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SUMMARY

The present work is a further step towards optimization of stiffeaed cylindrical shells. Rings
snd stringees of non-uniform cross-section are analysed as a means of vbtaining higher structural effi-
ciencies. For lateral pressure loading rings with non -uniform height oc width are compared. The gain
in generel instability pressure relative to the uniformly stiffened shel. of the same weight amounts to
70 -80%. For prescribed loading, 10 —20% weight savings are obtained. For axially compressed cyl-
inders stringers with sinusoidal and linear height variation are studied and compared. Gaias in load
and weight savings of 30% and 10%, respectively, are obtained, and the sinusoidal variation is found
to be superior to the linear variation.

Finally, cylinders under hydrostatic pressure stiffened by & combination of uniform stringers
and non-uniform rings are analysed. Different configurations are checked in order to obtain the highest

possible efficiencies.
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. INTRODUCTION

Experimental.and theoretics! investigaticns of uaiformly stiffened cylindrical shells with cloge-
ly spaced heavy stiffeners, (1] to {6], have shown that for axial compression, lateral pressure or torsion,
the deflection shape during general instability consists of one half wave in the axial direction. Excep-
tions to this rule are the cases of ring stiffened shells under axial compreesion or bydrostatic pressure,
in which buckling occurs with many waves, see [1] and {3].

One approach to higher structural efficieacies is to use non-uniform stiffeners, the intensity of
which has a maximum at the mid-length of the shell. ‘A similar approach used earlier in optimum design
of columns {7] and stiffened plates [8] achieved considersble weight savings by variation of bending
stiffness along the leagth or width of the structure.

Ia shells, this variation in stiffness can be obtained in two ways: with uniform stiffeners and
varying spacing, or with uniform spacing and varying stiffener crose-section. Obviously, a combination
of both is also possible. One may note that on account of edge effects both unstiffeaed and uniformly
stiffened cylindrical shells are actually structures of noa-uniform stiffuess in the axial direction. Non-
uniform distribution of stiffener material can compensate for the edge effects and stiffen the whell at the
weakest portion. Hence it represents an approach to optimization.

For a cylindrical sholl unequal spaciag yields "sub-shells” (between rings) of non-uniform
buckling strength. The sub-shell next to the bulkkeads, where the largest spacing occnrs is the most
pronz to buckling. The increase in general instability will therefore be overshadowed by a decrease ia
local stability. This argument has to be born in mind all along the analysis siace -ptimization is here
mainly concemed with general instability. In coatrast to cylindrical shells, conical shells are examples
of structures where non-uniform ring spacing is very efficient. In [9] and [10] an optimum weight analy-
sis yiclded weight savings of more thaa 25% for non-uniform ring spacing.

Variation of stiffener cross-section is the altomative method of atiffnese variation along the
length. In cylindrical shells, such an epproech to general instability optimization does not influence
the instability of the sub-shells. It is assumed that the influence of stiffener rigidity on local shell in-
stability is small. Since local stiffener instability is rarely a design criterion, the change in stiffener

buckling streugth is not conaideced.
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The theoretical analysis was performed on st gers and rings of rectangular cross section. The
height or width of the stiffeners may be changed along the generator. In some cases a combinetion of
both variations yiclds the most efficient structure. ‘Some typical wariations of stiffeners are shown in
Fig. 2. ‘Note that in practical designs only part of the width or height of the stiffeners is varied. ‘Height
variation is clearly more effectivc since the moment of inertin of the stiffener, which determines its
main contribution to the stiffness of the shell, varies according to the thitd power of the height. The
maximum permissible height is, however, fixed by practical considerations, such as for example :

1. The thickness of commercially available plates for stiffened cylinders of integral construction.
2. The maximum feasable sleaderness ratios.

These constraints are sometimes 8o severe that the relatively inefficient width-variation is pref-
srable. It may be mentioned that the machining difficulties which arise in the case of height variation
do not appear in the case of width variation.

Both types of cross-section variation and different laws for this variation (linear, sinusoidal,
see Fig. 2) are considered. The type of stiffeners to be used (rings. stringers or combination of both)
depends mainly on the external loading. For luteral pressure and torsion, rings alone are the most ef-

ficient, see [1] and [2] while for axial compression & combination of rings and stringers is the best,

(10] and [18].

2. THEORETICAL ANALYSIS
2.1, DIFFERENTIAL EQUATIONS AND BOUNDARY CONDITIONS.

The analysis starts with the same main assumptions as [}1]. For the sake of clarity they are
repeated here.
a) The stiffeners are distributed, or "smeared”, over the whole surface of the shell. A more rigor-
ous analysis that takea the diocret‘;ua of stifieners into acezunt is given in [12] and [13]. it is shown
there that unless the number of rings is less than 3 -4 the difference between the buckling load predicted
by “distributed” and "discrete” theories is negligeable.
b) The normal strains ¢ and ‘4 very linearly in the stiffener as well as in the sheet. The nor

mal strains in the stiffener and in the gheet are equal at their point of contact.
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¢) The stiffenecs do not transmit shear. The shear membrane force N *p is carried entirely by the
sheet.
d) The torsional rigidity of the stiffener cross-section is added to that of the.sheet (the actual in-

crease in torsional rigidity is larger that that assumed).
e) The strain displacement ralations are similar to those used by Donnell in (14].

The equatioms of equilibrium for buckling under axisymmetrical loading are

NX.X+NX¢,¢ = 0

I?¢,¢+Nx¢,x =0 (l)

M,'“ +M¢,¢+M¢x.'¢-hix¢.'¢+RN¢+RN!0 wo"+RN¢°w’¢¢ =0

where 2, x and ¢ are non-dimensional co-ordinates (see Fig. 1).

The stress-strain rzlations differ for shell and stiffeners and ace

o,(2) = [E/Q-e, + veg =2z, + vag))

— in the shell

0¢(z) = (E/(1-42)] [c¢ +tve, v z("qS + vk )]

o, {2y =E( - zk,)
~ in the stiffeners

0¢(2) = E ((x - ZK¢)

Note that in Eqe. (2) the middle surface of shell is used as reference line. Hence, the forces

and moments acting on an element become

=z
[

o = ERO-e10, 11+ u3 0]+ vy —x X} (0}

(ER/CH =1 ke (1 + 3 ()T 4+ ve, =iy x3(0) )

)
%

(Eb/2Q0+ 0]y

P
=
"
L}

-(D/R)lxxll'rr);l(x)]+vx¢—cx(';(x)l (3)

-(D’/mlx¢[l + 5, ()] K, reg &y (0

-
]

—
.
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Mg =D/R{1 —van} (0] kg

qu. ==(D/R)(1-v+ n:‘z(x)] “x (3)

The curvatures in Eqs. (2) and (3) are non-dimensional, the physical parameters having been
dividedby R. u}(x), uf(x), 93, (x)s 53,00 43, (x) and p}; (x) are the changes in stiffness due
to non-uniform stringers and rings while x7(x), x3(x), {(x) and {}(x) represent similar contribu-
tions due to the eccentricity of stiffeners (positive for inside stiffeners and negative for ouiside onss).

Their definitions in terms of stiffener geometry for any type of cross-section and for the particular case

of rectangular cross-section are given in Appendix A. Note that for constant stiffener cross-section
Egs. (3) degenerate to Egs. (5) and (6) of {11].

The strains and curvatures are defined, as in [14), by:

(4)

Substitution of Eqs. (3) and (4) into Eqgs. (1) yields the equations of equilibrium in terms of

displacements

U+ =1)/2u g + (M40l 2w g —rw | +u i) -lw X ()], =0
Vigp =2y s W/ B u o w g (v, g = w, ) i3 () = w g x5 () = O
Vo w1y O], = lu R0, £ gy sy () + 2w gy = v ) £300) +

+iw g lnd (0 +nf, COI 12(ﬂ/h)zl(w—v.¢)l 14pg (x)lwu'=i+(pR3/D)w'¢¢ +(PR/2mD)w =0 (5

e aa i A 4
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The prebuckling membraus sicesses for a combination of axial and lateral loadings are:

Nxo =~ (P/22R)
(6)

Equations (5) are a set of three linear homogenous partial diiferential equations with varying

coefficients. The usual simply supported boundery conditions are assumed:
X = 0 .nd L/R (7)

Two methods of solution are proposed. In the first, a straightforward Galerkin procedure is ap-
plied to the three equations transforming them in‘o infinite sets of linear algebraic equations. The
seccad employs an approximate procedure which "corrects” the first two stability equations and then

solves the third one by a Galerkin procedure. Numerical comparisons between both methods are carried

out‘

2.2, SOLUTION BY GALERKIN'S METHOD

The variational equivalent of Eqgs. (5) is written as

L/R 2nm

‘l; ) lu.n + [(1-)/2] b+ [(1+)/2] VT VWt [u.xu'l'(x)].x - [w.nx;(x)].xwu dxd¢ =0
L/Roztr

[ ({ iv'¢¢+[(1-—v)/2]v'n + [(1+v)/2]u'ms —wW gt (V’M —w,¢) B3 (x) - w'mx;(x)l Svdxdo=0

(-]

LR 2n
[ f{v‘w +lw g ng ] = lu  CT0] o w g mgo () + 20w g v 5 g ) €3(x) +

0 0

A s 7y (60 + 2 OB+ 12R/0) tow v ) 11+ 3001 — v} + GR*/DYw, g +

+(PR/21D) w'n}Sw dxdg = O (8)

Ths displacement components are expanded into Fourier s~ries in the axial direction
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u =eint¢§t\acosnﬁx
awx]

v =coat¢§B sin n @ x
n=] °

W = sintg .E‘ C,siangx
nx]
Series (9) fulli

il the boundary conditions, Egs. (7).
A penaiasible variation of Egs. (9) is

8“!! =

einta&cosmeb’Am

Sv, = cost ¢ sin mBx 8B

dw, = sint ¢ sin me&C'Iu

Substitution of Eqs. (9) and (10) into Egs. (8} yields

& A, F, )t BF, (o) + C_F, o] 5A_ =0
5 (4,6, (@:m)+B Gy (,m) + C, G, (a,um)) 5B_ =90

a2y A Hy (o) +B_H (a,m) + C.He um)l 5C_ ~ 0

whete the F'a, G's and H's are defined as
Falom) = 28’ + (1~ )2 2] Bum + 228" L, (0,m)

Fylom = G, (a,m) - (1 -2t 5.

Fola

) = H, (mn) vaBs -nzmﬂalz(n.n)

Cglnm) = 1%+ [1-23/21028") 5+ 2K (a0

=R

Gelaym) = Hy (um) = ¢ [8!“" + Kl(n,m)] —tus(n.m)

{9)

(10)

{11

(12)

(13)

A
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He Gumd = 11+ % + 02817712 R/D) 1=, 2 + xa? 87/2/12/0) 11 5, ~ 22K, (o) +
+ K, (nom) + 4K, (n,m) + anmzﬁ‘ L (nm) + t*nm ﬁzl‘(n,m)]/lfz(ﬂ/b)zl (14)

A, and A are non-dimensional lateral and axial loading parameters respectively. I;(nm) and K, (n,m)
are weighted integrals of the functions describing the variation of stiffener cross-section. They are

defined by

(n/B)
Ki(n,m) = (23/a) g f’(x) sio o Bx sin m Bxdx i=1L2,3

£,(x) = 2 (x) £,(x) = x 3(x) £4(x) = n2,(x)

tn/B)
L ofwam) - (2/mm) J lu} (x) sin n Bx] , cos m Bx dx

(/) (15)
I, (nm) = (2/mn) { [x1(x) sin n Bx] A cos mBxdx

(n/ ()
L (nm) =2/m?aB) J (73, (x) sin a Bx] . sin m Bx dx

(n/B)
i, (a,m) =~(2/ma) ({ {nf, (x) +n%,{x)) cos n B x] , sinmBxdx

In all derivations it was tacitly assumed that the functional variation of the stiffener cross sec-
tion is a function of Class 2 (coutinuous up to derivatives of the sezond order) otherwise some of the
integrals of Eqs. (15) are meaningless. Note that the lin-ar variation (see Fig. 2) exhibits a disconti-
nuity in slope at x = L/2R. This case and ones with a similar type of discontinuity, must be handled
by a different method. Eqs. (5) which include derivatives of the functional variation, have different
meanings when x is on the right or when it is cn the left of the discontinuity, A detailed analyeis for
such cases, that assumes symmetry of stiffener distribution relative to x = L/2R, is given in Appendix

B'

After repeated integration by parts of Eqs. (15), the final results are

oim /20D
Ki(n,m) = (28/mM{1+(=1) ] [ £.(x) sinn BxsinmBxdx
¢ ° .
cem T2 i=L23
Fam) = 28/m1+(=D ) gi(x)sin a Bx sin m Bx dx (16)
4 0
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at+m (n/ 28)
l‘ (n,m) = (28/m[1+(-1) 1] g la¥, () + 5%, (x)] cos n Bx cos m Bx dx

g, (x) = p}lx) 8, (x) = x}(x) gy (x) = n5,(x) (16)

Eqgs. (16) apply to variation of stiffener cross section with continuous or discontinuous slopes.
If ope now returns to Eqs. (11) &nd uses the arbitrariness of the variations b‘Am , BBm y 6Cm one
obtains three sets of linear algebraic equations which can be written in compact form as
F, Fyg

Aﬂ
G, G5 G 4B, (an

i
(=]

H, Hy H

9]

Consideration of only the first N terms of series (9) yields stability determinants Egs. (17) of
order 3N. Each element of F.g. (17) is an NXN square matrix of which only [H.] contains the ex-
ternal load along its diagonal. The lowest eigenvalue of Eq. (17) yields the critical load for general
instability. The iategral value of t (the number of circumfcrential waves) which minimizes the critical
load must be used in computations.

According to Eqgs. (12), (13), and (14)
66,1 = tFy3 [A,] = (G, (H,) = [Fc) (18)

In Egs. (18), { ]'r represects the transpose of the matrix and {Hy] and [G] are symmetric.

The stability matrix, Eq. (17), is therefors symmetric as would be expected from Maxwell's re-
ciprocal theorem. This symmetry is of great help during the numerical computations. Integrals Ii(n,m)
and Ki (n,m), see Egs. (16 ‘e identically zero for odd valuea of the integer (n+m). Under these
conditions the stability detei. 1ant of Eq. (17) can be resolved into two aub-determinants, one of the
even components &nd one of the odd components of the displacements. The two sub-determinants re-
present symmeicic and antisymmetric buckling modes. The critical load has to be cemputed for both pat-
terns, and the one yielding the lower load is the one to be considered.

As mentioned earlier, the unknown in Eq. (17) appears only in [H, . This feature is used to
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develop a systematic solutior of Eq. (17) whose outline is:
1. Application of Gauss’s algotithm to reduce the order of matrix from 3N to N

2. Use of an iterative procedure for calculation of the lowest eigenvalue and eigenvector of the

reduced matrix.

Details are given in Appendix C.

2.3. THE METHOD OF “"CORRECTING COEFFICIENTS”

For a uniformly stiffened cylindrical shell the differential equations of equilibrium, Eqgs. (5), in
the presence of the boundary conditions for classical simple supports Eq. (7) have a closed form solu-
tion, see [3] or [11]. A non-uniform distributicn of stiffeners increases the stiffeness of the middle
part of the shell relative to that at the edges. During buckling, the deflection curve, which in the case
of constant stiffeners is a half sine wave in the axial direction, will be of similar shape with a pronounced
flatness at the middle of the shell. If one considers the 2xpressions of displacements, Egs. (9), this
means that the first term of the series is dominant, and the additional terms zorrect the basic mode only
slightly without altering its general features. This is the main assumptioa of the method of "correcting
coefficients” used zarlier [15] in connection with geaeral instability of stiffened conical shells. In the
application of the method, the varying coefficients of the first two differential equations, Eqs. (5), are
changed to constant ones. Substitutivn of series (9) into the resulting two "corrected” equations genee-
ates an infinite set of uncoupled linear algebrai: equations. Hence only the general harmonic, n, has
to be considered. The third stability equation with increments from the first and the second is solved
by a Galerkin procedure.

The variational equivalent of differential equations (1) is

2r IL/R)
Be = [JUN, o+ gl SueNy g+ Nog Jov el v Mygs - Megng *

2 b-14
+ M + RN¢ + RNxo Woxt RN¢0 W’M! (sw/RIR dxd¢-6§ IN‘&J + N‘¢5v -

Pbx.xp

R 2 x=(L/R)
~ RS (08, /R - R - 00, R N sl R 7T Lo (19)
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This equivelent is the variation of the generalis: ! potential after two integrations by parts.
Since the variations are arbitrary, the differential equations (1) and Loundary conditions (7) can ready-
ly be obtained from Eqs. (19).

To the memhrane forces. defined by Egs. (3), a set of terms, whose sum is zero is added. Then
N, = [Eh/(1 - v"")nu'x(l +k) to (V.QS - w) - w'“kzl + [Eh/(1 - )] o (o -~k 1-
- w.!x [x:(!)- l(2” = Nx + N:o (20)

where k, and k, are constants. The second term of the last expression ia Eq. (20), N_,, is called

"Error Load”: 'Similarly the membrane force N é is transformed to
N¢ = ﬁ¢ + N¢‘ = [Eh/(l-l’z)]“v'¢ -~ W) (1 + ks) + V\l.x - k‘ W'¢¢; +
+[Eh/(1 =% l(v'¢— w) {u3ix) — k3] - wzwlx;(x) - l:‘]} (21

Substitution of Eqa. (20) and (21) iato Eq. (19) yields

2 (L/B) -
[N # N g 1 BuviNg (o Ny JoveIN, | Bue Ny, bv+

+[M, .+ M¢’¢¢ + M¢x.x¢ 'M!¢-*¢ +RN¢ + RNqSo Wbt Rwa'"]

(Gw/R)} dxdg = 0 (22)

since the line integral vanishes on account of boundasy coaditions, Egs. (7), which are satisfied by the
assumed displacement series.

The corrected firat two stability equarions are thea

N,.! +N‘¢.¢ = 0
(23)

N¢.¢*N!d)’l =0

Assumpticn of a solution of the type

~AaL
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u = A_sintpcosnfBx
v = B, costg sin nfBx (24)
w = C sint¢sinnpx

and use of Figs. (20) and (21) yields two homogenous algebraic equations with three unknowns A _, B_

and C_, which are related to each other through

An = .nc 8, = {Dlu/DOu)

m
i
o

©
o

0 0 n = (DZ:/DOn)

=
L]

on = [1=012(1+k Q+k ) +k,) -v1 028”42 4 [(1 - }/A +k,)at 8

o
]

(H1+0)/21 0Btk +(1+k,) [k, 2® B’ +[(1-9)/2) aBl 22 + [(1-1)/2n* B’ [k n? g -]

]
L]

2 = [(1=0)/2 k154 {2 ak )02 Bk, - [(1=)/B 2+ ) 16+ {1 (1 +1)/2) -
ek (1+k ) n?g" = [+ W2k, 08} (250)

The third equation, with the "Error Loads”,
2y LR

0 =171 le.'!8u+N

& M
I g ®V + My,

ll*M¢,¢¢+M !,x¢-Ml¢,X¢+RN¢+

+ RN¢0 Wbt RN.o w."] 6w/ R)} dxdg (26)

is solved by a Galerkin procedure. Substitution of Egs. (25) into the expreasions of the displacements,

Figs. {9), and their variationa, Egs. (10), yielda

u = sintgp El a C cosafix Su, = a_sintgd cosme&Cm
=

v = costg il b C, sinnfx bv = b, costdsinmBxC, (27)
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w = sintg §1 C_sin n 8x dw, = sintdsinmpBxC, (27

Substitution of Eqs. (20), (21) and (3) in Eq. (26) yields

27 QL/R)
0= (I; g {[Eh/(l—vz)]i[u‘!(u’{(x)..kl)].! - [w.u(x"'(x) - kz)],x } 8u + [ER/(1-22))

‘ (V’w - W'¢) [‘li (x) - k:’]"WQM [x;(x) —le&v-(D/Rz) lv‘w + [W'xx 1’;1 (x) ).:x
(28)
_[u', {1(x) ].“ +w'¢¢¢¢q32 (x) +(2 u'w—v’w) {3(x) + [w.xw (n?, (x) +

* g (1, + I2RA [, =W (Lapd () = v J o d w g 4 Al /DB dxd
Use of Fgs. (27) and the definitions of the weighted integrals, Egs. (16), yields
£ TawC =0 M= L2
where
Tlo,m) = {Q(,m) +1[a?8” +¢2)/12(R/B)] + 1+ bt + va Ba_-[(Aa2A"/2) +
SAPI12RM TS, + 12w 81, o m) + am B’ 21, (0,m) + 1K, (0, m)]/12(R/)} -

(29}
-nm333.‘lz(n.n) - g2(2+b.t)|(z(n.m) + (l*-l)ut)l(l (n.m)}

Q(a,m) the work done by the error loads, is defined by

Qlo,m) = ll.[ll(n.m)-kl8._]-uB[lz(n.n)-k28"]lnﬁmﬁ o+
(30)
+l(l+b.h)[Kl(u,n)-k,8__]-:2[K3(l.n).-k 5,ul1th

4 sm

A finite number of terms, N, in Eq. (29) yields a set of N linear homogenous equations. For
reasons similar to those presented in the previous section, the determinant can be resolved into aub-
determinaats of the even and 0odd compoaents respectively. Again the value of t that minimizes the

ceitical load has to be used.

e

e -
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2.4. EVALUATION OF THE CORRECTING COEFFICIENTS

The accuracy of the method in predicting general iustability largely depends on the manner in
which the correcting coefficients are computed. In the present solution tuey aze evaluated by equating
1o zeco the work of the ertor loads, N__ and N¢., of the first two stability equations. This work is
computed for different permissible displacements in the same modus operandi applied in Galerkin's
method. It should be mentioned however that due to the limited number of unknowas (k,, k,,k, and
k,) the virtual work can be made to vanish for a maximum of four different displacetaents.

As a first approximation the firat termis, n=1, of series (27) are used as permissible displace-
ments. Bearing in mind the discussion at the beginning of section 2.3, this choice is very promisivg,
since n=1 is the basis mede of the deflection shape during general instability.

The error work expression, Eq. {30), then yields

]

ky = 1,{LD ky =K, (1.1)

(31)

»~
¢

, = L k, =K, (1, 1)

There are cases, however, where the first term of series (27) is not dominant, e.g. the case of

L

- 55 svffened shell under axial compression, then Egs. (31) will yiela very unconservative buckling
negs.

A mor= systematic, though less simple way of computing the corricting coefficieats is to use
the actuni displacements at buckling in the computation of the virtual work. ‘In other words, not the

fiese terme of Eqs. (27) but the whole series are used as permiasible displacements.

Then
N
2“? ma & C C 1} (am) Ina Cu] iliaa, C‘i
Kl 1 t‘: : 2 -
l‘ n"'anCn lna Cllna C}
N
b3 anCu C. Iz(n,m) a, Th anllzl in a, Cni
L, el -
5 al C: a, 1e? Clloa C} (32
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N
S (1+b,0C K mb,C, 10+b0% K ]ib,C,l

Ly
k, =

N 2
21(1 +b 0C, b A+b 0 C 1ib, C_}
N
) I C K@mmb,C, 1C 1K, ], C}
. = n,m= -
gl Coh, (C b, C,I (32)

where | |, | | are shorthand notation for row and columa matrices.

It should be pcinted out, however, that preliminary knowledge of the eigenvector is needed in
Eqd. (32). Hence an iteration procedure is requiced. As a first approximation one uses Egs. (31). The
computed eigen-vector is then used in Egs. (32). The process is repeated until reasonable convergence
of the solution is achieved.

The purpose of the method of correcting coefficients was to provide an easier, though less ac-
curate, method for solving the stability equations (5). It lead to an iterative process. In comparing
computations for both methods it is obvious that, in the present case, the loss in accuracy in the sec-
cnd method outweighs the numerical difficulties of the first. ‘However, this is not always so, since for
other types of shells (conical) or loads {torsion) a straightforward Galerkin or Rayleigh-Ritz procedure
might be very cumbersome.

In the present work both methods were used for solving & typical problem. Compariscn of the
results yielded important information as to the accuracy of the approximate method of "correcting coef-

ficients " and its computional tir.¢ saving.

3. NUMERICAL RESULTS AND DISCUSSION

3.0 INTRODUCTION

The theoretical analysis considered a general non-uniform distributioa of atiffeners, symmetric-
al with respect to the inid-length of the shell. In order to obtain an estimate of the possible gains in
load for a constant structure weight or of the weight saving for a constant load, cae musi now solve

the problem numerically for typical laws of stiffness variation. The cases considered here are:
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D Cylindrical shells subjected to lateral pressure and stiffeaed by rings of non-uniform width ct
height.
2) Axially compressed cylindrical shells stiffened by stringers with sinusoidal or lincer height
variation.
3) Cylindrical shells subjected to hydrostatic pressure and stiffened by a combination of uniform
stringers and rings of non-uniform height.

All cases were solved by the more rigorous Galerkin procedure. Case 2 was afso solved by
the approximate method of "correcting coefficients”. The shape of the cross section was assumed

ractangular for all stiffeners.

3.2, LATERALLY LOADED CYLINDRICAL SHELL STIFFENED WITH NON-UNIFORM RINGS

3.2.1. APPROXIMATE ANALYSIS

Lateral pressure loading is of less practical importance tuan hydrostatic pressure but is casier
to handle analyticly. Hence it is considered first. 'Now general instability under lateral pressure oc:
curs, for unstiffened cylindrical shells as well as stiffened ones, with one wave in the axial direction,
sec [1] and {16]. Hydrostatic pressure is a case of combined loading (axial and lateral pressures) and
yields buckling shapes that are combinations of the modes occuring under the axial and lateral compo-
nents. This interaction was analysed for stiffened shells in [1] for a large range of sheil and ring ce-
ometries. It was found there that for shon und thick shells (small Z) general instability occured wita
many waves in the axial direction. From these arguments one can qualitatively conclude that, while for
lateral pressure rings of non-uniform Lross section varying linearly or according to half a sine wave,
see Fig. 2, might be very promising, for hydrostatic pressure the same distribution of rings will inevi-
tably lead to large losses of efficiency. This point i~ later discussed in detail. For cylinders stiffen-
~d with rings only, the firsi set of N algebraic equations in Egs. (11) uncouple, and hence the order
of the stabilitv determinant, Eq. (17), is reduced. For more details, as well as explicit expressions of

integrals (16), see Appendix D.

To get an idea of the structural sificiency of noa-uniform stiffeners, the case of rings with aon

uniform width .3 first anslysed. A closed form solution is possible if one uses the first terms of Kgs. (9)

o S
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as a rough approximation to the buckling shape for general instability.
For a width of ring varying according to f(x) along the generator, the weight saving, relative

to a uniformly stiffened shell buckling at the same load, is given by

b, /b, = [L+(A,/an)]/1 + (kA,/a%)]

v

where
(n/B) (n/B)
k = (2(]" f(x) sin? Bxdx)/(o{ f(x) dx) (33)

and 4, is the area of rings for the uniformly stiffened cylinder.
The function f{x) which minimizes the ratio (largest weight saving) was found to be Dirac's delta

function.
f(x) = &[(n/28) -~ x) (34

for which the value of the ratio is

b, /b, = (1+(A,/e0]/1+2(A,/ah)] (35)
With A,/ab =1, which represents a typical geometry in acrospace vehicles, & maximum weight sav-
ings of 33.3% is then obtained.

Variation of ring width according to Eq. (34) means concentration of the whole stiffener area ir
one bulkhead at *he mid-length of the shell, see Fig. 3. This is the direct rasuit of the approximation
=ss1med at the beginning of this section. The deflecting shape for general instobility s asaumed a
balf sine wave (n=1), hence the rings tend to concentrate in the woakest part of the shell ~ in the
middle. The o=2 buckling mcde, however, was not taken ia account, thcugh in the case prosenced in
Fig. 3 it is the one most prone to occur. The shell will, therefore, buckle locally at a pressure much
below that causing general instability of the uniformly stiffened cylinder. The efficiency si non-uniform
stiffeners is therefore made up of two opposing contributions. A primary positive c~atribution resulting
from the strengthening of the weak mid-length of the shell, and a secondary negative contribution due
to the weakening of the shell close to ths edges that may then buckle prematurely. This premature

buckliag mode will hencefosth ve called a "many wave" deflection shape in the axial direction.

L 3




5

%

e

i

Fn 1 R0 20 e 5 Sl i

gy
F

17

3.2.2. RINGS OF NON-UNIFORM HEIGHT

In order to obtain a better feeling for the influcnce of the opposing contributions on structural
efficiency, different types of height variation were analysed. In Fig. 4 the non-dimensional ratio
¢,/ T, that describes the variation of the height of the rings along a generator, is drawn versus x
for different values of the parameter y. y the "variation ratio” is the ratio between the weight of

the uniform part of the ring to their total weight and its values are restricted by the inequality

0<y<1 (36)

y = 1 represents the case of uaiform stiffeners, while y = 0 the one where the entire height of the
ring varies & >wsotdally with x. The smaller y the more of the stiffeners weight (which is kept con-
stant for all the values of y) is near the mid-length of the shell.

In Fig. ' 5 the radial displacement ai buckling is given for a short shell and different values of
y+ The parameters e,/h and A,/ah are those of the equivalent uniform rings (weight equivalcnce).
This equivalency will be used later on for computing the efficiency of non-uniform stiffeners. For
y = 1 the deflection is a helf sine wave; a Jdecrease in y distorts the buckling shape so as to flatten
its extremum at x ~ (L/2R). It is worth mentioning that, except slight corrections in shape, the curve
still resembles the basic half sine wave in the axial direction. This supports the intuitive acgument
given in Section 2.3. As 1y is further decreased, however, a change ir behaviour is observed. For
y =0.25 two complesely different deflection curves are drawn. One repreaents the norm:l shape with
one buckie along the generator, whereas the other represents a "multi-wave” behavior with relatively
small displacements at the middle of the shell. During the process of minimization of the lowest eigen-
value of {17) relative to t, a double minimum cueve is found (see for example Fig. 9). ' Each of the
extremus represents a diffecent buckling mode, and the one yielding the lowest buckling pressure is
physically significan*. In Fig. 5 both deflection curves were drawn for y = 0.25 beceure they both
occured at almost the same value of the externel pressure. (The diffecence in A, was of the order
of 0.9%). For y =0 the o £1 buckling mode is dominant.

In Figs. 6 and 7 the radiel displac:ments are given for two other shells of different geometry.

The longer the shell the more pronounced is the mode change. The term "edge buckling® can be ap-

: ﬁh\kfu;




plied to the "multi-wave” buckling pattern in the sense that very rapid changes in the displacements
take place in the neighbourhood of the edges. The magnitude of the displacements is zero for more than
70% of the length of the shell. 'In Fig. 7 two curves are again drawn for y =0.25 for the same reason
as befors in Fig. 5.

In Table 1 the computed eigen-vectors are given for the deflection shapes of Fig. 7. For y ~0
and 0.25 the two columas, represent two possible buckling shapes. The first is the so-zalled "n=1"
mode of instability. This name is fully justified siace C, is much larger than the other coefficients.

The second column represents the n# 1 buckling shape. It is characterised by:

a. poor convergence of the stability determinant, Eqw (17);
b. a large number of circumferential waves (see table 1};
¢ none of the terms of the displacement series, Egs. 9, dominates.

-For the particular case y =0 the terms Cj, C;, and C,, are of similar wagnitude.

In Fig. 8 the deflection curves for the same geometries of shell and rings as in Fig. 6 are given
for outside rings (ez/h <0). There is a noticeable influence cf the eccentricity on the efficiency of
the non-uniform variation of stiffeners. A comparison of Figs. 6 and 8 shows that for outside ringe the
*multi-wave” buckling shape is postponed tc lower values of y. As will be seen later, this increases
the gain in ioad.

Figs. 6 to 8 clearly show that from a certain value of y (the actual value denends on the shell
geometry) down, an "edge buckling” pattern dominates, leaving the middle part of the shell relatively
uaderformed. Numerical results for this "edge buckling™ mode show large loesss in eificiency. The
bucklicg load amounts to less than 50% of that obtained with uniform stiffeners. The physical argumeats
behind those losaes are similar in nature to those preaented in ihe analysis of Eq. (34). 'In other words,
the owretiffening of the middle part of the shell leaves the neighiourhocd of the edyes relatively weak
and therefore very prone to buckling.

In Fig. 10 the gain in load ?,,/P., is drawn versus y for different shell geometries. Most of
the curves have a discontinuity in slope at certaia values of y that may be denoted y_. ‘For y >y,
the deflections during buckling have one basic wave along the generatos. Decrease in y from y =1
oy, tesulls in a monotonous iacrease of the gain in load. To the left of the discontinuity the "edge

buckling” pattern dominates, leading to losses in efficiency.
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For y =y,. ons obtains he highest gains in loed for a certain shell geomotry. Its value varies with
Z. For very short shells, for example, no *multi-wave® pattesn takes place and therefore, Ve, =0 i8
the optimum variation ratio.

In Fig. 11 the optimum gein in load, obtained st y = Y., (see Fig. 10); is plotted versus the
shell geometry parameter Z. For very low values of Z, Z < 30. Yy, is zero. In the intermediate
range 30 <Z <100 very rapid changes occur in the value of Ye. Csusing the changes in curvature
that appear in Fig. 11, Further away from the perturbed region the rise of the curve is monotonous. It
should be noted that for long shells, the mode transition is very sharp, see Fig. 10, and causes very
large losses in efficiency. A small margin of safety is, theeefore, advissble and variation ratios slight-
ly larger than Y., hould be employsd. The larger gains in load obtained with outside rings are some-
what overshadowed by the superiority of uniform inside rings over outside oaes, wee {1},

In most problems of practical interest the geomstry of the shull as well as the applied loads are
given. The designera’ job is to find the configuration of stiffeners yielding minimum weight. Care
shoula be taken about physicel and practical cons¥raints such as yielding of material, maximum permis-
sible ring or stringer height, eic.

The procedurzs described in Chapter 2 for selvisy ditforontint equations (5) ace often known as
the "direct” problem: Computation of the load causing geners! instability for given stiffener and shell
geometry, The "indirect” problem of firding the ring geometry for & given load is in genersl more dif-
ficult. One assumes different values for the ring geometry and computes the corresponding values of
the buckling load with one of the methods of Chapter 2. Whea these valuos are close enough to the load
given in the data, a regular falsi method is used to increase the coavergence of solution.

In Fig. 11 the weight saving equivalent of the gain load, giver by the full curves, is plotted
versus Z. Its magnitude is never larger than 10~15% . It should be carefully noted that the present

analysis is not an optimization procedure in the sense of [17) and (18] because :

a. only general instability of the composite structure is anelysed,
b. the weight minimization is on stiffener configuration oanly, wheroas the thickness of shell is kept
constant

P

in Fig. 11 the weight of the rings 12 only 1/3 of the total weight (Ay/a = h/2). Thetefore, maving
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15% in the totsl weight of the shell, by using non-uniform stiffeners, is eguivalent to a 40% saving in
the weight of the rings.

The structurel efficiency depends to a larg" extent on the area ratio of the rings (A,/eh), and
the larger the area ratio the larger are the weight saviags. Typical computations have shown that for
(A,/ah) = 1 they amount to 20— 25% of the original weight of the unifermly stiffened shell.

In Fig. 12 and Table 2 the gain in load is plotted versus 7 for different values of y. The
fiest two curves for y = 0.75 and 9.5 show a continuous, monotonous rise of efficiency with Z. The
radial displacements at buckling have one lobe in the axial direction. For y = 0.25 the curve for in-
side rings has two discontinuities in slope. 'In the intermediate range of Z, the "edge buckling” pat-
tern dominates and causes lceses in efficiency. It should be mentioned that the curve for outside rings
and the same value of y is continuous. 'The curves for y = 0 are mainly of academic interest, since
they emphasize the consequeaces of understiffened edgea on general instability.

In Fig. 13 and 14 the influence of ring cross-sectional area A, and magnitude of eccentricity
(e,/h) on the gain in load is investigated. Comparing respective curves in Fig. 12 and 13 shows
small differences in gain. On the other hand, the curves in Fig. 14 are of somewhat different nature.
fhe "edge buckling® pattern appears already for y = 0.5, while for y =0.25 its zone of influence
extends to a larger range of Z. This is not surprising since increasing the equivalent height of rings
from (e,/h)=5 to (~./h)=10 results in overstifiening the middle part of the shell. A clearer picture
is obtained in Fig. 15 where the gain is plctted for different values of (e,/h) and a constant y. For
(e,/b}=3 the curve is continuous with relatively high gains for all the spectrum of Z. For the other
values of (e,/h) the efficiency gradually decreases and may even change i*s sign. While Fig. 15 anal-
yses the influence of (e,/h) on the "edge buckling” pattern, Fig. 16 does the same for a pattern with
one buckle along the x axis. For long shells (large Z) Fig. 16 shows larger gains in load the larger
the eccentricity. In the left part of the figure (small Z) the behavior of the curves is similar that in

Fig- 15 .

3.2.3. RINGS OF NON-UNIFORM WIDTH

When comparing a height and width variation of rings, the superiority of the first is almost
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obvious. since the stiffeniag material is then used in a more efficient way. ‘In many cases, however,
practical constraints rule out the use of height variaticn, leaving only width variation as a possible
method of optimization. The explicit formulation of integrals (16) for a sinusoidal width variation is
given in the third section of Appendix D. The absence of stringers simplifics qs. (12) vielding

2N x 2N stability determinant. ' The algebraic details are similar to those given for height variation
(see Appendix C).

Numerical results show that in the present case a variation ratio y =0 yields, at buckling, a
defléction shape with one lobe in the axial direction. Computations were carried out for'a large spec-
trum of shell and ring geometries.

For larger values of y the same mode persists leading to o gradual decrease in efficiency.
Hence only the optimum y is used in the computations. It may be recalled that in the case of height
variation of rings, y =0 yielded very low efficiencies. If one aims at a physica! explanation of the
difference between both variations, one finds that a non-uniform width understiffens the edges in a
milder way postponing the appearance of the "edge buckling” pattern. !n the mathematical formulation,
the diffsrence between width or height variation according to sin Sx lies in the fact that the bending
stiffness of the ring changes according to sin Bx and sia3 Bx respectively. The intensity of the
non-uniform distribution at the edge of the shell, given by the slope of the sia Bx and sin® Bx curves
is, therefore, finite for width variation and zerc for height variation. Since this slope is of critical im-
portance for the "edge buckling” pattern, the difference in behavior is apparent. In Fig. 17 and Table
2 the gain in load aud weight saving are plotted versus 2 for inside and outside rings. Comparison
of the results with the optimum gains obtained for height variation, see Fig. 11, confirms the intuitive

conclusions rzached at the begicning of the section. In Fig. 17 the maximum gains in load are of the
otder of 15— 20%, much lower than those for the height variation. The weight savings on ths other hand
are of ihe same order of magnitude. This is not surprising since the weight optimization was performed
in each case with different constraints. For rings of non-uniform width, the efficiency of stiffeners was
compared with that of uniform riugs of the same height and equivalent width. ' For height variation the

equivalency was ralated to the height, while the width was kept constant.




22

3.3. AXIALLY LOADED CYLINDRICAL SHELL STIFFENED BY NON-UNIFORM STRINGERS

Recent optimization studies on axially loaded cylindrical shells {10] and [18] have shown that
a combination of rings and stringers yield the highest structural efficiency. In the present analysis
only the influence of non-uniforn stringere is studied in detail- That of rings alone,is of no interest,
since alone they are very inefficient for this type of loading. An optimization with both non-uniforr
stringers and rings could yield further gains, but is not considered in this report. Sinusoidal and linear
height variations (see Fig. 2) were analysed in order to study the influence of the functional variation
on structural efficiency. 'A width variation of stringers is of little interest since it yields gains in load
of only few percents. 'In the case of stringerstiffened shells evary term of the displacement series,
Egs. 9, is a poasible solution of the seconu owal:lity equation, Egs. (5). By relatively simple manip-
ulations, the order of the matrix, Eq. (17), can be reduced to 2N. Further details, as well as the ex-
plicit expressions of integrals (16) for the two types of variation, are given in Appendix E.

In Fig. 18 and Table 3 the influence of shell geometry on the structural efficiency of non-uniform
stringers is studied for different values of y. For y =0.75 and 0.3 the curves drop monotonously
to asynptotic value p__/p., = 1. For long shells (Z > 5000) stiffened by inside stringers, the gains
in load do not justify the increase in the cost of production due to non-uniform stringers. It should be
mentioned, that in the same range of Z, even uniform stiffeners are less efficieat thea equivalent
thickering of shell, nce [3]. Comparing the gains in load for ring-stiffened shells, Fig. 12, and stringer-
stiffened ones, Fig. 18, one observes, in addition to the difference in magnitude, that the behavior with
increase in Z is reversed.

For y = 0.25, and even more so for ) = 0 (see Table 2), an "edge buckling” pattern, simila:
to the one occuring in ting stiffened shells, dominates, cansing a very rapid decrease in structural ef-
fizicncy. The reduction is even more pronounced than that occuring in Fig. 12, hecause of the different
buckling behaviors of isotropic shells under lateral and axiel loadings. 'For large values of Z (long
shelis), the single "half wave® buckling pattern is once again dominant (even for y=0), yielding higher
geins for lower values of y.

For small values of Z (Z < 100), cylindrical shells stiffened with outeide steingers buckle in

an axisymmetric mode, see also [3], causing & large scatter of t. : computed poiuta. The curves in Fig.
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18 smooth out he effect of this scatter, In Fig. 18 the influence of eccent:icity on structural efficiency
is also investigated. For velues of Z smaller than 1000, the gains in load are higher for inside
stringers. An inversion occurs at larger Z values, yielding noticeable differences between the effi-
ciency of both configerations. ' For a typically long shell, (L/R) =2,(R/h) = 1000, the gain in load is
increased from 2% to 15% by changing the position of the stiffeners. It should also be meationed that
recent experimental and theoretical investigations, [3] to (6], emphasize the wuperiority of uniform out-
side siringers over inside ones. ‘In Fig. 19 the influence of the magnitudé of eccentricity on the gain
in lad is investigated. Since a variation ratio y=0.5 is used, "edge buckiing"® is eliminated as a
poasible mode of instability. Increase in the magnitude of ecceatricity for a constart string u: area,

vields more slender stiffeners, whose height increases in inverse proportion to the decrease of the widlth.

As a result, the moment of inettia of stiffener cross section varies according to:

(1,,/b8%) = (e, /b)°

The gains in load, which are in direct proportion to the bending stiffeness of the stringers, grow

larger, the larger the eccentricity. However, practical considerations prescribe upper limits to the mag-

nitude of e.‘/b. Some of them are:

a) local buckling of stiffener as a simply supported — free plate,

b) the thickness of commercially available sheets,

c) reduction of the width of the stringer d, (see Fig. 1) beyond a certain limit, reduces the

"effective width” of the sheet betwcen the stiffeners. The present analysis does not account for the

tesulting decrease in the total stiffeness of the sheil.
ln Fig. 20 the influence ¢f y on the gein in load is investigated for two types of non-usiform

height vaciation. In the neighbourhood -~ y = 1, the two variations yield similar results. Withdecrease
in y the gain in load increases and goes through a maximum, which represents a general characteristic
behavior of non-uniform stiffeners. In the case of rings, this maximum appeared as a disceatinuity in
slope, see Fig. 10. This discontinuity is caused by tranaition from an "edge buckling” pai‘ern to a
single half wave: pattern in the axial direction. 'In the preseot case of stringers, however, the transition
is continuous. For sinusoidal height variation the optimum value of y is lower than for the lineer one,

18 cQr

yielding therefore higher gains in load. Physically, this means that the linear variation is more prone

ey
i




24

to "edge buckling™ and "needs” larger parts of the stringer to be uniform along the shell. The optimum
y at which the maximum gains are obtained varies with the shell geometry. Fot long shells (large 2)
it has a tendency to move to the left of Fig. 20 until a value of 2 is reached (2= 10) for which
y = 0 is the best configuration. In the "short shell” range Z < 103 higher values of y are needed
to increase the stiffness in the axial direction.

In Fig. 21 the two types of stiffencr variation are compaced for different shell geometries. While
for y = 0.75 the linear variation is superior, the opposite bolds for y = 0.5 and 0.25.

For axially compressed isotropic thin cylindrical shells the experimental buckling stresscs are
much below those computed by small deflection theory. Recent experimental results (4] [6] and [19]
have, Fowever, shown that heavily stiffened shells can be adequately analysed by linear theory. With
closely spaced and relatively large stiffesers, experimental resulta fall within a few percent of the
theoretically computed loads. For small values of y the sdges of the shell are relatively understiffen-
ed, and Lenze the applicability of linear thency is in doubt. - Therefore, the variation ratio y = 0.5

seems preferable, even though for long shells y = 0.25 yislds higher structural efficiencies than

y = 0.5, {see Fig. 18},

3.4 COMPARISON BETWEEN THE GALERKIN METHOD AND THE METHOD OF *CORRECTING

COEFFICIENTS”

The nuzerical results of the preceding sections were obtained by application of a Galerkin pro-
cedure to Eqs. (5). The stringer-suffcaed axially compressed cylindrical shell is solved agaia by the
method of "Correcting Coefficients”, the details of whick are given in the theoretical analysis. The
resulls are compared to the more accurate ones oblained in the last section.

The expressions of Egs. (31) were us=d for the correcting coefficients, with the implied assump-
tion that the radial displacements at buckling heve one half wave in the axial direction. This assump-
tioa is incorrect for low valuee of y, where the "edge bucklicg” pattern dominates.

In Fig. 22 and Table 4, the ratio P /P_,, as obtained by the two different methods, is plot-
ted versus Z for different values of y. For y «0.75 the maximum difference amouns to less than

I%; butfor y =0.5 itis 6%.

In general, the smaller y the larger the differences. Typical cases compuied with y=0
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showed differences of more than 100%. The discrepancies result from a poor choice of the correcting
coefficients. A better approximation (which was not used in the present work) employs Eqa. (32) for
computation of the cosflicients. Mathematically speaking, the method of "correcting coefficients" has
no rigorous proof of convergence. [t is based on physical and intuitive arguments. In [15] where the
method was used for the first time, the results were not compared to those of a more rigorous solution.
An approximate evaluation of their accuracy is obtained from the results of the present solution.

The main features of the mathod are:

a) reduction of the order of stability determinant of Eq. (17),

b) quicker coavergence for the same number of terms in series (27) than the more accurate solution,
¢) the values of the loads it yields are non-conservative,

d) its accuracy depends to a large extent on the choice of the correcting coefficients.

3.5, CYLINDRICAL SHELL UNDER HYDROSTATIC. PRESSURE AND STIFFENED WITH URIFORM

STRINGERS AND RINGS OF NON-UNIFORM HEIGHT.

Uniformly ring-stiffened shells under hydrostatic pressure may buckle iu one of two possible
shapes, see [1]. For short shells, Z < 1000, and relatively heavy stiffeners, the n # 1 buckiing
shape is dominant reducing the efficiency of rings drastically. In (10] stringers were combined with
rings to improve the steuctural efficiency. It was zaown there that longitudinal stiffeners of cross sec-
tional area amounting to only 5—10% of that of the rings, increase the buckling load of the shell by
50--70%. Fucther increase in the stringer area (with corresponding sxailer rings) reduced the buckling
presaure, because once the n=1 mode of instability is dominant, rings =re the best stiffeners.

The prasent analysis combines uaiform stringers with sings of non-uniform height. The uniform-
ity of the stringsrs simplifies the expressions of the integrals (16), reducing thereby the order of stabil-
ity matrix, Eq. (17). Further details are given in Appendix F.

Fig. 23 and Table 5 anslyse the influence of sinusoidal height variation of rings on ihe critical
hvdrostatic pressure. For valuea of Z below 1000, negative gains are obtained. These losses in ef-
ficicacy may be agtributed to the two main causes:
al For short sheils, Z <10,  .iformly rtiffened shells buckle in an n £ 1 deflection shape.

Wits non-uniform rings, the overstitfening of the middle of the shell, at the expease of the edges, causes,

Yo
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therefore, lacge losses of efficiency in this range of Z.

b) For lateral pressure, an "edge buckling” nattern dominates for certain values of y and shell
geometry. A similar effect occurs in the case of hydrostatic pressure loading; and.reduces the efficien-
¢y of non uniform stiffening.

These effects will henceforth be referred to as the *first” and "second” effect.

For short shells with Z below 100, Fig. 23, the first effect dominates, and there is practically
no z.ix in load. For longer shells the curves go through & minimum whose magnitude depends primarily
on the eecond effect. The lower the y the larger the inefficiency of non-uniformed stiffening. * Note
that the curves to the right of the discontinuities in slope in Fig. 23, represent n = 1 buckling shapes.
The magnitude of the gain is then similar to that obtained for lateral loading, Fig. 12. In order to ex-
plore posasible improvements in the structural efficiency of shells (for stability), different combinations
of stringers and rings (of constant weight) were analysed. The results are presented in Fig. 24 for a
variation ratio y = 0.5. ' Results for other values of y are given in Table 5. Each curve in Fig. 24
has two discontinuities in slope. ‘' The intermediate raage of Z, for which the n #1 buckling shape
dominates, decreases gradually with incressing stringer area. 'For large values of Z all curves merge
into one.

if one aims at structural optimization, one must remember that increase of stringer area beyond
a certain limit in detrimental to the efficiency of the stiffeners. The values of ()\’)u for differcat
stiffenes configurations are compared in Table 5 for a typical long shell (L/R=2, R/b=1000). A re-
duction of 25% in buckliag load is fonnd. For shorter shella an increase appears instead, but it gradual-
ly changes its sign to & reduction with increare in stringer area. ‘Hence an optimum value of stringer
area exists for every shell and ring geometry. Compurison of Fig. 25 with Fig. 24 brings out the in-
fluence of eccentricity of rings. The comparison shows that with outside rings, stringers of smaller
cross-sectiona} area are needed. A similar behavior was already noticed in Fig. 12, where outside rings
were also fouad to be better.

For hydrostatic pressare loading, both the symmetric and anti-symmetric components of the sta-
bility matrix, Eq. 37, have to be checked carefully. Axisymmetric buckling may occur for short shells
with outside rings (see Table 5). Finally, one should remember to chzck the curve of load versus num-

ber of circumierential waves (t) in each case for a double minimum (see Fig. 9).
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APPENDIX

2-v

A

THE GEOMETRICAL PARAMETERS OF THE STIFFENERS

Explicit expressions for the geometrical parameters of the stiffeners are given below, first for

a general stiffener cross-section and then for stiffeners of rectangular cross-section. The distance

betwezn stifteners is aasumed to be uniform.

8 Parameter Genenral Definition Rectangular Cross Section _
w(x) (1-4% A, (x)/bh (1-v*) Le, (x)/b]{d, (x)/b]
#3 (x) (1-1%) A, (x)/ah (1-1%)[ ¢, (x)/h]{d, (x)/a)
¥ 00 §3(x) o, (/R k3 () Hey () + b1/2R |
¥300 43 () o, (/R k300 Ley () +B)/2R )
) 12R/h) x 30
30 1ZR/) y 3(x)
A 12(1 =43 I, (x/bb’ 12, (0 L °‘£"’ N +lins e g
ne, (%) 1201 =) 1, (x)/ah" 12,2 ()1 l_‘zli*.é.‘.)lz +20 +°2:")12l
7t (x) 1201 -, GI, /Ebh’ [2/01 + )] 3 () 144, Le)/b) b/m]
7t 0 121 - 1) GI,,/Ebh’ (2/01 4 0] w3 () 1, (xV/a) a/B)
where

{ 1 for inaide stiffeners
¢ =

-1 for outside stiffeners

Note thet in the last two expressions, the torsion conatant of a rectanguler cross-section is computed

3
with the assumption of ¢/d 2 3. Hence I, () ={e,(x)d (x}}/2.
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APPENDIX .- B

THE INTEGRALS [, (n,m) AND K;(n,m) FOR NON.UNIFORM STIFFENERS WITH A DISCONTINUITY
IN SLOPE (see Fig. 26).

Evaluetioa of integrals (16} by bisection of the limits of integration is incorrect. The separa-
tion must be carried out from Eq. (5), by an analysis of two sets of differentia! equations for the differ
ent domains.

Another approach to the peoblem uses the expression of the virtual wok instead of Eq. (1).

2 (L/R)
w - { { [Nxbfx '4'N¢8E¢+Nx¢8yx¢‘(Mx/B)(8K')"(M¢/R)(8K"/)) +

(B-1)
4 I d 2
+ (4, /R (8, g) — My /R) (8, ) + N, 8¢l + Ny IR dxdg = 0

It should be noted that neither the focces nor the moments in Eq. (B.1) are differentiated with
respect to x.

Now ¢/ and (é aro non-linear strains defined by
« = (w'zx/ 2) &% = (w"d,/Z) (B-2)

Substitution of the expression for the strsins and curvatures, Egs. (4) aad (B.2), iato (B.1)
yields
2r LR
Sv = { { [N. (Su).! + N¢6(v'¢ —w) 4+ NWSS(V',K + u’¢) - (!\&x/l'()(bw)'u -
~ MR (Bw) 5 + M /RY(Bw) N W (Bw) , +Nygw , (Bw) )R dxdg) = 0
(B-3)

Integration by parts of Eq. (B.3) yields the equilibrium equations, Eqs. (1), und tke boundary
conditions Eqs. (7).
Displacements and permissible varistions are assumed as in Eqs. (9) aed (10). The differentia-

tion and integration performed is shows on e typical teem of Eq. (B.3).
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27 (LM 2n (L/R)

_g g M, /R)(8w) , dxdg -(D,/Rz‘, A’ ‘I; tw o [eng, (O] + Wb —u  {THEwW)  dxdd =

2 oo . g 27 /R 2
=-(D/R) zliacm(mﬂ) { sin?tpdeh gl—-Cnnzﬁ ~in nBx -
- (1493, ()]1-C_ vt? sin op: +A_np sin afx (;(x)lsinmﬁxdx}=
2 o d 4 2
= /R (*/28) {sc i tntp'rina2phr s, + (B-4}
+C_a2m?p' L (a,m) ~A_nwe? g  12(R/M) 1, (a, m)} }

where

v )
I, (aym) = [1/12(R/h)2] (28/m) { {}(x) sin n Bx sic m B dx

(L/R) (B-5)

I, (a,m) = (28/nm) 6f ng, (x) sia 0Bx sia mPBx dx

The variation of the geometrical parameters of the stiffeners is assumed to be symmetric with

respect to x = (L/2R) (see Fig. 26).
gy (x) = 7% [(L/R) - x] {10 = {3UL/R) ~x] {B-6)

Bisectivn of the limits of integration in Ece. (B.5) and use of (B.G) yields

(LR) L/R)

(
1 (n,m) = (28/")‘{ 791(x) sinaBx siamBxdx + [ ng; [(L/R) ~x] sin nBx sio mBx dx} (B-7)
(L/2R)

In the second integral the varisble x :s replaced by y =(L/R)-x

(L/R) (L/2R)
‘ - 3
(L/{m?o‘ {(L/R) -x]sia nBx sin mBx dx = { oy (y) sin (ar—syB) sin (mr-myB) dy

(/) (B-8)

=

<0 { 13, {y) siz aBy sio mBy dy
Substitution of Eq. (B.8) back into Eq. (B.7) yields
atm &/2R)

iy{o,m) = 28/m {1+ ] { ng, (x) sia 8Bx sio mBx dx (B-vy)
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The expression for I,(n,m) caa he worked out in a similar manner as

rim,  (L/R)
I, (n, m) = (28/m (1 + (1) ™ (j" x }(x) sin 28x sin mBx dx {B-10)

The other integrals of Eq. (15) are evaluated from the variational expression, Eq. (B.3), in a

similar manaer.
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APPENDIX - C

SOLUTION OF STABILITY DETERMINANT,

Application of Gausa's algorithm to the system of equations (17) yislds

[ x . * ] ] ]
A F'B l:‘C An
0 ?ca’:' Gg B, > = 0] (C-1)
0 0 [M-Ny c,

\ J L ‘

where '(] is the symbol for an upper triangular matrix
N is a diagonal matriz
¢ is an eigen-value

The last N equations uncouple, yielding

[M1IC,} - vINJIC ) (€-2)
premultiplication by M yields

@/ IC,} = (M 1ENIIC, ) - (MIIC,) (C-3)

[M] is a non-siagular matrix, as otherwise ) =0 is an sigen-value (y = 0 means zero

buckling load).

M is not symmetric. It is, however, of the type caiicd “symmetrisable®, since the original
matrices {M] and FN] are symmetric and [NJ] is positive definite, see [20). The eigen-values of
M are therefore all real. The lowest one is obtained by the basic technique of matrix iteration. The
coavergence is accelerated by exponential extrapolation.

It should be mentioned that the proposed method for solving the stability determinant (17) is

quick and precise. For a digital computer working with simple precision, 6 digits accuracy was ob-

tained for matrices of order 100.
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APPENDI!IX . D
NON-UNIFORM RING STIFFENERS

0.1 REDUCTION OF THE ORDER OF STABILITY DETERMINANT

If only rings are used as stiffeners,

ui(x) = 05, (x} = x3(x) = nf(x) =0 (D. 1)
The torsional stiffness of the rings is neglected here, and therefore (see Egs. (16))

L(a,m) =0 i=123 4 (D.2)

The matrices [F,1[Fg] and [F.] degenerate into diagonal ones, see Fgs. (12), thereby

permitting simultaneous solution of the first N equations of the stability matrix, Eig. (17). Hence
FA(n’m) All + FB(". m) Bll " Fc (u’ m)cn i 0

and

_ _Fs(n.m) B _Fc(n.m) C

a n .

F, (o, m) F, (o, m)

(D.3)

The coofficients of the remaining 2N equations, in Eq. (17), are reorganized in the form:

$(CglamB_ +GlamC] = 0

a ={1. 3.. .4
% 4.

b [ﬁa (a,m) B, + ﬁc {(0,m)C) = 0

[(1-1)/2] (2 +a2 87’
n? 57»,[(1-;,)/21 2

an(n.n) = 5 +t3K1(n.m)

2 a2p
V[(1+V)/ ]n B }tal-*‘Kx(n,m) _13K2(n.m)

G (nym) = H (n, m) ={l-—
[of
® n2£2+[(1—1'/2!!2

(D.5)




33

- 2 203, .23 2
H.(a,m = [1- 2(“3) + 8 +t)) - A w| 8,4 +K,(aim)
2 F =
2?8 +[(1-1)/2 12(R/h) 12(R/h)
4
- 212 K, (a,m) + t-f-ﬂ-&':g (D.5)
12(R/k)

Note that here the applied load is lateral prec ure.

D.2 FORMULATION OF INTEGRALS Kj(n.m) FOR RINGS WITH SINUSOIDAL HEIGHT VARIATION
The variation of the height of the rings along the generator is assumed to obey the law

c, (x) = c} sin Bx + ¢, {D.6)

where ¢ . is the height of & uniform ring distribution, and ¢7 ie the maximum height of the non-

uniform part.

Sinusoidal variation is analysed since both stiffened and unstiffened shells buckle under lateral
pressure with one half sine wave along the genecator.

The non-uniform rings, Eq. (D.6), are compared to uniform ones of the same weight. ' If the width

of the rings is the same in both cases the equivalent height is
€, = ¢g, tei2n (.7
Tae "variation ratio”, y, is defined by
y = /5, (D.8)
Substitution of (D.7) and (D. 8) into (D. 6) yields
c,(x) = &,y +(n/2)(1~y) sie Bx) D.9)

The geometrical parameters of the rings u3(x), ¥ 3(x) uad n%,(x) =re defined for rectangular

cross-sections in Appendix A. Substitution of Eq. (D.9) into those definit’ons yields

-
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6 = (13 ")d,/8) g (a + sin f)

X200 = [ ~vA)/2R/0)] (dy/e) ay e+ sinfix) 1+ a, (a + sin Bx)]

nea0) = 1112 (d,/0) a, {la? (a+ein ) 112+ [(a+oin B/8] (1 +a, avein GO’} (. 10)
wksre

a;, = (1-9)(2/2) (Ez/b)
and (.11
a = (2y/m)/(1~y)

The integrals K’(n. m), Egs. (16), are now computed with aid of Eqs. (D. 10) and yield

f

K, (a,m) -2 (dz/a) a, [ad, + Ll (e, m)]

K, (0,m) = ¢[(1-02)/2(R/b))(d,/a) a, lla+a® a) +(a) /D)8, +(1+2aa)) L, (0, m) -

~(a,/8) (8 5, )}

|‘c-l02“

K (n,m) = 12111 /a) a, {{{c® a}/3} +(a+a, ) (1+22a,)/4)5, +l[(l+2aal)2+ a)/4 L, (n,m)

~(a,/8)(1420a,) (5, o, =5, ) - (@2/1D L, (a,m) } (D. 12)
where
1 p=mm=l 1 ja-m|=2
5,4, = and Slm_nlz =
! 6 adlorm#l ’ 0 Jo-m|#2
L m < [14(-0"") ! 1
VR " 1-(o-m3 ~ 1-la+m)?
atm
31 (-0 ) [ 1 1
L. (o m = — - (.13
2 {0 m) n t9-lo-m* 9_-(n+mT‘r]

-
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Note that L, (a,m) and L,(a,m) are zero for odd values of /n-m/

0.3 FORMULATION OF INTEGRALS K,(n.m) FOR RINGS WITH SINUSOIDAL WIDTH VARIATION

The height of the rings ie uniform along the ahell wkile the width varies according to
d,(x) = djsin Bx (D. 14)

The ring height distribution given by (D.}4) does not iaclude a uniform part along the generator.

The equivalent width is now

d, = 4;2/n
Therefore
d,(x) = (n/2)-&29in Bx (D. 15)

Substitstion of Eq. (D. 15) in the definitions of u%, n3, end xJ yields

up(0) = (1-12c,/h)(d,/a) (n/2) sin Bx
vo(x) = ((1-v3)/2(R/h)] (cz/h)(zz/“) {feg/b) + 1)(n/2) sin Bx (D. 16)
ns,00 = 1201-.2) (e, /D) (@78} e, /b /12] + Hlfe /1) + 11/28" ¥ (2/2) wia Bx

The sxpresaion for the integrals, Eqs. (16), is

K (nm) = (1=12) (c,/h) (d,/a) L (0. )

[ (1-v2)/2(R/B)] (e, /b) (4, /a) (e /M) + 1] L, (2, m)

]

K2 {n, m)
(D.17)

K,(oum) = 12(1-12) (e,/B) (iz/a) {{(cz/h)z/ 121 + e, (b+ 1)1/2!2} L, (a,m)

W o Deer™ 1 1
i@ 2 1-(n-m> 1-f{a+m)’

W&w
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APPENDIX -~ E

NON.UNIFORM STRINGERS

E.l REDUCTION OF THE ORDER OF STABILITY DETERMINANT

For stringers only

KO = X300 = 100 = ay() = 0 .
and therefore (see Egs. 16)

Ki(n,m) =0 i=123 (k. 9)

Matrices [G,]. {Gy] and [G.] degenerate to diagonal ones, see tigs. 17. The second set

of Egs. {11) is solved simultaneously

_ GA(nvm) A G (n.m) c

= (F..3)
» Gypla,my * G (hom) "
The new coefficients of the starility determinant of Eq. (17), are
T{Fp(amiA, +Fgla,mCl =0
(E. 4
g[ﬁA(n.m) A.+ﬁc(n;ﬂt) Ca} = 0
where
2 2
= (1-2)/2)% 8" +tH
Folorm =0VBB 1) o B ()
vV +(1-:07214% 8
2
= = 1-0)/282B(va2 8 -1?
Felo,m) = Hylmn) = (1=13/2u A ”‘0'32 2 5. ~a2mp’l, . m)
t24+{(1-1)2n" R
= r 3 It Vi 2 2 Iy send Az-'l
l_!c(u.m/ = : Wi-vi/2a B - W2 F; J5 (E. 5
12(R/b)° t2 4 [(1-0)/2) 5% a 12(R/h)

Ricad
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. nzmzﬁ‘ls(n.m) + tznmﬁzl‘(n.m)

12(R/h)’?

The applied load is here axial compression.

E.2 FORMULATION OF INTEGRALS li(n.m) FOR STRINGERS WIiTH SINUSOIDAL HEIGHT

YARIATION.

The assumptious and the details of the analysis are similar to those presentsd in the second

part of Appendix D for rings with sinusoidal height variation. The subscript *2* (for rings) is replaced

by subscript "1" (for striagers), e.g.

and the appropriate expressions are obtained.

The stringer distribution corresponding to the ring distribution of Eq. (D.9) is then
¢, M = T [y +{-y)a/2) sin Bx] (E.5

where &, is the equivalent height of stringers and y is the varistion ratio.

f one introduces the notations

a = 2y/n(l=~y)

and

)
a, {8,/ [n(1-1)/2)
the geometric al parameters of the stringare dnfined in Appendix A, become
uy(x) = }—Vz)(dl.’b)u‘ (a + sin Bx)
x,(x) = d(l—u'z)/2(ﬁ/h)](dl/b)al (c+sin Bx)[1+a,(a+ein B1)]
ae () - 120102 (d, /b ay 1B /12) (avsin B) "+ (1/4) (ar sia B (14, (a +8in 8] § (E.8)

e




e

7t ()

= 2(1-1)(d, /)’ (b/b) a, (a+sin x) (E.8)

Substitution of Eq. (E. 8) iato Egs. (16) yields the approp-iate integrals

Il(n. m) = (1- vz)(dl/b) a, [asn.-o- Ll(n. m)]
L(a,m) = e[(1-s2)/2(R/W)(d,/b) a, Hlava’e, +(a) /D15, , +{1+2aa)) L., (o.m) ~(a/D (8, oy 5 ~8) )}
L(am = 12(1-1(d,/b) a) {[(1/Da? e +(1/9) (a+a) 1+ 24,5, +
/D14 2aa))” + 2L, (8,m) - (1/8) a, (14 20a;) £8)0.nt 2=y, 1)~ a}/12) L,(o,m}
[, (em) = 2(-0)(d,/B)(b/b) a, [ab,, +Ly (o m)] (E.9)
n+(-0"" 1 1
L. (a,m) = -
l(n @) ” [1-(n-m)2 1-(n+m)*
atm
3(1+(-1 ] 1 1
L, (a, = - A
2 (o) " t9-(n-m)1 9--(n+m)"]
a4m
n+(-1 1} 1 1
L. (o,m) = - E.10
3 (0m) " l--{a-m?* 1-(a+m)? (E- 10)
€.} FORMULATION OF INTEGRALS li(n.n) FOR STRINGERS WITH LINEAR HEIGHT VARIATION

see Fig. 2.
¢, (x) = ¢4y +c](26/mx 0<x<n/28
¢, ) = ¢y, +ef(2-(28/mx] n/28 <x <x/B
w/B = L/R {E.1D
The equivalent height of the stringers is
g = oy +(e1/D (E.12)
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Substitution of Eq. (E. 12) into Eq. (E. 11) yields

e, () = ¥ iy +2(1~)(28/mx] 0<x<n/28

¢, (x) e, ly+ 2(1-y){2-(28/mx)l  (2/28) <x <(n/B) (E.13)

where y is the variation ratio, defined here by y = ¢/, /¢,
The geometrical parameters of tke stringers, for ) < x < #/28 are obtained from Eq. (E. 8) by

(a) permutation of sinBx to sin(28/mx (b) use of now definitions for a aad c,, see Eq. (E.7)

y/2(1~y)

a

a, = (c,/b) [2(1-y) (E. 14)

|

The explicit expressions for integrals (16) are then

I (o,m) = (1-1%)(d;/b) a, [aB,, +L,(a,m)]
Lm = [(1-42/2(R/b)} ;) a lla+rd? a))8,, +(1+2aa) L, (0,m) +
+a,L,{a,m)]
La,m) = 12(0-03(d, /D) a, {alla®a?/3) + (1 + 2aa,)/41 5, +
+ 101+ 20a,)/2" T, (0 m) + Uy (1 + 20/ L, (0, m) + @2/D T, (0, m) }
L) = 20-0)(d,/m)° (b/b) ayflad,g + T, (0,m)3 (E-15)
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where
n=m n#fnm
n4+m m—-n
El(n.m) 1,0-(D} KR (__1)”"] {1-—-(-1)T _ 1—(-1)-5_}
2 (nn)2 172 (m+n)2 (m—n)2
T " [T =)
Ly | 4 - 20 K RETION e P A C0 VSN 5
3 (n)? n° L (m+n)? (m-.n)?
n ] f Sl m+n
f:s (n, m) _]; _6[1-(-1D] _3(-1 9-6-[1+(-1)!”-] {l-(- 1) ? _ l-(-l)T‘l+3--:2(n,m)
4 (7n)* (mrn)? n? (m- n)* (m +0)* 2
a 2{2 2:-_
Colam|Ll-0=(D] __4_{“(_,,"-]{ 1-(DF  1-(D? }
2 (7n)? b 4 (m+0)? (m-n)?

(E. 16)

e
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APPENDIX - F

COMBINATION OF UNIFORM STRINGERS WITH RINGS OF NON UNIFORM HEIGHT

For uaiform stringers, the matrices of the integrala I,(a,m), Egs. (16), and those whose ele-
meats are ¥, (a,m), Fy(a,m) and Fg(a,m), aee Egs.(12), degenerate into diagonal matrices.

Solution of the firat N equations of (17) and simplification of the remaining matrix yields

G, G B,
L HB HC Cn
where
2.2
Gplum) = [A-oV/AW L) 5 2K (a,m)
(14 p)a? B + [(1-1)/2e?
. . [(141)/20%8" (my; 026
G¢(om = Hymm) = J1- — t8,, +tK, (a,m) - t*K, (s, m)
(l+ul)n23 +[(1=)/2s2
e : 2 2 2 2.2
H(':(n.m) = !1+(n25 +t +q01n‘ﬁ‘ - 0’8 L-x,0%8) -

1 12(RA) L+ a2 + [(1-0)/2}e?

A (% +a28"/2)
T T 12 } 8o+ K (aim) - 262K (0, m) +

t4 K, w, m

- (F.2)
12(R/h)

The applied load ia these equations is hydrostatic pressure.
Far rings with sinusoidal height variation the values of integrals K,(n, m) are similer to those

giveo in the second section of Appendix D.
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CONCLUSIONS

The general instability of cylindrical shells with non-uniform stiffeners was analysed for lateral
and hydrestatic pressure and for axial compressien. Height and width vaciations of rings and stringers
were coasidered and considerable improvements in structural efficiency were obtsined. When most of
the stiffening is concentrated at the mid l=ngth of the shell, an edge type buckling mode may appear
and reduce the structural efficiency drastically. Hence it was found advisable in many cases to sup-
plement the varying part of the stiffener by e uniform part. The "variation ratio” y charactecizes the
extent of the uniform supplement.

For lateral pressure loading, gains of 70 —80% in general instability pressure aro obtained with
rings of non-uniform height at optimal values of y. For prescribed loading conditions the gains re-
sult in 10 —25% weight saving. Width variation is less efficieat and rings of non-uniform width yield
oaly 15-20% geaine in load but the corresponding weight savings remain at 10 — 20%.

For axial compression, stringers viith sinuscidal and linsar height varistion were studied.
Sinusoidal variation is found to be superior to linear variation, and gains in buckling losd of 30%, with
corresponding weight savings of 10%, are obtained. A variation ratio y = 0.5 eppears to be roughly
optimal.

For hydrostatic preasure loading, a combination of rings and stringers with a weight vatio 10 to
1, is found to be roughly optimal. Combiastioas of non-uniform ringe and stringers unde: axial compres-
sion aad hydrostatic pressure should be further invastigsted.

Comparison of solutiza by a straightforward Galerkin method ard by the method of "correcting
coefficients” indicates that in the relatively simple case investigatsd here, the loss in accurecy in the

second method outweighs tae numerical difficulties of ths first.
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