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OEEACE 

This Memorandum presents some mathematical results 

pertaining to the study of Interval graphs and their 

application to a problem concerning the structure of genes. 

The mathematical statement of the particular genetic prob- 

lem considered here Is: Given a large number of mutant 

genes> together with Intersection data on pairs of mutants, 

then the problem Is to decide whether this Information Is 

compatible with a linear model of the gene. This means 

that one must determine whether the graph of the Intersection 

data Is an Interval graph, and this can be done by con- 

sidering a certain Incidence matrix associated with the 

graph. 

The research presented in this Memorandum is an 

example of the basic supporting studies in mathematics 

conducted by RAND mathematicians. 

■ ♦■ 
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SUMMARY 

V 
Let A ■ (a^j) be an m-by-n matrix whose entries a^. 

are all either 0 or 1.    For certain applications It Is 

of Interest to know whether or not there Is an m-by-m 

permutation matrix P such that the I's In each column of 

PA occur In consecutive positions.    In this note certain 

results having relevance to this problem are stated. 

Proofs of these results together with computationally 

effective algorithms for deciding the question are to 

be published elsewhere. 

The problem formulated above Is directly related to 

that of determining whether a given finite, undirected 

graph Is an Interval graph.    Although necessary and suffi- 

cient conditions are known for the solution of this latter 

problem,   the approach used here Is quite different from 

those used heretofore and seems to lead to highly efficient 

algorithms not only for resolving the question, but also 

for producing a representative set of Intervals in the 

affirmative case. 
f^ 
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1-    IMTRQPUCTIOM 

Let A ■ (ai\) *)e an   nr-by-n matrix whose entries a., 

are all either 0 or 1.    For certain applications,  one of 

which will be discussed below,  it is of interest to know 

whether there is an tn-by-m permutation matrix P such that 

the I's in each column of PA occur in consecutive positions- 

In this note we state certain results that have relevance 

for this problem.    Proofs of these,  together with an effi- 

cient computational method for deciding the question in any 

given case, will be published elsewhere. 

The problem posed above includes that of determining 

whether a given finite, undirected graph is an interval 

graph.    The study of interval graphs  [2,  3, 4,  5] was 

stimulated in part by an application concerning the fine 

structure of genes.    A basic genetic problem,  discussed 

in  [1],  is  to decide whether or not the sub-elements of 

genes are linked together in a linear order.    A way of 

approaching this problem is also described in  [1].     Briefly, 

it is as  follows.    For certain microorganisms,  there are 

a standard form and mutants,   the latter arising from the 

standard form by alteration of some connected portion of 

the genetic structure.    Experiments can be devised for 

determining whether or not the blemished parts of two 

mutant genes intersect or not.    Thus the mathematical 
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problem becomes: Given a large number of mutants together 

with Intersection data on pairs of mutants, to decide whether 

this Information Is compatible with a linear model of the 

gene.  If one represents the Intersection data by a graph 

(two mutant genes, I.e., vertices, being joined by an edge 

If their blemished portions Intersect), the problem Is to 

decide whether this graph Is an Interval graph. 

2-  A BASIC THEOREM 

We say that a (0, l)-matrlx A has the consecutive I's 

property (for columns) If there Is a permutation matrix P 

such that the I's In each column of PA occur consecutively. 

The first question that naturally arises Is how much In- 

formation about A Is needed to decide whether It has the 

property or not. Do we need to know A itself, or will 

something less suffice? Theorem 2.1 below provides a 

partial answer to this question; it shows that a knowledge 

T T of the matrix A A is enough. Here A denotes the transpose 

of A. 

Ibescem Let A and B be  (0,  l)-matrlces satisfying 

(2.1)        ATA - BTB . 

Then either both A and B have the consecutive I's property 

or neither does-    Moreover,  if A and B have the same number 

of rows and A has the property,   then there is a permutation 

P such that B » PA. 
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The first part of Theorem 2.1 follows easily from the 

second.    The second assertion can be proved by induction on 

the number of columns of A. 

In view of Theorem 2.1,   it would be interesting to 
T know conditions on A A in order that A have the consecutive 

1's property.    Later on we shall state a theorem which 

reduces  this question to the consideration of (0,   l)-matrlces 

having connected "overlap graphs."    For such matrices,   there 

is a simple construction for testing the property,  but we 

do not know explicit necessary and sufficient conditions ■ 

3.     THE OVERLAP GRAPH AND COMPONENT GRAPH 

Let a and b be (0,   1)—vectors having m components. 

Their inner product a-b satisfies 

(3.1) 0 < a-b < min (a-a,  b-b)   . 

If strict inequality holds  throughout (3-1),  we say that 

a and b overlap.    We also say that a contains b if 

(3.2) a.b = b-b  . 

Now let A be an m-by—n  (0,   l)-inatrix having column 

vectors  a.,  j  « 1,  2,   ••.,   n.     It is convenient,   and presents 

no loss  of generality in studying the consecutive I's property, 

to assume that a.  + 0,  j  « l,   2,   ...,  n,  and that a^^ + a. 

for i  4s j •    We refer to such an A as BtßüßC- 
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There are various graphs one can associate with a 

(0,  l)-matrix A that are meaningful Insofar as the consecu- 

tive i's property Is concerned.    We describe two such, one 

balng an undirected graph,  the other a directed graph.    The 

first of these Is obtained from A by taking vertices 

Xp x»)   '•', x    corresponding to the columns a,,  a«,   •••*   a 

of A and putting In undirected edges   (x.,  x.) corresponding 

to overlapping column vectors a.  and a..    We call this the 

overlap graph of A and denote It by   & m a (A).    The overlap 

graph of A splits up Into connected components   &-,,   o«*   '••*   &n> 

and this decomposition yields a corresponding partition of 

A into nrrowed submatrices A-,,  A»,   . ••,  A .    We now form 

a second (directed)  graph by taking vertices X,, X«^   •••*  X 

corresponding to  these submatrices and putting in an edge 

[Xj, X. ] directed from X.   to X.  if there is a column vector 

a of A;  and a column vector b of A.  such that a contains 

b.     We call this  directed graph the component graph of A 

and denote it by   jtf - Jj(A). 

The following theorem may be established in a straight- 

forward manner. 

Theorem jj,.     The component graph ^(A) of a proper 

(0,   l)-matrix_A j? acypUg and transl£iY£. 

That is,   Jj(A) contains no directed cycles,  and if 

[X,  Y] and  [Y,  Z] are edges,  then [X,   Z]  is an edge.    Thus 

J7(A) is the graph of a partial ordering.    This partial 

ordering of components of D (A)  is special in the sense 

that an element can have at most one immediate predecessor. 
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Thus  if we omit from JJ  every edge whose existence Is Implied 

by transitivity,   the resulting graph is simply a collection 

of rooted trees. 

The structure of the component graph <&{&)  is useful 

in establishing the decomposition theorem of the next 

section. 

Ai—A-DECQMEQSIIlQM-IiiEQEEM 

For an arbitrary (0,   l)-matrix A, we can rearrange 

columns and write 

(4.1)        A ■ (A1,   A2,   .••,  A^), 

where each submatrix A , k « 1, 2,   ...,  p, corresponds to a 

component of the overlap graph &(A).    We term (4.1) an 

overlap ^ecpippositjon of A, and refer to the submatrices 

A as components of A.  If A has just one component, we say 

that A is connected. 

Theorem 4.1.  A (0, l)-matrix A has the QORPeCtftive 

I's property if and only if each of its components has the 

Necessity in Theorem 4.1 is of course trivial. Suf- 

ficiency can be established by induction on the number of 

components of a proper A. The induction step proceeds by 

deleting a component of A which corresponds to a minimal 

element in the partial ordering given by Jj(A). 

Theorem 4.1 effectively solves the problem posed in 

Section 1, since one can describe a very simple and efficient 
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procedure for testing whether or not a connected matrix has 

the consecutive I's property.    Moreover, having arranged each 

individual component of a disconnected A so that its I's 

appear consecutively in each column,   the proof of Theorem 

4.1 indicates how to fit these components together so as to 

yield a permuted form of A which has consecutive I's in each 

column.    The entire process is computationally efficient, 
2 

requiring no more than 0(n ) steps if A has n columns. 

5.     APPLICATION TO INTERVAL GRAPHS 

A graph if   (finite, undirected, without multiple edges 

or loops)  is an interval graph provided if can be represented 

as the intersection graph of a set of intervals on the real 

line.    The theorems and methods described in preceding sections 

can be applied to the problem of determining when a graph 

if is an interval graph by considering a certain incidence 

matrix which specifies If .    We term this incidence matrix the 

dominant-clique-vs.-vertex matrix,  and define it as  follows. 

First of all,  a clique in if  is a set of vertices,  every 

two of which are joined by an edge.    We may partially order 

the set of all cliques of ff  by inclusion.    The maximal 

elements in this ordering will be termed dominant cliques. 

Since two vertices of 0  are Joined by an edge if and only 

if they belong to some dominant clique,  the dominant-clique- 

vs .-vertex Incidence matrix characterizes & • 

Theorem 5.1.    A graph ff  Is an Interval graph if and 

onlv if the domlnant-cllaue-vs.-vertex Incidence matrix of 

to has the consecutive I's property. 
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We also note that an interval graph is necessarily a 

rigid-circuit graph [2], and that one can describe a simple 

method to test for the rigid-circuit property.  (A graph 

is a rigid—circuit graph if every circuit with more than 

three vertices has a chord. The test is based on the known 

fact that such a graph always contains simplicial vertices, 

a simplicial vertex being one whose neighboring vertices 

are a clique [2], [3].) If the test succeeds, the method 

automatically generates all dominant cliques. Thus to 

discover if ft is an interval graph, one can first apply 

an easy test for the rigid-circuit property, and then test 

the resulting dominant-clique-vs.—vertex incidence matrix 

for the consecutive I's property. 

fun an 
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