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The Role of the Neyman-Pearson Lemma in the
Theory of Discrete Searchs
by
Joseph B. Kadane

1. Introduction

\y

~ Suppose an o/bject is hidden in one of n boxes. It is in box k

vith proba.bility pk, K =1, .o, n. If it 1is in the gf"h box, & search

! 3
of the kj box may overlook it with probability m‘, 0 < Q\< 1. The events
alf=. ) 4 A h
J 91:’ that the object is found in the ,ﬂ search of the lit box are disjoint,
and ; - . ) ; /

~

j o o - &
(1) Pr[EJ, ]’Px- J.J-c{,,)

vfor k=1, ..., n and all positive integers J. Suppose also that each
search of box Kk costs cg > 0. The main problem considered in this paper is
how to search in order to maximize the probability of finding the object spending

no more than a fixed amount C.

~

~.
N

For the moment we leave aside the consideration that if a procedure :
specifies that the tenth search of box 1 1s to be conducted, the first nine
searches must have been conducted. This is the requirement that a procedure
be feasible. Later we will show that the best procedure for the more general

problem is feasible, and hence is the best fersible procedure as well.,

* Research undertaken by the Cowles Commission for Research in Economics
under Contract Nonr-3055(00) with the Office of Naval Research.
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Probebility measure and cost measure are both measures on the space
[EJ,kI 1<k<nl<j)<e) of searches. If both had total measure equal
to 1, owr problem would be roughly the problem solved by the Neyman-Pearson
Lemma. This powerful result tells how to choose a set (eritical region) so
that its integral with respecf to one measure (null hypothesis) is less than
or equal to a fixed «a (size of the test), and its integral with respect to
another measure {alternative hypothesis) is as large as possible (power of the
test).
Therefore the first therorem of this paper extends the Neyman-Peerson
Lemma to arbitrary o-finite measures. This result is undoubtedly not new;
however it does not appear to be conveniently avallable. It is stated in
Section 2; the proof is a straightforward generalization of the proof in
Lehmann [7, pp. 65, 66 ]. Using this theorem, Section 3 discusses the search
problem stated above.
The results generalize a result of Chew [4], and give the solution
to a slightly modified version of a problem stated by Mosteller in Bellman
[1,pp. 49, 50]. A corollary generalized a theorem of Steroverov [9], and bears
a close relation to work of Blackwell [3] and Black (2].
In Section 4, this theory is extended to searches with arbitrary
probability p 3,k of success at the Jth search of box k, and arbitrary

cost C 1
Jrk

A Bibliography on search problems is given in [6].
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2. Extension of the Neymen-Pearson Lemma

Theorem 1 Let (X ) bve a measureble space, end let ¥, and u, be any
non-negative g-finite measures on (3¢ ,8). Let u be any measure with
respect to which Ky and B, eare absolutely continuous (u = My + Ko will

suffice). Let f. and £, be the Radon-Nikodym derivatives of Hy and Moo

1 2

respectively, with respect to u.
Let B =[f (x) du(x) = ul(X), and let « be & number such
that 0 <a <B <w. Then

(a) there exists a function ®(x), 0 < ¢(x) <1 end a number r, 0 <r <o,

such that

(1) Jo(x) £,(x) au(x) = @
*

1 £, (x)>r fl(x)
(2) o(x) 5
0 £, (x) <r fl(x)

(b) If ¢ satisfies (1) and (2), then it meximizes

*f o(x) £, (x) du(x) subject to

J o(x) £; (x) du(x) <o end 0<0(x) <1
(¢) 1f @xmaximues ‘{ o(x) £, (x) du(x) subject
to [ o(x) £ (::) du(x) <a and 0<0¢ (x) <1,
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then for some r it catisfies (2) a. e. u provided [ ®(x) £,(x) du(x) <w .

It elso satisfies (1) unlecs there is a function ¢%* with
;é o* (x) £,(x) au(x) <a and 10 () 15000 ) = (%) -

Thus even in the infinite-measure case the ratio of densities

(11kelihood ratio in the testing problem) is the appropriate decision function.

The unfortunate device of the function ¢ is forced on us by the
necessity of randomization (or something similar) in the case of ewkward a's.
If (end only if) a 1is a partial sum of costs of some optimal policy, ¢ can
be teken to have only the values zero and one, and the awkwardness does not
occur. Thus the really general case in which the fixed cc-t is insisted upon
is beyond the scope of this method. However this method does give very simple
upper and lower bounds for the probability that the optimeal policy will find
the object.

This issue, and the problem of feasibility, will dominate the dis-

cussion in the next section.
3. Discrete Search

A policy is a set of pairs of integers (J,k) specifying the searches
to be conducted. A policy is feasible if the inclusion of (J,k) implies the
inclusion of (j-1, k) for J=2, ..., and k=1, ..., n.

For the moment we will allov randomized policies, which specify for
each pair of integers (J,k) the probability ¢ (J,k) that (J,k) is in-
cluded in the policy. The probability that such a (perhaps not feasible) policy

will find the object 1s

I. Jzko(d,k) i (1)

The expected cost (with the expectation taken only over the randomization of




the policy) is

II. £ (Jk)e -
J,k

We wish to find a policy which maximizes the probability of finding the object

spending no more than the fixed amount C.

In order to apply the extended Neyman-Pearson Lemme (Theorem 1),
f
letX = ~<?L(,j,k) | 3 21,1<k<n, J and k integers }a.nd lete De the class

f -1
of all subsets of?ﬁ + Now let ) {(J,k)} =Cpy Wy = 1(3,1:)} =Py oﬁ (1-ak),
and let u be counting measure.

We require, then, that 0 <a=C <B = ». Actually we can assume
that 0 < C < B since if one is permitted to spend B , the choice of all
seerches is trivially optimal, and if one is permitted no coct, only free
searches are possible.

Then from Theorem 1 we know that
(a) there exists a function &(J,k), 0 < ®(J,k) <1 end a number r, 0<r <w
such that

o

n
(1) £ Iz oJ,k) e, =C
J=1 k=1

-1
(2) ok ={* PG (1) >re,
o 1if pkoc:'l (L)< re,

(b) if © satisfied (1) end (2), then it maximizes

© n 1
5L o(3,k) Bt (1)
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subject to
© n
I I ®3,k) e <C end 0 < ®(x) <1
J=1 k=1
00 n 1
(¢) If ¢ maximizes X £ D aﬁ (14;k) (J,k)
-1 1 k
3=1 k=1
@ n
subject to £ I o(J,k) ¢, < C, then for some r it satisfies (2) (since
J=1 k=1

totel probability is less than or equal to 1). It also caticfies (1) (since
C < B by assumption).

Then it is cleasr that we wish to include in our search all pairs
(J,k) for vhich

Py ()
c

k

and exclude all those for which

padH(1a)
<

®x

I .

There aré two porsibilities for interpreiing ¢ when it is neither
zero nor one. The first, of course, is the idea of a randomized cearch, in
which ¢(J,k) is the probability that the (J,k) search is included. It is

clear that at most one search need ®e randomized.

The second is to permit a partial least search, cuch that in the lact
search one ¢an expend some fraction 8 of the coct % of that search, and

have probability s pkai'l(l4;k) of finding the object in that search.
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Under either of the above two interpretations of ¢ when it is
neither zero nor one, the sum I is exactly the probability of finding the
object, and the sum II is exactly the coct (averaged in the cace of
randomi-ation). Thus in both cases, part b) applies to give optimality.

Let us say that a policy is locally ophimal if inclusion of (j;k' and

exclusion of (J,k) implies

Py (1) 5 BET(1)
C C

k' k
By part (c¢) of Theorem 1, only locally optimel policies cen be solutions to
the problem.
Furthermore, &ll locally optimal policles are feacible since

ol 10 )
c

k

15 monotone decreasing in J for all k . Thus locally optimal policies, and
only locelly optimal policies, are colutions to the problem of finding a
feasible policy maximizing the probability of finding the object spending no
more then C, provided either a partial last search or randomization is

permitted.

It is possible, of course, to consider the problem in which neither s
of these interpretations is acceptable. In generel this is an integer programming

problem similar to the knapsack problem (5, p. 517 ff]. 3
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Because the cost of each search of box k 1s the same, and IJJ’k decreases
in j, any optimal solution of the unrestricted knapsack problem will be
feasible. Algorithms for this problem are discussed in [10, chapter 4 and 5].
See also the references in (11].

However, from the above theory it is clear that both upper and
lower bounds are obtainable. Thus the procedure with the largest probability
of finding the object in a fixed cost C must have probebility no smaller
than that of the largest C'} smaller that C, which is a partial sum of
costs of the policy defined by decreasing

Py (10g)
°k
Also, of course, the largest probability of finding the object in a fixed
cost C when a partial last search is not permitted must be no larger than
the probability of finding the object if a partial last search is permitted.
These bounds can be expected to be very close if the ck's are much smaller
than C.

The special case in which ¢y = 1l for all k has been studied
by Chew [4]. He found that the policy of teking largest pkai'l( l'ak)
maximizes the probability of finding the object in a fixed number of searches

(cost when ¢, =1 for all k). Then for any integer C & partial or

k
randomized last search is not required, and Theorem 1 applies to give Chew's
result.

To summerize, we have the following result:



Theorem 2

Any policy which marimi.es the probability of finding the object
spending no more than a fixed cost C, O < C < », includes all searches for
which

-1
p o H(1-q,)
K% it
k

for some r, excludes all those for which

51
P (o) -
°x

J=1
1
and includes enough of those with pf;k ( -ak)= r to spend exactly C .
¢
¥

Any such policy is feasible. A partiel or rendomized lact search is unnecessary

if and only if C 1is a partial sum of some optimal policy.

We conclude this section by discussing a closely related problem,
that of finding a sequence of searches which minimizes the expected cost of

finding the object.

In the problem in which randomi::ation or a partiel lact seerch
is permitted a sequence ordered by decreasing pkgﬁ-l(l-qk)/ck
and including all seerches has the property that it meximizes the probability
of finding the object with any fixed expenditure C . It must minimize the
expected cost of finding the object. (Obviously eny procedure hoping to finite
n

expected cost must include all searches snd we must assume b pk = 1,)
k=1

However the expected cost any sequence when stopping is permitted the
moment the object is found corresponds to the cost of all unsuccessful searches
plus half the cost of the search in which the object is found in the discrete

case. Hence we have
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Corollary

Ary sequence including all possible cearches and ordered by decreasing

pkaﬁ'l(l-ak)
°x
minimizes the expected cost of finding the object, with the searcher charged
for only half the coct of the successful last search.

Staroverov [9] discusses the special case e = 1, Pj,k = pk(l_p)J-l -
and proves that the expected cost minimizing procedure chooses according to
decreasing

Pk(l-p)‘j'l P .
Since the costs of all searches are equal, minimizing the expected cost of all
unsuccessful searches plus half the cost of the successful one is equivalent to
minimizing the expected cost of all searches, successful or not. Thus Staroverov's
result is a special case of the corollary above.

Blackwell {3] and Black [2] show that the procedure in the corollary also
minimi:es the expected cost of all unsuccessful searches plus the cost of the
successful last search. In a later paper, using entirely different methods, I

will show that this same procedure minimizes the expected cost of all unsuccessful

searches plus any fraction f of the cost of the last search, 0 <f <1.
4. A More General Discrete Search

Suppose now that the object will be found in the Jth search of the

t

t and that the J*® search of the X

k h box with probebility P h box will cost

Jk

CJk > 0 to conduct. The purpose of this section is to show to what extent the

argument of section 3 carries over to this case.
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Making the ohvious extensions of definitions, we see that once again
theorem 1 applies, end thet the critical quantity is Py /Cjk . I ij/cjk
is monotone decreasing in - jk then any optimal policy is feacible. Thus we

obtain the following summary statement:

Assume that ij/cjk is monotone decreasing in J . Any policy which
meximizes the probability of finding the object spenuing no more than a fixed

cost C, 0<C< Z CJk includes all searches for which
Jrk

ij/cjk >r
for some 1r, excludes all those for which
ij/cjk <r
Pix
and includes enough of those with 61- = r to spend exactly C . Any such
Jk
policy maximizes the probability of finding the object spending no more than C.

Any such policy is feasible. A partial or rendomized last search is unnecessary

if and only if C 1is & partial sum of some optimal policy.

Corollary

Any sequence including all possible searcues and ordered by decreasing
ij/cjk minimizes the expccted cost of the unsuccessful searches plus half the cost
of the successful search.

However a special difficulty can occur in this more general case for

the problem of minimizing the expected cost. Consider, for example, a two-box

situation where
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4 g1
1 -\ A }
P.Jl = 2° () Z:PJ]_"]'/2
J-1 2
N P S S A 2 et
A IR ¢ 5 H Z Ly =g e e
- J+l _
P = (1/2) £ Py, = 1/2
Cjp = 1
Then B ogsla 1 1/, end Pio = (y2)*"
Cap Cyo .

Thus to mexinize the probabllity of finding the object spending C

< % x2 + 1-c'x], as meny searches as possible of box 1 should be conducted.
2
For C - % _x2 + l-c-k] all searches of box 1 should be conducted. For
‘ 2 .2 i)
C = 5 A+ 1-e 7] + 1, all searches of box 1 and the first search of box 2

should be conducted.

For the problem of minimizing the expected cost of finding the object,
however, order matters, and it would be optimel, if it were possible, to have
all searclies of box 1 followed by all searches of box 2. This difficulty arises
because the solution <o the problem of meximizing probability is a set, while
the solution to the problem of minimizing expected cost is a sequence. For
the above problem, only €-optimal solutions exist to the problem of finding
the expected-cost minimi:ing sequence.

Thus the corollary above is true, but in this case no sequence in-

cluding all poscible searches and ordered by decreasing P kﬂ:jk SELE oL

J

e 8 e i i 055 g - S
et AR e i e Y AR S TS I b, AV 3l =
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We have acssumed that ij/cjk 15 strictly monotone decreasing in jJ . OSince
thece ratios arc bounded from below by zero, for each k

a = 1lim P

exlscts
k T

9/ Cx

Becauce of tue decrcacing cheracter of the ratios, By is never attained. In

tie cxemple above, a, = 1 and a, = 0. A necessary and sufficient condition

thet a requence including all possible searches and ordered according to de-
creausing ij/cjk exict is tuat there exicts an a such that
(3) a=a k=1, ..., n.

Thus in perticular if Cjk's arc bounded away from zero, (%) will be satisfied

witnh a = 0.

IT instecad we assume that P, / is merely non-increasing in j ,

3/ Cox
several clianges must be mede in the above argument. In the probability
moexinizing probl.m, no longer is every optimal policy feasible. However, en

optinmel feauible policy docs exict, and the theorem holds for ell optimal

Teasible policices.

In thie problen of minimizing expeceted cost only searches with ij f o
nced be included in the desired cequence. Then a nececcery and sufficient

condition Tor tic cxistence of a feasible sequence ordered by ij/cjk is thet

(1) a [=hatl= _1_1m ij/cjk for all k such that P

S
i o . v &j’ end

Ji

(2) if the linit & is attained by eny such that Pj >, then

Py/Cax K

it rust be attained, for some J, 1in cach other sequence ij/cjk with

ij >0 for 2ll j,
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(3) 1>Jk/cJk > a for all (J,k) such that PJk >0

In conclusion, we have the following
Theorem 3 [Final Version].

Assume that PJk/CJk is non-increasing in J for each k . Any

policy which marximizes the probability of finding the object spending no more

than a fixed cost ¢, 0<C< Z,, C. Sgn (P, ) includes all searches
Jr,k Jk Jk
for which
PJk/cJk >r
for some r , excludes all tnose for which
ij/cjk <r

and includes enough of those with PJk/CJk to spend exactly C . Any such
policy maximizes the probability of finding the object spending no more than C.
Not any such policy is feasible, but a feasible suah policy does exists. A
partial or randomized last search is unnecessary if and only if C is &

partial sum of some optimal feasible policy.

Corollarx

Any feasible sequence including all possible searches such that
ij f 0 and ordered by non-increasing ij/cjk minimizes the expected cost
of the unsuccesstul searches plus half the cost of the successful search.

Such a sequence exists if and only if

a=a = 1lim P, /C for all k such that P.. >
(1) x ™ = 31/C 55 x>0 Y

and



(2) if the limit e is cticined Ly cny ij/cjl, such thet P >0, then

Jk
it must be attained, for some J , in each other sequecnce ij/ch with

P, >0 for all j .

3k

(3) ij/cjk >a for all (J,k) such that PJk >0 .
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Angcndix

Proof of Tleorem 1

For «=0 end a B,

the theorem is true when K - =
k =0

(2)

and
are pecrmitted.

Trerefore accume 0 < a < B.

Let «oS) - [ fl(x) du(x)

(x | fz(x) >8 fl(x), fl(x) >0}

o(C¢) - B, =) -0, and a 1is right continuous and

non-
increasing. Then for eny a , O < a <B, there is an So, 0< So S
cuch that a‘(So) <a< a(So-O).
If a(So) = a(So-O), then let
1 £ (x) >s_ £ (x)
o(x) - e Pl end
C

f2(x) <s, fl(x)

[oo(x) £y(x) du(x) = [ £,(x) du(x) =a(8)) = a
(a | £,(x) > 8 fl(x), £,(x) >0 )

If a(so) f a(so - 0}, let
.// 1 fe(x) > Sofl(x)\
" a - c;(so)
T o5 0)-dls)) fo(x) = 5,5 (x) ?
\
_ 0 £,(x) <8 £ (x) |

/



=k k=
Then [ o(x)fl(x)du(x) = [ I‘l(x) du(x)
| (x|£,(x)>6 £ (x), £,(x) > 0)

. C -c;(uo)

o{3,0)- «(5_) [ £(x)du(x)

[x|f2(x) = Sofl(x), fl(x) >0 ;

C=Q (oo)

- a(so) + f C;(SO-O) - (SO) ]

o So-o)-oz( So)

= (09
Thus in both caces S will cuffice as r in the theorem, and pert (e)
is complcte.

(v) Cuppoce that ¢ cotisfies (1) and (2). If

[ o(x) fe(x) du(x) = =, O cleerly moximi:zes

*x
[ o(x) fe(x) du(x) end we are donc. Therefore
%
LUppoLe [ o(x) fe(x) du(:z) <o
%
Let O* be any other function, 0 < ¢%(x) <1,
end [ ox(x) fl(x) du(x) < o
% 5.
+

o(x) - o*(x) >0, and 8™ = (x| ¥(x)-0%(x) < 0)

Let & = {x
Then x € 57 o(x) 4 o=y 1’2:::) >r fl(x)

xes”,o(x)41 - fe(x) <r fl(x) , 50

 fo(i)-ox() (5,02 () () = J( o(x)-0%(x))(£,02)-x2, (x)) ux)

.y
’ + .
S uod

> 0
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men  f( o(x)-o%(x))z,(x) du(x) > k 3£(4>(x)-q>«(x))fl(x) au(x) 2 0
¥

as was to be shown.
(c) Suppose o*(x) maximizes

[ o(x) fe(x) du(x) subject to [ o*(x) fl(x) du(x) = a
* *
(with [ o*(x) fe(x) du(x) < @) and suppose &(x)
*

catisfies (1) end (2). Let S be the intercection of the cet s*u s,
on which ¢ and O% differ, with the set [xlfa(x) #r £(x)), end

suppose u(S) > 0.

Then since(o(x)-d)*(x))(fe(x)-r fl(x)) is positive on § , it
follows thet

J (o(x) - o*(x)")(fz(x) - v £(x)au(x) = [ {o(x) - @*(x))(fe(x)-rfl(x)) >0
Sus~ S

end therefore

£ (o(x) - ex(x))z(x) au(x) > r xf(o(x) - o%(x)) 2,(x) > 0
*

wnich contradicts the assumption on ¢*. Then u(S) = 0 as claimed.

If O* were cuch that [ o%(x) fl(x) du(x) <~ and [o%(.:) fe(x) du(x) <u (%)
it would be porcible to increase ¢* slightly, increacing both integrals

until either [ o%(x) i‘l(x) du(x) = a or [ o*(x) f2(x) du(x) = |J.2( )L)
Q.E.D.
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