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I. INTRODUCTION

In this report, we consider in some detail various approaches to the
problem of processing data from arrays. This problem, which is frequently
referred to as the combined space-time processing problem, will be discussed
in the context of a sonar system. The general results are applicable to array
processing in any area.

In Section A .we will discuss some of the considerations thet arise in
modelling the sonar problem and indicate some of the implications of the variou.
models. In Section B, we develop in detail the quantitative model tI-.tt we will
use. In Section C, we outline the organization of the report and summarize the
principal results.

Before proceeding, it is appropriate to mention the background as -

sumed of the reader. A knowledge of random process theory at the level of
Davenport and Root(l) is necessar . In addition, the elements of statistical
detection theory (e.g., Helstrom R) or Ref. 1, Chap. 14) and linear fltering
theory (Ref. 1, Chap. 11) are needed. Matrix notation and a few simple
matrix properties are used (e.g., Hildebrand( 3) or Bellman(4)). In various
portions, additional background it; neeoed; this background is contained in
Van Trees(5).

A. PRELIMINARY CONSIDERATIONS

The basic system of interest is shown in Figure 1. The waveforms
are received by an array of hydrophones. These waveforms contain a compo-
nent due to various noise sources, which may be within the hydrophones or
external to them. In the case of active sonars, there is also reverberation
return. If a target is present, a "signal" component will be added. In the
active sonar case, this signal is a reflection of the transmitted signal from the
target. In the passive sonar case, the signal consists of sound generated by
the targeýt itself. The purpose of processing i& to obtain information about the
target from the received waveforms.

The first problem is to ievelop a suitable model for the signals and
noises.

1
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Similarly, we can describe the signal component in the N waveforms
as s(t) and the noise component in the N waveforms as n_(t). Thus, when a
target is present,

r(t) = s(t) + n(t) T s t -Tf

First, we consider possible methods of characterizing the signal
component s(t). Four possible characterizations come to mind:

1. Deterministic (Known) Signals - In an active system, the shape of the
transmitted signal is known. ,, the channel does not distort the signal
and the target acts as a perfect point reflector, then the shape of the
signal can be considered known. This particular model is rarely
appropriate for the sonar case.

2. Deterministic Signals with Unknown Parameters - Normaly the trans-
mitted signal is centered around center-frequency. For example, the
signal illuminating the target might be

s (t) = sin I t

Even a simple target will introduce a phase angle and an attenua-
tion which will be unknown to the receiver. Thus, the reflected signal
might be

sR(t) = VR sin ( t -R

where VR and AR are unhown. Frequently, it is reasonable to

assume that " R is a random variable with a uniform probability density

over the interval 1 O.2" The constant VR can be modelled as either

a random variable or as an unknown. non-random variable. For a

simple non-dispersive channel which is essentially constant C iring

the signalling interval, the constants can include its attenuation and

phase shift

3. Random Signals - If the channel or target fluctuates while being illumi -

nated by the signal. then the signal will be distorted. Since these
fluctuations are inhcrently ,andom, a convenient approach is to view
the signal as a sample function from a random process.

3rlrt.!ib|r



In the passive soilar case, the signal cmitted from the tar-
get is caused by a variety of things such as engine noise or propeller
noise. Here, the signal source is inherently random.

In both of these cases, one usually knows enough about the
physical situation to he able to specify the approximate second-moment
characteristics of the process (i.e., the mean value function and the
covariance function). Frequently the physical origins of the random -

ness are such that one can assume the process is a Gaussian random
process. In this case, the second-moment properties provide a com-
plete characterization.

Once we have assigned statistical properties to the signal,
we would expect that any optimum processing schemes we design will
be good on the average. In other words, any particular time the
experiment is conducted the performance may be good or bad. but
when averaged over the assumed signal ensemble the performance will
be optimum.

In many cases it is difficult to assign statistical propertics
to the signal. Alternately, we may want to design a test that wPi be
optimum for the particular signal present (as contrasted to a signal
ensemble). In aese situations, a fourth model is appropriate.

4. Non-Random, Unknown Signals - In this case, we assume that the N
signal inputs si It), s 2 (t), . . . sN(t) are unkcnown. We want to design

processors that are good for the particular set that is present (not
some average signal set).

Next, we consider characterizations for the noise. As mentioned
earlier, the possible sources include 1) hydrophone noise, 2) ambient noise,
and 3) reverberation noise in active systems. The first two arise from the
combined effect of many small, independent sources. According to tLe Central
Limit Theorem, one can model these as Gaussian (normally stationary) random
processes.

Reverberation noise is caused by the reflection of the transmitted
signal from various objects in the ocean. Its properties will be a function of
the transmitted signal shape and the reflection mechanism. A detailed deri -

vtilon of a possible mathematical model is given by Kelly and Lerner( 6) (see
also Refs. 7 and 8). If one assumes a large number of small reflectors, one
is led to a Gaussian process model which is non-stationary and has character-

istics that depend on the transmitted signal.

4
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Accordingly, we will assume that th- noise is a sample function from
a Gaussian random process with known statistical properties.

In addition to developing a suitable model for the signal and noise
environment, we must establish the goal of our processing system and specify
a criterion to measure how closely the system achieves this goal.

We will discuss some possible criteria for the various signal models
suggested above.

1. Case I

When the shape of the transmitted signal is known, the question of
interest is normally whether or not the target is present. This is a binary
hypothesis testing problem. The received waveform under the two hypotheses is:

H,: r (t) - s(t) + n (t) T. 5-t - Tf (target present)

H0  r(t) = n (t) T. -t <Tf (target absent)

Using either a Bayes or Neyman -Pearson criterion,one is led to a
likelihood ratio test. One operates on the waveform r(t) to construct the function,

"p (r (t)l H )"
A(r (t)) 4- '- "~p (r_ (t) I H0)"

(The quotation marks emphasize that we must be careful about the

meaning of these expressions.)

One then compares A to some threshold r, which is chosen as a
function of cost in the Bayes case or to achieve a desired PF in the Neyman-
Pearson case.

The resulting processor for known s (t) turns out to be a matrix
linear filter with N inputs and I output.

Alternately, one cannot assume the noise is Gaussian if only the
second-moment properties of the noise are known. Then, one does not have
enough information to construct A(r(t)). A plausible approach in this .'ase is
to require a linear processor (once again, with N inputs and I output) and try
to maximize the output signal-to-noise ratio,

5

2rthur 0l.litte.3Nr.



(output due to s (t) at Tf)2

S '

N -E [(output due to n(t) at Tf) 2

(The symbol E denotes expectation.)

It is straightforward to show that these two cr!',ria lead to identical
results.

2. Case 2

If the unknown parameters are random and the problem is one of
detection, the procedure is identical to Case 1. However, if the parameters
are non -random or if we want to estimate them, the procedure must be modified.

3. Case 3

For random signals, two possibilities exist.

First, if detection is the problem of interest, we are once again led
to a likelihood ratio test. To construct the likelihood fuinction, it is necessary
to characterize the signal process completely. The most common process
model is a Gaussian model. As discussed above, the second -moment charac -

terization then provides a complete description. In our detailed discussion, we
will encounter certain cases in which the Gaussian signal assumption will be
valid. The resulting processor is a quadratic device.

Second, it is often desirable to estimate what the signal component

of the input is. Since both the signal and noise are sample functions of a ran-
dom process, a minimum mean-square error estimate is appropriate. We
denote this MMSE estimate by ; (t). Under the assumption that the signal and

noise process are both Gaussian, 9 (t) is obtained by using a linear processor.
On the other hand, the Gaussian signal process assumption is not invoked, the
form of the processor must be specified. If we ask for the best linear MMSE
estimate, we can solve the problem using only second-moment properties of

the process. The resulting estimates are the same in both cases.

6



4. Case 4

For non-random but unknown signals, the desired procedure is less
obvious. There are two possibilities, which are analogous to those outlined in
Case 3.

One can construct a generalized likelihood ratio test:

max p [r (t) IHl •"

A (r(t)) L, s(t)
g t "p [r(t) I H0 ]"

and compare A to some threshold adjusted to give the desired false alarm
probability. The numerator is found by making a maximum likelihood estimate
of s (t) and substituting it into the probability density. This test has no claim
to optimality but is intuitively logical and frequently performs well.

The analogy to a minimum mean-square error estimate of a sample
function is the maximum likelihood estimate of a non -random fuinction. If one
does not invoke the Gaussian assumption on the noise, then it is appropriate to
ask what sort of estimate of s (t) can be obtained using a linear filter. An
appropriate criterion might be to require the output to equal s (t) exactly if the
noise were absent. Subject to this constraint, we design the linear filter to
minimize the distortion due to noise. The resulting estimate is found to be the
same as the maximum-likelihood estimate.

In this section, we have discussed some of the considerations that
are involved in choosing an appropriate mathematical model for the physical
problem of interest. We will concentrate our attention on Cases 3 and 4; the
noise will be modelled as a sample function from a Gaussian random process,
and the signal will be modelled either as a sample function from a Gaussian
random process or as a non-random, but unklnown, waveform.

We shall now specify this model in detail.

B. QUANTITATIVE MODEL

The general model is easily stated. The received waveforms of
interest are r1 (t), ... r (t). First, consider the noise components,
n, (t), ... nN (t). We denote these by the vector n(t). The following proper
ties, are assumed:

1. Each noise ni (t) ; i = 1,2, ... N is a sample function
from a zero-mean Gaussian process.

7
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II

2. The noise processes are jointly Gaussian.

3. Statements (1) and (2) are equivalent to saying
that n (t) is a zero-mean vector Gaussian process.

4. The vector process is completely characterized by
its covariance matrix,

K nl1nlI(t,'u) K nlIn 2(t, u) .. K nlIn N(t' u)

K (t,u) K (t,u)
n~n n~n2 •
2I 12 IN

K (tu) E [In(t) nT(u)" = •

K (t,u) K (t,u)n~nI n n
V N NN

(Observe that the covariance function and correlation function are the same
because of the zero-mean assumption.)

5. We further assume that each noise function contains
a non -zero "white" component which is independent
of the remaining noise function and of the "white"
components in the other noise waveforms. Thus,
we may write

nI(t) = wl(t) + nc (t)
I

where w (t) represents the white component and
n (t) is the remaining colored noise component.cI

I8

K (t,u) = K (t,u) + K (t~u)
nI wI nc

1
No

= -- ~(t-u) + Kn (t,u)
n

8



For algebraic simplicity, we assume that the white
components in each process are equal. (The general
case is a trivial modification.)

The covariance matrix of the vector process is:

N
Kn(t,u) T 2 •(t-u) I + K (t, u)

where I is the identity matrix and K C(t,u) is the
covariance matrix of the colored noises.

Physically, this white component may correspond to
internal noise in the hydrophone and its associated
circuitry. Since its bandwidth is wider than any
signals of interest, we may model it as a process with
a flat spectrum at all frequencies.

6. We assume that the colored noise component has finite
energy. This implies that

S(t,u) KT (tu) dtdu <
-c

Ti

Observe that we do not need to be explicit about the
noise sources. Any Gaussian noise source which leads
to the same vector covariance function will be treated
alike. Later, in some examples, we will see how
various noise fields give rise to particular covariance
functions.

The signal is also characterized by a vector s (t).

Under the Gaussian assumption, we denote its covariance by
Ks (t,u) and assume it is zero-mean. It does not contain a
white component. For simplicity, we assume it is indepen-
dent of the noise process.

Observe that this would not be true if the channel or target
fluctuated while being illuminated by the signal, because
the transmitted signal would influence both the returned
signal process and the reverberation noise. The modifi-
cation to include this coupling is straightforward.

9
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For the general developments, no further restrictions on the
components of s (t) are needed. A special case that we will emphasize in
most of our examples is one in which each signal si (t) is a shifted version
of the same signal.

si(t) = s(t - Ti) i = 1,2, N (1)

where the T. are known.

Physically, the simplest case this might correspond to is a point
target and plane-wave propagation. Neither of these assumptions are
necessary.

Under the non-random signal assumption, s (t) is simply an
unknown vector. Once again, we will emphasize the case described by
Eq. (1).

C. ORGANIZATION AND PRINCIPAL RESULTS

In Chapters 11 and III we study the random signal case in some detail.
First, we find the form of the optimum processor for the general case. Then
we look at some interesting special cases and evaluate their performance.

In Chapter IV we study the non-random, but unknown, signal problem.

In Chapter V we look at the special case in which the signal vector
satisfied Eq. (I)and the noise is homogeneous (i.e., Kn.(tu) is not a function
of i). The notion of array gain is encountered and its significance discussed.

In Chapters VI and V1I we consider some particular examples of dis-
tributed and directional noise fields.

Finally, in Chapter VIII we summarize the results and suggest some
future work.

The principal result is the demonstration that, for a large class of
problems, the basic structure of the optimum processor does not depend on the
signal case of interest nor on the criterion used. Specifically, we will arrive
at a receiver in which the only matrix operation is invariant to the above assump-
tions and the solutions to all of the above problems appear at various points of
the receiver.

A secondary result is some insight into situations in which optimum
processing may be worthwhile.

10
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II. GAUSSIAN SIGNALS IN GAUSSIAN NOISE

In this chapter we derive the optimum detector for the random signal
process described in Case 3.

The basic derivation is not restricted to the array processing case.
Historically, the essential results were first obtained by Price in 1954 during
his studies on multiple scatter links for communication.( 9 ' 10,11) In 1959 the
problem was studied in a different context bvWolf.( 12 ) Recently, Bryn( 13 ) re-
derived the results for the special case of stationary processes and infinite
time intervals. Middleton and Groginsky( 1 4) have also studied the array
problem.

A. DERIVATION OF LRT

As discussed in the introduction, the target or channel changes
appreciably during the observation interval in many active sonar situations.
Thus, even though the transmitted signal is completely known, the effect of the
transmission path or the target reflection mechanism causes the returned wave-
form to have a random behavior. With passive sonar, the actual generated
waveform has a non-deterministic character.

A Gaussian model is suitable for this situation. In the absence of a
target, the received waveform will consist of contributions due to the various
types of noises discussed above. As before, we call this hypothesis H0:

r(t) = n(t) [H0 1 (2)

We will assume that there is a non-zero amount of noise generated at

each hydrophone. This noise is statistically independent at the various elements
in the array and is assumed to be "white" over the frequency ranges of interest.
To emphasize this white noise component, we will occasionally write

n(t) = w_(t) + n c(t) (3)

- - -c
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The covariance matrix under H0 is:

K0 (t,u) - E Lr(t)r (u): H0 is truej

a NO0"2 E 0 (u) K(t,u)

Under hypothesis Hl. there is an additional random component due
to the target:

r(t) = s (t: .) + n(t) (5)

The signal s (t: (A) is a sample function from a Gaussian random
process. For our present purposes, it is adequate to assume that the process
is zero-mean.

The covariance under H is:

K(t, u) E [LK(t) m (0] Lr T(u) (6)T(u

K _ (t, u) + K n(t, u).

since we assumed the mean is zero.

To solve the detection problem, we must compute the likelihood ratio
and compare it to a threshold. The likelihood ratio test is

p £rlt) H I
(r = ( 7

p _r(t) H0

12
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There arc several ways of formulating this likelihood ratio. A
method chat leads to simple interpretation of the result is to construct A (r(t))
as a ratio of two fractions:

prt) H,] p (t) IH 0 ]
A(r(t)) = - (7b)

p [rlt) I wit) only p [(t) I w (t) on y j

It is easy to show that both terms exist. Since they have a similar
struciure, it is adequate to study the first term in detail.

N/2t X1 eim dt du rT(t) Q It. u) r(u)

p H I Jim Ti

[r(t) w(t) only exp - frTt) r(t) d8

(2r)Ti (8)

where the k i are ?he scalar eigenvalues in the vector Karhunen -Lo~ve
expansiont and Q I (t,u) is the inverse: matrix kernel.

The inverse matrix kernel satisfies the equation

Tf

I K I (t,u) Q I (u,z) du - •(t-z) I (9)
Ti

In terms of the vector eigenfunctions

K_ (t.u) (2 + ) (U) (10)
2--I

or

NO+ N0 _ + c,c (3--

S 2

t The vector Karhunen -Lodvc expansion was developed by Kelly and Root.(5)

13
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Taking the ,ogarithm of Eq. (8). we have:

c Tf

Ln (r(t)) + L -, In (i -i j dt du r T M t) [)i(t 2  -U) r(u)

(12a)

The first term represents a bias which is not dependent on the receivCd wave-
or;um; the :ýecond term represents the operation on the received waveform.

We will first develop two cancnic forms for the operation on the re-
ceived data and then develop a convenient expression for the bias term. We will
denote the period term by the symbol L. The total test will consist of zwo terms
like Eq. (12a).

Using Eqs. (7b) and (12a), we see that the likelihood ratio test becomes:

jJ dt du r T(t) [Q (t. u) 2 1 (t -,) r (u)
-'j d, N

Ti 0

Tf

+ dt du r (t) mq(t~u) - - '(t-u) r (u)

Tj 0
(12b)

>n r- tn I+- -)- I + 2 c

We will initially investigate the first term on the left-hand side of
Eq. (12b).

1. Receiver Structure *I

To find a convenient form we dvide the Lovwariance function into two
pa rts:

No 
(

14
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We want to find a solution to Eq(9) with the following form:

2t { U)(t -u) I -h C (t, u) t(14)

Substituting into Eq. (9), we have

No Tf

K (t,u) = + _ h (t.u) + K (tz) h (z,u) dz T t,u s T
-I T I

A formal solution can be ob'ained by writing

h (t.u) h M T M (16)
I (u)i=! -

Substituting into Eq. (15) and using Eq. (10), we have:

2 .c,

N 0h, =
I + __2 c, ( 17 )

Using Eqs. (12) and (14). we see that the first quadratic form on the
left side of Eq. (I 2b) is:

Tf11 j, rT~t
+ dr (it! r (t) h (t.u) r (u) (1s)

N IJ

Now the inner integral in Eq. (18) Ps famil:ar from optimum filter
theotrv (e.g.. Ref. 5. Chap. h).

Tf
i h (t .u ) k!u d : =-a ( t . : (t" H ,)( 9 )

T,,



Thus, the operation represented by the inner integral in Eq. (18) is
equivalent to an estimation of the non-white portion of the input, assuming that

H is true.

Proceeding in an identical manner with the second term in Eq. (12b),
we obtain the receiver shown in Figure 2.

S(t, u) -h (t, u) > -Yr (t)

FIGURE 2 RECEIVER STRUCTURE 1l

We observe that there is only one filter in the receiver.

2 F1
h (t,u) F h(t,u) - h(tu) j (20)

L No L-c-cO

One can also show that this filter satisfies the following integral equation
(see App. A for proof):

Tf

+-K (tx) = [F K (tu) h (u,z) K (z,x) dudz T. •t, x <T (21)
-S -¼ 10 1 fTi

or, using Eq. (6),

T -5 .. j-

K s (t, x) = Ks(t.u) + -n< (t,u) h i(,z) n (Z,X) dudz (22)

Ti

16
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2. Receiver Structure #2

A second interesting interpretation of the optimum receiver can be
obtained. We divide h L(u,z) into two parts:

Tf

h lu.z) = g u,w ) K ' I (w ,z) dw (23a)

T i

where

Tf-

S K (t,u) K n(u,z) du = 6(t-z)I (23b)--n --n

Ti

Then, substituting into Eq. (22), we obtain an integral equation that
g(u,z) must satisfy-

Tf

Ks (t,x) = [Ks (t,u) + Kn (t,u) ]g (u,x) du T. t,x <Tf (24)

Ti

This equation is familiar; the matrix g(u,x) is related to the matrix
filter one uses to find the minimum mean-square estimate of s (t), given the input
r(t). Specifically,

Tf

(u) j g gT(x,u) r(x)cdx (25)

Ti

The test statistic is:

Tf T

L dt du r T(t) h L(t,u) r(u) (26)

Ti

17
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(The factor of 1/2 is absorbed in the threshold.)

Substituting Eq.(23) into Eq. (26),we have:

TfL ,j"dt du dv _T (t) g(t, v) K- (v, u) r (u) (27)

Ti

Writing

Tf

z (v) K (v,u) r (u)du (28)

Ti

we have

Tf

L j |s^T(v) z(v) dv (29)

T i

The receiver shown in Figure 3 t is an alternate version of th,,
estimator -correlator of Figure 2 that we find useful in the sequel.

,K -11 "0l u)

T DECISION
TF L DEVICE

FIGURE 3 ESTIMATOR CORRELATOR RECEIVER:

FORM #2 OF THE OPTIMUM RECEIVER

T
t The symbol ® denotes a dot product A B The double lines indicate vector signals.

18
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The vector z(t) also has a familiar interpretation from the active
sonar case (e.g., Van Trees,Ref. 16 or 5, Chap. 4). It is the input to the
correlator, as shown in Figure 4. The other input is f(t), the known signal.

K , )dt ---- 0-• L

f (t)

FIGURE 4 ACTIVE SONAR RECEIVER

We now derive a third receiver structure, one that is commonly
used in practice.

3. Receiver Structure #3

A third interpretation of the receiver structure is also useful. To
obtain this interpretation, we write h (t, u) in terms of an integral.

L

h (t, ,u) = k k(z, t) kT u d (30)

Ti
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Then

T f T f T TfT

L J' ~dz j' r(t) k(zt) dt J kT(zu) r(u) du (31)Ti Ti Ti

If we define
Tf

x(z) i kf kT(zu)_r(u)du, (32)
Ti

then the two inner integrals correspond to the squared magnitude of x(z).

L= Tfdz f rT(t) k(tz) dt 121 (33)

Ti Ti

The resulting receiver is shown in Figure 5.

kT(tDEVICE

FIGURE 5 FILTER-SQUARER RECEIVER:
FORM #3 OF THE OPTIMUM RECEIVER
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The two remaining problems with the receiver are:

1. A convenient closed-form expression for the
infinite series on the right hand sid.: of Eq. (12b)
that is part of the bias. (This term is evaluated
in Appendix B.)

2. Some measure of performance oý the receiver.
This problem is discussed in the next section.

B. PERFORMANCE OF OPTIMUM RECEIVER

The performance is difficult tc compute In the general case. A
quantity that provides a reasonably good indication of performance, particularly
when the input signal-to-noise level is low, is:

{ E [L IHl 1 ] - E [L HoI ]2
Var [L I H0 ]

This corresponds to an ouzput signal-to-noise ratio. Its value as a performance
indicator has been discussed in detail by Price .(17)

The calculation is straightforward:

Tf

Ti

TtE [L I Hl ] E1 {fr T(t) hL(t, u) r(u) dt du }(36)

But

AT B A =Tr [B (A AT (37)

So Tf

E [L IH1  Tr J'J h(t, u) K1I (t, u) dt du (38)
T
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Similarly,

Tf

E [LIj H,], Tr hj ,(t, u) K 0 (t, u) dtdu (.39)
T,

Thus, the term in the numerator of Eq. (34) is:

E [L H 1 ]- E [LI Ho] (40)

Tf

L Tr Jj h (t,u) K (t,u) dt du (4A)
Ti

The mean-square value follows in the same manner:

Tf Tf

E [L 2  H = E rT(h(t u) r(u)r T (x) h (x,y) r (y) dtdudxdy

Ti T, (42)

Using the factoring properties of GausK.n variables, it follows that

EL2 H] ' [ELI H0]}.

Tf Tf

+ 2 E0 J j rT (t) h (t,u) K0 (ux) h .(x,y) r (y)dtdudxdy

T Ti L.(43)

Tf Tf

E [L 2H0 + 2 Tr h .(t,u) K ((ux) h .(x.y) K0 (y.t)dtdudxdv+L0~ J Tr -_ -- .
TI TI

The variance is just the last term.

22

iarthurf 3litttg,.l



Therefore

[Tr Tf f 2

Tr L j" u) K (tudtddu

Tf Tf (44)

2 Tr j • * h i(t,u) K0 (u, x) h ._(x, y) K0 (y,t)dtdudxdy

T1  Ti

The denominator can be simplified by using the expression in Eq. (23)
for h, (t,u) and h (x,y) and observing that

TfJf (v, u) K (u,x) du At '(v-x) 
(45)

Ti

Performing the integrals, we obtain:

d = 2 Tr f. g_(t,x) g_(x,t) dx dt (46)

T1

C. COMMENTS

In this chapter we Jerived the structure of the optimum receiver for
the case of Gaussian signals in Gaussian noise. To implement it. we must
solve Eq. (22) or (24), which follow.

Tf

K (X,,) KJ Ls (t. u) + (K.,) h . (u.z) LK (z,x) du dz T. .t.x tTf (22)

T,
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or

Tf

K (t,x) = [K (tt,) + K (t,u) 1g(u,x) d- T. t x T4)
-- (--)S -n -- (24)Tif

We also found that thie otilput signal-to-noise ratio

Tf

d= 2 Tr jj g_(t,x) g (x,t) dx (it (46)
STr

depended on the solution to Eq. (24). For arbitrary observation intervals and
random process statistics the solution is difficult. Explicit solutions can be
obtained in several cases of importance:

I. If the signal and noise processes are stationary
with rational spetra, one can transform the

integral equation into a differential equation.
solve it, and substitute the solution into the
integral equation to satisfy the boundary condi-
tions. This case is conceptually straightforward
but extremely tedious.

2. When the noise is "'white." K (t, u) can be written as:--n

No
K (tLu) = - I--n 2 -

If the largest eigenvalue, ., of K (tu) is much less
than N0/2, a solution follows eas•iv. This is commonlv
referred to as the "threshold" or "'coherent!y undetec -

table" case. One can show that
h ,(tu) - K (t.u).

.1. If. in addition to the ctonditioms of case (I), we assume that

T = Tf - TI

is long. then a verv simple solution :an he .obtained
using Fourier transform techniques. This cas.' o.+

appropriate in "nost sonar problems and is developed
in dut..ail in th- next cl-ptcr.

2,4
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III. LONG OBSERVATION INTERVALS. STATIONARY PROCESSES

A. GENERAL CASE

In this case, simple solutions for the integral equations can be ob-
tained. We assume that the signal and noise processes are wide-sense station-
ary and that the observation interval is long.

First. we solve the equation for the optimum processor filter
hN(u. z). We let Ti = -T/2 and Tf = + T/2. Then, by Eq. (21).

+T/2

K (t. x) =.1 j I1(t, u)_h%(u, z) K n(z, x) du dz (47)

-T/2

-I
We then multiply by Kn (x, y) and integrate with respect to x. In

addition, we can write the covariance functions in terms of differences of their
arguments:

+T/2 +T/2
-1

K(t - x) K (x - y) dx = K(t - u)hL(u- y) du (48)• - -n. -l -

- T/2 - T/2

Now we define the Fourier transforms of the various matrices. For
example.

SmS (a.) dpe 1  K (1(49a)
-n -n

and
a

K () dz -+-4"S (.0 (49b)
-n 2-
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Observe that

S, = S (r) (49c)
-n -n

-1

Next we write K () anti h.() in terms of their tra::sfor.•s.
-n

+T"/2 " +j.u(x-y) d+0

dx K (- x) S (.Cj -
-s n 2-

"- T/2 -

(50)

+T/2 +
(t-x)d + j.L(X - y) (LLJ

= Kl(t -x) dx H (x) e- "

-T/2 -

Re-grouping terms.

x+T!2
- + J.Lt - V) -j, Lt - X)

e K (t-x)e x)e dx S( (L

- 2-T/2
- 2

A s T --. thtc tcrmi m thc parcnthete. approach S.,.(3) and S S
rc-pc: 'e". hcrcire.

S (t) S (i) W : S.(t) I W (I) (,2)

2t)
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or

H ,(x) = S ('L) S (4) S (() (i3)
-l -• -n

From Eq. (23). it follows directly that

-1
G_(x) S S1 (.0)S b U) (54a)

and

GT (1 S S

This result is well-known from unrealizable Wiener filter theory. The output is:

T * tGs,, O g(x)R110.t) (54b)€

The test statistic is:

+T/2 +T,2

L T(t) h,(t - u) r(u) dt du (,5)

- T/2 - T/2

This :an be expressed in the frequency domain as:

L R (*G) H4R()R.) (56)
- - -

tHere R(L) is the Fourier transform --) r(t). To be correct. one shsild t:se the
:ntegrated transform, but the ordinary transform is more familiar so we use it.
A script i?( ) denotes the F wurier transform of s(t). while an ordinary S.(1)
denotes the pu.ver density spectrum.

2 7
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Two receiver corfigurations are shown in Figure 6.

f di DEVICE4-/2

(a)

S -(W) Jt

r Wt. L DECISION

f dt DEVICE

-T/2

)

(b)

FIGURE 6 OPTIMUM RECEIVER: LONG OBSERVATION INTERVAL

The perfcrmance can also be expressed simply. Re-writing Eqs. (44)
and (46) in the (rans'orm domain, we obtain

o -2

Tr J HV.0) Ss('ii) --

2 T -0

d - ___
Tr j I -(u) 2

In -everal special cases the results can be simplified.
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B. SPECIAL CASES

1. Threshold Case

In th- threshold case the input signal-to-noise ratio is low. If

S, ij.(w) <<Sn. ij(U) (58)

for all i,j and ,v, then we call the problem a threshold problem. (Eq. (58) is a
stronger condition than necessary; some weaker conditions will arise later.)
This equaLion simply says that each element in the signal matrix is smaller than
the corresponding element in the noise matrix.

Then,

S ( s ) + n s(w) S s(w) (59)

and

-3. -3.

P ) S) (w) S (W)S (w) (60).6 -n -S -

and

G_(w) sn (w) sW (61)

The performance index d2 becomes:

r W . 1 -1 ft}2

{Tr S (1S) S GOS( ) Ss(U) -

d T_ (62)2 0,

- t Tr f S (w) Ss(L3) S (w) Ss(w) '
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Cancelling the common term, we have:

d2:• Tr - () Ss) (63)
2 n - s n _ T

2. Homogeneous Noise, Threshold Case

In this case, the signal spectrum at each hydrophone is identical and
the noise spectra are also identical. Then we may write

S (w) S S (W)P(w) (64a)

S (w) ) S (W) 9() (64b)

Here PC•) and Q_(w) represent the cross-spectral terms.

Then,

S (2W)n

and

S (,v)
S 6 -1

G(w) - S (W) Q (•) P(O) (66)

and

d2 T Tr [Q(W) p(w) (w) p(u&I d (67)
- 2 (W) - _ _

n
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3. Single Signal Case

We now turn to the case of principal interest to us. Consider the array
shown in Figure 7. The coordinate of each hydrophone is denoted by a vector, ri
We assume that the signal component at -ach hydrophone is identical except for a
time delay.

S(t - TO

s(t - T)

_St (68a)

s(t - N)

PLANE WAVE

SIGNAL

PROPAGATION

HYDROPHONE

r 3

3 - DIMENSIONAL
ARRAY

FIGURE 7 HYDROPHONE ARRAY: PLANE WAVE SIGNAL
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A simple case in which this assumption is true is the case of a plane
wave whose line of propagation is along a vector at. In this case

Ct r.

T. = - (68b)
1 c

We will consider this case in the sequel because of its easy physical interpreta-
tion. The modification to account for the general case described by Eq. (68a) is
obvious.

Substituting Eq. (68b) into Eq. (68a), we obtain

(t

s(t) = (68c)

t -l

Then,

(W) = S(Uj) P(w) (69a)

where

+ j .2 L r k-r t
Pkt(w) = e c (69b)

In this Lase, it is easier to perform a preliminary operation on the
inputs so that the outputs of the hydrophones are in time synchronization. This
corresponds to "steering" the array and iq obtained by a set of delay lines, as
shown in Figure 8. Observe that we have indicated negative delays; these are ob-
tained physically by including a common positive delay. The noises at the output
are a function of the steerrng direction.
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r I (t) S(t) + n +

aj (a .r

DELAY

II
S'(w) Sr; (t)b

DELAY

• 0

00

DELAY

FIGURE 8 ARRAY STEERING

The new noise spectral matrix follows easily.

S' (G) = S (uj) e C i(70a)
-n. . --1..

1i ij

and

I I I
§S'(W) S S W) (70b)

33
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From this point on we will regard the steered outputs as our basic

input. For notational simplicity, we will leave off the primes.

To realize the filter as shown in Figure 3, we find G(jo) as given by

Eq. (54). Denote the elements in the inverse of S, (jOw) as SLJ (w,). Then,

iN
S, (W) SI (,) . . . S1 (,) SS (W) Ss (W) . . . Ss(,S )

G.(j) = (7Ia)

NiSN I( 8() Ss) Ss(WO) SSW•

or N N N

L S (Uj) L SY (w . ..

N

2jtGojj) =S (j) (71b)

N N
S Nj 7 N

j= 1 j
S I

The output is an N x I matrix .,.(jOjw) which is defined by Eq. (54b).

SubstitutingJ Eq. (71b) into Eq. (54b), we find that each element in the

matrix is identical. The elements are the estimates of

N N
S,- iji

S(4) = SSjL) SL Ls( R.x (72)s , L. L .
i=i j=i
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From Figure 6, we see that we want to form the dot product between
z(w) and 4,0w). In Figure 9(a) we show the receiver for this particular case
using matrix notation. In Figure 9(b). we show the actual operations. Note that
each element in ;(j•) is the same. Therefore, we can add the elements in z(,'v)
and then multiply the two scalar quantities. The resulting receiver is shown in
Figure 10.

, (t)

T/ •L DECISION

~~ ... di D • "EVICE

(a)

N Ii'I (•) z i(W) S. t (W

N W -- -- --'4 N.Zw)= • s R.(.w)Z N(W) i . R i(W

N N

SNI,(W) - Sa(W,) 4:• S; (,W •i(.)

N S, (40 - S (W) S i W

(b)

FIGURE 9 OPTIMUM ARRAY PROCESSOR: SINGLE SIGNAL SOURCE
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•/ , \ N N ;

R W w S ( W R W

N :ZN

'2(w. f L cso
-0 STEERNG dt-goDVICE

FIGURE 10 OPTIMUM ARRAY PROCESSOR: SINGLE SIGNAL
SOURCE (ALTERNATE FORM)

The difficulty with the receiver structure in Figure !0 is that there
are two separate combining operations. We will eliminate this difficulty by
proving that we can obtain )S(J•) by passing z(Jo) through a (scalar) filter, F(ox).
In other words, we want to prove:

s F(Jx) z(J) (73a)

or

N N N N

s (S) sO.(ja) R (J1) = F j) 1S ) R OW) (73b)
s .- .L j n j

ii j=2 s i=x jm3
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In matrix notation,

Sow) Is 1 T ',O) Row) = 1T F0,0')S-1 O'j) ROw) (73c)

where

I= T 1 .. (74)

Equivalently. we must prove:

S I T _ _ - ) I T F0w)S 0-4) (75)

Post-multiplying by S iOx). we have

T -T
S Ijv)T I F(j'I') S (iU) S1•4iu) (76)

Using Eq. (7(b) and the definition of S, (w), we obtain.

N N N

j=I j=I =

N
T TSs0•V) = II Fox) Ss Ow) 7 Sj (77)

)1=

N NsN - Nj N
L S S

n

+ Fj•x) IT1
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This implies

N N

S (ox) = FOj )S (w) S' S Ox) + F'Ojj) (78)

i=1 j=I

Defining

N N
L.. i)0/•0• • ' .Sn ow) (79)

i=1 j=1

we have:

F(j..) s j)) + Ax) (80)
s

The resulting realizatior is shown in Figure 11. Alterna:ely. we see
that we can realize the receiver in the filter-squarer form as shown in Figures
12a and 12b. (The purpose of the modification in Figure 12b will be apparent in
Chapter IV.) In Figure 13, we sh,-w the resulting structure under the threshold
assumption. (Here. we assume S'(,x) < < jfjij) for frequencies of interes,.)

This completes our discussion of the general receiver structure for
the detection problem. In Chapters V. VI. uid VII. we will look at some particu-
lar problems. Before doing this, we will demonstrate how a similar structure
arises when a waveform-estimation appx-,'ach is used.

IAw Ssl 7,w).• A,•

FI: RE I I SIMPLIFI!; FORM OF OPTIMUM ARRAY PROCFSSOR
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12 T/2

12 (w) MATRIX Z( ) A (w so (W)dt L DEISO

FILTER ---- SURRfDVC

*(So (W) +A ( ) -/

(a)

1/2
A () MATRIX A W fd

FILTERA1/ /SQ RE

FIGjURE 12 FILTER-SQUARER VERSION OF OPT'IMUM ARRAY PROCESSOR

FIGU2RE 13 THRES!")LD CASE
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IV. SIGNAL WAVEFORM ESTIMATION

In many cases detection is not tne only question of interest. For
example, we may want to process r(t) to obtain a good estimate of s(t) to use
in a classification probiem.

In this chapter, we discuss two possible approaches to waveform
estimation. The first is called "distortionless" filtering because the processor
is designed so a, not to distort the signal. The second is tie classical mini-
mum Mincn-square error approach. After deriving them separately, we show
that a matrix MMSE filter can be viewed as a cascade of a matrix distortion-
te~s filter and a sca'ar MMSE filter. This result, which is due to Kelly, (18)
is important because it enables us to perform a distortionless combining of the
hydrophone outputs and observe it before introducing the signal distortion caused
by an MMSE filter.

Finally, we relate the waveform estimation problem t') the detection
problem and show that t- distortionless combining operation 's the only matrix
operati-n necessary in both cases.

In this chapter wo will assume that the signal is a plane wave whose
dlirr,,ti-r ioni known. As discusz-,: in Section B-3 of Chapter III. we assume that
,hc deiays - steer the array on the target hav2 already been inserted.

Phus, r (t) is an N-element column matrix whose elements are:l

(t) = s(t) + ni(t) (81)

The spectral matrix is S n(x), where:

Sn(X) = E [n(t) n (t - T)j e dT (82)

with this mode!, we first develop the idea of distor~ionless filtcring.

tAs before, the primes are suppressed for notational simplicity.
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A. DISTORTIONLESS FILTERSt

The filter of interest is shown in Figure 14. The outputs of the beam-
forming operation are given by Eq. 81. Each output contains the signal s(t) and
a noise ni(t). These inputs are filtered and summed to give a single output y(t).

rj. (t)

r (t)II

bo D 2 (W) W + P)) (

0

r'N (t)I
No DN (W)

FIGURE 14 DISTORTIONLESS COMBINING

It is required that, in the absence of noise,

y(t) = s(t) (83)

for any signal s(t).

Under this constraint, we wish to minimize the variance of nc(t).

tThe idea of combining multiple inputs in a statistically oDtimum manner under
the constraint of no signal distortion is due to Darlington. (19 ) An interesting
discussion of the method is contained in Brown and Nilsson's text. (20 ) It was
deri,.ed independently by Levin(21) as a minimum -variance unbiased estimator.
A simple derivation is given by Kelly;( 18 ) our discussion follows this later ref-
erence.
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The output of the filter is:

N

Youw) = DT(juO) Row) = i Di(j') R.O(j) (84)

i--I

where Dow) is N x I matrix.

D1 Ou)

D2 (Jw)]

Pow) = (85)

DN(JUJ)

The constraint of no distortion implies:

N

Z Di(Jw) = I (86a)

i=1

or

I DTow) D T(jW)_I I (86b)

for all w.

The variance is:

OY = E[n2(t) S (W) dc (87)n = 11 2(84
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Now,

S ( E) = E[DTW) n Ow) nT 0j,) DOn)ý (88a)
n -v -cC

Sn (w) = D T(j w) S (jw)D*(juj) (88b)
c

We want to minimize a2 subject to the constraint in Eq. (86b); to donfc

this, we use the Lagrange multiplier technique:

-00F J DOx) S Ox) D Ox~) + X _ _o)fT (89a)

Since the integrand is always positive, we can minimize at each
frequency.

F - T(jTu) S Onv) D*(joL) + , DT OW) I (89b)

Differentiating with respect to Dr(Ju)), the rth element in DAw), we
obtain

[o...n...s I w) D*Ow) + X10...i...]i -- 0
r= 1,2, .... N

(90a)

This is equivalent to a single matrix equation.

S (jOw) D*O) = - XI (90b)
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-1
Pre-multiplying by Sn Ouw), we obtain

D*(juj) = - x S 1 OW) I (91a)

-n

or

D(jw) = - X [r 50Lu)] I (91b)

or

N

D. 0 ) = -X S 5130w) (91c)

i=I

The value of X is obtained from the constraint equation (86a):

N N N

SDiO) = - x j SU0w) = 1 (92)

j=1 i=1 j--I

so

S "j A (93)
L=1 j=l

Therefore,

N

D.Ow) AOW) S I (jw) (94a)

1--1
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The distortionless combiner is shown in Figure 15.

N~S'I (w, Rli 6W
r W n

S=Z(w)

FIGURE 15 OPTIMUM COMBINER

We see that the signal zojj) is identical to the combiner output in
Figure 11. Similarly, we see that the distortionless waveform Yofv) also ap-
pears in Figures 12 and 13b.

N N

S n (u)) R.1jua))

Y(jO) N N (94b)

XX n

The variance using distortionless processing follows easily. Substi-
tuting Eq. (94) into Eq. (91b) and the result into Eq. (88b), we have:

5(ru) = T(j) T S Ow)_S oju)S 0 W) I A(uu) (95)
n -- i n -n -

C

But

T S 00)'1 = (A(jv)) (96)
- -n -
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Therefore,

S (n ) = A 0 ) (97)n
c

and

S (W) = 02 (98)
JO 2 TT c

Several observations now follow easily:

(1) Looking at Figure 11, we see that s(t) is obtained by
operating on the distortionless output y(t) by a filter

S (,')
S

S () + A(L) (99a)S

This is precisely the optimum unrealizable Wiener
filter for estimating s(t) using a minimum mean-
square error criterion when the input is y(t). (Since
t)'e "noise" spectrum is A(,u)). The mean-square
error is

M A(,r) S (W)Ss dw
"mnmse c S (w) + ,%(uu) 2T (99b)

(2) All of the processing up to y(t) in Figures 12, 13b,
and 16 is independent of the signal. The effect is a
noise-reduction due to combining. In Figure 16 we
re-draw the receivers in Figure 12 and 13b to ernpha-
size the distortionless signal.

Before leaving waveform estimation, we will consider the problem
from a different viewpoint.
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" LER (t) T/2 THESHOLD

S$(

y (t)

MINIMUM MINIMUM
NOISE: DISTORrIONLESS ESTIMATE MEAN-SQUARE

ERROR ESTIMATE

FIGURE 16a ESTIMATOR-CORRELATOR RECEIVER

r (1) T/ '
MATRIX z()y(I) S,1/2 (a)• • FILTER A 6 )1 1SQ UA RER ,-fJ L

(s,(w) 4 A(w))/ T-2

FIGURE 16b FILTER-SQUARER RECEIVER
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B. MAXIMUM LIKELIHOOD ESTIMATES AND GENERALIZED LIKELIHOOD
RATIO TESTS

The derivation of the optimum distortionless filter started with a
rather arbitrary linear filter restriction. One can also approach the problem
from the standpoint of a maximum likelihood estimate of s(t).

The likelihood function of r(t). given s(t), is

T

tn A(r(t):s(t)) = (u))T
2 -~n -- U

+ ER*T(L)S Lt')l I (IOOa)
2 J-n - 2r7- U

T S- I L IALv djj

where we have assumed an infinite observation interval and stationary processes.

The maximum likelihood estimate of ý(.) is simply the function 0m)('i)
that maximizes the likelihood function. To find it, we set

, - ' + C Y (V) (IO00b)

differentiate tnA with respect to c. and require the result to equal zero for E = 0
and all i (i). This gives

* du r 1T I1T -2- d 1( -TS n(L) R(jj) in (U) I "'mt)

(I 00C)

d.( r2 I - -a- - aT -t+ •, ., (.i)7- ~R T(4) (*j)l T

tThe r -ultcs through Eq. l00k, were previously derived by Kelly and Levin.(2 2 )
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The two bracketed terms are conjugates. Since ('Jv) is arbitrary, the term
inside the bracket must equal zero for all x. Therefore,

.m (us) I1T S() _I = -ITS- (,xu) R(,)0 (lOOd)
m t -n--n

Writing Eq. (lOOd) out, we have:

N N

n J
ti= jIl (Iooe)

= N N

S SL (,u)

i=lj=1

Lookng at Eq. (94b). we see that A mt Ox) is identical to Y0x).

Observe that there was no a priori restriction to a linear processor.

The detection analog to the maximum likelihood estimate is the gen-
eralized likelihood ratio test (e.g., Davenport and Root, Chap. 14(0) or Van Trees,
Section 2.5.(5))

The generalized likelihood ratio test is

max p [r(t)t H I

A (r(t)) = s(t) > v (lOla)g-p r•(t) 1 H 0

The numerator is simply p [r(t)I H1 ] evaluated at s(t) = m,(t)

Substituting Eq. (1O0e) into Eq. (lOa)gives tn Ag(_r(t)).
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I- + T d• i
In .1, (r(t)) = + - 0 S92 til 2-(L

(I Cy I h)

O *RT(J;)S (• .m~)d > .

2 -R I CO ,I j "

(We incorporated the last term into the threshold.)

Now.

.0 C = M) IS Cu) R(O
ý -n

=- T (i T S(1 1010i~

T --
%A(x) R (,x)S (x;) I -

Substituting Eq. (lOtc) into Eq. (lOb). we obtain

t.n MO(r(t)) + 2 , m L) ,i(d 2-
2- U m A() 2

(101d)

n2l C () __
(e2 Aal .() I!. ra

(RL.,call ¶•(t) is real)
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Therefore.

m'It di.
•n ,•g(.r~t) = 1 ,-- (O.0

Using Pars.val\' theorem, we obtain the receiver for the generalized
likelihood ratio test that is sthr)wn in Figure 17.

_•t FILTER I SWARM L

LI lF IL iti

FIGURE 17 RECEIVER TO IMPLEMEN'T GENERALIZED
LIKELIHOOD RATIO TEST

C. SUMMARY

In this chapter. we have related the ideas of distortionless filtering
and maximum likelihood estination. Uriteria of this type arte appropriate when
the signal is a non-random, but unknown. waveform. Further, we found that the
generalized :ikelihxlod ratio test is closely related to toht: estimation procedure.

Ckmbining these result, with those of Chapter Ill. we obtcn the com
posite receiver -hown in Figure IS.
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BAYES OR
NEYMAN- PEARSON
TEST

(t) 

TLINEAR

DTEING 
COMBINER 

A• (w) 
A (w MAX UM-LIKELi HOOD ESTIMATE

t 
(MIN. NOISE DISTORTIONLESS ESTIMATE)

J-T/2 JGENERALIZED LIKELIHOOD

SRATIO TEST

FIGURE 18 CRITERION INVARIANT RECEIVER
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V. HOMOGENEOUS NOISE: ARRAY GAIN

A special case of interest is when the noise is homogeneous.

Specifically,

S 0 UU) = S nUw) = S now) (102a)
11

and

S n.ow) = S (jw) Pij.(j,) (102b)
1J

Let

O(jO) be a normalized cross-spectral matrix with
elements pij(J'v)

Then,

-i -i -1

S w) = (Sn0 w)) P ow) (102c)

One realization of the resulting receiver is shown in Figure 19.

In this case, it is easy to evaluate the effect of the array on the per-
formance of the system with respect to the following three criteria:

(1) Detection performance index (Eq. (67))

(2) Distortionless signal; minimum noise variance
(Eq. (98))

(3) Minimum-mean-square filtering error (Eq. (99b))

We shall consider these three cases in order. At a single hydrophone:

d• T S Ss(w dw
d2 ]2 d (103)

2 w 2rr

This is simply the scalar version of Eq. (67).
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To evaluate d2 , we look at the signal spectrum of y(t) in Figure 19.t
The signal spectrum is Ss(w), and the noise spectrum is A(u). Therefore,

2

d2 = T S8() dw,
2 J 7(1 2i (04)

but

N N
p1J~p~A~ ~A(w)

() pij (w) (105)
Sn(i=j j=I

Therefore,

d2= S_ A d2() •w (106)

2 S S2(W) 2TT

We see that the effect of the array is contained completely in the func-
tion A(m). This function is commonly referred to as the array gain

4 ,) N N

A(w) An (w) (107)

i=1j=1

For independent noises, the array gain is simply N.

We recall that the elements piJ(w) incorporate the effects of array
steering. In terms of the unsteered noise matrix,

N N ai U) CLr. - r.e c--i -.j i-
A(u))) p ( - j )iG (108)

i i

tWe could also work directly with Eq. (67) (see Appendix C).
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Thus, unless the noise matrix is diagonal, the array gain is a fuiction ut the

steering angle.

The array gain also arises naturally in the other cases.

For distortionless filteiing, the variance at a single hydrophone is:

a 2 Sn(W) du, (109)°n n Sn( T

At the combiner output,

W SAn(w) dT 
(110)On' = A(,T•w A(Lu) 2TT

c -co -

For minimum-mean-square error filtering, the error at a single

hydrophone is:

2 Ss (u) Sn (Uj) dw (111)

S (= + S(W 2 TT

At the final output,

= G Ss () A(,) du
T S (W) + A( ) 2-r

O. (Sn(ii)
Sw) A(W)) du. 12

S S(w) 27r

S (W) + ,
s A(w)

Therefore, for any of the three purposes, the array gain completely
characterizes the effect of the array. It is dependent on frequency and steering
angle, and its effect is to reduce the noise.

In the next section we derive various noise models and find the array
gain for some interesting configurations.
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VI. DISTRIBUTED NOISE FIELDS

In Chapters VI and VII we apply the preceding results to simple
examples. In this chapter, we shall consider noise fields that are distributed
over a region in space.*

A. HYDROPHONE NOISE ONLY

Example 1

In this case, the only noise is hydrophone noise, which is assumed
to be independent from one hydrophone to the next. For simplicity, we first
assume that the noise spectra are identical. Thus,

S nij (W) = Sn (w)) (113)

In this particular case, it is clear that the spectra after steering
are identical.

Thus,
' () Sn.. (u) (114)
n,ij n,1j

Clearly,
S"1 () 1 (115)
-n Sn(*O) -

Combining consists of a simple summing operation.

The array gain equals the number of elements in the array:

A (w) = N (116)o

Since all of the noise is assumed to be hydrophone noise, the spacing and
location of the elements are unimportant.

The modification to include different noise levels is straightforward.

*As pointed out in the references,the results in this chapter are duc to Dr. E.J.

Kelly, Jr. His contribution is important to the over-all unity of the report, and
we are happy to acknowledge it.
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B. ISOTROPIC NOISE ONLY

Several models of noise geometry lead to what is called an isotropic
noise field. Two of these are:

(1) The noise is assumed to consist of uncorrelated
plane waves with identical statistics coming from
all directions (e.g., Marsh( 23 )).

(2) The noise is generated by uncorrelated noise
sources uniformly distributed on the surface of
a large sphere (e.g., Faran and Hills (24) ).

If the noise is assumed to consist of a single frequency, then it is
easy to 3how that

0.. (T) = sin kdij cos 2TrfOT (117)
kd..Ij

where
2T fo

k - is the wave number
c

c is the velocity of sound

fo is the frequency

and

d.. is the distance between elements

Due to the spherical distribution assumption, the correlation func-
tion (before steering) does not depend on the orientation between the two ele-
ments.

A simple extension of the single-frequency case is when the noise
spectrum at each point on the sphere is the sa!ae (say Sn (w) ). Then, it
follows easily that

sin .i.

C

ii(J•) = cf Sn(• (118)

c

The correlation function may be found, but it is not necessary.
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Example 2

To illustrate the isotropic noise case, we consider a simple ex-
ample due to Bryn( 13 ). The array is shown in Figure 20.

I SIGNAL

!

FIGURE 20 UNIFORMLY SPACED FIVE-ELEMENT ARRAY

It consists of tive elements arranged in a line. The signal direction is per-
pendicular to the array. In this case, no delays arv- necessary for steering.
The normalized spectral matrix is:

I sin u sin 2u sin 3u sin 4u
u 2u 3u 4u

sin u sin 2u sin 3u

u 2u 3u
P ju)) (I19a)

sin u sin 2u

u 2u

(symmetrical)

I sin u
U

where u - 2nf d (Ilgb)c
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The array gain, Ao (f), as a function of u is shown in ligure 21.
The gain obtained by a straight sum is also shown in the figure. We see that
for spacings greater than half a wavelength the two are essentuilly identical.

8
OPTIMUM DETECTOR

4 4- STANAR DETECTOR
S~I

2 U d

I' C

0.2v 0.4v 0.6,, 0.8. I

(from Sryn; ref. 13)

FIGURE 21 ARRAY GAINS

In this model the gains correspond to those obtained by Pritchard( 25)
using a signal-to-noise ratio criterion. It turns out that the gains are large
and opposite. ims type ui array is commonly referred to as a "super-gain"
array- as one kould expect, such arrays are .ensitive to variations in the
gains and therefore are difficult to realize in practice. If one considers more
general arrays (the elements not necessarily ii a line), then one can cet a
singular detection problem for the isotropic noise model (see Gaarder12b)).
One can eliminate this sensitivity and the possibility of singularity by keeping

the hydrophone noise -it a non-zero level.

(Yher array gain calculations have been made (e.g., B. Cron and

C. Becker(- 7 ) ).

We now turn to a second category of noise.
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VII. l)IRI IC )N\IL N"i )IS[ u i( [

1Frequentlv, the noise that we want to cominmt ais a strong dlrectional
character. The limitingy form of this ;category is a noise planc wavc conning
from a single direction. Wv investigate this limiting case under the dssump-
tion that Lhe direction is known exactly. If the direction were not known, the
receiver would have to measure it. The results for the known direction pro-
vide a bound on how well a receiver incorporating measurement could do.

A simple model of directional interference is shown in Figure 22.

DIRECTIONAL NOISE

9

Ii i>IKSIGINAL

I

I
I
I

FIGURE 22 I)IRKC'rIONAL NOIS" MODEL

T*e noise is a stationary random process from a known angle A.
For simplicity, we assume that th•: signal direction is broadside. The arra:
elements are uniformly spaced in a line. If we label the noise voltage at the
center element n(t), then for ai, array with 2N * I elements.
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[n(t +NN

n (t + 2T)

n (t +
n (t) n (t) (120)

n (t- r)

n (t -NT )

where
¶ = d/c sine

The noise cross-spectral matrix is easy to find. For a three-
element airray,

1 -j WT e-juw2T1 ejw ej•"

s+jW' -j

S (w) = Sd (w) e 1 e jWT (121)

e +w e+jWT 1

It is clear that this matrix is singular. For any value of e except
zero we can achieve perfect detection. Under H1 , for example,

rI (t--)-r 2 (t) = s(t-T) - s(t) (122a)

and 'inder H0 , r 1 (t-T) - r 2 (t) = 0 (12 2b)

which gives a perfect detection capability.

Therefore, to make the pure directional noise problem meaningful
we must include a white noise component. Then,

S NO
00 - 1I + S (u) (123)

in ) 2 - -nd
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For the three-element case,

I xe xe

S (u) = + Sd (u)[ xe +j (124)

L xe +j 2 x- xe+j1N-

where

N d (125)

2 + S d (A)

The array gain is the sum of all tt'e elen.-&;rts in the inverse of the
matrix in Eq. (124). Taking the inverse and summing the elements, we obtain:

A (j x) 3(1 -x 2 ) + 2x (x -1) [2cosirr +cos2 J (126)
1 + 2x3 - 3x 2

As we would expec-,, for x = 0

A (j i) = 3

To indicate the behavior, we have plotted A (j _v) for two values
of U•T in Figure 23.

For any given element spacing, these can be translated to a particuiar
value of 9.

For example, if d = k /2 , then

WfT = 7Tsinf9 (127)

and the two curv-cs shown represent =- 0 and 30', respectively. We have also
indicated the array gain, Ac(j'.) for a conventional array which sums the outputs.

The procedure for finding the array gain for larger arrays or multiple
directional noise sources is conceptually straightforward, and the actual com-
putation can be done numerically.
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I10u 
-

"0,00, 0•

A I ....

0 0.2 0.4 0.6 0.8 1.0

FIGURE 23 ARiRY GAIN VS
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VIII. CONCLUSIONS

The primary purpose of this report has-been to fit various tech-
niques and criteria related to optimum array processing into a unified
theory. Since the models on-tses are only approximations to the actual
physical situation, it is important to understand how various assumptions
affect the optimum receiver structure.

For an interesting class of criteria and signal models we found
that the optimum receiver consisted of a set of delays to steer the array
followed by a combining operation which depended only on the noise covari-
ance niatrix. The output of this combiner is a single waveform, which is
then processed depending on the criterion and signal model.
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APPENDIX A

DERIVATION OF EQUATION 21

Using Eq. (14) and Eq. (20), we can write:

_hA(tu) = " Ql(t,u) + 2 0 (t,u) (A.1)

Pre-multiply by Kl(z, t), integrate with respect to t, and use Eq. (9):

Tf Tf

zK,(Z,t)h(t,u)dt =-I 6(z - u) + z K 1(Zt)(%(t,u)dt (A.2)

T. T.1 1

Post-multiply by K0(u, x), integrate with respect to u, and use Eq. (9):

T

S Kl(zt) hA(tsu) K.(u,z)dt du - K0 (z,x)+ K (z,x) (A.3)

T.1

Observing that

K(z, x) - K0(z,x) Ks (z,x) (A.4)

we obtain Eq. (21).
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APPENDIX B

EVALUATION OF THRESHOLD

We want to evaluate the sum,

tn + - X) (B.1)
N=o

Using Eq. (16), we see that

T fc

T (B. 2)

T. i=1 N0i1

where the notation 2/N 0 emphasizes the dependence of h ( • ) on the noise level.

T

2 n + -(1 X =) dzJ Tr rh(t:z) dt
i=N 0 T..

01 (B. 3)

One can show that error matrix

T.

1

so

2/N 0

Ltn A b (r (t)) =T 5 Tr ['t(t' t z)] dz (B. 5)

0
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APPENDIX C

EVALUATION OF d 2 BY USE OF EQUATION 67

In Eq. (104), we derived d2 using the combined signal. Here, we use
Eq. (67) directly.

S 2(w)T r S•(o Tr••m_~ -1 P.lw)du
d•= 2 T. )Sw• (0~Pw)j (C.1)

2~ n

We want to show that

Tr [Q_( ) POw) 02-u0w) POri] = A2 (Wu)

N N FN N

= 1 • iJ) (C.2)
t2 ji _I j Ik:, ,+:,

This is a straightforward exercise in matrix manipulation.

Recall that, after steering,

P(w) = I (C.3)

and

q(Jw) = " (C.4)

NiNN( 
)Np (,p N(7u)
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Therefore

N N

ZI PJ(w) A u) •

j=I j=1

N
(-)p

2J(w)
0 -" OLU) -POIL) .

• 
j (U)

S J =

N N

P NJ (W) oNj GO

j=I j=1

(C 5)

Squaring this, we obtain

N N N I

k=1 j=1 = I

N INN N

1 W pw p2j Z 0kt p j Pa ~ kt

k2lj]l IIt=i k=1 j=1 --* * I

S4

(C.6)

The trace is simply

N N N N

2 0 2 U A 2̂ (W) (C.)

J=1 klI Jul t,=I

which is the desired result.
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We also observe that

N N

Tr [q'Ou)P Pow)] = Ii (C.8)
i=1 j=l

so that, for this case,

{Tr [,OwU) POLU))} Tr { Ow) POwU)_ 2] (C .9)

The expression of the right-hand side of Eq. (C.9) is identical to
Bryn's result.
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GLOSSARY

A 'uj) optimum array gain

A (C) conventional array gainC

_. unit vector denoting propagation
direction

c velocity of propagation

d.. inter -element distance

d2  output signal-to-noise ratio

D(v) transfer matrix of distortionless
combiner

6(T) delta function

E L" expectation operation

E. "] expectation assuming ith hypothesis
1 is true

TI threshold

F, F furctions used in minimization

f(t) known signal

g(w) transfer function of matrix filter

y threshold

hL, h I h matrix filters-c I-Co

h. coefficient in series expansion
1

Hot H 1  hypotheses
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1 identity matrix

unity matrix

k wave number

K KI K8 , K covariance matrices

k (z.,t) matrix filter

L sufficient statistic

A(r(t)) like'ihood ratio

Ig(\) generalized likelihood ratio

X Lagrange multiplier

A (u) filter function

k t scalar eigenvalues

m l(t) mean-value vector on F1

n(t) vector noise process

"n (t) colored noise componentc

"n (t) combined noise componentc

W frequency

P (V) matrix denoting cross - spectra

_Pi-t) vector eigenfunction

Q l(t, u) inverse matrix kernel

Q(W) matrix denoting cross -spectra
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P(W) normalized cross-spectral matrix

r(t) received vector waveform

r.(t) components of received vector
waveform

r. three-dimensional position vector-1

R(uw) Fourier transform of r(t)

s(t) vector signal

6 I(t) illuminating signal

SR(t) reflected signal

S(t) estimate of vector signal

s(t: ý4) random signal

S (w,) spectral matrix

A (w) Fourier transform of s(t)

(32 variance of combined noise
C

0 2 variance

ýmmse minimum-mean-square error

IT. delay1

S= t - u argument of covariance function

0 R phase of reflected signal

e angle of directional noise

T. initial observation time
1

Tf final observation time

T length of observation interval

Snormaiized ariable
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VR amplitude of reflected signal

w(t) white noise waveform

y(t) distortionless output

z(t) scalar output of combiner

matrix notation:

Tr [L trace

[. 1T transpose

"1-1 inverse

[L conjugate

Sij ij element in inverse
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