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LIST OF SYMBOLS

a One half the distance between the 3ource and
sink of the Rankine Ovoid

b Maximum radius of body

C, Moment coefficient N 1
5pc r.bt

c Constant uniform stream velocity

d Maximum diameter of body

F Froude number based on length

F Force vector

f Distance of boirce or sink below thkc ixndls-

turbed fluid surface

9 Acceleration of gravity

K0 , K, Modified Bessel functions of the second kind
(Reference 13, P. 78)

ko 0g/C
2

A function defined on page 15

Over-all length of body

M, M 1 M Moments

m The strengtrn of a source (a source of strength m
emits a volume 4rm per unit tLme)

Placed before an integral sign means that the
Caucny princlpal value of the Integral is to
be taiken

Resultant iliuld velocity vector at tiie location
of z source due to all other sources

-qz Mgnitude of components of 4 in x, y, z direc-
"tions. -respectively

r Radial dLstance

u. v, w Magnitude of components of local velocity in x,
y. z directlons, resp-,ýct_'vely

x, y, z Rectar;nular cocfrdinates
devt,. of ce-terline of body = f

diameter of body d

leth of body
diametere of budy ?

distance between source and si7.k 2a
Slength of body T-



1 A parameter

Christoffel number used in numerical quadrature
formula

p Strength of doublet

p Mass density of fluid

Velocity potential (u - - v = -, &-

2a
COa
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ABSTRAtCT

Tie moomest acting an a Raalune Ovid mong radwr the free arface of a
fluid of indtoite depth Is calemuawd. In osdeg to account fur the effect of the waves

formed by the motion of the body t correcUco is given in the form of a second

UL"IODUCTION

In the calc.-dation of the resistance of bodies mov'ng below a free
I surface, it is usually assumed that the singularity system (sources, sinks.

} dcublets, etc.) used to represent the body can be taken, as a first approxi-

maticn. to be the same as the sinigalarity system representing the body In an

unbounded fluid. In the present report, it is shown that in calculating the
I on-ent acting on a bo~ly moving below a free surface, it Is necessary to mod-

I ify the singularity system to account for the waves formed by the moticn of
the body. To the order of approximation considered in the present report the

modification of the singularity system Is such that it gives rise only to a

couple. That Is, there is no change in the horizontal and vertical forces

acting on the body.

THE FIRST APPROXIMATION

With the usual assumptions that the wave slope is small, and that
the velocity (due to the wave motion) of the fluid particles Is sufficiently

small so that the square of this velocity can be neglected in Bernoulli'$

equation (Reference 1*, page 1) the velocity potentisl of fluid motion (for

an Incompressible. non-viscous fluid) due to a source (Reference 1, page 404)

located below the free surface of a uniform stream of Infinite depth Is (Ref-

erence 2, page 3)

*Pefermces are llsted m Pe 17.

i.



y cx + [ r 2r sec2,dre " cos(kxcos#)cos(k'ysin*) dk
r r 2  W k-kosec2s

- f koJsec 2ek1- "I sin(kxsecG)cos(koysIn~sec 2G)dW

where xyz are rectangular coordinates, z positive upwards (the undis-
turbed free surface Is the xy-plane of Figure 1?).

f is the depth of the source below the undisturbed free
surface,

r* is equal tox + y+ (z + f12

I

*r2 is equal to x + +(z -f) 2

2

#(xy,z) is the velocity potential (u -- 1, v = - ,w =-

u.v,w are velocities In positive x, y, z directions,
-c is the uniform stream velocity,

ke is equa! to g/c 2

g is the acceleration of gravity,
m is the strength of the source (a source of strength m emits

a volume Umm per unit time), and
placed before an integral sign means that the Cauchy prin-
cipal value is to be taken (Reference 3, page 1281.

In the notation used the source is con-

sidered to be held stationary in a uni-
form stream. This is, of course, equliv-
alent to hav.ng the source move with a

Io.*- ---. - -,-I A uniform velocity through a stationary

-- fluid. It is of Interest to note that
the first two terms of Equation [1]/ / * Pt',y.Z)

. give the velocity pot ial of a source
in an unbounded uniform stream.

- - arIf a source and equal sink
-LOceioa of SOQWM are placed a given distance apart on a

line parallel to a uniform stream in an
infinite fluid, the resulting fluid

Figure 1motion Is that for the flow of a uni-

form stream about an oval shaped body

4 called the Rankine Ovoid (Reference 1, page 411). If the source and sink are
near the free surface of a uniform stream the motion is that for the flow of
a uniform stream (with a free surface) about a "distorted" Rankine Ovoid. The

tA

'4-



distortion Is small when the source and sink are sufficiently far from the
free surface of an Infinitely deep stream. Using Equation [1) the velocity

potential of the fluid motion about the "distorted" Rankine Ovoid with source

at (ao,-f) and sink at (-ao,-r) is

O(X,y,z) =cx + '3 + _
r1  r 3  r 2  r 4

- 4kom ec2*d* e-(f- ') co[k(x-alcose]cos (kysine) dk
k-kosec2G

S4kom sec2 -e sin[k,3(x-alsecG]cos(koysin~sec 2 )d[

+4kM _~C2GOde e-k(1*)cos fk(x+a 1'es 0]cos (iysin 0)-
ir P01' jok-k 0seC2e

+4k msec Se 21I0z s in fir. (x+a) sec *]cos (koysinfseC2 #) dG

where, in addition to terms defined for Equation [1]

2 (x-a) 2 + 92 + (z+f) 2

r" (-a) 2 + 2 + (Zf)2

r - (x+a) 2 + 9 + (z+f) 2

r (x+a) 2 + y2 + (Z~f)2

The first three terms of Equation [2] give the velocity potential of a 3ouree

and equal sink in an unbounded uniform stream.

Lagally'a theorem4 ' 5 may be applied to obtain the moment acting on
the above "distorted" Rankine Ovoid. This theorem states that the forces act- I
Ing on a body whose surface Is a closed stre&a surface of the fluid motion,

are given by the vectors T

where m Is the strength of a sour.e Internal to the stream surface,

is the resultant fluid velocity vectcr at the location of the
source due to all other sources (its components in the
x, y, z directions are qc" , andp is the mass density of the Id. •

S~i
I.-- -

"I
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Thus, the force has the direction of -4 and Its line of action passes through
the point at which the aource is located. acjh torm of Eqnuatinns [1] and [21
m.ay be considered as the velocity potential due to a certain source or distri-
bution of so-rces. Applying Lagally's theorem, the vertical force acting on
the "distorted" Rankine Ovoid through the point (ao.-f) is

Z(a,o,-t) a -41gP%(a~o,-f) [3]

and the vertical force acting on the body through the point (-a,o,-f) is

Z(-a~o,-f) - -I4p(-m)q 2(%-,o,-f) (4]

Since there are no other internal sources for this body, Equations [331 and [4]

give the only vertical forces acting on the body.
Carrying out the partial differentiations Indicated In Equations [3 1

and [4], the following expressions are obtained

, 1 u fm 4kom C2 __-2fk_
Z(a.3,-f) .om P' 0 sec2ede* kf dk

4 (aj+ A/ " k. sec2*

4 k•m Ckee-d.Fe- Pcos[2akcos] d
a Jg ? dg 2 dk [3']f T s,. k-kesec2-

- 4k-msec4#e2f&,e- 2 sin[2akcsec,]d,}

r M[ fm 4kom..- eo.. .+4,rm - + ec•,fas:. 'f . e,- k, -e~jý
4[jf2 4(a2+f2)S/2 IrPgsc2d -. ~k

4km -je21 f Jcos [2akcos 0'

k-kosec 9

- 4kemsec 4e'2"faue' sin [2aksec '

ii

I

5.

1 Q

• a • • • • • • s--A
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Hence, the moment acting on the body about the center or buoyancy,

VL= ,=[Z% ? -I a/d.a_-f)1. is

K, 32wPau 4J° sec ee sin[2ak 0sec0]d5

(In the above notatlin a positive moment acts to raise the nose of the body.)

Making the substitution t = tan#, this equation may be written as

M, = 32meaidkj(1+t2)e20Io(101t) s In-t]t

For Rankine Ovoids with sufficiently large length-diameter ratios

b2C

where b is the maximum radius of the Rankine Ovoid. With this substitution

the expression for M1 becomes

pi= zpb'c2ko(2akl)e-2fk "e'0 2'O (1+t 2 )sir[2akeY_+tz]dt 15']3

THE SECOND APPROXIMATION

Equation [5] gives the moment acting on a "di3torted" Rankln• Ovoid.

To obtain a closer approximatioa to the moment acting on an undistorted
Rankine Ovoid placed below the surface of a uniform stream the simple distri-
bution of a source and equal sink on the axis of the closed stream surface rep-

resenting the Rankine Ovoid must Jbe modified. This might be done by an exten-

sion cf the method of Iuges as applied by Havelock In the ease of a circular

cylinder. This method would requL-e finding the Image system of sources with-

in the closed stream surface due to the source system above the free surface.

However, instead of attempting to obtain this image system exactly an approx-

Imate image system will be sought.

It has been shown by von rrina that for a body of revolution with

its axis parallel to a uniform stream the effect of superimpos•g a flow per-

J pendicular to the axis may be obtained approximately by a suitoble distribu-

tion of doublets (Reference 6, page 12) along the axis vf the body between the

limits of the source-sink distribution which defines the body in the uniform

stream. The doublets are oriented so that their axes are opposite In direc-

tion to the transverse flow and their strength per unit distance along the
axis of the body is

__ A ______



where r ls the radius of the body at the position of the doublet, and w Is the
superimposed transverse velocity.

Therefore in the case of the Ranking Ovoid moving below a free sur-
face, the effect of the velocity Induced by the free surface may be accounted
for by a suitable distribution of doublets along the axis of the strom, au-

face between the source and sink. It will be apparent that for the calcu-
lation of moments (see below) only the vertical component of the Induced veloc-
ity need be considered. This vertical velocity Is obtained from Equation [2]
by evaluating1 at points along the line between the source and sink. Sincee5
the vertical velocity does not change very rapidly with depth, this calcula-
tion of the vertical velocity is probably satisfactory. For Rankine Cwolds
with fairly large length-diameter ratios the dianeter of the body Is nearly
constant In the region between the source and sink. Thus, as a further simpli-
fication, the radius r In Equation [6] will be considered constant and equal
to the maximum radius of the booy. Mhe desired doublet distribution Is now
given by

m -171

where b 4s the maxima radius of the undistorted Rankine Ovoid, and w is the
vertical component of the Induced velocity calculated from Equat-on [2].

An application of Lagally's theorem shows that a body whose surface
Is a closed stream surface of the fluid motion experiences a moment If the
axis of any Int erIal doublet Is normal to the direction of a superimposed unL-
form stream. (Te doublet, however, causes no resultant force on the body.)
"This moment is given by (Reference 5, page 13)

= -Ifc [8]

where p is the Mass drfsity of the fluid,
p Js the dzublet strength, and

c is the uniform stream velocity.

A Hence, from Equations [7] and [8] the moment per unit length for the Rankine
Ovoid (due to the Uniform stream c) !as the algebraic sign of the vertical
"velocity and Is given by

Nt 2wpcbw [9]
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and the total mnoment* on the body Is

M2 wpNcbf F.v dx 01

where, using Equation [2], the velocity w is

W =W(x,o,-f) = 0O(x~yoz)

] - X
y0

=2fm[(x-a )2 + (2f )2 f3A2fm (x+a )2 + (2f )2f3/1

+ -gPJ' se d
Ir 0 k-kosec2O

fill
14kom Pseec2,Od gkehjfkcosjkx+a~cas#]

-j O O k-ic~sec 2@

+ i,.r=jfsec'fe 2f~oa~c'sintk0 (x-a )sec 9]dG

- L4M Seec4&ezI4,leZe sin [ke (x+a)seco]df

The first four terms of Equation~ [11 1 give that part of w which Is skew syrn-
=etric about x = 0, and the last two "'he symetric part. Since ,:he integrals
of the skew sy~etric terms vanish, Equation 110] now becomes

Mz=1 6x b 6r214:M If F.s ec 4 Oe4Jko setz@ sIn~ko (x--a)secS]d 9 dx

-j-s ec ee-±fkOsec2esin[kO~x+a~secOide dxJ

The double integrals in Equation 112] nay be expressed In a more
convenient form. Consider, for example, the second of these Integrals and let

OThe loagitz51in I welocity due to the wave syezcn is saU compared with tIhe =Ifor stress Teloclt7
cA =ds zt on sidered !z czlcnlstlig &t. Ir. a&1Ition the =.tml act1cms of t±,e sour-es ind Adlets

vjthin the closed streaz 9=-ftee reprcsmItIxg the body' give zo z-esaltszt force or scor- Ofersme 5,
paez ! to 5).



.L2 fa) =jce~ s in k.(x+a r.A IdO

"The subet'.t1utio t = ta:.4 trasnforz-s this integral Into

1(x) 2(I+t 2 e sin[k o(x+a) V+t-2 ]dt

The second double integral of Equation [12] can then be written as

J 2 =Z.(l+t2 )e , sin[ko(x+a) Vi+t7•-]dt dx

Int-rchanging thr order of integration (Reference 7. page 277) the expression

for J. becomes

J=e----•.f;-zi&V° T cosfkoa Vl ]dt
k. Joý

e-2fke 2f,0,2 V.:
e- e- 1t•7 cos[2koa V+t-W]dtko .0"

Designating the first integral of Equation [12] by J., and proceeding as above,

it is four.; that

ej = k5o cosikoa VT]dt

e -2A otl f I1+t 2 dt
ko o

Hence Equation [121 may be written as (putting m = as in Equation [5'])
4

4rb'c2 koe je-fo' Vit-F•(co°3[2ka V-+-+7 -1 )dt [13]

The second approximation -to the total moment acting on the undistorted Rankine
Ovotd about its c.-ter of buoyancy is now given as the sum of the moments

given by Equations [5') and [13]. This sum may be written as
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= IrPt4 c2k,(?ako)e -WI0Je 2fkOS (1+t2 )sifl[2akY(1+tZ ]dt

+ 141rp; 4c 2 k~e 2fkoJFe f&ot2 V-9t-ý(cos[2ak.f1-+t27]I )dt [4

or

M = ,rpb c ko (406fef-e u'+t- [2ak.V+t- sin[2ak.Vr-+7t2]

+ 14 cc-s[2akoV1-7t]-4]dt

A mcment coefficient is given by

M 115]
CM ~2fb2E

where p i.s the mass density of the fluid,

c is the uniform stream velocity,
irl 2 is the maxi=mum cross-sectional area, and

I is the length of the body.

Then, for Rrnkine Ovoids wsith suf Liciently large length-diameuer ratios* the

moment coefficient ran be written as

. JeD .'or 1+t F- Vpcos[ ný V1+t2 .J4 dt

2a

-~ ~ TV I re57 -~1t2jA4 c sinAti~ -4 d csti7J4

2o ±eprett2 easficF2 ag ~ 0org~e.3~±e~oiswt ~a1t,

d~a~eter 2atiswl eisia~i ae eot
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wr enthof bodywher • =diameter c.o•y=-

depth of centerline of bodv f
~Imter -of U? = d'

distance between source and sink 2a and
length -,

Fg-7

From Equation [16i It can be seen that CM approaches zero as F be-

comes either very small or very Urge. .The two cases of low and high speeds

may also be approximated by considering the free surface as a rigid wall for

very low speeds and by neglecting gravity f.rces fIcr very high speeds. Li

each case the moment coefficient is zero.

Writing Equaticn [14'j in the ft-z'

r if; -2Is 9 2  r_ lreg-

rdg.n yilt -*[ C2s Lg cC!-4:

+ 4cos fi -l+ 4 dt

it is evident that for a given length, deptn, and speed t-e moment M is approx-

imately proportional to the fourth power of the diameter for Ran•ine Ovol$ds

with lergth-diameter ratios of 10 or greater. The approximation depends on

e. For a length-diameter ratio of 10.5 e is 0.95 and as the length-diameter

ratio is increased e approaches 1 as a limit.

The integrals appearing above may be evaluated eithe.- by numerical

quadrature or by expanding the integrand In an infinite series ind integrating

term by term. The series expansion is rapidly convergent for F > 1 (i.e.,

for l.rge speeds of advance) while for F < 1 it is more convenient to use a

Gauss type quadrature formula. The two methods are described in the Appendix.

Figures 3 and 4 indicate the values of C and C - C + C given

by Equation [16] for a Rankine Ovoid with a length-diameter ratio of 10.5 at

submergences of 1 .5 and 2.8 diameters. The dotted line In Figure 4 shows the

values of Cr obtained from the approximate formula for C. given by Equation

?21] of the Appendix.



11

x y -

Wetted Surface Coef.. Surface area o ovod 0.972
0.000 0.00000

Prlsatir Coefficient, Volume of ovoid 0.926 0.005 0.01670
r b0.010 0.02374

10.020 0.03164
So0.05o 0.417

0.0 -o-0.100 0.04597

0.0t 0 150 0.o4696
o.O - .- 0.200 0.04730

.o•,- o 0.250 0.04745

0.300 0.04752
0.02 10.350 0.04758

0.02/ II I0.400 0.0476oIl'. _ I _o_, o___o
C)I~~~i~ Locto of Source IS5tVi .02S I. ao o1.46

005 0.1

Figure 2 - Offsets of Rankine Ovoid with Length-Diameter Ratio or 10.5

SMoments Are Taken about Center of Buoyancy

"- II _z 'submer ence2.
S• -OiojImeter

00

*Submergence1-

0 0 Diametero.0.2  L FZZIE Y z-izI I
4 0 1.0 2.0 4.0

I/F a :471c
! I !I I

4.0 2.0 1.0 0.50 0.33 0.25
Frc..;. %umber. F a cAVSI

Figure 3 - Moment Coefficient C for Rankine Ovoid, LengthSDiameter =1.

- . . . . . . . . . . . . . . . . --. . .. ' • • ... i r-T- -" " . . . I • • • • • • •
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I tnts Afe "Yko n about C0"ter of Nuoyan:y

-' -I _,_, _,.---T
1{:j-o.oaf -[ Il,_ ._
3 I I N 1

2.00.0:.

Aprz! t C! !\ i i

.I .............

40 0 tO O.- 0.33 0-5

Figure 4 - Moment Coeffici~t CM = CN, + CM for Rankine Ovoid,
L th = 10.5A

C- Ap~rDzoaaeteC

CONCLUISIONS

The difference between the first and second approximations for the

moment acting on the Ranicine Ovoid moving below a free surface indicates that

it is essential to modify the sng~uhlarity system representing a body in an

infinite fluid in order to account for the effect of the waves formed by the

uotion of the body if the correct moment acting on she body is to be obtained.

To the order of approximation considered the modification of the singularity

system is such that it gives rise only to a couple.
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APPENDIX

EVALUATION OF INTEl1ALS APPEARING IN TEXT

As mentioned in the report the integrals appearing In the expre3-

sions for moments can be evaluated either by numerical quadrature or by expand-

Ing the Integrand In an infinite series and Integrating term by term. An

efficient method of numerical quadrature for integrals of the type required is

given by the Gauss-Christoffel formula

J; G(x)dx = XiG(xi) 17]
4=0

where the xIIs are roots of the Hermite polynomials of the nth order and the

X Is are called Christoffel numbers. The theory of this method of numerical

quadrature is given in References 8 and 9, and tables of the x 1S and X 's

for various values of n are given in References 10 and 11.

Since the x Is are symetrically spaced on either side of x = 0 and

the AXIs are symmetric about x = 0, the formula can be used when G(x) is syn-

metric for the evaluation of Integrals of the form

f e-:G (x)dx

In this case only the positive xIIs of Equation 117] are taken.

As an applicatio.i of this formula ccnsider Equation [16] for the

moment CX. Making the transformation

PP2

the resulting expression for CM is

M= -2G(pldp 11

where s -

2ft~e CW

2a

6Fl 2



I.i

G(p) = &2sinG+ 4#(cose-I), acld

As a particular eample consider the Rankine Ovoid described on

page 10 and let the Proude numbe- be F a 0.7 and the depth of submergence be

1.5 diameters. The constant s Is equal to 0.0034808, and applying the quadra-

ture formula (witn n - 4) the result Is*

CM = 0.0034308IG °p 0 ) + k1G(p) + -.- + X4G(p )]

= 0.0034808 [0.36012 G(o) + 0.43265 G(0.72355)

+ 0.088475 G(1.4t8b) + 0.0049436 0(2.2666) + 0.000039607 G(3.1910)]

= 0.00348o8 [-2-.5525 - 7.3905 - 3.5838 - 0.037864 - 0.00047394]

= -0-047217

Repeating this process for n = 7 the result is CM = -0.047207

No general expression for the error in this method of quadrature is

available. However, for the case considered here, z. check can be obtained

since the integral can be expressed as an alternacirg series from which the

correct answer may be determined to any desired acc.iracy. This ser-ies expan-

sion is discussed in the next few paragraphs.

The corresponding series expanslon for CM is obtained by expanding

tne Integrand in an infinite series and then (since the series is uniformly

convergent) inverting the order of interatior. and sumation. Thus, substi-

tuting the series

?1+_t2 {± YVi+ti sin[I-. I'1+tz2] + 4cos[-L - '+-t2] -4}

-= 
- ( 2 n ) ! ( F 2 )

•T. A, -. p. sr :.--•'. f.o .Wefer :e ±i..
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in Eq.uation [16], the result is

CM = e OF S (-1) •n) ") t0  dt 1191
2#2F2 n=1 n

Havelock has observed (Reference 12, page 284) that integrals of the form

L2u+i = Ifl'2{l+t2t)f dt

where n is an integer, can be expressed in terms o modifled Bessel functions

of tne second kind of orders zero and one. One procedure for doing this de-

pends on the formula*

L2,2 (ll+t2) 2 n" 2= t I

- 2n-l 2-3 ) 1 e-
2n-1 e"t 2 (1+t2 dt

For 2n+1 = 3 this formula gives

L :jo e-'f(1+t2)3/ 2 dt r 6"2(1+t2)ldt - -Je-""(l+t2 dt

S1+21 L- 1

and continuing the procedure,

2+17 3

n 71 . 2n-1L"L2. 41 = - - 1 " 2 % - 1 2 ,1 L 2 %- 3

"*T:!.s e- ,t- fo .• =•- • t to t.-e witk.o -by Dr. j.W . Wrencb, Jr. It m y te derived ty tak! -

t:- er.---•.ve --'*:in respect••o t of 2wu1)

t.( !+:• T i -" -- e-1 79

re•--•. :. ttr• - s " -i.n-. t t: -. !.-teg.-a'P.t!g tetvee= the it-.t's 0 ,•u•
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Hence, from L, and L.- all the other L's my be determined. The transform-

tioon t - slnhip applied to thu integrals for L, and L.- transforms then Into

known express3onP, for modified Beasel functions of the second kind Ke and K1

(Reference 13. i~ge 181). The result Is

2

Since the functions Xo(x) and K (x) have been tabulated."'-' the L-
functions can be determined. The expression for C. now becomes

2.

a-K i 82p2 ~ [20]

For the same example considered on pages 13 and 114 the sum of the
first 11 teras of this series 9s -0.0-472070 and the 12 th term is -0.0000007.
Hence to 4 signiflcant figures the value of Ci is -0.04721. This shows that
the quadrature forzm~la with n - 7 gives the correct answer to 4 significant

figures and for n - 4 gives an answer that is only In error by I In the fourth
significant figure. Since 3 significant figures give sufficient accuracy for
any application, the quadrature formula with n - 4 was used in calculating the
results given In Figures 3 and 4.

Noting that the term for n - 2 Is zero in the series [20] it appears
that, for sufficiently large F, the first tern of the series may be a good
estimate of CR. Pigure 4 compares the correct C, with the values obtained

from the first term of Equation [201 for a Rankine Ovoid with a length-diameter
ratio of 10.5 submerged 1.5 diameters and 2.8 diameters. The figure showz
t•.at for Froude numbers F greater than 1 the first term of Equation [20] Is a
good approximation to CM.
the Thus for values of the parameters not too different from those In

4the example, the approximate value of the moment coefficient for Rankine
Ovoids Is

M 64j z 1 42) + (1+)K , []

where 2
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