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PREFACE 

Many studies have been made concernlug t'.e use of 

1. iriant-imbedding principles to obtain integrcr-differential 

aations describing transport processes.  In this Memorandum 

:l.c  author formulates particle-transport processes in terms 

j'  an abstract mathematical syster  Thl^ study evolved from 

research in neutron-transport theory sponsored by the 

Advanced Research Projects Agency. 

This version was rewritten in order to achieve greater 

clarity, and it diff rs from the original version by a 

change in notation and emphasis. 
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J 
A complete mathematical definition of an abstract 

linear transport process Is given In terms of a new 

axiomatic system. After several preliminary theorems are 

proven, the basic algebraic equations relating the 

"transport operators" are derived, and the semigroup 

properties of these equations are Indicated. These 

algebraic equations are then used to derive the standard 

differential equations describing a transport process. 

The generalized Irvarlant-lmbeddlng equations are 

used to describe an energy-dependent, neutron-trensport 

process. £%. 

ir. 
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A NEW APPROACH TO TRANSPORT THEORY 

1.  INTRODUCTION 

The methods of invarian: imbedding [1] have been 

utilized by Bellman, Kalaba, and Wing [1,2,3] to analyze 

one-dimensional neutron-transport processes arising from 

the chain reactions of nuclear-fission processes. The 

invariant imbedding technique allows one to replace the 

classical equations of transfer, which are constrained by 

two-point boundary conditions, with a system of differential 

equation? with initial-value constraints. The relation 

between the invariant-imbedding approach to neutron transport 

theory and the circuit-theory formalism of transmission 

lines [4] was discovered by Redheffer [4,5,6], who investi- 

gated the algebraic structure of transfer processes. 

(Extensive references on neutron transport and transmission 

lines can be found ir. [3] and [5].)  In this Memorandum, we 

propose a mathematical formulation of one-dimensional 

transport processes which yields the algebraic description 

of the process in terms of Redheffer's "scattering matrix" 

[5] as well as the differential equations arising from 

Bellman's invariant-imbedding approach to neutron transport. 

A result of our mathematical description is a demonstration 

of the nonsingularity of the "transmission operators" 

(See  c 2) which is independent of any assumption of 

differentialability of the process. We also apply our 

results to obtain integro-differential equations which i I; 
F 
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completely describe one-dimensional energy-dependent neutron 

transport processes. 

We shall let the one-dimensional neutron transport 

process serve as the motivating example for our mathematical 

system. The one-dimensional transport process consists of 

a finite real line segnent, referred to as the rod, which 

represents the interacting medium through which the neutrons 

tnvel (see Fig. 1). The neutrons, considered as abstract 

point-particles, travel through the rod, moving either to 

the right or to the left, and interact with the medium, 

occasionally producing additional neutrons by nuclear 

fissions. For each point y of the rod, we let u(y) and 

v(y) represent the expected flux of neutrons passing through 

y to the right and to the left, respectively (see Fig. 1 ). 

«(yi 

0 y        x 

Fig. 1-Rod Extending from 0 to x 

To keep our discussion general, we shall assume that the 

fluxes u(y) and v(y) are elements of a Banach space. The 

transport process can then be described in terms of linear 

differential equations of the form 

(1.1)    ^ u(y) - b1(y)u(y) + a(y)v(y) 

|y v(y) - -c(y)u(y) - b2(y)v(y) , 

:i= - ^iS- -        '  i~ ?.  7* 

\ %$ 
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where u(y) and v(y) are the fluxes to the right and left 

at the. point y, and a(y),b1(y),b2(y), and c(y) are linear 

operators, defined for each point y in the rod [O^x]. 

The formulation of transport processes in terms of 

equations (1.1) has a major drawback. To study practical 

problems in which incident neutron beams initiate a trans- 

port process in the rod [0,x], we must solve equation (1.1) 

subject to the boundary conditions 

u(0) u in' v(x) rin 

where u. and Vj are the incident fluxes to the right at 

0 and to the left at x, respectively.  (In many applications 

we pick u.n or v.n to be 0.) Thus we must solve equations 

of the form (1.1)—which may be 2n simultaneous ordinary 

differential equations [3] or integro-differential equations 

[2]—with two-point boundary-value conditions. This 

formulation is often unsatisfactory when numerical answers 

are desired, because of the difficulty of numerically 

solving two-point boundary-value problems of high dimen- 

sionality. 

The technique of invariant Imbedding has been success- 

fully used by Bellman, Kalaba, and Wing [1,2] to reduce 

the two-point boundary-value equations of neutron-transport 

processes to initial-value problems. We now briefly describe 

the invariant-imbedding approach. Consider a one-dimensional 

transport process on the rod [0, L] which is described by 

I 

■ 
m 

f 3, 



the linear operators aCy), b^y), b2(y), c(y) (for y e [0,L]) 

of equation (1.1). For each x in the interval [0,1.], we 

consider the transport process taking place on the shorter 

rod [0, x] which is described by the same linear operators. 

We define the family of oparators p(x), r(x), T(X), and t(x) 

as follows: 

p(x) t ■ the "reflected" flux leaving the 

rod [0, x] to the right due to a 

flux ty incident upon the rod to the 

left, 

T(X) ^ ■ the "trar-»mittad" flux leaving the 

rod [0,xj to the left due to a flux 

i|r incident upon the rod to the left, 

r(x) cp - the "reflected" flux leaving the 

rod [0,x] to the left due to a flux 

cp incident upon the rod to the right, 

t(x) cp - the "transmitted" flux leaving the rod 

[C,x] to the right due to a flux cp 

incident upon the rod to the right. 

Thus in the particle-transport process on [0,x], if the 

incident fluxes are given by 

u(0)  - cp, v(x) - *, 

then the "output" fluxes (see Fig. 2) are given by 
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u(x) - t(x} cp f P(x) K 

v(0) ■ r(x) cp + T(X) I|(. 

r(x)cp + T(X)I|) -^ 

cp — t(x)cp + P(x)i!r 

Fig. 2 

By considering the rod [0, x + Aj, and using the "particle 

counting" technique of Bellman et al. (see [1, 2, 3]), we 

arrive at the operator differential equations 

(1.2)    ^ P(x) - a(x) + b1(x)p(x) + P(x)b2(x) + p(x)c(x)p(x), 

i- T(X) - T(X) [b^x) + C(X)P(X)], 

r(x) - T(x)c(x)t(x), 
dx 

S- t(x) - [b^x) +P(x)c(x)]t(x) 
dx 

with the initial conditions 

(1.3)    P(0) - r(0) - 0 , 

T(0) - t(0) - I , 

irttere I is the identity operator. 

The operators P,r,T, and t, called the transport 

operators, play an important role in the theory. 
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By using the transport operators, one replaces the two- 

point boundary-vaXue problems of classical transport heory 

by the differential equation vl.2) with the Initial conditions 

(1.3). 

2. THE MATHaiATICAL FORMULATION 

We now give an axiomatic definition of transport 

processes from which we shall mathematically derive our 

desired results. To account for the Minfinite-dimensional 

case," we shall consider the transport operators as linear 

operators on a Banach space. We shall closely follow the 

notation used by Redheffer [5,6]. 

Lotjfbe a Banach space,, over a real or a complex 

field. We shall refer to elements of^ as fluxes In order 

to recall the neutron transport process discussed In the 

Introduction.  (When dealing with transmission lines, 

elements ofJ^ would represent electrical signals.) We 

shall also consider the Banach sp ce X " ^ x X* ..and <** 
2 u 

shall write elements of X     In the form (u,v) or   ,  where 

u,v e X • The Ilorm ^ JC    i8 given by 

||(u,v)l| - ||u|I + ||v!|, 

where ||u| j Is the given norm In jC • 

Deflnj Ion 1. Let the real Interval [XQ,X,] be given. 

Define the space 

D - Uy^) e R l^o l yi. ^ y2 1 xi}' 
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considered as a subspace of the metric space R . 

Let S be a mapping of D Into the space of bounded linear 

operators onX - Th^s for every (yj^) in D» ** assoclats 

with It a bounded linear operator 

-2 _ »(ypy^X  -X 

We also write 

(2.1) S(yvy2) 
ru" t(y1,y2)u + P(y1,y2)v 

r^yi'y2^u + ■'^ypy?^ 

ft(y1,y2) P(y1,y2) 

r(y1,y2) TCy^) 

for al u[v]   ^X2. 

u 

Since S(y-|,y2) Is always assumed to be a bounded linear 

operator onX , It follows that t(y1,y2), T^^), r(y1,y2), 

and PCy^^yo) are bounded linear operators onX • We can 

abbreviate (2.1) by writing 

We pause to describe the physical meaning that we 

attach to the above definition. Considering the neutron- 

transport model mentioned In the Introduction, we regard 

each element (ypy«) of D as the rod segment extending 

fron y^ to yj "imbedded" In the whole rod [XQ^X.]. The 

linear operator S(y,,y2) represents the transformation 

i 
5 



m 

relating the "output fluxes" from the rod [y^yj]  to the 

"Incident fluxes."    Specifically, we want to have 

"I 

(2.2) 
u(y2) 
jvCyp - S(yvy2) 

uCy^ 
v(y2) 

where uiy^  and viyj  are the fluxes to the right and to 

the left, respectively, at the point y^., i - 1,2 (see Fig. 3). 

The reader should verify that t(y1,y2), r(yvy2)t  rCy,^), 

«nd Ky]^) represent the transport operators (as defined 

in Sec. 1) for the rod [yj^J. The operator S(y1,y2) is 

called the scattering operator in analogy with Redheffer's 

scattering matrix [5,6]. 

u(y1) 

v(yi) 

^2 

Fig. 3 

u(y2) 

v(y2) 

Definition 2.    For each (y^y^eD,  define the relation 

G* c X2 x X2 by 
12 

where 

Gy2 -    |(VV I (u2'vl> " s(yi'y2) (ul'v2>' 

(«l^v^ - w^X2!  i - 1,2 f  . 
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Each element of G„ is thus an ordered pair, the first 
y2 

dement representing the fluxes to the right and left, 

respectively,at the point yp and the second element 

representing the fluxes at the point y«. We say that 

the relation GT relates the fluxes at the point y* to 
y2 4 

the fluxes at the point yp in the transport process under 

consideration. Note that wa are not assiLning that given 

the fluxes uCy^) and vCyj) at the point y^, there would 

exist fluxes n(y^)  and v^) satisfying equation (2.2). 

In the course of our mathematical analysis, we shall instead 

show that there is a one-one relationship between the 

fluxes at two different points, and equations (2.3) and (2.4) 

give an explicit formula for Che fluxes at one point in 

terms of the fluxes at another point. Until we demonstrate 

this one-one correspondence, however, we shall have to be 

content with the somewhat clumsy representation in terms of 

the family of relations G . 
y2 

We now review briefly pome basic mathematical con- 

ventions to be used in the iollowing discussion. The 

space of bounded linear operators is given the topology 

induced by the usual norm. 

|T| Tw ■   SUp    ! 1 IWi 

IN 1-i 
(This is called the uniform operator topology.) A linear 

operator on a linear space is said to be inv^rtible when it is 

one-one and onto. If T is an invertible bounded linear 

ä 
I 
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operator on a Banach space, then the elementary theory of 

Banach spaces [7] tells us that the Inverse T"" is also 

bounded. The composition of two relations G-^ and G2 is 

defined by 

I 1 

G2G1 " Ho,ß)!^,Y such that (a,Y)€G1 and (Y.ß^Gj) 

If the relations G-. and G« are functions, then their 

composition, GjG,, is the usual composition of functions. 

We are now ready to give a complete definition of a 

one-dimensional transport process. 

Definition 3. Let S be described as in Definition 1. 

We say that S describes a transport process when the 

following three axioms are satisfied: 

(i) S(y>y) - I for all y e [x0,x1] 

(I is the identity operator); 

(li)  S is continuous in the uniform operator 

topology i 

y2 ?! ^ ?! 
% for ^ 1 yl ^ y2 0'3 <£ xi> (iii) G/ G 

y3 y2 
y^ 

where G      ie  given by Definition 2. 
yj 

In the remaining discussion we shall always assume 

that S is given and describes a transport process. 

Axiom (i) is equivalent to the statement that 

r(y*y) - Ky^y) - 0 and t(y,y) - T(y,y) - I. Axiom (iii) 

is really a shorthand notation for the following two , atements 

•: 
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(a)    If   \v
2\  - S(yvy2) i  and 

Si 
|V2J 

- S(y2,y3) "u2" 

.V3J 

then 
i 
'u3 
_vl 

- S(y1,y3) "Ui1 • 
.V3J 

(b)     If "u3 

_V1 

1  - S(y1,y3) ul 

_V3_ 
» 

then   "1 1, 
a2' 2 

€^C    such that 
\ 

ru2 
Lvi 

* • SCypyj) ~ul] 
_V2j 

and - S(y2,y3) ■U21 
73j 

Figure 4 serves as an illustration of this cardinal 

axiom. Note that we do not assume that, for a given 

transport process in a rod [y^yo], there exist unique 

internal fluxes consistent with the process it an inter- 

mediate point y*' We shall instead prove this uniqueness 

in the course of our mathematical analysis. 
! 
I 

1 i 

u. u. u. 

yz 

Fig. 4 

^a 

m^m 
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Lggaa 1;    3A > 0 such that h e  [0,Aj and (7,7 + h) e D 

implies that t(y,y + h)  and T(y,  y + h)  are invertible. 

Proof.    Let t(y1,y2) - I - Ziy^yj).    Since 

{l|Z(yp y^ll - IIZCy^Yz)!!!    ill   tCy^y^ -   tCy^y^H 

1 l|S(yi,y2) - Siyvy^\\, 

the continuity of S (in the uniform operator topology) 

implies the continuity of ||Z| |. Since D is compact, we 

conclude that ||Z|| is uniformly continuous on D. There- 

fore^ J, > 0 such that h e [0,6^ and (y,y + h) e D implies 

that ||Z(y,y + h)|1 < 1, and therefore that 

t(y, y + h) - I - Z(y, y + h) is invertible (see [7], 

page 66). Similarly, 3 «2 such tliat hel0*62l and ^*  y + h^ € D 

implies that T(y, y+h) is invertible. We then pick 

A ■ min^pft«)« 

Lemma 2. Lg£ x0 ^ yj^ ^ y2 ^ Xj^ such that T(y1>y2) and 

tCypyj) 4r^ ^nY?rtit>l?. Then Gy is a bijection (one-one 

correspondence) with range and domain X . Writing 

yi 
((u^Vj), (u2,V2)) e G , we have the formulas 

(2.3) 

and 

(2.4) 

u. 

ul 

vl 

t - PT
-1

 r PT 

L-T"lr T-1 

t-1 -t"1  p' 

u. 

rt -1 T -rt  P 

u. 

where r - r(y1,y2), t - t(y1,,2), etc. 

-4 
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The proof follows Immediately from Definition 1. 

Theorem 1. G  Is a bllectlon with range and domain 
y2 

^ for all (ylly2) € D. 

Proof. Let (y,, y«) be given. Partition the Interval 

[yp 72^  with a set C1^},where yl'' \ < ^iK  ••• \ m 72* 

so that Tli - ^^j^ < A for 1 ^ 1 ^ n, with L  picked as 

In Lemma 1. Thus T(TI, ,,'n.) and tC'H. ,,11.) are Invertlble 

for 1 ^ 1 ^ n. By Lemma 2, G    Is a bljectlon for 1 ^ t ^ n 
\ Tl,,  T) i Tl 

Since G" - G-   G„  , one establishes that G_ Is a 
^1   ^l   ^l-l „   n\ 

bljectlon for all 1, and In particular G  - G 0 Is a 
n 

bljectlon. 

Theorem 1 states that If we are given the fluxes In 

both directions at a point y In a rod In which a transport 

process Is taking place, then we can uniquely determine the 

fluxes at any other point In the rod. We now state the fact 

that In any transport process with given Incident fluxes, 

there exist unique fluxes at each Interior point of the rod. 

Corollary. Let 
U! 

; then for 

each y e [y^^] there" exist unique vectors u(y) e X 

and v(y) e X such that 

ü(y)l 
Vi j - S(ypy) 

u 

and 

u 2 
v(y) 

SCy^yj) 

1 
v(y) 

u(y) 
V« 



i 

I 

-14- 

Proof. Existence follows from axiom (iii), and 

uniqueness follows from Theorem 1. 

Theorem 2.  T(ypy2^ 5!lä '^i*^ are invertible for 

all (yj^^Yj) c J  • 

Proof. Let (y^yo) be given, and pick an arbitrary 

2 
CD e X •  Since (0, cp) e X , by Theorem 1 there exists a 

unique (u, v) such that ((0, cc), (u, v)) e G .  But this 
y2 

means that cp ■ "rCyi^yo) v' which establishes that T(y,,y2) 

is invertible. 

Corollary. The equations (2.3) and (2.4) are valid 

for all (yv y£  e D. 

3. THE ALGEBRAIC FORKALISM 

The family of operators 

R1 
(3.1)   S(y1,y2) 

Lrt -1 T-rt p 

«here r - rty^y«). etc., was defined by Redheffer [5] in 

order to linearize the relationship between the scattering 

operators. The sigi. ^cance of S is obtained from equation 

(2.4), which becomes 

'il u. 

vJ - s<yi'y2> iv2j ' 

whete u. and Vj(i « 1,2) satisfy the equation 

u. u. 
- S(y1,y2) 
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Furthermore, It Is clear from (2-3) that SCy.^)^) is 

invartlble (for any (y1*y2) 
€ D)» Änd lt8 inverse if given 

by 

(3.2) :-i 
t - PT 

-r^r 

-1 PT 

-1 

-1 

Additionally, we can consider the "hat" operator abstractly 

by writing 

A   B 

C   D 

.-1 

CA -1 

^B 

I>-CA"1B 

which is defined whenever A is invertible.  It is then easy 

to verify that 

S - S. 

"-1 
Defining "S ■ S , we similarly have 

S - S. 

We can npw express axiom (iii) in terms of the composition 

of linear operators. From equation (2.4), we obtain the 

functional equations 

(3.3)    S(y1,y3) - S(y1,y?) S(y2,y3) , 

^(yvy3)  - 5(y2,y3) ^(y^yp , 

f oi x0 < y1 ^ y2 ^ y3 ^ x1 

I 

i mm  T»" iiiM^. 
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Iheorcm 3. Let «Q 1 y^ 1 72 ^ Ys 1 *it  and write 

Sa " S^l^' Sß " s<y2*y3)' and Saß " S(yl'y3) ' 

Then I - r.P    and I - P rQ are Invertlble,  and 
~^—~ p ct —~ u p ■ 

(3^> ^ - Pß + WT - rßPa> 
-I 

aß 
raß " ra + Tarß(I ' Vß) 

-1 

"ß  ' 

'a* 

V " tß<1 " Parß> 
-1 

Proof. Equations (3.3) yield the Identities 

and 

^ " 'a'^aV'ß1 

V1 - T;l(I-rßPa>T;1 ' 

k-l which demonstrate the existence of (I - r.P )  and 
-1 ß a 

(I - P * )  and yield the equations of T - and t n. 
« P ap    ap 

equations for P _ are obtained fron the fact that op 

The 

oß aß 

aß    aß 
Saß " Saß " (SaSß> 

i I 
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Equatlons (3.4) are the algebraic equations discovered 

by Redheffer [5]. We can now express our functional equation 

in the form 

S(y1,y3) - S(yry2) * S(y2,y3) , 

where the *—multiplication is defined by 

t P 
* 

t' PT 

r T^ r' T' 

(3.5)      t'd-Pr') 1 t        P' + t'Pd - r'p) 1 T' 

r + Tr'd-pr')-1 t    T(I-r•p)"1T, 

We remark that the ^-multiplication is associative, and 

that 

I  0 

0  I 
*s - s* 

1     0 

0  I 

so that 
1  0 

0  I 
is a two-sided identity. The space of 

2 
all bounded linear operators onX  together with the *- 

operation forms a local semigroup with identity. The 

product 

h Bi 
» 

*2 B2 

Lci DL f2 "ll 

I 

f 
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ts defined whenever I - BJCJ Is Invertlble.  (We also 

need the invertlbility of I - CjBp but the existence of 

one Inverse implies the other, for I + C9(I - BjC^^B, is 

easily verified to be the inverse of I - CjB,.) 

| 4.  THE DIFFERENTIAL EQUATTfttK 

Let A be a function from a real interval into the 

space of bounded linear operators on a Banach space. Then 

A is defined to be differentiable at 50 if 

Urn   ±[A(§     rh)x - Aao)xj 
h-0    n       0 0 

exists for ail x in the Banach space.  The derivative 

A'(50) is defined by equating A'(§, )x to this limit. We 

say that A is differentiable on a set n if A is differentia- 
j 

ble at every point of Q.  (We are defining ü -ferentiability 

in the strong operator topology.) 

We now state without proof the following fact about 

bounded linear operators: 

Theorem 4. Let A and B be functions mapping a real 

interval into the space of bounded linear operators on a 

Banach space.  If A and B are continuous (in the uniform 

operator topology) on the interval and differentiable (in 
i 

the strong operator topology) on a subset n of the interval, 

we can then state the following: 

(t)  AB is continuous (in the uniform operator 

topology) and differentiable on n (in the 

strong operator topology), and the derivative 

of AB is /given by A'B + AB*. 
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(ii) If A(0 ls also Invertible for all § in the 

interval^ then A" is continuous (in the 

uniform operator topology) and differentiable 

on n (in Che strong operator topology), and 

the derivative of A  is given by - A~ A1 A"" . 

Theorem 5.  Suppose that the (one-sided) derivatives 

lu S(y,y + h)\hmQ  and ^ S(y-h,y)|hiB0 exist for all y in 

a given interval and that 

b1(y)   a(y)n 

c(y)      b2(y)j 

Then, for fixed yQt  the function S(y) - S(y0,y) is diffei>- 

entiable on the given interval and satisfies the differential 

equation 

lEs<y>y + h)ih-o-lKs<y-h'y)ih-o 

(4.1)    Sf - 

where we let S 

(bj^ + Pc)t   n-H)^ + Pb2 + Pep 

Tct T(b2 + cp) 

t   P 

r   T 

The proof follows immediately from the preceding theorem 

and the functional equations 

as usual. 

and 
S(y0,y + h) - S(y0,y) * S(y, y + h) 

* * 
S(y0, y - h) - S(y0,y) 5(y - h,y), 

5 (y0, y - h) - S(y - h,y) S(y0,y) . 

Equation (4.1) is the well-known invariant-imbedding 

equation (see [5]) and is identical to equation (1.2). 

The equations (1.1) for the "internal fluxes" also follow 

immediately from the equations 
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s^ 

and 

i(y + h) 

v(y + h) 

^(y - h)1 

v(y - h) 
  

S(y, y + h) 

S(y -  h,y) 

"u(y)" 

_v(y)_ 

u(yr 

v(y) 

MJCJ&tSm 
We now indicate an application of the operator 

differential equation (1.2).  (Other applications can be 

found in [1,6]). We consider a one-dimensional neutron- 

transport process in which the energy of the neutrons is 

allowed to vary continuously. The following functions 

shall represent the physical parameters that describe the 

neutron transport process: 

o.(y, n)|   the reciprocal of the mean free path o* 

oT.(yj u)   a neutron of energy n travelling to the 

:t(y. *>  v) 
>• 

g^(y, v.,  v) 

gr(y> V"  v) 

lef|: \    at the point y in the rod, 
right 

the expected energy distribution (in u) 

of neutrons travelling to the ^rightf 

due to a fission at y of a neutron of 
v  /left > 

energy v travelling to the 'jrightj ' 

the expected energy distribution (in ^j) 

' of neutrons travelling to the \\&ix. \ 

due to a fission at y of a neutron of 

energy v travelling to the jrightj " 

j 
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If we represent neutron fluxes as energy-distribution 

functions u(v) and v(\}>   the above definitions yield the 

integro-differential equations 

|y u(y, ü) - J or(y, v)fr(y, yx,  v)u(y, v)dv 

^ar(y. ^) u(y> ^) 

+ I 0i(y' ^g^y, V,  v)v(y, v)dv, 

- IT; v(y, H) - J ar(y, v)gr(y, H, v)u(y, v)dv 

I 

+ J ot(y, v)f^(y, n, v)v(y, v)dv 

- at(y, ^h'Cy, ^), 

where the integrations are over the allowable energy 

range. 

Comparing equation (5.1) with (1.1), we see that the 

operators a(y), b1(y), b2(y), c(y) are given by 

a(y) Y (n) - J a^y, v)gt(y,n,v) Y(v)dv , 

c(y) ¥ (n) - J ar(y, v)gr(y,ii,v) Y(v)dv , 

(5.2) 

b1(y) Y(n) - J ar(y, v)fr(y^,v) Y(v)dv 

- or(y^) * 00, 

b2(y) Y(n) - J a^(y,v)ft(y,n,v) Y(v)dv 

- ot(y^) *^)^ 

where Y is an energy distribution function representing a 

neutron flux. 

■ 

I M 



-22- 

We then represent our transport operator as follows: 

(5.3) 

P(x) * (n) 

r(x) * (n) 

i 

T(X) * (n) 

t(x) * (^) 

J R(x, u, v) if  (v)dv, 

J r(x, n, v) ilf (v)dv, 

T0(x, n) H\x)  +J TCx, n, v) Hv)dv, 

t0(x, n) I/fa)  +J t(x, n, v) «if(v)dv. 

We can now apply our operator differential equations 

(1.2) to obtain the differential equations for the "reflec- 

tion" and "transmission" functions defined by (5.3);   thus: 

h R<x' ^ v) 

(5.4) 

h To<x' ^ 

k T(x> ^^ v) 

' alte>  v)gt(x,  H,  v) 

- [at(x, v) +cTr(x, n)]R(x, |i, v) 
+ S ai(x> v)f^(x. a, v)R(x, n, a)da 

+ ! ar(x, a)fr(x, n, a)R(x, a, v)da 

+ JJ R(x,  n,  ß)0r(x,  a)gr(x,  ß,  a)R(x,  a,  v)dadß, 

- a^(x,  n)To(x,  |i)   , 

- <'r(x,  H)t0(x,  n)   , 

J T(x,  u,  a)<^(x,  v)ft(x,  a,  v)da 

- T(x,  M,  v)fft(x,  v) 

+ JJ T(x,  n,  a)ar(x,  ß)gr(x,  a,  ß)R(x>  ß,  v)dadß 

+ T0(x,  H)[at(x,  v)ft(x,  n,  v)  > J ffr(x,  a) 

^(x, u,  a)R(x,  a,  v)da]  , 
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|- t(x,  n,  v) äx 

lx r(^  V'  V) 

J ar(x,  a)fr(x,  M,  a>t(x,  a,v)da 

- or(xJ ti)t(x, \i, v) 

+ JJ R(x,  H,  cx)ar(x,  ß)gr(x,   a,   ß)t(x,  ß,  v)dadß 

+ to(x,  v)[or(x,  v)fr(x,  a,  v) 

+ J R(x,  H,  a)or(x,  v)gr(x,  a,  v)da3   , 

JJ T(x,  n,  a)Or(x,  ß)gr(x,  a,  ß)t(r,  ß, v)da<iß 

+ T0(x,  \i) J ar(x,  a)gr(x,  H,  a)t(x,  a, v)da 

+ t0(x,  v) J T(x,  |i,  cx)ffr(x,  v)gr(x,  a, v)da 

+ (Jr(x,v)(gr(x, n, v)T0(x, u)to(xi v). 

The initial conditions are 

(5.5) 
R(0,  n,  v) - r(0,  H,  v)  - T(0,  \xt v)  - t(0,  n,  v)  - 0, 

I 
To(0,  n) - to(0,  n)  - 1. 

We see that T (x, \x)  gives the fraction of the neutrons 

of energy \i  incident to the left that leave the reactor with^ 

out entering into any fission reactions> and t0(x, n) rep- 

resents the similar fraction for neutrons incident to the 

right. While these rather formidable-looking equations are 

difficult to obtain directly from physical considerations, 

they follow from our operator equations (1-2) with sur- 

prisingly little mathematical manipulation- 
i 

E 
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6.  REMARKS 

We have given an axiomatized description of one- 

dimensional transport processes and have shown how our 

axiomatized system leads to the desired algebraic and 

differential equations of transport theory.  One could 

also start with the differential equations (12) of the 

transport process and then verify the algebraic equations 

(3.4).  This approach has been used by Redheffer [8]. 

In Sec. 5 we used the generalized invariant-imbedding 

equctions (1.2) to describe an energy-dependent neutron- 

transport process. We remind the reader that when we 

consider neutron transport processes, r\\T  formalism deals 

only with rods of less than "critical length." When a 

rod reaches critical length, an infinite number of neutrons 

is produced, and the fluxes can no longer be considered 

as elements of the Banach space X •  To compute the 

critical length by the invariant-imbedding method, we 

find the point where the solution of the first equation 

of (1.2) becomes "infinite," as described in [1] and [3]. 

We conclude by remarking that our mathematical method 

of approach in this Memorandum is based on the idea of 

applying the invariant-imbedding concept to families Qf 

operators■  It seems likely that this technique may have 

further applications in the domain of mathematical physics. 



i 
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