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MATHEMATICS AT THE RAND CORPORATION

T. A. Brown4

Many mathematicians work at The RAND Corporation. Of

509 professional workers, 14 percent are mathematicians;

9 percent, programmers; 4 percent operations analysts;

12 percent, physicists; 16 percent economists; 28 percent,

engineers; 6 percent, political scientists; and 11 percent,

other (the other category includes anthropologists, psy-

chologists, linguists, and the like). It is clear that

mathematicians or people with substantial mathematical

training constitute a large portion of the staff of The

RAND Corporation. Even of the mathematicians, however,

perhaps two-thirds are not doing mathematics in the sense

of preparing papers which appear in mathematical journals.

They are working on problems in military affairs or economics

or social science in which there is a substantial mathe-

matical component.

Some feel that if people trained in mathematics are

not producing mathematics they are wasting their talents.

Any views expressed in this paper are those of the
author. They should not be interpreted as reflecting the
views of The RAND Corporation or the official opinion or
policy of any of its governmental or private research
sponsors. Papers are reproduced by The RAND Corporation
as a courtesy to members of its staff.

This is the text of a talk given to a group of high
school mathematics teachers at the Occidental Mathematics
Field Day on February 18, 1967.
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When I hear such remarks, I am reminded of J. P. Morgan,

who was the dominant figure in American high finance during

the last half of the 19th century. It is not widely known

that J. P. Morgan was trained as a mathematician at the

University of G6ttingen in Germany. In 1857, at the time

of his graduation, the university's noted professor of

mathematics, Professor Ulrich, took him aside and had a

heart-to-heart talk with him. Professor Ulrich asked

about his plans in life, and Pierpont answered that his

father intended that he should go into business in America.

T1he professor said, with real feeling, that he hated to

see Pierpont leave and that it had been a great satisfaction

to teach him. Under the circumstances, he felt constrained

to tell him that no matter what plans his father had, Pier-

pont was making a great mistake to go into business; he

really should make mathematics his life work, since he had

shown such unusual aptitude in the field. Professor Ulrich's

confidence in the young man's mathematical abilities was

great; and he assured Pierpont that he could promise after

but one year more a position at Gittingen as Instructor in

Mathematics and as his assistant. He said that he would

not go so far as to lead Pierpont to hope that he would

one day succeed Ulrich as Professor of Mathematics-that

would be too much to hold out because Professor Ulrich did

not have the power to choose his successor. However, he

could Fromise, if Pierpont worked hard and showed proficiency

- -.
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in teaching, he would use his best efforts to have him

chosen as Professor when he himself should get so old

that he had to retire. Both Professor Ulrich and Morgan

recounted this incident years afterwards, and to Pierpont

Morgan it was a cause of great satisfaction.

Was Pierpont's training in mathematics wasted because

he became the dominating figure in American economic life

in the last half of the 19th century instead of pursuing

his mathematical career? I don't think so. I believe

that the training he received in mathematics helped him to

separate fundamental issues from extraneous issues in

economic and financial situations and enabled him to be a

better banker and a better economist than he would other-

wise have been.

The subject of this talk is not mathematicians at

The RAND Corporation, but mathematics at The RAND Corpora-

ti-Lu. I am going to speak of the work of the one-third

of the mathematicians at The RAND Corporation who are doing

creative mathematics in the sense of mathematics that is

published in mathematical journals and contributes, in

general, to the mathematical life of this country and the

world. I am going to speak in particular of four categories

of mathematical worký linear programming, dynamic program-

ming, flows in networks, and game theory-- With more time

*The RAND studies cited in the Bibliography present

comprehensive discussiors of these mathematical fields.

--1.
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I might discuss branching processes, automatic categoriza-

tion, radiative transfer, invariant imbedding, integer

progranmning, potential theory and markov chains, or any

of a number of other areas. But I hope that the four

examples I will present suggest at least the flavor of

the work which is done by the creative mathematicians at

RAND. To each of these areas RAND mathematicians have

made substantial contributions.

LINEAR PROGRAMMING

Let us consider a simple example showing what linear

programming encompasses. Suppose that R is a real-valued

function of two variables, which is convex; that is, R

has the property that if t is a number between 0 and 1,

then

R(txI + (l-t)yl, tx 2 + (l-t)y 2 ) < t R(xI, x 2 ) + (l-t)R(yI, y 2 ).

Any linear function of two variables is convex. The square
root of (x2 + X2) is convex and it is very easy to think

ro 2o

of other examples of convex functions. Suppose that we are

seeking to maximize R(xI, x 2 ) subject to linear constraints.

For the sake of definiteness, let us say that one con-

straint is that xI must be positive; another, that x2 must

be positive; another, that 2x, + x 2 L 1; and still another,

that x, + 2x 2 < I What do these constraints mean?

I.2
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Consider the (xI, x2 )-plane (Fig. 1), which I am sure

is familiar to all of you. The condition that xb be

greater than zero means that the part of the plane to the

left of the x2 -axis must be ruled out of consideration in

a search for a maximum. Similarly, the condition that

x2 be greater than zero means that the part of the plane

2i

X?3

"~Xt+ 2X2 < I

S 2xI + xZ :5 1

/X I

Fig. 1 - An example of a linear programming problem
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below the xl-axis must be ruled out of consideration.

The condition that 2xI + x 2 < I means that the portion

of the plane above the line passing through the point

(0, 1) and the point (1/2, 0) must be ruled out of con-

sideration. The final inequality means that the portion

of the plane falling above the line passing through (0, 1/2)

and (1, 0) must be ruled out of consideration. In other

Swords, we are seeking to find the maximum that this convex

function assumes in the convex domain shown in Fig. 1.

The condition that this function be convex means that

Sthe maximum must be achieved on one of the vertices of

$ this convex region. To illustrate, suppose the maximm

were achieved at some point z in the interior of this

region. Take a line passing through z and intersecting

the boundary of the region at points x and y. Now z

would be a weighted average of x and y-that is, we would

have z = tx + (I - t)y for some 0 < t < 1. Because of the

convexity condition, the value of the function at z must

be less than the weighted average of the vslue of the

function at x and the value of the function at y.

Therefore, the value of the function at x or the value

of the function at y must be at least as great as it is

at z. We see that the maximum must be achieved somewhere

on the boundary. If we take a boundary point, a similar

argument shows that the maximum must be achieved at a

vertex. With these simple inequalities in two variables,
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it is easy to solve for these vertices. Solving the first

two equations gives us (0, 0) as a vertex. Solving the

first and third equations gives us x 2 = 1/2; i.e., the

point (0, 1/2). Solving the first and fourth equations

gives uc the point (0, 1). Solving the other threc pairs

of equations gives us the vertices (1/2, 0), (1, 0), and

(1/3, 1/3).

We need not consider the vertices (0, 1) and (1, 0)

because they are not feasible-they violate one of our

inequalities. We know that the maximum val R must

be achieved at one of the four remaining vertices. We

evaluate R at these four points, and whichever value is

the greatest would be the maximum value which the function

achieves on this convex domain.

This is a very simple process when one is dealing

with two variables and with a small number of inequalities.

But if we had ten variables and twenty inequalities, there

would be as many solutions to consider as there are dif-

ferent ways of selecting ten items out of twenty; that is,

the more than 22 million ways of picking ten inequalities

out of twenty, which is clearly impractical. This is not an

unrealistic problem; in logistics and in chemical kinetics,

problems often involve more than ten inequalities and

twenty variables. How can you tackle this kind of problem?

How can you solve it expeditiously? The answer is that you

do not work with inequalities first, then look at the

i
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objective function as an afterthought. Rather, you let

the way you look at the inequalities be guided by the

objective function. You first find a feasible vertex (i.e.,

one that satisfies these inequalities). Then you consider

(in this case) the ten rays emanating from that point;

i.e.., the 10 one-dimensional simplices obtained by elimina-

ting one of the ten equalities that define the vertex.

You find one of those rays which results in a reduction of

tne objective function. You follow that ray until you

reach another vertex which is on the boundary of the convex

domain of feasible points and repeat the process. It is

not necessary to solve all possible subsets of ten in-

equalities from the set of twenty. Only a subset of them

need to be solved-in a case like this, perhaps forty or

fifty. This would be a hard chore by hand, but it is easy

to do on a digital computer.

DYNAMIC PROGRAMMING

Another technique is known as dynamic programming.

Let ,is assume that we have a function R of ten variables,

which has the following form:

R(xl, x2- ... Y xl 0 ) - gl(xl) + g2(x 2 ) + '" + g0(Xl0);

and thet we wish to find the maximum of this function subject

to the constraint that the sum of the xi is equal to some

fixed value which we will call x. Let us say also that



the xi must all be nonnegative. At first glance, this

may look like just another linear programming problem

because we are asked to maximize a giver, function subject

to linear constraints. However, it is not a lirear p-ogram--

ming probiem becau are not assu-ming that this objective

function R is necessarily convex. If R were convex, this

would be a very trivial problem. One would solve it by

simply looking at the ten points-(x, O 0, ... , 0),

(0. x, 0, ... , 0), (0, 0, x, ... , 0), ard so forth-which

are the vertices of the convex set defined by the equality

Exi = x and the inequalities x 1 > 0, x2  0, ... , x10 > 0.

The maximum of this function must be achieved at one of

these points. So, in a special case where R is a convex

function, the problem is trivial. However, if the function

is not convex, the problem is not at all trivial, because

the maximum maiy be achieved at some interior point, at

some point inside the area defined by this equality and

these inequalities.

There are many traditional approaches to the problem.

If these functions are differentiable, one could try

calculus. This would lead to a system of equations with

the following form:

4
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g1 (x,) - Ž3
g( - gl0 x - ji -0,

i-i /

Ng 2 (xl) - glO(x - _ x~i =

g3 x)- g0 - Ž3 xi)g(l

and so on-a system of nine simultaneous nonlinear equations

in nine unknowns. This is not, in 6eneral, a workable

approach.

A second approach is straight enumeration. We cover

this set with a mesh, evaluate the function at each

point in that mesh (hopeful'y, fine enough that we really

come close to the maximum), --6 simply pick the point at

which the function achieves its maximum. i4 the interval

from 0 to x is divided into 100 increments, we must consider

approximately 3 times 10 11 oints-101 8 divided by 10

factorial. If a computer is able to evaluate this function

a thousand times a second, a solution will be achieved by

this method in about ten years.

A third approach, the dynamic programming approach,

is to exploit the particular structure of the objective

function. A set of auxilia y functions f is defined as

foliows: Let fl of y be simply g, of y. Let f2 of y be

defined as the maximum, as x2 ranges between 0 and y, of

g2 (x 2 ) + fl(Y - x2 ). In other words, f, is * -e maximum

sum of g, -F g2 which is achieved by allocating y units



between the g, and the g2 part of the process. Similarly,

f3 of y is defined as the maximum for x 3 between 0 and y

of g 3 (x 3 ) + f2(y- x3), and so on, to fl 0 of y which is

defined as the maximum for xlG between 0 and y of

g1 0 (Xl 0 ) + f 9 (y - x 1 0 ).

Consider what this process involves. Evaluating f1

at 100 points between 0 and x costs 102 evaluations.

To evaluate f 2 at 100 points between 0 and x, for each

value y it will be necessary to run from 0 to y in

appropriate increments, and on the average there will

be about 50 values of x 2 . For the 100 values of y, there

2will be 50 times 10 evaluations to evaluate f 2 and so

forth for the other f's. Altogether there will be 451

times 102 evaluations, and a computer that can make a

thousand evaluations per second will produce the answer in

about 45 seconds.

There is more to dynamic programming than we have seen

heze. The objective function does not always appear in

this form. Manipulation of the problem into this form often

requires much work and insight. However, I think th-iis

discussion gives you the basic idea, and I think it is

remarkable that such a simple change in point of view can j
result in such a tremendoue economy in operation.

FLOWS IN NETWORKS

The field of flows in networks was originally regarded

as a special case of linear prograraming; but as time went
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on, it was more and more recognized as a separate category

in its own right. Figure 2 illustrates a problem of

maximizing flow in a simple network. In the network we have

a source and a sink, intermittent nodes (A, B, C, D) between

the source and the sink, and directed arcs connecting the

source to the intermittent nodes and evenually to the sink.

Flow over directed arcs is in one direction only, and each

arc has a given capacity. As shown in Fig. 2(a), the capaci-

ty of the arc connecting the source and A is 7 units, the

capacity of the arc connecting the source and C is 3 units,

and so on. With these given capacities, what i3 the maximum

total flow that can be achieved from the source to the sink?

It is quite apparent that we can regard this as a linear

programming problem, with the variables being the flows in

the arcs and the objective function being either the sum of

the two flows going out of the source or the sum of the two

flows going into the sink. -efore, we can solve it by

the regular techniques of " programming. Unfortunate-

ly, the networks met in reaX life (e.g., railway networks,

highway netwcrks', are much more complex than the one in our

example, with so many arcs (often thousands of them) that

linear programming methods are not really practical.

There is a special approach, called the search for a

flow-au&enting path.. which makes a problem of this structure

tractable. Consider the flew going through the network as

shown in Fig. 2(b). The flow zver the arc connecting source

and node A is 4 itema, the flow over the arc connecting



A 6 B

72

3 2

Source < J2 2 *Sink

33

S8 D

(a) Capacities of arcs

A 3+6 B

4+E 2

Source , 
Sink

35+

CJF 7 D

(b) Finding a flow-augmenting path

A 5

Source 
Sink

C7

(c)Maximum flow and a minimum cut

Fig. 2 - Flow in a simple network
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nodes A and B is 3 items, and so on. This is a balanced

flow, since at each node the sum of the income equals the

outgo. Is this the maximum flow that can be achieved? Is

this the most material that can be moved from the source

to the sink? To answe.g that question, the straightforward

and logical thipg to do is look for a way to improve the

flow, to look for what we call a flow-augmenting path. It

is clear that we cannot ship 3nything more through the lower

arc, from the source to node C---capacity is 3, flow is 3.

However, through the upper arc, from the source to node A,

we are shipping only four units, and the arc has a capacity

"of 7. We can tentatively add some quantity e to this flow.

At node A we now have some additional material e which we

want to ship out somehow. The arc to node B has flow 3 and

capacity 6, so we can ship E additional units to node B

along it. We cannot ship it farther through either of the

arcs directed outward (to node C and to the sink) from node

B because they are both saturated. However, the other arc,

coming into node B from node D, has a nonzero flow in it,

and we can ship it from node B through this arc by reducing

the flow through this arc by E. We now have e more material

at node D which we could ship out by either of two ways-

by reducing the flow from node C or increasing the flow to

the sink. If we reduce the flow from node C, we will have

an excess e at C; and since we have already visited all C's

neighbors, this is obviously not the way to go. Therefore,

we increase the flow to the sink by E; and we see that we

- - -- -
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have what is called a flow-augmenting path for the flow in

this network. The path permits augmented flow, but by how

much? How big can we make e? We can obviously make epsilon

as big as 2. When we replace e by 2 (Fig. 2(c)), the flow

from the source to node A becomes 6; from A to B, 5; from

B to D, 0; from D to the sink, 7. We can see that we now

have a maximum flow through this network by considering the

dashed line shown in Fig. 2(c) and examining the flows

across this line in the directioi from the source to the

sink. The flow through each arc crossing this cut from

source toward sink cannot be increased. Therefore, it is

clear that there is no possible way of increasing the flow

from the source to the sink beyondo that shown in Fig. 2(c).

One of D. R. Fulkerson's great contributions to this

subject was his disc3very that a flow x in a network is

maximal if, and only if, there is no flow-augmenting path

with respect to x. That is to say, if the flow in a network

is not maximal, a flow-augmenting path can always be found.

Any nonmaximal flow whatsoever through a network can always

be improved into an optimal flow by adding flow-augmenting

paths. The search for a fl)w-augmenting path is a much

quicker and simpler process than the solution of linear

equations or finding feasible points with respect to

linear inequalities.

The algorithms created and programmed for solving

flows in networks problems are applicable to many areas

I't



I -16-

of operations research. (The February 1966 article by

Fulkerson, which is cited in the bibliography, gives details

and examples of such applications.)

GAME THEORY

As a simple example of game theory, consider a situa-

tion in which a boy wants to steal some fruit from a farmer

who has an apple orchard and a watermelon patch. During

any given night, the farmer can choose to guard either

the watermelon patch or the apple orchard. The boy

also has two choices: During any given night, he can try
to steal either apples or watermelons. If the farmer is

guarding the apples when the boy tries to steal apples, the

boy will get nothing-he will get no payoff. But if the

farmer is guarding the watermelons when the boy raids the

apple orchard, the boy will get apples-he will get a payoff.

If the boy likes watermelon three times as much as he likes

apples, we can say that his payoffs from his raids will be

0 if he gets nothing, 1 if he gets apples, and 3 if he gets

watermelons. Figure 3 shows the boy's payoffs under the

four possible combinations of his choices of raids and the

farmer's choices of guard posts.

What strategy should the boy use and what strategy

should the farmer use? Let's draw a graph here (Fig. 4).

Let's say that the farmer has a probability of guarding the

apples which can range between 0 and 1. The boy can use

one or the other of two strategies-Strategy I: raid the
j



Former's Strategies r
I- Guard Apples ]I- Guard Watermelons 1

I-Steal Apples 0 +I

Boy's

Strategies

fl-Steal Watermelons + 3 0

Fig. 3 -A zero-sum two-person game

3 3

0 3/4 0 3/4 1

Fig. 4- Choosing a strategy in a zero-sum two-person game
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apple orchard; Strategy II: raid the watermelon patch.

Following Strategy 1, he gets 0 payoff if the farmer is

guarding the apples and a payoff of 1 if the farmer is

guarding the watermelons. If the farmer guards the apples

with probability p and the watermelons with probability

(1 - p), the expected payoff to the boy (if he follows

Strategy I) will be 0 p + I (1 - p). Following

Strategy II, the boy will get a payoff of 3 if the farmer

is guarding the apples and a 0 payoff if the farmer is guard-

ing the watermelons. If the farmer guards the apples with

probability p and the watermelons with probability (I - p),

the expected payoff to the boy (if he follows Strategy II)

will be 3 p + 0 (1 - p).

The boy wants to make his payoff as large as possible,

of course, so he will make a guess as to the probability

that the farmer will be guarding the apples, then follow

the strategy that has the greater expected payoff. The

crossover point between the two strategies occurs at

p - 1/4 and the value that the boy achieves here is 3/4.

If the probability that the farmer will be guarding the

apples is less than 1/4, the boy should go for the apples.

If that probability is greater than 1/4, the boy should

go for the watermelons. If the probability is exactly 1/4

for a guard on the apples and 3/4 for a guard on the water-

melons, it makes no difference which strategy the boy follows.

If the farmer mixes his strategies in this way, he carn make

J-
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sure that the boy will not do any better than 3/4 expected

payoff.

Let's consider this game from the farmer's standpoint.

He also has two strategies-Strategy I: guard the appl,

and Strategy II: guard the watermelons. He has to make a

judgment about where the boy is probably going to strike.

If the farmer feels that there is a 0 probability of an apple

raid, he will be permitting a payoff of 3 if he follows his

Strategy I and a payoff of 0 if he follows his Strategy II.

Similarly, if he feels that the boy is certainly going to

hit the apples, a 0 payoff will be permitted if the farmer

guards the apples and a payoff of I if the farmer guards

the watermelons. The expected payoff at intermediate pro-

babilities is found, as before, by linear interpolation.

The crossover point here occurs at 3/4, and the payoff to

the boy is 3/4. The farmer is trying to minimize the boy's

payoff. Therefore, if he feels that there is less than 3/4

probability that the boy will hit the apples, he should guard

the watermelons; but if that probability is greater than 3/4,

he should guard the apples. Note that if the boy follows

the strategy of hitting the apples 3/4 of the time and the

watermelons 1/4 of the time, he will always have expected

payoff of 3/4.

It is very interesting that the boy can guarantee

himself a payoff of 3/4 by following this division of A

strategy and that the farmer can be sure that -he boy dues

not make anything better than a payoff of 3/4 by following

I
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his strategy of 1/4 guarding apples, 3/4 guarding water-

melons. The maximum expected payoff the boy can guarantee

to himself is exactly the same as the smallest expected

payoff the farmer can limit him to. This result is valid

beyond these simple 2 by 2 matrix games; it holds true for

an n by m matrix, for example, one with a hundred different

strategies for the farmer and fifty different strategies

for the boy. However many strategies were available to

each, there would be some probability distribution for the

farmer that would guarantee limiting the boy to a payoff

of a certain expected value and some probability distri-

bution for the boy that would insure him an expected payoff

of no less than exactly the same value. This is the famous

minimax theorem of Von Neumann, the fundamental theorem of

zero--sum two-person games. This very striking result, which

puts a value for each player on playing a game of this sort,

makes this kind of game theory applicable to a great many

military problems (e.g., ballistic missile defense, balanc-

ing the hardness of missile silos between the silos them-

selves and the control centers, balancing defense against

missiles and bombers).

However, a great many of the conflict situations that

arise in real life are not really zero-sum games. Let's

suppose that our boy, encouraged by stealing apples, grows

up and becomes an adult delinquent. He and his buddy are

Arrested and the district attorney takes our boy off to



interrogate him separately from his buddy. "Now look,"

he says, "if you don't talk, I'm going to hold you for a week

on vagrancy. But if you do talk and implicate your friend

[in other words, if you cop out and your buddy doesn't, I'll

let you go right away. But, of course, your friend will be

in ja.l for ten weeks." Simultaneously, the assistant dis-

trict attorney is saying exactly the same thing to Boy B.

The payoffs in this game are shown in Fig. 5. If both of

them refuse to talk, they will each spend a week in jail.

If B cops out and A does not cop out, A goes to jail for

ten weeks and B goes free at once, with a symmetric pattern

for the inverse. If they both cop out, they both go to jail

for, say, nine weeks.

B's Strategies

I-Dummy up 1! Cop out

I-Dummy up 0

A's Strategies

Il-Cop out 10 _9 K9

Fig. 5- A nonzero-sum two--person game

I)
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in game theory, this classic problem is known as "The

Prisoner's Dilemma," and it really defies simple analysis,

since so much depends on the conditions in the outside

world. If one of the outside conditions is a syndicate

that kills a squealer very dead within 24 hours after he

leaves the police station, certainly neither of the boys

will cop out. They will clam up as a life or death matter,

spend a week in jail, and then go free. Since Aither or

both of them could get a nine- or ten-week sentence,

probably they are both better off if there is a syndicate

than if there is not a syndicate-perhaps I should say

(I don't want to get into moral overtones) that they are

both better off if they believe there is a syndicate.

This is an illustration of one of the difficulties which

game theory gets into beyond the zero-sum two-person area.

The prisoner's dilemma illustrates the difficulties that

azise when the game is no longer zero-sum, when one player's

gain does not always miean a symmetric loss to the other

player. In other words, when players have co4mnon interests

or comnon fears in a situation, the minimax theorem no longer

applies and the simple solution concept associated with it

no longer applies.

&.-nother kind of difficulty arises with a game that is

zero--s~x=. but involves more than two players. For an

example, consider three players--A, B, ana C-who have

agreed to parLicipate in a shooting match. Player A has

S- --- - Plr li - .... - -- -- -
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a balloon, Player B hias a balloon, and Player C has a

balloon; anu t.ece balloons are equidistant from one another.

The players aecide by lot wno will have the first shot. The

player who h1s the first shot takes his pistol and fires at

the balloon of one of the other players. If he misses the

balloon, they draw lots again. If he hits the balloon,

the balloon pops, and the player who is holding it is

out of the game.

The probability that A will hit a balloon he shoots

it is a, the probability !for B is b, and the probability

for C is c. If C's oalloon has been popped and C is out +

of the game, so that A is playing against B, it is an easy

matter to compute PAB' the probability that A will win

against B. There is probability 1/2 that A will get the

shot on the drawing and there is probability a that he will

win with that shot, so there is probability ý,!2 that A I

will simply win at once. However, there is a probability

(1 - a)/2 that he will get the first shot, but will miss.

Similarly, there is a probability (I - b)/2 that B will

get the first shot, but will miss. If either of these

two evients happen, we are back where we started, and A

has probability PAB of winning against B. So we have a

sinple linear equation, and there is n-3 need to go through

the mechanics of solving it here:

AF + + AB

S_____.5..
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The solution is simply that the probability of A winning

against B is a/(a + b), and similarly for any other pair

of players.

When only two players are playing, there can be no

rez btrategy. If you win the toss, you shoot your gun

and hope you hit the balloon. You really have no choice-

you just try to do the best you cnn on each shot and you

make no strategic decisions in the matter. When there are

three players; you do make a strategic decision: You

decide which player's balloon yov will shoot at.

Assume that all players' probabilities of hitting are

known to all the players, and that A's probability of hit-
/

titzg Ls greater than B's, which in turn is greater than

C's. The problem of strategy is thus apparently simplified

because obviously the balloon of the more dangerous opponent

is the preferred target, and a player's probaLility of hit-

ting is the same for it as for the other. It makes sense-

it is good strategy to eliminate the more dangerous opponent

first. We can easily compute PA' the probability that A

will win when all players follow this sensible strategy.

"here's 1/3 chance zhat A will get the first shot. He has

probability a of hit!ing when he shoots. He will obviously

shoot at the balloon of B, the more dangerous opponent. If

he hits B's balloon, he will consider his chances of winning

against C. There are alternatives. Player A may get the first

shot and miss. If B gets the first shot, he will of course

shoot at A's balloon; and if he hits it, A will be out of

.4.
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rhe game--so that contingency can be ignored because it

contributes nothing to A's chances of winning. If C gets

the first shot, C wiill shoot at A's bolloon and if he hits,

that contingency can also be ignored. But if A gets the

first shot and misses, or B geta the first shot and misses,

or C gets the first shot and misses, the situation is the

same as it was originally. This gives the following

equation-

+z
"1P A + •-' "+ "- b- + 1 -CPA

A similar line of reasoring give, *..*,, -:.lowing equations

for PB and PCP the probabilitl-, that B and C win:

B8 + ) S-

C~ PC A iLF A-~ -7-

This system of three linear equations in three unknowns

(the quantities PAC' PBC' and PCA are known) can be simply

solved to yield the following formula; A's probability of

winning will be

a2
A J=+ b +c)(a + c3

B's probability of winning will be simply

bPB "(a + U T 77

and C's probability of winning will be

A. -.
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Sc(2a + c)
cIa +Cb + c)(a- c

Everytning seems highly logical. All is right with

the world. When all players follow a reasonable strategy,

this is the outcome. But let's try plugging in some specific

numbers and see what answers we get. When a has the value

.8, and b has the value .6, and c has the value .4, A's

probability of winning is .296, B's probability of winning

is .333, and C's probability of winning is .370. In other

words, the worst shot has the best chance of winning because

nobody is afraid of him. Nobody is shooting at his balloon.

A and B are gunning for each other, and C is just sitting

back there taking a pop at the big kids when he gets a

chance.

If A and B realize this, they can get together and

say, NWell, look, it's foolish for us to strike against

each other when C here will just clean up after us. So why

don't we make a deal that first we wipe out C and then

we fight each other?" If A and B go after C first, of

course there will be a different system of linear equations

to solve. Solving these new equations and again substitut-

ing .8, .6, and .4 for a, b, and c, yield the following

results: A now has a good chance of winning, .444; B has

a slightly better chance, .465, because C will still shoot

at A's balloon first before shooting it out with B; and

C has only 9 chances out of 100 of emerging victorious

from this gang-up situation.

I- - - --
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Of course, it is possible that the game is structured

in such a way that A and B cannot reach this kind of agree-

ment, although it is hard to see how they could be prevented

from reaching it if they really understood the game in

advance. If collusion with B is not possible, A could use

a strategy that would give him at least as good a win pro-

bability as that resulting from collusion, provided he

could convince C that he really is a very hard-nosed,

"irrational" player. A at the beginning of the game should

say that generally he will follow sensible strategy and go

after B when he gets a chance, but if C shoots at A's

balloon, A will retaliate and shoot at C's balloon. (This

might be called a deterrent strategy.) It might seem that

A would lessen his chances of winning because he would be

attacking his less dangerous opponent. But if his threat

is believed and he thus succeeds in deterring C from attack-

ing him, so that if C drew first shot he would aim at B's

balloon rather than A's, there will be a different system

of equations. Solving them and making the substitutions,

we find winning probability .444 for A, probability .200

of a win for B, and probability .356 of a win for C.

This example illustrates the fact that multi-person

games cannot be properly discussed until adequate information

is provided about the social climate, about the possibilities

for communication, for compensation, and for cxoiitment and

trust. Given this information, one can proceed to the

formulation of a suitable solution concept; and different

zzMr
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solution concepts from multi-person games are appropriate

for different situations. It has been found that many of

, the large games, such as a large market, are actually

easier to solve than the smaller games, In other words,

many of the problems based on real-world situations are

easier to deal with than these created examples.

The theory of multi-person games gives new justifica-

tion for many classical economical theories and provides

new insights into many economic situations. Lloyd Shapley

t of the RAND staff has collaborated with Martin Shubik, an

economist from Yale University, in writing Competition,

Welfare, and the Theory, of Games, in which multi-person

game concepts are used to give some insight about present-

day economic problems.

Recently the Committee on the Undergraduate Program

in Mathematics of the Mathematical Association of America

published its model curriculum in applied mathematics.

This curriculum comprises two options: the physical

sciences option and the optimization option. The latter

option comprises twelve named topics. Three of the twelve

are topics I have discussed today- dynamic programming,

S•inear programming, and the theory of games. Two others

are topics I have not discussed, but which are areas in

which RAND work is cited by the committee: scheduling

problems and nonlinear programming. The fact that so much

of the undergraduate program consists of mathematics which

was essentially created by the small band of mathematicians

~A4 --
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at RAND is a fact which should give us great satisfaction.

It shows that our eye has been on the ball in the past.

Let's hope it stays on the ball. in the future!

awn-
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