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,, SUMMARY

The present work is a further step towards optimization of stiffened cylindrical shells. Rings

and stringers of non-uniform cross-section are analysed as a means of obtaining higher structural effi-

ciencies. For lateral pressure loadingrings with non-uniform height or width are compared. The gain

in general instability pressure relative to the uniformly stiffened sbel!. of the same weight amounts to

70- 80%. For prescribed loading, 10-20% weight savings are obtained. For axially compressed cyl-

inders stringers with sinusoidal and linear height variation are studied and compared. Gains in load

and weight savings of 30% and 10%, respectively, are obtained, and the sinusoidal variation is found

to be superior to the linear variation.

Finally, cylinders under hydrostatic pressure stiffened by a combination of uniform stringers

and non-uniform rings are analysed. Different configurations are checked in order to obtain the highest

possible efficiencies.
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1. I N T R O D U C T I O N

Experimental:.and theoretical investigations of uniformly stiffened cylindrical shells with clode-

ly spaced heavy stiffeners, [11 to [61, have shovwn that for axial compression, lateral pressure or torsion,

the deflection shape during general instability consists of one half wave in the axial direction. Excep-

tions to this rule are the cases of ring stiffened shells under axial compression or hydrostatic pressure,

in which buckling occurs with many waves, see (1] and N.

One approach to higher structural efficieancies is to use non-uniform stiffeners, the intensity of

which has a maximum at the mid-length of the shell. ' A similar approach used earlier in optimum design

of columns (7] and stiffened plates [8] achieved considerable weight savings by variation of bending

stiffness along the length or width of the structure.

In shells, this variation in stiffness can be obtained in two ways: with uniform stiffeners and

varying spacing, or with unifo'm spacing and varying stiffener cross-section. Obviously, a combination

of both is also possible. One may note that on account of edge effects both unstiffened and uniformly

stiffened cylindrical shells are actually structures of non-uniform stiffness in the axial direction. Non-

uniform distribution of stiffener material can compensate for the edge effects and stiffen the shell at the

weakest portion. Hence it represents an approach to optimization.

For a cylindrical sh4ll unequal spacing yields "sub-shells" (between rings) of non-uniform

buckling .4trength. The sub-shell next to the bulkheads, where the largest spacing occurs is the moat

pronez to buckling. The increase in general instability will therefore be overshadowed by a decrease iq

local stability. This argument has to be born in mind all along the analysis since :ptimization is here

mainly concerned with general instability. In contrast to cylindrical shells, conical shells are examples

of structures where non-uniform ring spacing is very efficient. In [9] and (10] an optimum weight aaa!y-

sis yiclded weight savings of more than 25% for non-uniform ring spacing.

Variation of stiffener cross-section is the alternative method of stiffness variation along the

length. In cylindrical shells, such an approach to general instability optimization does not influence

the instability of the sub-shells. It is assumed that the influence of stiffener rigidity on local stlell in-

stability is small. Since local stiffener instability is rarely a design criterion, the change in stiffener

buckling streugth is not considered.

JV.
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The theoretical analysis was performed on st gers and rings of rectangular cross section. The

height or width of the stiffeners may be changed along the generator. In some cases a combinction of

both variations yiclds the most efficient structure. -Some typical variations of stiffeners are shown in

Fig. 2. -Note that in practical designs only part of the width or height of the stiffeners is varied. 'Height

variation is clearly more effective since the moment of inertia of the stiffener, which determines its

main contribution to the stiffness of the shell, varies according to the thiid power of the height. The

maximum permissible height is, however, fixed by practical considerations, such as for example:

1. The thickness of commerciallf available plates for stiffened cylinders of ir.tegral construction.

2. The maximum feasable slenderness ratios.

These constraints re sometimes so severe that the relatively inefficient width-variation is pref-

arable. It may be mentioned that the machining difficulties which arise in the case of height vari,-tion

do not appear in the case of width variation.

Both types of cross-section variation and different laws for this variation (linear, sinusoidal,

see Fig. 2) are considered. The type of stiffeners to be used (rings, stringers or combination of both)

depends mainly on the external loading. For lateral pressure and torsion, rings alone are the most ef-

ficient, see [1] and [2] while for axial compression a combination of rings and stringers is the best,

(10] and [18].

2. THEORETICAL ANALYSIS

2.1, DIFFERENTIAL EQUATIONS AND BOUNDARY CONDITIONS.

The analysis starts with the same main assumptions as []1]. For the sake of clarity they are

repeated here.

a) The stiffeners are distributed, or 'smeared, over the whole surface of the shell. A more rigor-

ous analysis that taken the discretness of stiffeners into acc.unt is given in [12] and [131. it is shown

there that unless the number of rings is less than .- 4 the difference between the buckling load predicted

by *distributed" and "discrete" theories is negligeable.

b) The normal strains ex and to vary linearly in the stiffener as well as in the sheet. The nor-

mal strains in the stiffener and in the sheet are equal at their point of contact.
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c) The stiffeners do not transmit shear. The shear membrane force N.0 is carried entirely by the

sheet.

d) The torsional rigidity of the stiffener cross-ection is added to that of the.sheet (the actual in-

crease in torsional rigidity is larger that that assuned).

e) The strain displacemtnt relations are similar to those used by Donnell in f(141.

The equations of equilibrium for buckling under axisymmetrical loading are

Nx +N x  = 0

NOO + No, .0 )

X. . + M,, M ZX - , + RNo + RN. 0 w.x + RN 0 w,o = 0

where z, x and 6 are non-dimensional co-ordinates (see Fig. 1).

The stress-strain relations differ for shell and stiffeners and are

a,(z) [E/(1-)l[It. + vt - z(,K. + v,4)]

in the shell
o =(z) - [E/(1-y 2 )][e + ex - z(x95 + v.)]

(2)

o. W ) E (t. - zxX)1

I - in the stiffeners
-z E ( Ex - Z , l)

Note that in Eqs. (2) the middle surface of shell is used as reference line. Hence, the forceS

and moments acting on an element become

N1  = 1Eh/(- 2)1.II +I,(x)*I + (-K) I+(x)

N¢ = Eh/(l-_ )11,0 [1 + ;12(xW + W. -,KO X* Wx I

N ZO = [Eh/2 Q + 01 YXO

N( + D/R)l[1 +q(x)]+v,(,-c 4,,x (3)

ARM= -('I KO[ + 2~ (X)] -,- to , , (X) 1



t

MNI4 ,=-D/R [1 -' + r 1( x ] K ,C3

The curvatures in Eqs. (2) and (3) are non-dimensional, the physical parameters having been

divided by R. PI(x), 14M, 4), x), I(X), * (x) and t*2 (x) are the changes in stiffness due

to non-uniform stringers and rings while X*(x), X ;(x), 4* (x) and C*(x) represent similar contribu-

tions due to the eccentricity of stiffeners (positive for inside stiffeners and negative for out=ade onas).

Their definitions in terms of stiffener geometry for any type of cross-section and for the particular case

of rectangular cross-section are given in Appendix A. Note that for constant stiffener cross-section

Eqs. (3) degenerate to Eqs. (5) and (6) of 1111.

The strains and curvatures are defined, as in 1141, by:

Ex = U

0540 w vq €- W

Y,9 = UO -v. (4)

Kz -. WIZ

JK X.i- W'

Substitution of Eqs. (3) and (4) into Eqs. (1) yields the equations of equilibrium in terms of

displacements

u.,s + [0 - v,)/2] u," + [( + 0)/2 v.xo - Kw.. + [u. , tllx) I.. - [w.x. X1 (x) I.. -0

Vq, .. [(1-V.)/21 V.,. + [(1+v)/21 u,.4 -w, 4 + (v,ko - w,,A) j;(x) -w, X * (x) = 0

V w + [w... i1 (x)1. . .ujx]~ x +2(, x

2 3

+ Iw + R:* (x)11 + 12(R/h) 2 l(w-v,)| 1 +p4 (x)1-- u.j +(pR /D)w , +(PR 2n0) . - 0 (5)

1 -2



The prebuckling membrane stresses for a combination of axial and lateral loadings are:

N-0 =(P/2 ffP)~(6)

No =-pR

Equations (5) are a set of three linear homogenous partial differential equations with varying

coefficients. The usual simply supported boundary conditions are assumed:

IM,=Nx=O
x=0 and L/R (7)

W v = 0

Two methods of solution are proposed. In the first, a straightforward Galerkin procedure is ap-

plied to the three equations transforming them into infinite sets of linear algebraic equations. The

second employs an approximate procedure which "corrects" the first two stability equations and then

solves the third one by a Galerkin procedure. Numerical comparisons oetween both methods are carried

out.

2.2. SOLUTION BY GALERKIN'S METHOD

The variational equivalent of Eqs. (5) is written as

L/R 2n

f F lu., + [l1-)/ 2]u, + [(l+v)/2 v.P -w 1 + [u,. u(x)] . -[w.XX ()]. au dx d1k = 0
3 0

L/R 2n
f f lv, c +[(1-v)!2]v +[(l1)/2]u b-w,+(v, -w,rk)l,4(x) -w,. ,(x)I (v dxdO=0
0 0

L/R 2n r
f f I Vw + ( 1 * 1 (X)].-[u. (u x)J. W- W ,,(x) + 2(w,o -v,0) (,) +
0 0

2
+ lw, ,,o [i' (x) + /,*2 (x)J] + 12 (R/h) 1(w - v,r) [1 + (x)j - vu..,l + (pR 3/D) w,0 +

+ (PR/2, nD) w,)wdxdk- - 0 (8)

The displacement components are expanded into Fourier s'rles in the axial direction

C.
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u -sin t 6 A cos a xawl

v = costc . B sin 

9x

.--- ft 
(9 )

w - si C sin aft

Series (9) fulfil the boundary condhions, Eqn. (7).
A permissiblea variation of Eqs. (9) is

8. - sin t dCosmO x A

8v ia cost q6sin mex B

wm =sin t4 sin MOX C

Substitution of Eqs. (9) and (10) into Eqs. (8) yields

. FA (u,m)+ B. Fa (n,m) + C Fc (n.m)I 8A. 0

;l (A.GA(4,m)+BG, (nm) + CUG c (a, m)] 83B -0 
(11)

j. [A.1Rm (Rm) + Ba f* (...z) + CH c (,M)l 8C, - O

Whetd the F's, G's and H's are defined as

FA (n,m) - 2 + [(1 - V)/2] t2 j + am 1[ (n,m)

FB (nm) C (a,m) - ((1 - )/2] tnfl 8a 
(12)

Fc(n,m) - HA( m n) - POS. 
n 2 12(,1 m )

GB (n,m) = 1t2 + [(I -t)/212 2 : 2K1 (",")

(13)Gc (nn) I1 a (um) t [Sam + K , (nm)] - t K2 (0.)

S
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1 1c(nm) I + t2 + n 2 (R/h)[( t2 + An2 13/2)/12(R/h 2  ~ 2t2 K (n,in) +
1 2

+ K I(n.) + t 4K (n,rn) + I f 2  (32P 13 (n,m) + t 2 no 31(n'm)]/12?(R/b) 2 (14)

A and A are non-dimensional lateral and axial loading parameters respectively. I (n,in) and K (n.111)
P

are weighted integrals of the functions describing the variation of stiffener cross-section. They are

defined by

(n//3)
K i n,m) =(2('3/rt) f 1f3(x) sin a /3x sin m(3xdx j 1,2,3

0

f(x W W4x f( W) = X Vx) f W ) %2(xW

Itl'1u1) (2/mW1 f tp*'(x) sin n o) 1Cos mn /3x dx
0(43/) (15)

1 (n,rn) (2/mn) f [X (X) Sin nf 13 .Cog t m9dX

I (n,n) =4-~2/m 2nj) f (,*1 Wx sin a 0 xj.. sin inP3x dx
0 0

1(n,m) - -2/m n) f tGrj*(x) + q* (x)) Cos nfl xl. sin m/3x dx

In all derivations it was tacitly assumed that the functional variation of the stiffener cross sec-

tion is a function of Class 2 (continuous up to derivatives of the second order) otherwise some of the

integrals of Eqs. (15) are meaningless. Not,- that the [a-Air variation (see Fig. 2) exhibits a disconti-

nuity in slope at x = L/2R. This case and ones with a similar type of discontinuity, must be handled

by a different method. Eq9. (5) wh~ich include derivatives of the functional variation, have different

meanings when x is on the right or when it is an the left of the discontinuity, A detailed analysis for

such cases, that assumes symmetry of stiffener distribution relative to x =L/2R, is given in Appendix

B.

After repeated integration by parts of Eqs. (15), the final results are

K.(n, m) - (2f3/n)D + (1) 1 f f;(xW sin n 0 x siami Bx dx1

1 (n,m) - 290[ ) fg.(x) sina Ox sinm in3x dx (16)
0
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()+ (r* (x) + r*2(x)] cos n 13x cos m Ox dx

gs(x) ( ) 2 (x) = x*(x) g3 (x) = 7 (x) (16)

Eqs. (16) apply to variation of stiffener cross section with continuous or discontinuous slopes.

If oDe now returns to Eqs. (II) end uses the arbitrariness of the variations 61m%, 5Bm, 6C M one

obtains three sets of linear algebraic equations which can be written in compact form as

A FB Fc[ A.

C A  GB  GC  = 0 (17)

A HB 1Q

Consideration of only the first N terms of seres (9) yields stability determinants Eqs. (17) of

order 3N. Each element of Eq. (17) is an N X N square matrix of which only J l c  contains the ex-

ternal load along its diagonal. The lowest eigenvalue of Eq. (17) yields the critical load for general

instability. The integral value of t (the number of circumferential waves) which minimizes the critical

load must be used in computations.

Accordling to Eqs. (12), (13), and (14)

tGA] =tF [HBI - [GC] (HA I - [Fc1I (18)
T

In Eqs. (18), T 1 represents the transpose of the matrix and [HB I and [Gc I are i;ymmetric.

The stability matrix, Eq. (17), is therefore symmetric as would be expected from Maxwell's re-

ciprocal theorem. This symmetry is of great help during the numerical computations. Integrals I (n,m)

and K (n,m), see Eqs. (16) 'e identically zero for odd values of the integer (n + m). Under these

conditions the stability detet. tant of Eq. (17) can be resolved into two sub-determinants, one of the

even components and one of the odd components of the displacements. The two sub-determinants re-

present symmentic and antisymmetric buckling modes. The critical load has to be computed for both pat-

terns, and the one yielding the lower load is the one to be considered.

As mentioned earlier, the unknown in Eq. (17) appears only in [PI ). This feature is used to

II

'A.,t
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develop a systematic solution of Eq. (17) whose outline is:

1. Application of Gauss's algorithm to reduce the order of matrix from 3N to N

2. Use of an iterative procedure for calculation of the lowest eigenvalue and eigenvector of the

reduced matrix.

Details are given in Appendix C.

2.3. THE METHOD OF "CORRECTING COEFFICIENTS"

For a uniformly stiffened cylindrical shell the differential equations of equilibrium, Eqs. (5), in

the presence of the boundary conditions for classical simple supports Eq. (7) have a closed form solu-

tion, see [3] or [11]. A non-uniform distribution of stiffeners increases the stiffeness of the middle

part of the shell relative to that at the edges. During buckling, the deflection curve, which in the case

of constant stiffeners is a half sine wave in the axial direction, will be of similar shape with a pronourred

flatness at the middle of the shell. If one considers the expressions of displacements, Eqs. (9), this

means that the first term of the series is dominant, and the additional terms correct the basic mode only

slightly without altering ;: general features. This is the main assumptioa of the method of "correcting

coefficients" used earlier [151 in connection with general instabi-ity of stiffened conical shells. In the

application of the method, the varying coefficients of the first two differential equations, Eqs. (5), are

changed to constant ones. Substitutiua of series (9) into the resulting two "corrected" equations gener-

ates an infinite set of uncoupled linear algebraic equations. Hence only the general harmonic, n, has

to be considered. The third stability equation with increments from the first and the second is solved

by a Galerkin procedure.

The variational equivalent of differential equations (1) is

2a (L/R)

46v f UN + N.o a + [N0 +v + [ + - +

2 27
M +RNw .RN. W + RIN00 w,hh!(5W/R)lIR dxd5- f IN. Su + N. a v -

0 0

2 x=(L/R)
Wtt +D\ 1%1.. f R ,/R\ tkI Mi I .. ~ 'n... "o,o/" " "'z.(b/R" X 0, " ....
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This equivelent is the variation of the generalis ,! potential after two integrations by parts.

Since the variations are arbitrary, the differential equations (1) and boundary conditions (7) can ready-

ly be obtained from Eqs. (19).

To the memhrane forces,. defined by Eqs. (3), a set of terms, whose sum is zero is added. Then

N [2h/(1 -V 2 )l- v (v w) -w v2) u I -kl

w.. [X-(W)- k I I - N + N (20)

where k, and k2 are constants. The second term of the last expression in Eq. (20), N.., is called

'Error Load'. 'Similarly the membrane force N is transformed to

N . N95 + NS6, - [Eh/(1-V2)]l(v, -_w) (I + ks ) + vu.. - It 4wO A +

+ tE h/(1 - ,2)j l(v2- w) [ -x) _ k3 1 - W- X (x) - kI 4 (21)

Substitution of Eqs. (20) and (21) into Eq. (19) yields

2n,( I-/j.

S2(N . au+ +N.,,1 8v + IN., 8u +N k8v+

+ [Nlx.x+ + M ,0 + M S...- M,,.o + RN +RN, RN 0 w...]

(8w/R)4 dxd'o - 0 (22)

since the line integrai vauishes on account of bounday conditions, Eqs. (7), which are satisfied by the

assumed displacement series.

The corrected first two stability equations are then

, .N 0

(23)

Assumption of a solution of the type
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u u A sint . coonfx

v - B cos to sin t43x (24)

and usa of Eqs. (20) and (21) yields two homogenous algebraic equations with three unknowns A., B.

and C., which are related to each other through

A = a c a (D

(25)

E = b c b= (D2 /D 0 .)

where

D~~~~~~~ ~ ~~~ -2I-19( 1+km+kvn

tI = [-( +,)/2] n~tk 4 + (Q + k 3) [k2 a 3 + [(1-v)/21 813 t 2 + [(I-v)/2 ns 3[k 2 n 2e 2 _ -V

D2n = (( - )/2] k 4t 5 + i(+kl)n 22 k4 _ [(l-y)/21(1+k 3) It 3 + (I [v(1+v)/21 -

(1 + kY(1 +k 3)In 2 2 - (1 + /21 k 2 ,n' 4 ) t (25a)

The third equation, with the "Error Loads",

2fr LAl

0 = f f IN... u + N, av + f M, + M ,, O M + RN, +
o 0

+ RNoo woo + RNz 0 w...] '8w/R)I dxd, (26)

is aoved by a Galerkin procedure. Substitution of Eqs. (25) into the expressions of the displacements,

Eqs. (9), and their variations, Eqs. (10), yields

u = sint a C coanfx Su - a sint cosm0x 8C
n'l r n a a

v = costz 0 bnCQ sinn/3x Sv - b costo sinm13x5C (27)n::



12

w -sin tr C.Sin ORx Sw - in t gsinm x SC (27)

Substitution of Eqs. (20), (21) and (3) in Eq. (26) yields

0-f f{I[Eh/(lV21 [ W-k 1).. [... (X*1W J I~+ (h(_,

2 3

(28)

(x) ((~ . X O2,p~~2 w0 v00 *()+[.0 ('7:* (x) +

+ 1lt2(x)]. + 12(11/h) 2  w(,-)1,()-. )+ ,OO+X)(w.. 1/2)1Sw)dxdO

Use of Eqs. (27) and the definitions of the weighted integral*, Eqs. (,16), yields

a T (a,m)C. = 0 in=1, 2...

where

Ts )-(Q (0,M) + I (a'2~ + t2)/12(R/h) 2 + 1+bt +vna. 1(kam2 3 2/2) +

+ A t 2/12(R'h)2 Is an + IN~ 2 In2o i (n. ) + n m jq t 2l 4(a, m) + t' K3 (a. m)]/12(R/h) 2-

-aP 3 a. 1 2 (up M) - t 2 (2 +b ftt)K 2 (n'm)-+ (1+bft)K I(a. M)

(a nm) the werk done by the error loads, is defined by

Q(D,m) = lam [11 (na) -k15 J.-nfl[l 2 (s.m)..k 2 ba ]Ism aoM1 +

(30)
+1(1+b 3 t)(K (a, a) k3 SJ -t 2 M 2 (s.a) - 4 S.. lIt b.

A finite number of tae, N.* in Eq. (29) yields a set of N linear homogenous equations. For

reasons similar to those presented in the previous section, the determinant can be resolved into sub-

datsrmiaauts of the even and odd compooents respectively. Again the value of t that minimizes the

critical load has to be used.



13

2,4. EVALUATION OF THE CORRECTING COEFFICIENTS

The accuracy of the method in predicting general instability largely depends on the manner in

which the correcting coefficients are computed. In the present solution taiey are evaluated by equating

'(, zero the work of the error loads, N., and NO., of the first two stability equations. This work is

computed for different permissible displacements in the same modus operandi applied in Galerkin's

racthod. It should be mentioned however that due to the limited number of unknowns (k1 , k2 ,k and

k4 ) the virtual work can be made to vanish for a maximum of four different displacements.

As a first approximation the first terms, n = 1, of series (27) are used as permissible displace-

m'ents. Bearing in mind the discussion at the beginning of section 2.3, this choice is very promsit.g,

since n = I is the basis mode of the deflection shape during general instability.

The error work expression, Eq. (30), then yields

k, = 11 (1, 1) It = K 4(1. 1)

(31)

k = 2 ( 1  k4 =K 2 (1.1)

There are cases, however, where the first term of series (27) is not dominant, e.g. the case of
Si. stffened shell under-axial compression, then Eqs. (31) will yield very uncoaservative buckling

A mort- systematic, though less simple way of computing the correcting coefficients is to use

Ote acturi displacements at buckling in the computation of the virtual work. In other words, not the

fiusE terms of Eqs. (27) but the whole series are used as permissible displacements.

'h en

N

n a a - C C Il(n, m) tna C,, dt In a% C.I
1N 2

N n 2 2 C2 Ina, Cj In a C.1

N

. n 2 mC C 1
2 (n,m) a. in 2 C'j [12] In a. C. I

n 3nC a in2 Cj Ina C I (32)
n 12 f n
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N
Y. (1 + b 0 C. K, 6,m) b. C. L(1 + bt 02~ [K 1] 1b. C. I

k - ID.1 a ______________

N
1 0+ b, OC, b, L( + b, 0 Q Ibin C.

N
Y C K (n,m) bm C. JC.i(K] lb3 C.1

k4 n m 1 2 2]

SC2 b. tCi 1b. C 1 (32)

where 1 1. 1 1 are shorthand notation for row and column matrices.

It should be pointed out, however, that preliminary knowledge of the eigenvector is needed in

Eqi. (32). Hfence an iteration procedure is required. An a first approximation one uses Eqs. (31). The

computed eigen-vector is then used in Eqs. (32). The process is repeated until reasonable convergence

of the solution is achieved.

The purpose of the method of correcting coefficients was to provide an easier, though less ac-

curate, method for solving the stability equations (5). It It-ad to an iterative process. In comparing

computationa for both methods it is obvious that, in the present case, the loss in accuracy in the sec-

end method outweighs the numerical difficulties of the first. -However, this is not always so, since for

other types of shells (conical) or loads (torsion) a straightforward Galerkin or Rayleigh-Ritz procedure

might be very cumbersome.

In the present work both methods were used for solving a typical problem. Comparison of the

results. yielded important inormation as to the accuracy of the approximate method of "correcting coef-

ficients " and its computional t.esaving.

3. NUMERICAL RESULTS AND DISCUSSION

1. INTRODUCTION

The theoretical analysis considered a general non-uniform distribution of stiffeners, symmetric-

at) with respect to the 1 id-length of the shell. In order to obtain an estimate of the possible gains in

load for a constant strIticur? weight or of the weiajht saving f-r conetenf. load4, onc mus. Djow &oivc

the problem numericalfy for typical laws of stiffness variation. The cases considered here are:
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1) Cylindrical shells subjected to lateral pressure and stiffened by rings of non-uniform width ci

height.

2) Axially compressed cylindrical shells stiffened by stringers with sinusoidaL or linear height

variation.

3) Cylindrical shells subjected to hydrostatic pressure and stiffened by a combination of uniform

stringers and rings of non-uniform height.

All cases were solved by the more rigorous Galerkin procedure. Case 2 was also solved by

the approximate method of "correcting coefficients". The shape of the cross section war assumed

rectangular for all stiffeners.

3.2. LATERALLY LOADED CYLINDRICAL SHELL STIFFENED WITH NON-UNIFORM RINGS

3.2.1. APPROXIMATE ANALYSIS

Lateral pressure loading is of less practical importance tLan hydrostatic pressure but is easier

to handle analyticly. Hence it is considered first. 'Now general instability under lateral pressure oc.

curs, for unstiffened cylindrical shells as well as stiffened ones, with one wave in the axial direction,

see [i1 and [161. Hydrostatic pressure is a case of combined loading (axial and lateral pressures) and

yields buckling shapes that are combinations of the modes occuring under the axial and lateral compo-

nents. This interaction was analysed for stiffened shells in [1] for a large range of shel and ring e-

ometries. It was found there that for shor and thick shells (small Z) general instability occured with

many waves in the axial direction. From these arguments one can qualitatively conclude that, while for

lateral pressure rings of non-uniforn, tross section varying linearly or according to half a sine wave,

see Fig. 2, might be very promising, for hydrostatic pressure the same distribution of rings will inevi-

tably lead to large losses of efficiency. Thi-4 point i, later discussed in detail. For cylinders stiffen-

ed with rings only, the first set of N algebraic equations in Eqs. (11) uncouple, and hence the order

of the stebiliti, determinant, Eq. (17), is reduced. For more details, as well as explicit expressions of

integrals (16), see Appendix D.

To iet An ;d.-" nf the ,.r, .i ; -.- , non-.. i.... st, ffener . the caa of ^ i s - - ith s.n-

uniform width ,j first analysed. A closed form solution is possible if one uses the first terms of Eqs. (9)
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as a rough approximation to the buckling shape for general instability.

For a width of ring varying according to f(x) along the generator, the weight saving, relative

to a uniformly stiffened shell buckling at thesame load, is given by

h /h = [1+(A /ah)I/[1 + (kA 2/ah)1

where

k (2 f f(x) sin2 Sxdx)/( f (X) dx) (33)
0 0

and .2 is the area of rings for the uniformly stiffened cylinder.

The function f(x) which minimizes the ratio (largest weight saving) was found to be Dirac's delta

function.

f(x) - 8 [(/2) - x (34)

for which the value of the ratio is

h,.St = [1 + (A2/ah)]/[1 + 2(A 2 /ah)] (35)

With A 2/ah = 1, which represents a typical geometry in aerospace vehicles, a maximum weight sav-

ings of 33.3% is then obtained.

Variation of ring width according to Eq. (34) means concentration of the whole stiffener area ir,

one bulkhead at -he mid-length of the shell, see Fig. 3. This is the direct result of the approximation

v, med at the beginning of this section. The deflecting shape for general instability '..s asaamed a

half sine wave (n = 1), hence the rings tend to concentrate in the weakest part of the shell - i the

middle. The n : 2 buckling mode, however, was not taken in account, the ugh in the case pr...ien-ed in

Fig. 3 it is the one most prone to occur. The shell will, therefore, buckle locally at a pressure much

below that causing general instability of the uniformly stiffened cylinder. The efficiency olf on-uoiforn.

siffeners is therefore made up of two opsing contributions. A primary positive c-ntribution resulting

from the strengthening of the weak mid-length of the shell, and a secondary negative contribution due

to the weakening of the shell close to th- edges that may then buckle prematurely. 'his premature

buckling mode will henceforth oc called a "many wave" deflection shape in the axial direction.
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3.2.2. RINGS OF NON-UNIFORM HEIGHT

In order to obtain a better feeling for the influence cf the opposing contributions on structural

efficiency, different types of height variation were analysed. In Fig. 4 the non-dimensional ratio

c 2 / c2 that describes the variation of the height of the rings along a generator, is drawn versus x

for different values of the potrameter y. y the "variation ratio" is the ratio between the weight of

the uniform part of the ring to their total weight and its values are restricted by the inequality

0 '- y < 1 (36)

y = 1 represents the case of uniform stiffeners, while y - 0 the one where the entire height of the

ring varies . mi&sMy with x. The smaller y the more of the stiffeners weight (which ;s kept con-

stant for all the values of y) is near the mid-length of the shell.

In Fig. 5 the radial displacement at buckling is given for a short shell and different values of

y. The parameters e2 /h and A2/ah are those of the equivalent uniform rings (weight equivaicnce).

This equivalency will be used later on for computing the efficiency of non-uniform stiffeners. For

y = I the deflection is a half sine wave; a decrease in y distorts the buckling shape so as to flatten

its extremum at x - (L/2R). It is worth mentioning that, except slight corrections in shape, the curve

still resembles the basic half sine wave in the axial direction. This supports the intuitive aegument

given in Section 2.3. As y is further decreased, however, a change in behaviour is observed. For

y - 0.25 two completely different deflection curves are drawn. One represents the narm-ia shape with

one buckle along the generator, whereas the other represents a 'multi-wave" behavior with relatively

small displacements at the middle of the shell. During the process of minimization of the lowest eigen-

value of (17) relative to t, a double minimum curve is found (see for example Fig. 9). 'Each of the

extr-mus represents a different buckling mode, and the one yielding the lowest buckling pressure is

physically significant. In Fig. 5 both deflection curves were drawn for y - 0.25 becaun'e they both

occured at almost the same value of the externel pressure. (The difference in A was of the order

of 0.9%). For y = 0 the a 1 buckling mode is dominant.

In Figs. 6 and 7 the radial displae.,ments are given for two other shells of differe-It geometry.

The !onger t e shell the more pronounced is the mode charige. The term "edge buckling" can be ap-



18

plied tz, the 'multi-wave" buqkling pattern in the sense that very rapid changes in the dinplacement,

take place in the neighbourhood of the edges. The magnitude of the displacements is zero for more than

70% of the length of the shell. -In Fig. 7 two curves are again drawn for y = 0.25 for the same reason

as before in Fig. 5.

In Table 1 the computed eigen-vectors are given for the deflection shapes of Fig. 7. For y - 0

and 0.25 the two columns, represent two possible buckling shapes. The first is the so-called "n = 1"

mode of instability. This name is fully justified since C1 is much larger than the other coefficients.

The second column represents the n A 1 buckling shape. It is characterised by:

a. poor convergence of the stability determinant, Eqw (17);

b. a large number of circumferential waves (see table 1) ;

c. none of the terms of the displacement series, Eqs. 9, dominates.

-For the particular case y - 0 the terms C9 , C11 and C,3 are of similar ,nagnitude.

In Fig. 8 the deflection curves for the same geometries of shell and rings as in Fig. 6 are given

for outside rings (e 2/h < 0). There is a noticeable influence ef the eccentricity on the efficiency of

the non-uniform variation of stiffeners. A comparison of Figs. 6 and 8 shows that for outside rings the

9multi-wave* buckling shape is postponed to lower values of y. As will be seen later, this increases

the gain in load.

Figs. 6 to 8 clearly show that from a certain value of y (the actual value depends on the shell

geometry) down, an *edge buckling* pattern dominates, leaving the middle part of the shell relatively

underformed. Numerical results for this 'edge buckling" mode show large losses in efficiency. The

buckling load amounts to lea than 50% of that obtained with uniform stiffeners. The physical arguments

behind those losses are similar in nature to those presented in the anelyisis of Eq, (34). 'In other words,

the olrstiffening of the middile part of the shell leaves the nvighL'irhood of the edges relatively weak

and therefore very prone to buckling.

In Fig. 10 the gain in load p,,/p. is drawn versus y for different shell geometries. Most of

the curves have a discontinuity in slope at certain values of y that may be denoted y.. For y > y"

the deflections during buckling have one basic wave along the generator. Decrease in y from y - I

to Y". tevuhis in a monotonous increase of the gain in load. To the left of the discontinuity the 'edge

buckling" pattern dominates, leading to losses in efficiency.



For V oni obtains Lhe highest gains in loed for a certain shell geomotry. Its value varies with

Z.- For '.ery short shells, for example, no~ 'multi-wave" patein takes place and therefore, y.. -0 is

the optimum variation ratio.

In Fig. -11 the optimum gain in load, obtained at y - y.. (see Fig. 10), is plotted versus the

shell geometry parameter Z. For very low value. of Z. Z < 30. y.. is zero. In the inzermediate

range 30 < Z < 100 very rapid changes occur in the value of ye. causing the change. in curvature

that appear in Fig. 11. Further away from the perturbed region the rise of tb,. curve is monotonous. It

should be noted that for long shells, the mnode transition is very sharp, sea Fig. 10t and causes very

large losses in efficiency. A small margia of safotr is, therefore, advisable and variation ratios slight-

ly larger than y.. :hould be employed. The larger gains in load obtained with outside rings are some-

whet overshadowed by the superiority of uniform inside rings over outside ones, se 11).

[n moist problems of practical interest the geometry of the she~ll "s well as the applied load* are

given. The designers' job is to find the configuration of stiffeners yielding minimum weight. Care

shouli be taken about phyuical and practical conswainto such as yielding adf material, maximum permis-

sible ring or stringer height, etc.

The procedures described in Chapter 2 fw se4'' ist 'ste tin' eq ee 45) ea Aen katewf as

the "direct" problem: Computation of the load causing general instability for given stiffener and shell

geometry. The "indirect" problem of finding the niag goetry for a given load is in general more dif-

ficult. One assumeis different values for the ring gMmetry and computes the corresponding values of

the buckling load with one of the methods of Chapter 2. When these values are dc*. enough to the load

given in the data, a regular falsi method is used to increase the convergence of solution.

In Fig. li the w~eight saving equivalient of the gain load, given by the full curves, is plotted

versus Z. its magnitude is never larger than 10-15% . It should be carefully noted that the present

analysis is not an optimization procedure in the sense of [171 and (181 because:

i. only general instability of the composite structure is analysed,

b. the weight minimization is on stiffener configuration only, whereas the thickness of shell is kept

constnL

in Fig. 11ithe weight of the rings to only 1/3 of the total weight (A2 /a = h/2). Therefore, savinig
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15% in the total weight of the shell, by using non-uniform stiffeners, is equivalent to a 40% saving in

the weight of the rings.

The structural efficiency depends to a larg" extent on the area ratio of the rings (A2 /ah), and

the larger the area ratio the larger are the weight savings. Typical computations have shown that for

(A2 /ah) = 1 they amount to 20- 25% of the original weight of the uniformly stiffened shell.

In Fig. 12 and Table 2 the gain in load is plotted versus Z for different values of y. The

first two curves for y = 0.75 and 9.5 show a continuous, monotonous rise of efficiency with Z. The

radial displacements at buckling have one lobe in the axial direction. For y = 0.25 the curve for in-

side rings has two discontinuities in slope. In the intermediate range of Z, the "edge buckling" pat-

tern dominates and causes le-ses in efficiency. It should be mentioned that the curve for outside rings

and the same value of y is continuous. The curves for y = 0 are mainly of academic interest, since

they emphasize the consequences of understiffened edges on general instability.

In Fig. 13 and 14 the influence of ring cross-sectional area A2 and magnitude of eccentricity

(e2/h) on the gain in load is investigated. Comparing respective curves in Fig. 12 and 13 shows

mall differences in gain. On the other hand, the curves in Fig. 14 are of somewhat different nature.

fhe "edge buckling" pattern appears already for y = 0.5, while for y = 0.25 its zone of influence

extends to a larger range of Z. This is not surprising since increasing the equivalent height of rings

from (e 2/h) = 5 to (,-,/h) = 10 results in overstiffening the middle part of the shell. A clearer picture

is obtained in Fig. 15 where the gain is pk.tted for different values of (e 2/h) and a constant y. For

(e2 /h) = 3 the curve is continuous with relatively high gains for all the spectrum of Z. For the other

values of (e2 /h) the efficiency gradually decreases and may even change i's sign. While Fig. 15 anal-

yses the influence of (e 2/h) on the 'edge buckling" pattern, Fig. 16 does the same for a pattern with

one buckle along the x axis. For long shells (large Z) Fig. 16 shows larger gains in load the larger

the eccentricity. In the left part of the figure (small Z) the behavior of the curves is similar that in

Fig. 15.

3.2.3. RINGS OF NON-UNIFORM WIDTH

When comparing a height and width variation of rings, the superiority of the first is almost
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obvious. since the stiffening material is then used in a more efficient way. 'In many cases, however,

practical constraints rule out the use of height variation, leaving only width variation as a possible

method of optimization. The explicit formulation of integrals (16) for a sinusoidal width variation is

given in the third section of Appendix D. The absence of stringers simplifies qs. (12) yielding

2N x 2N stability determinant. The algebraic details are similar to those given for height variation

(see Appendix C).

Numerical results show that in the present case a variation ratio y = 0 yields, at buckling, a

defliction shape with one lobe in the axial direction. Computations were carried out for-a large spec-

trum of shell and ring geometries,

For larger values of y the same mode persists leading to a gradual decrease in efficiency.

Hence only the optimum y is used in the computations. It may be recalled that in the case of height

variation of rings, y = 0 yielded very low efficiencies. If one aims at a physica! explanation of the

difference between both variations, one finds that a non-uniform width understiffens the edges in a

milder way postponing the appearance of the "edge buckling' pattern. In the mathematical formulation,

the difference between width or height variation according to sin 1x lies in the fact that the bending

stiffness of the ring changes according to sin 13x and sin3 Ox respectively. The intensity of the

non-uniform distribution at the edge of the shell, given by the slope of the sin Ox and sin3 Ox curves

is, therefore, finite for width variation and zero for height variation. Since this slope is of critical im-

portance for the "edge buckling" pattern, the difference in behavior is apparent. In Fig. 17 and Table

2 the gain in load and weight saving are plotted versus Z for inside and outside rings. Comparison

of the results with the optimum gains obtained for height variation, see Fig. 11, confirms the intuitive

conclusions reached at the beginning of the section. In Fig. 17 the maximum gains in load are of the

order of 15-20%, much lower than those for the height variation. The weight savings on the other hand

are af the same order of magnitude. This is not surprising since the weight optimization was performed

in each case with different constraints. For rings of non-uniform width, the efficiency of stiffeners was

compared with that of uniform rings of the same height and equivalent width. -For height variation the

equivalency wee related to the height, while the width war kept constant.
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3.3. AXIALLY LOADED CYLINDRICAL SHELL STIFFENED SY NON-UNIFORM STRINGERS

Recent optimization studies on axially loaded cylindrical shells 101 and [181 have shown that

a combination of rings and stringers yield the highest structural efficiency. In the present analysis

only the influence of non-uniforet stringers is studied in detail. That of rings alone,is of no interest,

since alone they are very inefficient for this type of loading. An optimization with both non-uniforr

stringers and rings could yield further gains, but is not considered in this report. Sinusoidal and linear

height variations (see Fig. 2) were analysed in order to study the influence of the functional variation

on structural efficiency. -A width variation of stringers is of little interest since it yields gains in load

of only few percents. 'In the case of stringer-'stiffened shells every term of the displacement series,

Eqs. S, is a possible solution of the secont. ' equation, Eqs. (5). By relatively simple manip-

ulations, the order of the matrix, Eq. (17), can be reduced to 2N. Further details, as well as the ex-

plicit expressions of integrals (16) for the two types of variation, are given in Appendix E.

In Fig. 18 and Table 3 the influence of shell geometry on the structural efficiency of non-unfaorm

stringers is studied for different values of y. For y - 0.75 and 0.5 the curves drop monotonously

to asymptotic value PVA/P = 1. For long shells (Z > 5000) stiffened by inside stringers, the gains

in load do not justify the increase in the cost of production due to non-uniform stringers. It should be

mentioned, that in the same range of Z, even unifo,-m stiffeners are less efficient then equivalent

thickening of shell, s'ee [3]. Comparing the gains in I'oad for ring-stiffened shells, Fig. 12, and stringer-

stiffened ones, Fig. 18, one observes, in addition to the difference in magnitude, that the behavior with

increase in Z is reversed.

For y -0.25, and even more so for y - 0 (see Table 2), an 'edge buckling" pattern, simile:

to the one occuring in ring stiffened shells, dominates, causing a very rapid decrease in structural ef-

fi:irncy. The reduction is even more pronounced than that occuring in Fig. -12, because of the different

buckling behaviors of isotropic shells under lateral and axial loadings. ,For large values of Z (long

shells), the single "half wave* buckling pattern is once again dominant (even for V-0), yielding higher

gains for lower values of y.

For small values of Z (Z < 100), cylindrical shells stiffened with out-ide -tringers buckle in

an axisymmetric mode, see also [31, causing a large scatter of t: computed points. The curves in Fig.

I
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18 smooth out he effect of this scatter, In Fig. 18 the influence of eccent.icit) on structural efficiency

is also investigated. For values of Z smaller than 1000, the gains in load are higher for inside

stringers. An inversion occurs at larger Z values, yielding noticeable differences between the effi-

ciency of both configurations. For a typically long shell, (L/R) = 2, (R/h) = 1000, the gain in load is

increased from 2% to 15% by changing the position of the stiffeners. It should also be mentioned that

recent experinlental and theoretical investigations, [3] to (61, emphasize ihe auperiority of uniform out-

side stringers over inside ones. -In Fig. 19 the influence of the magnitude of eccentricity on the gain

in L ad is investigated. Since a variation ratio y-0.5 is used, 'edge huckling" is eliminated as a

possible mode of instability. Increase in the magnitude of eccentricity for a constant string area,

"ields more slender stiffene.rs, whose height increases in inv,'ree proportion to the decrease of the width.

As a result, the moment of inertia of stiffener cross section varies according to:

(11 I/bh3) - (el/h)
2

The gains in load, which are in direct proportion to the bending stiffeness of the stringers, grow

larger, the larger the eccantricity. However, practical considerations prescribe upper limits to the mag-

nitude o( e/h. Some of them are:

a) local buckling of stiffener as a simp!y supported - free plate,

b) the thickness of commercially available sheets,

c) reduction of the width of the stringer d, (see Fig. 1) beyond a certain limit, reduces "ie

"effective width" of the sheet between the stiffeners, The present analysis does nbt account for the

resulting decrtase in the total stiffeness of the shell.

In Fig. 20 the influence ef y on the gain in load is investigated for two types of non-uniform

height variation. In the neighbourhood - y - 1, the two variations yield similar results. With decrease

inl y the gain in load increases and goes through a maximum, which represents a general characteristic

behavior of non-uniform stiffeners. In the case of rings, this maximum appeared as a discontinuity in

slope, see Fig. 10. This discontinuity is caused by transition from an 'edge buckling* patern to a

single half wave- pattern in the axial direction. In the present case of stringers, however, the transition

Ie cont;nsjo . For sinusoidal height variation the optimum value of y is lower than for the linear one,

yielding therefore higher gains in load. Physically, this means that the linear variation is more prone
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to 'edge buckling* and "needs' larger parts of the stringer to be uniform along the shell. The optimum

y at which the maximum gains are obtained varies with the shell geometry. Fot long shells (large Z)

it has a tendency to move to the left of Fig. 20 until a value of Z is reached (Z.- 10') for which

-0 is the best configuration. In the "short shell' range Z < 10 higher values of y are needed

to increase the stiffness in the axial direction.

In Fig. 21 the two types of stiffener variation are compared for different shell geometries. While

for y 0.75 the linear variation is superior, the opposite holds for y = 0.5 and 0.25.

For axially compressed isotropic thin cylindrical shells the experimental buckling stressns are

much below those computed by small deflection theory. Recent experimental results [4] [6] and (19]

have, however, shown that heavily stiffened shells can be adequately analysed by linear theory. With

closely spaced and relatively large stiffeners, experimental results fall within a few percent of the

theoretically computed loads. For small values of y the edges of the shell are relatively under-stiffen-

ed, and '.cne the aipplicab~lity of linear theory is in doubt. "1erefore, the variation ratio y = 0.5

seems preferable, even though for long shells y - 0.25 yields higher structural efficiencies than

y = 0.5, (see Fig. 18).

3.4 COMPARISON BETWEEN THE GALERKIN METHOD AND THE METHOD OF "CORRECTING

COEFFICIENTS"

The nunaerical results of the preceding sections were obtained by application of a Galerkin pro-

cedure to Eqs. (5). The stringer-tsufleued axially compressed cylindrical shell is solved again by the

method of 'Correcting Coefficients% the details of which are given in the theoretical analysis. 'he

results are compared to the more accurate ones obtined in the last section.

The expressions of Eqs. (31) were used for the correcting coefficients, with the implied assump-

tion that the radial displacements at buckling have one half wave in the axial direction. This assump-

tion is incorrect for low valuee of y, where the "edge bucklicg" pattern dominates.

In Fig. 22 and Table 4, the ratio P./P , as obtained by the two different methods, is plot-

ted versus Z for different values of y. For y 0 0.75 the maximum difference amounts to lens then

1%; but for y =0.5 it is 6%.

In general, the smaller y the larger the differences. Typical cases computed with y, 0

Oro



4-

25

showed differences of wore than 100%. The discrepancies result from a poor choice of the correcting

coefficients. A better approximation (which was not used in the present work) employs Eqs. (32) for

computation of the coefficients. Mathematically speaking, the method of "correcting coefficients" has

no rigorous proof of convergence. It is based on physical and intuitive arguments. In [15] where the

method was used for the first time, the results were not compared to those of a more rigorous solution.

An approximate evaluation of their accuracy is obtained from the results of the present solution.

The main features of the method are:

a) reduction of the order of stability determinant of Eq. (17).

b) quicker convergence for the same number of terms in series 27) than the more accurate solution,

c) :he values of the loads it yields are non-conservative,

d) its accuracy depends to a large extent on the choice of the correcting coefficients.

3.5. CYLINDRICAL SHELL UNDER HYDROSTATIC PRESSURE AND STIFFENED WITH UNIFORM

STRiNGERS AND RINGS OF NON-UNIFORM HEIGHT.

Uniformly ring-stiffened shells under hydrostatic pressure may buckle in one of two possible

shapes, see [1]. For short shells, Z < 1000, and relatively heavy stiffeners, the n # I bucxiing

shape is dominant reducing the efficiency of rings drastically. In f 10] stringers were combined with

rings to improve the structural efficiency. It was rJown there that longitudinal stiffeners of cross sec-

tional area amounting to only 5-10% of that of the rings, increase the buckling load of the 3hell by

50-70%. Further increase in the stringer area (with corresponding sa:aler rings) reduced the buckling

pressure, because once the n= 1 mode of instability is dominant, rings te the best stiffener.

The present analysis combines uniform stringers with tiags of now-uniform height. The uniform-

ity of the stringevs simplifies the expressions of the integrals (16). reducing thereby the order of stabil-

it, matrix, Eq. (17). Further details are given in Appendix F.

Fig. 23 and Table 5 analyse the influence of sinusoidal height variation of rings on the critical

•ydrostatic pressure. For values of Z below 1000, negative gains are obtained. These losses in ef-

fic;*ocy may be r~tributed to the two main causes:

a! For short shells, Z < 10t,., iformly Ptiffened shells buckle in an n A 1 deflection shape,

With non-uniform rings, the overstiffening of the middle of the shell, at the expense of the edges, causes,
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therefore, large losses of efficiency in this range of Z.

b) Fcr lateral pressure, an "edge buckling" pattern dominates for certain values of y and shell

geometry. A similar effect occurs in the case of hydrostatic pressure loading, and-reduces the efficienz-

cy of non uniform stiffening.

These effects will henceforth be referred to as the "first" and "second" effect.

For short shells with Z below 100, Fig. 23, the first effect dominates, and there if practically

no -. ;a in load. For longer shells the curves go through a minimum whose magnitude depends primarily

on tho aecond effect. The lower the y tL.e larger the inefficiency of non-uniformed stiffening. ' Note

that the curves to the right of the discontinuities in slope in Fig. 23, represent a = 1 buckling shapes.

The magnitude of the gain is then similar t: that obtained for lateral loading, Fig. 12. In order to ex-

plore possible improvements in the structural efficiency of shells (for stability), different combinations

of stringers and rings (of constant weight) were analysed. The results are presented in Fig. 24 for a

variation ratio y - 0.5. ' Results for other values of y are given in Table 5. Each curve in Fi E. 24

has two discontinuities in slope. 'The intermediate range of Z, for which the n A 1 bucklinn, shape

dominates, decreases gradually with increasing stringer area. For large values of Z all curves merge

Into one.

if one aims at structural optimization, one must remember that increase of stringer area beyond

a certain limit is detrimental to the efficiency of the stiffeners. The values of (A,)_. for different

stiffener configurations are compared in Table 5 for a typical long shell (L/R=2, R/h=1000). A re-

duction of 25% in buckling load is found. For shorter shell& an increase appears instead, but it gradual-

ly -changes its sign to a reduction with increase in stringer area. ' Hence an optimum value of stringer

area exists for every shell and ring geometry. Comparison of Fig. 25 with Fig. 24 brings out the in-

fluence of eccentricity of rings. The comparison shows that with outside rings, stringers of smaller

cross-sectional area are needed. A similar behavior was already noticed in Fig. 12, where outside rings

were also found to be better.

For hydrostatic pressu'e loading, both the symmetric and anti-symmetric components of the sta-

bility matrix, Eq. :7, have to be checked carefully. Axisymmetric buckling may occur for short shells

with outside rings (see Table 5). Finally, one should remember to check the curve of load versus num-

be of circumierential waves (t) in each case for a double minimum (see Fig. 9).



APPENDIX -A

THE GEOMErTRICAL PARAMETERS OF THE STIFFENERS

Explicit expressions for the geometrical parameters of the stiffeners are given below, first for

a general stiffener cross-section and then for stiffeners of rectangular cross-section. The distance

betwean stiffeners is assumed to be uniform.

Parameter j General Definilion Rectangular Cross Seaton

j W(1- _,2) A I(x)/bh (1- _ 2) [C, (X)/hI (a,(x)/bl

()(1-_ L,2) A (x/ah (1- VI) [ c2 W (fd (/a]

V (x) 111 (x) aI (X)/R 1 4( W [ c I(x) +h1/2B R

(x) W e (x)/R A* (x) If c2(W + h1/2 R 1

12(R/h) ~x

,* 1 W 12(l- _ 2) 1 I (x)/bk 3  12i* (x) 1 1 C I(X) 12 +1 c (12,
01 12 T 4 l

'70 2 (X) 1201a2 102 (x/ab .12 cjx 22

3 2771()12 (1 - v2) G It I/Ehh [2/(0 + VA PT (x) fRd 1Ix)/b)(bWWI

)7 *(x) 1 12(0 -2) G112/Ebh 3  1d()a ah

where

If for inside stiffeners
- 1~- for outside stiffeners

Note that in the last two expressiongs, the torsion constant of a rectangular cross-section is comiputed

with the adaumption of c/d Z Hence 1, 1x~ W tC I (X) di (xb]'2.
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APPENDIX - B

THE INTEGRALS 1 (n,m) AND K1(n,m) FOR NON.UNIFORM STIFFENERS WITH A DISCONTINUITY
IN SLOPE (sos Fig. 26).

Evaluation of integrals (16) by bisection of the limits of integration is incorrect. The separa-

tion must he carried out from Eq. (5), by an analysis of two sets of differential equations for the differ-

ent domains.

Another approach to the problom uses the expression of the virtual wok instead of Eq. (1).

2w (L/R)
SU [N.SNif + N c + NX8y.0 -(M,/R)(&) - (M16/R)(&x6 ) +

(B -i)

+ (M )/R) (SIC) (M /R) + N Be + N5 Bell R 2 dxdo . 0

It should he noted that neither the forces nor the moments in Eq. (B.1) are differentiated with

respect to x.

Now e' and t' r non-linear strains defined by

f2 (W2/) (W2 /2) (B-2)

Substitution of the expression for the strains and curvatures, Eqs. (4) sad (B.2), into (B.1)

yields

2 rr LAd

8V - f [N (8u),.+N 8(vw)+NA8(v +u,)-(M./R)(aW)Z -

-(MNOI(M +(8w) N. 0 W. (8w),, + N w, (8 w),01 (R dxd.) = 0

(B-3)

Integration by parts of Eq. (B.3) yields the equilibrium equations, Eqs. (1). mnd the boundary

conditions Eqs. (7).

Displacemients and permissible variations are assumed as in Eqs. (9) and (10). The differentia-

tion and integration performed is shown on a typical term of Eq. (B.3).
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2ff (1/) 2 21, (LR)
-f f (N1,R)(,w). dxdo (D/R) .w 1 (+, 1  +()+ w0-U 1()... dxd~b

0 0 0 0

2 00 - 2 2n L/R 2
=-(D/R ), 3) f sin2 todrk fI-C. 2  ;,in n1x

0 0

* [1+17*i(x)l-C. Vt sin n13. +A n13 sin n3ix C*(x)lsinm13xdx}=

(D/R2)(2/ a 18C a . IC [(n l 9 + V t2 a2 2) Sa+ (B -4)

+ Ca n 2 m2 34 13 (a, m) -A. n m' 3 12(R/h) 2 12 (n,m z

where

2
12(n,m) = [1/12(R/h) 1(21/ir) f 4 (x) sin n/3x sin m/3 dx

13 (a, M) - (213/0f f q,* (z) sin D13x sin m&3 dx
0

The variation of the geometrical parameters of the stiffeners is assumed to be symmetric with

respect to x = (L/2R) (see Fig. 26).

1(x) - q I[(L/R) -x I (x) = C[(L/R) -xI (B-6)

Bisectaun of the 'Aimits of integration in Eav. (B.5) and use of (B.6) yields

(L/) 
(LR)13 (n. =(ll,) oir (x)einn/6x .iamftxdx+ f r,R[LIB)-x] .ianA/xainm/xdxI (D -7)

In the second integral the variable x :s replaced by y - (L/R)-x

(L/R) (WA)

( L '/) [(L/R).-xloin n1x sin m-3x i , ' "z (y) sin (ar-ay,/) sin (mw-my3) dy
(L/2t) (

(La) (B-B)

(1)a, 1 q/* (y) sin nfjy sin mfly dy

Substitutioin of Eq. (B. 8) back into Eq. (B. T) yields

13 (a, m) - (20/) [L + (-1) ] f 1, (x) sin n13x silk m1x dx (B-,9)
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The expression for l, (m,m) can be worked out in a similar manner as

a+ (L/2R)
(2(n, m) - ( /w) [1 + (-1) -f 4(x) sin nx sin mJx dx (B-l1)

2 0

The other integrals of Eq. (16) are evaluated from the variational expression, Eq. (B. 3), in a

similar manner.

B I!
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APPENDIX - C

SOLUTION OF STABILITY DETERMINANT.

Application of Gauss's algorithm to the system of equatio,2s (17) yields

~ A~

0oC Bn 101 (C-i1)

0 0 l C a

where is the symbol for an upper triangular matrix

N is a diagonal matrix

sk is an eigea-value

The last N equatioas uncouple, yielding

(M]I Id - OPNIICI (C-2)

premultiplication by W yields

(1/,A) ICI - [M- '] NJ ICI - [] 1C31 (C-3)

[ M] is a non-sgthlar matrix, as otherwise , = 0 is an eigen-value (,- 0 means zero

buckling load).

FA is not symmetric. It is, however, of the type calied Usymmetrisable", since the original

matrices ( N] and t NJ a.e symmetric and tN4 is positive definite, see (20]. The eigen-values of

R are therefore all real. The lowest one is obtained by the basic technique of matrix iteration. The

convergence is accelerated by exponential extrapolation.

It should be mentioned that the proposed method for solving the stability determinant (17) is

quick and precise. For a digital computer working with simple precision, 6 digits accuracy was ob-

taimed for matrices of order 100.
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APPENDIZ - D

NON-UNIFORM RING STIFFENERS

D.1 REDUCTION OF THE ORDER OF STABILITY DETERMINANT

If only rings are used as stiffeners,

W - q~1 () 1 W ~ ) W W( = 0 (D. 1)

The torsional stiffneas of the rings is neglected here, and therefore (see Eqs. (16))

l,(nm) = 0 j= 1, 2, 3,4 (D. 2)

The matrices [F[A FB and [ FrI degenerate i uto diagonal ones, see Eqs. (12), thereby

permitting simultaneous solution of the first N equations of the stability matrix, Eq. (.7). Hence

FA(a,m) A. + FB(n,m)B. + Fc(n,m)C. - 0

and

A F - F(n, m) B Fc (am) C (D. 3)
FA (a, ) FA (D, m)

The coefficients of the remaining 2N equations, in Eq. (17), are reorganized in the form:

[G(n, in) B + Gc(a.m) c.] = 0n # 1 , 3 ... ( D 4 )
u~-2,4 ...

H (H 8 (a,m) B + H c(,m) C . 0

GB(aM) - / 8)2. + t 2 K (a,.)
B' n~fi+[(-,A/21t 2

G ( -, m) H (a, i v[(1+ 0/21n2 . 2 t +tK (a.m)-t 3 K (nm)

Gc~~n~1) [Q -Bnm = - 2!11 ~ 2%~r1~j~t2J(0..5)
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2  
+ n22 2)2 ( , 2  1

La2  2 + [(1,_V)/21 tl 12 (R/h) 2RhK(n)

2 t 2 K 2 (0, m) + t4K a )(D. 5)

12 (Rb)2

Note that here the applied load is lateral preE're.

0.2 FORMULATION OF INTEGRALS K(au,m) FOR RINGS WITH SINUSOIDAL HEIGHT VARIATION

The variation of the height of the rings along the generator Is assumed to obey the law

C-1 (x) =C sin X+ C0 2  (D. 6)

where c is the height of a uniform ring distribution, and c* is the maximum height of the non-

uniform part.

Sinusoidal variation is analysed since both stiffened and unstiffened shells buckle under lateral

pressure with one half sine wave along the generator.

The non-uniform rings, Eq. (D. 6), are compared to uniform ones of the same weight. 'If the width

of the rings is the same in both cases the equivalent height is

Z2 = C02 + C 
2/,r (D. 7)

Tae *variation ratio", y, is defined by

Y = , , 2/ '2 (D. 8)

Substitution of (D. 7) ad (D. 8) into (D. 6) yields

c2(x) = E2 [.v+ (1/ 2)(1-y) sin Ax .9)

The geometrical parameters of the rings p4 (R), X (X) and 02 (x) :re defined for rectangular

cross-sections in Appendix A. Substitution of Eq. (D.9) into tho.te deflnit.ons yields
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(x) - (d/) a, (a + sin 1x)

X) = f[(1 - v2)/2(R/h)1 (d2/a) al (a + Sin x) [1 + a, (a + sin x)]

( 12(lv2)(d/a)al([Ca (a+sin x) 31/121+[(a+sin 6x)/4] [1+a (a+uin Ox)]2) (r. 10)

a -U - Y) 6./2) (F2/h)

and (I. 11)

a = (2 y/r)/(1-y)

The integral* KI(, m) , Eqs. (16), are now computed with aid of Eqs. (D. 10) and yield

K1 (a,m) = (1-v 2 )(d2/a) a, [a,* +L,(a, m)]

K2 (n, M) = C[(1-, 2)/2(R/h)] (d2/a) a, I[a+a2 a1 +(a,/2)] 8. +(1+ 2aa,) L1 (n, m) -

K a )=1-( v/) (a.,,,2 8.i)

K3 (n,.) = 12(1-)(d2/a) a (La a/3)+(a+a,)(I+2aa,)/4) 8. +l[(l+2aa)2+ a2)/4) L, (n,.M) -

-(a1/8) (1+ 2a a,) ( , - - (a2/12) L2 ( m)) (D. 12)

where

1 n m i -
I a -m I = 2

8' 0 a I or m 1 a0 In-mI 4 2

L (n,m) [1+(-) [ 1 - 1

L -(a-m)' 9-(0+ )"
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Note that L I(n,m) and L3 (n,m) are zero for odd values of /n-m/

D.3 FORMULATION OF INTEGRALS Kj(n,m) FOR RINGS WITH SINUSOIDAL WIDTH VARIATION

The height of the rings is uniform along the shell while the width varies according to

d2 (X) = d2sin Ox (D. 14)

The ring height distribution given by (D.14) does not include a uniform part along the generator.

The equivalent width is now

a, = d; 2/,r

Therefore

d2 (x) = (6/2) a2 sin ox (D. 15)

Substitition of Eq. (D. 15) *-n the definitions of i, tO2 and x2 yields

*(x) = (1 2 )( c/h)( /a)( 6/2) sin Ox

*(X)= ((- 2)/2(R/h](c /h)(d 2/a)[(c 2/h) + 1 ('r/2) sin Oix (D. 16)

1(x) A(c2 /h )2 /121 + I[(c2 /) + 1]/21) (/2) *in Oix

The expresoion for the integrals, Eqs. (16), is

K (n, m) = (1-v 2 ) (c 2/h) (d2/a) LI(n)

K n, n) = [((1- v2/2(R/h)] (c 2A) (42/a) [(C2/h) 2+ 2) L I (a, m

(D. 17)

K 3 n'm) 12(1_v2) (c 2h) (d/8) t[(c2/k) /121 + 2(C2(h+ 1) 1/2121 1 (n.m)

1((, M) + (-'nj [ 1 - I
= 2 1 - (n -m " 1 - (a 4 r,,
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APPEHDIX - E

MON-UNIFORM STRINGERS

E. I REDUCTION OF THE ORDER OF STABILITY DETERMINHANT

For stringers only

U2 = 'X'(X) = 0 2 (X) = 1*(X) = 0 (. 1

and therefore (see Eqs. 16)

K .(a, M) = 0 j 1 2, 3 (E. 2)

Matrices (GAl, ICB] ad [Cl degenerate to diagonal ones, Hee £.qs- P. The second set

of Eqs. (11) is solved simultaneoamly

B CA(n'M) A C(!. M)
G B (n.Gr'(n,mI)

The new coefficients of the starility determinant of Eq. (17), are

~FA am A + Fc(a,r) C.1 = 0
(E.- 41

H4A w~) A +Hc (a, w) C] = 0

where

- (kV)/21(a2$_+ t2)2 2
FA (0 M) = -22 bf a m 1(,m

[Q -v0121 a13(6,n 23 0 2-) 2 3
Fc (fi i) = HA(m~rI) - 2 oa -a m(3 1

2{a,m)

-r 2 2%2 f jv % /% 2 2 -2
r" J% _-V//4j a p W 1a2hi3

tic (nqm M/2, 2 2 + .5
12(R/bh) t2 +[(I -)/21 0f1 12 (R/h



r

i

37

n nl2 3 (nm) + t2am,9l .(nm)

22 12(R/h) 7

The applied load is here axial compression.

E.2 FORMULATION OF INTEGRALS lj(n,m) FOR STRINGERS WITH SINUSOIDAL HEIGHT

VARIATION.

The assumptions and the details of the analysit- are similar to those presented in the second

part of Appendix D for rings with sinusoidal height variation. 'rho subscript "2' (for rings) is replaced

by subscript "1" (for stringers), e.g.

C2  *. C1

C0 2 " o1

and the appropriate expressions are obtained.

The stringer distribution corresponding to the ring distribution of Eq. (D. 9) is then

c1 (x) = ' fy + (- y)(6/2) sin Ox] (E. 6)

where C is the equivalent height of stringers and y is the variation ratio.

If one inuoduces the notations

a =2y/n(-y)

and (E. 7)

a 1 [/hl [b (I-/1

the geometrical parameters of the stringer% defined in Appendix A, become

P;( W (-V 2) (at/b) a (a+sin ox)

c( l(-' 2)/2 (R/h)I (d /b) a (a +sin/3x) I +a 1(a+ .ix)]

* k ' " " (nI.0 "'- " * - v dlb i1°2 1)( i /x "+(1 )( i/x ,l( i /x] (I 8)
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1*1 W - 2 (1 -v) (d 1/h) 3 (h/b) a, (a+sin fx) (E. 8)

Substitution of Eq. (E. 8) into Eqs. (16) yields the appmpiae integral*

[1(n,m) = (1- 2)(dI/b) a I [aB.+ LI(a,)]

12(a,.) = [(l-v 2)/2(R/h)](d1 /b)a, l[a+a2a +(al/2)]8,,+(+ 2 a)L 1 (a,m)-(a/4)(S 1-1-2-81,1)1

13(n,m) =12(1-v2)(di/b) a!([(I/3)-,sal+(1/4) (a+a l ) (1+2aal)] .

+ i(1/4) [(1+ 2aa 1 )2 + a211 L1 (a, m) - (1/8) a , a) ., - 1.-t/12) L(n,)

14 (a, m) = 2(1-v)(d 1 /h)(h/b) a, 68a, + L3 (am)] (E.9)

[1 + (-1) ] 1I I

(f (n-M)2  -(1+()'

3(1 + (-1)"+ 1 1 1 I
L 9 (ftl) 9-. (an +

L[1 + (-1)+'  1 1 El0

3 ~ ~ 1.(n _M)2 a+M

E.3 FORMULATION OF INTEGRALS ro(na) POR STRINGERS WITH LINEAR HEIGHT VARIATION

So F. 2.

c(x) = CoI + C*(2fjr)x 0 <x<'/2-$

c (x) coI + c 2-(23/r)x1 w/ < 1 <W/o

w/p - L/R (E. 11)

The equivalent height of the stringe"s is

F, = Col + (c 12) (E. 12)



39

Substitution of Eq. (E. 12) into Eq. (E. 11) yields

cI(x) = U, jy+ 2 (l-y)( 2 /)x] O<x<W/26

c,(x) = cty+2(1-y)[2-(V/)x]I (r/2) < x < (irl) (E. 13)

where y is the variation ratio, defined here by y = CoI/F1

The geometrical parameters of the stringers, for 0 < x < w/2f are obtained from Eq. (E. 8) by

(a) permutation of sin 3x to sin (20,1) x (b) use of now deiinitions for a and c , see Eq. (E. 7)

a = ./2(1-,)

al = (C1/h)[2(1-y)] (E. 14)

The explicit expressions for integrals (16) are then

1 1(nm) 2(-v
2 )(d,/b) a, a.s= + E, (n, m)]

l 2 (n,m) = C[(1-v 2)/2(R/h)] (d,/)a, [(a+a 2 a,) k. + (1 + 2 an1 ) E1 (n, m) +

+ al L 2 (n, m)]

I (n,m) = P (1-V 2)(d /b) a, (a[(a2a2/3) + (1 + 2aal)/4] B.. +

+[(1 + 2a aV2]2 E (n, M) + I(a (1 + 2aa,)]121 E 2 (s,.) + (a2/3) E (a, .))

1 4 (a,m ) = 2(l-v)(dl/hl (h/b) a, (a 8.. + E 4(nm (E. 15)
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where

n m I aI1 inl

2 (v a)' IT 1, (m +n)' (M )2 j

1 2 (- 1) 12 8 + (lUUi~) ~ )
2 3' -T n) L 2 (m + n) 2  (man)2 f

L3 t nm) 1-6[1-(-1)1 3(-1)" 96 [+(-) 2 - (n)= 3+-
4 I R)4 2~) 22

t7: (na Ml) 1 W 1(1a _____ ____

(Ei. 16)
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APPENDIX - F

COMBINATION OF UNIFORM STRINGERS WITH RINGS OF MOM UNIFORM HEIGHT

For uniform stringers, the matrices of the integrala I| (,nm), Eqs. (16), and those whose ele-

meats are FA (n,m), FB (a,m) and Fc (a,m), see Eqs. (12), degenerate into diagonal matrices.

Solution of the first N equations of (17) and simplification of the remaining matrix yields

0 (F. 1)

where

G,(n, m) = [(- )/21(t2+n2 2 )2  San + t2 K, (nM)
(1 + M)n 2 #' + [(1_V)/21 t2

,) = H' (n, m) [(1+1)/2n t + tK1 (0, m) - tK-2-(a,)m)

L 12 2 (1 + U 1) a 2p 2  + [(1 -2

Hc~n~i2 = ( 2 2)2 + 0 
4  n26 2 ( n2 2

A (t20n- 2/2) l t'K ",,, m)
- . 1 8 + K (n,m) - 2t2K2 (,,m) +_--h3 (F. 2

12(R/h) 2  J 8+ a I tK(~i) 12(R/h)2 (.)

The applied load ;n these equations is hydrostatic pressure.

Far rings with sinumoidal height variation the values of integras K! (a, m) are similar to those

given in the second section of Appendix D.

I.
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CON CLUS1ONS

The general instability of cylindrical shells with non-uniform stiffeners was analysed for lateral

and hydrostatic pressure and for axial compression. Height and width variations of rings and stringers

were considered and considerable improvements in structural efficiency were obtained. When most of

the stiffening is concentrated at the mid Itogth of the shell, an edge type buckling mode may appear

and reduce the structural efficiency drastically. Hence it was found advisable in many cases to sup-

plement the varying part of the stiffener by a uniform part. The 'variation ratio" y characterizes the

extent of the uniform supplement.

For lateral pressure loading, gains of 70-80% in general instability pressure are obtained with

rings of non-uniform height at optimal values of y . For prescribed loading conditions the gains re-

suit in 10-25% weight saving. Width variation is less efficient and rings of non-uniform width yield

only 15-20% gain# in load but the corresponding weight savings remain at 10-20%.

For axial compression, stringers with sinusoidal and linear height variation were studied.

Sinusoidal variation is found to be superior to linear variation, and gains in buckling load of 30%, with

corresponding weight savings of 10%. are obtained. A variation ratio y - 0.5 appears to be roughly

optimal.

For hydrostatic pressure loading, a combination of rings and stringers with a weight katio 10 to

1, is found to be roughly optimal. Combinations of non-uniform rings and stringers under axial compres-

sion aad hydrostatic pressure should be further investigated.

Comparison of solution by a straightforward Galerkin method ad by the method of 'correcting

coefficients" indicates that in the relatively simple case investigated here, the loes in accuracy in the

second method outweighs the numerical difficulties of the first.
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