Q.

** 1321 - Divide A by Q and store in V.

** 1322 - Divide A by Q and round.

** 1323 - Divide A by Q, round and store in V.

** 1330 - Divide A by the magnitude of Q.

** 1331 - Divide A by the magnitude of Q and store in V.

** 1332 - Divide A by the magnitude of Q and round.

** 1333 - Divide A by the magnitude of Q, round and store in V.

2. Data Transfers

** 0102 - Transfer V to Q
Transfer the C(V) to Q-register.

** 0103 - Transfer V to D
Transfer the C(V) to the D-register.

** 0110 - Transfer A to V
Transfer the C(A) to V.

12

\

»

** 1210 - Multiply by magnitude of V
The magnitude of the contents of V are multiplied by
the C(Q) to yield a double length product.
The major product is left in the A-register and the minor
product is left in the Q-register.

** 1211 - Multiply by magnitude of V and store in V
Same as 1210 with the exception the major product
is stored in V.

** 1212 - Multiply by magnitude of V and round
The magnitude of the contents of V is multiplied by
the C(Q) to yield a single rounded product.

Method: Same as 1202.

** 1213 - Multiply by magnitude of V, round and store in V.
Same as 1212 with the exception the single product
(contents of A) is stored in V.

** 1220 - Multiply by A
Same as 1200, except A-register involved rather than V.

** 1221 - Multiply by A and store in V
Same as 1201, except A-register involved rather than V.

** 1222 - Multiply by A and round
Same as 1202, except A-register involved rather than V.

** 1223 - Multiply by A, round and store in V
Same as 1203, except A-register involved rather than V.

** 1230 - Multiply by magnitude of A
Same as 1210 except A-register involved rather than V.

** 1231 - Multiply by magnitude of A and store in V
Same as 1211 except A-register involved rather than V.

** 1L32 - Multiply by magnitude of A and round
Same as 1212 except A-register involved rather than V.

** 1233 - Multiply by magnitude of A, round and store in V
Same as 1213 except A-register involved rather than V.

** 1300 - Divide by V
This instruction divides the contents of A by the content? of V
and leaves the quotient in the Q-register and remainder in
the A-register. The sign of the remainder is the same as the
sign of the dividend.

11

f

y.
/

• *•

'..

-

i

** 1301 - Divide by V and store In V
Same as 1300 except the quotient is stored in V.

** 1302 - Divide by V and round
The contents of A are divided by the contents of V
leaving the remainder in the A-register and a rounded
quotient. In rounding Q is set equal to one.

* *1303 - Divide by V, round and store in V.

** 1310 - Divide A by the magnitude of V.

** 1311 - Divide A by the magnitude of V and store in V.

** 1312 - Divide A by the magnitude of V and round.

** 1313 - Divide A by the magnitude of V, round and store.

** 1320 - Divide A by Q
The contents of A are divided by the contents of Q
leaving the remainder in A and the quotient in Q.

** 1321 - Divide A by Q and store in V.

** 1322 - Divide A by Q and round.

** 1323 - Divide A by Q, round and store in V.

** 1330 - Divide A by the magnitude of Q.

** 1331 - Divide A by the magnitude of Q and store in V.

** 1332 - Divide A by the magnitude of Q and round.

** 1333 - Divide A by the magnitude of Q, round and store in V.

2. Data Transfers

** 0102 - Transfer V to Q
Transfer the C(V) to Q-register.

** 0103 - Transfer V to D
Transfer the C(V) to the D-register.

** 0110 - Transfer A to V
Transfer the C(A) to V.

12
r

I
■

-

*

&d^' * I,- - SSSft'*" - '
V

V !

0112 - Transfer A to Q
Transfer the C(A) to the Q- register

0120 - Transfer Q to V
Transfer the C(Q) to V

0130 - Transfer D to V
Transfer the C(D) to V

3. Shifts

It Is possible to use two types of shifts, namely:

a. Ordinary - treats every bit in the effected register or registers
b. Numerical (sign shift) - treats words in such a way as to

preserve the sign.

0201 - Ordinary shift left Q and A
The contents of the Q and A registers are shifted left
V places. Bits shifted past the sign bit of the A-register
enter bit 47 of the Q-register.

OUT,

\0\\\l\'i.\HVh3fl'f5Hff
11 " Q ' ' ' '

mJ ' li V I I

0203 - Sign shift left Q and A
The contents of Q 1.47 and A 1.47 are shifted left V places.
Bits shifted past bit 1 of the A-register enter bit 47 of the
Q- register.

0210- Ordinary shift right A
The contents of Ao, l-47are shifted right V places.
Bits shifted past bit 47 of the A-register are lost.

0220 - Ordinary shift right Q
The contents of Q0 1.47 are shifted right V places.
Bits shifted past bit 47 of the Q~ register are lost.

0211 - Ordinary shift left A
The contents of the A0| 1-47 are shifted left V places.
Bits shifted past the sign bit of the A-register are lost.

13

Je
•/

-

s

.--.

*<¥?**

0221 - Ordinary shift left Q
The contents of Qn 1-47 are shifted left V places.
Bits shifted past the sign bit of the Q- register are lost.

0212 - Sign shift right A
The contents of Ao, 1-47 are shifted right V places.
Unlike an ordinary right shift which fills in bits shifted
out of with zeros, the sign right shift takes the sign bit and
fills in bits shifted out of with it.

Yoil 2 3 4? ^ 42 43 44 45 46 47 out

0222 - Sign shift right Q
The contents of Qo 1-47 are shifted right V places.
(Method same as 0212)

0213 - Sign shift left A
The contents of Ai-47 are shifted left V places.
Zero replaces bit 47 of the A-register when a bit is shifted
out of A47. Bits shifted out of bit 1 are lost.

&~pj£2j££j£2Jep-
out £ ig-N gr-N fer-N fcr—*. fcr~N *^~*°

42 43 44 45 46 47

0223- Sign shift left Q
The contents of 04.47 are shifted left V places.
(Method same as 0213)

0230 - Ordinary shift right A and Q
The contents of A0> 1-47, and Q0> 1-47, are shifted right V places.
Bits shifted out of A47 enter bit 0 of the Q-register.
Bits shifted out of Q47 are lost.

r*- /^H /—* S~$l

0 1 2 ' 3
<r*sy~ar-x

43 44 45 ' 46 ! 47

Q

0231 - Ordinary shift left A and Q
The contents of A0 1-47 and Qo, 1-47 are shifted left V places.
(Method same as 0230)

0232 - Sign shift right A and Q
The contents of A<v 1-47 and 04.47 are 8Wfte(I riBW v Places.
The A-register is treated in the same manner as the instruction
sign shift right A-register with the exception bits shifted out of
bit A4,enter bit 1 of the Q-register. Bits shifted out of Q47 are lost.

14

>

rl

Jrtf-i.
'•

-»

0233 - Sign shift left A and Q
The contents of Ai-47 and Q}.47 are shifted left V places.
Bits shifted out of Qi enter A 47 and bits shifted out of A1 are lost.

4. Jumps

** 0300 - Jump (unconditional)
Jump to either the right or left-hand instruction and store the
address of the next instruction following the jump instruction
in the *PA.

** 0301 - Jump if Overflow flip flop equals 0.
If the overflow flip-flop equals 0, jump to the specified memory
location. If jump occurs store address in *PA and set the 1 bit
register 0VR equal to 0. This in effect ends the inhibiting of
clearing the overflow flip flop on arithmetic instructions.

** 0303 - Jump if overflow flip flop equals 1.
If overflow flip equals 1, jump to the specified memory location.
If jump occurs store address in *PA and set the OVR equal to zero.

** 0302 - Breakpoint jump
Jump to the specified memory locations if the toggle switch is off.
If toggle switch is on, halt and jump to the location specif led by the
instruction when the advance key is depressed.

** 0810 - Jump if A equals 0
Jump to the specified memory location if the contents of
AQ, 1-47 equals zero. If not proceed to the next instruction
in sequence.

** 0311 - Jump if A is positive
Jump to the specified memory location if the contents of A are
positive. If not proceed to the next instruction in sequence.

** 0312 - Jump if A equals D
If the contents of the A-register equals the contents of the
D-register, jump to the specified location and store address
following jump in the * PA. Ii test is not satisfied proceed to
the next instruction in sequence.

1

f ** 0313 - Jump if A is minus.
If A0 is equal to one, jump to the specified memory location and
store address following jump in the *PA. If A« is unequal to one,
proceed to the next instruction in sequence.

H
V y

.'••

#?

** 0320 - Jump If low order position of Q equals 0
U Q47 is equal to zero, jump to the specified address and
store address following the jump in the *PA. (The Q-register
is circular shifted right 1 bit following the jump). If Q47 is
unequal to zero proceed to the next instruction in sequence.

** 0321 - Jump If Q is positive
If QQ is equal to zero, jump to the specified address and store
address following the jump in *PA. (The Q-register is circular
shifted left 1 bit). If Qc (sign bit) is unequal to zero, proceed
to the next instruction in sequence.

** 0322 - Jump if low order position of Q equals 1
If Q47 is equal to one, jump to the specified address and
store address following jump in the *FA. (The Q-register is
circular shifted right 1 bit following the jump).

** 0323 - Jump if Q is minus
If Qois equal to one, jump to the specified address and store
the address following the jump in the *PA. (The Q-register is
circular shifted left 1 bit). If Qo (sign bit) is unequal to one,
proceed to the next instruction in sequence.

** 0331 - Jump if D is positive
K D0 is equal to zero, jump to the specified address and store the
address of the next instruction following the jump in the *PA. If
D0 is unequal to zero, proceed to the next instruction in sequence.

** 0333 - Jump if D is negative
If D0 is equal to one, jump to the specified address and store
the address of the next instruction following the jump in the *PA.
If Eb is unequal to one, proceed to the next instruction in sequence.

NOTE:
1. A jump is made to the left or right-hand instruction
according to the function bit. For example, if one wishes
to jump to a right-hand instruction the instruction 0300
becomes 2300.

2. Whenever the Q-register is involved in a jump, the
contents of the Q-register are shifted circularly after
the jump sensing is complete.

16

t
I

ft

,. - v V
v

\

4

I

5. Miscellaneous Instructions

0000 - Halt
If the function bit, J, is equal to 0, halt.
K J = 1 and the toggle switch is on, the instruction becomes a
breakpoint halt.

0001 - Transfer control to Input-Output Controls.

0002 - Inhibit clearing overflow flip flop.
Sets the 1 bit register (OVR) which remembers to inhibit
clearing of the overflow flip flop equal to one and the
overflow flip flop equal to zero.

0003 - Set overflow flip flop equal to one if the contents of the
specified index register are equal to the address portion
of memory location V; i. e., the address portion of the
memory location specified by V and the function bit, J.

0010 - Add the contents of the address portion of the specified
memory location to the contents of the specified index

I register and replace the index register with this sum.

0011 - Subtract the contents of the address portion oi the
specified memory location to the contents of the
specified index register and replace the index register
with this difference.

0012 - Transfer the contents of the specified index register
to the address portion of the specified memory location.
For example: if it is desired to transfer the contents
of the specified index register to the address of the
right-hand instruction of memory location V, 0012 becomes
2012.

0013 - Transfer the contents of the address portion of memory
location V (left or right half depending on J) to the
specified index register.

** 0020 - Address substitution
Bring the address (from *PA) following the last jump
to specified memory location (left or right half depending
on J). r

0021 - Add A to D
Add the contents of D to the (A) and replace A with the sum,

17

■*»r

:-■

W — ^ > S:*J' '*.

** 0022 - Increment V by 1
The address portion of the specified memory location
(left or right half depending on J) is increased by one.

0023 - Subtract D from A
The contents of O are subtracted from the C(A) and A is
replaced by the difference.

6. Logical Instructions

** 0030 - And Q to V and store in D
Each bit of the Q-register is matched with the
corresponding bit of V. When the corresponding bit
of both Q and V is a one, a one replaces the contents
of that position in the D-register.
When the corresponding bit of Q or V is a zero,
a zero replaces that position in the D-register.
The contents of Q and V are unchanged.

** 0031 - And Q and V and store in A.
Same as 0030 with the exception the A and D-i registers
contain the results.

** 0032 - Or D to V
Each bit of the D-register is matched with the corresponding
bit of V. When the corresponding bit of either or boui in a
one, a one replaces the contents of that position in V. W \en
the corresponding bit of D and V is a zero, a zero replaces that
position in V. The contents of D are unchanged.

** 0033 - Clear V
Zeros replace the contents of the specified memory location.

7. Input-Output

When the input-output instruction transfer to input-output controls
(0001) occurs in the program register, it is assumed that the
D-register contains a 48-bit input-output instruction to be executed.
The input output word is divided into four fundamental parts, as
follows: 1K

D (2* through 2"1&) = Ds (16 bits)
D (2-16 through 2-23) = Du (8 bits)
D (2-40 through 2"3.Sb =Dn (16 bits)
D (2"4U through 2~47) = D,f (8 bits)

'
18

J

D8 stores the starting address of the magnetic drum or magnetic tape,
if either is involved.

Du designates the tape or drum unit involved.
DJJ determines the quantity of information involved such as - number

of words, number of magnetic tape blocks, or number of punched
cards.

Df resembles the command portion of an instruction, in that it
designates the input-output function that is to be performed.

A. Type A

v

i

6AND
NO.

PRun
STRR.TINQ.

A00ft£3S
»l,X >3,f-

\)0.
Cor*)fti/P/uß

-* i*~, 11 5*7.21 Wj *«- W

0102 - Transfer from Core to Drum
This instruction transfers the specified number of words
from core to the specified drum address and band number.

0201 - Transfer from drum to core
This instruction transfers the specified number of words
starting at the designated drum address and band number
to core.

0210- Transier from Drum to Paper Tape
This instruction transfers the specified number of words
starting at the designated drum address and band number
to the paper tape reader.

1002 - Transfer from Paper Tape Reader to Drum

B. Type B

MC <?6S5
V-^TTv—jTJjTf

%WLm

->' vT —v\w
Pea

\)3. OP

Z7f

a,omm ft H D
ft. -*V7

0211 - Transfer from Drum to Card Punch
This instruction punches on IBM cards the specified
number of words starting at the designated drum
address and band number.
(From one to two words may be punched on one card).

1102 - Transfer from Card Reader to Drum

19

.

I *

JE*.

C. Type C

AjC. OF Corr\mhNO
-»; 7, j 7 vny+o- ■+V7

0110 - Transfer from Core to Paper Tape Punch.
This instruction punches onto paper tape a specified number
of words starting at the designated memory address.

1001 - Transfer from Paper Tape Reader to Core.

0113 - Transfer from Core to Flexowriter.

1301 - Transfer from Flexowriter to Core.

■
D. TypeD

o-

LUOfc OS
PBR.

NO. OP

CPTDS CcmmQtvD
->^ A H «7, 1 ?' -»JJ, ¥■0" ->V7

0111 - Transfer from Core to Card Punch.
This instruction punches a specified number of words on
cards from the designated memory locations or locations.

1101 - Transfer from Card Reader to Core.

B. TypeE

m nu .V) 6"T « c T A P6

STBRTlfUG- ftDOG655
lw~»l

TuPS tUO OF

6LOCK5
Conn" :«Vu 1.Ü

->V7

2001 - Transfer from Magnetic Tape to Core, Forward, Mode 1.
This instruction reads the specified number of blocks into
the computer and then returns control to the computer. If
the first block address is not the specified address, a search
is automatically made for the specified address and when found
continues to read forward.

3001 - Transfer from Magnetic Tape to Core, Forward, Mode 2
(Opposite of 2001. See Note 3 for explanation of Mode 2).

20

IX

r * ^

V

2201 - Transfer from Magnetic Tape to Core, Reverse, Mode 1.
This instruction starts the tape in reverse, verifies that the
first block address is the specified address, and read the
specified number of blocks into the computer. If the first
block is not the specified address, a search is automatically
made for the specified block address,

3201 - Transfer from Core to Magnetic Tape, Reverse, Mode 2.

0120 - Transfer from Core to Magnetic Tape, Forward, Mode 1.
This instruction verifies that the first block address is the
specified address and writes the specified number of blocks
on the designated tape unit number. If the first block address is
not the specified address, the unit will automatically search for
the specified address.

0130 - Transfer from Core to Magnetic Tape, Forward, Mode 2.

F. Type F

nOAflfUETiC TfiPE

STftRTtroQ *0D/l£3$

TftPE
UNIT

A/0.
COmmrtvD

>>5} »fc—>i% a.t—*J}/AV—»3?, it -Y*1

2020 - Search forward on Magnetic Tape, Mode 1.
The tape is brought to a position such that when started
in a forward direction the first block read is the specified
block. This is preparatory to reading forward.

3020 - Search forward on Magnetic Tape, Mode 2.

2220 - Search reverse on Magnetic Tape, Mode 1.
The tape is brought to a position such that when started in a
reverse direction the first block is the specified block.
This is preparatory to reading reverse.

3220 - Search reverse on Magnetic Tape, Mode 2.

2022 - Rewind Magnetic Tape.
Runs the tape in reverse until the end of tape is reached at
which time the tape stops.
Any number of tapes may be rewound at the same time.
A single tape unit which is not being rewound is free to
operate with the computer while the other tape is rewinding.

21

'

V

«•.'

jp-:cS' <

0301 - Transfer from Toggle Register to Core.
This instruction transfers the contents of the toggle register
to the specified memory address.
(Toggle Register) goes to D-register and core.

NOTE:

1. Writing on magnetic tape can occur in a forward direction only.

2. The memory address for any input-output instruction is
specified in the address portion of the input-output
instruction (0001).

3. The two modes on magnetic tape have the following meaning:

a. Mode 2 indicates if a parity check error occurs
the computer halts

b. Mode 1 indicates if a parity check error occurs
the error is ignored. On writing in preparation
of block addresses, the block that is written is
read back for parity check - if an error exists, the
area that is physically bad is not assigned a block
address and the next block Is assigned the specified
address. On reading the block is ignored.

4. Whenever an input-output instruction refers to core memory the
A-Register is automatically cleared to zero after control has
been transferred to the 1/0 control; - the reason being that a
check sum is automatically computed in the A-Register and is
a /ailable to the programmer when the I/O controls have been
released.

22

V. COMPUTER CONSOLE AND OPERATION

\

«
j

A. Registers and Displays

Program Register

An instruction word can be manually entered directly into the Program
Register by means of the key switches, numbered corresponding to bit
positions.

PR is cleared to zero by the CLEAR switches alongside the display
neons. Four switches enable changing information in only part of the
register; i. e., the address or instruction parts of the program register.

D Register

Manual entry directly into the D Register is provided by CLEAR and
key switches similar to those for PR.

A and Q Registers

The A and Q registers are manually accessible by transfers from D.
Manual transfer switches (to the left of the display neons for the A and Q
registers) control the transfer from D.

Manual transfers from A or Q to D are controlled by the switches
to the right of the register display neons„

Toggle Register

This register, whose contents are manually selected, can be transferred
to the D register and core under control of the program; namely, the trans-
fer from Toggle Register to Core (0301). The TR consists of 48 two-position
toggle switches having a binary value of "0" in the down position.

M Register

The M Register is used solely for displaying the contents of any single
memory location. The location is manually selected by the Memory Preset
toggle switches on the console.

PA, MA, Index Register Displays

These console neons are connected to the registers indicated and
display their contents.

23

-

•

<*-=•

MP Switches

These select a memory location for display in the M register. The
down position of these switches is the binary "0" position. When the
address selected by the MP switches coincides with the address used by the
program, or program control, an option of stopping the computer is
available.

MA=MP

The switch immediately to the right of the Memory Preset toggle switches
and labelled ON, OFF, will cause the computer to halt if in the ON position
and MA=MP. The computer will halt at the end of the memory cycle.

Overflow

The neon is lit when the overflow flip-flop is in the one state, indicating
overflow. If the switch Is on, the computer will stop at the end of the
instruction during which overflow occurred, unless the following instruction
is an overflow jump instruction.

- ■

Faults

If the Command fault light is on, it is the result of a:i illegitimate
Command code in the instruction.

Memory fault is the result of incorrect temperature range within the
core stack.

Input-output fault is a type due to a control failure in any of the 1-0
equipment that prevents it from completing its operation. Generally,
computer operations are not stopped. Thus, the faulty sector cannot do
succeeding operations having failed to complete one. However, other types
of 1-0 equipment can be operated.

Breakpoint Switch

When the breakpoint switch is in the "on" position, the computer will
stop before performing the breakpoint instruction.

Stop Key

When stop is depressed the computer will stop before performing
the next instruction.

Advance key

The Advance key sets a flip-flop when depressed providing a steady
advance signal; i. e., sequence each instruction in a logical order.

24

Er i

V

B. Operational Modes

The mode sei ection switches, on the lower section of the console,
determine the operation rate of the basic machine cycle. In the RUN
mode the computer operates continuously, from one program cycle to
the next, in the absence of fault. In the step mode the computer stops
each cycle. The stop key is used to manually intervene in the operation.
The computer is stopped at the completion of the current program cycle
when the stop key is depressed.

The Advance key, when depressed, will initiate the RUN mode of
operation, if the RUN key was previously depressed. If the Step key is
depressed, the Advance key is used to start the computer off on each
cycle. The Advance key is ineffective when Stop is depressed. In the
Step Mode the Step Oi dilator can be substituted for the Advance key to
make the program cycle repetition rate that of an oscillator whose
frequency can be varied between one and ten pul ;es per second.

C. Operating examples

1. To initiate a program:

a. Depress the stop key
b. Manually enter into the D-Register the input/output

instruction, - cards to core, magnetic tape to core, etc.
c. Manually enter into the PR the instruction transfer control

to input/output with the proper address.
d. Depress the Run key.
e. Depress the Advance key.

2. To change information in the A-Register when the computer has
halted as a result of an error:

a. Clear D-Register
b. Manually enter into the D-Register the desired information
c. Depress the transfer switch (D to A)
d. Depress the Advance key

3. To perform new instructions before proceeding to the next
instruction in sequence (the computer has halted or the Stop key
has been depressed):

a. Put computer in the step mode
b. Clear PR
c. Manually enter into PR the desired instruction(s)

25

i

V

JO»»-

> -

d.
e.
f.

Depress 1Q - left half (if desired)
Depress 11 - right half (if desired)
Depress Iv - which will display in PR the next pair of

instructions to be performed
(The sequence of 4-6 may be rearranged to suit specific needs).

■

26

V
v-

fnTTTTTT
ill iIn

• o -o -o -c
-o -o -o -o

Sj -o -o -o -o
c| -o -o -o -o

ir oe K a

f t" if I Ü? I I

I 1

• o • o
- o - o
- o - o
- ö • b
•0-0
-9-0
• o • b
-0-0
-0-0
• ö - b

«III ill!
• * I son
-©

:|,

I]

3

H

lilt v
miai
m« "■

l![000
~0 J J

O

C
|
0

O
I
O

O
l
O
I
C
I
O

0

O
I
O

0

O
I
O

0

O
I
O

0

O
I
O

0

o
|
o

0

O
I
O

0
(
0

O
I
O
I
O
I
O

0

O
I
O

0

O
I
O

0

O
I
O

0

O
I
O

0

O
I
O

' —

mir 1 .-

t
O

J
5

■

i

V
27

T

'

1

li

8 1 2 >

>

if

i

il 18 £

!

I I

. I
8 ?

u,
O
a
a
S

I 18 JF

V

9

1

.1

t 8 i
M

•I

CO

S a*

T3 CD

§a
a a

»8
S"5

i

!

1
i f i

1 I

or

.f
2 V

I?

I

o a
B

3 f

• f

il
2

T

M

a

.2

l

3

I

2 <
m a

- i

4

I

<
i

« -
8 1

4 8 *

>« 2 T 8 I

5 £

I«

si >

il

<
a
a
S

I i

s I
3

, 1
2 2

I 3
I

li

» c?
i 18 I

a a

If

f

<
o.

- i

8 |

S 3

« T
2 -P*

IT

or"
a

£ I«
3

f
K

3

2 f
3

M

a

s i
I

Cf

2 H
M

3

i
■

s

> r
I
M

3

-1

I
<

o 1
8 i

e

s 5
8 c

3

I
8 c

J 2]?

3 i
M

3

-I
M

3

"I = 1

2 i
= *

a
a
5

<
I
■<

8

8 a

o

§ |

28

V
\

0/)
CC
LÜ
o
cr
O
y
LJ

I

or
<

a § 2 9 5 2 § 5 § 9 5
*1-^

f 2 <«^ 2 c? 2

<
£
<

■
<

£
■

>
i

5"
■■■-«*

1 1

■<
IM"

>
it

1

>

1

i

5
t

I

Of

1

5
1

<

5
■

9
at

a >
>

<

?
1

«Mr*

5BC >
.St

I

3

>
1

cy ■ 5 2
i

§
1

§ f
i

> >
£

1
»«■** £, >

1

>
5"
AC

1

<
> £

9
i > 5

■
£

5"
at

i > >t

i

z o
§

a
X
Ul

I
2

I

2
I

i
J

1

J
1

r—*

<

i
1

5

1
?

1

1
i

1

I

<

>

1
■

1

r
1

I
1

2

>
t
a

1

5

i
cr

1

!
cr
at

i

a.

QE
o

§
PH

r-l

o
FH

o *-*
co
o
rH

o
tH r-4

CM
F-l
r-l
fl

CO
r-*
r-l
W

O
CM
*H
rH

FH

es CM
CO
CM
vH

o
CO

rH

FH

CO
FH

C4
CO
rH
rH

CO
CO
rH
r-4

> a C?
**•

£ § g § C? § » § »
N«.*

g c? cr

< +

>
+

5
> >

>

5

>
Ml
+

>

9
2*£

>
at < <

9
H«-'

+

5«r
cr

+
<

cr"
At at

o >■ +

3
>

r*^ > £
St

+ >
it

^ § § 5
o7

c? ^

> £ +

2
g > £

>
at
+ *—* £ > > > § 9 +

<

> 3

z o

z
<
a
X
UJ

3
I
+

2
1

3
3

: i
+

5

J
2

1
£

>

I 2

I
+ J

<
x> i 1

+

2

i

I
+

2 c?
AM:

5r

a; 5 o
»■M

<-4

§
F-4

§ *-*
CO

8
FH

O
o
rH

»PH o
»-I

o
rH

eo
rH o
rH

e M
O

r-l

o
rH

CN
O
t-H

CO
CM
O
•H

o
eo
o

-

CO o
rH

CM
CO o

eo
eo
O

r

I

/.
29

■•^■i^-^^ff

-e

s* 1

1 I Si

&

X

3

9

2
t g

2

CO
<z
UJ
Q
Q:
O
y
r-
ui
2
X

<

A

f i 1. I I cr

T-

s

cr

J I«
>

I

2

T.

8

all*
11

i

si!
N A §

gtJ

9

sfi 3j

3

X

3 § g M

g

a
K
W

k
>

£
H

5

or

f
I
g

or

S
H

g
I

K

3

1
M

3

■
■

M

3

§

30

V

\

er
LJ
Q
tr
O
y
H
Ld

I

<

a § § 2 G § § 5 2 § f § 9 2 f 3

<
>

1

5
1 >

1

>
■

>

i

<

>
an

■

9
1 1

•<
5 2

i

2
■

<

5
1

9
I

1 !
1

o >■

>

<
>
i

>

5^- >
.at

1
? 2 1 § » 9

*m^

"5
■
<

9 •***
2^
i

> >
>

1 > >
i

> a«L

1

<
> > > 1

<
> 2 g

ST
ac

I

Si/

? at.

i

z o

z
<
_l a
X
Ul

I
1

2
I

t

5 I 1

I
i

J
•<

i

5

1
P

1 1

i

> t 1
1

5
I

t

r
1

f
1

<

>
T

5
1
<y
a^

i i

g
IX
O

§
fH
fH

fH
o
tH

o
fH
fH

CO
o
fH
fH

o
•H
PH
fH

tH
tH

«-4
tH
fH

CO
fH
fH
fH

o
*H

«H

fH
«H

CM
«H
•H

n
esi
•H

o
CO
•H)
fH

fH
CO
tH
fH

n
«0

fH

CO
CO
*H
fH

o 5 2 9
Nu*

<y § 5 9
w

§ -^*
W g 2 2 2

< +

<

9
+

5
> >■ + +

1

>
ac

>
ad < <

»
"*ii^

5j at:

+ *•*
<

5H-
or
+ at

w

a > + >■ >■

at
+ > >

at
5 5

T
<

5 » 5
I

+
^ >*-*• 2

> > +

<

£ £ £
>
at

+

3
£ £ + > g > +

<
> S

z o

z
< J a
X
bl

4
I
+
2 £

>

I

g

1
+

j
a*.

+ 1
£

>

1 >

1 1
+
5

f
i

i
1
3

I
+
5

1
a^: JMtf

| o
f«

g
v4 8

«-4
S
tH

o
•H o fH

O
tH

esi
•H
O
fH

CO
fH
o
fH

o
o
fH

fH
eg o
tH

CM
o
fH

CO

o
o
co o
«H

fH
CO o
*H

PS
O
«H

CO
CO
O
«H

r
•

-9e-

fl

5 1

3 i

> a g
3 i

>

5

g

5
t

</>
tr
ui
Q
o:
O
y
\-
Ul

X

<

s!

1
s $ 5

>

1« T
is
$

g
is

T.

STB.

n
! !

I
a x
hi

si I
§* is

9

fl]

Or

f
i >
3

1 >
3

1 >
3

9

>
3

>
3

3|1
M

3

T

i

>

i

1"

AT

K

3

>
r«
M

3

si!

M

3

I
3

3
3

>
r
3
M

3

<

3

" «i 2 gäo.

S
M

3

1
3

3l

3

s

M

3
M

3

1
K

3 g

<
K

3

M

3

M
3

a

30

V

TRANSFER ORDERS MISCELLANEOUS ORDERS

ORDER EXPLANATION V D A Q ORDER EXPLANATION ! V D A Q

0102 (V)—Sä (V) (V) (A) (V)
0000

Halt if J-0
3PT Halt if J=l

0103 (V)—+D (V) (V) (A) «t)|
0001 I/O Control Transfer

0110 CA)—»V (A) (A) (A) (Q)

0002 Inhibit Clearing OVR 0112 (Ah-*} (V) (A) (A) (A)

0120 (Q) »V (Q) (Q): (A) (Q) 0003 H(U)-(VA), 1—»or
 0130 (D) »V CD), (D) (A) (<J) 0010 IA +V^IA

SHIFT ORDERS

0011 u-vjr*iA 0201 Ordinary shift left Q and A

0203 Sign shift left Q and A
0012 (IA>_+vA

0210 Ordinary stilt right A
0013 (vA}-*u

0211 Ordinary shift left A

0020 CPA)_+VA 0212 Sign shift right A

0213 Sign shUt left A 0021 (AMD) >-A (V) (D) (AMD) (Q)

0220 Ordinary flhlft right Q
0022 (VA)+1-WA

0221 Ordinary shift left Q

0023 (A)-(D)—<A (V) (D) (A)-(D) «W 0222 Sign shift right Q

0223 Sign shift left Q 0030 (Q)n (V)—D (V) (Q).(V) (A) (Q)

0230 Ordinary shift right A and Q
0031 (Q)O(V)—A (V) (Q).(V) (Q).(V) (0)

0231 Ordinary shift left A and Q

0G32 (D)U(V)—VV (D)U(V) (Q) 0232 Sign shift right A and Q (D) | (A)

0233 Sign shift left A and Q
0033 Clear V 0 (D) 1 (A) (Q)

JUMP ORDERS

BPT~v Breakpoint toggle switch

V. <-«* Address portion of V

0300 Jmp

0301 Jmp if OF=0

0302
Halt and Jmp if BPT on.

Jmp U BPT off.

0303 Jmp If OF«l

0310 Jmp if (A) »0

0311 Jmp a A>0

0312 Jmp If (A) -(D)

0313 Jmp if A<0

0320 Jmp If 047=0

0321 Jmp If Q > O

0322 Jmp if Q47 -1

0323 Jmp if Q <0

0331 Jmp if D>0

0333 Jmp If D<0

i

31 JK

«•

MACHINE CODES

JF& *

1

Machine Code Octal Paper Tape Code

A 011000 30 110000
B 010011 23 100110
C 001110 16 011100
D 010010 22 100100
E 010000 20 100000
F 010110 26 101100
G 001011 13 010110
H 000101 05 001010
I 001100 14 011000
J 011010 32 110100
K 011110 36 111100
L 001001 11 010010
M 000111 07 001110
N 000110 06 001100
0 000011 03 000110
P 001101 15 011010
Q 011101 35 111010
R 001010 12 010100
S 010100 24 101000
T 000001 01 000010
U 011100 34 111000
V 001111 17 011110
w 011001 31 110Ü10
X 010111 27 301110
y 010101 25 101010
z 010001 21 100010

0 011111 37 111110
1 101010 52 010101
2 111100 74 111001
3 111000 70 110001
4 110100 64 101001
5 110010 62 100101
6 110110 66 101101
7 111010 72 110101
8 110000 60 100001
9 011011 33 110110

32

MACHINE CODES (Cont'd)
Typewriter Operations

v

i

Space 000100 03 001000

Upper
Case 100111 47 001111

Lower
Case 101111 57 011111

Tab. 101001 51 010011

Carriage
Return 100101 45 001011

Auto.
Carriage
Return 001000 10 010000

Symbols

UC LC Machine Code Octal Tape Code

(Open parenthesis , Comma 100110 46 001101

) Closed parenthesis . Period 100010 42 000101

• Multiply = Equal 100100 44 001001

- Minus - Hyphen or minus 101110 56 011101

/ Virgule + Plus 101100 54 011001

Underline ' Apostrophe 101000 50 010001

7 Level (Control) 0000001

33

J-

SAMPLE PROGRAM

■* -3
PROBLEM ; Compute +xy~' for /? t/ieepr*/ va,lo?S cfX,*nc(.y

> |

0—»

©—.

j C/earma I
* o/ r

G»n%f" re. —®

34

tf K -
V

PETLCO CCRroUATIQH, Gov't. i Industrial Division, Fnila., hh, Pa. Computer Laboratory

Pro-Tram .^haet * Subroutine IJo. X

finraraitftr CXPQ V^n^-rnm Tin. JL
Programmer ß s Date 7-ZVSf Pa.ie No. 34~

Flow Previous
M. T-.

M- K, la \o J Coiinand Explanation

0 In <? 0 012 i 0013 Set I*M.= f

II 0 on 13 0 0103 Tra.n.S^ar- Z/O t/i.&±rucT/r,a t~0 A

1 I„ 0 0 014 0 OOOI TranA-fcrfjirttMl tn Z/fi tlnn+rn/.r

II 0 DÖQ 0 a 0002. T/t At Si? £/eai-,*% OF

£ Io Q Ö014 a 0IO2 *-> a
' II Q 0014 Q t/LOO X.X —* A

3 in Q OOLJ 0 0110 fA)-*V

IT 0 OOlS 0 £M2^ y->q
4- i„ Q nm< a iZoo v. v —> A

ii 0 00 If o oioa J—tQ

S Io 0 Oaoo 0 /£?a

7

la Q oo/7 o 0102. (v)-* 0

6 In 9 OOOO o J£2JL. (A).(Q)-*A

IT a jiaiA. o o.iai OFs 1 f jfef

7 *o o onoo Q aiiz ti)->ö

I] Q note, Q ±ooz 4 -*A

t Io Q 0000 Q A3£L_ Wfi
Ii 0 no 17 0 012.0 (q)-+ *

V In 0 0018 0 010S Transfer X/ö jnstruoTiosl rn 2>

II 0 0017 Q onnl Trans t*r Ho/itra / fo i/o dontro/j.

10 In & 0019 i on il I A.' V+ ->JA,

II £ 0619 0 0Ö03 ZA, : VA

*1 I„ 0 0012. 0 0&0S Or-=/j Y*s

IT a 0OQ& i 0300 /Yo

12 In Q doao Q nooo J/a/t

II Q jtL» Q 0000

/3 Io J
*1 * oooi. 0 1101 'Car*/ to Care

\
I >

f

0 4 1 Font NO. 333

AS-

I

PHILCO COP.roKATTOII, Gov't. Ss Industrial Division, PI ila., kh, Pe. Computer Laboratory

Profan Sheet Jt Subroutine IJo.

Coimmirar Pwijiwim Tin.
Profp^aaniKr Date Panje Ho. J^

Flow
Rox

Previous
M. T.. M. L. la V j Command Explanation

14 I„ lr
11

T
I

/^I. L
Il Y

/* Io \4

II 1
17 In U

IT . /

// Io 0 anon 0 0000

IT c OOOL 0 nut /T^/v. to /■/e.&ooJs-/&i.r

/? Io Q ocno 0 nnnn 1

1.1 Q oool Q nöoo \

Io

IT

Io

II

Io

~ i

Io

II

In

IT

I«

IT

In

IT

Io

JX
0 A I Form NO. «33

36

