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ABSTRACT

The integrity of brittle elements subjected to time-dependent
thermal and mechanical loads is predicted by means of an algorithm
involving three steps: the determination of the temperature dis-
tribution, the determination of the thermal and mechanical stresses,
and the statistical description of the resistance of the brittle
material. Experiments are conducted on beams and disks under tran-
sient thermal and mechanical loads. The fracture probability-time
curves obtained for these members are very accurately predicted by
the fracture algorithm. The sensitivity of the beam and disk re-
sponse to changes in the elastic, thermal, and statistical strength
parameters is investigated. A combined stress fracture theory for
brittle elements is developed which accounts for a history of ther-
mal and mechanical loading.
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SECTION I

INTRODUCTION

Culminating several years of research in the application and
development of statistical fracture theory, this report addresses

itself to the problem of predicting the structural integrity of

ceramic elements which are subjected to transient thermal and me-

chanical loading. Our specific objectives were fourfold:

(1) Develop an analvsis procedure for the "thermal shock

response" of brictle materials.

(2) Verify the analysis procedure using simple ceramic

elements.

(3) Develop a combined stress theory for brittle

materials.

(4) Describe the inadequacies or shortcomings of the

analysis procedure.

For reasons that will be made clear, we were unable to respond to

the latter objective.

Before we describe our general method of attack, a few com-

merits appear to be in order concerning the term "thermal shock."

The sudden cooling, which takes place when a very hot solid is

plunged into a relatively cool liquid, creates tensile stresses

on the surface of the solid which frequently cause cracking. The

expression "thermal shock," which is usually associated with

this rapid cooling process, seems to be sort of a biological des-

cription of the solid's reaction. In the Jargon of the physical

sciences, the term shock has come to represent a stationary or
propagating discontinuity across some surface in a continuum.

This is not what i experienced by a quenched solid which does

not, for example, develop a shock wave. The complications which

attend the study of shock conditions fortunately do not arise in

the rapid heading or cooling of solids. Furthermore, the heating
rates normally associated with leading edges and nose cones are

of a lower order of magnitude than those associated with quench-

ing.
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The behavior of brittle bodies under transient thermal load-

ings has been treated historically as a distinct material property

called thermal shock resistance. With continuing study it has

become increasingly clear that such behavior is really a composite

of more basic physical phenomena. In particular, the broad prob-

lem of strength prediction under thermal loading can almost be

viewed as a classic problem in continuum strength analysis. It

is now customary to divide the problem into the following parts:

(a) Determination of the thermal and mechanical

boundary conditions

(b) Determination of the time-dependent temperature

distribution

(c) Determination of the time-dependent thermal

stress distribution

(d) Assessment of the temperature-dependent

strength or resistance of the body.

In the first three cases the physical description of the

processes involved and the methods of approach are well known;

however, there are many analytical and computational difficulties

which make the general problem very -complicated. On the other

hand, the latter case is concerned with a failure theory for brit-

tle materials and the physics of this problem becomes a research

subject, quite apart from any possible computational difficulties.

For this reason, we have directed most of our attention to the

strength aspect of the response problem.

An experimental program was designed to minimize the uncer-
tainties which might arise in the temnerature and stress determ-

inations. For example, rather than calculate the temperature dis-

tribution and expose ourselves to possible imprecision in the

characterization of the boundary conditions, we measured the dis-

tribution with thermocouples. To reduce the thermal and mechanical

stress analysis to the simplest possible form, elements were

sought for which a one-dimensional stress analysis was possible;

2



we choose a beam subjected to termlnal couples and heated along

the bottom surface and a circular disk which was heated around

the inside edge of a concentric hole.

A high purity alumina was selected for our experiments be-

cause of the wide experience accumulated with such materials. This

experience manifests itself in a consistent manufacturing capabi-

lity and in plentiful data for both mechanical and thermal prop-

erties. Some 60 beams and 60 disks were fabricated using Wesgo

Al 995 and each member was exposed to a time varying temperature

input. The beam was subjected, in addition, to monotonically

nondecreasing terminal couples.

The time to failure for every test was recorded and the dis-

tribution of these times was displayed for each element by a

cumulative distribution curve. The resulting two curves described

the tradeoff between the fracture probability and the failure

time for the beam and disk. The analytical prediction of these

curves required as input the mechanical loading and the tempera-

ture distribution as functions of time. The following scalar

functions of temperature were also required: modulus of elasticity,

Poisson's ratio, the thermal strain, and the statistical strength

parameters for pure tension. These curves were integrated into

a statistical thermal and mechanical response algorithm which

embraced the conservative assumption that alumina is a series or

weakest link material. It was further assumed that the tensile

distribution curves for the temperatures of interest do not depend

explicitly on time or load history, so that, the effects of

creep, static fatigue, or general fatigue are not taken into

account.

The original progran strategy required that all of the

temperature dependent properties be obtained from the literature

with the ex.ception of the statistical strength parameters which

we wanted to develop ourselves. Unfortunately, the tension mem-
bers ordered for this purpose were badly warped and had to be

disregarded. Since it was not expedient to correct or reorder

3



the tension specimens, we set out to find the "tension behavior"

that would predict the fracture-time distributions that were ob-

tained experimentally.

Indeed, we found a set of Weibull parameters which made our

predictions for both the beam and the disk coincide almost ex-

actly with the measured results. This seemed remarkable con-

sidering that the beam stresses were uniaxial and mostly mechanical

and that the disk stresses were biaxial and entirely thermal.

Furthermore, the tensile strength distribution that we assumed

was similar to the stronger results described in the literature.

While this report was being prepared, we obtained a set of

tension data from Southern Research Institute that was generated

for a 99.5 percent alumina using a gas bearing machine. Our as-

sumed tension distribution fits this data precisely.

The agreement between the theoretical and experimental

results for the beam, disk and tension specimen is so close that

it precludes the error analysis alluded to in our fourth objective.

Instead, we have presented a variation of parameters study which
illustrates the effects on the fracture-time curve of a + 10 per-

cent variation in any physical property used in our prediction

scheme.

In view of the remarkable results obtained in this investi-
gation, we feel justified in claiming to have established the

potential of the statistical fracture theory approach to the

thermal shock problem. It should be clearly understood that es-

tablishing a method potential and "proving" its applicability are
very different accomplishments.
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SECTION II

THERMALLY AND MECHANICALLY INDUCED FRACTURE

1. INTRODUCTION

Procedures for predicting the performance of a structure

composed of a brittle material have been presented in our pre-

vious work (References 1 and 2). In this section these proce-

dures are extended to account for time varying mechanical and

thermal loading and temperature dependent material properties.

The general concept of a generalized stress is replaced by an

approximate biaxial Weibull type formulation for the "risk of

rupture." This is a more restrictive statement and that this

is a proper assumption must be justified in each application

of the procedure. Also, new attention is drawn to the role of

the volume of the basic tensile strength distribution specimen

and to thp fact that care is necessary to ensure that the pro-

cedure is always yielding at least conservative predictions.

2. ASSUMPTIONS

The applicability of the statistical analysis procedure
or fracture algorithm in a given situation rests entirely upon

the accuracy of the basic assumptions employed in the algorithm.

For this reason it is desirable to state and examine all the

assumptions that enter into the fracture algorithm.

It is assumed that the probability of failure of a sub-

volume of a brittle structure depends only upon its temperature,

state of stress and volume. Effects such as creep, strain rate

dependance, stress gradient dependance, static fatigue and

cyclic fatigue are assumed to be insignificant if not entirely

absent. Surface effects such as surface finish are assumed

to be insignificant and thus the strength of a subvolume does

not depend upon whether or not it is located on the surface of

the structure. All the material in the basic tension specimens

and in the brittle structure being analyzed is assumed to come

froM the same statistical population. The mechanical and



thermal loadings are assumed to be known deterministically.

Also, in the stress analysis of the brittle structure, it is

assumed that the material is homogeneous at uniform temperature,

isotropic and linearly elastic.

The earlier fracture algorithms are very general with re-

gard to describing the strength distribution of a subvolume of

material under arbitrary temperature and state of stress. In

fact they are so general as to render them virtually impossible

to directly apply in all but the simplest situations. The

governing generalized stress has to be determined and then the

strength distribution must be determined for each temperature

with no requirement that the distributions be of any particular

form or that the same form be preserved throughout the tempera-

ture range of interest.

In this formulation of the fracture algorithm, it is as-

sumed that the behavior of the material under a general two-

dimensional state of stress can be adequately described by the

approximate biaxial statistical fracture theory developed in

Appendix I. In this theory, the probability of failure of a

subvolume with volume AV under a biaxial state of stress

alt C2 is given by
F - exp- -V [f(a) + fa))

where 
,a oa

f(a) = 0 for aou

This formulation has the desirable property that, for the ca:*'

of uniaxial tension (a 2 - 0), it reduces to the familiar Weibull

form. Consequently all the procedures developed for detemiiniag
the Weibull parameters can be utilized - providing that all the

strength distributions are of the Weibull form with perhaps the

parameters varying with temperature. It should be noted that

the assumption expressed by Equation (1) does not automatically
imply that the material is a pure series material.
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When a material is not known to be a pure series material

some additional care must be exercised regarding the size of

the subvolumes into which a structure is divided. The reason

for this is that if a material is not pure series, then a non-

conservative step is performed if the volume of the subvolumes

,V are made smaller than the tensile strength distribution

specimen volt'me v in that the strength of the subvolume is

overestimated. In order to avoid this problem we suggest that

all subvolumes be made equal to or larger than the tensile

specimen volume, i.e., V >v for all subvolumes.

3. FRACTURE ALGORITM

The following statement of the fra-ture algorithm, along

with the aforemenioned assumptions has Ueen devised specific-

ally for the analysis of the structures tested on this pro-

gram.

(1) At each temperature obtain the strength

distribution curve F-(a) for a tension

specimen of volume v. Fit the distribution

curve vith the form

-e"p -V - o M for u  (3)

In. this maanter the parameters are determined

as functions of temperature: m- r(T), a. au (T)

an% 0 G a a0(T).

(2) For each mechanical loading and thermal loading

(temperature distribution) determine the stress

distribution throughout the structure:
S iXy'z't), i = 1,2
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(3) Divide the structure into n convenient sub-

volumes VI, V2 .. V n . No subvolume should be

smaller than the gage volume of the tension

specimen; Vi>v , j = 1,2,...n. Subvolumes

should be selected with approximately homo-

geneous stress states.

(4) For each value of time t determine the
"worst" risk of rupture for each subvolume V.:

B.. (t) -- max f Li(xyzt); m(T), 4(T),2

j i(x,y,z,t) - au(T)lm(T) (4

where f = [ o(T) for ai . u
- (5)

=0 for < u

and where T - T(x,y,z,t) and Dj is the region

in space occupied by V .

(5) Determine the maximum value of each Bij (t) in

the interval 0_ t<_ -c

B() = max Bi (t) (6)ij O'! tt I r

(6) The probability that the entire structure will

survive te entire envirotunental history up

to t T is given by
B•T B*

~~~~F(r) = exp 2j'Bj + ( 7

or

j+ 2j

where the term

represents the reliability of the jth

subvolumei-Fj.
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4. EXAMVLE

Consider the problem of calculating the reliability of the

circular plate shown in Figure I . Although the plate is as-

sumed to be at uniform temperature and the mechanical loading

does not vary with time, the problem should still illustrate

several of the facets in the application of the fracture

algorithm. Following the algorithm we proceed as follows.

(1) For the purposes of this example, the tensile

strength distribution is assumed to be of the

Weibull type with parameters: m=3.0, au = 4,130 psi

and ao = 5,610 psi and the tension gage volume is

v = 0.0125 in?

(2) Assuming a linearly elastic, homogeneous

and isotropic material, the radial and

circumferential stresses are found from

elasticity theory to be

r r Jr i + Sr- r r)2
r- JI r 'r -rj i ~

0 +2  S i1
-- r 6 o " - i J(9)

r 2 + r 2 -2 +r r)0~~~ =" H ._ , + So °  1'i 0

For So  4,956 psi

Si 4,460 psi

r 0 4.0 in.

r i  1.0 in.

h 1.0 in.

these expressions reduce to

0.495
a r  = 4.99- -'-'-

~ a49~.(10)9 0.495

9
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(3) The plate is divided into five concentric

rings with the dimensions indicated in

Table I •

(a) Note that each ring volume is greater

than the gage volume v 0.125 ir3

(b) The stress state in each ring becomes

more homogeneous when the number of

rings is increased.

(4) Due to the fact that the temperature distribu-

tion is uniform, the "worst" risk of rupture

is computed using the maximum stresses in the

subvolume. The largest radial stress in the
th ring occurs at its outside radius b.

r 4.99 0.495
b (n

The largest circumferential stress is found

at the inside radius a

• 0.495
4.99 + a?- (12)a.

Thus the components of the "risk of rupture"

for the j th ring are given by

* 
]

vpr ar- tu
rj V ' o~ (13)

vo o

~Tie values of the stresses and "risks of

rupture" are tabulated in Table $

11
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(5) Due to the fact that there is no variation

with time, we have

B = B
rj rj

BGj =B~j

(6) Computing the ring reliabilities

I-F. = exp[- (15)

and tabulating the results in Table I , the

reliability of the plate is computed to be

5
1-F P. (1-F.)

j=l J

M (0.94148) (0.94996) (0.94090)

(0.93074) (0.35015) (16)

= 0.670

If thu material in he plate is known to be a series

vilaterial, we can drop the restriction that V-I . This

ettables us to use itfinicesimal rings which leads to a reliability

prediction of 0.696. Thus, in this example, the partItionia i

of thle plate iLto onIly fivui unit volumes results in a fair

estimate of the total reliability.

L3



SECTION III

EXPERIMENTAL PROGRAM

1. BEAMS: THERMAL AND MECHANICAL LOADING

a. General Discussion

The specimen selected for fl, xural testing under thermal

and mechanical loading was a beam 1/2 in. wide, 1 in. deep,

and 10 in. long - made of Wesgo Al 995 material. The test mode

was four point bending with a gage span of 4 in. Because of

the additional condition of thermal loading it was necessary

to construct a loading fixture which would bridge the heating

apDaratus (Figure 2). Further, loading was done through a

point contact and roller scheme to compensate for any initial

misalignment in the specimen (see detail in upper corners of

Figure 2).

The thermsl loading was obtained through the use of two

strip heaters (R I Controls model number 5305-5A). The units

consisted of parabolic reflectors which were focused to concen-

trate the heat flux onto the tension side of the beamk. This

arrangement necessitated protecting the quartz heating element

from broken beam debris with a piece of heavy screen. Antici-

pating some change in heat flux, all temperature distributions

were obtained with this screen in place. When preparations were

complete, several beams were broken without the thermal loading

as part of a general check on the system, and the floxural

strengths were found to be in the expected range,

b. Temperature Distribution

The temperature distribution as a function of time was ob-

tained with the use of rapid response iron constantan thermo-

couples and an electronic multiple channel millivolt recording

instrument, (each channel prints every 12 seconds). Six 1116-in-.

diameter holes were drilled into the depch of the beam from the

top side at varying depths of 0.179, 0.314, 0.451, 0.552, 0.727,

and 0.863 in. (Figure 3). The temperatures were monitored with

""'rVOUS ,Gis ' Preceding page blank
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Figure ? Beauw Loading Support and Strip Heater Arrangement
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the beam in place in the test fixture duplicating the conditions

which would be encountered during the actual testing of the speci-

mens. A refractory brick was notched to the width of the beam to

provide the insulation and shielding required to discourage all but

a pure one-dimensional heat flow through the beam depth (Figure 4).

The recording instrument was calibrated and the thermocouples

were checked in a water bath at boiling point.

Initial trials revealed that the A1203 material exhibited

some transparency to thermal radiation which distorted the

reading of those thermocouples nearest the hot interface. This

problem was dealt with by coating this surface with a thin even

layer of nickel silicate. Four sets of data, each determining

a temperature distribution, were obtained. Each set was checked

against the other to ascertain reproducibility. The temperature

distribution curves are shown in Figure 5.

c. Test Procedure

The test procedure consisted of applying an initial load of

50 lb and energizing the strip heaters at a controlled level of

190 volts for 8 min. After 8 min. the mechanical load was in-

>1 creased at an approximate rate of 500 lb per min. until fracture

occurred. The time to failure is taken to be 8 rain. plus the
N duration of increasing load. The initial 50 lb loading served

to preserve initial alignment and eliminate backlash during
change from thermal to thermal-mechanical loading. A total of

48 oeams were tested in this manner. The test machine was equipped
with a load pacer devire which enabled the operator to approximate

a predete~mined load race. To compute the actual load rate, the L
time from the start of the load increase to final fracture was

recorded for each test and loading rates were determined by divid-

ing the final load minus 50 lb by Lhe duration of the increase.
Consequently, there was a loading rate associated with each test

which deviated somewhat from the target number of 500 lb per irin.

18



Figure 4 Refractory Brick Used as Insulating Shield to Protect
the Beam Sides From Radiant Heat
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From this data an estimate of the average loading rate for all

tests was determined as 492.9 lb per min. This number was in turn

used to determine a corrected time to failure.

The statistical significance of these operations is based on

our hypothesis that the mechanical and thermal load histories are

the same for all specimens; this requires that the mechanical

loading rate be the same for each beam. The actual load rates

are not constant and do not, therefore, exactly conform to our

hypothesis. To account for the small variations in loading rate,

we used the average load rate to compute a corrected time to fail-

ure which would reflect the actual failure load. This correction

is possible only because the thermal stresses in the beam do not

significantly contribute to its pobability of failure. (See

Section IV-4).

The beam fracture data is presented in Table II. Column 1

tabulates in ordered form the fracture time recorded for each

test. The loading rate for each test is listed in column 5 and

the average of column 5 which is the average loading rate is de-

termined to be 492.9 lb per min. The corrected time to failure

is found by dividing column 4 by 492.9 and adding 8.0 min.

Table III presents the corrected and ordered data and Figure 6

illustratE the resulting cumulative distribution.

2. PLATES: THERMIAL LOADING

a. General Discussions

The plate specimen wa-1 made of Wesgo Al 995. The configura-

tion was circular with a concentric 1-in. diameter hole. The

overall diameter was 6 in., and the thiclness dimension was 1/4 in.

The thermal loading wa., produced by means of a 3/4-in. diam-

eter silicon carbide heating element (Globar) positioned perpen-

dicular to the plate through its center hole. A purely two-

dimensional heat flow was encouraged by insulating both the top

and bottom of the plate so that the principal heat loss would be

through the outer plate edge. Pictures of this setup are shown

in Figures 7 and 8.

21



Table II

TEST DATA - At203 BEAM

12 3 '4 5 6

TIME TO FAILURE CORRECTED
TIE TO FAILURE FAILURE LOAD LOADING TIME TO
FAMINUS MINUS RATE FAILURE(HIM.) (LBS,) ~~MINUS NBU RT HIM l.

(I.) (LBS.) 8 HIN. 50 LB. COL 4/COL 3 MI S MI.
COL / 492.9

J 1680 3.283 1630 496 3.307

S11.2 3. 1670 ..... .. J.383 1620 '493 3.29

1I, 86 1755 . . .. 338 4 1705 506 3.659
_J-R .. ... & :36 1770 491 3.692

10,75 _ 3.75 1890 506 3.834

- ... -120 3.784 187 496 3.780
11.95 2000 3.95 190 '496 3.956
1.95 2010 3.95 1960 496 3.976

11.95 2060 3.95 1990 504 '4.037

12.0167 2020 4.0167 1970 491 3.997

12.033 2040 '.033 1990 49! 4.0373

12,033 _ 2085 _ _ '4,033 ;035 905 4.128

2110 . . 4. ........4i ..... .. 506 6.179
~~ *JQ54 61 200'9 4.078

_ .12.17. ...... 0 '4.117 1970 . . 90 . ___9

12. 133 09 . 01'".- ..- ---... '9 4.139
12 321J.5. ,20 41,s 2070 694 4,199
I2 .16? 2095 4.167 2045 '493 41 9

2!_ 19 - 21.9-0I 510 '42
12.2 210 '4. 2 2090 698 '4. 20

= 12R - J1 45J 069 '4.179

12.36 2080 4.46 2030 '4 '4.114

,..~2.522.7~0 4.I3'4 . -Io.110..4

... 1,l ,J..-.... ... 49?. 3310'4. .. ..... .. Z)It ... .... 8 ._. 8.1
'- 0 i. 5 ~ .J22 70Z3620 . 54 ..43 44 a

12.94 1501 ' 46240'7 ,

10. 156 t o4 S, -. ,-, , '49 30 An0

.24(0. 5.211 2410 'l .

'I'l,~'82 I' .12
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Table III

AL203 BEAM DATA - CORRECTED TIME TO FAILURE
AND ASSOCIATED PROBABILITY

CORRECTED CORRECTED

TIME TO TIME TO

FAILURE NtI FAILURE N- I
(MIN) (M IN)

11.290 .0204 12.341 .51

11.307 .0408 12.342 .53

11.459 .0612 12.362 .55

11.692 .0816 12,392----- .572

11.780 .102 124 9243 .5 .

11.834 .122 12., 9 .613

11.956 .143 12.504 .633

11.976 .163 12,50 .653

11.997 .184 12.605 .673

11.997 .204 12.686 .694

12.017 .224 12.686- .71

12.037 .245 12.707 .734

12,037 .265 .727

12-078..... . 2 86... 12.768 .7
12.118 o6 12.778 79 6

12.128 .326 12.778 ,816

12.138 .347 12.889 .836_

12.139 _.67 12.93 ,857

A12.149 .387 .876

12.179 .407 13.021 .897

12.179 .428 13.031 .918

12.199 .449 13.031 .938

12.311 .9 13.255 .98
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The radial loading fixture which appears in all of these photo-

graphs is present only for the mechanical aspect of the loading

which is disucssed under part 3 of this section. The power input

to the heating element was measured and controlled by the use of

a watt meter and rheostat. The test was completed when catas-

trophic failure of the disk occurred. The time to failure in

each test was the interval between the instant of power applica-

tion and the instant of failure. The gross heat flux incident

upon the disk as computed using the temperature distribution and

material properties will be presented later in Section IV-3.

b. Temperature Distribution

As in the case of the beam it was necessary to obtain a temp-

erature distribution throughout the disc as a function of time

and location. Because of the axisymmetric character of the ther-

mal loading, the location is specified by radius only. A very

satisfactory way of monitoring temperatures through the disk con-
sisted of implanting thermocouples at strategic locations on the

plate (Figures 9 and 10). This precluded the possibility of in-

strumenting each plate tested. Hence it was necessary to obtain

a definitive set of measurements from one fully instrumented disk

to infer the temperature distribution which existed during all

successive tests. As in the case of the beam, some transparency

near the inside hole was in evidence and a graphite coating was
applied to the inside edge of all plates to minimize "see through."

It should be recalled that failure is catastrophic (Figure 11)

in these tests and that the time to failure is variable. Hence,

the problem arises of obtaining a representative set of temperature

data for a duration of time greater than the greatest time to fail-

ure expected for all tests without having the instrumented disk

fail during this period. The only solution that presented itself

was to "prefail" the instrumented disk. Two pieces were formed
by cracks along the radial direction. See Figures 12 and 13 for

explanatory diagrams showing location of the cracks and thermo-

couple implants. Several preliminary tests on place specimens

gave an indication of what to expect as a time to failure duration.
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Figure 12 Diagram~ Showing Relative Locations of Thermocouples
and Prefail Cracks
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Figure 13 Diagram Showing Location~s of Thermocouples
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Using this as a guide, the instrumented disk was monitored for a

time period almost twice that expected. Finally, many tests were

run with this instrumented disk under a variety of circumstances

which served two primary interests. First, that of obtaining a

temperature distribution which, with a degree of confidence, will

accurately represent the actual distribution in each test speci-

men. Secondly, planned differences such as dismantling setup and

reassembling, immediate reruns without any disturbance and rota-

tional reorientation of the disk with respect to the heating element

gave the technicians experience which was a valuable asset in con-

ducting the unmonitored disk experiments.

The temperature data was obtained as a millivolt reading at
a paiticular time and position. This information has been con-

verted to temperature-time-position measurements and replotrcd
in a manner more useful in the program. The results of these

temperature distribution tests are shown in Figure 14.

c. Fracture Testing

Results of these tests are shown in Table IV and the result-

ing cumulative distribution is illustrated in Figure 15.

3. PLATES: THERMAL AND MECHANICAL LOADING

a. General Discussion

When we formulated our original program strategy, it was con-

templated that the disk element would be subjected to an axisym-

metric thermal loading and a mechanical radial tensile loading.
Unfortunately, the required magnitude for the tensile loading

could not be achieved with the gripping scheme that we visualized.
For this reason, it seemed expedient to consider a radial com-

pressive loading which would not present special gripping problems.

Using the radial load fixture shown in Figures 16 and 17,

compressive loads were applied to the disk through various types

of bearing devices. We attempted to approach, as close as pos-

sible, a uniform peripheral loading. Our efforts were simply not

good enough as shown by the photoelastic results in Figure 18.
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Table IV

A'20 3 DISK DATA - TIME TO FAILURE AND ASSOCIATED PROBABILITY
(Thermal Loading Only)

TIME TO TIME TO
FAILURE F = FAILURE F

((IN.) N + I N I

6.984 .0244 9.750 .512

7.766 .0488 9.817 .536

7.9 .0732 9.934 .561

7.967 .0986. 9.967 .585
8.150 .122 10.083 .610

8.516 .146 10.217 .634

8.667 171 10.266 .655

8.766 .195 10.316 .683
8.850 .219 10.334 .707

9.000 .244 10.400 .731

9.017 .268 10.716 .755

9,067 .293 10.750 .780

9.216 .317 10.833 .804
9.266 .341 10.866 .829

. ., 10.917 .853
9L.28.U.. ... l,083 .877

3 ........... ...... 11,750 .902

9.384 .463 12,367 .951

9.467 .488 12.415 .975
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Figure 18 Fringe Patterns Produc.ed in Photoelastic Specimnn
Subjected to Compressive Mechanical Loading
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Here, we observe not only that the stress distribution is not axi-

symmetric; but, that significant tensile stresses are present. As

we shall see, these tensile stresses cause the disk to fail sooner

than the disks without this compressive loading. This illustrates

quite clearly that a compressive prestress will not necessarily

strengthen a brittle element. We hasten to point out that a uni-

form compressive prestress would not have introduced tensile stres-

ses and would have resulted in an increase in the plate's integrity.

b. Temperature Distribution

The temperature distribution for the disk with compressive

grips in place, was obtained in the same manner previously de-

scribed in part 2b of this section. The temperature distribution

curves are shown in Figure 19. Because 90 percent of the periphery

was used to approach a uniform mechanical loading, the effective

heat sink was appreciable. Comparison with the previously obtain-

ed temperature distribution shows a strong shift to lower tempera-

tures for the same time intervals, as expected.

c. Fracture Testing

The disks were placed in the loading fixture as shown in Fig-

ure 16 and subjected to a mechanical loading and thermal loading,

the latter being superposed on the mechanical loading when it

reached a prescribed level. The time to failure was recorded for

each test and is given in Table No. V. Failure was defined by the
first audible sound of cracking. The cumulative probability dis-

tribution is shown in Figure 20.
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Table V

AM2 03 DISK DATA - TIM4E TO FAILURE AND ASSOCIATED
PROBABILITY (Mechanical and Thermnal Loading)

TIME TO
FA ILURE F

(MIN.) I+

3.566 .091
3.583 .182

3.600 .272

3.917 .36'4

4~.033 .4~55 *

4~.083 .545__

4.233 .636

4.583 .727

L4.784 .818
4.800 .91
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SECTION IV

RESPONSE PREDICTIONS

1. APPROACH

The central question to which this research effort addresses

itself is: "Can the statistical analysis algorithm be successfully

applied in the case of brittle structures exposed to thermal and

mechanical loadings and, if not, why not?" Specifically, on this

program we seek to explain the results of the beam and disk ex-

periments described in Section III with the aid of the fracture

algorithm presented in Section II.

There are many possible avenues of approach on this question.

The straightforward approach is the most logical and involves

using experimentally obtained basic material property data in

conjunction with the fracture algorithm to attempt to "predict"

the results of the beam and disk experiments. The difficulty

with this approach is that the tensile strength distribution for

alumina, at room temperature and especially at elevated tempera-

tures, has not yet been satisfactorily defined. Each available

strength distribution is probably an underestimate of the true

distribution for alumina. Even if alumina were a pure series

material of the Weibull type and the algorithm was performed

using infinitesimal subvolumes, the use of the available strength

distributions should result in conservative and not exact results.

Thus, the achievement of conservative predictions is not a very

4 sensitive test of the applicability of fracture algorithm -

especially if the material is close to being of the pure series

type as in fact we hoped alumina would be.

The approach which was selected begins by making an additional

assumption that the tensile strength distribution for alumina is

independent of temperature in the range from R.T. to 1500'F. At

moderate temperatures some investigators (References 3,4,5,6 and 7)

do measure a slight degradation of strength with increasing

temperature. However, our experience with elevated temperature

Preceding page bank
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testing suggests that the experiments cannot be performed with

the same precision as they can at room temperature. Thus, since

a measured degradation of strength at moderate temperatures may

be explained by experimental limitations, the assumption of the

strength distribution being temperature independent may not be

unreasonable.

Since the strength distribution is assumed to be of the

Weibull type, the assumption of temperature independence requires

that the parameters m, au) a0 are independent of temperature.

In this approach these parameters are left as open parameters.

A trial and error piocedure employing the fracture algorithm in

conjunction with the stress analysis is used to attempt to simul-

taneously "fit" both the beam and disk experiments using a single

set of values for the parameters. Using this method, a deficiency

in the algorithm, experimental procedure, or the temperature in-

dependent strength assumption may be observed in two ways. First,

it is entirely possible that the beam and disk experiments cannot

be "fitted" satisfactorily using a single set of parameters. Sec-

ond, assuming that it is possible to fit both the beam and disk

experiments, it is very likely that the resulting strength distri-

bution may be unreasonably different from the data obtained from

the best strength tests.

2. MATERIAL PROPERTIES

The approach just described was successfully employed. Using

the single set of Weibull parameters m - 3.3, au = 19,700 psi,

ar 0 =  7,000 psi with a tension gage volume of V 0.0982 ia ,
both the beam and disk experiments were satisfactorily "fitted."
Using these values the strength distribution is plotted in Fig-

ure 21. The mean strength can be computed to be approximately

32,400 psi. This value tends to be somewhat higher than most avail-

able tension data and begins to approach the flexural strength data.

However, very recent gas-bearing data by Pears and Starrett (Ref-

erence 8) achieves some high mean strengths in tension for alumina.
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When the comparison is made between this excellent data for a gage

volume of 0.031 in? to the derived Weibull type strength dis-

tribution for the same volume, Figure 22 , the agreement is

seen to be quite remarkable.

For the remainder of this report the tensile strength dis-

tribution, in the range from R.T. to 15000 F, shall be assumed

to be given by the Weibull formulation with parameters m = 3.3,

au = 19,700 psi and ao = 7,000 psi. Furthermore, for the pur-

pose of illustrating the general application of the fracture

algorithm, the distribution curve shall be pretended Co come

from tests on a tensile specimen of gage volume v = 0.0982 in?

The other material properties entering into the stress

analysis and thermal analysis have been obtained from the litera-

ture. Thermal strain as a function of temperature after Goldsmith,

Hirschhorn and Waterman (Reference 9) is shown in Figure 23. Mod-

ulus of elasticity as a function of temperature after Dally (Ref-

erence 10) is illustrated in Figure 24. Poisson's ratio as a

function of temperature after Coble and Kingery (Reference 11) is

shown in Figure 25. Finally the thermal conductivity as a function

of temperature after Goldsmith, Hirschhorn and Waterman (Reference 9)

is illustrated in Figure 26.

3. THERMAL ANALYSIS

Assuming black body radiation, the heat flux Q impingent

upon the surface of the beam or disk may be expressed as

Q=- k -n + a T4  (17)
where k is the thermal conductivity of alumina, iT

- is the
normal derivative of the temperature distribution into the
body evaluated on the surface, a is the Stefan-Boltzman con-

stant and T is the absolute temperature on the surface. Using

the temperature di3tribution curves for the beam and disk from

Section II, Figures 5 and 13 , and Figure 26 for the thermal

conductivity, the heat flux Q can be computed using Equation (17).

The results of these computations are plotted in Figure 27.
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Figure 27 Gross Heat Flux Incident Upon Beam and Disk
as a Function of Time
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4. BEAM STRESS ANALYSIS

The beam prototype structure is loaded, as shown in Figure 28,

by terminal couples M(t) and by the temperature distribution T(z,t)

induced by the heat flux Q(t) impinging on the bottom surface. The

general solution of the thermal stresses in a beam with temperature

dependent mechanical and thermal properties using strength-of-ma-

terials type assumptions is well known (Reference 12). By replacing

the term aT everywhere by eT, the thermal strain, and introducing

the mechanically induced bending moment distribution M(t), the stress

distribution ax(z,t) is found to be given by

PT(t) MTZ(t)y LMTr (t) +M(t)zax(Z,t)=- TE + -- '- + z l (18)

where

eT(t) eTE d A (19)

MT W = E T EZ d A (20)

Y A

MT (t) T ~y d A (21)

It is observed that, in this formulauion with eT replacing

aT, the dependence of the solution upon the temperature dis-

tribution is now entirely implicit.

Due to the fact that the temperature distribution is in-
dependent of y the following simplifications result:
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MT (t) = 0
z d

PT(t) b f STE d z (22)

-d

MT (t) - b f TE z d z
y

-d

Noting th't A 2bd and I = (2/3)bd , the expression for the3y

stress distribution becomes

3Mz - sE + 4 FdSEdZ z d ' 23)
3 TT 2d TT JT zd

2bd T-d 2d -d

Thus, given ET T() , E - E(T), T(z,t) and M(t), Equation (23)

will yield the stresses in the beam.

The solution of Equation (23) has been accomplished using

a digital computer (Appendix 11). Using the temperature distribu-

tion curves, Figure 5 , the material property curves, Figures 23

and 24, and the relationship

bM(t) 59.4 in-lbs for 0.t-8.0 min

59.4 + 535.3 (t-Z.0) in. lbs for t 8.0 min (24)

the stress distribution is found to be as shown in Figure 29.

it is observed that the stresse . are small until after the mte-

chanical 'Load begins to increase at the 8.0 min point. Also,

anothei consequene of the dominating mechanical loading is that

the stress distribution is ,-rv nearly linear after the 9.0 min

point.

.Figure 30 illustrates the maximum tensile stress distribu-

tion. It is interesting to note Lha,., using the mean tensile

strength of approximately 32,00 psi, the deterministic maximum

stress theory predicts failure at about 12.6 rin. From the ex-

perimental data, Figure 6, the earliest failure occurs at about

11.3 min and the median time to failure is about 12.3 min.
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5. DISK STRESS ANALYSIS

The disk prototype structure is loaded, as shown in Figure 31,

by a tensile radial stress S on the outside surface and by the

temperature distribution T(r,t) produced by the heat flux Q(t) on

the inside surface. The plane stress solution in the case where

the mechanical and thermal properties of the material are independ-

ent of temperature is well known (Reference 12). One method of

accounting for temperature dependent properties is to represent

the disk as a composite structure of concentric rings where each

ring is thin enough so that the material properties within the

ring can be assumed to be constant.

The analysis of the concentric rings can be readily accom-
plished using the Method of Initial Parameters or Transfer Matrix

Method (Reference 13) due to the fact that the geometric and equi-

librium conditions which must be satisfied &t each interface be-

tween rings are automatically fulfilled. In addition to those

parameters defined in Figure 31, the parameters and variables

entering into the problem are:

eT = thermal strain

E = modulus of elasticity

v = Poisson's ratio

T(r,t) - temperature distribution

u(rt) - radial displacement distribution

ar(r,t) - radial stress distribution

ag8(r,t ) - circumferential stress distribution

Using a matrix form oi this method, the stress distribution in
the disk is gLven by

a (N(r , t)

r t _71 (25)

a,(r,t) N(r, t)
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where

N(r. t) j %(r, t) Rj I(r j t) Hj.2 (rji t .... Rl(r2, 0) Ro(rl, t) -o t)

and u(r, t) (26)

R(r, t) = rNr t)j (27)

LL

=r (rotj
N T(r,t) r 0) (r) (29)

-- gh
() r(l-V4) (l+v )T 10 r

(r)- j(r) - I) T(jt)dq

S(r2 hET (r J qT(nt) dj

t rr T(r ,t)

0 0 1

(30)

In general Equation (26 ) leads to two nontrivial relation-
ships which may be expreised as

u(rt) - u.(t) F1 (r,t) + No(t) F 2(r~t) + F3(r,t)

(22)
Nr(rt) -u 0 t) G,(r,t) + No (t) G2(r~t) + 3(r,t)
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where uo(t) = u(rot) and No(t) = Nr(ro, t) and where Fi(r,t)

and Gj(r,t), i = 1,2,3, represent the cumbersome expressions

that could be obtained from Equation (26). Now since the

boundary conditions are

Nr (r ot) = 0r' 0'(33)

Nt(r2 ,t) = Sh

the two constants of integratioa uo(t) and No(t) are found from

Equation (32) to be

NOt) = 0

U ( = Sh - G3 (r ,t)0ot G, l(ri, t) 34

The system of equations, Equations (25) through (34), has

been progranned on a digital computer (Appendix III). Using

the temperature distribution in the disk, Figure 13, and the curves

for the material properties, Figures 23, 24 and 25, the stress

distribution has been computed as depicted in Figures 32 and 33.

It is observed that the radial stress is always compressive and

hence, according Lo the fracture algorithm does not contribute to

the probability of failure. The circumferential stress distribu-

tion i3 observed to be compressive near the inside radius and ten-

sile over most of the remainder of the disk.

The maximum tensile circumferential stress distribution is

illustrated in Figure 34. Using the mean tensile strength of

approximately 32,400 psi, the deterministic maximum stress theory

predicts that no disk will fail up to the end of the test at

14.0 min. From the experimental data, Figure 14, the earliest

failure occurs at just under 7.0 min, the median is at about

9.6 min and all specimens have failed by the 12.4 min point.
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6. APPLICATION OF THE FRACTURE ALGORITHM

Separate, but similar, computer programs were written for

the analysis of the beam and disk prototype structures (see Ap-

pendices II and III). Each program did the complete analysis of

its prototype structure, including thermal analysis, stress

analysis and the statistical analysis employing the fracture

algorithm.

The fracture algorithm described in Section II was designed

especially for the analysis of the beam and disk experiments and

thus no major modifications were necessary in incorporating it

into the computer programs. Steps (3), (4) and (5) are the only

steps in the fracture algorithm that have not already been dis-

cussed or that are not executable in their given form. For con-

venience, these steps shall be repeated here along with a dis-

cussion of how the steps were accomplished in the analysis of the

beam and the disk.

(3) Divide the structure into n convenient subvolumes

V1 , V2,...Vn . No subvolume should be smaller than
the gage volume of the tension specimen:

V. 7, j - 1,2,..,n. Subvolumes should be selected

with approximately homogeneous stress states.

The volume of the tension specimeni is 0.0982 in.3  The depth

of the beam was divided into 20 equal suments thereby creating

identical subvolumes of volume 0.100 in? The disk was subdivided
into 69 ring type subvolumes, each with a volume of 0.0996 in3

By selecting the smallest volumes possible in each case, the

homogeneity of the stress state in each subvolume was optimized.

(4) For each value of time t determine the "worse'
risk of rupture for each subvolume V.:

B. gij (L) = __v max f 10i(.x,yz,t); m(T),au(T),ao(T) ,i- 1,2

D44 )
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where f [ai(xy,z,t) - au(T) ] (T)or
i~a f=o(T )  Io i.u(5

(5)
= 0 for ai au

and where T = T(x,y,z,t) and D. is the region in

space occupied by Vj.

In the computer programs, it was assumed theft the maximum

value of f always occurred on the boundary of the subvolume in

both the case of the beam and disk. Regarding the beam subvolume,

the value of f was computed at the top and bottom surfaces and

the largest was selected to be the maximum value in the subvolume.

In the ease of the. disk, f was computed on the inside radius and

outside radius with largest being taken for the maximum in the

ring.

Strictly speaking, the maximum value of f will not always

lie on the boundary of the subvolume. Now Equation (4) is itself

a conservative statement and thus,when the assumption that f is

maximum on the boundary is valid, the results are still conservative.

However, when the assumption is not valid the results are not con-

servative. Therefore it is assumed that, by making the subvolumes

small enough, more often than not the maximum values will be at-

tained on the boundary and in this manner the cumulative results

for the risk of rupture for the entire structure will remain con-

servative.

(5) Determine the maximum value of each Bij (t) in the

interval 0._ t- r

B max Bi(t) (6)

In the computer programs, the value of time is itera-ed by

finite amounts so the problem of determining the maximum value of

Bij (t) with respect to time is similar to finding the maximum of

f in D . The value of Bij is computed at each value of time
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and the largest value is selected as the maximum value. Now the
true maximum value may have occurred at some intermediate value

of time. So, again, an appeal is made to small increments in
order to minimize the error. In the case of the beam and disk,

the Bij 's increased fairly monotonically with time and thus the

problem was alleviated since the maximums tended to occur at the

current value of time.

The remainder of t task of placing the analyses on the com-

puter was very straightforward. The stress analyses were pro-
grammed exactly as presented earlier in this section. The material

properties that entered into the analyses were incorporated into

the computer programs as functions of temperature. Data in tabular
form was read into the computer and whenever a value between

entries was desired, it was obtained by linear interpolation. The
temperature distributions were read into the computer as two-dim-
ensional tables and linear interpolation was again used for inter-
mediate values. In all cases, the tables were constructed so as
to tend to minimize errors arising from the use of linear inter-

polation.

Figure 35 is the comparison between the experiments and the
"predictions" obtained frow the iracture algorithm. These curves
were made using the computer programs described in Appendices II
and III in conjunction with the material property curves described
earlier in this section. The agreement in both cases betweert the

experiments and the theory employing the tension data is fairly
remarkable in that, to our knowledge, no other investigators have

achieved as good an agreeivent between two sets of experiments -
much less three sets as is the case here.
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SECTION V

DISCUSSION OF RESULTS

1. RELIABILITY OF RESULTS

We have taken the position in this investigation that we have

not proved the applicability of our fracture algorithm, but, that

we have established its potential for predicting thermal/mechanical

response. To justify this viewpoint in the light of the amazingly

close predictions, we are obliged to expose a few of the scientific

shortcomings of our program. The following unanswered questions

all raise doubts concerning the veracity of our results.

(a) Have all the materials used in the bean, disks,

and ten-ion specimensbeen drawn from the same

statistical population?

(b) Is high purity aluminum oxide a series material?

(c) Temperature dependent elas.:ic and thermal properties

and statistical strength parameters were taken

from the literature. Do they represent the material

used in this investigation?

(d) What is the magnitude and character of the various

parasitic stresses present in the differenL test

spec imens?

(e) Was the material used in our specimens homogeneous;

for example, is the iurface and volume material

identical?

Without dwelling on the desirability of resolving these

points, let us say that a more ambitious program should address

itself to such questions.

2. SENSITIVITY OF RESULTS

Due to the small disparity between the predicted and measured

response of the beam and disk prototype structures, it is tlow

unnecessary to conduct the error analysis originally contenlplated
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at the beginning of the pr6gram. Instead, a variation of param-

eters study was performed which yields more general information.

Specifically, variations of plus and minus 10 percent (+ 10%) were

introduced into each material property versus temperature curve

entering into the response analyses. The resulting theoretical

curves are compared with the data in Figures 36 through 41.

Referring to these figures, it is readily observed that the

beam is virtua.ly insensitive to the mechanical properties ET(T),

E(T) and v(T). Poisson's ratio was recognized to be unimportant

in the stress analysis of the beam. However, the fact that the

thermal strain and modulus of elasticity do not play a large role

in the case of the beam is probably due to the fact that the

temperature distribution is too linear. With respect to the

Weibull parameters m, au and c0 the beam is observed to behave

fairly sensitively.

The effect of Poisson's ratio was included in the stress
analysis of the disk. Consequently, it is interesting that the

+ 10% variations in v(T) do not significantly alter the theoretical

curve in Figure 38. The other figures indicate that the disk is

fairly sensitive to m and very sensitive to ST(T), E(T), a. and

Co . It is also interesting to note that the disk curves for
+ 10% C T(T) and + i0% E(T), Figures 36 and 37, are identical.
This would be explained if the parameters always occurred as a

product, 8TE , as is the case in the stress analysis of the beam
Equation (23). That this is not the situation in the case of the

disk is readily observed by inspecting Equations (25) through (34)

for the stress analysis of the disk. A simple example, however,
will clear things up.
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Consider two singly fitting concentric rings of the same

material. Assume that when both rings are at the reference

temperature To, the rings are free from stress. Also, assume

that both sT and F are functions of temperature. Now, let us

examine what happens when the inside ring (number 1) is heated

to TI and the outside ring (number 2) is heated to T2. If the

thickness of the ring 6 is small, the radius of both rings may

be taken as R and thus, after being heated to T, and T2

respectively, the stresses in the rings can be computed from

elementary theory to be

a _ T(T1) - ET(T2 )

a 2 = " ai (36)

The form of Equation (35) demonstrates that the effect of

a + N% variation in eT(T) will be identical to a + N% variation

in E(T)

3. FUTURE RESEARCH

Almost all of the work which has been done in the field of

statistical fracture theory has concerned itself with the analysis

problem as contrasted with the design problem. The present study

is no exception since we attempt to predict the behavior of a

known element under a specified environment. If we are to deal

effectively with the problems of how to modify an inadequate

structure or how to proportion a brittle component for minimum

weight when operating under severe temperatures, we must address

ourselves directly to the problem of design. Our fracture algorithm

provides, to be sure, a basic tool for design; but, it does not

constitute a design procedure.

To improve our analysis capabilities, there are two situations

to consider. In the first, we must extend our capability so that

we may predict the performance of simple materials (linear,
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homogeneous, isotropic, series) in more severe temperature

environments. In the second, we must try to characterize the

behavior of more complicated materials (nonlinear, anisotropic,

parallel) under room temperature and steady state elevated

temperature environments.
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APPENDIX I

.STATISTICAL FRACTURE THEORY FOR COMBINED STRESS CONDITIONS

1. INTRODUCTION

In his classic paper of 1939 (Reference 14), Weibull develop-

ed an expression for the fracture probability of a brittle material

under a polyaxial stress state. Using a different point of view,

we shall expand on his brief statistical treatment of this com-

bined stress problem and we shall extend our results to cases

of varying mechanical and thermal loading and to materials which

cannot be represented by the Weibull distribution function.

Briefly, it is our objective to establish a fracture surface,

i.e., to find a relationship among the strengths achieved under

various stress states. The usual approach to this problem in

either brittle or ductile materials is to find a property common

to all stress states that will indicate failure or nonfailure.

In ductile materials the distortion energy represents such a

property since incipient flow occurs in any stress state in which

the distortion energy is equal to the distortion energy obtained

in a tension specimen at yield. Stated in another way, we can

correlate yielding under any stress state with the distortion

energy. Our approach for brittle materials is completely analo-

gous - we shall try to find a property that will correlate with

the reliabilities associated with the various possible combined

stress ccrditions.

To avoid the "size effect' problem observed in the strength

of brittle elements, i.e., increasing fracture stress with de-

creasing volume, we shall confine our study to finite volumes
AV of fixed size. We assume that both the material and the

stress state in these basic volumes are homogeneous and that the
materials used in all the volumes to be considered have been
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drawn from the same population. In addition, we shall re-

strict the study to brittle materials that are statistically

isotropic, i.e., the distribution of strengths obtained from
an indefinitely large number of basic volumes will be identi-

cal in every direction.

We shall assume that the principal stresses SI, S2, S3
which act on a basic volume are proportional to a load factor

S, i.e.,

S1 I aS

S2  ,. (37)

S3 = YS

where a,P,Y are constants which define the stress state. Then,
the strength of a basic element will be taken as the maximum
load factor that it can equilibrate. Failure of the element
is represented by its inability to equilibrate the applied
loading. It is important to point out that it is possible
for cracks to initiate and propagate within the basic volume
without causing its failure. Materials in which cracks can

Cbe arrested or which provide alternative load paths when
local failures occur are classified as parallel or series-
parallel materials. If a local failure necessarily leads to
overall failure, the associated material is called a series
or "weakest link" material. One can advantageously adopt an
infinitesimal basic volume for the series material and, as
we shall subsequently discuss, combined stress testing is
greatly simplified in this case.

Only the tensile or cohesive mode of failure will be
considered in this investigation. We shall ignore the in-
fluence of compressive or shear stresses on the strength of
a brittle material. The potential usefulness of this tension
criterion is a consequence of two observations; first, that
the shear strength of brittle materials is usually an order

of magnitude greater than the tensile strength and, second,
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that it is extremel- difficult to eliminate tensile stresses

from prototype or laboratory elements. Almost every structural

failure of a brittle ct nponent can 1-e attributed to the pres-

ence of some distribution of tensile stresses.
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2. TWO-DIMENSIONAL THEORY

a. Heuristic Development-Single Loading

When we attempt to describe the statistical fracture

strength of a finite volume of material under a uniaxial stress

state, the axial stress (strain) is the only reasonable choice

for the statistical variate. Taking a general form for any

cumulative distribution function, we can write the fracture

probability F for the uniaxial stress state as

F (a) = I - exp [ - A._V g (a) (38)
V

where AV is the specified volume of the basic element, v is

a volume of unity and a is the axial stress. The delineation

of the constant AV/v does not affect the generality of this

expression and in the special case of a series material it pro-

vides a convenient representation. If we examine the strength

of a basic volume of an isotropic material under a general homo-

geneous stress state, it follows that failure will depend only

on the three principal stresses acting on the unit. Thus, the

probability of failure of the basic volume can be designated

as F(SI, S21 S3 ) where the three principal stresses are taken

as the statistical variates. For this case we shall take

Equation (38) in the form

-log [1-F(S(,S)9S3 )
S(, -- i . --- .. .. = g(S1,sS.S ) (39)

For a specified reliability (1-F), Equation (39) becomes g(Sl,S2,S3)

equals constant, which defines our fracture surface.

Ot the basis that failure is caused only by tensile stresses,

it seems reasonable to look for the f'.nction g within the

collection of all possible tensile stresses which can occur at

any point in the basic volume. In the plane stress problem, we

cai relate the normal stress an acting in aeny direction to the
principal stresses through the expression
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an S1 os 20 + S2 sin 2 (40)

where 9 is the angle between an and S1. As 9 sweeps through

all values from - 7T /2 to 7T /2, Equation (40) describes

every possible normal stress acting at a point. The normal

stresses associated with the various directions described by

9 are shown in Figure 42 for several different stress states.

The question, now, is what are the distinguishing features of

these figures which will reflect the differences they cause in

a material's response?

The most obvious first guess is to differentiate among

these stress states by comparing the areas associated with the

tensile normal stresses. However, this approach does not re-

flect the possibility that the magnitude of the stresses may

have a different influence than their extent or distribution.

For example, hydrostatic tension and pure tension stress states

which lead to the same area are depicted in Figure 42a where

we observe that one peak stress is twice the other. Experience

indicates that the pure tension state is the more critical. On

the other hand, when the maximum hydrostatic tension and pure

tension stresses are equal, as indicated in Figure 43b , our
intuition would select the hydrostatic state as the more critical.

Ualike pure tension, oriented flaws such as cracks cannot avoid

exposure to high normal stresses by assuming a preferred direc-

tion since all directions experience the same stress under

hydrostatic tension. This implies that a maximum stress theory

is inapplicable and uncotservative, and indeed, evidence exists

to support this contention (Reference 15).

The two examples depicted in Figure 43 suggest that we
"weight" the ordinates of the normal stress-theta diagrans for

different stress states and then compare their areas. Assuming

a statistically isotropic material, the weighting should be in-
dependent of the orientation of the normal stress, 9. We might

use, for example, a power function to rodify the normal stresses,

i.e.,
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O-n
-2S

/-Pure Tension: O:n=n (2S,O)

Hydrostatic Tension

0-n (7 (S S) -_S

---/2-7r/4 7-/4 7T7/2

(a) Equal Arejs -Unequal Maximum Stresses

Pure Tension: 0"n= On (SO) 7-Hydrostatic Tension :n= 0n(S, S)

7/

-"fft2 "rT 2 0

(b) Equal Maximum Stresses-Unequa' Areas

Figure 43 Comparison of Hydrostatic Tension and Pure
Tension States
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D a (41)

where D and k are constants. This alteration results in

the dashed curve shown in the left side of Figure 44 . If the

normal stress distribution for several stress states are weighted

in this fashion, we could compare the areas of the resulting

curves, i.e.,

g(SI,S2) = Area = DJ ak dG (42)

a n> 0

where the integration extends over those values of 9 where

the normal stress is non-negative. Because of symmetry we need

consider only the positive normal stresses in the interval zero

to 7r/2. To account for the possibility that tensile stresses

below a certain magnitude a, may not cause failure, we may

choose to weight the difference (an-o ) as shown in the right

half of Figure 14. The associated area is given byJk
g(SlS 2) = Area = D ( n " a,) dG (43)

Certainly, the use of a power function to weight the normal

stress-theta diagrams is completely arbitrary and there are

many other ways of manipulating and distorting such curves. Our
problem is to find a weighting function that will reflect the

influence of stress state on the reliability of a basic volume.
Denoting the weighting function by f, the fracture probability

becomes
T /2

F( S2) = 1 exp -V f(an) d@l (44)

0

We are now in a position to describe certain guidelines

for the selection of f. First, to account for the possible

existence of a zero fracture probability stress a,, we must take
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f = f(a - al C 0

(45)f = 0 nS_  "I

The latter condition implies that both SI>a2 and S2!_ a, and

that in such cases F = 0. At the other extreme, we expect that

fracture is a certainty when either S. or S2 is positive and

unbounded; hcnce, F = I implies that

f- o when SIS 2 - +

Furthermore, we would expect on physical g.. inds that the

failure probability would increase continuously with increasing

principal tensile stresses; thus,

f...continuous and monotone increasing.

Finally, f must be chosen in such a way that the associated

F(S1,S2) fits the cumulative distribution curves obtained from

fracture tests conducted using various stress states. In parti-

cular, it is necessary that fratu.e data obtained under pure
tension be represented by F(S1 0) or F(O,S2) and that hydro-

static tension data be represented by F(SIS 1). This is a

standard problem in curve fitting and one proceeds by selecting

a reasonable and versatile font for f which contains a, and

n additional parameters ai; i.e., f - f [(n - a,); al,a2,...anj.

These parameters are chosen so that the curve for F passes
"as close as possible" to each data point. For a series material,

we note that the paran'eters which provide an exact fit to an

infinite amount of data are intrinsic phenomenological strength

properties of the material. Otherwise, they characterize ap-

proximately the strength oi the basic volume.

The following typical functions may be useful candidates

for f(Sl,S2,S3):
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For a an

f=O

For a Zat:

an- i k_ k n - UP
f= ) a" x k , k> 0 -j- )  (46)

C C

f = X + alxk a I 0 ; k O (47)

f - alz + a2Z 2 + a3x 3 +... +an ; ai 0 (48)

f = exp 'X - 1 (49)

f - exp Ik_ 1 ; k 0 (50)

f - exp (exp X- 1)-i (51)

where k, a,, a., and the ai's are statistical parameters and

where an  is the norinal stress. The first of these functions,

f k , is the one adopted by Weibull (Reference 14). We shall

interpret f as the generalized nornmal stress and T as the

generalized normal stress vector; in two dimensions (

b. Specific Formulas

In two dimensions the fracture probability is given by

o

where the integration ex~tends over the region where an-j;

specificailly,

a n  S + 2 Si 2 0o (53)

Theta is the angle between n anti S
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This inequality leads to three distinct cases:
(1) SI 

> S 2 
> a ">0:

go = T/2

(2) S> ar; S2 _c:

go Cos- S

(3) Sl- a; S2 <ag:

go = 0 (F =0)

Selecting the Weibull form for f given by Equation (46)

we shall determine the failure probability for pure tension and

for hydrostatic tension.

Pure Tension: SI  a > a,; S2  0

tt

(ate~)s2g - Itk dg(4
S'F(ad) 1 -exp a d9..V - (54

When aZ, 0 , F(at) becomes

Hvdrostatic Tension: S S 2 h 1

1 2
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This expression has the same form as the Weibull distribution

function; consequently, the estimation of a,, a , and k can

follow well developed procedures for this purpose (References 2,

14, and 16). If biaxial hydrostatic tension data can be obtained

the parameter determination for all of the forms indicated in

Equation (46) through (51) will be greatly simplified since all

the f's become independent of theta.

c. Multiple Loadings

If our basic volume is subjected to a number of different

loadings, we shall attempt to correlate fracture with the
"worst" conditions that can arise. It is assumed that stresses

which act on the basic volume prior to fracture do not signi-

ficantly effect the resistance of the material. Now then, we

shall separately consider every possible direction in our basic

volume and identify the largest normal tensile stress which
acts throughout the load history; i.e., m~x Un(t) " Eaca of these

maximum normal stresses will be weighted to form the nnximum gen-
eralized normal stress f1ax which will then be suned over thea

in the usual way to form g. For example, consider three d stinct

loadings which give rise to the sane principal directions such

as illustrated in Figu:e 45a, The collection of maximum normal

stresses is indicated as the envelop of the three solid curves

and the weighted envelop curve is shown as a dashed curve. We

note that syttunetry is preserved across the a, and the 0 axes. The

fracture probability may then be written as

[S(t), S2(L) exp .V - fir/ 2  (t

- \ 0 (57)

where we recall that the constants o and the ais are statisti-

cal paraincters.

Although we have chosen in our previous work to represent

the I n - 0 relationship in cartesian coordinates, there is no
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fundamental reason for doing so. For the multiple loading prob-

lem it is more convenient to use a polar representation as

shown in Figure 45b where the aormal stress vector an and the

generalized normal stress vector If are represented in a natural

way. The x-y axes are assumed to be fixed in the body and both

the principal stresses ,:nd directions are taken as time dependent.

Calculating the area under the weighted maximum normal stress

envelop, fmax' to establish g, the fracture probability in two-

dimensional polar coordinates becomes
f" [-max

axx(t) , a (t), a,(t)i I - exp :-, I rdrdO

or

F _(t), a (t), a " "-exp - 1- "yy t
aj a ai do) 50")

where we note that symmetry is available only through th4 origin

and where the normal stress is given by

a .la (t) Cos20 + a ( sin2 + a. () sin20 (59)

Comtparing Equations(58) and (57),we find that the polar re-

presentation itegrates f2 rather than f over theta. This does

not lead to all essential difference in the fracture probability
expressions since in each ease we must find an f that fits our

data. For exaple, if f is given by Equation (46) the ex-

ponent is absorbed by the parameter k and differences in multi-
plicative constants are absorbed by a*.

d. Theiml Loadin.,j

It has tacitly been assumed throughout this study that under

fixed envirotunental conditions (temperature, atinosphere, humidity)
the cumulative strength distributions for" our basic volume do
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not vary with time. We do not account, for example, for the

possible effects of static fatigue, creep, or continuous

chemical changes in our material. Where this assumption holds

we can associate a unique function f with every environmental

condition. Specifically, for a uniformly distributed temperature

T in our basLc volume, we shall designate the generalized normal

stress by fT(n-a,.; ai). In practical situations one usually

tries to use asfew different forms of f as possible. For a

given form, however, the statistical parameters must be taken

as temperature dependent. Thus, fT, can be written,

fT - f I [an a q (T ) ; ai(T)] 0f T -T 1

fT = f7 [an - a2(T); bj (T)] TI T'T 2  (60)

f a -f.[C. (T); c1k(T)l Ti 'T

where the temperature range of interest is T T- and where

the symbols all a 2, am, aj bj, Ck represent temperature

dependent statistical parameters.

When a basic volume is subjected to a temperature history

T(t) and a stress history aij (t), we once again identify the
'tworsti" condition in every direction. Here, we should recognize

that the largest noiMal tensile stress in a given direction does
not necessarily lead to the Largest generalized normal stress.

What we must find is the maximum combination of normal stress

and weighting. For a single stress state, the envelop of maxi-

mwn generalized normal stresses is given by

fmax -max f 1  - aL(T); ai(t)l (61)

When the stress state varies, this maximum envelop is defined by
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where the statistical parameters al and ai depend explicitly

on the temperature and implicitly on the time parameter t.

Adopting polar coordinates with fixed axes x-y in the basic

volume, we form the function g by summing this fmax over

theta; thus, T

F S O~),(t)axyt l-exp AV i maxT(t)

0

"'N

aj(t) - al[T(t)" . a 'T(t) d (63)

where fT is defined by Equation (60) -and an is given by

Equation (59). This expressio" predicts the fracture proba-

bility of a basic volume under biaxial time varying stresses

and subjected to a changing temperature environment.
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3. THREE-DIMENSIONAL THEORY

a. Single Loading

Following the two-dimensional development, we propose to

correlate the behavior of the basic volume under a general

stress state with some function of the totality of normal ten-

sile stresses in three dimensions. In the belief that any

tensile normal stress can occasionally cause a fracture by vir-

tue of its magnitude and relative orientation with respect to

a random flaw, we once again assume isotropy and weight each

normal stress vector an according to its magnitude only. Using

the polar coordinates defined in Figure 46a, the normal stress

in three dimensions can be written in terms of the three princi-

pal stresses; thus,

a losz (S1 Cos
2 + S. sin2 ) + S3 sin2 6 (64)

The normal stress diagrams associated wiLh several important

stress states are sketched in Figure 46 where we observe the
following:

(1) Symunetry makes it possible to consider only

one quadrant.

(2) The hydrostatic stress state gives rise to a

spherical surface.

(3) The zero probability stress a, can he represented

as a sphere of radius a, which can be subtracted

from each diagram to yield at -arl

(4) If the three principal stresses are positive,
tne volume of the normal stress diagram is

given by

V w ' [ 3 . .3 2. .2 2
V5(S+S S 3) + 3(815+51 3 ) 3 +1 -s 3s21 11 2ls3]

(65)
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This expression is useful as a computer check.

Now, adopting the same types of weighting functions f

described in Section 2-a, we can write an expression for the

fracture probability of a basic volume subjected to a three-

dimensional stress state; thus,

F(S1 ,S2,S3 ) = 1 - exp A j r 2 dr cosO dO d* (66)

0n- 2

where the integration extends over that portion of the first

quadrant where the normal stress is greater than the zero

probability stress. More specifically,

71/2 _ U
F(SXf dS exp, f,0 a az; ailcos6 d (67)

o L

where we delineate four distinct cases:

(1) s1 S2 Z S 3 !:"

OL = 0

u - n/2

(2) Sl S2 t S3 tat

6O ra 0

C (3) SV S+ S 32

4L 0

100



(4) $3-2c, SI1 S2 /- rl

6. L = cos-i S3  o
.S 3- S 1c Os - S2sink

u = rr/2

The integration limits in cases 3 and 4 are derived in Figure 47.

Using the Weibull form for f given by Equation (4 6),we shall

determine the failure probabilities for several important cases.

Pure Tension:

Case 4; a a n(0'0"t); L cos- or t-a6u)=%;

r/2 7/2 s 2  3k 3

_F(0,0,%t) = l-exp !-d ! -- -- cose d6 i (68)

AV

For a 0,

- 3k
_ g(O,O,cr T T( '1 I (69)

Comment: This formula for g is much simpler than the correspond-

ing g in the two-dimensional case described by Equation (55). It

has the same form as that found in the conventional Weibull distri-
bution function and, consequently, the estimation techniques de-
scribed in References 2, 14 and 16 can be used to establish the
statistical parameters ac and k.
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Hydrostatic Tension: 3-D

Case 1; cvn n n(ShSh Sh); Sh 6L 0 ; r= /2

r/2 7r/2r is .3k

F(Sh,Sh,Sh) 1-exp - AVh h, 3 (70)

0 0

!Sh-Cr 3k

g(S1,ShS h ) = -. (71)
6 C'\ c

Comment: We can compare the magnitudes of hydrostatic tension Sh

and pure tension at when each produces the same failure proba-

bility in a basic volume AV. Equating the two functions g given

by Equations (69) and (71) and taking cr 0, we obtain

Is \1/3k

Sh ! I(72)

H.ydrostatic Tension: 2-D

Case 3; n a n(Ciah'h 0 ) ; i = 0; L = 0 ' 6U = r/2

exp0I d ' h s 2  cosO d6 (73)

F(%,cihO) = l-exp - 1 2

L o

, >o) 12 -I2 +l) . (74)

12(3k4) r(3k+-) \
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Comment: The expression for g(,hC',O) is more complicated than

the corresponding g(ahCh) obtained from Equation (56) in our

two-dimensional treatment of the hydrostatic tension plane stress

problem. For equal reliabilities we can compare the biaxial hydro-

static state with the pure tension state by equating the functions

g given by Equations (69) and (74); thus,

(a) - I (3k+l)! 3-D Theory (75)
t 7T J

We form the corresponding expression, using the two-dimensional

theory, by equating Equations (55) and (56) and replacing the

letter k by k'; thus,

(7h '-D Theory (76)

To compare the (2-D) and (3-D) theories, the same input data must

be used to establish the respective parameters. Therefore, if each
theory is fit to the same tension data, we can equate Equations (55)
and (63) to obtain the relationships among the various parameters,

i.e.,

VP(k' 1) k' 7 y3c

The equivalence is established if

k' - 3k (78)" r~k' )l/k'

C r c .. (k4C (9)

Since only one parameter appears in Equation (75) we simply replace

3k by k' to see that Equations (75) and (76) are. identical. In

general, the (2-D) and (3-D) theories both predict the same fracture

curve for the plane stress problem when the Weibull f is used.
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$1 .S 2 =S 3 =-S :

1. 2 3

Case 3; a = S cos2 ;T 0 L  0 6 U T 4

F -/2 -r/4
t.r 3k

F(SS,-S) 1-exp V- id' 1 fS cos2U kcos d(F 1 (S3,S1cs d (80)

I c

3:a. s (81)ko .:g~~s-s) 2 6',' i

s -S) 512 s 6
g(.,S -S 6 3003- (82)

C

Comment: ti situations where an axial prestress is brought onto
a beam or column member, it may be important to know the increased

tensile resistance in the transverse directions. The transverse

integritv without prestressing can be estimated by the biaxial

hydrostatic teasion case. Comparing Equation (74) with Equations (81)

and (82) we find,

for k !,

S 1.1222 ill (84)

for k/2,2 r512 6

12 (64) r (04)\% c 0

S 1.0594 h(80)

Thus, our axial prestress increases the transverse strength by

12.3 percent when k-1 and by 5.9 percent when k=2.
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S =S2 S,S 3 =S:

Case 4: = -S cos26 ; c= 0 ; = ,/4 ; r/2

-r 7/2 -/21

F(-S,-S S) = l-exp AV [ /-S ,s d6 (87)V - C
JO /4

13

g(-S)-SS) = 3 . (t) (88)

835 -512 V2) 6
k=2: g(-S,-SS) = 8, 3oo" /( 6 (89)6 3003 j )

Comment: It is possible to increase the axial tensile strength of
a member by applying a transverse compression loading. The problem
arises, for example, in certain collet type grips for tension mem-
bers. Such grips produce a radial compression state which is pro-
portional to the tensile loading. The resulting increase in re-
sistance at any reliability level can be determined by comparing
Equation (69) with Equations (88) and (89); hence,

for k-1, 3

( ) (90)

S 1.2924 f (91)

for k-2

____ rd_6. (83 5 -5 12-VJS )6 (26(12+1) (ri 6  a o3) c (

S - 1.1299 at (93)

Hence, an increase of 2.2 percent in the tensile strength is ob-
tained when k-l; 13 percent when k=2.
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b. Mechanical and Thermal Load History

Following the development of Section 2-d, we shall once

again consider a basic volume subjected to a temperature history

T(t) and a stress history -ji(t). The extension of our previous

treatment of this problem to three dimensions requires that we use

the three-dimensional forma for the normal stress and the appropri-

ate summation of the maximum generalized stress fmax given by

Equation (62).

Using cartesian tensor notation, the components of the stress

vector T acting on a plane with unit normal n can be written in

terms of the stresses.

T i . rin i,j = 1,2,3 (94)

The magnitude of the normal stress vector, n' is given by the

scalar product of the stress vector and the unit normal vector; thus,

an - Ti ni = (ji nj n i  (95)

Interpreting the components of the unit normal vector ni as

the direction cosines of n, we can relate the ni's to the polar

coordinates shown it Figure 46a

nI = os~ cos 0

12 = cos~f siin (96)

13 = sin

Substituting Equations (96) intAo (95) we obtain

n C Os C ' + ofq.2 sinl ) + 33 s in 2 (

+ :12 cos 26 si12v, + 123 sif2 2 + 131 sin2 cos' (9

1O7



For the most general loading, we can expect only that the

normal stress vectors will be symmetic with respect to the origin;

consequently, we must consider all of the normal stresses above

the 1-2 plane. On this basis we can write down the fracture prob-

ability; thus,
r 2?7 -/2

F[ i.(t)] l-exp<-" i d 1 max fT I (t) -r FT(t)]l-ep I T(t) nI I t n I

0 0

a. T(t)' ! cos d6' (98)

where cr is given by Equation (97) and fT by Equation (60).

The function f contained in the definition of fT should meet

the conditions described in Section 2-a.

4. THE FRACTURE SURFACE

a. Exact Theory

For a specified reliability (1-F) and a given basic voltme

AV, Equation (39) defines the fracture surface which describes the

resistance of the basic volume under various stress states. We

customarily normalize such surfaces by relating all behavior to

that under pure tension, Then, the fracture surface becomes

g(S. S2, S3 )
go, - =J- (99)

All points on this fracture surface have the same fracture prob-

ability; points falling inside have lower fracture probabilities

and points falling outside have higher ones.
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In the two-dimensional problem the fracture surface can be

represented as a curve defined by

g(S l , S2 ) (
g(QtO) =I(100)

Specializing this formula to the Weibull power function with a2 = 0

we obtain,

Cos e + (~sin291 dG =v 1'((101)j ~ (101)

n 0

We have already evaluated this expression for the hydrostatic ten-

sion case in Equation (76). Numerical results for this case are

tabulated in Table VI together with two other stress states. We

should point out once againl that, when the power form of f is

used, the stress ratios can also be computed from Equation (99)

when S3 is set equal to zero.

Table VI

STRENGTH RATIOS FOR TWO-DIMENSIONAL STRESS STATES

Stress State Strength k=1 k-2 k=3 i <=.
Ratio

Pure Tension (ct,o) et/Ct 1 1 I jit *

jydrostatic Tension (oh,/h) i - 1/2 (3/8)1/2 (5/16)1 /3  1

Biaxial Tension (%b/2) b/it = 2/3 (12/19)1/2 (40/63)1/31 1

Pure Shear (fs,-as) /, = /2 (3/2)1/2 (157r/32)1/3 1s t

The fracture curve associated with Table VI is shown in Figure 43.

We observe that the maximum stress theory, max(Si,S 2 ) < CtC coincides

with the case k-. It was pointed out by Weibull (Ref. 14) that k=-

lcorresponds to a classical deterministic material with an ultimate

strength equal to e. We also find in Figure 48 that the tensile
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strength increases as the transverse compressive stress becomes

greater. Physically, the compressive stress can be attributed

with closing up some of the cracks which might otherwise be.

critical under the tensile loading.

As the compressive stress increases indefinitely, our theory

indicates that the tensile strength becomes unbounded. This is

clearly contrary to reality; but, it is not a surprising result

since no provision has been made in our theory to account for

compressive-shear failures. The emergence of another failure mode

provides a limitation on the range of applicability of our theory.

The ragged line in Figure 4 8 is meant to indicate such a limitation.

b. Approximate Theory

If the behavior of'a basic volume under a general stress

state was equivalent to the behavior of three basic volumes each

under a distinct principal stress, the survival of the basic vol-

ume would require the simultaneous survival of each unit. Under

these conditions the reliability of the basic volume would be

given by

1-F a rl-F(S1 )i ti-F(S)] 1l-F(S 3 )1 (102)

where F(S) is the fracture probability of a basic volume unde:

a pure tensile stress S.

For a Weibull materi3l st-bjected to pure tension, the reli-

ability is expressed as

l'(') exp tv "ki ml 't C U

(1o03)t u

where a up , M are the Weibull statistical parameters.

S 4
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The associated approximate combined stress theory

V \ (RI - + 3

where

Ri  Si  when Si ) c

Ri = C u  when S a u

Comparing the combined stress case with the pure tension case at

the same reliability, we obtain the fracture surface

+ m+ iL1 i (105)

This results in the two-dimensional fracture diagram shown in
Figure 49 when S 3 is set equal to q u' To couipare the approximate

results to the exact theory, we select the parameters in both the-

ories to match the Sae Lension data. Here, we teed only note

chat m-k and thatthe k's used it, Figure 4 9 correspond to those used

in Figure 4&

We can observe from Figures 48 ind 49 that the approximate and

exact theories are identical for the cases k-1 and k--. Be-

tween these values, the exact theory will be found to be the more

conservative. We shall determine the largest deviation 1'tweCU

the theories by examining the case of hydrostatic tension which

lies alotg a 45 deg line.

In two dimensions, the appro.imate reliability for the hydro-

static case is found by settiv; R1  1h1 R, h and R3 = .u
Then, comparing this reliability with that of the tension case,

we find

(l1/2) (106)
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Forming the ratio between this expression and that described by

Equation (76) for the exact case, we obtain

(h/ hlat)approx /m
'(_hi °/ a t2 (m m7k (107)

hLt e x a c t L

This ratio is tabulated in Table VII for different values of m.

The largest value occurs at near m=3 and shows a deviation

from the exact theory of 16.9 percent. This discrepancy is smal-

ler at all other m's and for all other stress states.

Table VII

COMPARISON OF EXACT AND APPROXIMATE COMBINED STRESS THEORIES

wo Dimensions Three Dimensions

m T (h/t approx (U h la ( approx

n t exact 7h *"t exact

1,000 , 1.000
2 1.154 1.291

3 1.16935 1.32635

4 1.163 1.3161. 53I
5 1.153 1.297

10 1.110 1.215

1.000 I 1.000

Setting S$2WS3=S h11 in Equation (lO5), we obtain the appro:ximate
ratio of hydrostatic strength to tensile strength for equal relia-

bility; thus,
s h "  / m(1/3)1/r (108)
1'h <u approx
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When au 0, we can compare this expression to the exact ratio

given in Equation (72).

(Sh/ t) approx 2m+l 1/m

(Sh /,exact (--) 3k=m (109)

where we have taken 3k=m so that both theories describe the same

tension behavior. This ratio is tabulated in Table VII; it as-

sumes its maximum value at m--3.04. For this value of m the

deviation from the exact theory is 32.6 percent; furthermore, this

discrepancy persists over a wide range of important values of m.
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5. OBSERVATIONS AND REMARKS

a. Experimental Verification

1. The integrity of a basic volume is not generally an in-

trinsic property of the material, but rather, a complicated com-

bination of crack initiations, propagations, and arrestments. For

this reason, we must try to characterize the behavior of a partic-

ular basic volume. To do this, nominally identical volumes must

be used for all the tests designed to establish a fracture surface.

2. The theory assumes that a basic volume is subjected to

a homogeneous stress state; consequently, its verification requires

that we meet this condition experimentally. Furthermore, the load-

ing on a basic volume must be increased proportionally throughout

the test. We note, for example, that the case of hydrostatic ten-

sion produces no shear stress unless the loading is incremented

sequentially.

3. If the definition of failure is taken as the inability of

a basic volume to equilibrate the applied loading, we must take

pains to identify the fracture load. We must not, for example,

allow a crack from outside the basic volume to propagate into the

unit and cause its failure. Furthermore, we must not terminate our

test because a fracture has occurred outside of the basic volume.

When the entire specimen is the basic volume~ this latter problem

does not exist; if not, we face a problem in the interpretation of

data which has not presently been solved. With low strength mate-

rials it is sometimes possible to mend (cement, glue) a fracture

outside of the gage length and proceed with the test.

4. The construction of a fracture diagrm requires that

strength values be used with the swie reliability level. Often,

however, one finds that such diagrams plot the averap-- strength

values. Unfortunately, the average strengths from tests using dif.

ferent stress ratios do not generally represent the same reliability.

It is permissible, for instance, to use the median st.ress for each

type of loading.
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5. The elimination of parasitic stresses from brittle ten-

sion specimens is one of the most exacting problems in the area
of material testing (Reference 17). One can anticipate that the

problem will be magnified for combined stress testing.

b. Weakest Link Materials

1. When failure at any point in a body necessarily consti-

tutes overall failure of the body, the material is classified as

a series or weakest link material. Now, if we define overall fail-

ure as failure at a point, we create in effect a series material.

In this instance, the problem is to find some way of measuring the

*first pointwise failure. For example, if the incipient mobiliza-

tion of the first crack in a body could be detected, we could use

Lhis feature as an overall failure criterion and thereby obtain

a series material.

Because the behavior of a series material is understood, we

can separate the volume and -ometry aspects from the behavior

of a test specimen and, thereoy, make it possible to identify an

intrinsic property of the material. Anticipation of this possibil-

ity prompted us to single out che voltie ratio sV/v in all our

studies.

2., Consider a component which is constructed from a series
material. To establish its reliability we can divide it into n

imaginary basic volumes and recognize that the overall survival

of the component requires the simultaneous survival of each basic

volume. Thus, the reliability of the body, (1-Fb), can be written

,] lj o . -FT (Sl'S2 'S 3 )!! (110)
i~l i&l

where the reliability of the basic volume, l-Fi, has been taken fromu

Equaciun (39). For an infinitesimal basic volume we obtain,

1 - Fb
= exp + j (SlS2 3 )dV (ILI)

1 7
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3. A very large basic volume of a series material follows the

maximum stress theory. To see this we can take the limit of F in

Equation (67) as AV-. If this is done we observe that F = 0

when f 0 and that F 1 1 when f # 0. But, f becomes differ-

ent from zero only when > Tj ; consequently, if the normal

stress in any direction becomes slightly greater than fracture

is a certainty. This is, of course, a statement of the maximum

stress theory.

11 ,



APPENDIX II

BEAM ANALYSIS COMPUTER PROGRAM

In tnis appendix, the computer program wftich was employed

in tne analysis of the beam prototype structure shall be des-

cribed. The program combines the fracture algorithm of Section II

with the beam thermal and stress analyses and material property

curves of Section IV into a single package. A listing of the
program as written in Fortran II for the IBM 7094 is included in

this appendix.

The program consists of a main program containing the thermal,

stress and statistical analyses and of function subprograms for

describing the functions T(z, t), E(T), ET(T), k(t), m(T), a u(T)
and o0 (T). The program has been specialized to some extent by
specifying the geometry of the beam and its loading. However, the

temperature distribution and the material property versus tempera-
ture curves are entered into the program via tables and hence the
effects of variations in these curves may be readily obtained.

As an aid in using the program, a listing describing some

of the more important variables entering into the program is also

included in this appendix.

Listing of Significant Program Variables:

DEPTH (I) ith depth in beam, measured from the bottom

DTIME size of time interval between computations

E(I) i t h eutry in table of modulus of elasticity
vs. temperature

ET(1) temperature corresponding to E(I)

FBTI .W(Z,TIME) function subprogram for computing the tempera-

ture in the beam at depth Z and time TIME

FE(T) function subprogram for coinputing the modulus

of elasticity at the temperature T
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FSO(T) function subprogram for computing the Weibull parameter

a0 at the temperature T

FSU(T) function subprogram for computing the Weibull parameter

au at the temperature T

FTK(T) function subprogram for computing the thermal conductivity

k at the temperature T

FTS(T) function subprogram for computing the thermal strain T

at the temperature T

FXM(T) function subprogram for computing the Weibull parameter

m at the temperature T

HIMP gross heat flux impingent upon the bottom of the beam

NE number of entries in E(T) input table

NJ number of entries with respect to t in T(zt) input table

NPRINT number of time increments between occurrences of detailed

output printouts

NSO number of entries in ao(T) input table

NSU number of entries in a u(T) input table

NTK number of entries in k(T) input table

NTS numlber of entries in eT(T) input table

PFL(I) probability of failure of the itLh subvolume up to current

value of time

PINT initial load on beamn

POF probability of failure of entire beam up to current value

of time.

PRATE rate at which load increases after t - TU4F

RISK risk of rupture of entire beam up to current value of time

RR(t) risk of rupture in the ith subvolume at current value

of time
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RRMAX(I) maximum value of RR(I) up to current value of time

RRT(I) risk of rupture computed using the values of stress,

temperature, etc. at DEPTH (I) and at current value

of time

SMAX(I) maximum value of STR(I) up to current value of time

STR(I) total stress acting at DEPTH(l)

STRM(I) mechanical component of STR(I)

STRT(I) thermal component of STR(I)

TIMEK maximum value of time for which computations are to

be carried out

TIMEP value of time at which load begins to increase

TK(I) ith entry in table of thermal conductivity vs.

temperature

TKT(I) temperature corresponding to TK(I)

TRRM(l) time at which RRMAX(I) is achieved

TS(I) ith entry in table of thermal strain vs. temperature

TST(I) temperature corresponding to TS(I)

TT(J) j th value of time corresponding to WSO(I)

TTAB(I,J) temperature at depth ZT(I) and time TT(J)

WSO(t) ith entry in table of Weibull a vs. temperature

WSOT(J) temperature corrosponding to WSO(I)

WSU(M) it" entry in table of Weibull au vs. temperature

WSUT(1) temperature corresponding to WSU(I)

W)ZI(1) i t h entry in table of Weibull m vs. temperature

WW (1) temperature corresponding to WXI)

?7T(I) ith value of depth corresponding to TTAB(I,J)
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PROGRAM LISTING

CM UNIAXIAL STATISTICAL STRtNGT" ANALYSI5 FRWSRAM
DIMENSION ITAB(10,100),ZTC10),rS(IO).TST(10) 'E(10) ETC1O)9TK.C1U),T
IKT(1O),WXMC1O1).WXMT(10),WSU(1O),wSUT(1O),WSO(10),WSOT(10o1Tt(40)

- COMMON TTAOII,zT5TSTSTEETTK ,TKTtWXMW7XMTWSUiWSUTW5UWSUTTTJJ
190TIME
DIMENSYON RR(20),DEPTH21)!ST(1)SIM()tSrRT(21),MAA(),HRMA
1l (20) ,TRRM(20) vPRT(2l) .PFL (2(1)
nIMENSTON ISTEP(102),TSTRA(lU2),YQUMU(102),TEMP(lUZ)

5 WRITE ")urPUr TAPF 607
7 FORMAT (4841ALUMINA MEAN UNDLR MtLHANICAL + THERMAL LOALIING .1

REAL] INP11T TAPE 5,1O4PINTPRATETIMLP
10 FORMAT (3710.8)

WRITE OUTP1IT TAPE 6v12,PlNTqPRATElTIM.P
12 FORMAT (bUIT9lo9XbPAtol*9X6TMPIbJ

REAL) INPUT TAPE 5,179STIME*DIIMEIIMLMINPHINT
17 FORMAT (310.5915)

WRITE nuTPUT TAPE 6sl99UTlmETIMtMNPNINT
19 FORMAT (1H~fTImF:F5o33X,6HTIMEMt 7.33Xt7NPRN4T, I3)
20 READI INPUT TAPt. 5,22,NJNTSqNLNTNvNAM,NSUNSO
22 FORMAT (715)

WRITE OUTPUT TAPE 6*Z4tNJNTSqNE9NTKNAMjNSUqNSC
24 FORMAT (4HUNJ:,il3s3X,4NTStIi,3X,~NtmI,3X4HNTKIi,4X4NXMMI

IFIIJJ)4O.40,2i0
30 00 35 J=1,P4J

READ IMPOT TAPE 5v32vcTTA8(IIJ3,I~tv8)
32 FORMAT W(sF04)
35 CONTINPE
4C READ !NPLIT TAPE 5v42vtZT(I)v1,lIh)
42 FORMAT 18F1O*8)
45 IF(1NTS) !)5s559,47
47 00 52 T:1,NTS

READ INPUT TAPE 5.s49vT5T(I)*Tb(I)
49 FORMAT (P10,40PIO96)
52 CONTINUIE

57 DO C2 1=11NE
REAC' ItPiit TAPE q*.i9vET(!l)*E'X)

62 CONTINOE
65 IF(PITKI 75474,67
61 D0 72 IeNTK

REAL' I?'P'.T TAPt~ 5,69vTKT(I),TKjI)
69 FORMAT (F1u*40P10.6)
72 CONIINIuE
75 no 91, !?:1,NJ
90

WPITt CtLTP"Ti TAPE 6*95v(lT(I),11,tI)
95 FGRMAT (!FiUZY= 9F9.4,7FL,)

WRITE (OUTP"T TAP'E 6*107

DJO 102 J=19NJ
WAITt OUTPUT TAPF 6*100,TT)(sTTA(jj)*Iujga)
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100 FORMAT 11Hi ,F5.4"q8*Z,7Flo#2)
102 CONTINI'E

WRITE t)UTPUT TVPE 6v105
105 FORM~AT (27HOTEMP (P) TSTAIN (IN/IN))

DO' 110 1=19NTS

107 FO'RMAT (In P8-?*5X-vlPEj4,b)
1 LO CONTINU4IE

wVIRIt nlllT TAPE 6,115
11 FCRh~tl (35HOTEmP CP) MOD Of t-LAS'TICTY (F51))

WRITfE nIITPU~T TAPE 6i607-oETtI),v(I)
120 C0N~jI jF*i

wR~llE 'J (jPlT TIAPF 6* 125
' 125 FORMAT (J8r1rEMP (P) THERMAL CUNU (tTU/PT*HIKoR))

flO 130 I=ImNT
VWPVT flhlTPIIT TAPF 6v 1071TKT (I)%7KtI)(

130 CUNTI Nl'E
I C(TI i1Fti- T N~JI ) 135 v 35113?

33? T I M:M:T T INJ)

607 137 1=114b"
Dlt) t4m ( )=0o NyM A F

PEAk) 14P11r TAPP, iw.m I~,J( I )tA
WR I Y. t I'uPII T TAP F 6,L..0UIW 0T I I 111w ANC

I 4nl FOR0 (i lWv T IC mvwHMrf1& W) O.'s 3H ( I J~X4WAM t I JH~) 1 0.4)
141 ci r I NL

RAf1 i~plur TAE S9,~qwbuTCIj,,qbdt)

144' CONT INME~

Rt-A~I' y1 TAP* ,9~STCI ~d. I

347 FORMAT C hUWSOTClitH)mFL0.a,3HCiU ~~iWOtl2H=V~oim
11))

140 C0NTlIOE
150 YIMFlTMtCJTTtAP

60 TO 15K~
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I c7 AL:PIN!T44PATE*(T1Mf-TIM'P)

-P PNS=:b
P NS! n I P/ P NS

7TE P n)

DO rI b je' 1)r~1

:iS T.P "Pl ) I ! , (I-

'TMP ti.4ji r~ ,J4'f~j(

TSPP I = YS I 

10 Y011M,~

FiM T=,'! nt
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215 IF(STRCTI-SU) 220v?219225

GO TO ?jJ0

5 0 TO 5 0

Z55 qRMAX(T)=R4M1
T RRI ( I) = TZI"E

P Flt )* t -tXPF (-C)

POF=1.-EXPF (-RISK)
'.4RITk I~ TPIiT TAPF 6%3OUTIMEvALv3MvTtAUsb5TR

IENI] tOMLrT=,vb.lbHlt4.LBS4X,1UHir.MP tRAUiJ,7. 1HH/PT4A,)1tiSTHv
2F8%2i.34PSI)
WRITE itlToll T APF 6iSo5iHF.TNHMP*ISKsP0'F

305 FORMAr (15"' NIE H.EAT FLtJA:,Fbod, Nit~ur stc,4A,168HOb5 tLAT FL

310 K22-1
WR1Tk n.IJP"T TAPF615

315 FORMIAT (468MOt)EPbT14 (IN) TLMP (R) 3RL55 (PSI) MAX SIR (PSI)
A I RR TEMJPORARY I

WRITE ~UIP ' IT TAPr 6qsao
32a PONMAT tUH ,?Tjx,5N4 LAYER Rh( LAYLR MAX TIME (41N) 'AIL PR

108

3935 WRtTtL flIjdPiT TAFF 6,340DEPTH(I) ,TtMP(l) ebYNCI) ,S'X(1) ,KNT(I)

i5a WTE Plly~i'T TAPP 6,3S55,APRII),URFIA(I,1HHkMi1),PFL(II
155 FOR~MAT 11Hi,9,p1,XPLbA.p.344I08

GO TO 33V.
360 WRITt MtUTP11T TAPEF 69.365
365 FOQMAT ('4..HVEPV4 IIN) MECH bTI4L.*S (PbI) TNEwMAL btktbb (PSI))

WRITf C'UlPlI1 TAPF t:,jTU,1EPTHI1h9!rIRtMI),brRVcI)
370 FORMAT (1'H ,Fb,3idC~oF8,Ivl5AI 891)
375 CONTINIIE

GO TO 150
END
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CI3T F3EAm TFMP'ENPATUR I..lSIPItTION PON~.iJUN
FUNCTIrnN FbTFM'w(Zsi'1r)
flMENSTQO4 1TAbtiviotl iZT(IC) ,T5CIU) ,lST(1u) E(lU) ,Er(1U),TK CJUfl,-,

I KT (Ic) . .vmC) pw~!C~) ,wSu (I (i) ,wSjfl t 1 ) , WSo( 10) .wvC ii irC

COMMON TTA~tTq1.SkST,E,Fl 1K.,IKTiJ.m~w~mTvWSliWSUTWSUWbITi iJJ

20 JJ:J!.!-l
GlO Tn 10

G. it) *5

T1J1:TTAP( II .jJ-1)

RL TUOt,
EtjIJ

CFTS THERMA) ST14AIN AS a FtINCTiUjN Q 1IM 1kUkL
FUNCTIP01 FTS#rl

fl1M~sy~ 1TH~'.PIJ)'~2JLU "!'1110 (10) CWSU *B) rITUW ITY t4U) ,

U~ TO 10M

EN11

C F 40914,I1q OF EI.AST CTY MAS A 't;1LI Utj ul- ftfiqPtRgtUL

~KT!Irj) * I'tC '.~ .W~vP; Inl , ILI) %WSIrujT( W iNSOI 0 th ) (l t I t4t(1
ACOMMON '' , ~rcKilt I w~w~~~jwUj5~bjq j

Gu v I o
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CFTV, THIERMAL CONDUICTIVITY AS A HJNILTIUls Ut TLMPLRATHIIR
FUNCT I n F TXK(T)
fltIFN^5TC1NJI T13( '~L110) 'IT (101) 't I V(±(Ho15T (10) ,P (10) *f.T (10) iIK( 10) ,PT

COMiMOt TTA,,1/TT5.,TST,FiFrF~rKTKT*WAMWAMTWSUiJ,SUTPWSU,WSUTt't,JJ
1, v TI ML

Go TOI) j

Q tTI RN

E NO

CFX'I WE 14,* '1 '5 A F'INCT ION OF TrIP.LIHATLRui
FUNlCT11;J FxM(T)
fT)?M[NISTfv1 T!AhU.n1i .no) 'zr(1k) TS5(10) * fST (O)q fit)) oFTC11 (It)) q ,r)9

COMMnN TTAM, /Tt ., tST, r fr~ 1Kri,A, kM',WSU~t,)UTWiJWUT, r r jj

IZ1

GO T() I j

E W3!

F~s 5UWU4'i'' 'iIJ A", A UNCTION O TtMPLIRA1U't
FUJNCT0iol Fbid(r

COMMON TTA$,7TT,TST,E1,lTKiKT'NAWAMTWSUliWSUW.5UIWSUTTTJJ.
I'D TI M

IS I =I +1
G-0 TO ~

2U IS~( I)+*( T-WSi IT( I)) 'I( JS J 14I*-,qJ t 11 .4SI It( 1 +1 -W T (I) I
PETUwt-
E N u

C.F50 WL1111'Ik, 50 AS 1% FUINCTION O ILMPLKALUUWL
FUr4CT.'N F5iO(T'

IKT(10),X4(C1),WXMT(1)W3UCJh~tWUTIUhWSU(I)qtwbUT(1UHiTT(4U)

COMMON TTAmZTT~tT.TE,ETTK, 1KTlAMWAMTWSuUTW,ulsuwbiuTtitJJ

is I =I+ I
GO TO

EtN N)
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APPENDIX III

DISK ANALYSIS COMPUTER PROGRAM

The computer program used in the analysis of the disk pro-

totype will be described in this appendix. The program is

similar to the one employed in the beam analysis - the greatest

difference being due to the fact that the disk is under a biaxial

state of stress while tne beam was under only a uniaxial state

of stress. Again, the fracture algorithm of Section II is com-

bined with the thermal and stress analyses of the disk and the

material property curves of Section IV. A listing of this pro-

gram as written in Fortran ii for the IB14 7094 is included in

this appendix.

The progran is composed of a main program consisting of

3.the thermal, stress and statistical analyses ad of function

subprogram3s for describing the functions T(r t), E(T), ST(T), v(T),

k(T), r(T), au (T) and a0 (T). The. dimen sions of thp. disk along

with an arbitrary applied uniform .stress at the outside radius
have been incorporated into f.he program. The te.mperature distri-

bution and **.he material property versus temperatvre c.!ves are
ent°red into the program through the use of tables and hence the

effects of variations in these cur-;es way be readily obtained.

As an -id in using the progran, A listing detcribng some

of the m oe impovtant variables entering into the p~ogram has
*.been included in Uxis appondix.

Listini .of Sigczifican- Prograw Variables:

-OTIME iize of time interval between €coput'ations

... (1) . th  ntry in cable o! modulwzs of elasticity vs,
ttemperature

ET(1) temparature corresponding to E(1)

F'DT ,W fnctLion subprogram for uixiputing the temperature in

the disk of radius R aad time TIME

precing page blank
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FE(T) function subprogram for computing the modulus of

elasticity at the temperature T

FNU(T) fun--tion subprogram for computing Poisson's ratio at

the temperature T

FSO(T) function subprogram for computing the Weibull parameter

Oo at the temperature T

FSU(T) functioo subprogram for computing the Weibull parameter

ru at the temperature T

FTK(T) function subprogram for computing the thermal conductivity

k at-the temperature T

FTS(T) function subprogram for computing the thermal strain

ET at the temperature T

FXM(T) function subprogram for computing the Weibull parameters

m at the temperature T

HIMP gross heat flux impingent upon the inside radius of

the disk

NE number of entries in E(T) input table

NJ number of entries with respect to t in T(r,t) input table

NNU number of entries in v(T) input table

NPRINT number of time increments between occurrences of detailed

output printouts

,NSO .number of entries in a. (T) input table

NSU number of entries in a (T) input table

NTK number of entries in k(T) input table

NTS •number of entries in T(T) input table

_ . number of entries in m(T) input table

PFR(1) probability of failure of the ith ring -ype subvolume

up to current value of time
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POF probability of failure of entire disk up to current

value of time

RAD(1) ith radius for ring subvolume

RISK risk of rupture of entire disk up to current value of time

RRR(1) radial risk of rupture of ith ring at current value of time

RRRMAX(I) maximum value of RRR(I) up to current time

RRTR(I) radial risk of rupture computed using stresses, temp-

eratures, etc. at RAD(I)

RRTT(I) circumferential risk of rupture computed using stresses,

temperatures, etc. at RAD(I)

RT(1) ith radius corresponding to TTAB(I,J)

S uniform tensile stress applied at outside radius of disk

SRMAX(I) maximum value of STRR(I) up to curr'ent time

STMAX(I) maximum value of STRT(I) up to current time

STRR(I) total radial stress at RAD(I)

STRRM(I) mechanical component of STRR(I)

STRRT(I) thermal component of STRR(1)

STRT(I) total circumferential stress at RAD(I)

STRTM(1) mechanical component of STRT(I)

STRTT(I) theiinal component of STiRT(1)

TIMEM maximum value of time for which computations are to

be carried out

TK(1) ith entry in table of theiaial conductivity vs.

temperature

TKT(1) temperature corresponding to TK(1)

TRNAX(1) time at which RIMAX(X) occurred

TS(t) iCh entry in Lable of thermal stranin vs. temperature

TST(I) temperature corresponding to TS(l)
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TT(J) jt value of time corresponding to TTAB(I,J)

TTAB(IJ)temperatire at radius RAD(I) and time TT(J)

TTMAX(I) time at which RRTMAX(I) occurred

WSO(I) ith entry in table of Weibull a0VS. temperature

WSOT(I) temperature corresponding to WSO(J)

WSU(I) ith entry in table of Weibull au vs. temperature

WSUT(I) temperature corresponding to WSU(I)

WXMV i thentry in table of Weibull m vs. temperature

W2X4T(1) temperature corresponding to WXK4(I)

XNU(I) ith entry in table of Poisson's ratio vs. temperature

XNtJT(1) temperature corresponding to XNU(t)
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PROGRAM4 LISTING

CM BtAXIAI. STATISTICAL bTRENGTH ANALY515 PH06RAM
flVIEN5T04 TTAB(121lIO)I!RT(123,rT5lU)gT.ST lU) IEU) ET (103 ,TK (10) ,T

2WSOT(lri) Tt (403
COMMON TTAtiIITTSTST,EE TTKiTKTsXNUtXNUTgWAMWAM1,WSUWSUTWSOW
I SOTT TJ.J

2RRRMAX(7f)RRTM*AY(70),TRMAX(7U),TTMAX(7U),PH(70)
DIMENStON PSTLP(I5?),POISS(52)ITSTNA(5e)YUUMO(52),TEMP7U),RA(5Z),

5 WRITE. rnilPli TAPE 697
7 FORMAT (4'3NLALljMINA UISK UNDLH MtLHANICAL + THtRMAL L0AU1N4

READ INPOT TAPF 159l09SDTlfE,,TI~iEMqNV'NNT
10 FORMAT (iFJU.5*15)

WRIT. flUTPt'T TAPr lv,59SDIIm~vTji~t~iNPX1NT
15 FORMAT (J(Sz ,93i)OTM=Fb. ,J~btTIMEM,1r7.73,JA, (HNPNINT:,

113)
20 READ IMP'T TAPI- ;,,29NNTSNNUNLNNAMNUNbO
22 FORmA7 (dj!))

WHTth. rUTPIJT TArPF 6924,lNjiJTSMINUIN~i.NTK.NXMNSUN5o
24 FOkmAy (4Hf'NJ=,13,3X,4uINTS:, U,3Aid'INNU:, L3,3X,3MNt~l:,9,so4MNTK:,

lF(NJ)4O*4L't30
30 DO0 35 J=1,Nj

READ 1PI"T TAPE 9*32t'(TTAbj%~J)11=1v1?-)
30 FORM4AT (12 601)
35 CONYINIE
40 READ JklpIIT TAPE S94?.,(RT(j)91=1,1U)

42 FORMAT (14p(c.31
45 1 F(N T 5 150 00147
47 110 49 T1,NTS

READ POPT TAPt 5s48%TSTUl),jT5(j)

49 COIT I N,1E
50 1 F(NH"JU 15 lv 45.
51 130 53 T:1,Nj~t

RIFAII pI1P11T ",Apt r%4PvXfJWtJTU) ,U(I)
53 C001TINIIE
55 jF(NE)A5o4!,',7
57 DO 6Ri ?:,NF'

REAU I,.POT TaPE cj5iT()EI

62 COMTINotE

67 (Th 72 Y=14NTX
REAl] I~puif TApt ,vb9vTK.Y(I3,'Rtj

69 FOP!AT(FO.4*Ffl0.6)

72 CONTIt4"E
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75 DOC 90 TIVINJ
90 TT(U)=FL0ArF(I-j)

95 F0RrMAIC5H0kT=,I2F9q3)
WRITE nUiP"IT TAPE b997

97 FOR.11T (5H rj~AE)
DJO 102 J=4*NJ
WRITE n"UTPI'T TAPE f.,joU,TT(J)*(TjAdi1jj),I1,1J2)

100 FORMATI1H *FN,,el2F9.1)
102 CONTIN'!E

WRTT (llTPI'!T TAPF 6(v105

10s FORrA (27HuT~mP (k) TSTRAIN (IN/IrN))
rio 110i I~liNT5
WRITE n(:IP'' TaPF 6q107,TST(I),Tb(I)

107 FOPRMAle1H *FlAe?%XiPE14-8)
110 CONTIN'E

WRITE rtMIPIIT TAPV 6,112
112 FOPMAT(m!frPITrMwl (H) POIS50N HATIU)

114 FOPMAT (JH ifrAL~6XP.4)
115 CONTI Nil

119 FORMAT f3-1fl-M'tR) klOo 01 LLASILXITY (P51)
TIC 120 IIi'NF

WRIlL nbMtiT rr ',1
125 FORMAT(0rI0TFMP (P) THUWMAL LONU tbIU/tl*HkQ~R))

DO 136~ IMJ.,NTK

I 3r CCNT!N'E

132 ?1MF'ATT(N~J)

jzr

LL=0

ric 1.4 Y( 4f

110 139 1=1970
SRMA~ IT) =O

RRT~MA~fT)=IJ.

TT M X I) =U*

1.34



PC 141 I=1,NYM
REAV I~' NPI T PE IF i~iwXMTC(II 1W A;(I)
WFRITt (,I iT PI i rPE A. 4U, 9 1. T IT, *1 -9 wM (I I

141 (0"ITTr I NE

IDEAL. IlIr TAFIL 5*5qi~WbUl (1) iJbu(I)
WRJT I! r' An 1FF (', 143q1 ,W5LJ1I ' ,lWbU (1)

RL A0I "I I T' I 1APE v~"'l ' C f I) I WSc (I)

140 CUNTIN"EF
150 TIML=TTmt..flmE

LLZLL+1

NR= l

(kkT j n

PNT=NT

DO 170 j;2,Nk

v W i.( ) = t T)

17C CC HT I 1I

rDO 115 1 = 1~

1)

TPA(~ I 3,1) =khl *(.1,)0 .QP)bI)0 (R(+)/(OM1J H U

YP6 ( I~l 11 o.A)=( )/?.35 b k t )" t j I) P I 1



175 TPA (J~it,3)=1 ,0

OVIPA (hi ,e)z0.o

0VIPA(]ijq,.i):O.0
0VIPAU *,?)=j*Ci

- OVIPA (1 ,:ej)Z0OO

CC' 1$(0 V=113

18 or. D 190 j=JS,f
M, 390 L=193

390 OVIPA (.,lLslM):TPA (JL 91) *CVIA(- S)+F JL2 UIA(-v M

UO 24C K=1*7n
J=1

?205 J=~

no PISLJ 1,
30TO IPA (IL .) =0 IA ,;% f LIPAJLIJAL2l01MJe

235 -1 SPYI)0IPAL7 )2!P' '

726 0 j136



fISPO=TPO*; 01PA(tl ( TUTPAi 9.3)

STRTV)FE(Tnflbspn/N1.FN(jcl)'sikkT(K)-L(l)*PT5cl)
STRPI (k) =STPP (K) STHRR (K I
STR~TM (K ) SlRT CKi..STRTT ( K

P40 CONTINHE
250 TU=F JTFM'P (051 1 TE)

Tl:F Ulf FMP ( Uq'5,TTMF)
rGRAL1:tT-ru *F4r!,
HEA II N=-iRAl*P I'v (TrO) , 36G0.

HIMP=HFATIN4HkAU
PSK=01
RISKRze).
R ISK 1=fl.

U0 30C 1=1*70
TR=RAU (I )
TEMP ( 1)=+Ul[PPTT~tTIME
T=TLEiP fI )
X M=FXM rT)
SU=F 5u I ~)

'( 51 RD I I -50MA X f 1 61S S 6

PbS' I F (S TRP (I) -50,) i!7r1? ?UsVe5

280 STMAM=5TPTUj

P90 RRTT(11=tI.
GO TO IOU

300 tONTI NoF

11C PRP(l)=PQTU(t.1)
Cfl TO 14t)

32 Akk1AAX~j1=wu~1 U)
rR' AX ( T )t (N

33 PPT()=kUNTd(*)
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346 CTZRRTMAX(T)
PFR(T):I-PF(-('P-CT)
RISKkzu1SKK+RRt14X( 1)

j3)0 RISK T=PTS. r )R !MAX CII
R'15K:RI$KH#PTSw T

-- POFR=1-EXP-H1S R)
PfFT=1.-EX"F(-RT-KT)

WRIlt njiPi'r TAPF 6,j6)UT1M~ibTU-oT(Ak~~j
360 r~pIlAT C iuTYLiL tr 5.2,1M:Nii4Xvi514AMLILi 5Tss55=F.1v,.iMIj4XtOH

WPTIF r'TP.11T TAPE 5HF1,HMq1~
165 F dkP'T(j'1H ,fkT WAT

370 F0RMAT'1!)H kc.U FtIL FP~b~q:jtUaM14Xijt H TAN FAIL PHO8=tPi.Usbs4XjN
10VERALL RjSK,1F4,O49 (VtQ'LL FAIL. FUO=10PH.0,8)

175 K2=Kl

380 FOW'AT f94tJll wAr',1'5 TEIP bilwM STRTM STRoo T
jTT STWk 57HT' bH9Ax ')MAA,

V() 3 0 T:1,7fl

ITTI I ) q~IFR Si'1 TPT (I) ,SPMAXIT 12 'Nrt'AXt1)

385 FORMA1114 %FA4j91OQ)
39() CCNTINIEf

WRITE. fl)UTPIIT TAP[' 69.jqb
395~ FOPMAT('71u PAPl RR-R W41'T)

WRIfL. r'liliT YAPF 1,940O
400 FO 't'T(1IH % X4'U6pq4 "WRRRMAX HX

I PRIMAX YThtMX IPFk

PFQ'U ) :1,

4zo FnOtA TC1N 0,31jF14.hqr'4h)

431 (jPt R -o
GO TO 411

432 QPFR=PFK(j)

GO Tfl 4ju
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CDT DISK TvMwExATUHE TISIRIE3UTIUN PUPNL.jUN

FUNCTIr'N FU)TIMP(R'TfMFi

LpIv'S!CN. TTAtl~,iln0) 'T(12?) TSCO) iTST (10) 9E eli') ,ET 'iu TK(10 ,T

ZwSOTrln,9TI(40)
COMM ON TTAtiRriT~,TSTEFTTKTKTgXNiIXNLITiWXM-tWAMI 9W5SUW5UTWS01W

1SOTi TT ,jJ
10 IF(TIMv-TT(jj 130v30,20

GO~ TO I
30 ! I =

40 T I=TI + I
60 O to

RTIIJ=IRN llJI

PTIICjTflN F1TjfT'I

IIOITTABjI-~j'

CFTS TML' b'F AY CT AS, t VUC INCTIUP 101 1KMAt.AH

I T 10) %XNI)~ i( 10 %'i 1 )"ta1) (1 U)I 2) ilS LU) It 1(j) ( 1) E~u wSU U ~10)u~

C04,"ON IT~m ,PTVcr,,STiEFT.TKTK Vi*NUIAIUTWAMWAMIWbUWbUTWSOW
IS UT1 'T IJJ

PEO T' )0
CFE N )t'TIl' (t11()I~i.)Lt)

CF T U101!~ OF Ctt4CT tFNYU~ iJHt~ti

E e~lln~ U4U

Comn TA~RstoytiF*K*KIXNiXUiW~i~tt4b139TWS9



CF NI'j POIS5(Th RAMIn AS A FUrC110'. UP Tt.MPLX.A1uK.L
FLmCT'tt.1 FNI(T)

DIN~~St~N TAtUdl,'l !)IRZ(IliTS(10) ,TST (10) iE 1U) F.T (iU IlK ( .) Tr

COMMON TT4t1,PTorST',,EE.TTK,1Kli t~XU*XlWM~~,UWUi V
-- 1SOTtTT*JJ

GO TV iL

C FT K THE.RMAL C Oh'),IC I I VI IV AS A I UNLIIUN O1, T LM.L'A I tkt,

1 KT ( 10) , Ntj 1 1!) % X,.I.' 1 (1) ,XN ( iU , V:X"I i kU) ', wbU t10) f, WUT t IU) ,SUI U1)
2WS0T(!n~ U' (40)
rOMki)N 11 A ,4T T S 1 1 1, C T Tk iK I xN ,) N T IWAM "AM I wSU WSUT 0150 W

15 1 =T.
r, C, TI~)

0 FTK~tx!) .eTTtr))*IrK(1*1)..Trtfl))/(TKTtI*1)-TK Up))
P F~ Y Q4 N
pill

CFvm4 WE.IIILI 14 AS A F'!NCTiOIN OFV TtM)PLW411,1
FUNCT~enh FXM(Tl

PIM~'SC.'jyAIt1?,,NItflC 9p"t )? IT~ LT( i) , 'i si1ti) %E tl)~ it)) ' st Ii)T I IN '),

Eso 9114T Ol JlJ~xk

ENO
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CF5UJ WEIPULL SU AS " UNCTTON OF TLMPLHATUML
FUN.T1"N F.,U(Tj
PT1MENISTO-u TTAb 1,19110) 4R7 (I ,T5(1() 015T (10) It( ILI) it.T (10U) q~ (Kt10) ,T
IC (1 o* V'IJ (10),~r) v rjLIT U) OIJ"'I (I U) ioySU (10) 9WSL'T (I U) lbU ( 10)

2W50T(lf)9T) 40)
-COTMON TrTAM, PrT, T S1I ~E IFTTK I TK 1 v L- Uv M9 A ~Lwv ,0

JSUT,1 T,jj)
T:1

20 FSlIIv4iI (I) *(T-WSI'T (I)) j) (V:SL (1 +1 ) -oSU (I)) /( W5 IT(U 1~ +1 -iS T I I))
RUJ URN
EN t'

CFSo WElb(!L(I. u AS AFUNCTION OF TtMPtNUTUKE

DIN '-T!Rt I Tab' I I w I l) IRT ( 12) 1 TS i 1) %T5T (10) 9P (1U) 4ET( 10) 1 TKI) W,T

COMMIC'N TTAs. 0.%Tq'T% ~ TKI~itUXNTWqxlwSU,wbLJTWbQw
ISO? ITT *,CJ

6O TO 10
20 FSO SO I *Twn t ~jo1*)-,I sy11 W5 I

RE T I)WN
"allC
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