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l, Introduction

Recently a number of tree search algorithms have been
developed for solving combinatorial optimizational problems (see,
for example, [1. 2, 4]). One such approach by J. F. Pierce and
D. J. Hatfield Eﬂ is particularly interesting because it applies
to a wide range of important problems in production sequencing.

A key feature of tree search approaches in general, and the Pierce
and Hatfield algorithm in particular, is the use of tests to ex-
clude dominated alternatives from consideration. The purpose of
this paper is to develop several relations that lead to tests
other than those proposed by Pierce and Hatfield in order to
reduce the number of solutions examined by their algorithm (and
other tree search methods for the same problem).

2. The Sequencing Problem

Consider a set of n+l jobs, designated O, 1, ..., n, to
be processed on a single machine, where aaj represents the (non-
negative) set up time for job j immediately after processing job

i, and p' represents the (nonnegative) time required to process

3
j once it is ready.

Assuming that job O must go on the machine first and job
n last (0 and n can be dummy jobs), the problem is to find a way

of sequencing the remaining jobs so that each one is processed

exactly once+and the total machine time is minimized. 1In addition,

tI‘hus, by convention we may let a'jj=a'jo=a;‘j =00 for all j to

indicate that no job is permitted to precede itself or job 0, or

to follow job n.
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. . . . b
each job j must be completed by its deadline dj (d, = Max (dj).
Following the formulation of [ 3], we seek a permutation

(io. il’ el in) of (0, 1, ..., n) to

n
Minimize p + z: (a' +p'y ) (1)
io k=1 he-1ik "
-
subject to t. p + Z,) (a; +p'. =4d, (2)
1% e Ty
where i,=0, i =n, and t; is the actual completion time of the

j th job in the sequence?

Pierce and Hatfield note that P; defined by pj-p'j+
&iﬂ (a'ij)provides a lower bound on the total processing and set
up time for job j, regardless of which job i precedes it (to
accommodate j=0, let p°=p'°). Thus, if

.>dn

Pj

J=o
the problem has no feasible solution. More generally, replacing

a'..+p'j by p., a result of Smich [é] states that maximum lateness,

ij j
Max (t - d;), is minimized when 4, 4. 5...%4.
1Zj j J 2 n
Consequently, assuming that the jobs are ordered in this

way, it follows that the problem has a feasible solution only if

Z:< k =, .3 h (3)
=0

Pierce and Hatfield use this result to construct several of the
tests of their algorithm. We will propose somewhat more restrict-
ive tests and suggest a way of reorganizing the problem that makes

it possible to exploit Smith's result in a more effective way. 1In
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addition, we will give a slightly more general result that also
permits a more limiting feasibility test than (3).

3. Recasting the Problem

It is convenient to restate the problem in the following
form. Represent the n+l jobs by n+l nodes, where aij=a‘ij+p'j
represents the length of arc (i, j) from node i to node j. The
problem then is to find the shortest (directed) path from node O
to node n that goes through each node j exactly once, and for
which the distance from node 0 to each node j does not exceed dj’

The process of enumerating alternative paths is conven-
iently accomplished by enumerating sets »~f arcs (i, j). As ob-
served in [3] (in a slightly different framework), if arc (i, 3j)
is chosen to be included in the path, then (i, j) essentially
reduces to a node v for which ahv=ahi+aij and avh=ajh for
all h+ i, j. Also, the permissible length of the path to node

v cannot exceed d_= Min (d.,d.+a..).
v J'i i

Because the reduced problem (in which node v replaces
(i, j))has exactly the same form as the original, the feasibility
test (3) can be repeated at each stage in the enumeration.

As a first step toward developing more restrictive tests,
identify for each >0 an index j' such that

a.,.=p. = Min (a,.
3+37Py = R (244)

Also, define ij to be the (nonnegative) difference between

pj(aj.j) and the "second laiiest“ 3i5; that is
. = Min (a ) - p,.
b 1=m ij p]

ig3"

Then, for a given permutation (i)=(i°,il,...,in) (representing a



sequence of nodes in a path from 0 to n), define'

sit) =(j:j<k and i'=i',

J
e LGS
6 (i) 0O if Sk is empty
S Max () (A i.) otherwise
1€ 8y )
(i) . . (1)
7k-M1n(A1k,6k).

(For completeness, we specify that A°=0 and 7(:)=0.)
Remark 1. Fox any permutation (i)=(io. il' eee i),

io=0, i =n, k

n , X
). Pyy* 7(;; §Zj;l Yy

J=o

, (4)
1

for all k=1, ..., n.
Proof: Let V be the set of the k numbers io’ cens ik and let

V(l)= (j:i:j €V and i'j=q.’ Then we may write

q
" )
y oy ) 7(1) o (d) 3 (
I SRR S Ly §0 e Ly
i 3 jevid) 3 ¥V, g ¥ Vn-1 7
Let g* be defined so that A i = Max, . ( A i).
q Jev(l) j
q
Then it may easily be verified by the definition of 7(;) that
(1Y .
Z(i) 7 LT .Z‘(i) ) Al. . (5)
EV q J JEV - -lq ]
Thus, Z
(1) Z
L p.. t 7,: : (a,..+Ai')+a.,
j;v(“ 1 T e T H R
q qd
and since i =i' «can hold for at most one jEV(é), we have
j=1 3

|}
t We use the subscript ij to denote the primed subscript defined on page
fee., 8 4 Py .
J

i)
3

i
q* q*

35
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, and the remark

?(l) (Pi_+ 7(1))5 Z(l) ai__

follows at once.

By Remark 1 we see that

k .
2 (pi' + 7(;)) >d; (6)

=1 j k
implies that the path given by permutation (i) is infeasible. To
obtain a useful test from this result, we must specify a permut-
ation (i) for which (6) implies that all paths from O to n are

infeasible. We now show that a permutation with this property

occurs by indexing the nodes so that d, =a. % ... = dn' which is

the same indexing given by Smith's result when ‘7?;) * Py de-

J
pends only on the index i , but not on the permutation (i).

p|
Remark 2. Let (i)=(1i , il' eee, 1) and (h)=(h_, h., ..., h )
— ) n o 1 n

be two paths from O to n such that (il, iz, s o ik) and (hl' h

’

2
Sl hk) are permutations of the same k numbers. Then

Zk 7(3‘;) _ 32;1 7(?)

3=1

Proof: Define the set V as in the proof of Remark 1. Then the

(h)

sets V q may be dafined relative to (h) exactly as they are

defined relative to (i); i.e., so that

: aliN caeolh)

i :Jj€EV = (h.:j€EV 3
jJéq 52I€V g
Hence, by (5) it follows that

; (i)
i) 3 h)
;’(q 7 ) = Z(h) ?,(j for all q. This completes the
iev
9 proof.
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Theorem 1. Assure that d1 = d2 = ,.. =d , and let
- n
. (1) .
t(;) = ;g; (p; + 2/ j ). Then for any numbers 31;)satisfy-
j .
ing the property of the preceding remark and T(?)+ P. = 0, the
] 14
quantity

(1) (7)
Max _ (t - d, )
15xSh K iy
is minimized by the permutation (i) for which ij=j for all j.
Proof: Suppose a permutation (h) minimizes (7) such that for

some j, h;—hj+l. Define (i) to be the same permutation as (h)
J

except that ij+l=hj and ij=hj+l' By the property of ir‘;’ it
(1)_ _(h) ;

follows that t x =tk for all k except k=j. But

(i) = (i) (h) >

t . =tin=t . and d. =d, =d, =d .
s O B e
i h i

Thus, t(;)-d_ :E(.) -dh and t(-ll—d. :E(?ll-dh .

Consequently (i) minimizes (7) as well as (h). If (i) doesn't
have the property specified by the theorem we let (i) take the
role of (h) and derive a new (i) as above. Eventually, we must
obtain an (i) for which the theorem is satisfied., or conclude
that the initial (h) already satisfied the theorem (i.e., hf’hj+l
was false).

Assume that the nodes are indexed as specified in Theorem
l. (The permutation (i) can thus be disregarded.) Then, to

simplify the application of the above results, we note that each

ir; can be given by comparing exactly two quantities, without



==
having to compute éa:as a maximum over several ajyry. For let

h=Max (j). Then 6 =Max (A . §,) and 7/h=Min (A he 6 )s
J€Sk k h h h
Thus, to compute 7}_‘ it suffices to select the smaller of A h and

8 n for 7r; and record the other as C;k. (Note k>h.)

4., Additional Sequencing Relations and Tests

Continuing to view the sequencing problem as a constrained
shortest path problem, suppose now that all arcs (i, 1) are "cut
off" at a distance sy from node 1, where sl=§ig (ail)° Since
every path must go through 1, the length of the path must be at
least 8-

Next consider cutting off all arcs (2, j) at a distance
r :Min (a,.) from node 2. Sirce arc (2,1l) has already been cut

2 0 2)
off at a distance s, from 1, we can't permit ri>-a21-sl without
going past the first cut. However, as long as r2+31:%21, then
since every path must go through node 2 as well as node 1, we are
assured that the path length is at least r2+sl.

In general, if we cut off all arcs entering node j at a
(nonnegative) distance sj from j, and all arcs leaving j at a
distance ry from j, then if rk+sj:ékj for all nodes k and j, it
is clear that

n

&, (rj+sj)=L (8)
where L is a lower bound on the length of every path from 0 to n.

(We stipulate by convention that s_=r,=0 since no arcs enter

(o]

node 0 or leave node n).

The foregoing demonstrates a well known fact customarily

proved algebraically (but given little intuitive justification)
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in the context of solving transportation and assignment problems.
Because (8) gives a lower bound on path lengths, Little et al [;]
use it in the test procedure of the tree search algorithm for the
traveling salesman problem.

Following [?], Pierce and Hatfield also use (8) to deter-
mine whether a feasible path previously found is better than one
currently being generated. We propose a different way to use (8),
yielding generally stronger tests than given in (él.

+

Evidently, for any permutation (i)=(ij,, i;, ....ip)

k-1 k
z (r; + ) +s s § a
3 S. = . N
R R B S S SRS S

J
and hence k-1
(1) <
= r. +s. )+s. =d. 9)

Tx 9% (13' ot T " (
gives a necessary requirement for the feasibility of (i). Again,
we seek to minimize Max (u(;)- d. ) and hence make (9) into a

1=k=n 1x

useful test,
1
Remark 3. The quantity Max (u(k)- d. ) is minimized by any
1515 1k
permutation (i) such that

d +r, =d, + r. (10)

for j=2, ..., n-1l.

+

As before, we continue to assume here and throughout the paper

that 1 =0 and i =n.
o n
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: N
Proof: u(i' dj 1is a constant independent of (i) (provided i =n),

n
hence it is permissible to restrict j in (10) to j:%-l. Then,

rewrite (9) so that

u(1)+ r.=f(ri+5-)§d-+ri (11)
k lk J=° J l'j lk k

Since r; and s depend only on the subscript ij and not on the

]
permutation (i), the remark follows directly from Smith's theroem

[5)-

from (3) can also be applied to (ll). We derive additional tests

We note that the tests developed by Pierce and Hatfield

based on (ll1) below.
In accordance with Remark 3, assume that the nodes are

indexed so that

= =
dl+r1 T . =

k
and, let E; = ;;z (rj + sj)

Also, define X

°kh= ﬂl%( (dj+ ry - Zi) 2

h=j=
Theorem 2. If j>i (j¥n, ifo), then (j.,i) is a permissible arc

in the path from o to n only if

.
<3\?i = ay; + sj -s3 (12)

and
n>
K] Fayy - (s + e (13)
Proof: Suppose arc (j, i) is in the path. 1Imagine a fictitious
node v placed at node i, replacing nodes j and i. Each arc (h, j)
formerly entering j (h#i) is extended by arc (j, i) to become a

new arc (h,v), where ap,=2h;*a Similarly, each arc (i, h) for

ji-



-10-

h#j becomes (v,h). Thus, we may let v=r. and sv=sj+aji (possibly

larger values are also permissible). To assure feasibility,
-l - -

=Mi . .+a..). i .tr.=d.+r ., =d.+r  -r .=
d,,=Min (d1 dJ ajl) Since d; r, dJ rJ we have d1 dJ rJ r,

di+a.. Hence dv=di'

J "¢

k k
Let ckh*denote the new value for‘7(h based on the addition of
node v as above and the deletion of nodes i and j. However, since

i+ we may conceive v to be (indexed) the same as 1i.

dv+rv=di+r
| . : q
Also, deletingthe index j., we may allow the other indices to

. k k :
remain unchanged. Then, clearly ¢¥<1* = ci\ for kei. Also,
i

k
since E: is decreased by r;+s, and increased by rv+sv for all
o k k
k satisfying i = k<j-1, we have oLi* =0(,+ (ri+si)-(rv+sv),
i

j=-1, j-1
and hence OL\ = cl\ + g8,-(a, +s.). If there is a feasible
i i i 79i 3
j=1
path using (j, i) then CJ‘i *30, which is the same as (12).

k
For k=5, E: is decreased by (ri+si) + (rj+aj) and in-
o

n¥* n
C*\ = Q;\ + r. +8, - a.. .

j+1 j+l ] 1 Ji

creased by rv+5v‘ Hence,

Also, from (l12) we have
{j'l;f + s.- s,
= a,. J i
j-1 1

which in turn implies

I >
cﬁS = aji- (ri+si). This together with ch:;: 0 gives

(13) and completes the proof.
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Theorem 3. Assume j<i, and let d=Min (di' dj+aji) and

v= Min (h: dh
h>3
J

Then (j, i) is a permissible arc in the path from 0 to n only if

5
dj + rj (14)
It Ta vy -, (15)
v

ji ]
n
C?(, a - (r.+s

i 3i J i)

-
+rh=d+ri).

nA

ny

(16)

Moreover, if d=di, then (14) and (15) are irrelevant.

Proof: As in the proof of Theorem 2, create the node v to re-

+

. . k#»
*= L £ ] + . ;
place i and j where 2 and 8¥ aji sJ Also, let C*h denote

the new values of OU; by this replacement. For k=j, clearly
d\];*= Q‘\}i, and for k>j, d\k-lt =o(;-l+ rj+ sj= 0.

(We assume that the index j has been deleted so that the
old indices remain unchanged through v-1. Also for convenience
we assume that the other indices likewise remain unchanged. with
node v simply "inserted" between the old indices v-1 and v.) To

obtain a feasible path from 0 to the new node v we require
v-1

Y <
o~ (ry*sy) + sy = 4.

Substituting in the values for s; and d yields (14). Similarly,

<
for v = k<i it is required that

k -
Zo - (rj+sj) + (r;+s;) = dk

and substitution directly implies (15). Finally, (16) follows by

+

We use an asterisk here to distinguish r§ and s§ for the new node

v from r, and s, for the old v, which may not be deleted.
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the same argument that justified (13). That (14) and (15) are
irrelevant when d=di is immediate. This completes the proof.

We now consider how to take advantage of the relations
given by the two preceding theorems. We will show that it is
possible to test arcs for exclusion without explicitly computing
values of A, . To see this, let B.=d. +r - and define

) ) j )

the list (m;, mp, ..., mn) of the indices 1, 2, ..., n so that

hek implies ,5mh§ ,Bmk :

Then, beginning with m . consider the arcs (j, i) such that

j=1
j»m::'i. For all such j and i'C7<i = )Bml. Hence (12) can be

applied to ﬁm without requiring separate determinations of °<J;'l
1 n
(for j>ml':i). Likewise for all j=m1, we have d\ = ﬂ . and
) m

n
(13) can be applied without separate determinations of CIB for

these j.

In general, for any m let k1= § (m,) and k2=Mi (m.).
mjgﬁk 3 mI=< ]

J

If k; (or k,) is not meaningfully defined, we let k =0 (k2=n+l).

1

Then j=1 /B . =2 >
i = m for all n’kl and all j = k2 such that Pm =i,

Likewise, C‘; = /Q;R

n
ko ::n, in which case <¥\ is given by }3 for a smaller value
J

"x

for all j such that m :'j>k1 unless

of k.

From these observations the checking of relations (12) and
(13) can be considerably facilitated, and similar remarks apply
to checking (15) and (16). (Note (16) and (13) are disposed of

n
simultaneously by letting j and i interchange roles in OLB andCig).
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5. Applving Relaxed Tests

>
Since a, .= r + 8;, we note that (12) implies the less
I ] j=1 >
restrictive relation(jLi = rj+ sj. This information can be

exploited with the following test procedure.

Suppose that a (second) list Qﬁ(ql. Qor oons qn) of
<
indices is created so that r + s r + s f:...= r +s8_ .
Qq q 992 9 9% 9y

nA

Given that OLz'l = ﬁ;‘k for j satisfying k;-: )’"\ (and i

satisfying m£: b»kl‘ consider the least h such that k2:§ﬁ>mk.

Then if }3m< rq -8 , 1t follows that the arcs (j, i) are
k “h 9n
inadmissible for all j, i satisfying k,= j>m_ and mgi Pk

More generally, by reference to the list Q, one can

readily determing the indices jl' j2. Tk BN jp consisting of
th i satisfying k,= j dr, +s, Sr_+3s, =...F
ose satisfyin = , and r, s, = r, s, = ...

3 9 %27 Py DU LU P Y. P!

-« =< ]
r. +s. . For any q such that l=gq=p, if <E. ¥ 5 . then
Jp IJp mk Jg  Jq
the arcs (jh' i) are inadmissible for all jh' i for which
m£: i=k . and dgﬂﬁp. Similarly, if f T r. +s. , then this
relation will hold for all jh such that h=q. Thus, regardless
of the outcome of the test, it will not have to be reapplied

-

for a subset of the jh (either for h=q or sz.)

An analogous test procedure can be used to exploit

i-1
the relationcf\’ :.ri+ s, (implied by (15)).

+
Similar (slightly less restrictive) information is treated in

a different manner by Pierce and Hatfield in [ 3].
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