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PREFACE

Many studies have been made concerning t'.e use of

¢+ . nriant—imbedding principles to obtain integro—differential
gations describing transport processes. In this Memorandum

i . author formulates particle—transport processes in terms
L an abstract mothematical syster. This study evolved from
research in neutron—transport theory sponsored by the
Advanced Research Projects Agency.

This version was rewritten in order to achieve greater

clarity, and it diff rs from the original version by a

change in notation and emphasis.




SUMMARY

A complete mathematical definition of an abstract
linear transport process is given in terms of a new
axiomatic system. After several preliminary theorems are
proven, the basic algebraic equations relacing the
"transport operators' are derived, and the semigroup
properties of these equations are indicated. These
algebraic equations are then used to derive the standard
differential equations describing a transport process.

The genesralized irvariant-imbedding equations are
used to describe an energy-dependent, neutron—trensport

process. i
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A NEW APPROACH TO TRANSPORT THEORY

1. INTRODUCTION
The methods of invarian: imbedding [1] have been

utilized by Bellman, Kalaba, and Wing [1,2,3] to analyze
one—dimensional neutron-transport processes arising from
the chain reactions of nuclear—fission processes. The
invariant imbedding technique allows one to veplace the
classical equations of transfcr, which are constrained by
two~point boundary conditions, with a system of differential
equatiune with initial-value constraints. The relation
between the invariant—imbedding approach to neutron transport
theory ard the circuit—theory formalism of transmission
lines [4) was discovered by Redheffer [4,5,6], who investi-
gated the algebraic structure of transfer processes.
(Extensive references on neutron transport and transmission
lines can be found in [3] and [5].) In this Memorandum, we
propose a mathematical formulation of one—dimensional
transport processes which yields the algebraic description
of the process in terms of Redheffer's 'scattering matrix"
[5] as well as the differential equations arising from
Bellman's invariant—imbedding approach to neutron transport.
A result of our mathematical description is a demonstration
of the nonsingularity of the "tresnsmission operators"

(See c. 2) which is independent of any assumption of
differentialability of the process. We also apply our
results to ohtain integro—differential equations which
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completely describe one-dimensional energy—dependent neutron
transport processes.

We shall let the one-dimensional neutron transport
process serve as the motivating example for our mathematical
- gystem. The one-dimensional transport process cons.ists of
a finite real line segment, referred to as the rod, which
represents the interacting medium through which the neutrons
traivel (see Fig. 1). The neutrons, considered as abstract
point—particles, travel through the rod, moving either to
the right or to the left, and interact with the medium,
occasionally producing additional neutrons by nuclear
fissions. For each point y of the rod, we let u(y) and
v(y) represent the expected flux of neutions passing through
y to the right aund to the left, respectively (see Fig. 1),

- v(y)

—= u(y

L ] }
¥ L L]

0 y p 3

Fig. 1—-Rod Extending from 0 to x

To keep our discussion general, we shall assume that the
fluxes u(y) and v(y) are elements of a Banach space. The
transport process can then be described in terms of linear

differential equations of the form

(1.1 & u) = by(NU + amv() ,

g; v(y) = —<(Nu(y) = by(Nv(y) ,
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where u(y) and v(y) are the fluxes to the right and left
at the point y, and a(y),bl(y),bz(y), and c(y) are linear
operators, defined for each point y in the rod [0,x].

The formulation of transport processes in terms of
equations (1.1) has a major drawback. To study practical
problems in which incident neutron beams initiate a trans-
port process in the rod [0,x], we must solve equation (1.1)

subject to the boundury conditions

u(0) = uin’ v(x) = Vin ?

where Uin and Vi, are the incident fluxes to the right at

0 and to the left at x, respectively. (In many applications
we pick uy or v, to be 0.) Thus we must solve equations
of the form (1.1)—which may be 2n simultaneous ordinary
differential equations [3] or integro-differential equations

[2]—with two—point boundary-value conditions. This

formulation is often unsatisfactory when numerical answers
are desired, because of the difficulty of numerically
solving two—point boundary—value problems of high dimen-
sionality.

The technique of invariant imbedding has been success—
fully used by Bellman, Kalaba, and Wing [1,2] to reduce
the two—point boundary-value equations of neutron—transport
processes to initial-value problems. We now briefly describe
the invariant—imbedding approach. Consider a one-dimensional
transport process on the rod [0, L] which is described by

[l
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the linear operators a(y), bl(y), bz(y), c(y) (for y ¢ [O,L])
of equation (1.1). For each x in the interval [O,L], we
consider the transport process taking place on the shorter
rod [0, x] which is described by the same linear operators.
We define the family of oparators p{x), r(x), 7(x), and t(x)

as foilows:

P(x) ¥ = the "reflected" flux leaving the
rod [0, x] to the right due to a
flux ¥ incident upon the rod to the
left,
7(x) ¥ = the "trarsmitted" flux leaving the
rod [0,x] to the left due to a flux
v incident upon the rod to the left,
r(x) o = the "reflected" flux leaving the
rod [0,x] to the left due to a flux
¢© incident upon the rod to the right,
t(x) ¢ = the "trunsmitted" flux leaving the rod
[G,x] to the right due to a flux ¢
incident upon the rod to the right.
Thus in the particle—transport process on [0,x], if the

incident fluxes are given by

u( =o, v(x) =¥,

then the "output" fluxes (see Fig. 2) are given by
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u(x) = t(x} o + p(x) ¢,
v(0) = r(x) o + T(x) ¥.

r(x)e + T(X)) -——0mi

-~

P ot — (X))o + P(X)V¥
0 x
Fig. 2

By considering the rod [0, x + A], and using the "particle
counting" technique of Bellman et al. (see [1, 2, 3]), we

arrive at the operator differential equations

(1.2)  $PO) = a(®) + by(X)P(x) + P(X)b,y(x) + P(X)c(x)p(x),

g_._ T(X) = 'r(x) [bz(X) + c(x)p(x)],

4

i;.x. rix) = 7(x)c(x)t(x),

ﬁ; €(x) = [by(x) + P(x)e(x)]t(x),

with the initial conditions

(1.3) P(0) = r(0) = 0,
7(0) = t(0) = I,

where 1 is the identity operator.

e
| Ha RS !

i

The operators P,r,T, and t, called the transport
operators, play an important role in the theory.
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By using the transport operators, one replaces the two-—

point boundary-value problems of claesical tramsport ' heory
by the differential equation (1.2) with the initial conditions
(1.3).

2. THE MATHEMATICAL FORMULATION

We now give an axiomatic definition of transport
processzs from which we shall mathematically derive our
desired results. To account for the ‘'infinite-dimensional
case," we shall consider the transport operatorxs as linear
operators on a Banach space. We shall closely follow the
notation used by Redheffer [5,6].

Letxbe a Banach space, over a real or a complex
field. We shal. refer to elements of |” as fluxes in order
to recall the neutron transport process discussed in the
introduction. (When dealing with transmission lines,
elements of )” would represent electrical signals.) We
shall also consider the Banach sp ce xz = Xx X, 1and we
shall write elements of X 2 in the form (u,v) or :_}, where
u,v ex . The norm in xz is given by

H ) = | ul| + [V,

where ||u|| is the given norm in (.

Defini ion 1. Let the real interval [xo,xll be given.
Define the space

D= {(YlayZ) € R2|Xo < y]_ S y2 < xll’
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considered as a subspace of the metric space Rz.

Let S be a mapping of D into the space of bounded linear
operators onx 2. Thus f£or every (yl,yz) in D, we associatz

with it a bounded linear operator

S(y1,¥9) ¢ };2 - )Qz .

We also write

!—u F:(yl,yz)u + p(Yl:Yz)V
(2.1) S(yl:YZ) Lv - I-r(yl,yz)u + 'i‘(Yl:Yz)v

[€(y1,¥9) P(yysy)] ]
[r(yl,yz) T(y1¥9) | |V
: J

u 2

for all H e X .

Since S(yl,yz) is always assumed to be a bounded linear
operator onj[?, it follows that t(yl,yz), T(yl,yz), r(yl,yz),
and P(yl,yz) are bounded linear operators on). . We can

bbreviate (2.1) by writing

-

We pause to describe the physical meaning that we
attach to the above definition. Considering the neutron-
transport model mentioned in the introduction, we regard
each element (yl,yz) of T as the rod segment extending
fram y, to y, "imbedded" in the whole rod [xo,xll. The

linear operator S(yl,yz) represents the transformation
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relating the "ocutput fluxes'" from the rod [yl,yzl to the
"incident fluxes." Specifically, we want to have
r, 3 VN
u(yy) luyy)

(2.2) . = 5(y;,¥,) ’
C(yl)l 2 lir(yzi

where u(yi) and v(yi) are the fluxes to the right and to

the left, respectively, at the point yi» 1 = 1,2 (see Fig. 3).
The reader should verify that t(yl,yz), 'r(yl,yz), r(yl,yz),
and P(yl, y2) represent the transport operators (as defined

in Sec. 1) for the rod [yl,yZ]. The operator S(yl,yz) is

called the scattering operator in analogy with Redheffer's
ecattering matrix [5,6].

u(yp)) —= — u(y,)
v(y,) = = v(y,)
— : : %
*o 4! 2 *1
Fig. 3

Definition 2. For each (yl,yz)eD, define the relation

. 4
GICI.zxxzby

Y2

1
GyZ = {(WI’WZ) | (“2-"1) - S(yl, )'2) (ul’ Vz) ’
where

(uovy) = wiex,z, 1,2} .
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Each element cf Gzi is thus an ordered pair, the first
:lement representing the fluxes to the right and left,
respectively,at the point y,;, and the second element
representing the fluxes at the point Yo We say that
the relation Gzz relates the fluxes at the point y, to
the fluxes at the point AT in the transport process under
consideration. Note that w2 are not assuning that given
the fluxes u(yl) and v(yl) at the point Y1 there would
exist fluxes u(yl) and v(y2) satisfying equation (2.2).

In the course of our mathematical analysis, we shall instead
show that there is a one—one relationship between the

fluxes at two different points, and equations (2.3) and (2.4)

give an explicit formula for the fluxes at one point in

terms of the fluxes at another point. Until we demonstrate

this one—one correspondence, however, we shall have to be

content with the somewhat clumsy representation in terms of

y
the family »f relations Gyl.
2
We now review briefly some basic mathematical con—
ventions to be used in the 10!lowing discussion. The

space of bounded linear operators is given the topology

induced by the usual norm,

[ITI] = sup [|Twj].
|l =1
(This is called the uniform operator topology.) A linear

operator on a linear space is said to be inv:rtible when it is

one—one and onto. If T is an invertible bounded linear

Hii

g R AR
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operator on a Banach space, then the elementary theory of
Banach spaces [7] tells us that the inverse 7L is also

bounded. The composition of two relations G, and GZ is
defined by

GoG; = {(a,B)|F v such that (a,Y)eG; and (V,B)eG,}

If the relations G, and G, are functions, then their
composition, GZGI’ is the usual composition of functionms.

We are now ready to give a complete definition of a

one~dimensional transport process.

Definition 3. Let S be described as in Definition 1.

We say that S describes a transport process when the

following three axioms are satisfied:

(1) S(y,y) = I for all y ¢ [xo,xll
(I is the identity operator);
(i1) S is continuous in the uniform operator
topology;

(i) 626! =gl for x, < X
Y3 Y5 Y3 X £ V1S Y28 53K %,

y
where Gy1 ie given by Definition 2.
]

In the remaining discussion we shall always assume

that S is given arnd describes a transport process.
Axiom (i) is equivalent to the statement that

r(y,y) = p(y,y) = 0 and t(y,y) = 7(y,y) = I. Axiom (iii)

is really a shorthand notation for the following two . "atements:




| U |
(a) If vi] = 5(y1,¥9) E’Z_

)
V2

= 5(y;,3) {ul

e«fz

3
1

(b) If u3‘l = s(Y1:Y3) [-ulj
1 V3,

-11-

—

V3l

u2 : u
[Vl-l - S(Y]_:Yz) {v;:l

such that

Ual
an 3,
‘ [’d

= S(yp,¥3) L,:ﬂ

u

Figure 4 serves as an illustration of this cardinal

axiom. Note that we do not assume that, for a given

transport process in a rod [yl,y3], there exist unique

internal fluxes consistent with the process it an inter-

mediate point y,. We shall instead prove this uniqueness

in the course of our mathematical analysis.

11— Y2— Y3—
Vl —— VZ - V3<—
[ 1 1 ] }
) T L v 1
X0 41 Y2 Y3
Fig. 4
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Lemna 1: 34 > 0 such that h ¢ [0,A] and (y,y +h) € D
‘implies that t(y,y + h) and 7(y, y + h) are invertible.

Proof. Let t(yl,yz) =T - Z(yl,yz). Since

' ] ] ] ]

112Cyqs YD1 = 112Cy9 )11 € 11 t(ys¥9) = tlyys¥9) 1]
1801, Y2 1272 1°92 1272

< IIS(yi,y;) - S(ypydlis

the continuity of S (in the uniform operator topology)
implies the continuity of ||Z||. Since D is compact, we
conclude that ||Z|| is uniformly continuous on D. There-
fore 7 51 > 0 such that h ¢ [0,61] and (y,y + h) ¢ D implies
that ||2(y,y + h)|| < 1, and therefore that
t(y, y+h) = I-2(y, y+ h) is invertible (see [7],
nage 66). Similarly, J 8, such that he[0,5,] and (y, y + h) € D
implies that T(y, y+h) is invertible. We then pick
A = min(bl,bz).

Lemma 2. Let x < ¥y <Yy § x, guch that 'r(yl,yz) and
t(yl,yz) are invertible. Then Gy; is a bijection (one—one

correspondence) with range and domain 12. Writing
Y1

((uy,vy), (uy,vy)) € Gyz, we have the formulag

a» |- |7 !
va -7 b o T v1_

and _ . _ - -
u t 1 -t 1 P u
Lv]_ rt T =t P 2 |

-1

-1

where r = r(yl,yz), t = t(yl,,z), etc.

i-‘
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The proof follows immediately from Definition 1.

eorem 1. Gz:l is _a bijection with range and domain
)[,2 for all (yl‘.y‘.,_)2 e D.
Proof. Let (y;, y,) be given. Partition the interval
[yy, ¥,] with a set {ﬂi},where ¥, = M < nl < eer M=y,
so that N, - T, , < A for 1 { i n, with A picked as
in Lemma 1. Thus 'r(ni 1’ :I.) and t(ﬂi l’ni) are invertible

for 1 i { n. By Lemma 2, Gilisabijectionfor 1< 1ign.
L

o Ni-1 o "o
Since GTI = GTI GTI , one establishes that GTI is a
i i i-1 i

bijection for all i, and in particular Gz;' - G:: is a
bijection.

Theorem 1 states that if we are giver the fluxes in
both directions at a point y in a rod in which a transport
process is taking place, then we can uniquely determine the
fluxes at any other point in the rod. We now state the fact
that in any transport process with given incident fluxes,
there exist unique fluxes at each interior point of the rod.

Corollary. Let :‘ﬂ - S(yl,yz) :;] ; then for
each y ¢ [y,,y,] there exist unique vectors u(y) ¢ X
and v(y) e¢ X such that

-t-.l(y,:-l U T
C’l _' - s(yle) [v(yz

2 |- 50y, ¥9) r‘(")—
v(y) V2

-

and

%

bl

o0t LRI I

P T————
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Proof. Existence follows from axiom (iii), and
uniqueness follows from Theorem 1.

Theorem 2.
all (yy,y)) € .

Proof.

T(Yl:yz) and t(y;,y,) are invertible for

Let (yl,yz) be given, and pick an arbitrary
w € X . Since (0, o) ¢ JCZ, by Theorem 1 there exists a

y
unique (u, v) such that ((0, ®), (u, Vv)) € Gyl. But this
2

means that ¢ = T(yl,yz) v, which establishes that T(yl,yz)
is invertible.

Corollary. The equations (2.3) and (2.4) are valid
for all (yl, y2) e D.

3. THE ALGEBRAIC FORMALISM

The family of operators
1l 1

- -t- P
SEEE A L i
vhere r = r(yl,yz), etc., was defined by Redheffer [5] in

order to linearize the relationship between the scattering
operators.

L)

The sigy. ...cance of S is obtained from equation
(2.4), which becomes

u] . ['ug
["1 J = S5(y1,¥5) va] p

vhere u, and vi(i = 1,2) satisfy the equation

1
u ul

Va

v, - S(YI:YZ)

|w
[

|0k 4
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Furthermore, it is clear from (2-3) that S(yl,yz) is

invertible (for any (yl,yz) € D), and its inverse is given
by

t - pr! 97"1

-1
(3.2) s = |_-L. -~ |-

Additionally, we can consider the 'hat'' operator abstractly
by writing

which is defined whenever A is invertible, It is then easy

to verify that

v >

- s.
Defining 3 = S, we similarly have
T =S

We can now express axiom (iii) in terms of the composition

of linear operators. From equation (2.4), we obtain the
functional equations
3.3) S(y1,Y3) = 8(y1,¥9) S(yy,¥3) »

g(yl:)'3) = g()’z:)’3) g(yl:YZ) ’

fox X5 < Y, £ Yo S.y3 < Xy -

1

bbb L).‘ U

3
=
E
E
=
=
=

it LUl
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Theorem 3. Let x5 < ¥; < Y5 Y3 £ X), and write

Sy = S(y1:¥2)s Sg = S(y5,93), and S 4 = S(y1,¥3) .

Then I - *aPy and T - p ry are invertible, and

B
-1
(3.4) Pap = Pp + :Bpa(r. - era) Tg
-1
Taﬁ - 'ra(I - rﬁpa) Ta s
-1
1:'(1ﬁ -r + Tarﬁ (1 - ParB) ta’
-1
taB - tﬁ(I - Parﬁ) t -

Proof. Equations (3.3) yield the identities

-1 ~1 -1
t:m’5 -t (I"'Para) t:ﬁ

and

-1 -1 -1
Taﬁ = "5 (I—rﬁpa)'ra s

which demonstrate the existence of (I - rBPa)-1 and

-1
(I - Parﬁ) and yield the equations of Ty

and t:a The

p

. B’
equations for p ap are obtained fran the fact that

aB apf - ./.\
. . - Saﬁ - Saﬁ a (SaSB) .

[
|
|
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Equations (3.4) are the algebraic equations discovered
by Redheffer [5]. We can now express our functional equation

in the form
s(l’1:)’3) = S(y11y2) * S(YZ:Y3) R

where the *multiplication is defined by

t p t' p
»*
r T r' 7!
(3.3) e (I-pr') 1t Pt +t'e(I-x'p)

r + 'l'r:'(I-m:')-1 t (I - 1':"')-1 !

We remark that the *multiplication is associative, and

that
1 0 I o
*§ = §* - s,
0 I 0 I

I 0
so that [i :] is a two—sided identity. The space of
0 I

all bounded linear operators on.1:2 together with the *-

operation forms a local semigroup with identity. The

product
Ao By . Ay By
Cl Dl. Cz DZ

Il ll

e, e mmﬁﬂ"ﬁk&ﬂlWiﬁF[][i
it it il :

i
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is defined whenever I - B,C, is invertible. (We also
need the invertibility of I - C,B,, but the existence of
one inverse implies the other, for I + CZ(I - BICZ)—]'B1 is
easily veriiied to be the inverse of I — CZBI')

JATIONS
Let A be a function from a real interval into the
space of bounded linear operators on a Banach space. Then

A is defined to be differentiable at §° if
1 -
111}-8 R[AG, ~h)x = A(E )x]

exists for all x in the Banach space. The derivative
A'(go) is defined by equating A'(%, )x to this limit. We
say that A is differentiable on a set 1 1f A is differentia—

ble at every point of . (We are defining a _ferentiability
in the strong operator topology.)

We now state without proof the following fact about

bounded linear operators:

Theorem 4. Let A and B be functions mapping a real

interval into the space of bounded linear operators on a

Banach space. If A and B are continuous (in the unifoxm

operator topology) on the interval and differentiable (in

the strong operator topology) on a subset Q of the interval,

we can then state the following:

(1) AB is continuous (in the uniform operator
topology) and differentiable on 0 (in the
strong operator topology), and the derivative
of AB is given by A'B + AB'.
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(i1) 1If A(%) is also invertible for all € in the
interval, then At is continuous (in the
uniform operator topology) and differentiable
on 0 (in the strong operator topology), and
the derivative of A~ is given by — Ataral,

Theorem 5. Suppose that the (one-sided) derivatives

%H S(y,y + h)|h_0 and %ﬁ S(y—h,y)lh_o exist for all y in
a given interval and that

f{,l(y) a(y) |
2 Sy + M)y = 2 S - by |yg = |

Then, for fixed y,, the function S(y) = S(y,,y) is differ-
entiable on the given interval and satisfies the differential

equaticn

bi + pPc)t a+b1P + pb2 + pcp
(4.1) S' - ’

Tct T(bz + cP)

t P
vhere we let S = - | @8 usual.

The proof follows immediately from the preceding theorem

and the functional equations

$(y9,y + h) = 5(yg,y) * S(y, y +h)
and

§(yo, y-h) = §(yo.y) 5(y - h,y),

5 (59, ¥ = h) = 5(y - h,y) S(55.9 -
Equation (4.1) is the well-known invariant-imbedding
equation (see [5]) and is identical to equation (1.2).

The equations (1.1) for the "internal fluxes'" also follow
immediately from the equations
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5. APF.ICATION

We now indicate an application of the operator
differential equation (1.2). (Other applications can be
found in [1,6]). We consider a one—dimensional neutron-—
transport process in which the energy of the neutrons is
allowed to vary continuously. The following functions

shall represent the physical parameters that describe the

neutron transport process:

oL(y, H) the reciprocal of the mean free path of

or(y, W) a neutron of energy u travelling to the

lef:
r:ghé} at the point y in the rod,

£, (y, vﬂ the expected energy distribution (in W)

- left
£.(y w, v?[ of neutrons travelling to the < .iop,
due to a fission at y of a neutromn oi

energy v travelling to the {}i;ﬁ: ’

gL(y, M, V) the expected energy distribution (in H)

"
Sr(Y» My, V) of neutrons travelling to the it%tﬁj

due to a fission at y of a neutron of

energy v travelling to the {}:gﬁé} .
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1f we represent neutron fluxes as energy—distribution
functions u(v) and v(v,, the above definitions yield the

integro—differential equations

g_); U(Y, W) = J‘ or(y, V)fr(y, T v)u(y, v)dv
-or(Y-v H) u(y, H)

"'f °4,(Y: V)S«-,(y: , v)v(y, v)dv,

= %;, v(y, u) = 0, (¥, V) (¥, ¥, VIu(y, v)dv
+ [ o, (3, VI (¥, B, VIV(Y, VIdV

= GL(YJ wIv(y, H),

where the integrations are cver the allowable energy

range.

Comparing equetion (5.1) with (1.1), we see that the
operators a(y), bl(y), b2(§'), c(y) are given by

a(y) ¥ (8) = [ o, (y, v)g, (¥y:H4,v) ¥Y(V)dv,
c(y) ¥ 1) = [ o (¥, VI8 (¥:H,v) ¥(V)dv,
(5-2)
by(y) Y1) = [ ap(y, VIE(¥,H,v) ¥ (V)dv
— o (y:u) ¥ (1),
by(y) Y(R) = [ o, (¥,v)£, (y,6,v) ¥(v)dv

where ¥ is an energy distribution function representing a

neutron flux.
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We then represent our transport operator- as follows:

P(x) ¥ (M) = [ R(x, 1, v) ¥ (v)dv,
r(x) v (M) = [ r(x, u, v) ¢ (v)dv,
(5.3)
TX) ¥ (W) = To(x, W) ¥M) + [ T(x, B, V) y(v)dy,
Cx) ¥ ) moes(x, 1) V) + [ oe(x, b, v) §(v)dy.

We can now apply our operator differential equations
(1.2) to ottain the differential equations for the 'reflec—

tion" and "transmission" functions defined by (5.3); thus:

%; R(x, u, v) = oL(x, v)gL(x, Hy V)

= [OL(X; V) +ar(x, u) JR(x, u, v)
(5.4) o, VI, @, VIR, W, a)da
+ [ o (x, a)f (x, u, a)R(x, a, v)do
+J‘J~ R(x: M, B)Or(x, a)gr(x, ﬂ’ a)R(x’ a, V)dadB,
g; TO(X: M) - - OL(x, u)To(x, M),

Eo(%s W) == o (x, w)E (x, W),

I~ %I

T(x, u, v) = [ T(x, u, a)a, (x, V)£, (x, @, v)da
= T(x, W, v)o, (x, v)
+I Tx, u, 9)o_(x, B)g (x, a, BIR(x, B, v)dads’
+ T, W) o, (x, V)£ (x, u, v) +] 0. (x, a)
8.(x, 1, a)R(x, a, v)da] ,
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S t(x, W, V) = [ 0.(x, 0)E(x, u, at(x, o v)da

= o (x, )t(x, u, v)

+[[ R(x, v, a)o_(x, B)g.(x, a, B)t(x, P, v)dadB
+t_(x, v) [o..(x, V£ (x, 4 v)

+ [ R(x, u, a)o (x, v)g.(x, 2, v)da]

-

%; r(x, u, v) = [[ T(x, u, a)o_(x, B)g.(x, @, P)t(, B, v)dads
+ T (%, 1) [ o (x, @)g.(x, B, O)t(x, @, v)da
+t (x, v) [ T(x, u, @)a,.(x. v)g.(x, @, v)da

+0(x,V) (8, (%, 1, V)T (%, w)e (x, v),

The initial conditions are

. 5)R(O, M, v) = r(0, W, v) = T(0, u, v) = ¢t(0, u, v) =0,

T (0, u) = t (0, ») = 1.

We see that T (x, u) gives the fraction of the neutrons
of energy v incident to the left that leave the reactor with—
out entering into any fission reactions, and to(x, W) rep—
resents the similar fraction for neutrons incident to the

right. While these rather formidable—looking equations are
difficult to obtain directly from physical considerations,

HIfit

they follow from our operator equations (1.2) with sur—

prisingly little mathematical manipulation.
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6. REMARKS

We have given an axiomatized description of one—
dimensional transport processes and have shown how our
axiomatized system leads to the desired algebraic and
differential equations of transport theory. One could
also start with the differential equations (1.2) of the
transport process and then verify the algebraic equations
(3.4). This approach has been used by Redheffer [8].

In Sec. 5 we used the generalized invariant—imbedding
equetions (1.2) to describe an energy-dependent neutron—
transport process. We remind the reader that when we
consider neutron transport processes, ~ir formalism deals
only with rods of less than 'critical length.'" When a
rod reaches critical length, an infinite number of neutrons
is produced, and the fluxes can no longer be considered
as elements of the Banach space X . To compute the
critical length by the invariant—-imbedding method, we
find the point where the solution of the first equation
of (1.2) becomes "infinite,'" as described in [1] and [3].

We conclude by remarking that our mathematical method
of approach in this Memorandum is based on the idea of
applying the invariant-imbedding concept to families of
operators. It seems likely that this technique may have

further applications in the domain of mathematical physics.
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