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LIST OF SYMBOLS

One half the distance between the 3ource and
sink of the Rankine Ovoid

Maximum radius of body

¥oment coefficient = T_‘!“""
3PC21.'b22
Constant unifoirm stream velocity
Maximum diameter of body

Proude number based on length = ;ég

Porce vector

Distance of suurce or sink below tih:z wndis-
turbed fluid surface

Acceleration of gravity

Modified Bessel functions of the second kind
(Reference 13, p. 718)

8/(:2

h function cdefined on page 15

Over-all length of body

¥onents

The strengtr of a source {a source of strength =2
emits a volume ¥xm per unit tixze)

Placed before an integr2l sign means that the
Caucny principsl value of the integral is to
be taken

Resultant fiuld velccity vector at tiie location
of & source Jue to all other svurces

¥agnitude of components of § in x, y, z direc-
tions. respectively

Radial distance

Magnitude of components of local velocity in x,
¥, z directlons, resguctlively

Rectsngular cocrdinates

deptsn of ceaterline of tody _ f
cicmster of begdy [\

lengtni of body

rd
- &
diameter of budy &

distance between source and sizk _ 22
iength of body N

N s T — S =
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A parameter

Cnristoffel number used in numerical quadrature
formula

Strength of doublet
Mass density of fluid

Velocity potential (u = - .g%, vV = -gL;, W= g_.g)
20
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TRE SCHENT ACTING OR A RANKIGE OVOID MOVING UNDER A FREE SURFACE

by

Hartley L. Pond

ABSTRATT

The momerd acting on a Rankine Ovold moving under the free sarface o a
fluid of infinite depth is calculatcd. In order to account fur the effect of the waves
formed by the motion of the bady 2 correction is given in the form of a2 second

approximation.

INTRODUCTION

In the calcalatlion of the resistance of bodles moving belox a free

surface, it is usually assumed that the singularity system (sources, sinks,
doublets, etc.) used to represent the body can be taken, as a first approxi-
zaticn, to be the same 3s the singularity system representing the body in an
unboundad fluid. In the present report, it is shown that in calculating the
moment acting on a2 boldy moving below a free surface, 1t is necessary to mod-
ify the singularity system to account for the waves formed by the moticn of
the body. To the order of approximation considered in the present report the
rodification of the singularity system is suck that it gives rise only to a
couple. That 1s, there is no change ir. the horizontal and vertical forces
acting on the body.

THE FIRST APPROXIMATION

With the usual assumptions that the wave slope is small, and that
the velocity (due to the wave motion) of the fluid particles is sufficiently
small so that the square of this velocity can be neglected in Bernoulli's
equation {Reference 1%, page 1) the velocity potential of fluid motion (for
an incompressible, non-viscous fluid) due to a source (Reference 1, page UOU)
located below the free surface of a uniforam stream of infinite depth is (Ref-
erence 2, page 3)

*Pefererces are listed on page 17.

e

e

[

W v AR ¢ s

PR 1.« 4 L TR & 5 RS SRR R

ThNemsn he v 2 ouae s

Mt oo ants g W




-

- .

adeprigper

LI

x

1 rresmynpny
'

B

+ ‘m
Gty
i

TEgewe oo L

rs

bk m .§ -5lf-2)
m _m e z“are cos(kxcos@)cos(kysind) .
°

Hx,¥.2) =2 eX + — = — = Pf sec
r, T Ll -’o k-kosec%e

)
* ~kgly—3) nc‘c
- l&k,n! sec?ge ¥ sin(kexsec8)cos(koysingsec?9)de
°

where x,y,z are rectangular coordinates, z positive upwards (the undis-
turbed free surface 15 the xy-plane of Figure 1),

by is the depth of the source below the undisturbed free
surface,

rf i5 equal to xX® + ¥ + (2 + 1)
; is equal to x® + 3% + (2 - £)2

#(x,7,2) is the veloclty potential (u = -—g%, v = -%&L w = -gg—)

u,v,s are velocities in positive x, y, 2z directions,
-c is the uniform strean velocity,

Xe 1= equal to g/c?

g i1s the acceleration of gravity,

T is the strength of *the source (2 source of strength m emits
a volume 4sm per unit time), and

placed before an integral sign means that the Cauchy prin-
cipal value 1s to be taken (Reference 3, page 128).

J

In the notatlion used the source is con-
sidered to be held stationary in a uni-
form stream. This is, of course, equiv-
alent to having the source move with a
ot r2 Lo A unifora velocity through a stationary
filuid. It is of interest to note that

|
‘)’: : the first twc terms of Equation [1]
1’7)”(""1) x glve the velocity pot 1al of a source
," in an unbounded uniform stream.
3 % If a source and egual sink

v om

e
”

27— Location of Source are placed a given distance apart on a

line parallel to a uniform stream in an

infinite fluid, the resuiting fluid
Pigure 1

motion is that for the flow of a uni-
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P form stream about an oval shaped body
_g called the Rankine Ovoid (Reference 1, page 411). If the source and sink are
;*‘ near the free surface of a uniform stream the motion is that for the flow of
3 a uniform streaa (with a free surface) about a "distorted” Rankine Ovoid. The
i
B - - e




- A A et s 88

|

distortion 1s small when the source and sink are sufficiently far from the
free surface of an infinitely deep stream. Using Equation [1] the velocity

potential of the fluid motion about the "distorted” Rankine Cvoid with source
at (a,o,-f) and sink ai (-a,0,-) is

olx,yz)=ex+2 -2 B ., B

-k(f-1) -
_ lUxem Fsec"’& 40 Le cus [k{x a)cosf]cos(lqsine) dk
0 k-kgosec*@

b4
- Qkomj?sec%e- kols-s)eec?e sinfky(x-a}sec@®lcos{koysindsec0)de (2]
(]

bk ,m

=

o

) 3sec?040 f‘e’“’ -Deos [k{x+a}cos 0]cos(kysin ) dkc
o o k-kosec2@

;4

+ llk,,mfsec"’Oe*h‘!-"“‘z' sin[k,(x+a)sec@lcos{koysindsec?0)do
where, in addition to terms cdefined for Equation [1]
r? = (x-a)® + ¥ + (241)?
2 = (x-a)® + ¥ + (z-f)?
r2 = (x43)® + ¥ + (241)°
2 = (x5 + 7 + (22

Tne first three terms of Eguation [2] give the velocity potential of a 3ource
and egual sink in an unbounded unifora stream.

Lagally's theorem*’® may be applied to obtain the moment acting on
the above "distorted” Rankine Ovoid. This theorem states that the forces act-
ing on a body whose surface 1s a closed stream surface of the fiuid motion,
are given by the vectors

F = 4xpng

where m is the strength of a sourze internal to the stream surface,

G 1s the resultant fluid velocity vectcr at the location of the
source due to all other sources (its components in the
x, y, z directions are q ., q_, qz), and

p 1s the mass density of the fluid.
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Thus, the force has the direction of -q and its iine of action passes through
the point at which the 3ource is located. Each term of Equotions [1] and [2)
zay be considered as the velocity potential due to a certain source or distri-
butlon of sources. Applying Lagally's theorem, the vertical force acting on
the "distorted" Rankine Jvold through the point (a,s,-f) is

2(a,0,-f) = -4mpmq (a,0,-f) (3]
and the vertical force acting on the body through the point (-a,o,-f) is
Z(-a.0,-f) = -lUxp(-m)q,(-2,0,-f) 4]
Since there are ro other internsl sources for this body, Equations {2} and {U]
give the only vertical forces acting on the body.

Carrying out the partial differentiations indicated in Equations [3)
and {4], the following expressions are obtained

[ Liym =z s -~2fk
Z{(a,s,~f) = -U=mpn 2. ] + 2 PJ"seczOdo —-ki————-dk
TSI EIOZ R B *k-k, sec?0
Nk.m f sec?d d‘fke“l*cos[Zakcon] dic (3]
k-kesec®@
=
- 4iZr| “sec*@e-Mtorec?¢ s1n|2ak seco)a0
r 4.2
- - __r fm _ (4 2 ko'____
2(-2,0,~T). mtpm{ r2 T + F] sec Odoi"-k e dic
lbk'm 3
2 -2
P sec“’OdOj‘ke feos[2akcos 6] dk [41]

k-kgsec?@

®
- l&kﬁmfsec‘d s fteseete gy [2ak,sec OIGO}
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Hence, the moment acting on the body about the center of buoyancy,

¥ = afZle,2,-f) - 2l.a,0.-7)]. 1s

- *
M - 32:pam"’k§f’sec‘0e k%90 1n(2akosec8]d0 {53
[ ]

(In the above notatim a positive moment acts to raise the nose of the body.)
Making the substitution t = tan®, this eguation may be written as

2k (1ne?
M = 32mn2k§r (14£2)e V2" sinf2akViete Jet
0

Por Rankine Ovoids with sufficiently large length-diameter ratios

2

where b is the maximum radius of the Rankinz Gvoid. With this substitution

the expression for M, becomes

* 2t
e (1]

N = xpb*ciq(2ake )e-m,L z(‘|+t2 )sirz(?ak,l’1«n~t2 jat  [5%)

THE SZCOND APPROXIMATION

Equation [5] gives the moment acting on a "distorted™ Rankin- Ovoid.
To obtain a closer approximation to the moment acting on an undistorted
Rankine Ovold placed belox the surface of a uniforam stream the simple distri-
bution of a source and ejual sink on the axis of the closed stream surface rep-
resenting the Rankine Cvold must be modified. This might be done by an exten-
sion of the method of imiges as applied by Havelock in the case of a circular
cylinder. This method would regquire finding the image system of sources with-
in the closed stream surface due to the source system above the free surface.
However, Instsad of attempting to obtain this image system oexactly an approx-
imate image system will be sought.

it has been shown by von Kdrzdn® that for a body of revclution with
its axls parallel to a uniform stream the effect of superimposing a flow per-
pendicular to the axis may be obtained approximately by a suitable éistribu-
tion of doublets (Referemce 6, page 12) along the axis ¢f the body between the
limits of the source-sink distributlon which defines the body in the unifora
stream. The doublets are oriented so that their axzes are opposite in direc-
tion to the transverse flow and their strength per unit distance along the
axis of the body 1is
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whers r 1s the radius of the body at the position of the doublet, and w is the
superimposed transverse velocity.

Therefore in the case of the Rankine Ovoid moving beiow a free sur-
face, the effect of the velocity induced by the free surface may be accounted
for by a suitable distribution of doublets along the axis of the siream sur-
face betweon the source and sink. It will be apparent that for the calcu-
lation of moments (u_e below) only the vertical component of the induced veloc-
ity need bz considered. This vertical velocity is obtained from Equation [2]
by mluatm%% at points along the line betuween the source and sink. Since
the vertical velocity does not change very rapidly with depth, this calcula-
tion of the vertical velocity is probadly satisfactory. Por Rankine Cvoids
with fairly large length-dlameter ratios the diszmeter of the body is nearly
constant in the region between the source and sink. Thus, as a further sixpli-
fication, the radius r in Equation [6] will be considered constant and egual
to the maximum radius of the boéy. The desired doublet distridbution is now

glven by
A= .%bz- (7]

where b-1is the maximum radius of the undistorted Rankine uvoid, and w is the
vertical component of the induced velocity calculated from Equat:on [2].

An application of Lagally's theorem shows that & body whose surface
is a closed streas surface of the fluid motion experiences a moment if the
axis of any internal doublet is normal to the direction of a superimposed uni-
fora streaa. {The doublet, however, causes no resultant force on the body.)
This xozent is given by (Reference 5, page 13)

N = ~Umpic (8]

where p is the mass density of the fluid,
& 38 the duublet strength, and
¢ 1s the uniforna streem velocity.

Hence, from Equations {7} and [8) the moment per unit length for the Rankine
Ovold (due to the unifcrm streem c) has the algebraic sign of the vertical
velocity and 1s given by

M = 2mpcdiw (9]

i




and the total moment® on the becdy is

M = 2mb2£l dx (10

where, using Equation [2]; the velocity w is

w

w(x,0,-f) = - O“X;y,z)_
XaXx
y=o0
2w ~f

/2 ]-:/2

2fm{(x-a)® + (2f)2 ] -2fm[(x+a)® + (27)°

[

o+

ukom ; - -ofk _

% PL SeCZOdGI ke-*ftcos[k(x-a)cosO] .,
? k-kosec?

[}

ukon Y
= Pfseczodof”‘g cosik(x+a)cos] o,
° k-koSec®s

o+

x
’:kﬁaj’isec‘O e-2rkosec20sin [k (x-a)seco]do
e
»

ui2n|¥sectoe-2f om0 sinjk, (x+a ) seco o

The first four terms of Equation [11] give that part of w which is skew sym-
zetric about x = 0, 2nd the last two the symmetric part. Since che integrals
of the skew syxmetric terms vanish, Equation {10] now becozes

M, = l&mbzlﬁm{ffsec%e'mo"‘“sin[ko(x--a)sece]do éx

2}

-D’sec‘de-zﬂc""'sin[ko(x+a)sec #1d0 dx
]

The double integrals in Equation {12] may be expressed in z more
convenient form. Consider, for example, the second of these integrals and let

*Tee lozgitxiinel velocily éue 0 thHe wvave syrtem 1s smil compared vith the wiforz sireas velocity
¢ and Is not comsidered In celculsting ¥Mo. In edditiom the mutrsl actices of the sources and dsomdlets
within the closed streaz iurface representing the dody give no reszltant force or mome=: (Befersnce S,
mses T 0 9).
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had - 2z
Iz(x) =§ (12t2le AL 'sin{ko(x+a) V1+t% Jdt
0

Tne second double integral of Zquation [12] can then be written as

~27eg(1+ 1Y)

J, =J:j°(‘l+t2)e sinfko(x+a) ¥1+tZ)dt dx

Interchanging thc order of integration (Reference 7, page 277) the expression
for J, becomes

-2 - 3
J = ﬂje Hret® T2 cos[ic,a V1+tZ])dt

e-2kg

e et Y2 cos[2k,a Yi+t<]dt

o Jo

Designating the first integral of Equation {12] by J,» and proceeding as above,
it is founu that

-2
bl

©_ 2
Je bl Tpr. cos[kea Vi+t? Jat
(4]

Jx= K,

e-mo -20k %
- ‘ e 15 VistS at
ko 0

2
Hence Equation [12] may be written as (putting m = %—9 as in Eguation [5%])

2 [ 22 )
", = um‘czkoe”“’Le M Vit (cos([2Kkea V14€2) -1)at 131

The second approximation to the total moment acting on the undistorted Rankine
Gvold about its conter of buoyancy 1s now given as the sum of the moments
given by Sguations [5!) and {13]. This sum m2y de written as




- ®. 2
mpt Py (2ak, e ""°J: e *" (14t2)sin[2ak Y1+t Jat

+ Umpb o2y o2t fe""‘°" V1+t%(cos[2ak, V1+t7]-1)at (4]

or

A

xpb "2 k,e”ﬂo!.e”f bot? Yi4t? [Zakoﬁ +t° sinf2ak, Vs +t2) (1]
W

+ 4 ces[?a}(aﬁati }-lt]dt

A miment coefficient is given by

.4
C. = — (5]
L —p\.; 2nb°L

wnere p 1s the pass cdensity of the fiuig,
¢ is the unifora stream velocity,
#52 is the maximum crocs-sectional area, and
£ is the length of the body.

Then, for Rznkine Cvoids with sufficlently large length-diameter ratios* the
roment coefficient can be written as

CH = cn! + cnz

- - _ ‘:
= ——|2 st YVizt? {?2 V‘Ia-tzsin[‘i VHt‘]}et

[16]
_2e _2e 2
+ 3—'—?2— e 3FF Yiig? {!«lcos[‘?—i V1+t’] -14} dt

- ‘2’;; ﬁ_l{—tﬁ:?" sin[-€ Vise ]+ ucos[‘ +t ]-u}dt

o¥or the present the terx “sufficiextly large” meams 10 or greater. Rerkize (roids with other lengih-
disneter ratios vill De ixvestigated iz & later report.
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lengih cf body _
diameter f body

<
wnere B = ?T

. Septh of ceaterline of bocy _ f
@ “dfszeter of tody T ar

_ distance between source and sink _ 2a
€= length

Prom Squation {15§ 1t cen be seen that Cn approachas zero as F be-
comes either very small or very large. The iwo cases of low and high speeds
may also be approximated by considering the Lree surface as & rigid wsil for
very low-speeds and by neglesting gravity forces for very high speeds. 1In
each case the moment coefficient is z;ro.

Writing Equaticn {14*] in the fora

2f37~
- < 2f
M=d [Qsl%i“gz%:z ﬁ{ & vt v.nrzts yl*tﬁj
-0 c? i C

+ 4cos[5£§ V1+t2!-4 at

c2

it is evident that fer 2 given length, deptn, and speed t:ane moment M is approx-
imately propnrtional to the fourth power of the diameter for Ranltine Ovoids
uith length-diameter ratios of 10 or greater. The approximation depends on

€. Por a length-diameter ratio of 10.5 € is 0.95 and as the length-diameter
ratio is increased ¢ approaches 1 as a limit.

Tne integrals appearing above may be evaluated eithe~ by numerical
quadrature or by expanding the Integrand in an infinite series ind integrating
term by term. The series expansion is rapidly convergent for F > 1 {i.e.,
for lzrge speeds of advance) while for F < 1 it 1is more convenient to use a
Gauss type quadrature formula. The two amethods are described in the Appendix.

Figures 3 and 4 indicate the values of C! and C Hx + c given
by Equation {16] for a Rankine Ovoid with a length~d1aneter ratio of 10., at
submergences of 1.5 and 2.8 diameters. The dotted line in Pigure 4 shows the
values of c! obtained from the approximate foraula for cn given by Equation

[21] of tne Appendix.
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n

i T {
Wetted Surface Coef., ffacearea of ovold, 4 g7,
0.000 | 0.00000
Prisaatic Coefficient, V“““: :§ 1°"°“ = 0.926 g:g?g g:g;g;z
0.020 | 0.03164
oce l 0.050 | 0.04174
c.08 0.100 | 0.04597
- 0150 | 0.0%696
0.0¢ = 9.200 | 0.04730
oos L 0.250 | 0.04745
+ h / 0.300 | 0.04752
2.02 — 0.350 | 0.04758
/ 0.400 | 0.04760
corif - 0.450 | 0.04761
/ Location of Source (SinK -;-- 0.02386
|1 ‘,4 v 0.500 | 0.04762
[+] 0.05 ‘ P X]
1

Pigure 2 - Offsets of Rankine Ovold with Length-Diameter Ratio of 10.5
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Pigure 3 - Moment Coefficient CK for Rankine Cvoid, Diameter 10.5
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Pigure 4 - Moment Coefficient C, = C C, for Rankine Qvold,
M M, + N,

Length
Placster = 10-5

CONCLUSIONS

The difference between the first and second approxizaticns for the
moment acting on the Rankine Ovoid moving below a free surface indicates that
it 1s essential to modify the singularity system representing a body in an
infinite fiuld in order to account for the effect of the waves formed by the
motion of the body if the correct moment acting on che body is to be obtained.
To the order of approximation consldered the modification of the singularity
system is such that 1t gives rise only to a couple.
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APPENDIX
EVALUATION OF INTEGRALS APPEARING IN TEXT

As mentioned in the report the integrals appearing in the expres-
sions for moments can be evaluated either by numerical quadrature or by expand-
ing the integrand in an infinite series and integrating term by term. An
efficient method of numerical gquadrature for integrals of the type required is
given by the Gauss-Christoffel formula

o n
[(etotax = 3 nelx,) 1)
i=0

where the xi's are roots of the Hermite polynomials of the ath order and the
Ai's are called Christoffel numbers. The theory of this method of numerical
quadrature is given in References 8 and 9, and tables of the x,'s and A,'s
for various values of n are given in References 10 and 11.

Since the xi's are symmetrically spaced on either side of x = 0 and
the Ai's are symmetric about x = 0, the formula can be used when G{x) is sym-
metric for the evaluation of integrals of the fora

J e":G(x)dx
-]
In this case only the positive xi's of Ejquation |17} are taken.

As an applicatio. of this formula ccnsider Equation [16] for the
momeat C,. Making the transformation

|
p=V§—;’:t

8

the resulting expression for CH is

Cy = s!:e”zG(p)dp 18}
where s = e
28%eVw
2a
w = —_—,
BF
o o AN S —— e e




1

G(p) = 6°siné + 46(cose-1), aad

As a particular example consider the Rankine Ovoid described on
page 10 and let the Proude number be P = 0.7 and the depth of submergence be
1.5 diaxeters. The constant s is equal to 0.0034808, and applying the quadra-
ture formula (witn n = 4} the result is*

Cy = O.OOSMSOB[AOG(po) +AG(p)+--- 4+ A‘G(p‘)]
= 0.0034808 [0.36012 6(0) + 0.43265 6(0.72355)
+ 0.088475 G(1.4686) + 0.0049436 G{2.2666) + 0.000039607 6(3.1910)]
= 0.0034808 [-2.5525 ~ 7.3905 - 3.5838 - 0.037864 - o.ooou739u}
= -0.047217
Repeating this process for n = 7 the result is c! = ~0.047207

No general expression for the error in this method of gquadrature 1is
avallable. However, for the case considered here, a2 check can be obtained
since the integral can be expressed as an alternatirg serles from which the
correct answer may be determined to any desired accuaracy. This series expan-
sion is discussed in the next few paragraphs.

The correspsnding series expansion for cn is odtalned by expanding
tne integrand in an infinite series anc then (since the series is uniformly
convergent) inverting the order of integration and summation. Thus, substi-
tuting the series

m?{i e sm[—‘— ﬁ:?] + tcos| < »ﬁ:ez] -u}
P 72 Lp2
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in Euuation [i6], the result 1is

28 .2 2nel

_.3.2{ < . . - :
B S o e e o
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Havelock has observed (Reference 12, page 28Y4) that integrals of the form

© PIX D!
..J' et {1+t2) ¥ gt

LZ&*]
[}

where n is an integer, can be expressed in terms o modified Bessel functions
of tne second kind of orders zero and one. One procedure for doing this de-

pends on the formula*

2341 <
oy = [ €7 0005 T =D featrar2) T gt
i~ 22-3
- B2 e T e

For 2n+Y = 3 this formula gives

-~ i -~ _1/2
L =J e (14t2)¥ % at ’L'lj e (1+t2)%at - l—j e {14t2)  dt
3 [+ Ti 0 2" 0

_ 1+7n L
- TLx 2n L-x

and continuing the procedure,

. 2+11L3 -

L = —
5 n

3
2n Ll

_nn . 2n-1
=™ Lo~ 2n
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Hence, frow L, and L., all the other L's mey be determined. The transforma-
tion t = sinhu applied to the integrals for L, and L_, trensforms them into
known expressions for modified Bessel functions of the second kind K, and K,

_ (Reference 13, nuge 181). The result is

L= 715‘“[‘0("21) + xx(%)]

Since the functions K,(x) and K (x) have been tabulated,'’' the L-
functions tan be determined. The expressiocn for c! now becomes

asl j_(_)_)_(rz Lyoes Za) [20]

Por the same example ccnsidered on pages 13 and ili the sum of the
first 11 teras of this serles s -0.0472070 and the 12th term is -0.0000007.
Hence to 4 significant figures the value of Cy 18 ~0.04721. This shows that
the quadrature formula with n = 7 gives the correct answer to ¥ significant
figures and for n = ¥ gives an answer that 1s only in error by 1 in the fourth
significant figure. Since 3 significant figures give sufficient accuracy for
any application, the gquadrature formuls with n = 4§ was used in caleulating the
results given in Figures 3 and 4.

Noting that the term for n = 2 is zero in the series [2G] 1t appears
that, for sufficiently large P, the rirst term of the series may be a good
estimate of cn. flgure 4 compares th2 correct (:,l with the values obtained
from the first term of Equatlon [20] for a Rankine Ovoid with a length-diameter
ratio of 10.5 submerged 1.5 diameters and 2.8 diameters. The figure shows
that for Proude numbers F greater than 1 the first term of Equation {20] is &
good approximation to CH.

Thus for valces of the parameters not too different fron those in
the example, the approximate value of the moment cosfficient for Rankine
Ovolds is

Cy = - % w2t [uk,(%) + (1+0)K1(§)] 21}
where @ = e
APz
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