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ABSTRACT

The glass transition is an experimental manifestation of the
extremely large activation energies for molecular motion encountered
as the temperature of a liquid is lowered. As an approach to the
effect of molecular structure on this phenomenon, low-shear melt
viscosities were obtained as a function of temperature for three
homologous series of polymers: polypropylene, poly(chlorotrifluorethylene)
and poly(propylene oxide). The data are well represented by an equation
arising from the Adam-Gibbs theory: log j = A + B/(T ln T/To), where L/
is the kinematic viscosity. The best-fit values of the parameters in this
equation are as follows:

Polymer of Mn A B To

Propylene 900 -1.182 841 171.6
Propylene 1210 -1.220 974 172.4

Chlorotrifluoroethylene 64o -0.982 338 -164.8
Chlorotrifluoroethylene 820 -1.223 521 186.5
Chlorotrifluoroethylene 1050 -1.811 938 166.0

Propylene Oxide 460 -o.786 392 180.7
Propylene Oxide 1250 -0.336 403 177.0
Propylene Oxide 2080 -O.070 09 175.3
Propylene Oxide 3620 0.036 619 148.7

A kinetic model of the glass transition was devised for computer
simulation of dilatometric behavior in the region of a transition. The
assumption that the dielectric and volume relaxation times are equal was
shown to be satisfactory for prediction of dilatometric results on
polymers. The effects of rate of heating, activation energy and
coefficients of expansion on the measurement of transitions were
demonstrated.

The Gibbs-DiMarzio theory of the glass transition was cast in a
form suitable for very short chains and shown to agree quantitatively with
To values for the lower n-alkanes. The theory was also shown to be
applicable to polymer structures having chain bonds of zero flex energy.
In this case, the intermolecular energy and number of lattice-site occupiers
must be estimated empirically.

The Eyring transition state theory of relaxation processes was
shown to be applicable to dielectric relaxation in polymers with
modification to allow for a temperature-dependent activation free energy
AG . A "Dielectric transition temperature" was defined as the
temperature at which the relaxation time T equals 1000 sec. It was
shown that this temperature is very close to the dilatometric glass
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temperature, except in'poly(butyl metheacrylate) where the Q( and
rela~xations are unresolved. The ratio AG *('r)/Tg(r) at the dielectric
transition temperature was found to be 72.t + 0.08 cal deg-l mol-l at

T1000 sec.
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1. Relationships between Molecular Structure and Melt Viscosity

A. Introduction

In order to develop a better understanding of the relationship
between the glass transition and molecular structure, it is of primary
importance that we first learn more about the mechanisms involved in
transport processes in polymers. It is generally accepted that the
experimental glass transition is a manifestation of' the decrease in the
rate of a specific transport process at low temperatures. Melt viscosity
is a transport property that is particularly easy to measure, at least in
principle. Therefore, it is not surprising that a number of theories
relating melt viscosity to Tg have been proposedl-5 . Unfortunately, there
has been a rather inadequate effort made to obtain reliable low-shear melt,
viscosity data over a wide temperature range.

With these factors in mind, we decided to make viscosity
measurements on three series of low molecular weight polymers. Low
molecular weights were selected for several reasons. First, shear rate
effects are minimized. Second, viscosities are low enough so that capillary
viscometers can be used. Third, theoretical complications arising from chain.
entanglements are avoided.

B. Materials

Commercially important polymers with readily available low-molecular
weight homologs were chosen: poly(chlorotrifluoroethylene), polypropylene,
and poly(propylene oxide). Molecular weights of all polymers were determined
with a Mechrolab vapor pressure osmometer. End group analysis was used on
the poly(propylene oxide) polymers as a check. The polymers are described
in Table I. All measurements were performed on the polymers as received.

C. Experimental Methods

All viscometers used were suspended-level capillary instruments,
including both Cannon dilution and Ubbelohde viscometers. The use of
suspended-level viscometers eliminates the need for a temperature correction.
All of the viscometers were calibrated with viscosity standards newly
purchased from the National Bureau of Standards.

Calibrations and measurements werb performed in an insulated
water bath in the temperature range of 25*-90*C. The temperature of the
bath was measured with a Leeds and Northrup platinum resistance thermometer
and Mueller bridge. Although the thermometer was supplied with the
Callendar equation constants, the combination of bridge and thermometer was
recalibrated at the ice point using the procedure outlined by Robertson
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and WaIch6 All measurements were made after steady state conditions
were obtained with a measured current through the thermometer of 2.3
milliamperes. Cycling variations in the bath did not appear to exceed

S 1.0C, as measured with the platinum thermometer and a companion
mercury-in-glass thermometer read with a cathetometer. Presumably,
variations of fluid temperature within glass viscometers immersed in
the bath would be much less, because of the long time constants for
thermal equilibration of the viscometers.

The viscometer calibrations were all performed at a bath
temperature of 37.80 + .050C. Temperatures were read to 0.010C and
viscosities of the standards were corrected to the measurement temperature.,
In order to avoid calibrating the viscometers in the non-Newtonian region,
the viscometers were calibrated either with a single fluid with a very
long flow time (O'w500 seconds) or with several fluids having a spectrum
of flow times. A minimum of three runs agreeing within 0.3 per cent
(maximum) was made with each fluid.

In calibrating the viscometers, we attempted to determine the
kinetic energy constants using the equation of Cannon, Manning,- and
Bell7:

= kt -k2/t 2  (1).

Here ii is the kinematic viscosity in centistokes, kl is the limiting
flow-time constant, k2 is the kinetic energy correction constant, and t
is the efflux time in seconds. We discovered that it was virtually
impossible to arrive at consistent values for k2 for most of the
viscometers using the ordinary method of obtaining one very low flow1'
time to determine kI and one short flow time to fix k2 . In Reference (7)
the authors found a correlation between k 2 and the Reynolds number which
led to an expression for k2 in terms of kI and viscometer dimensions,

1.66 V3/2
k2  l . (2)-L (Dkl) /2

.

Here V is the efflux volume (bulb volume), L is the capillary length,
and D is the capillary bore. Using this equation, Cannon, Minning and
Bell were able to calculate kinetic energy constants in excellent
agreement with experiment for a number of suspended level viscometers.
We therefore decided to compute the kinetic energy correction constants
for our viscometers from Equation (2). Since these are standard
viscometers, all of the necessary dimensions can be found in ASTM manuals

8.

Typical values of the kinetic energy constants are recorded in Table II.
In addition, the flow time for 0.1 per cent correction is indicated.
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TABLE II

Typical Calculated Kinetic Energy

Constants for Use in Equation (1)

Kinetic Energy Time for 0.1%

Viscometer Type Size Constant Correction, Seconds

Cannon-Ubbelohde 75 130 243

100 85 171

150 54  115

200 27 63

Ubbelohde 2C 10 33

3C 3 10

4f 1.14 5

4I



Since the flow times were generally in excess of the time for

0.1 per cent error, the kinetic energy correction is insignificant with

all but the size 75 and size 100 viscometers.

It was also of interest in this study to determine the average

shear rate for each run. If we assume that the flow is Newtonian, it is

shown readily9 that the shear rate at a radial distance r from the center
of the capillary is

'Apr

27 L

where

(r) is the shear rate in sec,.

Ap is the driving pressure,
is the viscosity in poises,

Lis the capillary length.

Ap is conveniently expressed as Phg, where p is the liquid density,-
h the average head, and g the gravitational constant. The viscosity can

be given as (p klt)/l0O. Making the appropriate substitutions, we obtain'

'(r) hgr-- - (4 )
kltL

The maximum shear rate is formed by setting r equal to R, the capillary
radius:

50 hgR (5)
max. ktL

The average shear rate is given by

f (r)
2 Trdr

-* (6)
ave. 2 Trrdr

0

which leads to the result

5



100 hgR
7'v (7)
a 3 kltL

Thus, the average shear rate is just 2/3 of the maximum value.

D. EPcperimental Results

The kinematic viscosities and corresponding shear rates are
given in Table III. The results are shown graphically in Figures 1, 2
and 3.

When the viscosities were measured originally, the bath
temperature was measured with a Fisher Scientific precision thermometer
with O.l0C graduations (catalogue No. 15-dh3), which was calibrated with
a standard platinum resistance thermometer and Mueller bridge after the
measurements were completed. The glass thermometer was read by eye,
without the aid of a cathetometer. In making the more recent measurements,
the bath temperatures were always measured directly with the platinum
thermometer, thereby eliminating the cumulative error of two visual glass
thermometer readings. A mercury-in-glass thermometer was used with a
cathetometer as an aid in setting and regulating the bath temperature. A
comparison of the old and new results shows an average viscosity difference
of 0.9 per cent, corresponding to an average cumulative temperature error
of about 0.2 degrees centigrade. We conclude that the use of platinum
resistance thermometers or, at the very least, calibrated 0.1 degree
mercury-in-glass thermometers and cathetometers is essential for accurate
measurement of bath temperatures.

Another source of error which has been eliminated in the
measurements reported in Table III is the error in shear stress resulting
from deviations of the capillary from the true vertical direction. The
per cent error introduced here is given by 100 (1 - cos Q), where Q is
the deviation from the vertical direction. A 50 deviation of the capillary
gives a 0.4 per cent error. The limit for 0.1 per cent error is 20 3 4'.
Therefore, since we are concerned with errors in the fractional per cent
range, it is desirable to eliminate this error. This has been done by
setting up two viscous-damped plumb lines. When each viscometer is placed
in the bath, it is adjusted so that the capillary lines up with both plumb
lines. *Assuming that this procedure reduces the angular deviation to less
than 20, the corresponding viscosity error is less than 0.06 per cent.

We feel, therefore, that the viscosities given in Table III
are accurate to within 0.5 per cent. There may be some question as to
whether or not we have actually obtained the Newtonian viscosities of
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TABLE III

Experimental Results

Temperature, Time, Viscosity, Kinetic Energy Average
Polymer _ C Seconds Centistokes Correction ca. Shear Rate sec-1

P-400 25.01 637.2 69.4 <.001 29.
37.81 316.7 34.5 <.001 58.
49.87 555.6 20.16 <.001 77.
59.91 381.1 13.83 <.001 112.
69.90 585.8 9.97 <.001 125.
79.92 437.8 7.45 <.001 168.
89.94 340.0 5.79 <.001 216.

P1200 25.01 1655.7 180.1 <.001 14.6
37.81 844.0 91.8 <.001 29.
49.87 501.4 54.5 <.001 48.
59.91 348.4 37.9 <.001 69.
69.90 6o2.0 27.54 <.001 56.
79.92 453.2 20.73 <.001 75.
89.94 352.7 16.14 <.001 96.

P-2000 25.00 1125.0 324. <.001 10.8
37.81 577.4 166.5 <.001 21.
49.87 943.0 99.9 <.001 25.
59.91 657.4 69.6 <.001 36.
69.90 478.4 50.7 <.001 49.
79.92 360.4 38.2 <.001 65.
89.94 829.9 29.9 <.001 52.

P-400o 25.00 363.5 1049. <.001 6.1
37.81 185.0 534. <.001 12.1
49.87 1104.6 319. <.001 11.0
59.91 763.6 220.1 <.001 16.
69.90 545.5 157.3 <.001 22.
79.92 398.1 114.8 <.001 30.
89.94 304.7 87.8 <.001 40.

c-6o 25.99 729.4 7513. <.001 1.2
37.79 229.8 2367. <.001 3.7
49.85 289.2 861. <.001 7.5
59.95 141.3 421. <.001 15.
69.93 835.9 222.6 <.001 15.
79.91 486.5 131.9 <.001 27.
89.96 300.7 81.5 <.001 43.

C-175 49.85 369.5 3787. <.001 2.3
59.95 160.5 1645. <.001 5.3
69.93 26o.6 798. <.001 8.1
79.91 137.7 421. <.001 15.
89.96 78.2 239. <.001 27.

FS-5 25.08 951.9 8.43 <.001 127.
37.79 602.7 5.34 <.001 201.
49.85 419.3 3.71 <.001 289.
59.95 324.6 2.87 .001 373.
69.93 259.2 2.29 .002 467.
79.91 212.1 1.878 .003 570.
89.96 176.4 1.561 .004 686.

S-30 25.08 1061.7 316.4 <.001 11.
37.79 386.4 115.2 <.001 30.
49.85 174.0 51.9 <.001 67.
59.95 99.6 29.7 .001 117.
69.93 517.4 18.66 <.001 83.
79.91 342.8 12.36 <.001 125.

LG-16o 25.08 344.9 3535. <.001 2.5
37.79 342.0 987. <.001 6.5
49.85 122.1 352. <.001 18.
59.85 586.5 169.1 <.001 21.
69.93 309.0 89.1 <.001 39.
79.91 175.6 50.6 <.001 69.
89.96 106.9 30.8 <.001 113.
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Fi gure 1

Kinematic Viscosities of the Propylene Oxide Polymers
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Figure 2

Kinema c Viscosities of the Propylene Polymers
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Figure 3
Kinematic Viscosities of the Fluorocarbon Polymers
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these polymers. The early measurements on the polypropylene oxide
polymers were made at shear rates higher by a factor of two than those
reported here. Nevertheless, there is no systematic shear rate dependence
visible in the data. The polypropylenes and at least one of the fluorocarbons
show no significant shear-rate effects. This is shown in Table IV.

Further, one would not expect to observe significant deviations
from Newtonian flow with these polymers in any case because of the low
molecular weights involved. Normally, large deviations are observed only
above the critical entanglement molecular weight, which is about 15,000
for polypropylene oxide and 7,000 for atactic polypropylene1 0 .

E. Interpretation of the Experimental Data

In order to evaluate current glass transition theories, four
equations were fitted to the experimental data using non-linear least
squares analysis. The equations are given below:

B
log = A + , (8)

T-To

B
log.) A- logT+ , (9)

T-To

B
log . = A + (10)

T ln T/To

B
logj =A- logT+ . (11)

T ln T/To

All four equations require kinematic viscosity data. In addition,
absolute viscosities were obtained for the poly(propylene oxide) polymers
by utilizing the density-temperature relationship reported by Baur and
Stockmayer7 . Equation (8) is a form of the empirical Fulcher equation

l

which has received considerable theoretical support in recent yearsl,2 .'
Equation (9) is an adaptation of transition state theory which provides
a temperature dependent A G . Equations (10) and (11) are both based upon
the Adam-Gibbs equation. Further discussion of these equations can be
found in this report and the preceding summary reportS.

The results of the least-squares analyses are given in Table V.
Variance estimates for each computation are included in the table.

11.. .
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TABLE V

Least Squares Analysis of Viscosity Results

Variance
Polymer Equation* A B To Estimate x io5

Polypropylene 8 -1.718 659 181.4 1.31
(c-6o) 9 1.136 590 186.2 1.55

10 -1.182 841 171.6 1.02
11 1.628 739 177.4 1.23

Polypropylene 8 -1.791 748 183.8 0.95
(C-175) 9 1.093 670 189.0 1.11

10 -1.220 974 172.4 0.73
11 1.616 856 178.6 0.87

Polychlorotrifluoroethylene 8 -1.188 259 175.7 0.13
(FS-5) . 9 1.670 188 189.5 0.11

10 -. 982 338 164.8 0.15
11 .189 333 181.3 0.11

Polychlorotrifluoroethylene 8 -1.603 430 193.6 1.16
(S-30), 9 1.21A 374 198.9 1.34

10 -1.223 521 186.5 1.00
11 1.552 446 192.7 1.17

Polychlorotrifluoroethylene 8 -2.388 723 176.6 1.39
(LG-160) 9 0.476 649 181.3 1.63

10 -1.811 938 166.0 1.07
11 1.006 827 171.7 1.28

Poly(propylene oxide) 8' -1.053 316 189.0 0.13
P-4oo 9 1.781 255 197.6 0.23

10 -o.786 392 180.7 0.15
11 2.005 308 190.8 0.15

Poly(propyle re oxide) 8 -o.664 321 185.8 0.19
P-1200 9 237 258 194.9 0.14

10 -0.336 403 177.0 0.29
11 2.4161 313 187.7 0.16

Poly(propylene oxide) 8 -0.339 324 184.4 0.08
P-2000 9 2.505 259 193.6 0.07

10 -0.070 409 175.3 0.11
11 2.729, 317 186.2 0.07

Poly(propylene oxide) 8 -o.299 450 162.6 1.38
P-4o0o0 9 2.591 365 172.6 1.24

10 0.036 619 148.7 1.52
11 2.876 481 161.1 1.36

Poly(propylene oxide) 8a -1.366 380 179.6 0 .059
P-4oo 9a 1.489 310 188.3 0.035

10a -1.058 487 169.6 0.094
lla .. 171 386 179.9 0.050

Poly(propylene oxide) 8a -0.925 389 175.9 0.12
P-1200 98, 1.937 316 185.0 0.07

10a -0.61 506 165.1 0.17
ia, . 2.200 397 176.0 0.10

Poly(propylene oxide) 8a -0.663 393 174.2 0.15
P-2000 9a 2.203 319 183.4 0.10

ba -0.353 515 163.0 0.20
lia 2.465 403 174.2 0.14

Poly(propylene oxide) 8a -o.680 546 150.6 1.64
P-4ooo 9a 2.235 448 160.6 1.50

106, -0.297 793 133.6 1.79
ila 2.565 621 146.2 1.64

*Equation numbers correspond to those in text. Numbers followed by ?tall
indicate the use of absolute viscosity in the equation.

13



In general the fits were excellent, with a range of variance
estimates for log 7 and log 1) of 4 x 10-7 to 1.7 x 10-). Closer
examination indicated that there were persistent trends in the residual
patterns obtained for the poly(propylene oxides), but not in those
obtained for the other polymers. Figure 1 illustrates this. It can be
seen in the figure that at any given temperature the residuals increase
with molecular weight, with the P-4000 residuals generally several times
larger than the others. At first it was thought that this might be the
result of small temperature errors coupled with activation energies
increasing with molecular weight. The residual for the P-4000 polymer
at 37.80C is in fact equivalent to a temperature error of 0.23°C, as
calculated with an equation easily derived from Equation (8):

A log v (T-To)
2

A %-- - (12)
B

AT values for P-400, P-1200, and P-2000 at 37.8 turn out to be equal to
<O.01°C, O.04C, and O.05°C respectively. These values are inconsistent
with the notion that the residual pattern was caused by temperature errors,
since all of these polymers were run consecutively at each temperature in
the same bath. When the activation energies of the four poly(propylene
oxides) were calculated at 37.8C using the constants from Equation (8)

E =2.303 RB , (13)
T-To0

it was found that the energies for all four polymers were equal to within
four per cent. Therefore, the molecular weight trend evident in Figure 4
cannot be attributed to temperature error.

The next factor to be considered was the dependence of the sum of
the squares upon the choice of To for each polymer. This dependence is
shown in Figure 5 for Equation (8), which gave results comparable to the
other equations. It is evident from the figure that a relatively poor fit
was obtained with the P-4000 data. The relative dispersion in the sum of
the squares for P-4000 is much larger than for the other polymers. This
is in line with the residual pattern in Figure 4. This sort of behavior
can result either from errors in the experimental data points or simply from
model failure. The definite residual pattern makes error seem unlikely as
the source of the problbm; thus, we are left with model failure. Analysis
of the results given in Figure 4 reveals that this sort of pattern results
from the use of a function having inadequate curvature at low temperatures

14|



Fijgure 4
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and high temperatures, and too much curvature in the intermediate
temperature range. Each of the Equations (8) through (11) gave the same
over-all pattern with no equation offering a large advantage over the
others. However, the residuals were so small in every case that all of
the equations looked very good.

In the next phase of this work, the molecular theories
corresponding to Equations (8) through (11) will be critically evaluated
using the results published herein. It is obvious that goodness-of-fit
by itself is not an adequate criterion for Judging a theory, since all
four equations give comparable results with our data. The real tests
lie in the ability to predict reasonable molecular structural parameters
with each equation, and in the consistency of these predictions within a
given polymer series.

17



2. A Kinetic Model for Dilatometric Transitions

Recently, a number of publications have appeared reporting the
observation of dilatometric or specific heat transitions in amorphous
polymers below the glass transition temperaturel2-15. Heretofore, it was
believed by many that only the glass transition would be observed in such
measurements. Many textbooks in fact define the glass transition
temperature as that temperature where the expansion coefficient of an
amorphous polymer is discontinuous, implying that this change is unique.
Virtually all published theories of the glass transition consider only
one amorphous transition.

Actually, it appears to be quite reasonable to expect dilatometric
transitions below Tg. Dynamic mechanical and dielectric measurements
invariably indicate one or more loss regions below that attributed to the
glass transitionl6,17. Furthermore, relaxation times observed in these
measurements point to the existence of transitions near those found recently
in dilatometric or specific heat experiments.

For example, Saito16 indicates a one cycle dielectric loss peak
for poly(vinyl chloride) (PVC) at -38*C. Heydemann and Guicking12 report
a dilatometric transition at -260C. Dilatometric transitions in poly(methyl
methacrylate) (PMMA) around OC have been reported by Heydemann and Guicking12

and by Holt and Edwardsl5 . Saito's16 results show a one cycle loss peak at
OC.

The rate dependence of the specific heat glass trnsition temperature
has been demonstrated effectively by Wunderlich and BodilylO. If the
secondary transitions are also rate-dependent, it should be possible to
characterize this dependence in terms of a temperature-dependent relaxation
time and the experimental time scale. Also, it should be possible to
determine the factors which make a transition more or less discernible.

A large activation energy will compress the temperature region
in which the relaxation time is of the order of the experimental time
scale, thus sharpening the observed transition. The activation energy for
the Q< relaxation process (the process resulting in the glass transition)
generally increases with decreasing temperature; thus, a simple Arrhenius
equation will not fit viscosity or dynamic data. This sort of behavior
can be described adequately by the WLF equationI, which yields for the
activation energy at the glass temperature

2.303 RC1gT9
Eg c2g .(1)1
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Here R is the gas constant and C1g and c2 g are the WLF parameters for a
reference temperature of Tg obtained by fitting experimental data. Eg
values calculated with Equation (14) range from 50 to about 200 kcal. per
mole. Values obtained by using the Arrhenius equation well above the
glass temperature are usually lower. The evidence obtained from dynamic
measurements of low temperature relaxation processes indicates that these
processes exhibit an Arrhenius temperature dependence16,19. Activation
energies are generally lower than 30 kcal. per molel 6 ,20,21 . Therefore,
it is reasonable to expect secondary transitions to be much broader and
more difficult to resolve than the glass transition.

A broad distribution of relaxation times will broaden a transition
region since it gives rise to a group of partially overlapping transition
regions. It has been observed quite consistently for polymers and
simpler liquids that the distribution of relaxation times for the high
temperature process broadens significantly with decrgasing temperature,
especially near the transition region22 ,23. Ishida24,2 5 has made the
same observation in connection with the / process. Ishida's results,
based on measurement of the Cole-Cole parameters, indicate that the
distributions are actually broader for the/3 process.

It is apparent that the ability to detect a transition will depend
on the magnitude of the change in the expansion coefficient or specific
heat at the transition temperature. Heydemann and Guicking12 have reported
changes in the expansion coefficients for the glass and/3 transitions in
PMA and PVC. These are shown in Table VI.

TABLE VI

Changes in Thermal Expansion Coefficients for PMMA and PVC
in Observed Dilatometric Transitions12

Change in Expansion Coefficient, Deg
"I x 10- 4

Polymer Glass Transition /3 Transition

WMMA 3.1 0.7
PVC 3.7 0.4

Finally, there is some evidence that in heating experiments the
rate of heating has a pronounced effect on the magnitude and temperature
of the observed transition. Wunderlich and Bodily1 8 , and Martin and Muller 14

have both observed a transition in polystyrene around 500C in specific
heat measurements at high heating rates. Karasz et a126 failed to see this
transition. All of the above investigators found behavior in some runs
with the appearance of first-order transitions, i.e. sharp peaks in the
specific heat in the glass transition region. Using differential thermal
analysis, Wunderlich and BodilylO have found smaller peaks at 3000K and
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280*K in polystyrene. Volume experiments have also yielded anomalous
results. Holt and Edwardsl5 noted a "contraction effect," a decrease in the
coefficient of expansion in the transition region in heating experiments.
Another typical result is a discontinuity in the volume in fast heating.
Therefore, we propose that there are at least four factors influencing the
experimental characteristics of the glass transition and lower temperature
transitions:

1. The activation energy in the transition region.

2. The contribution of the relaxing mode to the expansion
coefficient or specific heat.

3. The distribution of relaxation times.

4. The rate of heating.

In order to test some of the ideas expressed above, a simple
dynamic model for volume relaxation has been formulated. The result has
been programmed for digital computer studies.

The purpose of this study is twofold. First, we would like to
determine whether or not all of the experimental features of dilatometric
or specific heat amorphous transitions can be explained with the aid of a
purely kinetic model. If the model succeeds here, the foundation is laid
for a non-equilibrium theory for the glass transition. Secondly, if
the model is successful, it can be used to extend our understanding of
the glass transition.

The model is based on two assumptions. First, the over-all
volume change in an isothermal volume relaxation process is the sum of
contributions from all modes, i.e. vibration, group rotation, backbone
rotation, translation, etc.:

V Vi(15)

p,T i p,T,Vj i

Each mode is associated with its own equilibrium expansion coefficient, ((
which is relatively insensitive to temperature. It is known that the mola4
volume of organic groups and the equilibrium temperature dependences of
these volumes are generally characteristic of the groups with some perturbations
from the molecular environment27 . Therefore, we will assume that thermally
induced volume changes can be represented as a linear combination of volume
changes of all the contributing modes. It seems reasonable to assume that
isothermal volume relaxation can be represented similarly. Thus, the
contribution from the jth mode to an isothermal relaxation process can be
given by
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t 1
C. (V-V):C (Vo-V e ) exp (16)

where

Vo = the initial volume
Ve = the equilibrium volume
V = the volume at time t
tj = relaxation time of the jth mode
t =elapsed time

A requirement here is that (Vo-Ve) is small enough so that Tj is unaffected.

Kovacs28 and Hirai and Eyring2 9 have used expressions of this
form in the study of isothermal volume relaxation in quenched polymers
and viscous liquids.

If equation (16) is summed over all modes, we obtain

Vve (Vo-Ve) ci  (17)
ir

where C i is taken as unity. Thus, we have the result that the
i

over-all volume relaxation can be given as a linear combination of
relaxations of individual modes.

Here we shall be concerned only with thermally induced departures
from the equilibrium volume, and so the coefficient C assumes a value of
((j/(YT" Here ij Is the expansion coefficient for tie jth mode and YT

is the over-all thermal expansion coefficient,

i

In this instance we wish to use the model to simulate only
one transition at a time. It is reasonable then to consider a system with
two relaxation times, a long one, TA, associated with the transition
and a short one, TB, which actually represents all of the shorter
relaxation times of the system. The assumption is made here that

TA>>TB in the temperature range of interest.
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The tacit assumption is also made that any relaxation times
longer than TA are so large that there are effectively no contributions
from these modes to the volume relaxation of the system, and OYT contains
no contributions from these modes. The assumption of two relaxation
processes, one effectively instantaneous and one with an intermediate
relaxation time, is not new. Alfrey, Goldfinger, and Mark30 suggested
this in 1943, and Spencer and Boyer3l and later Spencer32 made the same
assumption in treating volume relaxation in polymers.

Equation (17) can now be reduced to

I t
V-Ve = (Vo-AVB-Ve) exp - - , (18)

7"TA

where

AvB C (Vo-Ve) (19)
C)( A + O( B

Thus, all low temperature processes are treated as a single instantaneous
relaxation mode. AVB is equivalent to the instantaneous relaxation
observed in mechanical measurements.

Unfortunately, Equation (18) cannot be used directly to simulate
a dilatometry experiment with a fixed rate of temperature change. It is
possible to simulate such an experiment, however, with a series of
closely spaced isothermal relaxations, each with the form of a temperature
step following by relaxation during a time step. As the step size
approaches zero, this process will approach the continuous process. The
steps can be varied until convergence is indicated. In order to use
this method, we first put Equation (18) into the form

V ve + (Vo-Ve) (A ex j t

By using this approach, we circumvent the problem of nonlinearity
faced by Kovacs3 3 . In his work, the sample is quenched from an elevated
temperature to some temperature in the transition region and volume
relaxation is observed after thermal equilibrium is attained. The volume
dependence of the bulk retardation time becomes significant in such
experiments, and must be accounted for.
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It is well known that the relaxation time obeys the WLF equation

or FAlcher equation above the glass temperature but deviates sharply in
and below the transition region. It has been reported by Somer34 that

the mechanical relaxation time for PVC approaches a limiting value below
the glass temperature.

Fox and Flory35 predicted that the melt viscosity of polystyrene
would approach a constant value below Tg based on free-volume
considerations. This phenomenon has been observed experimentally in
studies of the viscosity and relaxation time of inorganic glasses36,37.
The reason for this is presumably the non-equilibrium nature of the glassy
state. In order to describe this behavior below the transition, it was
necessary to go back to the model. Equation (17) indicates that at some
temperature below the A transition TA becomes very large and the volume
contribution associated with the Ath mode is effectively constant. This
suggests that the relaxation time TA is determined solely by the volume
contribution of the Ath mode in and below the transition region. The
apparent temperature is then the temperature at which the present volume
would be the equilibrium volume. We have, after taking out the contribution
from short relaxation times,

ATapp Observed contraction due to Ath mode
_ _, (21)

A Tact Equilibrium contraction due to Ath mode

which reduces to

[Vref - Vact - B (Tref- Tact)]

Tapp =Tref - (22)

The terms are

Tapp = the apparent temperature of the Ath mode
Tref = an arbitrary reference temperature where equilibrium

behavior of the Ath mode is observed
Vref = the equilibrium volume at Tref
Tact = the actual temperature
Vact = the volume at Tact.

Note that (XA and (B are in the form (6V/6T)p in Equation (22).

This model deviates somewhat from the "fictive temperature"
approach of Tool 3 b and Ritland3 9 . In Tool's formulation, the relaxation
rate of the system is determined by both the fictive temperature

(corresponding to the apparent temperature) and the actual temperature,
while in this formulation the apparent temperature alone determines the
relaxation time. It has been found that the activation energy for
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viscous flow at constant volume is generally large4o, indicating a
strong dependence on the actual temperature, but this is only known for
liquids well above their glass temperature. The glassy state is quite
different from the normal liquid state, and it is quite conceivable
that transport properties will exhibit volume and temperature dependence
unlike that of low viscosity liquids.

A comparison of the results of Sommer34 and Saito3 5 for PVC
indicated the equivalence of dielectric and mechanical relaxation times
for this polymer. Therefore, it was decided to use dielectric data
for the high temperature dispersion in PVC to obtain a value for TA in
Equation (20). Saito's data had already been fitted5 with an expression
of the form

B
logT log A/T + , (23)

T-To

based on the FulcherIl equation:

B
log A + - . (24)

T-To

The Fulcher equation has been shown to be very accurate when applied to
simple liquids and polymers, where the activation energy is nearly
constant at high temperatures and increases rapidly in the region above
the glass temperature. To is the temperatui',at which the extrapolated
viscosity and activation energy go to infinity, and, as one might expect,
is experimentally unattainable. Equation (23) uses the general form of
the Fulcher equation to describe the behavior of the average relaxation
time of a particular mode of the system and yields the free energy of
activation.

In the actual computation, the apparent temperature (Tapp) is
first determined after taking each time-temperature step using Equation
(22). This value for Tapp is then used in Equation (23) in place of T
in the calculation of the relaxation time. Until the transition region
is entered, T and Tapp are identical. In and below the transition region,
the system is in a non-equilibrium state and Tapp is always greater than
T. In some of our computations, we have used equilibrium relaxation
times all the way in order to demonstrate the difference between the
equilibrium and non-equilibrium treatments. In these cases, Equation
(23) is used as it stands, with the actual temperature rather than Tapp.
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We also decided to consider volume relaxation for both the
and/ processes in PMMA and the ( processes in poly(methyl

methacigylate) and poly(vinyl acetate). The necessary dielectric
relaxation data was taken from earlier analyses of Saito's results5 . A
simple Arrhenius temperature dependence was found to be quite satisfactory
for the /3 process in PlMA.

In addition, we decided to simulate one experiment using
extrapolated equilibrium relaxation times all the way down through the
transition region. This was done for the (X process in poly(vinyl acetate).

The problem was programmed in the Fortran II computer language,
and the program was run on a Scientific Data Systems 925 Computer in the
Mathematical Analysis Section.

Results

Thus far, cooling experiments have been simulated for the three
processes described above, with cooling rates ranging from 0.36 degrees
per hour to 36,000 degrees per hour. Expansion coefficients above and
below the transitions were taken from Heydemann and Guickingl 2 .

Figures 6 through 11 give the computed volume-temperature curves.
The transition temperatures have been obtained in the usual way, i.e. as
the intersections of the extrapolated volume lines above and below the
transition region. The glass transition for PVC over four decades of
cooling rates ranged from 345 0K to 3540K. Heydemann and Guicking12 report
values of 345 0K at 7 degrees per hour and 348 0 K at 25 degrees per hour.
The computed values at 3.6 and 36 degrees per hour, 3470 K and 349 0K,
respectively, are essentially identical to these. The computed glass
temperatures for PMMA ranged from 3720K to 3820K. Literature values for
commercial free-radical PMMA generally fall in this region. For example,
Martin et al41 reported a transition at 3730 K, Holt and Edwardsl5 found
one at 372 with a heating rate of 60 degrees per hour, and Heydemann
and Guicking12 observed a transition at 3750 K with a 25 degree per hour
cooling rate. The computed value of 3740K with a cooling rate of 36
degrees per hour agrees very well with these observations.

The computed transition temperature in PMMA ranged from 2150 K
to 242 0K over three decades of cooling rates. This great variation i
temperature can be attributed to the small activation energy for the/3
process, -19 kcal.16,20. As Figure 8 shows, the transition region is
very broad, with curvature existing in the volume-temperature plot 50
degrees below the transition temperature. This may account for the
discrepancy between the computed transition temperatures and the values
of 2660K and 2960K obtained by Heydemann and Guicking12 and Holt and
Edwardsl5, respectively. However, we feel that the problem here is one of
picking straight lines. Martin, Rogers and Mandelkern4l found that the
volume-temperature behavior of PMMA below Tg could be represented either
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Figure 9

The Glass Transition in Poly(ethyl Methacrylate)
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by a gradual curve or a series of intersecting straight lines. Heydemann
and Guickingl 2 reported a weak 335*K dilatometric transition in PMA. We
believe that this transition may be associated with the motion of isotactic
sequences in the backbone. Now, the nonequilibrium nature of the motion
of a particular mode in and below its transition region gives rise to a
degree of curvature in the volume-temperature curve which persists for
some distance below the transition temperature. Combine this factor with
the presence of transitions at 375°K, 335°K, and 280°K, and one can see
why it would be difficult to resolve the individual transitions
dilatometrically below Tg. Further, if a tangent to the volume-temperature
curve is selected just below the onset of the transition region, the
indicated transition temperature would approach 270°K.

Figure 9 shows the results for poly(ethyl methacrylate). A
cooling rate of 3.6 degrees per hour gives a transition at 320*K (47C).
Literature values for this polymer are around 650C, but Saitol 6 reports a
value of 50°C for his polymer. It may be that Saito's polymer contained
diluents which depressed the glass temperature. At any rate, the agreement
with the computed results is remarkable.

Poly(vinyl acetate) gives a computed glass temperature of 303"K
(Figure 10) with a cooling rate of 3.6 degrees per hour. This value agrees
perfectly with the one reported by Saitolb and the accepted value. The
glass temperature for the same polymer, computed with equilibrium
relaxation times, is 3070K (34.C), as shown in Figure 11. The width of
the transition region is only 10 degrees in the equilibrium relaxation
time curve. The incorporation of volume dependence broadens this to a
more reasonable 25-30 degree width.

Figures 12, 13, and 14 illustrate the rate dependence of the two
transitions in PWA and the transition in PVC. The upward curvature seen
in all three cases is caused by the existence of a lower limit for each
transition at the temperature where the extrapolated equilibrium relaxation
time goes to infinity. This aspect of the dilatometric transitions
supports the Gibbs and DiMarzio42 theory, which predicts an equilibrium
transition temperature as the lower limit of the. glass transition
temperature. The rate dependence of Tg has been plotted linearly for PMMA
in Figure 1 , exhibiting essentially the same behavior seen by Wunderlich
and BodilyI in differential thermal analysis measurements on polystyrene.

A matter of some interest is the determination of the relationship
between the cooling rate and the relaxation time at the transition
temperature. As Figure 16 shows, a plot of the logarithm of T at the
transition temperature versus the logarithm of the cooling rate appears to
be linear for th$ (Y transitions (Tg), but shows negative deviations in
log T for the transition at low cooling rates. This deviation
appears to be he result of picking a tangent too close to the upper end of
the transition region at small cooling rates, as can be seen in Figure 8.
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The result is the selection of a value of Tg which is too high, giving
a small value for T at the apparent transition temperature. This, of
course, is Just the sort of error we discussed above. It has been
found then that, as we might expect, a plot of log T versus log (rate)
is linear with a slope of -1. The value of 7 at the transition temperature
is about as expected, approximately 17 minutes at 36 degrees per hour.

Finally, we have computed the values of the relaxation times
passing through the transition region at different cooling rates for
each of the transitions studied. The relaxation time has been assumed
as a first approximation to be a function of volume only in and below
the transition region as already described. The results are given in
Figures 17, 18, and 19. Sommers'3 4 results for PVC are shown for
comparison in Figure 17, indicating reasonable agreement with the simple
volume-model. It should be mentioned here that this model was selected
empirically in order to approximate experimentally observed behavior.
There is certainly a good deal of support for such a model among the
various free-volume theories of molecular motionl,2,.3, but we would
prefer not to be drawn into the controversy on free volume at this point.

It was mentioned in this report that several investigators have
observed unusual volume and specific heat effects in studies of amorphous
transitions when heating rather than cooling was used. These effects
apparently result when samples which have been cooled at one rate or have
simply been stored are than heated at some other rate, giving rise either
to early approaches to equilibrium (low heating rates) or to delayed
approaches (high rates), which have the appearance of contractions or
first-order transitions, respectively. Such phenomena can be explained
qualitatively assuming either equilibrium or nonequilibrium relaxation
times in the transition region. However, it should be possible to obtain
additional evidence for nonequilibrium relaxation times as proposed here
by quantitative comparisons with experimental results. These effects in
any case will be more pronounced where large activation energies and
large changes in expansion coefficients are involved, at high heating
rates. This explains why the /3 transition in polystyrene has been
observed at high heating rates'Iy Wunderlichl

8 but not seen at low rates26.

Conclusions

It has been shown with the aid of a simple volume-relaxation
model that the ability to resolve dilatometric transitions in amorphous
polymers is affected by at least three factors: the change in the
coefficient of expansion accompanying the transition, the rate of heating,
and the activation energy in the transition region. In addition, it is
reasonable to assume that a broad distribution of relaxation times will
broaden the transition region.

The dilatometric glass transition temperatures of PVC, W4MA,
PVAC, and PEMA have been computed accurately with the assumption that
the dielectric relaxation time is equal to the volume relaxation time in

38



G t ,

4]4

1' 3

- 36 D 4  * 4

-i -;7

7iI4

335. 3444 5 5 6

3tT.........., . .

39 .i~j



36 Deg.ff t-L.muted Relaxation Time
101

~Q ~fe e .oolipgRates

i i

.H 10

E-1

. IF

101
-71 7

4. t .T -4.

340 350 360 370 380 390

Temperature, 0K



i ' i.2 f4A iA yjj l tl

I 1

I r,4

E4v.. 1 i-"

14

T I .

3 4

3601dg.j~

2 ~'

T- 41 . ..

it 'T:!'T

ij4
0 ~ - I ~T

-'41



the temperature region above the transition temperature. Our success
here indicates that this assumption is reasonable. It is still possible
that the two relaxation times could differ slightly, since this would
mean a small difference in the observed glass temperature. This could
prove to be important in developing a glass-transition theory based on
relaxation times.

Although the experimental glass temperature is determined by
dynamic considerations, it appears that there is a lower limit to the
glass temperature. As the cooling rate approaches zero, Tg must approach
a temperature corresponding to the To in the Fulcher equationll. This is
in basic agreement with the Gibbs and DiMarzio 4 2 theory, which predicts
an equilibrium second-order transition temperature T2 as a lower limit to
T . This suggests that a reasonable glass temperature theory might start

rst by predicting a value for T2 based on equilibrium statistical
mechanics. and then use t is result as a stepping stone to a nonequilibrium
approach. Adam and Gibbs4 have formulated a kinetic theory for relaxation
in glass-forming liquids along these lines, for the theory requires a
value for T2 .
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3. Gibbs-DiMarzio Theory of the Glass Transition

A. Introduction

Statistical-mechanical calculations of the properties of
liquids composed of long chain molecules, based on the Flory-Huggins
lattice model, indicate that crystallization of polymers44, and the
formation of glasses42,45 can be related to a fundamental measure of
chain stiffness. the "flex energy." In the rotational-isomeric model
of a molecular chain, the flex energy represents the average energy
required to rotate one of the chain bonds from its lowest-energy
conformational state to one of higher energy. Changes in chain
conformation make an intramolecular contribution to the system energy,
proportional to the number of bonds in higher energy states. The total
energy of the system in any given state is the sum of the individual energies
of the molecules plus the intermolecular energy. In the Gibbs-DiMarzio42,45
theory, the intermolecular energy is calculated by means of a nearest-
neighbor approximation in which it is assumed that the energy required to
create a "hole," or vacant lattice site, is proportional to the number of
"van der Waals bonds" between molecules which must be broken.

Gibbs and DiMarzio evaluated the configurational entropy, or
entropy difference between the randomly disordered state and a hypothetical
state of perfect order, on the basis of the above considerations. They
found that the configurational entropy vanishes at a temperature above
absolute zero, and proposed that this temperature. T2 , is the lower limit
to the glass temperature as the time scale of the experiment approaches'
infinity.

The Gibbs-DiMarzio theory accounts satisfactorily for the
effects of molecular weight2. copolymer composition4 6 , and diluents47 on
polymer glass temperatures. However. no satisfactory method has heretofore
been developed for predicting the flex energy and intermolecular energy,
from which the glass temperature could be calculated.

B. Flex Energy in n-Alkanes

Appl4cation of the Gibbs-DiMarzio theory to transition temperatures
for n-alkanes 0 , calculated from viscosity data, resulted in an estimated
490.B cal./mole flex energy for a polymethylene chain, in agreement with
determinations by other methods. For this comparison with experimental
results, the relations given in Reference 42 were used. However, a long
chain approximation had been made in deriving those relations, and it was
of interest to see if a better fit to the data on the lower members of
the n-alkane series could be achieved with the exact relation. At the same
time, it was felt desirable to include the intermolecular energy contribution
to the configurational entropy, which had been neglected in the original
study5y4 8 , since this can be done without difficulty.
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The exact expression for the configurational entropy, SI, of a
system composed of nx chains of x backbone units packed on a lattice of
coordination number z is given by Equation (14) of Reference 45:

(fbi ln - +(-Vln 0(V2'/So
2 8so, -xnx

[ln (z-2)x + 2)(z-1) + X 1 ln exp (-Ei/RT)
2

El (Ei/RT) exp (-Ei/RT)

+ (25)

R is the gas constant, Vo the fractional free volume, no the number of
unoccupied sites and Ei the intramolecular energy of a molecule in the
ith conformation. The following relationships can also be found in
Reference 45:

Vo = no/(xn x + no ) , (26)

SO = 1- Sx , (27)

-((z-2)x + 2(nxsX  = ...... ,(28)
C(z-2)x + 2]nx + zno

ln (vOz/2-1/soz/2) = CZSx2 /2RT , and (29)

1 mx- 3
exp (-E/RT) - exp (-Ek/RT) (30)

i 2

CX is the interaction energy between occupied nearest-neighbor lattice
sites, relative to the energy when one of the sites is vacant. The
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summation on the right hand side of Equation (30) is made over the m
conformational isomers of energy C k available to each chain bond. If
there are ml conformers of energy C relative to the single preferred
conformer, then

exp (-Ei/RT) = - [1 + (m-i) exp (-/RT)]x (31)

i 2

The last term in Equation (25) is simply the average value of
E/xRT, which can be written in terms of the flex energy as follows:

(x-3)(C/xRT) exp (-E /RT)'E/xRT .... (32)

i +L (m-i) exp (-eIRT)

Making the appropriate substitution in Equation (25), we obtain

z-2 i 2(I-V°) 2(l-V°)1 V°0(zSl/Ptxnx =- In 1i + -+ -

2 z zx (l-Vo)2RT

zxV -2 1
1 + [z-2)x + 21(z-l)/2 + l- in

[(z-2)x + 2)(1-Vo) 2

x-3 I
+ in [1 + (m-i) exp (-C/RT]

x

-C/RT exp ( /RT)+ (33)

1 + (m-) exp (-C/RT) J
If z, Vo, CX, m and E: are known, Equation (33) can be solved for the
second-order transition temperature, T2 , as a function of x by setting
SI 0.

The pair potential C( can be estimated from the heat of
vaporization by the relation
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CX z12 = EV/x (34)

where Ev is the energy of vaporization of the ideal gas. At 25°C, Ev
increases by about 1080 cal. mole-1 per methylene unit in the n-alkanes.
This value is used for the quantity Ev/x.

As described in the Summary Technical Report of July, 19655,
the best empirical equation found for representing the viscosity-
temperature data on n-alkanes was a modified Fulcher equation:

log (N/d) = log (AIT) + B/(T-To) , (35)

where A, B and To are adjustable parameters. The best-fit values of To
for each compound were shown in Table IV, page 8 of that report and are
plotted in Figure 20 of this report as a function of the number of
carbon atoms, x. A non-linear least squares estimation procedure was
used to determine that value of C which gives the best agreement
between T2 , calculated from Equation (33), and the observed values of To,
for all the n-alkanes from hexane to eicosane. The parameters z and Vo
were varied over a reasonable range. and while 9ll the possibilities
were not exhausted. a very satisfactory fit was found for the case of
z = 6, Vo =  .4 and E = 340.0 cal. mole-1 . There are, of course, m = 3
rotational isomers for each chain bond in a n-alkane. The calculated
transition temperatures are shown as the curve in Figure 20.

In the earlier attempt5.48 to use the Gibbs-DiMarzio theory on
n-alkane data, it was found that negative values of To were predicted
7or x ! 5. This resulted from the use of the approximate relations in
Reference 42. As is evident from Figure 20, Equation (33) makes a reasonable
prediction for all the n-alkanes, with a reasonable value for the flex
energy. The errors for methane and ethane are not surprising, in view of
the fact that this is a theory for polymers. The observed value of To
for butane is out of line with the others, and this deviation is not
predicted by the theory.

The estimated value of To for x--co is 236.8K. only slightly

below a known transition in polyethylene.

C. Chain Bonds with Zero Flex Energy

The chain bonds in a polymethylene chain have one preferred
conformation all others being of higher energy. This is probably true
of vinyl polymers in general. However, structures can be conceived of
which have chain bonds with two or more equivalent preferred conformers.
That is, considering only the portions of the molecule immediately adjacent
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to the bond in question, the lowest energy conformation may not be a
unique structure, but may be repeated two or more times in a 3600
rotation about that bond. For example, the C-0-C plane in anisole is
rotated 220 with respect to the ring49. The corresponding angle in
diphenyl ether49 is 370 and in diphenyl sulfide49 42'. Hence, the
potential functions for rotation about the single bonds in these
molecules must have four equal minima, at * 0 and 180 * 0, where 0 is
the dihedral angle. Presumably, this type of rotational potential
barrier results from a balance between steric effects, which favor the
orthogonal conformation, and resonance effects, which favor the planar.
The values above were estimated from dielectric measurements on solutions,
but similar results are found for gases by electron diffraction studies
and crystals by X-ray diffraction50.

Non-planar conformations have also been reported for various
substituted biphenyls50 & = 45 to 790), aromatic acids5l (0 = 7 to 650),
nitro-aromatic compounds51 (0 = 7 to 49@), polyphenyls49 (0 20 to 550),
1- and 2-methoxynaphthalene49. 1- and 2-acetylnaphthalene 9, 1 4- and
1,5-dimethoxynaphthalane 49 (0 = 300), 9 lO-dimethoxyanthracene 9 (0 = 600),
benzophenone49 (0 = 40*), and 2.2'-bipyridy149 (0 = 10 to 170). In general,
therefore, we can expect to find four equal low energy conformers in all
bonds of the following types:

00/ Qs /_

If the rings are unsymmetrically substituted, two pairs of conformers
should exist, differing in energy by some amount CU.

The Gibbs-DiMarzio theory as formulated in Equation (33) applies
to chains in which all chain bonds are equivalent, and each has a single
preferred conformation and m-1 higher-energy conformers. The theory can
readily by generalized to encompass chains having bonds with two or more
preferred conformers. Polymers of this kind usually have more than one
type of bond in the chain, so that the theory must be expressed in
copolymer form.

Consider a chain comprised of a rotatable bonds having m
conformers of energy Ck and b rotatable bonds having n conformers of
energy £1. The intramolecular energy can be partitioned into
contributions from each type of bond:

117 V,

Ei Lkakel + /? b101  (36)
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Hence, from Equation (30),

m a

exp (-Ei/RT) exp (-Ck/RT) i
2 :k=l

+ exp (-CI/RT) (37)

If the chains are long enough so that we may neglect the term x in -
2

m
a

x - 1 ln exp (-Ei/RT) - n l n exp (-Ck/RT)

k=l

n
b

+- ln exp -/RT)(38)
x

l=l

x is defined as the number of "backbone units" per chain, where each
backbone unit occupies one lattice site. Each polymer chain may be
characterized by the mole fraction of rotatable bonds of each type, xl,
and by the ratio of lattice site occupiers to rotatable bonds, r

r x/(a + b +---) (39)

Equation (38) may now be written

m

x ln exp (-Ei/RT) =- in exp (-Ok/RT) :
rr

+ -In exp (CI/RT) .(0

i=i
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The relation for configurational entropy as a function of
temperature, lattice parameters, and parameters characteristic of the
polymer, analogous to Equation (33). follows immediately from the above
considerations. A long-chain approximation is made to simplify the
expression:

Z2 [ 2(l-V0 ) 11cz FzV ]Sl/Rxnx =--- In 1 - +2 z (I-Vo)2RT (z-2)(l-Vo)J

xa  xb
S-- in [mo + (m-too) exp (-CaRT)] + - in [no + (n-no) exp (-.b/RT)]

r r

[ xa a exp (Ca/RT)

rRT L mo + (m-r) expRT)

xbE b exp (-Cb/RT) (41)

no + (n-n 0 ) exp (-Cb/RT)

In Equation (41), the summations have been evaluated assuming there are
mo conformers of zero (relative)energy and m-mo conformers of identical
energy E:.

To illustrate the application of Equation (41) to the estimation
of glass temperature let us consider the l14-polyether of 2,6-xylenol:

CH3

CH3

The two rotatable bonds in the repeat unit, labeled a and b, are of the
type which have four equally preferred conformers, as discussed above.
Hence m = mo = n = no = 4 and -a = Eb = 0. Since bonds a and b are
collinear. their rotations are correlated in such a way that there are
only eight distinguishable conformers for the pair. We can therefore
treat this polymer as a one-bond chain with m = mo = 8. Notice that
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each bond contributes (R/r) in 8 to the configurational entropy,
independent of temperature. The transition in this type of chain arises
entirely from the temperature dependence of the intermolecular
contribution.

( The interaction energy C( can be calculated from the values of'
(EvV)1/2, given by Small 52: C6H2 = 488, cH3 = 214 and 0 = 70. The
molecular weight of the repeat unit is 120.144, the polymer density is
1.0653 and the number of lattice site occupiers in the repeat unit is r.
Hence

-(986)2 (1.06) -8,577
_____ -cal. mole "1  (42)
120.144 x r r

Inserting this value of UY in Equation (41) with z = 6, V. = .0m4, and
S1 = 0, we have

0 -0.77132 + 0.027860 (-8,577)/r T2 + r
"- in 8. (43)

A DTA analysis of a sample of PPO C1001. which is the General
Electric Company's designation for a molding grade polymer of this type,
showed a glass transition at 207°C. Assuming that this polymer has a
normal value of Tg-T2 = 554, then T2 = 4250. Hence from Equation (43),
a value of 1.967 lattice site occupiers in the repeat unit is required
for perfect agreement with the observed glass temperature. This quantity
is probably correlated with the size of the constituent groups that make
up the repeat unit, but such a correlation has not yet been developed.
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4. Transition State Theory and the Glass Transition

It was shown in the summary report of July 19655 that an
expression based on the Fulcher equation accurately describes the
temperature dependence of dielectric relaxation times in several
polymers. The expression.

B
log o =logA-log T +----- (44)

T-To

was chosen to correspond to the form of the Eyring rate equation54 ,5 5

h *
log log log T + (45)

K k 2.303 RT

The free energy term AG*/2.303 RT is given by B/(T-To) if the
reasonable assumption is made that the transmission coefficient K remains
constant over the temperature range of interest. It has been amply
demonstrated that the form B/(T-To) is an excellent representation of the
temperature dependence of the activation energy (or free volume) in liquid
transport processesl-5 ,1i.

Best-fit values of A, B, and To were comuted using least-square
methods from published dielectric relaxation data 1l on PMMA, PEMA, PBMA.
PVAc and PVC.

The computed values of log A were relatively close to the
theoretical value of log (h/k), which is -10.32, as Reference 5 indicates.

This result suggested that the data be tested with an equation
of the form.

n
h B,

logT = log- - logT +- 1 (4
k (T-To)

wherein additional terms in powers of l/T-T o may be added to improve the
accuracy.

When terms through the second order are retained in the
expansion of Equation (46), the following equation results:
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h B C
logT =log-- log T + " + (47)

k T-T o  (T-To) 2  (. .

Equation (47) has three adjustable parameters, as does Equation (44).
Thus. an adequate test of Equation (47) is to compare it with Equation
(44). With this in mind,. the Mathematical Analysis Group was requested
to fit Equation (47) to Saito's 16 dielectric data.

The results indicated that Equation (47) fits the data about
as well as Equation (44), according to the variance estimates obtained
for the least-squares .fits. The variance results are given in Table VII.

The calculation of the transition state parameters was more
revealing. The following expressions were used to calculate A G, AH,
and As' at the glass temperature:

AG* = 2.303 RT + ( (48)T 9-T o  (T -o2

2.303 RT2  B 2C 1
,A / (49)

Tg-To Tg-To (TgTo) 2 J

A ~ =A 'Y - AG*AS+ =(50)
Tg

The results are shown in Table VIII. The AGt values obtained with
Equation (44) are shown for comparison.

It is apparent from examination of Table VIII that the G
values are much less scattered for a given polymer when based on Equation
(47 . Since one would not normally expect a great deal of scatter in
AG , this is a reasonable indication that Equation (47) is superior to
Equation (44). This, of course, amounts to a sort of experimental
confirmation of Eyring's transition state theory54,55 as applied to
dielectric relaxation.
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TABLE VII

Equation (47) Results and Comparison of Variance
Estimates Obtained with Equations (44) and (47)

Variance Est. xlO4

Polymer Mvis x 104 B C To E. (47)E

PBMA - 1337.4 -2.964 x I03 186.8 17.7 5.4
PEMA - 1156.7 14.42 251.8 17.9 8.9
PNMA 110 549.9 1.424 x 104 324.7 1.61 1.5

54 322.5 5.796 x 104 302.2 25.4 26.4
33 608.1 1.920 x 102 332.6 14.o 11.2
15 279.3 7.068 x i04 291.5 3.65 3.1
8.5 313.3 6.298 x 104 290.5 7.4 6.5

PVC 17.4 331.7 3.686 x i04  293.7 15.8 17.5
10.1 98.0 8.000 x 104 277.6 6.5 7.1
7.6 93.9 8.401 x i0 274.2 2.9 3.0
5.8 24.7 9.854 x 1o4  268.6 3.1 3.4
4.57 162.3 7.314 x 104 274.0 0.24 0.12
3.62 39.0 9.699 x 104 266.1 3.6 2.9

PVAc 52.3 730.5 1.866 x 102 261.4 7.7 7.6
26.1 719.1 5.158 x 102 261.6 35.3 25.9
18.8 722.2 3.275 x 102 260.8 21.2 16.2
11.2 720.6 4.780 x 103  255.9 9.0 8.8
3.95 720.1 1.312 x 102 261.0 40.3 31.2
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TABLE VIII

Transition State Parameters at the Glass Temperature
Computed with Equations (48), (49), and (50)

Mvsx14G*-, kcal.
Polymer Mvis x 101 Eq. (4 ) Eq. (49) LHt, kcal-.i St eu

PBMA 16.5 14.9 47 102
PEMA - 24.0 21.3 109 262

PMMA 110 25.3 26.4 228 534
54 25.2 28.8 216 506

33 25.5 24.2 233 557
15 24.6 29.0 201 474
8-5 25.4 29.6 212 509

PVC 17.4 22.7 25.1 204 506
10.1 22.7 27.2 194 480
7.6 22.3 26.8 185 457

5.8 22.3 27.6 182 452
4.57 22.1 26.o 182 451

3.62 22.1 26.9 178 444
PVAc 52.3 23.9 23.9 169 476

26.1 24.3 23.6 179 511

18.8 23.9 23.3 173 490

11.2 24.7 24.3 182 518

3.95 24.3 23.3 179 512
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Earlier in this program it was suggested that a condition for
the glass temperature might be a value of AG near 25 kcal. Table VIII
indicates that this is not the case. However, if AG* were extremely
temperature sensitive around the glass temperature, it still might be
possible to obtain an approximate value of Tg by finding the temperature
at which AG* has some arbitrary value, using Equation (47). To test
this, values of AG* were calculated for the polymers under consideration
in the range Tg -5°<T<-Tg +50. The result is shown graphically in
Figure 21. Although a value of AGt at Tg of 24 kcal. would be excellent
for PENA, MA, PVC, and PVAc, the same value would result in a large
error in predicting Tg for PBMA.

This PBMA anomaly may have as its underlying cause the rather
unusual relaxation behavior of the methacrylates. In these polymers,
dynamic measurements made at temperatures just above Tg show that as the
length of the side group increases, the ()( and J3 dispersion regions come
together56 . The fusion of the two regions is essentially complete in PBMA,
so that only one loss peak is observed for both processes. It is well
known that the2 dielectric loss peak is much larger than the C peak
in the lower mLthacrylate atactic and syndiotactic polymersl 6 ,5 6 ,5 . Thus,
the characteristics of the loss peak in PBMA are more likely to reflect
the unresolved 1, process than the ( process, and we cannot expect
meaning fl results if this peak is viewed as the (X loss peak. In fact,
Saito'slo results extrapolate to a relaxation time of less than 2 seconds
at the glass temperature, which is certainly an unreasonably small value.

If one assumes that the glass transition is characterized by a
fixed relaxation time for a given set of experimental conditions (as
expanded in Part II of this report), then transition state theory leads
to a condition for Tg other than constant AG. Equation (45) may be
written in the form

A Gg h
-. .. =2.303 R (log - log - + logT) . (51)
Tg k

If we vary Tg from 270°K to 380°K, log Tg will lie in a small interval,
2.43 to 2.58. This amounts to a variation of only + 0.08 in
(log T - log h/k + log T) which has a value of about 15.8, i.e. less
than a one per cent variation in AG*/Tg. This gives us a "universal"
condition for the glass temperature. Nominally taking a relaxation time
of 1000 seconds at Tg, we will obtain
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AGg:
.- =72.4 4 .08. (52)
Tg

Let us see how well this expression works. First, we will
calculate AGg# and AGg *Tg at the observed dilatometric glass temperature
using Equation (48). The results are shown in Table IX.

The next step is the calculation ofAGg* andAGg .()/Tg(r)
with Tg equal to 1000 seconds. This is done using Equations (47) and (48).
These results are also given in Table IX.

As the Table indicates, the experimental values of AGg* and

AGg */Tg exhibit much scatter, as indicated by the fractional variance and
standard deviation. After imposing the fixed relaxation time condition,

Gg(T) shows a slight increase in the fractional variance, but
4Gg*(r)/Tg(T) is now almost perfectly constant.

A glance at Equation (47) and (48) shows that the nearly perfect
constancy of AGc(r)/Tg(-r) is a mathematical necessity. Significant
deviation can occur only when the transition temperature is far from
the nominal value selected here, about 3250K.

Another interesting aspect of this study is the difference
between the dilatometric Tg and the dielectric Tg. Excluding the data
on poly(n-butyl methacrylate) because of the unresolved a( and '
dispersions, we find that the Tg difference ranges from 1.90 to '.5.
The average difference is 4.10 , with no consistent positive or negative
trend in Tg (dilatometric) minus Tg(T). This differential is certainly
small compared to the over-all size of the transition region, and since
the dilatometric transition temperature is itself chosen in a somewhat
arbitrary fashion, it is quite possible that the dielectric and structural
relaxation times of these polymers are equal.

Litovitz and his coworkers59 have shown that in polar liquids
wherein nonpolar regions make up large parts of the molecule, the
dielectric relaxation time is much larger than the structural relaxation
time. This is attributed to an increase in the entropy of activation
for structural relaxation due to motions of nonpolar regions not coupled
to dipoles. We have not found this relaxation time differential here,
and therefore, in view of what Litovitz59 has said, we conclude that the
nonpolar regions of the polymers are effectively coupled to the dipoles.
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This coupling reflects the size of the cooperative region.
Since the dielectric data analyzed here were all obtained near the glass
temperature, we would expect the cooperative region to be approaching
its maximum size, and therefore it would be surprising if there were no
evidence of coupling. At much higher temperatures the size of the
cooperative region would be small, and we might anticipate a sizable
difference between the structural and dielectric relaxation times.
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