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1. Introduction 

Suppose an object is hidden in one of n boxes. It is in box k 

- ' / th 
with probability p,/, k = 1, ..., n. If it is in the kT  box, a search 

th '  ^ 
of the ki  box may overlook it with probability^ at, 0 < »/\ < 1. The events 

E.^/ that the object is found in the Jj   search of the to  box are disjoint, 

/ 

■/ - -   ■/ / - 

and 

(i) p-^pr [E4 v] - P,<-:jCaO 

S for   k = 1,   ..., n   and all positive integers   j.   Suppose also that each 

search of box   k costs   c/ > 0.   The main problem considered in this paper is 

how to search in order to maximize the probability of finding the object spending 

no more than a fixed amount   C.     '     } 

For the moment we leave aside the consideration that if a procedure 

specifies that the tenth search of box 1    is to be conducted, the first nine 

searches must have been conducted.    This is the requirement that a procedure 

be feasible.   Later we will show that the best procedure for the more general 

problem is feasible, and hence is the best feasible procedure as well. 
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Probability measure and cost measure are both measures on the space 

(E..|l<k<nl<J<oo) of searches. If both had total measure equal 

to 1, our problem would be roughly the problem solved by the Neyman-Pearson 

Lemma. This powerful result tells how to choose a set (critical region) so 

that its integral with respect to one measure (null hypothesis) is less than 

or equal to a fixed a (size of the test), and its integral with respect to 

another measure (alternative hypothesis) is as large as possible (power of the 

test). 

Therefore the first therorem of this paper extends the Neyman-Pearson 

Lemma to arbitrary a-finite measures. This result is undoubtedly not new; 

however it does not appear to be conveniently available. It is stated in 

Section 2; the proof is a straightforward generalization of the proof in 

P        Lehmann [7, pp. 65, 66 ]. Using this theorem. Section 3 discusser the search 

problem stated above. 

The results generalise a result of Chew [It-j, and give the solution 

to a slightly modified version of a problem stated by Hosteller in Bellman 

[l,pp. ^9> 50]. A corollary generalized a theorem of Staroverov [9], and bears 

a close relation to work of Blackwell [3 ] and Black [2 ]. 

In Section h,  this theory is extended to searches with arbitrary 

probability p. ,  of success at the J   search of box k, and arbitrary 

cost C. . 1 

A Bibliography on search problems is given in [6]. 

Im*m .*»«>■.■■■ «n.. gffl^i^plMWfffllWWH^W 
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2. Extension of the Neymen-Pearson Lemma 

TheoDem 1 Let (^£ ,^ ) be a measurable space, and let ^ and ji« be any 

non-negative a-finite measures on (5lf ><3)« Let yt   be any measure with 

respect to which n- and n_ are absolutely continuous (n = n- + tip will 

suffice). Let f. and f2 be the Radon-Nlkodym derivatives of ^ and n2; 

respectively, with respect to \i. 

Let B = / f 1 (x) d)i(x) ■ M.C^)» and let a be a number such 

that 0 < a < B < oo. Then 

(a) there exists a function *(x), 0 < *(x) < 1 and a number r, 0 < r < »; 

such that 

(1) / *(x) f^x) dn(x) = a 

(l f (x) > r f (x) 
(2) «(x) =)       2       1 

)0   f2 (x) < r f^x) 

(b) If   *   satisfies   (1) and (2), then it maximizes 

/ «(x) f0 (x) dn(x)   subject to 

J   *(x) f   (x) d(i(x) < a   and   0 < * (x) < 1 

(c) If   *   maximizes   / *(x) f0 (x) d4x(x) subject 

to /   «(x) f   (x) d|i(x) < a   and 0 < « (x) < 1 , 
^ 1 " " " 

'. 
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then for some r It satisfies (2) a. e. ix provided / *(x) f0(x) cln(x) < <» . 

it 
It also satisfies (1) unless there is a function ** with 

/ «♦ (x) f2(x) d|i(x) < a and / *• (x) f2(x) d|i(x) = u2 (> ) . 

Thus even in the infinite-measure case the ratio of densities 

(likelihood ratio in the testing problem) is the appropriate decision function. 

The unfortunate device of the function   <b   is forced on us by the 

necessity of randomization (or something similar) in the case of awkward   a's. 

If (and only if)   a   is a partial sum of costs of some optimal policy,    $   can 

be taken to have only the values zero and one, and the awkwardness does not 

occur.    Thus tl'e really general case in which the fixed ccvt is insisted upon 

is beyond the scope of this method.   However this method does give very simple 

upper and lower bounds for the probability that the optimal policy will find 

the object. 

This issue, and the problem of feasibility, will dominate the dis- 

cucslon in the next section. 

3.    Discrete Search 

A policy is a set of pairs of Integers    (j,k)    specifying the searches 

to be conducted.   A policy is feasible if the inclusion of (j,lt)    implies the 

inclusion of (j-1, k)    for   J=2,   ..., and k=»l,   ..., n. 

For the moment we will allow randomized policies, which specify for 

each pair of integers    (j,k)   the probability   4  (J*k)   that   (j,k) is in- 

cluded In the policy.    The probability that such a (perhaps not feasible) policy 

will find the object is 

I. Z «Ü,k; p^-1 (l-o^) . 
J,k 

The expected cost (with the expectation taken only over the randomization of 
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the policy) is 

II. L • (J,k) c. . 
J,k       K 

We wish to find a policy which maximizes the prohability of finding the object 

spending no more than the fixed amount C. 

In order to apply the extended Neyuan-Pearson Lemma (Theorem 1), 

let 5( = !(j,k) | J > 1, 1 < k < n, J and k integers V and let6De the class 

of all subsets of Ü . Now let ^ |(j,k)| = e^, V^ =  |(J,k)| = pk c^'^l-O^), 

and let \i   be counting measure. 

We require, then, that 0<a«»C<B = <». Actually we can assume 

that 0 < C < B since if one is permitted to spend B , the choice of all 

searches is trivially optimal, and if one is permitted no coct, only free 

searches are possible. 

Then from Theorem 1 we know that 

(a) there exists a function *(j,k), 0 < ©(^k) < 1 and a number r, 0 < r < » 

such that 

(1) Z       L   *(j,k) c = C 
J=l k=l      K 

(2) ^k)^1  if ^1(l-ak)>rc; 

(b) if   0    satisfied   (l) and (2), then it maximizes 

oo     n 
E     L   *(j,k) p c^"1 (1-a ) 

J=l k-l K K * 

i 

»■ -'u 
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subject to 
oo  n 

Z     L   »(^k) c <C 
J=l k=l      K 

and 0 < «(x) < 1 

»  n 

(c) If « maximizes Z  I  Pv1^"1 ^1"ak^ *(J>k) 
J=l k=l 

GO  n 

subject to Z  Z *(J>k) c < C, then for some r it satisfies (2) (since 
J=l k=l      K ~ 

total probability is less than or equal to 1). It also satisfies (l) (since 

C < B by assuniption). 

Then it is clear that we wish to include in our search all pairs 

(J,k) for which 

A'1^ >r 
'k 

and exclude all those for which 

A'1^ 
< r . 

> 

I 

There are two possibilities for interprettlng  * when it Is neither 

zero nor one. The first, of course, is the idea of a randomized search, in 

which 0(j,k) is the probability that the (J,k) search is included. It is 

clear that at most one search need be randomized. 

The r-econd is to permit a partial last search, such that in the last 

search one can expend some fraction s of the coct c. of that search, and 

have probability s PjOST (1"aic) 
of finding the object in that search. 

t 



Under either of the above two interpretations of * when it is 

neither /-ero nor one, the Gum I is exactly the pröbahility of finding the 

object, and the eum II is exactly the coot (averaged in the cace of 

randomisation). Thus in both cases, part b) applies to give optimality. 

Let us say that a policy is locally optimal if inclusion of (jjk' and 

exclusion of (j,k) implies 

**•c4,'■1 ^-v) > vA'1^ 
V ck 

By part (c) of Theorem 1, only locally optimal policies can be solutions to 

the problem. 

Furthermore, all locally optimal policies are feasible since 

is monotone decreasing in    J    for all   k .    Thus locally optimal policies,  and 

only locally optimal policies, are solutions to the problem of finding a 

feasible policy maximizing the probability of finding the object spending no 

more than   C,    provided either a partial last search or randomisation is 

permitted. 

It is possible, of course, to consider the problem in which neither 

of thcce interpretations is acceptable.    In general this is an integer programming 

problem similar to the knapsack problem [5» P- 51? ff ]• 



'mmtm***'.-** ,^..i._„. .,... ^«mm**™ . ■      ■■^■^■■-■- ■-■wiäiar' 
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Because the cost of each search of box k is the same, and p. . decreases 

in J, any optimal solution of the unrestricted knapsack problem will be 

feasible. Algorithms for this problem are dlccussed in [10, chapter k and 5]. 

See also the references In [11]. 

However, from the above theory it is clear that both upper and 

lower bounds are obtainable. Thus the procedure with the largest probability 

of finding the object in a fixed cost C must have probability no smaller 

than that of the largest C"  smaller that C, which is a partial sum of 

costs of the policy defined by decreasing 

% 

Also, of course, the largest probability of finding the object in a fixed 

cost   C   when a partial last search is not permitted must be no larger than 

the probability of finding the object if a partial last search is permitted. 

These bounds can be expected to be very close if the    c. 's    are much smaller 

than   C. 

The special case in which   c,   = 1    for all   k   has been studied 

by Chew \h].    He found that the policy of taking largest   VJ\~ (l-<\.) 

maximizes the probability of finding the object in a fixed number of searches 

(cost when   c    = 1    for all   k).    Then for any integer   C   a partial or 

randomized last search is not required, and Theorem 1 applies to give Chew's 

result. 

To summarize, we have the following result: 

Ä 



Theorem 2 

Any policy which ma::imi^es the probability of finding the object 

spending no more than a fixed cost C, 0 < C < <», includes all searches for 

which 

d'1^ JL^ i. > r 
ck 

for some r, excludes all those for which 

and includes enough of those with  k ic    it = r to spend exactly C . 

Any such policy is feasible. A partial or randomised last search is unnecessary 

if and only if C is a partial sum of some optimal policy. 

We conclude this section by discussing a closely related problem, 

that of finding a sequence of searches which minimizes the expected cost of 

finding the object. 

In the problem in which randomisation or a partial last search 

is permitted a sequence ordered by decreasing Pkcr" (l-O. ) /c. 

and including all searches has the property that it maximizes the probability 

of finding the object with any fixed expenditure C • It must minimize the 

expected cost of finding the object. (Obviously any procedure hoping to finite 
n 

expected cost must include all searches and we must assume  £ p = 1.) 
k=l k 

However the expected cost any sequence when stopping is permitted the 

moment the object is found corresponds to the cost of all unsuccessful searches 

plus half the cost of the search in which the object is found in the discrete 

case. Hence we have 
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Corollary 

Ary sequence including all possible cearches and ordered by decreasing 

minimi-ies the expected cost of finding the object, with the searcher charged 

for only ha]f the cost of the successful last search. 
J-l 

Staroverov  [9] discusses the special case    c   = 1, P, .   = PiA1-?) p 

and proves that the expected cost minimizing procedure chooses according to 

decreasing 

Pk(l-P)j"1 P  • 

Since the costs of all searches are equal, minimizing the expected cost of all 

unsuccessful searches plus half the cost of the successful one is equivalent to 

minimising the expected cost of all searches,  successful or not.    Thus Staroverov's 

result is a special case of the corollary above. 

Blackwell  [5] and Black [2] show that the procedure in the corollary also 

minimi:ies the expected cost of all unsuccessful searches plus the cost of the 

successful last search.    In a later paper, using entirely different methods, I 

will show that this same procedure minimizes the expected cost of all unsuccessful 

searches plus any fraction    f    of the cost of the last search,    0 < f < 1. 

h.    A More General Discrete Search 

Suppose now that the object will be found in the   J      search of the 

k      box with probability   P.,     and that the    J        search of the   k     box will cost 

C..   > 0   to conduct.    The purpose of this section is to show to what extent the 

argument of section 3 carries over to this case. 
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Making the obvious extensions of definitions, we see that once again 

theorem 1 applies, and that the critical quantity is    P..   /c,.   .    If   P.^/C., 

is monotone decreasing in    Jk   then any optimal policy is feasible.     Thus we 

obtain the following summary statement: 

Assume that P^/C..     is monotone decreasing in    J   .    Any policy which 
JK     JK * 

maximizes the probability of finding the object spenaing no more than a fixed 

cost    C,    0 < C <   Z       C..     includes all searches for which 

JA    J 

Vcjk >r 

for some    r, excludes all those for which 

W< r 
and includes enough" of those with   rf—   = r   to spend exactly   C  .    Any such 

policy maximizes the probability of finding the object spending no more than C. 

Any such policy is feasible. A partial or randomized last search is unnecessary 

if and only if   C   is a partial sum of some optimal policy. 

Corollary 

Any sequence including all possible searches and ordered by decreasing 

P /C..  minimizes the expected cost of the unsuccessful searches plus half the cost 
JK JK 

of the successful search. 

However a special difficulty can occur in this more general case for 

the problem of minimizing the expected cost. Consider, for example, a two-box 

situation where 
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i   -x   xJ-1 

Pv,   =    5 c      (Tm. ^ Pn   = 1/2 Jl -   2 c    (JTy: ^ 'Jl 

j-1 2 
C.i J e-X J^pr, -^r 2 C41  = ^- [X2 + l-e"X] 

Then 

'Jl        2 c      (J-1):  J+l " ^Jl " 2 

Pjo -    (1/2)J+1 EPJ2=1/2 

^^ 

Pjl -  Jli = 1 + 1/j      and     fjg =   (l/2)j+1 

CJ1        J CJ2 

Thus to mxinize the probability of finding the object spending   C 
X2  2     -X 

< -r     X + 1-e ], as racny uearches as possible of box 1 should be conducted. 
2 

X   2     -X 
For C ; p .X + 1-c ] all searches of box 1 should be conducted. For 

2 
X   2     -X 

C = ^ ;X + 1-e J + 1, all searches of box 1 and the first search of box 2 

should be conducted. 

For the problem of minimizing the expected cost of finding the object, 

however, order matters, and it would be optimal, if it were possible, to have 

all searches of box 1 followed by all searches of box 2. This difficulty arises 

because the solution to the problem of maximizing probability is a set, while 

the solution to the problem of minimizing expected cost is a sequence. For 

the above problem, only e-optimal solutions exist to the problem of finding 

the expected-coct minimising sequence. 

Thus the corollary above is true, but in this case no sequence in- 

cluding all possible searches and ordered by decreasing P-./CJk exists- 
JA 
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V/e have acsumcd that   P.^/C,.     ia strictly monotone    decreacing in   j    .    Since 

thece ration arc bounded from below by zero,  for each   k 

%;; f^ Vcjk exii:ts • 

Because of the deerca-inß character of the ratios, a  iü never attained. In 

the example above, a.= 1 and a^ = 0.    A nececcary and sufficient condition 

that a sequence including all poacible searches and ordered according to de- 

crca-ing P ./C,  exist is that there exists an a such that 

(3) a = ak    k = 1, ..., n . 

Thus in particular if    C. 's    are bounded away from zero,  (jj) will be satisfied 
JK 

with   a =  0 . 

If instead we assume that   P   /C,.     is merely non-increasing in   j , 

several changes must be made in the above argument.    In the probability 

maxinizing problem, no longer is every optimal policy feasible.    However,  an 

optimal feasible policy does exist, and the theorem holds for all optimal 

feasible policies. 

In the probier, of minitiiiing expected coot only searches with    P..  / 0 

need be included in the desired sequence.    Then a necessary and sufficient 

condition for the existence of a feasible sequence ordered by    P    /C,     is that 
jk' jk 

(1) a = a = lim P.,/C.,  for all k such that P., > 0 \r,, and 

(2) if the limit a is attained by any P ,/C.v such that P  > 0 , then 
JK  JK. JK 

it must be attained, for some j, in each other sequence P../C.,  with 
J^ jk 

P  > 0 for all j, 
JK 



t 

•< 
* 
« 

-   Ik 

(5) p
1ic/

cik -   a for a11 ^'k^    such that   PJk > 0 

In conclusion, we have the following 

Theorem 5    [Final Version]. 

Assume that   P^/C^   Is non-lncreaslng In   J    for each   k •   Any 

policy which maximizes the probability of finding the object spending no more 

than a fixed cost   C ,    0 < C <   Z. ,   C       Sgn (P..)    Includes all searches 
j j *£ j k     J it 

for which 

Plk/C.. > r J^^jk 

for some r , excludes all those for which 

Vcjk< r 

and inclvides enough of those with P^/C.^ to spend exactly C . Any such 

policy maximizes the probability of finding the object spending no more than C. 

Not any such policy is feasible, but a feasible suah policy does exists. A 

partial or randomized last search is unnecessary if and only if C is a 

partial sum of some optimal feasible policy. 

Corollary 

Any feasible sequence Including all possible searches such that 

P  y? 0 and ordered by non-lncreaslng P^v/C., minimizes the expected cost 

of the unsuccessful searches plus half the cost of the successful search. 

Such a sequence exists if and only if 

(1)        a = a = lim P.-/C   for all k such that P., > 0 V 
*   j_Ha  JA jK jk    J 

and 
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(2) if the Unit a ic attilncd. by any P../C,.  ;;uch t.hnt P  > 0, then 

it must be attained, for some J , in each other sequence P^v/^ik with 

P.. > 0 for all j 
JK 

(5) P.JCo, > a   for all (J>k)    such that   P..   > 0 . JK     JK — JK 
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r Appendix 

Proof of Tbeorcn 1 

For a = 0 and a  D, the theorem is true when K - <» and 

k = ü are permitted. Therefore ascume 0 < a < B. 

(2)       Let a(S)  /  f^x) d|i(x) 

(x | f2(x) > S f^x), f^x) > 0 ) 

^(C) - B,    a(w) - o,    and   a   is right continuous and   non- 

increauinn.    Then for any    a ,    0 < a < B, there is an   S   .  0 < S    < » 
' —       —     ' o ""    0 "• 

a(S ) < a < a(S -o). v o' -     -   v o    ' 

a(G ) ^ a(S -0), then let 

euch that 

If 

0(x) 
1 f2(x) > So f^x) 

C f2(x) <So f^x) 

and 

/    «(x) f^x) dn(x) =    /    f^x) dn(x) = a(S  ) = a 

If 

[a | f2(x) > So f^x), f^x) > 0 ) 

a(So) / G(SO - 0),    let 

/ f2(x) > Sof1(x) \ 

^     a{l -c)-a(s )     f2(x) = Vl^)   \ 

^ 

f2(x) < Sof1(x)    ' 



I 

- IT 

Then      / <j(x)f1{x)dn(x) =    /    f^x) d^(x) 

(xlfgWXM^x), f^x) >0) 

+    ^   -cv(üo) 

a(3o-0). a(üo)    /   f1(x)d*i(x) 

(x|f2(x) = S^x), f^x) >0 } 

c- a (3 ) 
=   c(3o) + ^T_; a(s -o) - a (s ) ] 

0       a(So-G).a(3o)       0 0 

- a 

Tliua in both caccs   3      will suffice as   r    in the theorem, and part   (a) 

ic complete. 

(b)    Cuppoce that    0    satisfies    (l)    and    (2).    If 

/   0(x) f^x) d|i(x) = to,    $ clearly maximizes 

J   0{:i) fp(x) dn(x)    and we are done.    Therefore 

suoposc /    0(x.) fp(x) d|i(::) < w    , 

Let 0* be any other function, 0 < 0*(x) < 1, 

end       / 0*(x) f (x) dn(x) < a 

Let  S+ - (x|0(x) - <l>*(x) > 0, and S" = [x| 0(x)-0*(x) < 0) 

Then x e 3+^ 0(x) 4 0=^. f^x) > r f^x) 

x e 3" > 0(x) 4 1 ' fgU) < r f^x) , so 

/ 'o(x)-0*(x)](f2(x)-rf1(x);dn(x) = /(o(x)-0*(x))(f2(x)-rf1(x))dn(x) 

S u 3 

> 0 
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Then /( 0(x)-*«(x))f2J(x) dji(x) > k     / ( ♦(x)-**(x))f;L(x) d^(x) > 0 

as was to be shown. 

(c)   Suppose    $*(x)    maximizes 

/ $(x) f0(x) dn(x)    subject to   / *»(x) fAx) d(i(x) = a 

(with / 4>*(x) f-Cx) dn(x) < ») and suppose *(x) 

r-ati!=fier= (l) end (2). Let S be the intersection of the set S u S", 

on which * and <I»* differ, with the set {x|f (x) / r fJx)], and 

suppose \i{S) > 0. 

Then slnceA»(x)-«*(x)j(f2(x)-r M^)) is positive on S , it 

follows that 

/ (c(x) - »*(x))(f2(x) - r f1(x)dn(x) = / ^(x) - ^(x))(f2(x)-rf1(x)) > 0 

SuS" S 

end therefore 

/ (o(x) - (l)*(x))f (x) du(x) > r  /(«(x) - 0*(x)) f (x) > 0 
* ^ /I   - 

which contradicts the assumption on $*. Then ji(S) = 0 as claimed. 

If 0*   were such that / 0*(x) f^x) d(i(x) < ^ and JQ*[.:) fJx)  dn(x) < n^T^ ) 

it would be possible to increase $* slightly, increasing both integrals 

until either / **(x) f^x} d|i(x) = a or / **(x) f2(x) dn(x) = n2( )4 ) 

Q.E.D. 

> 
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