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ABSTRACT

- The integrity of brittle elements subjected to time-dependent
thermal and mechanical loads is predicted by means of an algorithm
involving three steps: the determination of the temperature dis-
tribution, the determination of the thermal and mechanical stresses,
and the statistical description of the resistance of the brittle
material, Experiments are conducted on beams and disks under tran-
sient thermal and mechanical loads. The fracture probability-time
curves obtained for these members are very accurately predicted by
the fracture algorithm. The sensitivity of the beam and disk re-
sponse to changes in the elastic, thermal, and statistical strength
parameters is investigated. A combined stress fracture theory for
brittle elements is developed which accounts for a history of ther-
mal and mechanical loading,
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SECTION I
INTRODUCTION

Culminating several years of research in the application and
development of statisiical fracture theory, this report addresses
itself to the problem of predicting the structural integrity of
ceramic elements which are subjected to transient thermal and me-
chanical loading. Our specific objectives were fourfold:

(1) Develop an analysis procedure for the '"thermal shock
response' of brictle materials,

(2) Verify the analysis procedure using simple ceramic
elements,

(3) Develop a combined stress theory for brittle
materials,

(4) Describe the inadequacies or shortcomings of the
analysis procedure.

For reasons that will be made clear, we were unable to respond to
the latter objective.

Before we describe our general method of attack, a few com-
merits appear to be in order concerning the term '"thermal shock."
The sudden cooling, which takes place when a very hot solid is
plunged into a relatively cool liquid, creates tensile stresses
on the surface of the solid which frequently cause cracking. The
exprussion '"thermal shock,' which is usually associated with
this rapid cooling process, seems te be sort of a biological des-
cription of the solid's reaction, In the jargon of the physical
sciences, the rerm shock has come to represent a stationary orx
propagating discontinuity across some surface in a continuum,
This is not what is experienced by a quenched solid which does
not, for example, develop a shock wave. The complications which
attend the study of shock conditions fortunately do not arise in
the rapld heating or cooling of solids. Furthermore, the heating
rates normally associated with leading edges and nose cones are
of a lower order of magnitude than those associated with quench-
ing.
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‘wﬂﬁ@ . The behavior of brittle bodies under transient thermal load-
PO M Y '
vlﬂ% ings has been treated historically as a distinct material property
ST i . N .
. ﬂg called thermal shock resistance. With continuing study it has
. —_ . . . .
¢'17§& become increasingly clear that such behavior is really a composite
V.WAW of more basic physical phenomena. In particular, the broad prob-
SR lem of strength prediction under thermal loading can almost be
R 1.
-gnv viewed as a classic problem in continuum strength analysis. It
13 . .
'-éﬁ is now customary to divide the problem into the following parts:

(a) Determination of the thermal and mechanical
boundary conditions

(b) Determination of the time-dependent temperature
distribution

(c) Determination of the time-dependent thermal
stress distribution

(d) Assessment of the temperature-dependent
strength or resistance of the body.

In the first three cases the physical description of the
processes involved and the methods of approach are well known;
however, there are many analytical and computational difficulties
which make the general problem very .complicated. Oun the other
hand, the latter case is concerned with a failure theory for brit-
tle materials and the physics of this problem becomes a research
subject, quite apart from any possible computational difficulties.
For this reason, we have directed most of our attention to the

strength aspect of the response problew.
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An experimental program was designed to minimize the uuncer=

.

%

tainties which might arise in the temperature and stress determ-

i

Perr

inations. For example, raother than caleulate the temperature dis-
tribution and expose ourselves to possible imprecision in the

characterization of the boundary conditions, we measured the dis-
tribution with thermocouples. To reduce the thermal and mechanical

2
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stress analysis to the simplest possible form, elements were
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sought for which a one-dimensional stress analysis was possible;
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A

we choose a beam subjected to terminal couples and heated along
the bottom surface and a circular disk which was heated around

the inside edge of a concentric hole.

A high purity alumina was selected for our experiments be-
cause of the wide experience accumulated with such materials. This
experience manifests itself in a consistent manufacturing capabi-
lity and in plentiful data for both mechanical and thermal prop-
erties, Some 60 beams and 60 disks were fabricated using Wesgo
Al 995 and each member was exposed to a time varying temperature
input. The beam was subjected, in addition, to monotonically

nondecreasing terminal couples.

The timz to failure for every test was recorded and the dis-
tribution of these times was displayed for each element by a
cumulative distribution curve. The resulting two curves described
the tradeoff between the fracture probability and the failure
time for the beam and disk. The analytical prediction of these
curves required as input the mechanical loading and the tempera-
ture distribution as functions of time, The following scalar

" functions of temperature were also required: modulus of elasticity,

Poisson's ratio, the thermal strain, and the statistical strength
parameters for pure tension. These curves were integrated into

a statistical thermal and wechanical response algorithm which
embraced the conservative assumption that alumina is a series or
weakest link material. It was further assumed that the tensile
distribution curves for the temperatures of interest do not depend
explicitly on time or load history, so that, the effects of

creep, static fatigue, or general fatigue are not taken into
account.

The original program strategy required that all of the
temperature dependent properties be obtained from the literatuve
with the exception of the statistical strength parameters which
we wanted to develop ourselves. Unfortunately, the tension mem-
bers ordered for this purpose were badly warped and had to be
disregarded. Since it was not expedient to correct or reovder
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the tension specimens, we set out to find the 'tension behavior"
that would predict the fracture-time distributions that were ob-
tained experimentally.,

Indeed, we found a set of Weibull parameters which made our
predictions for both the beam and the disk coincide almost ex-
actly with the measured results. This seemed remarkable con-

sidering that the beam stresses were uniaxial and mostly mechanical

and that the disk stresses were biaxial and entirely thermal.
Furthermore, the tensile strength distribution that we assumed
was similar to the stronger results described in the literature.

While this report was being prepared, we obtained a set of
tension data from Southern Research Institute that was generated
for a 99.5 percent alumina using a gas bearing machine. Our as-
sumed tension distribution fits this data precisely.

The agreement between the theoretical and experimental
results for the beam, disk and tension specimen is so close that

it precludes the error analysis alluded to in our fourth objective,

Instead, we have presented a variation of parameters study which
illustrates the effects on the fracture-time curve of a + 10 per-

cent variation in any physical property used in our prediction
scheme.,

In view of the remarkable results obtained in this investi-
gation, we feel justified in claiming to have established the
potential of the statistical fracture theory approach to the
thermal shock problem, It should be clearly understood that es-
tablishing a method$ potential and "proving" its applicability are
very different accomplishments.
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e s SECTION II’

1?ﬂ%§ : THERMALLY AND MECHANICALLY INDUCED FRACTIURE

i;i: 1. INTRODUCTION

;;gg - Procedures for predicting the performance of a structure

k,?%l composed of a brittle material have been presented in our pre-

‘-g%; vious work (References 1 and 2). 1In this section these proce-

,'152 dures are extended to account for time varying mechanical and
A thermal loading and temperature dependent material properties.

Y-

The general concept of a generalized stress is replaced by an
approximate biaxial Weibull type formulation for the 'risk of
rupture," This is a more restrictive statement and that this
is a proper assumption must be justified in each application
of the procedure. Also, new attention is drawn to the role of
the volume of the basic tensile strength distribution specimen
and to the fact that care 1s necessary to ensure that the pro-
cedure is always ylelding at least conservative predictions.

2. ASSUMPTIONS

The applicability of the statistical analysis procedure
or fracture algorithm in a given situation rests entirely upon
the accuracy of the basic assumptions employed in the algorithm.
For this reason it is desirable to state and examine all the
assumptions that enter into the fracture algorithm,

It is assumed that the probability of failure of a sub-
volume of a brittle structure depends only upon its temperature,
state of gtress and volume. Effects such as creep, strain rate
dependance, stress gradient dependance, static fatigue and
cyclic fatigue are assumed to be fnsignificant if not eutirely
abgent, Surface effects such as surface finish are assumed
to be insignificant and thus the strength of a subvolume does
not depend upon whether or not it is located on the surface of
the structure. ALl the material in the basic tension specimens
and in the brittle structure being analyzed {s assumed to come
from the same statistical population., The mechanical and
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b,

thermal loadings are assumed to be known deterministically.
Also, in the stress analysis of the brittle structure, it is
assumed that the material is homogeneous at uniform temperature,
isotropic and linearly elastic.

The earlier fracture algorithms are very general with re-
gard to describing the strength distribution of a subvolume of
material under arbitrary temperature and state of stress. 1In
fact they are so general as to render them virtually impossible
to directly apply in all but the simplest situations. The
governing generalized stress has to be determined and then the
strength distribution must be determined for each temperature
with no requirement that the distributions be of any particular
form or that the same form be preserved throughout the tempera-
ture range of interest.

In thig formulation of the fracture algorithm, it is as-
sumed that the behavior of the material under a general two-
dimensional state of stress can be adequately described by the
approximate biaxial statistical fracture theory developed in
Appendix I. In this theory, the probability of failure of a
subvolume with volume AV under a biaxial state of stress
O1» 02 is given by

f N

r g \
Faloexp = —%E [f(ol) + 5(02)}) (1)
N !
where gy 20
f(o) = = 3 for o =g,
. Yo . (2)
£(o) = 0 for g0,

This formulation has the desirable property that, for the case
of uniaxial teasion (02 = ), it reduces to the familiar Weibull
form. Consequently all the procedures developed for determining
the Weibull parameters can be utilized - providing that all the
strength distributions are of the Weibull form with perhaps the
parameters varying with temperature. It should Le noted that
the assumption expressed by Equation (1) does not automatically
imply that the material is a pure series material.




When a material is not known to be a pure series material
some additional care must be exercised regarding the size of
the subvolumes into which & structure is divided. The reason
for this is that if a material is not pure series, then a non-
conservative step is performed if the volume of the subvolumes
AV are made smaller than the tensile strength distribution
specimen volume Vv in that the strength of the subvolume is
overestimated. In order to avoid this problem we suggest that
all subvolumes be wmade equal to or larger than the tensile
specimen vol&me, i.e., V>V for all subvolumes.

3. FRACTURE ALGORITHM

The folléwing statement of the fre~ture algorithm, along
with the aforementioned assumptions has ueen devised specific-

ally for the analysis of the structures tested on this pro-
gram.

(1) At each temperature obtain the strength
distribution cuxrve Fu(o) for a tension
specimen of volume V. Fit the distribution
curve with the form

" [o-qﬂm

F;‘;(GJ) had l~exp l- --\';'- N 3

for ozu, 3)

Q
0 this manner the parameters are determined
as functions of temperature: m = m(T), o = o (T)
and g, oO(T).

{2} For each mechanical loading and thermal loading
{temperature distribution) determine the stress
distribution throughout the structure:

a; = ai(x,y,z,t), i=1,2




(3) Divide tha structure into n convenient sub-
volumes V,, Vos..V,. No subvolume should be
smaller than the gage volume of the tension
specimen; V.=V, j = 1,2,...n. Subvolumes

— should be selected with approximately homo-
geneous stress states.

(4) For each value of time t determine the

"worst' risk of rupture for each subvolume Vj:

.

Bij(t) = —j}-{mgﬁ £ [ci(x,y,z,t); n(T), o,(T), Uo(Tﬂ },i=l,2

] : (4)
[0y (x,y,2,0) - 0 (D]
where f = {. ) ] for a;~0,

(5)

=0 foro;<a

1 u

and where T = T(x,y,z,¢) and D; is the region '

in space occupied by Vj. I

(5) Determine the maximum value of each Bij (t) in
the interval O< t<«t @
o
B..(v) mmax B, (t) (6)
}'j( O<tet 4
(6) The probability that the entire structure will
survive the entire environmental history up
to t = 1t is given by

1 - F(x) °=e=<p{-;' [B’fj(r) +ij('r}J\ (7) !
j=1 - l

\
or n '

| ' ks ] !

1 - F(x) ﬂﬂ 3N {‘lB” ) + B,, () (8)
el exp I..j( 2j( J’

where the term

exp {- [B;“j(‘l‘) + B;:j ('t‘)]}

represents the reliability of the jeh

subvolune, l-Fj .




4. EXAMPLE
_ Consider the problem of calculating the reliability of the
circular plate shown in Figure 1 ., Although the plate is as-

sumed to be at uniform temperature and the mechanical loading
does not vary with time, the problem should still illustrate
several of the facets in the application of the fracture

algorithm,
(1)

(2)

Following the algorithm we proceed as follows,

For the purposes of this example, the tensile
strength distribution is assumed to be of the
Weibull type with parameters: m=3.,0, o, = 4,130 psi

and"c0 = 5,610 psi and the tension gage volume is

v = 0.0125 in?

Assuming a linearly elastic, homogeneous
and isotropic material, the radial and
circumferential stresses are found from

elasticity theory te be

r2 - r2 1[11 \2 [rz- ri.?ir 2
o = Sy | [\t Sol T2 2!\3)
To = Ty 4 LYo =¥y (9)
r2 + 1!ri ‘2 r2 + rg ]r }2
On 2 = S 0 + S L )
8 1.2 2 e < PR IS R RO
) i 0 i
For § 6 = 4,956 psi
§; = 4,460 psi
¥, = 4.0 ia
r; = L.0in
h = 1.0 in.
these expressions reduce to
o, = 4.99 - L3P
N (10)
0 = 4.99 + 0‘ﬁ95
r
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Figure 1 Circular Plate with Central Hole Loaded
by Both Inside and Qutside Tensile Stresses
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(3)

(4)

The plate is divided into five concentric
rings with the dimensions indicated in

Table T .

(a) Note that each ring volume is greater
than the gage volume Vv = 0,125 ipn?

(b) The stress state in each ring becomes
more homogeneous ‘when the number of

rings is increased.

Due to the fact that the temperature distribu-
tion is uniform, the "worst" risk of rupture
is computed using the maximum stresses in the
subvolume, The largest radial stress in the
jth ring occurs at its outside radius bj

*o _ _0.495
arj 4.99 T (11)

The largest circumferential stress is found
at the inside radius 3y

4
0.495 (12)

W

J
Thus the components of the "risk of rupture"
for the jth ring ave given by

% n
'} o - g
- i [ i u ]
Bey = 5 (13)
& m
B - Vi [ Ugj - UU
0] v %

The values of the stresses and "risks of
rupture' are tabulated in Table I .

11
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(5) Due to the fact that there is no variation
with time, we have

%* .
= B

r] rj
(14)
B* = B
0] LA

(6) Computing the ring reliabilities

- - - b - " (LS)
1 Fj exp { Brj ngJ

and tabulating the results in Table 1 , the
reliability of the plate is computed to be

5
1-F = 0 (L-F,)
j:al J

= (0.94148) (0.94996) (0.94090)
€0.93674) (0.85015) (16)

a (),670

If the material in ‘he plate is known to be a series
material, we can drop the rvestriction that V.2V . This
enables us to use infinicesimal vings which leads to a reliabilicy
prediction of 0.696. Thus, in chis example, the partitioning
of the plate into only five unit volumes vesults in a faiv
estimate of the total reliability.

13
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SECTION TII
EXPERIMENTAL PROGRAM

1. BEAMS: THERMAL AND MECHANICAL LOADING

a, General Discussion

The specimen selected for fl:ixural testing under thermal
and mechanical loading was a beam 1/2 in. wide, 1 in. deep,
and 10 in, long - made of Wesgo Al 995 material. The test mode
was four point bending with a gage span of 4 in. Because of
the additional condition of thermal lcading it was necessary
to construct a loading fixture which would bridge the heating
apoaratus (Figure 2). Further, loading was done through a
point contact and roller scheme to compensate for any initial
wmisalignwent in the specimen (see detail in upper corners of
Figure 2).

The thermal loading was obtained through the use of two
strip heaters (R I Controls model number 5305-5A). The units
consisted of parabolic reflectovs which were focused to concen-
trate the heat flux onto the tension side of the beam. This
arrangement necessitated protecting the quartz heating element
from broken beam debris with a piece of heavy screen, Aatici-
pating some change in heat f£lux, all temperature distributions
were obtained with this screen in place. Whean preparations were
complete, several beams were broken without the thermal loading
as part of a general check on the system, and the flexural
strengths were found to be in the expected range.

b. Temperature Discribution

The temperature distribution as a function of time was ob-
tained with the use of rapid response iron constantan thermo-
couples and an electronic multiple chaunel willivolt recording
instrument, (each channel prints every 12 sccounds). Six 1/18-iu,
diametey holes were drilled into the depch of the beam frowm the
top side at varying depths of 0.179, 0.314, 0.451, 0.552, 0.727,
and 0.863 in. (Figure 3). The tempuratures were monitored with

[m 15 Preceding page blank
1S 8LANK
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Figure 2 Beam Loading Support and Strip Heater Arrangement
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the beam in place in the test fixture duplicating the conditioms

which would be encountered during the actual testing of the speci-
mens. A refractory brick was notched to the width of the beam to
provide the insulation and shielding required to discourage all but
a pure one-dimensional heat flow through the beam depth (Figure 4).
The recording instrument was calibrated and the thermocouples

were checked in a water bath at boiling point.

Initial trials revealed that the A1203 material exhibited
some transparency to thermal radiation which distorted the
reading of those thermocouples nearest the hot interface. This
problem was dealt with by coating this surface with a thin even
layer of nickel silicate. Four sets of data, each determining
a temperature distribution, were obtained., Each set was checked
against the other to ascertain reproducibility. The temperature
distribution curves are shown in Figure 5.

c. Test Procedure

The test procedure consisted of applying an initial load of
50 1b and energizing the strip heaters at a controlled level of
190 volts for 8 min. After 8 min. the mechanical load was in-
creased at an approximate rate of 500 1b per min. until fracture
occurred, The time to failure is taken to be 8 wmin. plus the
duration of increasing load. The initial 50 1b loading served
to preserve initial alighment and eliminate backlash during
change from thermal to thermal-mechanical loading. A total of
48 veams were tested in this manner. The test machine was equipped
with a load pacer device which enabled the operator to approximate
a predetesmined load race. To compute the actual load rate, the
tiwe from the start of the load increase to final fracture was
recorded for each test and loading rates were determined by divid-
ing the final load minus 50 1b by the duration of the increase.
Consequently, there was a loading rate associated with each test
which deviated somewhat from the target number of 500 lb per win.
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Figuve 4 Refractory Brick Used as Insulating Shield to Protect
the Beam Sides From Radiant Heat
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From this data an estimate of the average loading rate for all
tests was determined as 492.9 1b per min. This number was in turn
used to determine a corrected time to failure.

The statistical significance of these operations is based on
our hypothesis that the mechanical and thermal load histories are
the same for all specimens; this requires that the mechanical
loading rate be the same for each beam. The actual load rates
are not constant and do net, therefore, exactly conform to our
hypothesis. To account for the small variations in loading rate,
we used the average load rate to compute a corrected time to fail-
ure which would reflect the actual failure load. This correction
is possible only because the thermal stresses in the beam do not
significantly contribute to its piobability of failure. (See
Section IV-4).

The beam fracture data is presented in Table II. Column 1
tabulates in ordered form the fracture time recorded for each
test, The loading rate for each test is listed in column 5 and
the average of column 5 which is the average loading rate is de-
termined to be 492.9 1b per min. The corrected time to failure
i1s found by dividing column 4 by 492.9 and adding 8.0 wmin.

Table III presents the corvected and ordered data and Figure 6
illustrate the resulting cumulative distribution.

2. PLATES: THERMAL LOADING

a. General Discussions

The plate specimen wa: made of Wesgo Al 995. The configura-
tion was circular with a concentric l-in. diameter hole. The
overall diameter was 6 in., and the thickness dimension was 1/4 in,

The thermal loading was produced by wmeans of a 3/4-in. diam-
eter silicon carbide heating element (Globar) positioned perpen-
dicular to the plate through its center hole, A purely two-
dimensional heat flow was encouraged by insulating both the top
and bottom of the plate so that the principal heat loss would be
through the outer plate edge. Pictures of this setup are shown
in Figures 7 and 8.
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Table III

A4o03 BEAM DATA - CORRECTED TIME 7O FAILURE
AND ASSOCIATED PROBABILITY

CORRECTED
TIME T0O
FAILURE P
(MIN)
11.290 .0204
11.307 . 0408
1. 459 L0612
11.692 L0816
11.780 102
{1.834 122
11,956 . 143
11.976 . 163
11.997 . 184
11.997 L2048
{2.017 L224
12,037 245
12,037 .265
{ 12.078 ., 286
12,118 306
12. 128 .326
12. 138 347
12. 139 ,367
—_l2.ve | s |
|2.|79‘ _4307
1279 | .
12199 dua |
12,240 . 469
12.311 .49

CORRECTED
TIME TO i
FAILURE P
(MIN)
12, 341 .51
12.342 .53
12. 362 .85
12,392 872
2. 443 .£92
12.489 613
12. 504 633
12,560 653
12, 605 673
12.686 694
12.686 214
12,707 734
12,721 754
12,768 778
12,778 796
12,778 816
12.889 836
12.93. . 857
1ot 876 ]
13.02! 897
13. 03! 918
13.031. .938
13, 225 .978
L 13,256 .98
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Figure 7 Plate Test Arrangement Showing Relationship of Loading
Fixture, Insulation, and Heating Element
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g - The radial loading fixture which appears in all of these photo-

:ﬁ , graphs is present only for the mechanical aspect of the loading
;}g which is disucssed under part 3 of this section. The power input
.§:§ to the heating element was measured and controlled by the use of
'}? o a watt meter and rheostat. The test was completed when catas-
7¢§; . trophic failure of the disk occurred. The time to failure in
:wg each test was the interval between the instant of power applica-
;$ tion and the instant of failure. The gross heat flux incident
&.ﬁ upon the disk as computed using the temperature distribution and
';. material prcperties will be presented later in Section IV-3.
- 5 . b. Temperature Distribution
;Tfﬁ As in the case of the beam it was necessary to obtain a temp-
:$ erature distribution throughout the disc as a function of time
¥ and location. Because of the axisymmetric character of the ther-
= %g mal loading, the location is specified by radius only. A very
5 satisfactory way of monitoring temperatures through the disk con-
: sisted of implanting thermocouples at strategic locations on the
. plate (Figures 9 and 10). This precluded the possibility of in-
\ strumenting each plate tested. Hence it was necessary to obtain
J{ a definitive set of measurements from one fully instrumented disk
ﬁ;: to infer the temperature distribution which existed during all
L successive tests. As in the case of the beam, sowme transpareuncy
# near the inside hole was in evidence and a graphite coating was
T applied to the inside edge of all plates to minimize "see through."
It should be recalled that failure is catastrophic (Figure 11)
Ny in these tests and that the time to failure is variable. Hence,
ﬁ the problem arises of cobtaining a rvopresentative set of temperature

data for a duration of time greater than the greatest time to fail-
ure expected for all tests without having the instrumented disk
fail during this period. The only solution that presented itself
was to "prefail" the instrumented disk. Two pieces were formed

by cracks along the radial direction, See Figures 12 and 13 for
explanatory diagrams showing location of the cracks and thermo-
coupie implants, Several preliwminary tests on plate specimens
gave an indication of what to expect as a time to failure duration,
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Figure 12 Diagram Showing Relative Locations of Thermocouples
and Prefail Cracks
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Using this as a guide, the instrumented disk was monitored for a
time period almost twice that expected. Finally, many tests were
run with this instrumented disk under a variety of circumstances
which served two primary interests. First, that of obtaining a

- temperature distribution which, with a degree of confidence, will
accurately represent the actual distribution in each test speci-
men. Secondly, planned differences such as dismantling setup and
reassembling, immediate reruns without any disturbance and rota-
tional reorientation of the disk with respect to the heating element
gave the technicians experience which was a valuable asset in con-
ducting the unmonitored disk experiments.

The temperature data was obtained as a millivolt reading at
a pavticular time and position., This information has been con-
verted to temperature-time-position measurements and replot.izad
in a manner more useful in the program. The results of these
temperature distribution tests are shown in Figure 14.

c. Fracture Testing

Results of these tests are shown in Table IV and the result-
ing cumulative distribution is illustrated in Figure 15.

3. PLATES: THERMAL AND MECHANICAL LOADING

a, General Discussion

When we formulated our original program strategy, it was con-
templated that the disk element would be subjected to an axisym-
metric thermal loading and a wechanical radial tensile loading.
Unfortunately, the required magnitude for the tensile loading
could not be achieved with the gripping scheme that we visualized.
For this reason, it seemed expedient to consider a radial'com-
pressive loading which would not present special gripping problems.,

Using the radial load fixture shown in Figures 16 and 17,
compressive loads were applied to the disk through various types
of bearing devices. We attempted to approach, as close as pos-
sible, & uniform peripheral loading. Our efforts were simply not
good enough as shown by the photoelastic results in Figure 18,
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Table IV

AE203 DISK DATA - TIME TO FAILURE AND ASSOCIATED PROBABILITY
(Thermal Loading Only)

TIME TO ‘ TIME TO
FAILURE FAILURE
(MIN.) (MIN.)

6.984 9.750
. 766 _ 9.817
.9 9.934
. 967 9.967
. 150 . 10.083
.516 . 10.217
. 667 10,266
. 766 . 10,316
. 850 10. 334
. 000 . 10. 400

9.017 10.716
9.067 10.750
9.216 10.833
9,266 10. 866
[ 2.266 10.917
9,284 11,083
9.300 11,750

9300 12,350
9. 304 - 12. 367

9.u67 12.418
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Figure 15 Cumulative Distribution of A3203 Disk Data (Thermal Load Only)
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Figure 17 Mechanically Loaded Plate (Compression)
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Figure 18 Fringe Patterns Produced in Photoelastic Specimen
Subjected to Compressive Mechanical Loading




Here, we observe not only that the stress distribution is not axi-
symmetric; but, that significant tensile stresses are present.
we shall see, these tensile stresses cause the disk to fail sooner

than the disks without this compressive loading.
quite clearly that a compressive prestress will not necessarily
strengthen a brittle element.
form compressive prestress would not have introduced tensile stres-
ses and would have resulted in an increase in the plate's integrity

As .

This illustrates

We hasten to point out that a uni-

b. Temperature Distribution

The temperature distribution for the disk with compressive ]
grips in place, was obtained in the same manner previously de- !
scribed in part 2b of this section. The temperature distribution
curves are shown in Figure 19. Because 90 percent of the periphery [

was used to approach a uniform mechanical loading, the effective
Comparison with the previously obtain-

heat sink was appreciable,
ed temperature distribution shows a strong shift to lower tempera-

tures for the same time intervals, as expected. l

c. Fracture Testing

The disks were placed in the loading fixture as shown in Fig- ‘
ure 16 and subjected to a mechanical loading and thermal loading,
the latter being superposed on the mechanical loading when it
reached a prescribed level. The time to failure was recorded for ‘
each test and is given in Table No. V. Failure was defined by the a
first audible sound of cracking. The cumulative probability dis-

tribution is shown in Figure 20,
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' Table V

Azz 3 DISK DATA - TIME TO FAILURE AND ASSOCIATED
PROBABILITY (Mechanical and Thermal Loading)

. . TIME TO

FAILURE F e
(MIN.)
3.566 .09l
3.583 . 182
3.600 272
3.917 . 364
4.033 455
4.083 545
4.233 .636
4.583 727
4. 784 .818
4. 800 .91
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SECTION IV
RESPONSE PREDICTIONS

- 1. APPROACH

The central question to which this research effort addresses
itself is: "Can the statistical analysis algorithm be successfully
applied in the case of brittle structures exposed to thermal and
mechanical loadings and, if not, why not?" Specifically, on this
program we seek to explain the results of the beam and disk ex-
periments described in Section III with the aid of the fracture
algorithm presented in Section II.

There are many possible avenues of approach on this question.
The straightforward approach is the most logical and involves
using experimentally obtained basic material property data in
conjunction with the fracture algorithm to attempt to "predict"
the results of the beam and disk experiments. The difficulty
with this approach is that the tensile strength distribution for
alumina, at room temperature and especially at elevated tempera-
tures, has not yet been satisfactorily defined. Each available
strength distribution is probably an underestimate of the true
distribution for alumina. Even if alumina were a pure series
material of the Weibull type and the algorithm was performed
using infinitesimal subvolumes, the use of the available strength

distributions should result in conservative and not exact results.

Thus, the achievement of conservative predictions is not a very
sensitive test of the applicability of fracture algorithm -
especially 1f the material is close to being of the pure series
type as in fact we hoped alumina would be.

The approach which was selected begins by making an additional
assumption that the tensile strength distribution for alumina is
independent of temperature in the range from R.T, to 1500°F. At

a.h" - - '-
oo T o

moderate temperatures some lnvestigators (Reierences 3,4,5,6 and 7)

-

o,

do measure a slight degradation of strength with increasing

Lt

temperature., However, our experience with elevated temperature
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s testing suggests that the experiments cannot be performed with
the same precision as they can at room temperature. Thus, since
a measured degradation of strength at moderate temperatures may
be explained by experimental limitations, the assumption of the
strength distribution being temperature independent may not be

S fﬁ " unreasonable.
f:"f:% Since the strength distribution is assumed to be of the
:'g'ﬁﬂ Weibull type, the assumption of temperature independence requires
_.,fﬁ' that the parameters m, g,» 0, are independent of temperature.
‘ -gﬁ In this approach these parameters are left as open parameters.
ﬂ.”'gﬁ . A trial and error procedure employing the fracture algorithm in ?
fﬂ&l%l conjuaction with the stress analysis is used to attempt to simul- ;
',%ﬁ taneously "fit" both the beam and disk experiments using a single
 @% set of values for the parameters. Using this method, a deficiency :
kjﬂs in the algorithm, experimental procedure, or the temperature in-

“"?3 dependent strength assumption may be observed in two ways. First, }
it is entirely possible that the beam and disk experiments cannot

',};; be "fitted" satisfactorily using a single set of parameters, Sec-
@J ond, assuming that it is possible to fit both the beam and disk
ﬁq. experiments, it is very likely that the resulting strength distri- !
- §§- bution may be unreasonably different from the data obtained from i
‘§.‘?‘ the best strength tests.
M 2. MATERIAL PROPERTIES
‘l,ﬁé The approach just described was successfully employed. Using
"-ﬁi the single set of Weibull parameters m = 3.3, o, = 19,700 psi,
, t} g, = 7,000 psi with a tension gage volume of v = 0.0982 inT,
-ﬁ@ both the beam and disk experiments were satisfactorily "fitted."
J{m?? Using these values the streungth distribution is plotted in Fig-
’7§§' ure 21, The mean strength can be computed to be approximately

32,400 psi. This value tends to be somewhat higher than wost avail-
able tension data and begins to approach the flexural strength data.
However, very recent gas-bearing data by Pears and Starrvett (Ref-
erence 8) achiaves some high meaun strengths in tension for alumina.
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;‘gg When the comparison is made between this excellent data for a gage
volume of 0.031 in? to the derived Weibull type strength dis-

tribution for the same volume, Figure 22 , the agreement is

s

ﬂg;wﬂq;‘¥ﬁ€gﬁ5f:§

-

ﬁfg% seen to be quite remarkable.
. 7&3 — For the remainder of this report the tensile strength dis-
.:; :;; R tribution, in the range from R.T. to 1500° F, shall be assumed
;,ngi to be given by the Weibull formulation with parameters m = 3.3,
.jﬂ%& g, = 19,700 psi and o = 7,000 psi. Furthermore, for the pur-
"fgg pose of illustrating the general application of the fracture

IR algorithm, the distribution curve shall be pretended to come :

from tests on a tensile specimen of gage volume v = 0.0982 in?

The other material properties entering into the stress \
analysis and thermal analysis have been obtained from the litera-
ture. Thermal strain as a function of temperature after Goldsmith, i
Hirschhorn and Waterman (Reference 9) is shown in Figure 23, Mod-
ulus of elasticity as a function of temperature after Dally (Ref- ]
erence 10) is illustrated in Figure 24, Poisson's ratio as a
function of temperature after Coble and Kingery (Reference 11) is
shown in Figure 25. Finally the thermal conductivity as a function 1
of temperature after Goldsmith, Hirschhorn and Waterman (Reference 9)

" is illustrated in Figure 26.

3. THERMAL ANALYSIS

Assuming black body radiation, the heat flux Q impingent l
upon the surface of the beam or disk may be expressed as

Q= -k -8 +o 1 (17)

where k 1is the thermal conductivity of alumina, ~%§ is the

normal derivative of the temperature distribution into the
body evaluated on the surface, o 1s the Stefan-Boltzman con= |
stant and T is the absolute temperature on the surface., Using

—— e

the temperature distribution curves for the beam and disk from |
Section II, Figures 5 and 13 , and Figure 26 for the thermal

conductivity, the heat flux Q can be computed using Equation (17).
The results of these computations are plotted in Figure 27. {
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18.0L- Disk(Thermal Loading Only3
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Figure 27 Gross Heat Flux Incident Upon Beam and Disk
as a Function of Time
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4., BEAM STRESS ANALYSIS
B . The beam prototype structure is loaded, as shown in Figure 28,
o ; by terminal couples M(t) and by the temperature distribution T(z,t)
«lgf induced by the heat flux Q(t) impinging on the bottom surface, The

Ity general solution of the thermal stresses in a beam with temperature

dependent mechanical and thermal properties using strength-of-ma-
By replacing

terials type assumptions is well known (Reference 12).
the term aT everywhere by eg, the thermal strain, and introducing
the mechanically induced bending moment distribution M(t), the stress

distribution cx(z,t) is found to be given by

Pp(t) MTz(t)Y {MTy(t) + M(t);z

o (z,t) = - e E + + +
X\ T A Iz Iy

(18)

where

- Pp(t) = eqBd A (19)

. "

. | | My (t) afeTE.g d A (20)

; y \

. My (t) = fe.rh.y d A (21)
) 2 A

It is observed that, ia this formulation with € replaciag
al, the dependence of the solution upon the tempervature dis-

tribution is now entirely implicit.

Due to the fact that the temperature distribution is in-

dependent of y the following simplifications result:

it . T
\‘}' '\"\"“"‘\"*" \\%w S n*"'"‘?‘:' "s" {""'s.*'«‘




Geometry for Beam Analysis

Figure 28
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MT (t) =0
z d
PT(t) =b J ETE d z (22)
~d d
b{ eTEzdz

§

S My (t)
y

|

. Q;:' 7
ﬁgf§; -d
.

\ :

_igg Noting th~t A = 2bd and I = (2/3)bd3, the expression for the
. “f stress distribution becomeg

FRENN d d

i 2 :

..'Q’ . cxgz,t) = g%éi%—ﬁ - eqk + f%_ J’ epkdz + E§§ epk z d 2 (23)

2 -d -d

Thus, given E&q = eT(T), E = E(T), T(z,t) and M(t), Equation (23)

_5? will yield the stresses in the beam.
XA N
:;ﬁ?; The solution of Equation (23) has been accomplished using
L) a digital computer (Appendix II). Using the temperature distribu-

: tion curves, Figure 5 , the material property curves, Figures 23
and 24, and the velatiouship

vy

o

i M(t) = 59.4 in-lbs for O=t =8.0 min

; 2

; = $9.4 + 535.3 (£-3.0) in. lbs for t 8.0 min (3%
if; the stress distribution is found to be as shown in Figure 29.

: “§ It {9 observed that the stresses are small until after the we-
El_ chanical load begins to increase at the 8.0 min point. Also,
iv} another consequence of the dominating wechanical loading is that
.%3 the stress distribution is v.ry ncarly linear after the 9.0 win

!g“
§% point.
1
pX Figure 30 {llustrates the maximum teusile stress distribu-
tion. It is interesting to note thac, using the mean tensile

strength of approximately 32,400 psi, the deterministic maxioum
stress theory predicts failure at about 12.6 min. From the ex-
nerimental data, Figure 6, the earliest failure occurs at about
11.3 min and the median time to failure is about 12.3 win.
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Figure 29 Stress listributions in Beam Under Thermal
and Mechanical Loading
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5. DISK STRESS ANALYSIS

The disk prototype structure is loaded, as shown in Figure 31,
by a tensile radial stress S on the outside surface and by the
témperature distribution T(r,t) produced by the heat flux Q(t) on
the inside surface. The plane stress solution in the case where
the mechanical and thermal properties of the material are independ-
ent of temperature is well known (Reference 12). One method of
accounting for temperature dependent properties is to represent
the disk as a composite structure of concentric rings where each
ring is thin enough so that the material properties within the
ring can be assumed to be constant.

The analysis of the concentric rings can be readily accom-
plished using the Method of Initial Parameters or Tran.fer Matrix
Method (Reference 13) due to the fact that the geometric and equi-
librium conditions which must be satisfied «t each interface be-
tween rings are automatically fulfilled. In addition to those
parameters defined in Figure 31, the parameters and variables
entering into the problem are:

ep = themmal strain
E = modulus of elasticity
v = Poisson's vatio
T(x,t) temperature distribution
u(r,t) = radial displacement distribution

o.(r,t) = radial stress distribution

}». u. . . - .
Ll

og(r,t) = circumferential stress distribution

o O M

Using a matrix fomm of this method, the stress distributioa in
the disk is given by

Yol

F 2

Nr(r,c)
o (r,8) = —p—
a (r t) - Ng(r:t)
] ? E

3z

» - & -
=2k

.-‘
e

L Ca DGO O R
e n e T e,



N2

Figure 31 Concentric Ring Geometry for Disk Analysis




where

N(xr,t) = ﬁj(r,t) Eﬁ_l(rj,t) M}_Z(rj_l,t) My (ry,t) ﬂb(rl,t)fb(t)

_ (26)
and u(r,t)

Ny €5 8) (27)

1

u(ro,t)

N.(rg,t (28)

O] N(r) (29)

—

(L+v,)eT, ¥
‘r—ﬂr(};—glfn?-‘(mt) dn
X,

j .
hEEqp - X

- JnT(n.t) dy

roT(x, L) Yy
J

1
(30)

o ry \2
7() 51 - (—-}.—-\, (31)

In general Equation (26 ) leads to two nontrivial relation-
ships which may be expressed as

u(r,t) = ug(e) Fy(r,e) + N, (t) Fo(r;t) + Fq(r,t)
(22
Nr(r,t) = uo(c) Gl(r,c) + No(c) Gz(r,c) + G3(r,c)




~ where uo(t) = u(ro,t) and No(t) = Nr(ro,t) and where Fi(r,t)

and Gi(r,t), i =1,2,3, represent the cumbersome expressions
that could be obtained from Equation (26). Now since the
boundary conditions are

0
o

(r_,t)
Mo (33)

Nt(rz,t) = Sh

the two constants of integration uc(t) and No(t) are found from
Equation (32) to be
No(t) =0

uo(t) = G]_Trz:t)

(34)

The system of equations, Equations (25) through (34), has
been programmed on a digital computer (Appendix III), Using
the temperature distribution in the disk, Figure 13, and the curves
for the material properties, Figures 23, 24 and 25, the stress
distribution has been computed as depicted in Figures 32 and 33.
It is observed that the radial stress is always compressive and
hence, according to the fracture algorithm does not contribute to
the probability of failure. The circumferential stress distribu-
tion 15 observed to be compressive near the inside radius and ten-
sile over most of the remainder of the disk.

The maximum tensile circumferential stress distribution is
illustrated in Figure 34, Using the mean tensile strength of
approximately 32,400 psi, the deterministic maximum stress theory
predicts that no disk will fail up to the end of the test at
14,0 win. From the experimental data, Figure 14, the earliest
failure occurs at just under 7.0 wmin, the median is at about
9.6 min and all specimens have failed by the 12.4 min point.




B
PR A

G R o R T

-401—

Radial Stress(10°psi)

t=14.0 min

1213.0

1=2.0

'] A | | T —— 1
05 .0 1.5 2.0 2.5 3.0
Radius (inches)
Figure 32 Radial Stress Distributions in Disk
Under Thermal Loading
64
MLt M o W . o - LI PR PR ) TR T T

LT N P TR N e e 8 i - TR W 55 WO EP i o .
e e T G N A > iy - e L
N N N N N T WA W Y W i ity ”
N W v e ir
u Ayn . vuy ey "ge,




—_ t=14,0min
30+ _______Aﬂg.O\\
—————— ——— =} J
L 7 t=10.0 =&
4 A8=10.0 z P ——
- ; - 1=6. —— ]
A ,’f/ Tﬂ;ég=;
s j ' 1240 =80
i ok
t=2.0
| 7 $=1.0 min
Ry v y i)
aollLllLJ!I!IJIAILII/(lll;;;
s ) -
e
.:; 5 '
o 3
S0/ /]
N
=
w—
& -20f-
bt
13
ey 5
E
: i
- 2 =30
¢ (]
-q0
-50i-
; ‘60 \!1|1lAllllll_\!'lll
t 0.5 l-s 200 2.5 310

] Radius (inches)

Figure 33 Circumferential Stress Distvibutiouns in Disk
Under Thermal Loading

05




Ll
»
Q.

1]
Q

St
w
n
(]
-

-
1]
H)
@
c
G}
-
©
-
c
[
-
ol
o
&
=
3]
o
Q
£
s}
E
»
2]
=2

i

i}

~t2 L0 min

l M 1

l.s

2

0

Radius (inches)

Figure 34 Maximum Tensile Circumferential Stresses in Disk
Under Thermal Loading

oot AT AT S

" B -



: 6. APPLICATION OF THE FRACTURE ALGORITHM

Separate, but similar, computer programs were written for
the analysis of the beam and disk prototype structures (see Ap-
pendices II and III). Each program did the complete analysis of
- its prototype structure, including thermal analysis, stress
g analysis and the statistical analysis employing the fracture
algorithm,

M=

e 1]

-~ ol M WT,

The fracture algorithm described in Section II was designed
especially for the analysis of the beam and disk experiments and
thus no major modifications were necessary in incorporating it
into the computer programs. Steps (3), (4) and (5) are the only
steps in the fracture algorithm that have not already been dis-
cussed or that are not executable in their given foxrm. For con-
venience, these steps shall be repeated here along with a dis-
cussion of how the steps were accomplished in the analysis of the
beam and the disk.

(3) Divide the structure into n convenient subvolumes
Vi, vz,...vn. No subvolume should be smaller than
the gage volume of the tension specimen:

V=v, § =1,2,...0. Subvolumes should be selected

with approximately howmogeneocus stress states.
3

L B o B L e’

o

g - ”
- Iy ior

X e P

o e

i The volume of the tension specimen is 0,0982 in. The depth
of the beam was divided ianto 20 equal scyments thereby creating

3 identical subvolumes of volume 0.100 in The disk was subdivided
_ f into 69 ring type subvolumes, each with a volume of 0.0996 {n°.

) By selecting the smallest volumes possible in each case, the
homogeneity of the stress state in each subvolume was optimized.

-
P g O

(4) For each value of time t determine the "worst'
risk of rupture for each subvolumae V,:
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(5)

= (0 for o= 0,

and where T = T(x,y,z,t) and Dj is the region in
space occupied by Vj .

In the computer programs, it was assumed thet the maximum
value of f always occurred on the boundary of the subvolume in
both the case of the beam and disk. Regarding the beam subvolume,
the value of f was computed at the top and bottom surfaces and
the largest was selected to be the maximum value in the subvolume.
In the case of the disk, f was computed on the inside radius and

outside radius with largest being taken for the maximum in the
ring.

Strictly speaking, the maximum value of £ will not always
lie on the boundary of the subvolume. Now Equation (4) is itself
a conservative statement and thus,when the assumption that £ {is
maximum on the boundary is valid, the results are still conservative.
However, when the assumption is not valid the results are not con-
servative. Therefore it is assumed that, by making the subvolumes
swmall enough, more often than not the maximum values will be at-
tained on the boundary and in this manner the cumulative results
for the risk of rupture for the entire structure will rewain con-
servative,

(5) Detexmine the maximum value of each Bij(t) in the

interval 0= =t

*
B,:(t) = max B,,(t) (6)
L O~tenx 1]

In the computer programs, the value of tire is iteraied by
finite amounts so the problem of determining the maximum value of

.Bi.(t) with respect to time is similar to finding the maximum of

f inm Dj' The value of Bij is computed at each value of time
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and the largest value is selected as the maximum value, WNow the
true maximum value may have occurred at some intermediate value
of time. So, again, an appeal is made to small increments in
order to minimize the error. In the case of the beam and disk,
the Bij's increased fairly monotonically with time and thus the
problem was alleviated since the maximums tended to occur at the
cuxrent value of time.

The remainder of t* task of placing the analyses on the com-
puter was very straightforward. The stress analyses were pro-
grammed exactly as presented earlier in this section. The material
properties that entered into the analyses were incorporated into
the computer programs as functions of temperature. Data in tabular
form was read into the computer and whenever a value between
entries was desired, it was obtained by linear interpolation. The
temperature distributions were read into the computer as two-dim-
enslonal tables and linear interpolation was again used for inter-
wmediate values., In all cases, the tables were constructed so as
to tend to minimize ervors arising from the use of linear inter-
polation,

Flgure 35 is the comparisoa between the experiments and the
"oredictions” obtained from the iracture algorithm. These curves
were wmade using the cowputer programs described in Appendices II
and II1I in conjunction with the material property curves described
earlier in this section. The agreement in both cases between the
experiments and the theory employing the tension data is fairly
remaxkable in that, to our knowledge, no other investigators have
achieved as good an agreement between two sets of experiments -
wuch less three sets as is the case here.




: (,of
x T o0 Beam Prototype A
g - 2 |« Experiment(N=48) 3

: N5 4

@ [ ——Theory N
3 {
=z I
“--50—
. Ay -
| 0O i
a -
. S .25}
. Q L
o U]
o .
0 | l L l A l L ‘ 1 L l 1
O | 2 3 4 5 6 T 8 9 10 1t 12 13 18
. Time to Failure (minutes)
LOf
I Disk Prototype
2 | .« Experiment(N=40)

A S 075“'

- ® - = Theory

N [, "

| .

'S

u—.50L‘

e N

o N

3_'? .

0 2%

L

2 .

S .

a. .
(4] I | | 1 ! - 1 L 1 3
0O I 2 3 4 S5 6 7 8 9 10 W 12 13 14

Time to Failure (minutes)

Figure 35 Comparison of Theory and Expeviment for Beam and Disk
(Using Weibull Teunsile Strength Nistribution with 3
w = 3.3, o, 19,700 psi, o= 7,000 psi, and V.= 0.09821in,




SECTION V
DISCUSSION OF RESULTS

1, RELIABILITY OF RESULTS

We have taken the position in this investigation that we have

not proved the applicability of our fracture algorithm, but, that

we have established its potential for predicting thermal/mechanical

response.

To justify this viewpoint in the light of the amazingly

close predictions, we are obliged to expwose a few of the scientific

shortcomings of our program. The following unanswered questions

all raise doubts concerning the veracity of our results.

(a)

(b)
(c)

(d)

(e)

Have all the materials used in the beam., disks,
and ten~ion specimens been drawn from the same
statistical population?

Is high purity aluminum oxide a series material?

Temperature dependent elas:ic and thermal properties
and statistical strength parameters were taken

from the litverature. Do they reprvesent the material
used in this iavestigation?

What is the magnitude and character of the various
parasitic stresses present in the different test
specimens?

Was the material used in our specimens howogencous;
for example, is the surface and volume matexial
identical?

Without dwelling on the desirabilicy of resolving these
points, let us say that a more ambitious program should address

itgelf to such questions.

2. SENSITIVITY OF RESULTS

Due to the small disparity between the predicted and measured

responge of the beam and disk prototype structures, it is aow
unnecessary to conduct the errodr analysis originally contemplated
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at the beginning of the program. Instead, a variation of param-
eters study was performed which yields more general information.
Specifically, variations of plus and minus 10 percent (+ 10%) were
introduced into each material property versus temperature curve
entering into the response analyses. The resulting theoretical

curves are compared with the data in Figures 36 through 41.

Referring to these figures, it is readily observed that the
beam is virtually insensitive to the mechanical properties eT(T),
E(T) aad v(T). Poisson's ratio was recognized to be unimportant
in the stress analysis of the beam. However, the fact that the
thermal strain and modulus of elasticity do not play a large role
in the case of the beam is probably due to the fact that the
temperature distribution i{s too linear. With vespect to the

Weibull parameters m, ¢, and g, the beam is observed to behave

fairly sensitively. l
The effect of Poisson's ratic was included in the stress

analysis of the disk, Cousequently, it is interesting that the

+ 10% variations in v(T) do not significantly alter the theoretical

curve in Figure 38. The other {igures indicate that the disk is

fairly sensitive to m and very sensitive to eT(T), E(T), ¢, and

g, Lt is also interesting to note that the disk curves for

+ 10% 6,(T) and * 10% E(T), Figures 36 and 37, are {deatical.

This would be explained if the parameters always occurred as a

product, ETE, as is the case in the stress analysis of the beam

Equation (23). That this is vot the situation in the case of the

disk is readily observed by inspecting Equations (23) through (34)

for the stress analysis of the disk. A simple exawmple, however,

will clear things up.
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Consider two singly fitting concentric rings of the same
material. Assume that when both rings are at the reference
temperature To’ the rings are free from stress. Also, assume
that both Eq and F are functions of temperature. Now, let us
examine what happens when the inside ring (number 1) is heated
to T, and the outside ring (number 2) is heated to T,. 1f the
thickness of the ring ¢ is small, the radius of both rings may
be taken as R and thus, after being heated to T, and T2
respectively, the stresses in the rings can be computed from
elementary theory to be

o 1T - ep(Ty)

1 I T (33)

02 = - O‘l (36)

The fonn of Equation (35) demonstrates that the effect of
a + N% variation in eq(T) will be identical to a * N% variation
in E(T)

3. FUTURE RESEARCH

Almost all of the work which has been done in the field of
statistical fracture theory has concerned itself with the analysis
problem as contrasted with the design problem., The present study
is no exception since we attempt to predict the behavior of a
known element under a specified enviromment. If we are to deal
effectively with the problems of how to modify an inadequate
structure or how to proportion a brittle component for wminimum
weight when operating under severe temperatures, we must address
ourselves directly to the problem of design. Our fracture algorithm
provides, to be sure, a basic tool for design; but, it does not
constitute a design procedure.

To improve our analysis capabilities, there are two situations
to consider, In the first, we must extend our capability so that
we may predict the performance of simple materials (linear,
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homogeneous, isotropic, series) in more severe temperature

environments. In the second, we must try to characterize the

behavior of more complicated materials (nonlinear, anisotropic,
parallel) under room temperature and steady state elevated
temperature environments.
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APPENDIX I
. STATISTICAL FRACTURE THEORY FOR COMBINED STRESS CONDITIONS

1., INTRODUCTION

In his classic paper of 1939 (Reference 14), Weibull develop-
ed an expression for the fracture probability of a brittle material
under a polyaxial stress state. Using a different point of view,
we shall expand on his brief statistical treatment of this com-
bined stress problem and we shall extend our results to cases
of varying mechanical and thermal loading and to materials which
cannot be represented by the Weibull distribution function.

Briefly, it is our objective to establish a fracture surface,
i.e., to find a relationship among the strengths achieved under
various stress states. The usual approach to this problem in
either brittle or ductile materials is to find a property common
to all stress states that will indicate failure or nonfailure.

In ductile materials the distortion energy represents such a
property since incipient flow occurs in any stress state in which
the distortion energy is equal to the distortion energy obtained
in a tension specimen at yield. Stated in another way, we can
correlate yielding under any stress state with the distortion
energy. Our approach for brittle materials is completely analo-
gous - we shall try to find a property that will correlate with
the reliabilities associated with the various possible combined
stress cenditions.

To avoid the '"size effect’' problem observed in the strength
of brittle elements, i.e., increasing fracture stress with de-
creasing volume, we shall confine our study to finite volumes
AV of fixed size. We assume that both the material and the
stress state in these basic volumes are homogeneous and that the
materials used in all the volumes to be considered have been

8l




drawn from the same population. In addition, we shall re-
strict the study to brittle materials that are statistically
isotropic, i.e., the distribution of strengths obtained from
an indefinitely large number of basic volumes will be identi-
cal in every direction.

We shall assume that the principal stresses S1s So, Sq
which act on a basic volume are proportional to a load factor
S, i.e.,

= s

%, ﬁs (37)

= 7S

where @,B8,y are constants which define the stress state. Then,
the strength of a basic element will be taken as the maximum
toad factor that it can equilibrate. Failure of the element
is represented hy its inability to equilibrate the applied

loading. It is important vo point out that it is possible
for cracks to initiate and propagate within the basic volume
without causing its failure. Materials in which cracks can
be arrested or which provide alternative load paths when
local failures occur are clagsified as parallel or series-
parallel materials. If a local failure necessarily leads to
overall failure, the associated material is called a series
or "weakest link" material. One can advantageously adopt an
infinitesimal basic volume for the series material and, as
we shall subsequently discuss, cowbined stress testing is
greatly simplified in this case.

Only the tensile or cohesive mode of failure will be
considered in this investigation. We shall ignore the in-
fluence of compressive or shear stresses on the strength of
a brittle material. The potential usefulness of this tension
criterion is a consequence of two observations; filrst, that
the shear strength of brittle materials is usually an order
of magnitude greater than the tensile strength and, second,
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that it is extremelw- di_ficult to eliminate tensile stresses

from prototype or laboratory elements. Almost every structural

failure of a brittle c.mponent can ™e attributed to the pres-
_ : ence of some distribution of tensile stresses.
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2, TWO-DIMENSIONAL THEORY

a, Heuristic Development-Single Loading

When we attempt to describe the statistical fracture
strength of a finite volume of material under a uniaxial stress
state, the axial stress (strain) is the only reasonable choice
for the statistical variate., Taking a general form for any
cumulative distribution function, we can write the fracture
probability F for the uniaxial stress state as

F(g) = 1 - exp [— -%X g(c)l (38)

where A4V is the specified volume of the basic element, v is
a volume of unity and ¢ is the axial stress. The delineation
of the constant AV/v does not affect the generality of this
expression and in the special case of a series material it pro-
vides a coanvenient representation. If we examine the stremgth
of a basic volume of an isotropic wmaterial uander a general howmo-
genecus stress state, it follows that failure will depend ounly
on the three principal stresses acting on the unit. Thus, the
probability of failure of the basic volume can be designated
as F(Sl, 89, S4) where the three principal stresses ave taken
as the gtatistical variates. For this case we shall take
Equation (38) in the form

-log [1-F(s,,5,,84)

- av’ﬁvl’ CLL 8(51,52,83) (39)

For a specified veliability (1-F), Equation (39) becomes g(8;,S5,85)

equals constant, which defines our fracture surface.

On the basis that failure is caused only by tensile stresses,
it seems reasonable to look for the function g within the
collection of all possible teasile stresses which can occur at
any point in the basic volume. In the plane stress problem, we
cau relate the normal stress o ccting in any direction to the

n
principal stresses through the expression
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a, = 8§ cos29 + 8, sinzg (40)

where 6 is the angle between g, and S;. As 6 sweeps through
all values from -m/2 to w/2, Equation (40) describes

every possible normal stress acting at a point. The normal
stresses associated with the various directions described by

© are shown in Figure 42 for several different stress states.
The question, now, is what are the distinguishing features of
these figures which will reflect the differences they cause in

a material's response?

The most obvious first guess is to differentiate anong
these stress states by comparing the areas associated with the
tensile normal stresses. However, this approach does not re-
flect the possibility that the magnitude of the stresses may
have a differeat influence than their extent or distribution.
For example, hydrostatic tension and pure tension stress states
which lead to the same axea ave depicted in Figure 42a where
we observe that one peak stress is twice the other. Experience
indicates that the pure tension state is the more critical. On
the other hand, when the maximum hydrvestatic tension and pure
tension stressas are equal, as indicated in Figure 23b , our
intuition would select the hydrostatic state as the worxe critical.
Ualike pure teansion, orientad flaws such as cracks cannot avoid
exposure to high normal stresses by assuming a preferved dircc-
tion since all directions expevience the samc stress under
hydrostatic teasion. This implies that a maximum stress theory
is inapplicable aad uncounservative, and indeed, evideace exists
to support this contention (Reference 15).

The two examples depicted in Figure 43 suggest that we
"weight" the ordinates of the nommal stress-theta diagrams for
different stress states and then compare their areas. Assuming
8 statistically isotropic material, the weighting should be in-
dependent of the orientation of the noyrmal stress, 8. We might
use, for example, a power function to wodify the normal stresses,

i.e,,
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k
D o, (41)

where D and k are constants. This alteration results in

_ the dashed curve shown in the left side of Figure 44 ., If the
normal stress distribution for several stress states are weighted
in this fashion, we could compare the areas of the resulting
curves, i.,e.,

8(5;,5,) = Area = DJ ok de (42)

o>
n_.O

where the intégration extends over those values of 6 where
the normal stress is non-negative. Because of symmetry we need
consider only the positive normal stresses in the interval zero
to m/2. To account for the possibility that tensile stresses
below a certain magnitude 0, may not cause failure, we may
choose to weight the difference (On'Gz) as shown in the right
half of Figure 4. The associated area is given by

: k
8(5,8p) =Area =D [ (5, -0p a8 ()

Certainly, the use of a power function to weight the normal
stregss-theta diagrams is completely arbitrary and there are
many other ways of manipulating and distorting such curves. Our
problem is to find a weighting function that will reflect the
influence of stvess state on the reliability of a basic volume.

Denoting the weighting function by £, the fracture probability
becomes

w/2
- V l 1
(o}

v

We are now in a position to describe certain guidelines
for the selection of f. First, to account for the possible
existence of a zerc fracture probability stress o,, we must take
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Figure 44 '"Weighted" Normal Stress Diagram

89




(45)

The latter condition implies that both S;< 0, and S,< 0, and
that in such cases F = 0. At the other extreme, we expect that
fracture is a certainty when either §; or Sy 1is positive and
unbounded; hence, F = 1 implies that

f— «» when Sl,Sz—'-f- ©

Furthermore, we would expect on physical g. 1nds that the
failure probability would increase continuously with increasing -
principal tensile stresses; thus,

f...contianuous and monotone increasing.

Finally, f must be chosen in such z way that the associated
F(Sl’SZ) fits the cumulative distribution curves obtained from
fracture tests conducted using variocus stress states. In parti-
cular, it is necessary that fracture data obtained under pure
tension be represented by F(Sl,O) oY F\O,Sz) and that hydro-
static tension data be represented by F(8;.§;). This is a
standard problem in curve fitting and one procesds by selecting

a reasonable and versatile form for £ which contains o, and .
n additional parameters ag; i.e., faf [(dm - og); 1,89y 0 3y
These parameters are chossn so that the curve for F passes

"as close as possible" to each data point. TFor a series material,
we note that the parameters which provide an exact fit to an
infinite amount of data are intrinsic phenomenological strength
properties of the material. Otherwise, they characterize ap-
proximately the strength of the basic volume.

The following typical functions may be useful candidates
for £(8y,8,,84):
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£ =0
~ For cgzcz:
g -0 g. -0
= (o iy ok, - (.01
f= (=== =X; k>0; X= (—) 46)
C C
_k
£=% + af a;>0 5 k>0 (47)
. foaZ+afl+aZ’+ ... +aX: a.»0 (48)
1 2 3 vee T34 5 842
f=expX-1 (49)
f=expI&-1 ; k>0 (50)
foexp (exp £-1) -1 (51)

where k, Ups Op» and the ui's are statistical parameters and
where Oy is the normal stress. The first of these functions,
f = X#, is the one adopted by Welbull (Reference l4). We shall
interpret £ as the generalized normal stress and T as the

generalized normal stress vector; in two dimensions F = T(£,8).

| | : b. Speeific Formulas

In two dimensions the fracture probability is given by

- o
F(81,55) = 1 - exp l- _%! [ £loy - 0p) dg] G

*
3 -

where the integration extends over the region where CIRT Y
aspecifically,

;7 2 R
= S, cos B + S. si S 0"
% bl cos™® 5, sin 9.003 (53)

Theta is the angle between & and S)-
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This inequality leads to three distinct cases:

(L) 51 2 32 2 Gn—o

o /2
>
(2) Sl—— Gr‘, SZ—OQ R
-1 ,A,O'Le - Sz
8, = cos .Sl =S,
(3) Sy 0g; Sy Sy
* ~90 =0 (F=20)

Selecting the Weibull form for £ given by Equation (46)
we shall determine the failure probability for pure tension and
for hydrostatic tension.

Pure Tension: S1 = 0. 20,3 82 =0

cos"l \"03: Ot +
A g,cos“0 - g, k !
F(ot)=1-exp[-—-\;xj (= = ~) d8 : (54)
e J
0

When o; = 0, F(u.) becomes

o Mk + -—~7-) ok
Flog) = 1 - exp ['%! Y e ) ] (55)

Hydrostatic Tensiou: Sl. - 82 = 0, >°i

l’ av oo O = % k
Flog) =1 - e |- - (—)

( 56)




This expression has the same form as the Weibull distribution

function; consequently, the estimation of Oys O and k can

b
"follow well developed procedures for this purposi (References 2,
14, and 16), 1If biaxial hydrostatic tension data can be obtained
the parameter determination for all of the forms indicated in
Equation (46) through (51) will be greatly simplified since all

the f£'s become independent of theta.

c. Multiple Loadings

If our basic volume is subjected to a number of different
loadings, we shall attempt to correlate fracture with the
"worst" conditions that can arise. It is assumed that stresses
which act on the basic volume prior to fracture do not signi-
ficantly effect the resistance of the material. Now then, we
shall separately consider every possible direction in our basic
volume and identify the largest normal tensile stress which
acts throughout the load history; i.e., Mm@X U“(t). Eaca of these
maximum normal stresses will be weighted to form the maximum gen-
eralized normal stress fjygx which will then be summed over theca
in the usual way to form g. For example, cousider three distinct
loadings which give rise to the same principal directions such
as illustrated in Figure 45a, The collection of maximum normal
stresses is indicated as the envelop of the three solid curves
and the weighted envelop curve is shown as a dashed curve. We
note that symmetry ig preserved across the o, and the @ axes. The
fracture probability may then be written as

F [Sl(t), Sz(t)} s ] - u\p(- ‘Wj ma\ g, (L)]
G7)
- Gﬁ’ Gi ? (ig>

where we recall that cthe constants ¢, and the ai's are statisti-
cal paramecters.
Although we have chosen in our previous work to represent

the 9, - 0 relationship in cartesian coordinates, there is no
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fundamental reason for doing so. For the multiple loading prob-
lem it is more convenient to use a polar representation as

shown in Figure 45b where the normal stress vector Eﬁ and the
generalized normal stress vector I are represented in a natural
way. The x-y axes are assumed to be fixed in the body and both
the principal stresses and directions are taken as time dependent.
Calculating the area under the weighted maximum normal ctress
envelop, £ to establish g, the fracture probability in two-

max’
dimensional polar coordinates decomes

i
N

F [Uxx(t)’ cyy(t), cxy(t)j =1 - exp L - IJ r dr de
or

9 [y ’
J —.];- £= ( [mix crn(t:)j
)

-0, ai} d9> (53)

where we note that symuetry is available only through the origin

-

PR
! ‘rY = -\ -
F [UK‘\.(C) ¥ OYY(C) 3 ny\t, i 1 e¥p <

and where the normal stress is given by

g, Uxx(t) 00329 + cyy(c) sinze + vxy(c) s$in20 (59)

Comparing Equations (58) aud (57),we find that the polar ve-
presentation integrates t2  vather thau f over theta. This does
aot lead to an essentcial difference in the fracture probability
expressions since in each case we must find an £ that fits our
data. FPor example, if £ iy given by Equation {(46) the ox-
ponent is absorbed by the parameter k and differences in multi-
plicative constants ave absorbed by o,.

d. Thermmal Loading

It has tacicly been assumed throughout this study that under
fixed envirommeatal conditions (temperature, atmosphere, humidity)
the cumulative strengch distributions for our basic volume do
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not vary with time. We do not account, for example, for the

possible effects of static fatigue, creep, or continuous

chemical changes in our material. Where this assumption holds

we can associate a unique function f with every environmental
condition. Specifically, for a uniformly distributed temperature
T in our basic volume, we shall designate the generalized ncrmal
stress by fT(Gn°OE; ai). In practical situations one usually
tries to use as few different forms of £ as possible. For a
given form, however, the statistical parameters must be taken

as temperature dependent, Thus, £y, can be written,

fT = fl [on . cl(T); ai(T)] Toi T':Tl

= o - 0m; byl mEIeT, (60)

N oy “ } 3 - M
£ = Lo [Gn - 0m(r)’ ck(i), 1m-l-T\'-*.lm

where the temperature rauge of interest is T ZT7 T and where
the symbols Urs Toy Gon 84, bi’ ¢, represent Leuperature
dependent statistical parameters.

When a basic volume is subjected to a temperature histovy
T(t) and a stress history oii(c), we once again identify the
"worst" condition in every direction, Here, we should recogaize
that the largest normal tensile stress in g given direction does
not necessarily lead to the largest generalized normal striss.
What we must find is the maximum combination of nowrmal stress
and weighting. For a single stress state, the envelop of maxi-

:

mum generalized normal stresses is given by

Emax o m%x £ [Un - UE(T); ai(c)z (61)

When the stress state varies, this wmaximum eavelop is defined by
R
: ax Lo o o TCe) s 4.l T .
Frax = 0% Ep(gy o 9o (6)- 0 (TCE) 5 2y T(o)j ! (62)
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where the statistical parameters o, and a; depend explicitly
~on the temperature and implicitly on the time parameter t.
Adopting polar coordinates with fixed axes x-y in the basic
volume, we form the function g Dby summing this fmax over

theta; thus, - -

-

1 B\ D Y S
F [cxx(t), oyy(t), cxy(t)i = l-exp ¢ el e \\mix rT(t)

’
- )

-

I

. 2 ?

- . ey ) ) (63)
where f£r 1is defined by Equation (60) -and g, 1ls given by
Equation (59). This expression predicts the fracture proba-
bility of a basic volume under biaxial time varying stresses
and subjected to a changing tewperature envivonment.
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3. THREE-DIMENSIONAL THEORY

a. Single Loading

Following the two-dimensional development, we propose to
correlate the behavior of the basic volume under & general
stress state with some function of the totality of normal ten-
sile stresses in three dimensions. In the belief that any
tensile normal stress can occasionally cause a fracture by vir-
tue of its magnitude and relative orientation with respect to
a random flaw, we once again assume isotropy and weight each
normal stress vector En according to its magnitude only. Using
the polar coordinates defined in Figure 46a, the normal stress
in three dimensions can be written in terms of the three princi-
pal stresses; thus, ‘

2y + S, sinfy ) + S4 siné  (64)

pA o
=2 a 2
o, = cos ') (8y cos
The nommal stress diagrams associated with several important
stress states ave sketched in Figure 46 where we observe the

following:

(1) Symmetry makes it possible to coansider only
ona quadrant,

~
rs
N~

The hydrostatic stress state gives rise to a

spherical surface.

(3) The zero probability stress J; can be vepresented
as a sphere of radius o, which can be subtracted
from each diagram to yield Oy = 9 -

(&) 1t the three principal stresses ave positive,

the volume of the normal stress diagram is

piven by

T N T 2

, W S 2o s Qe o

(65)
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3 23
On =0w(0,0,5)

Spherical
Surface =0y

o

b) Pure Tension

3
On=0n(S,5,0)

>

| a) Polar Goordinates

3
On=Cn (“S,S,O)

c) Pure: Shear d) Hydrostatic :2-D
i3

Ch=0n (1135,0.85,058)

N

~"Spherical
Surface

| r=95

Figure 46 Normal Stress Diagrams, Three-Dimensional
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This expression is useful as a computer check.

Now, adopting the same types of weighting functions f
described in Section 2-a, we can write an expression for the
fracture probability of a basic volume subjected to a three-

dimensional stress state; thus,
\

|
F(SI’SZ’S3) =1 - exp{‘ -%erf rz dr cosé dé dll'j (66)
o]

Tn=9
where the integration extends over that portion of the first

quadrant where the normal stress is greater than the zero
probability stress. More specifically,

w2 Py
F(Sl,82,53)= l-exp {- ._3_2[ d\(/J -%‘— £ [on-cz; ai]cosé daﬂ} (67)
)
L

where we delineate four distinct cases:

(3) 828,20

g, = 9 )
¢U = COS-I' h P : 3 D]
Slcos v + S,siaty - 53
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(4) 8520, $,£8,<0,

Sq - ¢
-1 3 )
cos
L \V/S3"81coszw - stinzw

éU =7/2

O
it

The integration limits in cases 3 and 4 are derived in Figure 47,

Using the Weibull form for f given by Equation (46),we shall
determine the failure probabilities for several important cases.

Pure Tension:

Case 4; Gn = O’n(0,0,ﬁ ); QSL = CQS-l =\ /Ut-dﬂ)/o’t; éU = "/2

/2 w/2 ) 3K
AV 1 fotsin ¢'08\
F(0,0,0t) = l-exp (- v av '3* k"——oc—/ cosd déi (63)
i 0 cos™ L Y (ot-cz)/ct j
For Ty = 0,
g Sk
bif t
8(0,0,9.) = FrEFy 3:) (69)

Comment: This formula for g is much simpler than the correspond-
ing g in the two-dimensional case described by Equation (55). It
has the same form as that found in the conventional Weibull distri-
bution function and, consequently, the estimation techniques de-
scribed in References 2, 14 and 16 can be used to establish the
statistical parameters Uy and k.
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Hydrostatic Tension: 3-D

Case 1; o = 7.(5,,5.,5,); S 2 73 éL =0 éU =7/2
( mf2 w/2 1
N [ | 180y \
F(S},5y,S) = l-exp/ - —‘7‘/ av 3 i cosé dé‘/ 70)
e
(O ;
- ‘ Sh'cg\.Bk
g(shxsh>sh) = 6 ;_ Gc j (71)
\

Comment: We can compare the magnitudes of hydrostatic temsion S
and pure tension T when each produces the same failure proba-
bility in a basic volume AV. Equating the two functions g given

b§ Fquations (69) and (71) and taking g, = 0, we obtain

18,1 ! \1/3k

1 ¥h i1 |

UL . S (72
e BT )

Hvdrostatic Tension: 2-D

Case 3; ¢ = 0 (¢,0,,0) ; 0, =0 ; 4 =0" g;=m/2

r/2 n/2

5 3k
AV [1 /"hws A
F(0,,0,,0) = l-exp |- - d%/ 3 \—-;————/ cosg dé| (73)
I [ &4
L 0 0
Ik
3/2 ny a
I ( 3kt
307 0) = g LLD) gh} (74)
1203k T3k | %
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Comment: The expression for g(ch,ch,O) is more complicated than
the.corresponding g(ch,ch) obtained from Equation (56) in our
two-dimensional treatment of the hydrostatic tension plane stress
problem. For equal reliabilities we can compare the biaxial hydro-
static state with the pure tension state by equating the functions
g given by Equations (69) and (74); thus,

3-D Theory (75)

We form the corresponding expression, using the two-dimensional
theory, by equating Equations (55) and (56) and replacing the
letter k by k'; thus,

1 1/%!
o, L r‘(k'ﬁ;)] ,, )
\E; s :]? Fzﬁjﬁﬁj} 1=D Theory (76)

To compare the (2-D) and (3-D) theories, the same input data must
be used to establish the respective parameters. Therefore, if each
theory is fit to the same tension data, we can equate Equations {(58)
and (68) to obtain the relationships among the various parameters,
i.e.,

VETD e K e
RN (AESY (Er’c") ® GUBRFLY ('c?;) (1)

The equivalence is established if

k' = 3k ' (78)

. ]l/k'
o X2y PO
9 = % N r(kf+1)J

Since only one parameter appears in Equation {75) we simply replace
3k by k' to see that Equations (75) and (76) are identical. In
general, the (2-D) and (3-D) theories both predict the same fracture
curve for the plane stress problem when the Weibull f is used.

(79)
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— y n/2 =/ ‘i
, [ r.., 3k
F(S,S,-S) = l-exp - l_\_\\_f,_ / dx’fl.' %‘ ,'S 20826 cosd dé i (80)
l ' C
FRA |
PRV I ‘
kel 5(s.5,-8) = 7 18521 (81)
Y \ ‘C
AN
k2 g(s,8,-8) = & BEoE (& (82)
= C

Comment: In situations where an axial prestress is brought onto

a beam or ¢olumn memder, it may bYe important to know the increased
tensile registance in the transverse directions. The transverse
integrity without prestressinyg can be estimated by the biaxial
hydrostatic tension case. Cowparing Equation (74) with Equations (81)
and (82) we fiund,

for k=i, 2 03
) r(3b\%; 6131
12{¥t5) T3\ ey ¢
5 = 1.1222 o, (84)
for ke, p \6 y
T (512\f2) &0 (85)
12(64y) "oty OV 3003 e
S = 1.0594 (89)
Thus, our axial prestress increases the transverse strength by

12.3 percent when k=1 and by 5.9 vercent when k=2.
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ol e

s
e o,

Sl=82='S,SB=S:

Case 4: o, = -S cos2é ; = 0 ; éL =7/4 ; éU =1/2

[ w/2 w/2 ]

: AV [ -S cos2¢ ‘ )
F(-8,-8,8) = l-exp |- — dw./ 3 . = | cosé dé (87)

i \ ] .

{ 4) /4 j

. Tayo_g) 3
kel © 8(-5,-8,8) = £ 18 ﬁg 2165) (88)
' C

w /835- 512 V2 s
6, 3003 | <::-> (89)

k=2: g(-§,-8,8) =
Comment: It is possible to increase the axjal tensile strength of
a member by applying a transverse compression loading. The problem
arises, for example, in certain collet type grips for tension mem-
bers. Such grips produce a radial compression state which is pro-
portional to the tensile loading. The resulting increase in re-
sistance at any reliability level can be determined by comparing
Equation (69) with Equations (83) and (89); hence,

for k=1, 3 ’
- [ .z (8V2-0)s 3 (
(IR - -t Lo 90)
§ = 1.2924 o (91)
for k=2,
ﬁ 6
il _E\ - X ( (92)
6(12+1) ocl o wOO <
S = 1.1299 e, (93)

Hence, an increase of 29.2 percent in the temsile strength is ob-
tained when k=1; 13 percent when k=2.
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b. Mechanical and Thebmal lLoad History

Following the development of Section 2-d, we shall once
again consider a basic volume subjected to a temperature history
T(t) and a stress history ”ji(t). The extension of our previous
treatment of this problem to thrce dimensions requires that we use
the three-dimensional form for the normal stress and the appropri-
ate summation of the maximum generalized stress fmax given by
Equation (62).

Using cartesian tensor notation, the compcnents of the stress
vector T acting on a plane with unit normal n can be written in

h terms of the stresses.

T = 7340y i,j =1,2,3 (94)

The magnitude of the normal stress vector, -, is given by the
scalar product of the stress vector and the unit normal vector; thus,

o, =Ty ny = Ty By Ty (95)
Interpreting the components of the unit normal vector n; as

the direction cosines of n, we can relate the ni's to the polar
coordinates shown in Figure 46a

'H'
i @ o 5] S s
ﬁ ny cosd cosy
i» g !,
@ ny = cosd siny (96)
a siy
nq ind

Substituting Equatious (96) iuto (93) we obrain

2 2. 4y cind,
g, = cos é(all cos™y + ay, sin®y) + Uqq Sin d o

* T cos?é sin2y + 9y sin2d sinv + 75, sin2é cosv
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For the most general loading, we can expect only that the
normal stress vectors will be symmetic with respect to the origin;
consequently, we must consider all of the normal stresses above

‘“ the 1-2 plane. On this basis we can write down the fracture prob-
ability; thus,

[ 2 /2
a4 :
_ eVl e ~ :
F[Uij(t)] = l-expi- == dw{ 3 m?x fT(t){ N¢) '~g[T(t)},
-f . \
Y ¢ 0
. 3 )
1\ |
ai{T(t)}> cosé dék (98)

/

4

where Y is given by Egquation (97) and fT by Equation (60).
The function f contained in the definition of fT should meet

the conditions described in Section 2-a.

4, THE FRACTURE SURFACE

a, Exact Theory

For a specified reliability (1-F) and a given basic voluvme
AV, Equation (39) defines the fracture surface which describes the
resistance of the basic volume under various stress states. We
customarily normalize such surfaces by relating all behavior to
that under pure tension. Then, the fracture surface becomes

8(0, G, =)

= ] (99)

All points on this fracture surface have the same fracture prob-
ability; points falling inside have lower fracture probabilities
and points falling outside have higher ones.
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In the two-dimensional problem the fracture surface can be
represented as a curve defined by

g(Sy» S5) . (
"'g'rc"t', 05— - 1.00)
Specializing this formula to the Weibull power function with Gg = 0
we obtain,
s [s,) ] P (k)
l_l\ 2 2 _ Y 2
\7e cos 6 + \“t}' sin Ql de = 7 TORFL) (101)
r~ 20

n

We have already evaluated this expression for the hydrostatic ten-
sion case in Equation (76). Numerical results for this case are
tabulated in Table VI together with two other stress states. We
should point out once again that, when the power form of £ 1is
used, the stress ratios can also be computed from Equation (99)
when S3 is set equal to zero.
Table VI
STRENGTH RATIOS FOR TWO-DIMENSIONAL STRESS STATES

Stress State Ssgiigtl k=1" k=2 5 k=3 }k=o
Pure Tension (wt,O) rft/r:t = - 1 ; 1 - 1 ! 1
Hydrostatic Tension (ch,ch) Gh/”t = 1/2. (3/8)1/2 (5/16)1/3 | 1
' . x
l

t i

Biaxial Temsion (m,,/2) ' m /7 = 2/3: (12/19)1/2 (40/63)1/3 1

t

¥

Pure Shear (vy,=7) e de = w2 (3/2)4/2 (15«/32)1/3§ 1

b
[

The fracture curve associated with Table VIis shown in Figure 43.
We observe that the maximum stress theory, max(Sl,Sz) < T coincides
with the case k=, It was pointed out by Weibull (Ref.14) that k=e
corresponds to a classical deterministic material with an ultimate
strength equal to T We also find in Figure 48 that che tensile
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Figure 48 Cowbined Stvess Theory (Weibull Form)
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strength increases as the transverse compressive stress becomes
greater., Physically, the compressive stress can be attributed
with closing up some of the cracks which misht otherwise be.
critical under the tensile loading.

As the compressive stress increases indefinitely, our theory
indicates that the tensile strength becomes unbounded. This is
clearly contrary to reality; but, it is not a surprising result
since no provision has been made in our theory to account for

compressive-shear failures. The emergence of another failure mode

provides a limitation on the range of applicability of our theory.
The ragged line in Figure 48 is meant to indicate such a limitation.

b. Approximate Theory

If the behavior of'a basic volume under a general stress
state was equivalent to the behavior of three basic volumes each
under a distinct principal stress, the survival of the basic vol-
ume would require the simultaneous survival of each unit. Under

these conditions the reliability of the basic volume would be
given by

1-F, = (1.5 )] [1-FGsy)] [1-F(sy)] (102)

where F(5) 1is the fracture probability of a basic volume undes
a pure teunsile stress S.

For a Weibull material subjected to pure teunsion, the reli-
ability is expressed as

“, ﬁ_‘“’ m
L-F(7.) = exp - ﬁ;-(-%——ﬁ) S I

) (103)

= ] x o o

where T,r T, W oave the Weibull statistical parvametevs.
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The associated approximate combined stress theory

( r m m \ ]
R,-7 R,-o [Ro=7
- oV L "u 2 u\ 3 ui ]
! L o o | o] / _']
where '
Ri = Si when Si > “y
Ry = Cu when ) 1 £9,
. Comparing the combined stress case with the pure tension case at
the same reliability we obtain the fracture surface
S, \™ S -0 \® 5 -0\
,cl--v‘ + (ﬂz_cu\l + ?;-:-52\‘ = i (105)
\ t u (Y u;

This results in the two-dimensional fracture diagram shown in
Figure 49 when §4 is set equal to ¢ . To compare the approximate
results to the exact theory, we select the parameters in both the-
ories to wmatch the same tension data. Here, we ueed only note

that m=k and thatcthe k's used in Figure 49 corvespond to those used
in Figure 48

We can observe from Figures #8 and 49 that the approximate and
exact theories are identical for the cases kel and kew ., Be-
tween these values, the exact theory will be found to be the more
couservative. We shall determine the largest deviavion totween
the theories by examining the case of hydrostatic tension which
lies along a 45 deg line.

In two dimensions, the approximate reliability for the hydro-
static case is found by setting Ry = m, Ry = o, and Ry =
Then, comparing this reliabilicy with that of the tension case,
we find

..&1\ - (1/2)t (L06)
t]dpptox
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Figure 49 Approximate Combined Stress Theory
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Forming the ratio between this expression and that described by

h:.'ﬁl‘a!’.‘ . Equation (76) for the exact case, we obtain
S84 .
.%&';
oy
.@si,: o (r.rh/cvt)approx B V‘; P (mtl) 1/m
s (/o) exace L 2 () ok (107)
. . - 2 B
SR
:E.i-'. E:v . i .
<o This ratio is tabulated in Table VII for different values of m.
; :}ﬁ: The largest value occurs at near m=3 and shows a deviation
S gt
- .{a‘-?t from the exact theory of 16.9 percent. This discrepancy is smal-
' a;“\‘ ler at all other m's and for all other stress states.
he Table VII
‘ % COMPARISON OF EXACT AND APPROXIMATE COMBINED STRESS THEORIES
o ',;:\' Two Dimensions ; Three Dimensions |
£ ~ [ '
£ ﬂ,;s: m ! ( h/‘t)approx t (ch/ct)approx ;
I lil".‘ ‘ : * “
A | "o/ exact ) (on/"t) exact i
T 1 - |
i 1 1.000 : 1.000 :
K 2 1.154 | 1.291 i
b M 3 1.16935 | 1.32635 @
" 6 1.163 i 1.316 @
. LS 1.153 : 1.297 |
- L 10 1.110 : 1.215 ‘
o Lo 1.000 ! 1.000
ff\ Setting ':31==*t:‘2r«~553~=3h in Equation (10%, we obtain the approximate
' "‘% ratio of hydrostatic strength to teusile strength for equal relia-
W bility; thus,
AT 1/m
T 1= (1/3) (108)
“h u japprox
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When 0, = 0, we can compare this expression to the exact ratio
given in Equation (72).

(Sy/5,)
. (Sh/cg)

1/m
approx ==(21:r;+1) 3k=m (109)
exact

where we have taken 3k=m so that both theories describe the same
tension behavior. This ratio is tabulated in Table VII; it as-
sumes its maximum value at m=3.04. For this value of m the
deviation from the exact theory is 32.6 percent; furthermore, this
discrepancy persists over a wide range of important values of m.
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5. OBSERVATIONS AND REMARKS

a. Experimental Verification

1. The integrity of a basic volume is not generally an in-
trinsic property of the material, but rather, a complicated com-
bination of erack initiations, propagations, and arrestments. For
this reason, we must try to characterize the behavior of a partic-
ular basic volume. To do this, nominally identical volumes must
be used for all the tests designed to establish a fracture surface.

2. The theory assumes that a basic volume is subjected to
a homogeneous stress state; consequently, its verification requires
that we meet this condition experimentally. Furthermore, the load-
ing on a basic veclume must be increased proportionally throughout
the test. We note, for example, that the case of hydrostatic ten-
sion produces no shear stress unless the loading is incremented
sequentially.

3. If the definition of failure is taken as the inability of
a basic volume to equilibrate the applied loading, we must take
pains to identify the fracture load. We must not, for example,
allow a c¢rack from outside the basic volume to propagate into the
unit and cause its failure. TFurthermore, we must not terminate our
test because a fracture has occurred outside of the basic volume.
When the entire specimen is the basic volume, this latter problem
does not exist; if not, we face a problem in the interpretation of
data which has not presently been solved. With low strength mate-
rials it is sometimes possible to wend (cement, glue) a fracture
outside of the gage length and proceed with the test.

4, The construction of a fracture diagram vequires that
strength values be used with the same reliability level. Often,
however, one finds that such diagrams plot the averar strength
values. Unfortunately, the average strengths from tests using dif-
ferent stress ratios do not generally represent the same reliability.
It is permissible, for instance, to use the median stress for each
type of loadiny.
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5. The elimination of parasitic stresses from brittle ten-
sion specimens is one of the most exacting problems in the area
of material testing (Reference 17). One can anticipate that the
problem will be magnified for combined stress testing.

b. Weakest Link Materials

1. When failure at any point in a body necessarily consti-
tutes overall failure of the body, the material is classified as
a series Or weakest link material. Now, if we define overall fail-
ure as failure at a point, we create in effect a series material.
In this instance, the problem is to find some way of measuring the
first pointwise failure. For example, if the incipient mobiliza-
tion of the first crack in a body could be detected, we could use
this feature as an overall failure criterion and thereby obtain
a series material.

Because the behavior of a series muterial is understood, we
can separate the volume and : -ometry aspects from the behavior
of a test specimen and, thereoy, wmake it possible to identify an
intrinsic property of the material. Anticipation of this possibil-
ity prompted us to single out vhe volume vatio av/v in all our
studies.

2., Consider a compcnent which is constructed from a seriles
material. To establish its reliability we can divide it into n
lmaginary basic volumes and recognize that the overall survival
of the component requires the simultaneous survival of each hasic
volume. Thus, the reliabilicy of the body, (1~Fb), can be written

n n
. av, 1
1-F = ' l (l-Fi) = l ‘ exp {- —= 81(51:53:53)§ (L110)
i=1 iwl

where the reliability of the basic volume, 1~Fi, has been takan froam
Equation (39). Tor an infinitesimal basic volume wa obtaln,

-1 ’ o '
v
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3. A very large basic volume of a series material follows the
maximum stress theory. 7To see this we can take the limit of F in
Equation (67) as AV = o, If this is done we observe that F = 0 °

- when f = Q0 and that F =1 when f # 0. But, £ becomes differ-
ent from zero only when T > Ty 3 consequently, if the normal
stress in any direction becomes slightly greater than Ty fracture

is a certainty. This is, of course, a statement of the maximum
stress theory.
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APPENDIX II
BEAM ANALYSIS COMPUTER PROGRAM

In tnis appendix, the computer program which was employed
in tne analysis of the beam prototype structure shall be des-
cribed. The program combines the fracture algorithm of Section II
with the beam thermal and stress analyses and material property
curves of Section IV into a single package. A listing of the

program as written in Fortran II for the IBM 7094 is included in
this appendix. .

The program consists of a main program containing the thermal,
stress and statistical analyses and of function subprograms for
describing the functions T(z,t), E(T), aT(T), k(t), n(T), cu(T)
and UO(T). The program has been specialized to some extent by
specifying the geometry of the beam and its loading. However, the
temperature distribution and the material property versus tempera-

ture curves are entered into the program via tables and hence the
effects of variations in these curves may be readily obtained.

As an aid in using the program, a listing describing some

of the more important variables entering into the program is also
included in this appendix.

Listing of Significant Program Variables:

DEPTH (1) 1th depth in beam, measured from the bottom

DIIME size of time interval between computations

E(L) ith encry in table of modulus of elasticity
vs. Leuwperature

ET(X) temperature corresponding to E(IL)

FBTEMP (2, TIME)

function subprogram for computing the tempera-
ture in the beam at depth Z and time TIME
FE(T) function subprogram for computing the modulus
of elasticity at the temperature T
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FSO(T)

FSU(T)

FTK(T)

FTS(T)

FXM(T)

HIMP
NE

NJ
NPRINT

NSO
NSU
NTK
NTS
PFL(L)

PINT
POr

PRATE
RISK
RR(L)

function subprogram for
0, at the temperature T

function subprogram for

g, at the temperature T

function subprogram for
k at the temperature T

function subprogram for
at the temperature T

function subprogram for
m at the temperature T

computing the Weibull parameter
computing the Weibull parameter
computing the thermal conductivity

computing the thermal strain Ep

computing the Weibull parameter

gross heat flux impingent upon the bottom of the beam

number of entries in E(T) input table

number of entries with respect to t in T(z,t) input table

nunber of time increments between occurrences of detailed

output printouts
number of entries in 9,

number of entries in v,

(T) input table
(T) input table

number of entries in k(T) input table

aumber of entries in Exp

{T) input table

probability of failure of the 1E0 subvolume up to curreat

value of time

initial load on beam

provabilicy of failure of entire beam up to curvent value

of time.

rate at which load increases after t = TIMEP

visk of rupture of enti

re beam up to current value of time

risk of rupture ia the £t subvolume at curreat value

of tiwme
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RBRMAX(I) maximum value of RR(I) up to current value of time

RRT(I) risk of rupture computed using the values of stress,
temperature, etc., at DEPTH (I) and at current value
of time

SMAX(T) maximum value of STR(I) up to current value of time
STR(I) total stress acting at DEPTH(I)

STRM(I) mechanical component of STR(I)

STRT(L) thermal componeat of STR(I)

* TIMEM maximum value of time for which computations are to
be carried out

TIMEP value of time at which load begians to increase

TK(1) gt entry in table of thermal conductivity vs.
temperature

TKT(I) temperature corresponding to TK(I)

TRRM(I) time at which RRMAX(I) is achieved

TS(I) ith entry in table of thermal strain vs. temperature
TST(I)  temperature corresponding to TS(I)

TI(I) Jth value of time corresponding to WSO(IL)
TTAB(I,J) tewperature at depth 2T(I) and time TT(J)

WsS0(1) gth entry in table of Weibull g, VS. temperature
WSOT(J) temperature corrasponding to WSO(I)

Wsu (1) i“h eatry in table of Weibull 0, VS. temperature
WSUT(1) tempervature correspouding to WSU(IL)

wxM(I) th entry in table of Weibull wm vs. temperature
WXMT(I) tewperature corresponding to WXM(L)

2T(X) it value of depth coxresponding to TTAB(I,J)
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* PROGRAM LISTING

CM UNIAXIAL STATISTICAL STRENGTH ANALYSIS PRUGRAM
DIMENSION TTAB{100e100)eZT(10) oTSCL0) o1ST(LO)9E(LI0) vETILO0IoTKCL0) 8T
IRTCL10) oWXMIL0) oWXMTLL10) oWSULLO0) «WSUT(L0) ¢WSO(10) s WSOT(L02TT(40)
- COMMON TTAB 2T ¢ TSaTST EoEToTKgTKT o WXMoWAMToWSUIHSUT 4 WSUWWSOTTT 4 JJ
1,0TIME .
DIMENSTION MRU20) ¢yDEPTH(21) ¢STR{21) o STRM(2L) oSTRT(21) +SMAX(Z1) 9RRMA
1X020) s TRRMC20) sRBRT(21)PFL (20)
DIMENSTON £STEP(102) ¢ TSTRA(L0E) +YQUMULLU272TEMP(102)
8 WRITE NUTPUT TAPE 847
7 FORMAT (48H)aLUMINA HEAM UNDER MECHANICAL + THERMAL LOAUING )
READ INPUT TAPE Sel0epINTPRATETIMEP
10 FORMAT (3F10.8)
WRITE OUTPUT TAPE 64124PINT(PRATESTINEP
« 12 FORMAT (6HUPINTZoF100203X06HPRATESFLIUQZ9IXVOHTIMERSOFDed)
READ INPUT TAPE S5e)lTeSTIMEeDIIMESTIMEM NPRINT
17 FORIMAT (3F10.5+15)
WRITE NUTAUT TAFE 6¢19¢OTIMESTIMEMINPRINT
19 FORMAT (TNODYIMFEoF 5,30 3Xe6HTIMEMSoP 7030 3XaTHNNPRINTS ]I}
20 READ IMPUT TaPe 5422 eNJoNTSyNEINTAGNAM¢NSUINSOQ
22 FORMAY (TIY)
WRITE QUTPUT TAPE 624 s NJaNTSoNEWNTK I NAMyNSUWNSC
24 FOAMAT (QNUNJS9I3 03X QRNTSS eI IvIXsIANES o LI eI X1 QRNTRS e JI e IXs ARNANS Y
IFINJ)Y G006V YY)
30 DO 35 J=1eNY
READ IMPUT TAPE 5432« (TTABIIsJ)sI=1048)
22 FORMAT (8F10.4)
35 CONTINHE
4C READ INPUT TAPE 54420 (2T({I) 412l y8)
42 FORMAT iKWF10.8)
45 TF(NTS) 55458407
47 DO 52 1=2iNTS
REALL TMPUT TAPE S5+49+75T(I) TS (])
49 FORMAT (PlUs4eF 10e8)
52 CONTINGE
65 [FINE)Y 65408457
5Y DO €2 t=14NE
READ ImMPUT TAPE SeB¢ET{I)EL])
59 FORMAT (FiUauyP10e2) .
62 CONTINUE
65 TFINTKY 7195479,47
67 DO 72 1=1eNTK
READ IMPUT TAPL S469+TKT (I} TKLD)
69 FORMAT (FlU,4401046)
72 CONTINNE
75 DO QU 12148y
90 YY(1ISFLOAIF(I~1)0,5
WRITE QUTPUT TAPE 64952 (&THE)elS1e®)
95 FURMAT (BHUZT2 «F9,897F10,9)
WRITE DUTPUY TAKFE 6¢97
91 FCRMATY (Sn TINMR)
DO 102 J=1eN)
WRITE OUTPUT TAPF 60100 TT( Q) e(TTARIT 1Y) v{2],8)
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100 FORMAT (1H yF5.24F842,7F10¢2)
102 CONTINIE
WRITE NLTPUT TAPE K4105
10% FORMAT (Z27HUTEMP (R) TYSTRAIN (IN/ZINY)
DG 110 1=1enTS
WRITE AUIPUY TAFPE 6eJ0Ts18T11)4TS(])
10T FORMAT (1n 4FBa245XeLlPELl4,b)
110 CONTIKLE

WRITE NUTPUT TAPE 654115
115 FCRMET (3SHQTEMP (P) MOD QF BELASTICLTY (PS1))
N 120 }=1leNt
WRTITE QUIPUT TAPE 4410T79ETLI) 2R
120 CONTIMNDF
WEKIYE DUIPUT TLPFE 64125
. 12% FURMAT (33M0YEMP (R) THERMAL CONL (BTU/PTOHR®#R) )
NO 130 I=1eNTK
WRITE ONTPUT TAPE 6GelQTsTETI{I)eTR])
130 CONYIMNUE
TE(YIMFH=TT(NJ}) 13541354137
132 TIMEMSTY IND)
135 TIMER=NTTMFSSTYMF
J=o
K2zl
=l
NNE-P O
GO 137 (=210
MLPYH(I)=0.050PLOATF (=)
SHAR U] )=l
RAMAX{T) =0,
PFLITY=0.
137 THAM(IY =0,
N 144 T=LeNXM
REALL THPNIT TAP) B4 AT LWXNTLIL) «WAMLT)
WRIYE NUIPHT TAPE 641400 [eWANTLI) v foWwAN{])
100 FORMAT (AHDUWYMT 11 v 2H)SoF L0eA s JHIRI v 2R 9 RHUAH {3 111 2H) SeF DY)
lal CONTINnG
U Jah t=LeNSU
READ IMPUT YAPE SeS89.0OUTEE) vwadth)
WRETE AHYPUT TAPE GeladeloWSUTII) s LewdUL])
143 FORIAY (A WWSUY (oI Lo 2H) SeF N2 e IHIR) 09 Ao 4iiWSLICo T v 20 SoF LU0 2 15H(PY
IS8 B
14% CONY [nny
Ny {48 1=1eNSO
REAL "HpUT TAP» Se5%4dSITIT WO DLT)
NRITE NMYIPUT TAPE A4 l4 7ot oWSUTLIN o)
147 FORMAT (SRUNSOT oIl v2H)SoF 30429 ININ) eDXe4HWSOC o110 2HIBIF LD 5HIPS
ISR R
148 CONTINOE
150 YIMESTIMR LTI
ENERS
IF(YIMF=TIMEH) 155,155,4¢
155 IF(TIMF=TIMEP) 19641964197
156 AL=PINTY
60 TU 15A
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187 ALSFINT+PRATED(TIME=TIMEP)

198 RM=], 1&T9¢a|
[HEIANR-]

[=C.E"

BRI

MImiol

PNSSMY
PNS!=Ll,CsPNS
ISTEr (1 )=al,n
11=p0hS

DO 1wl g=e¢s i

16G 7STEP LV Z/ISTFF (J=1) *PNS)
ISTEP (M=),

NO 170 J=YeN?
222=(STEP tJ) U+ (, Y
TISFRIFMP (22, TINF)
TEMP gy sl,
YSTPAL Y =FT1S51Y1)

130 Youne oy (T

HEZSYER N =2 ST INT =)

FT=0,0

ARMTan . n

PTSHORD (THTRAIL)QYOUNN{L) +TSTRA(NZIOYOUMD (NLY Y 80, oy

BMTSHORD PR TRALLIMYOUMU (LI WZOTLP (L) *IDTHANZ) OYUUMUINZI OLSTEP (NZ2))
190. 5000

NEN{=]

N0 YAL J=aN

PYSP TN e T YhaA 1 0U0 L) 94

180 RMTEHMTMOBRTSTRA LD OYOQUMDIJIVEISTRR L) bljbon
SECNUN=2 (PHONVRI 23 1)
ng 190 Jg=l.21
LEPR=YEPTHL =D, 8
NSNEP T,

T2 uTVP Iy T L)
STRUS )2k PD(T2IOFE(T2)»PT/ DL, 0) 2UNPOLHNT*HM)Y /SECMUM
STAT LY =P IS IYu)opE(12) +PY 2 (N, VU SULPORMT/ZSECMON

190 STRHE ' S5H{ ) eSYRY (U}

200 YOSt o A, Tlue,
TI2FRTIP LA Y9 T I
TURAMS(TT= 1)) O24N,
HEATIN=Z=13RAURETE (1) 23/I0) 0
HRAIS UL 107210002104 20010,
HIAPSHEAT [ NeNaAN
QK§K=U.

ASTR=L 2, 008

0 2490 1=(«21

I=ORPTACT
TEMPOLyavr JYEmP (i TIML)
Yargmter)

KMSF IRt T)

SY=Fs T

S0=F 80T

[FISTREL enMAL(T)) 218021942100

-
¢
gx




210 SMAX(Iy=STR(T)
215 IF(STRITVYaSU) 2274227,225
220 RAM(1Y=).
G0 TN 2310
225 RRT{II=DJIQ(ISTRIT)Y=5Y) /5N 0d M
230 CONTINUE
N0 260 [=1+20
IFIRRT(TI=WRT(T*]1)) 24042414249
240 AR(IISRRT(1+1)
60 T 230
245 RRU1Y=RT(1)
250 IFIRR(ITI=QUMAXIIY) 24042604290
2855 RRMAX(YT)=aK(T)
TRRIL(TIST ¢
C=RR (D)
PELITI=l ek XPF =)
260 RISKRSATIKeR{IMANLT)
POF=le=~EXPF {wR]ISK)
WRITE NUTPUT TARE 6e3QUsTIMECAL +BMaTOKALWBSTR
300 FORMAT (a40TIME=F5e2, JHMIN OX e L JHAPYL]ED LUAUSF el 2 3MLDBSs4Xy12HB
LEND MOMENTS 4 F6. )l «OHTNGLBSsOX 1 JUHTEMP WRAUS P T, Le0HR/PTohA e HHESTRS,
2FB842439P51)
WRITE "TaUT TAPF 443095 HEGTINYHIMPIRISKPOF
305 FORMAT (13% NEY HEAT FLUKSFOed o JIHUTUZP FEQSECo4R ¢ 1ONGRODS HEAT FL
JUXQa PO 2o LIHRTUZFTOOSECsOX ORISR IPLLIGeBoaX oy 1ONFALIL PRUBSIUPFLO,
29)
£lalelgel) ZNPRINY
TF{kLl=x2) 1504150310
310 K=}
WRITE APy Tabp A+41%
315 FORMAT (#8HONEPTH (IN) TLMP (R) STRASY (PS]) MAX SIR (PS])
1 RR TEMPQRARY )
WRITE DUIPUT YaPF 44320
320 FORMAY (1l +TOXe50MUR LAYER RR LAYER MAX vIME (MIN) FAIL PR
108 )
t=0
330 [=let
TF(1=21) 31453454380
33% WHITE OQUTPNTY TAPF 643U DEPTHIT) ¢TEMPUL) o STRUTI JHMAX () 4RRT(])
190 FORMAT (1A oF7:347X 0P 7,206 ¢FBeleiXaPyalelXelPELL H)
1F(I=2n) 390439064330
IS0 WHITE PUHTPUT TAPF £4355RRTTIGHRMAXLT) ¢ TRKM(T) oPFLLT)
155 FORMAT ()1 o69X 4 IPELZL 603X 1PLLIZ 0eDRe0PPO,IeX00F10.8)
G0 T 330
350 WRITE NUTPUT TAPE 64385
345 FURMAT (99HQDEPTH {1N) MECH STHESS (PO1) THERMAL HTRESY (PSS}
0N 31s t=1421
WHITE QUIPUY TafF EeJTUWDEPTHII) o5 THMLL) v STRY ()
A70 FORMAT (1M 4F943¢1CXeFB.1elSAeb8,41
37% CONTIANE
66 T0 150
CND
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i CFTyr, THERMAL CONDUCTIYVITY AS A FUNCTIUN OF TEMPERATURE
FUNCTION FIX(T)
DIMENSTON (TABI 1100y 27010 1Sl et STLLOYsE (VU AE T (D) 2 1KULO) 9T
AETLLD) awWaAMULOY oWLHT UL o WEY (LU yWIUT L0 o WSO (10, +WSOTLi0INTIT (o)
COMMON TTAR g/ ToeTSaTST o aF To K aTKT yWAMAWAMT a WS4 WSUT o WSUIWSUT T T4 JJ
1407INME
1=1
10 IF{T=Tr i+l 204320415
1% Islel
GO TO
2O FTKSTR (DY TV R T {IVIR{TK( I+ ~TR L)} ZATRT LI 1Y =TRT (Y
RETURN
END

CEXM WETHYyIL, 1M oag A FUNCTINMN OF TEMPERATUKE
. FUNCTING FXMIT
DIMEMSTON TYARC)LA 10U aZT L0 aTS L0} «TSTLLO 06 10l o TELU 9 TK (10} »T
IKTHLUY L oW MTOLD) ouBUELT) o WSUTLLOT g WSO L0 qWSAT (L) o TT (AN
COMMON TTAMG 2T e TSa ST g eI a K TRTaWAMIWAMT g WSUGWOUT o WIUIWIUT T4 JJ
1o DTIME )
1=l
10 TF(T=wxMT(T+1)) 20420415
15 121+
GO TO 1)
O FAMBWAM(T) # (TaWXMT D) ) (WX (LP L) =AMt L) )2 (WXMT (I+]) =wxnT (1)
RETURN o '
¢ ENA

CESU  WETHHLY St AS A FUNCTION OF TEMPLRATURE
FUNCTINy FST)
NIMENSTOM (T8 (N XUy vZ T (L0 «TSCL0Y o 3T (10T ar(0) ok T (LU a1 RLLT 0T
IKTOLO) oW 401y wWXMTL10) ¢ WSV LU sWOUTTLY) eWSO{L0) awWSUT (AR sTTGL)
COMMON TTAR g 7T aTSaTST qEGET o TRy TRT e WAMaWXMT g WS4 WSUT ¢WSUIWSUT 4 TT 4 Jd
LeDTIME o
I=1

V0 IF(TewSUT{I+1)) 20420415

1S Iz=l+}
G TU .9

QU FSUSWIII{L )« (TawSIHT (1)) (WS {1 el anSJtiN 2 LaSuT (sl =wBUT L)}
RETUHN
ENU

CFESY  WETRILL S0 AS & PUNCTION OF TEMPLKATUNRE
i FUNCTION FSOLT!
DIMEMSTON 1TABCRNCINU s Z Y010 v TS0 e 1STLIU) B {TU) YLD W TR LMY
LETCI0) owXALLO) «WAMTILIN) oWV LU yWHUT L0 e WSO LL0) «WHUT LU o T Y 8}
COMMON TTAH..ZTQY":VTST,E.ETQTKQ‘K\'QNX"!ﬂxHTvNSU'N\‘)UT.NSU‘WS\'HQ?TQJJ
1:0TIME
1=l
10 TF T=wsSOT(I>1)) 20420410
15 =1+l
GJ YO o
20 FSOSWSO(I)*(TwwSATLII IO (WSU(1*L) =aSU L))/ (WSOT (Lol =wdUTi))
RETUIRN o
ENY
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APPENDIX III
DISK ANALYSIS COMPUTER rROGRAM

The computer program used in the analysis of the disk pro-

'_fqﬁ i totype will be described in this appendix. The program is
_.'ﬁﬁ similar to the one employed in the beam analysis - the greatest
7f§§ difference being due to the fact that the disk is under a biaxial
'_ﬁﬁ state of stress while the beam was under only a uniaxial state
:7;; of stress. Again, the fracture algorithm of Section II is com-
?Eg . bined with the thermal and stress analyses of the disk and the
I

material property curves of Section IV. A listing of this pro-
gram as written in Fortran II for the IBM 7094 is included in
this appendix.

)

The program is composed of a main program conszisting of
- the thermal, stress.and statistical analyses .ad of function
L ( subprogram§ for describing the;functicns T(r,t), E(T), ET(T),V(T);
o o - ®(T), alD), ou(T) and uo(T).: Tha dimensions of the disk along
with an arbitrary applied uniform stress at the outside vadius
“have been incorporatad into the program. The tempefature'éis;ri~
bution and the wmaterial property versus temperature curves are
entored into the program through the use of tables and hence the
- effects of variations in these curves way be raadily obtalned.

. —-As an 8id in using the program, a listing describing some
. of the more important variables entering intc the program has
‘been included ia this appendix. -

i.Listing.of Significant. Program Vﬁriables:'

DIIME - size of time intewval between computations

° l T 5'» ' - o « - A ’
(1) L aatry in table of modulus of elasticity ws.
B temperaturs ‘ ‘ ' - '
ET{L) temperature corresponding to E(I)

F%gﬁgﬁﬁﬁ)functien subprogram for computing the tempevature in
N J .
! the disk of radius R and time TIME

Precading page blank
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FE(T)
FNU(T)
FSO(T)
FSU(T)
FTK(T)
FTS(T)
FXM(T)
HIMP

NE
NJ
NNU

function subprogram for computing the modulus of

elasticity at the temperature T

function subprogram for computing Poisson's ratio at

the temperature T

function subprogram for computing the Weibull parameter

o_ ‘at
(o}

the temperature T

function subprogram for computing the Weibull parameter

o, at the temperature T

function subprogram for computing the thermal conductivity

k at the temperature T

function subprogram for computing the thermal strain
gp at the temperature T

function subprogram for computing the Weibull parameters
m at the temperature T

gross heat flux impingent upon the inside radius of
the disk

nunber
numbey

number

NPRINT aumber

NSO
NSU

MK

NTS

WK

PFR(L)

output
~humbar
numbex
. number

aumber

aumber

of eatries in E(T) input table
of entries with respect to t in T(w,t) input table
of entries in v(T) input table

of time increments between occurrences of detalled
printouts

of entries in GO(T) input table

of entries in UQ(T) input table

of antries in k(1) input table

cf entries in &qn(1) input table

of entries i

=

w(T) input table

~ probability of failure of the i th ring type subvolume
up to current value of time

&
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FPOF probability of failure of entire disk up to current
value of time

RAD(I) 1th radius for ring subvolume

RISK  risk of rupture of entire disk up to current value of time
RRR(I) radial risk of rupture of ith ring at current value of time
RRRMAX(I) maximum value of RRR(I) up to current time

RRTR(I) radial risk of rupture computed using stresses, temp-
eratures, etc. at RAD(I)

RRIT(I) circumferential risk of rupture computed using stresses,
temperatures, etc. at RAD(I)

RT (1) 1th radius corresponding to TTAB(IL,J)

S uniform tensile stress applied at outside radius of disk
SRMAX(I) maximum value of STRR(I) up to current time

STMAX (1) maximum value of STRT(I) up to current time

STRR(I) total radial stress at RAD(I)

STRRM(I) mechanical component of STRR(I)

STRRT(I) thermal component of STRR(I)

STRT(I) total cilrcumferential stress at RAD(IL)

STRIM(I) mechanical component of STRI(I)

STRIT(I) thermal compenent of STRI(I)

TIMEM maximum value of time for which computations are to
be carried out

TR(L) jth entry in table of thermal conductivity vs.
Lewperature

IKT(1)  cemperature corresponding te TK(I)
TRMAXCL) time at which RRRMAX(X) occurred

T8(1) iCh entry in table of thermal straila vs, temperature

T37T(I) temperature corresponding to TS{lL)




L TT(J3) jth value of time corresponding to TTAB(I,J)
 ;§%f TTAB(I,J)temperature at radius RAD(I) and time TT(J)

) TTMAX(I) time at which RRIMAX(I) occurred

WSO (1) ith entry in table of Weibull g, VS. temperature
:isi}i WSOT(I) temperature corresponding to WSO(I)

WSU(1) i th entry in table of Weibull o vs. temperature

WSUT(L) temperature corresponding to WSU(I)

. WXM ith entry in table of Weibull m vs. temperature
WXMT(I) temperature corresponding to WXM{I)
XNU(I) ith entrf in table of Poisson's ratio vs. temperature

XNUT(1) temperature corresponding to XNU(L)
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BRSO

CM

PROGRAM LISTING

BIAXIAI STATISTICAL STRENGTH ANALYSIS PRUGRAM
DIMENSTON TTAB(1291N0) sRY (121 4TS(IUIoTST(L0) sECLO) 9ETC(LO) ¢TKC10) T
1IKT 10D o XAUTL0) o XUUT (10) sWXM(LU) s WRAT L10) sWSUL0) sWSUT(LO) 9WSU(10) o
SWSOTLINY AT T (40)
COMMON TTAN, tRTATSeTST G EsEToTKe TKT o XNUSXNUT o WAM g WAMT g WSUWWSUT ¢ WSO ¢ W
1507477404
DIMENSYON RAD(TIOY o STRRITO) (STRILIUI aSTREMITU) s STRRT(TU) o STRIM{TQ)
ISTRTITIT0) o SKMAY{T0) 4 3THAX(TU) yRRIKAVTO} ¢RRTTCTU) WRRR(TO) aRRT(10) »
2RRRMAX (70) «RRTMAY (T} y TRMAX(TUY o TTMAXLTU) +RPERLTO)
DIMENSTON RSTEP(52) 4POISS(52) 2 TSTHA(S2) « YUUMO(52) ¢« TEMP(TU) ¢RA(52) 4
1TPALS24343)40VTIPAISZ9343)oTOIPALI3) WINIPAL3WI)
5 WRITE nUIPUY YAPF 647
7 FORMAT (4aH1ALUMINA UISK UNDER MECHANICAL + THERMAL LOAUING )
READ INPUT TAPF S4100S40TIMESTIMEMINPKRINT
10 FORMAT (3F10.5415)
WRITE AUTPUT TAPr AelSeS¢DTIMEaTIMEMYNPRINT
15 FORMAT {(JHUS=4+9, 2.JA,QHUTIHtaQFb-JQJX.bHTIMEN-9F7.3'5A1IHNPRINT-'
113)
20 READ [MPUT TAPE S9224NJoNTSeNNUaNELINTK ¢NANINSUSNSO
272 FORMAT (H1l%9)
WRYTE AUTPUT TAPE 6424 ¢HJaNTSsNNUSNE s NTK ¢ NXMyNSUGNSD
246 FORMAY (QAONJS I 393X a4HNTSSa T39I Ra4HNNUR 9 13 03X e IHNES eI I 03X GNNTKSy
1130 3X 0 aHN MR [ Ay 3X e @lNSUR o 1 3¢ 3K W 0rINSUS 1 J)
IF(NJ) GO a1 30
30 DO 3% Jsleny
READ IMPUY TAPE S5e32¢(TTaB(]ed)v=1eld)
32 FORMAY (12r¢.1)
3% CONTINNE
40 READ INPUT TAPE Sea2stRTUL)I 181418}
42 FORMAT tiadkged?
4% IF{NTS150 .90
47 N0 49 T=14NTS
READ INPUT TAPE S24B807ST(I) 4TSI
48 FORPMAT (PlU3eF1DN.1)
Q49 COMTINT'E
50 [FA{MNUI6 98,5
51 DO 53 1=} ,aN0
REAL INPUT TAPE Se4R xNUTLI) «XMU(])
53 COMTINUE
85 IF(NE)RSehD,H7
T DO &2 telyng
REAU INPUY TAPE G894 T{I)eEL])
59 FORMATIFLYDeaeF L, 2)
62 COMTINCE
069 IFINTRYTI9, 1507
67 DO 12 1=2tenT?
REAU [HpiIf TAPL B,ye9eTKYLI)TRL])
69 FORMATIFID.4sF10,6)
T2 CONTINUE

NN EN I 3 \ LTI Y, W AR
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15
90

55

37

! 100
102

108
107
110
112

13

;" A A N O AT TN

no 9C tsleNy
TTLLYSFLOATF ([=])

WRITE NUTAUY TAPE 6e95¢(RT(I) 9131 ld)

FORMAT (SHOKT=, 12F9,3)
WRITE DUIPUT TAPE 1497
FORMAT (SH TI“E)

00 lU2 JsLeNJ

WRITE PUTPUT TAPE £4100sTTIJ) o (TTAB(Iad) sz 1012)

FORMATIIH «F5h,2412F%1)
CONTINUE
WRITE nUTIPRY TAPE 64105

FORMAT (2 7HUTSEMP (R) TSTRAIN (INZIN))

DG 110 [=1eNTS

WRITE OUTPIY TAPE ge41C074TST(INaTSID)
FORMATIIH +FN,248%01PEL14+8)

CONTINIE '

WRITE OLTPUY TAPE 6,112

FOPMAT (25HUTFMP (R} POISSON RATIO)
BE 1S 1=1lahMU

WRITE AUITPUT TAPF hellaeXNVT (1) 4ANUCT)
4 FORMAT LN oFRZ46XeF6,4)
s CONTIYMIE

WHITE NE:TRUT TaPF kel19

FORMATY (39HUTEMP (R) wo0 OF EBLASTICLITY

NC 120 l=1sNF

WRITEL NUTRUT TARF 6el0To8T L) e t])
COMTINIE

WRITE NLTPUY [APF r41C%

FORMAT tINAQTFMP (K} THERMAL CONU (BIY/ZP TOHKYR))

0O 130 I=)eNTK

WRITE NUTPUT TAPF A«IQTeTRT(1)sTx (1}

CONTINVE
TEATIMFM=TI (M) ) 13500354130
TIMEMITT (NJ)
TIMESenYTINE
Nt
Kes
11=1
JJ=?
LL=0
RADCI =™
OC 137 [=2én
RADCL) =SORTE RAN(T=1) 00ze, J20BLLDY)
N0 139 =170
SRMAX LY =0,
SYMAXLE)=0.
RREMANTT) 2D,
RATMAX(]) =V,
TRMAX (1) =0
TTHLX LY ) =Y
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139 PFR{I)=(.
N0 14l I=)1eMYM
REAL INFHT TAPE Rep94wXMT(I) oWANL])
WRITE OUTPUT TAPFE AalaDelewWxMTEI alawaM(l])
140 FORMATIAHOWX T (41 Le2H)Saf LUGZa3HIK) DX 4 4NWXM (] 1e2H) 0P b et
141 CONMTINNE
DO 145 1=1eNSU
OLAL IMPUT TAPE 5+59,u5UT (1)Wb)
WRITE DRIPUT TARF (el4a3+7aWSUT(T) el ewsUCL)
Yaus FORPATfAHOWSHT(sIla?H)=.rlU.z~$H(H)9b>qQHNSU('Il’Zh)=vrlU.Zobh(FSI
1))
145 CONTIMIE
N0 149 Jz=1ensn
READ 1M UT TARE £4594ud0T I} wWEC L)
WRITE PUTRPNT TAPF AglapeTewSUTIIY oL awd0L])
. 146 FORMAT (6HJWSOT Lot 1y P2H) S eF10ecedHIR) 90X otHWSO (4T a2HIZ P LU BHIPSI
)
14S CUMTUNIF
156 TIMESTIME«UTIME
LLslL+]
TF LV IMFaTIMER) 1HE]8Y 6

148 P=Sh, 2%
ESTEP(1)1=045
NR=%)

: NT=80

ROTEE (NR)I23,0
PNTaNTY
N=NT
DO 1AG US24N

160 RSTEP{JISRNTFP U=l e {ahspn )
HZ=.2%
NO 170 a=)eny
TRZLNSTEL (U V) »RSTEP L)) /D0 GONNTEP 1Y)
TRFOTEMP LT, Y1)
TEMR L)
YOUhO{ )y 2FrtY)
YSYhA(AYRFIS(T)
PLGLISHI NI ZFENLEM

12C COMT IR
| -1 3 ]
PO 1171H JslaN
PLUJ*ITL U=tKSTEP(J) pRATER (%]} ) 007
TRACI e sl ) tthTERIJe] I ZROTLP gL oaU=tlsUsPUISS LI ) 72eUCKRALIG L)
8]
TPA(JOl 4L e2) SROTVEF (U ) O (Lo 0=PUTISdII)VO) @RA LI+ IYOURULI)OROL, 1)
TRPA[ ) 14 A) (1 NePAIRS( 1)) /72 U0TBTHALYIURSETEP 1Y) ) 0RATII®]}
TRPAIJ®) o 24 )1 (YOUMNC LS OREERA L *LY I/ Le s PROTEP D))
YPALS*) 2401210 (1 0aPRTSSEIIIORAI Iw1] /P00
TRPAloe sy ) samey U ) P TLTRAL I CRALIRL) /&0 0
TPALI®1 ¢ 341)3060
TPALJel s e 2) 300y
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17% TPA{U+1,%,3)
OVIPL(14141)
OVIPA(1al42)
CVIPA(T4509)
QVIPAL14241)
OVIPA(l.2,42)21.0

- OVIPA(14243)=040
QVIPA()4341)30.0
OVIPA(14342)=20.0
OVIPA(1¢343)3].U
RO 1AC F=143
LO 180 | =S1e3

166 OVIPAL24kyL)2TPALZ 9K o)
N=NT+]

TFIN=3Y 19%,18%+)8%

185 DO 196 J=3eh

. DO 190 L=1.3
DG 190 h=1e3

190 QVIPA (el oeM)=TPAtIaLa ) ®CVIPACI= a1 aMIeTPALJI WL 2IROVIPALI=I 20 M) ¢
LIPALS Lo 3} OUVIPA(I=1034M)

195 TPS(PenNyTRA(MT*] 4311 /0VIPAINT® a0 })

1O 240 K=1l¢TN
J=1
PlePapix)

200 RESKRSTIFPR Y
TR IRE=0Y) 265+241042724

20% JwJyrl
GQ 0N

2106 NG #1% 17142
Ny 2'% (=142

215 TUIP&(}.L):Q‘J:”A(J.hL)

TF(Jelt #3%,23%,22r

226 1=J=1
60 10 234

22% JunU=l
REL1u) o fe tRETER YV /R L) 007
INIPAL L L) S (oLZRe"FR () utl e ), 02PUIS85LU) 220080 ))
Yh!rhtx,?)=R10'1.dh“H;53(J)oo¢)”PP!/‘VUUMU(JDONOz.G)

TRIPALT S BemCISE 1)) /2,09 5TRALLI QR ONP ]
IR A2, 112 vgopMa i Y OReRE L) 22 QoYY iJ) )
TNIRFALY A2 0=l =PI R T IORE L eV

YTHIPL(D ) TedaY(HIMATJ 0TSThALIIORP 2240
THIrA NG s,y

THITAIALZ) 20,0

TNIPA(A4I)SL,.0

NC 230 L=1ed

NGO 2350 121y

230 TOIPﬂ(l-Y)zTﬂ!Pﬂ(L\l)OUVIPﬁiJ'lcll*INLPﬁ(L'2)°0VlP“(J.£QI)’
LTINTIRPALL «J)O0VIPA LT

235 DISP=IPOTQIPALL 1) eTOTRPALL])

YSFNTEMP (R VT IMED
STREIRT® (TPsTN P 2N 0IPALde)IY
_ST"Y(K!:PE(Y)”ﬁ{ﬁplﬂzmrNU(l)°5INH(R)-PE(I)YPYS(Y)

C OO -
v w @ @ 9
oD aCa

ot Nu
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] . TPOZ=OVIPAINT*19213) /OVIPA(NT+14211)

S NISPQA=TPORIOIPA(L1e])+TUTPA 1 e3)
STRRY LK) S{TPOSTOTIPL L2, 1)+TCIFA(243) ) /M
STRIT(Y)ZFE(T)I®NISPO/RISFNU(IIPSIRKT(K)=FE(T)S®PTS(T)
STRRM{K ) =STRR (K} =STRRT (K)
STRTMIK)ZSIRT(K) =STRTT(K)

260 CONTINIE

250 TOSFUTFNP (U,541]1E)
TISFUTEMP(U,55¢TTMF)

S TGRAUSITI=1() 0740,

e HEAYINS=10RAD®P TV (T0) , 3600

. HRAD= (1. 11 1/10s009) @ (T0%44) /3600,

HIMPSKFATIN+HKAD

RISK=Q,

RISKR=N,

RISK1=0.

LG 30C I=1+70

TR=RAUITD)

TEMPULL)YSPUTEMP TR, TINME)

T=RTEMP D)

2

v EMSEAMET)
r SUSPSUT)
e SORF501T)

TFUSTRO (I} =S0MAXIT) 1 hnSeeh% e 200
760 SRMAX{T)RSTRR )
205 IF(STRRUT)=51)2T0+270,275

| eT0 RRTYRt]Y =,

GO 10 2%N
275 PRTIP LI 2.09989 15850 ((STRP L) =5U) 280)vuxM
278 TFUISTRY (1) =STMAX (I} ) EHY 016854280
QR0 STMAX(TI=RSTPY(])
2% (P (STHTUIL)=SHYZ2G0 £ 906, 288
290 RRTT (L) =0,

GO YO Agu
9% RATTLI)I=s099%975658 ({STRTLT) =SV} 750 ) POXM
3006 CONTINDE

BO 350 $2iepo

TERBTIR (1) =»RUTH(I*1}1)31C 2106319
310 RAR(IIapRTH I Te))

a0 TO 12
1% RRR(TYzpRTHLY)
A20 TP RFRI))=KKOMAY L1} )ADA432h 432D
325 RRWMAX(J12URU(T)

YRMAX(TY2TIME
228 CRIRRRmMpX (Y

TE(RGIT () =pRTI (1))} 3303384330
330 RRTL1IZRRTI(L+4)

&G0 YO 30
135 PRY (1) =huTI 1)
160 JFIRPT LI «MPTMAZ (1)) 484340300
34% RRYMAXITISHRTY(])

TYMANLTYSTINE
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348 CT=RRTMAX (1)
PFR(T) 2] emb APF (=CRuCT)
RISKRSR]ISKH+RRRMAX ()
350 RISKTSRISKI+RRIMAX(I)
RISK=ZKISKR*RTSET
POFR=],=EXPF (=N] SNR)
POFT=],~EXPF t=R]SKT)
FCF2leebXPP {=R]ISK)
WRITE OUIPHY TAPF 64360y TIME«SsTUSTOLRAD
360 FOPMATILMOTIHES 4 FS, 2« JHMIMNyGA o LSHFAPPLIED STRESSSWF 7. 193KPSL 84X+ 10H
1SURF TFMPzaF R le MR WS JOHTEMP ORADS P T}
WRTYE CUTHUT TAPF £a3¢HeHENTINGHRAL W [ MP
65 FOURMAT (190 MET BFAT FLUSZ 6o linbiG/PTEOSECo6X o IHNEAT NAUS R4, 2,y
YIIHRTUSRET2OSEC LY ¢ AHARORS HEAT PLURSaP b L lINBTUZPTZ2900L)
WRITE OLTPUY TAFF Ay370+FOFRePOFTIRISR PO
370 FORMATILISH kali Fall PuOBzaFPLlUsAuXeloH TAN Fall PROB=WP LUSBI4Xe13H
IOVERALL PISKZ4IPF16.8,100 QVEWALL FAIL PROB=E,0PFL0.8)
Rls)y+ il L=1)/NPRINT
[FiXLl=vg)i90yLln0,43°S

3715 k2=xl
WRITE AUTPOT TaPs K4380

380 FORMAT QUKD WATITLS TEMP SThuM STRTM STRKT STR
iTT STHK STRT SHMAY S1Maa )

DO 340 12170
WRITE ALIPUT TARFE 643RS,RAL L) o TRNFLL) JOTRRM L) ¢STRTM (L) 4 STRKRTLL)

LOTRT L) o3 TRLT) « STRPT (T} ¢ SPMAX T b A L]
385 FORMAY 1A oFR4,0F10.0)

290 CONTIMDLE
WRITE AUTRPUT TAPE &4 34%

36% FORMAT(2uny paAD RR*R RRTT)
WRITE NLTPUT TARY &4400
400 FORMAT(IN o30X2FAMRAR NKY RRRMAX TRMAYX
i RRIMAX TTHAX PER )
1=0
apFRsy,
PFRUTO)z=1,
410 121+l

IFIPEREIY CAPFRIGINOVHANOLEN
420 WRITE CLIPOT Topf Hed25 2RV () ¢RRIBUL)ARRTTL])
L% FORMATUILIN 4G, 33 1FFlu,4eFLlbeh)

TP Ll=ba)a3dn,ain,syn
L300 TPPEE I ) e3P ,03 adp
631 QPERz0,

GO0 YO 4l
432 OPFRZPFRI)

WRITE OLIPOT TAPE Sef393RARN (I aRA UL SRRKMAKCT) o TRMAX (1) YRR TMAR LKD)

Lo PTMAXCET) oW (T)
QA% FOPMAT (1M o390 )aet 20 10,6,UPP 7 3, 0PLLAO,0PFT43,lPELGLD)

6O 10 oy
Fun
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cDT DISX TFMMERATUME DISIRIBUTION FUNCTIUN
FUNCTINN FUTEMP (RaTIMF)
DIMFNSICN TTABtLD«iN0) oRT(32) 9TSHLI0) o TSTULI0Y 0B (IU) 4k TEIUI o TK(I0) oY
TR C1Q) o aMULIO) g xMUT(10) g WM (10 gWAMT (L0) owSUCLU) g WOUT {107 4yw50(10),
CWSOTILN)Y o T (40)
COMMON TTAMGRT 4TS aTST qFE o FTa TR e TKT o aMNUaXNUT g WXMoWAMI qWSUaWSUT s WSO
150T9T19JJ
10 IF(TIMF=TT(JJ}130+30920
2d JJsJu+)
GC TO 10
30 Il=g
3% IFIR=RT(II})4YheqReun
40 TI=Ii+)
GO TO ar
4% Tly=1TrecltyJ N
TILJRTTIAN(1lelod))
. TIJISTYLR{I]4Jd=))
TIYJISTTAB () Ielydu=1)
TRISTIVUL+(TIMNE =TT U=} ) UTILJ=T1J1)
TRETIJI A TIMFIT{U =) % (T Y=TIJL)
FOTEMP2TN+ (RabY(II=1) ) {TR=IRI}/Z(RT{LI)=KT(Il=]1))*45%.0
RETURN
END

CFTS  THERMAL STRATN AS £ BUNCYIUN Or TULMPLRATUKE
FUMETINN FYSIT)
| DIMENSTON FTANtYIZW)0CIYRTLLE AT U AISTCLO)I oELIUY «ETCI0) aTKLLQ) &T
i IKTOI0) o XNUCLO)Y o XSUTELE) oWiXM (LU o WXNTLL0) aWSU (L0 awhUT LYY «wSULL0) s
2WSOTtIn) a T (4
COMMON TTAM AT eV e ST QB R To TR aTR T aANUSANUT yWAMQWAMY ¢ WSUsWSUT ¢ WS04 W
1507417444 .
1+t
IF(T=IST(]el)) 20 N0 L0,
IER 8N
GG th o1n
20 ETSuYSI] et TaINY IO O (PS Tel)=IStII)ZLTST (el }=YaTi]))
FETURN
FaN

O

— 3

CFE MO e 0OF BLASYICITY AS A FUNUTIUNM (0 TEMPLRATUNRE
Fungrineg fFetr) :

MIMEDSTON APl o RS (h2) 0TS LU TSI LU & (JUY vEV LAQI o TR L0} T
IRT OO QX3P UC) ) aXNUTLLE) onXP {10 o WARTLIO) oWSULLO0) o WSUTCI0) «wSU(10)
AW30TtIn) o TY (al

COMMON TYAR AT eTS e TSTEVET TR o YK TaXNUSKNUT A WAMeWAM L o WOU ¢ WSUT y WSO oW
1SOT et Y J

1=1

10 IF(T=ET(1el)) 2042Co18
15 I=3-1
G0 TN
SC FESLUII P T {1} 1O E (o))l ()7 tLTIIv1im=tT(]))
RE TYUNN
ENL

139

ol XaN Yo Nun g



CFhy POLISSUM RATIN AS A FUNLCTION CF TEMPLKAJUKL
s FUNCTIrt FNL(T)
DIMEMSTON TTAB1A3100) sRY(12) o TSIL0) o TSTULO) aELI0) oF TILUT TR EIN) 4T
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