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SOLUTION TECHNIQUES FOR THE TRAFFIC ASSIGNMENT PROBLEM 

by 

Stephen P.  Bradley 

1.    INTRODUCTION 

The object of this paper is to Investigate the application of some large 

scale solution techniques to the so called traffic assignment problem> or 

multiconmodity flow problem.    As this is a network problem, there are two 

equivalent formulations.    The first is based on the node-arc Incidence matrix 

and is the usual approach.    The second is based on an arc-chain matrix and the 

formulation is an extension of Ford & Fulkerson's multi-commodity work {Si. 

Decomposition techniques will be applied to  the first formulation and a minimum 

chain network approach wlHrhe applied to the second.    Then an extension of the 

arc-chain formulation will show it is equivalent to decomposition theory being 

applied to a slightly different node-arc formulation. 

The great difficulty in handling the traffic assignment problem is the 

tremendous number of equations.    If we are to consider a network with 1,000 

arcs, 300 nodes, and 100 centroids  (or commodities), where the centroids are a 

subset of the nodes through which all flow enters or leaves the network, we are 

faced with a linear program with 31,000 equations and 101,000 variables.    Thus, 

techniques which are not principly network oriented must be discarded.    Both 

compact triangularlzation [2] and generalized upper bounding  [3] have been 

investigated and found wanting for the general problem, although these 

techniques may still prove to be useful in solving the restricted master. 



2.  NODE-ARC FORMULATION 

The node-arc formulation of the traffic assignment problem has been 

extensively explained by Niels Jorgensen [6]. Therefore, It will be assumed 

that the motivation for the formulation Is understood so that It will only be 

necessary to treat the problem from the mathematical standpoint. The statement 

of the problem Is as follows: 

find 
,00 

0 , s > 0 , and min Z 

subject to  [t t ... t OJ 

E 
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ff«»! [.."'I 
f(2) 

q«) 
• • . • • 

f(m) (tn) 
q 

s k 

(2.1) 

The k  commodity Is defined as the flow that originates at the k  node. Thus, 

Ef   • q    represents In matrix form the conservation equations for the k 

(k) commodity In terms of    E ,  the node-arc Incidence matrix,     f,       ,  the flow of the 

k      coonodlty on arc    A.   , and    q.       ,   the exogenous flow of the k      commodity at 

node    N.   .    Note that    q^      > 0    q^      < 0   ,  for    i * V. .    That Is the kth commodity 

flows Into the network at node    N.     and out of the network at a specified subset of 

the remaining nodes.    The last group of equations of (2.1)  are the capacity 

r      (k) constraints,   le.     )     f.      + s.  - k.   .     This means that the total flow on arc 
v      i 11 

r       (k) 
A.   ,  f.  ■ 2.    0       » must be ^ess than or equal to the capacity of the arc    A.   . 1        1      k      1 1 

The objective Is to minimize total travel time on the network,  thus 

T    t4fJ    or    min    Z - J" [    t.f4
(k)   . 

J      J j J k      J  J 

f{k) ^ 0  '  Si > 0 Vi, k 

min    Z - Note that 

The technique to be employed Is  the general decomposition theory of Dantzlg  [1] 
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with network techniques utilized on the subproblems.    For simplicity only two 

subproblems will be considered, but  the method obviously generalizes to any 

number of subproblems.    Our problem with only two subproblems Is thus: 

find    f(1'  > 0  ,     f(2^  > 0 , s > 0  ,    and min    Z 

subject to     tf(1) +   tf(2) 

Ef (2) 

If(1) + If
(1) + Is 

- Z 

■ q 

- q 

K 

(2) 
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(k)        (k) If we now consider the system of equations    Ef       - q        ,  it is well known that 

any feasible solution of the system may be represented by an appropriate weighting 

of all the extreme point solutions of the system.    Thus, we have for the two 

subproblems 

;(1) 

:(2) 

H (l)f(l) J 

■ I W 

A<» > 0 

(2) 

(2.2) 

Hence, letting f ■ -Z , any solution of (2.1*) may be represented as follows: 

P f + 
o o I ^ (<) + \ ^ ("?) + BS - 

H (1) -  1 

(2.3) 
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Note that any solution X(1) , A(2)  to (2.3) determines an f(1) , f(2) by 

equations (2.2). We denote the indicated linear transformations as 

(1) _  (1) .  (2) 
Sl    Afi  ' Sl Af (2) (2.4) 



Thus, we have a problem that Is equivalent to (2.1*). 

find X(1) > 0 , X(2) > 0 end max f 

subject to 
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(2.5) 

The multipliers associated with each equation are Indicated at the left. 

Note that beginning with equation  (2.3),  the usual notation for the decomposition 

approach has been Introduced,     fo    Is simply equal to    -Z    so that we maximize 

fo    Instead of minimizing    Z  .    The Indicated matrices    A    and    B    are simply: 

PO - 

t-      t/%     ....     L i    z n 

B 

0 0  .... 0 

1       0 

The program (2.5) is refered to as the full master because it contains all the 

extreme point solutions of the subproblems. We will refer to a restricted master 

which is a subset of the full master that includes the current basis. 

Assume for the moment that we have a basic feasible solution to (2.5). That 

is, we have a subset of k columns, of the K columns of subproblem one, and a 

subset of I    columns, of the L columns of subproblem two. Together with the 

fo column, these k + £ columns constitute a basis for the full master. If we 

then associate multipliers with each equation, we may determine their values in 

the usual manner: 



IT fo ■ 1 ; n S (1) - ..(1) wo ; ^ s 
(2) 

. wo 
(2) 

0    (i)    (2) 
Now that we have the multipliers ir , -UQ  > ~V>o   we oust check to see If we 

have an optimal solution. That Is, we want to examine the columns of (2.5) that 

have the lowest cost. We must determine 

A(1> 0 (1)   0 (2) min TT S; ^ ; IT S* 
1    i 

0 (2) mln ir Sj ' 
1    1 

But we see that 

0 (k) mln ir Sv ' 
0  (k) 

mln (ir A)fJK; 

1 

0 (k) 
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subject to 

Ef(k) . q(k) . f(k) , 0 

which Implies we must solve the subproblems of the form 

find f(k) > 0 , mln Z(k) 

subject to Y f(k) - Z(k) (2.6) 

Ef<k> - q<
k> 

0   0 
where Y ■ TT A 

(k)   (k) If the mln Z   < wo  > lts relative cost factor Is less than zero and is 

therefore a candidate to enter the basis. Since there are In general M sub- 

problems, we should Introduce a new column SÄ according to the normal simplex 
0 (fc)   (ij) (It)   (it) 

rules, ie. SÄ corresponding fo mln [if S^  - uo J •  I* mi-n   z   ■ WO 
k 

for all k , we have the optimal solution. 

Consider now the subproblem that must be solved. 



TV
k> - 2<k'  Wn) 

Ef<k)    .,(k) 

0 0 0 
where    Y    " IT A ■ n Va '•• '« 

(2.6') 

and    TT    ■ 1 

which Implies    y h*'l\l.iih\U 

Thus, our suhproblems at each iteration are the same with a modified objective 

function. The subproblem? are indeed merely minimal cost flow problems without 

any capacity constraints. These may easily be solved by network techniques. A 

straight-forward application of the out-of-kllter algorithm will yield a ready 

solution and has the advantage that the solution to the previous subproblem may 

be used as a starting solution to the next, thus speeding convergence. Another 

solution technique is the dynamic programming algorithm for the minimal spanning 

tree routed at the k  node. With this method, it is also necessary to allocate 

flow according to the demands at each node and sum the resulting flows iot  each arc. 

Thus, we see that we have in general M uncapacitated minimal cost flow problems 

to solve in conjunction with a restricted master. 

A few cotmnents on the interpretation of the objective function are in order. 

0 
Since "o " 1 • the objective of the suhproblems is 

Y f 
(k) _ „(k) 

where Y - j^ + "W i.i 

Therefore, each arc has a "cost" associated with it which is the sum of the given 
0 

unconstrained travel time    t.   ,  and an additional tarrif    n      due to the demand 

for the arc exceeding its capacity.    In effect, we put a price on the arcs with 



Insufficient capacity to discourage flow from using these arcs.  If the arc is not 

at capacity, we have more capacity than Is demanded, and thus the price on the arc 

Is zero. At each Iteration the prices are re-evaluated and flow rerouted accordingly 

until the optimal Is reached. Note that the objective functions are the same for 

all the subproblems. This Is consistent with not discriminating between 

commodities on any arc.  Thus, the price fo** any commodity to use a particular arc 

Is the same for each. 

The procedure Is then to Introduce the winning column Into the restricted 

master, which consists of the current basis and the nonbaslc slacks. We then 

optimize the restricted master, yielding a new basis. A new set of n-ultlpllers 

may then be calculated and the subproblems resolved with these new prices, etc. 

Since at each stage we are In effect optimizing the restricted master, the prices 

0 
associated with the nonbaslc slack variables will be *.• > 0 » Note the prices 

0 
associated wich basic slack variables are ir - 0 . 

The solution of the subproblems, although time consuming due to the large 

number, does not seem to be the restrictive aspect in this approach. Since these 

problems must be solved even in the uncapacitated traffic assignment problem, it is 

not surprising to find they must be solved in the capacitated case. At each 

Iteration, ie. solution of the subproblems, we must find the new prices to add on to 

the arcs at capacity.  Since we know that when slack occurs on arc A.  the 

0 
corresponding price v      is equal to zero, we need only be concerned with the 

(k) 
prices associated with the arcs at capacity and the multipliers -UQ  associated 

with the subsum equations.  Thus, at least theoretically it is only necessary to 

Invert a matrix of this rank. As the inversion process limits the size of the 

network problem we can handle, we would like to find a.» alternative method for 

finding the prices. 
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3.  ARC-CHAIN FORMULATION 

Instead of dealing with the usual node-arc formulation. It Is well known 

that there Is an equivalent formulation In terms of an arc-chain matrix. Since 

an Interesting method of solution Is available In this formulation. It will be 

presented here. First It Is necessary to Introduce some concepts relevant to the 

arc-chain formulation. Let A *• ia..^ I be an arc-chain matrix. Then we define M 
aiJ 

1 If arc A. Is In chain C 

0 otherwise 

Now for the traffic assignment problem, we will change the definition of a 

commodity slightly. A commodity Is defined to be flow between a particular orlgln- 

(k)  f (k)l 
destination pair. Let A   - a^    be the arc-chain matrix consisting of all 

chains connecting the k  origin-destination pair.  In the previous formulation 

(k) 
we had flow on an arc, here we have flow on a chain. Let X. ' be the flow of 

the k  commodity on chain C. . We may now represent the capacity constraint on 

the 1  arc as follows: 

I a'fx'1' + I a«>X<
2) + ... + J .^X<"> + s1 - K, (3.1) 

iBl,2, >.., n 
o 

This merely means that the flow in arc    A      is equal to the sum of the chain flows 

through the arc    A.   , and this total  flow plus the slack must  equal the capacity 

of the arc    A.   . 

The second requirement of  the problem is that there is a specified amount of 

flow between any origin-destination pair.    Therefore,  the total chain flows 

associated with the k      origin-destination pair must equal the required flow, 

(k)  .. „(k) I x;K; - rK; Vk (3.2) 
JkJk 



Of course, all the chain flows must, be nonnegative, Xj > 0 . 

Finally, we define c 

th 

(k) 
j 

as the total travel time on chain C. between 

the k1*" origin-destination pair. Since we wish to minimize total travel time 

on the network, our objective function is 

min Z • 
Ji       h Jm 

(3.3) 

Thus, we have formulated the traffic assignment as the following linear program. 

(k)v(k) »in    I I c KX 
k j    J      J 

subject to 

V 
Jl 

,(i) + y a(2)X(2) 
+ \ alj xj 32 

-u(1): y x(1) 

• 
• 
• 

-v (m) 

+ ....+ J aj"l)xjm) + a, 
Jm 

Ix 
'm 

(m) 

-V(1> 

.v<2) 

Vi 

(3.4) 

An extension of the multi-commodity work of Ford & Fulkerson [5] leads to 

a solution of the problem. Assume for the moment we have a known basic feasible 

0    (it) 
solution to (3.4). Thus, we can calculate TT , -VJQ   as we did in the previous 

section. Note that these prices are the same type as those used in the decomposition 

approach, thus their sign is opposite that of the usual simplex multiplier. Let us 

now consider whether the prices are optimal for the program. Pricing out we have 

+ \ Vij 
(k) - uo(k) > 0 Vj . k (3.5) 
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for the optlznallty criterion. Notice that to test optimality It Is not 

necessary to look at all cv  .  If we look at c - mln c.    ,  we know If we 
8  M_ :, 

are optimal by whether c  Is nonnegative or not; If  c > 0 , we are optimal. 

Also note that c.       , the total travel time on chain C. between the k  orlgln- 

destlnatlon pair may be represented as follows: 

c(k) - I t a(k) 

where t.  Is the travel time on arc A. just as before. The total travel time 

on a chain equals the sum of the travel times on the arcs In that chain. Thus, 

we may write 

:00 _ r . „(k) L r ° (k)  „(k) 

or (3.6) 

ij 

0 
t, > 0 and we will show ^ ^ 0 . thus (t. + n.) > 0 .  If we now consider 

0 
(t. + IT.) as the length of the arcs, we may Interpret the minimum relative cost 

factor In an Interesting way. 

s 
fmn I (^ + Va^]- ^ Vk 

c8 - Mln c (3>7) 
k 

(k) 
Since UQ Is a constant for a particular orlgln-destlnatlon pair, we need only 

look at 

.00 mln I {t    + IT )a,7 
J  1      1 XJ 

-> .\ 
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We see that this merely represents the shortest distance between the k  orlgln- 

0 
destination pair, when (t, + T.) IS considered as the length of the arc. 

Therefore to check optlmallty, we need only find the shortest paths associated with 

(k) 
the origin-destination pairs, subtract the appropriate uo   and take the minimum 

over all k 

in [l(ti  + Va^l -uo00) (3.8) c ■ min < min 
k 

Thus, we see that is is not necessary to explicitly enumerate all the chains of the 

network. Only the shortest chain for each commodity must be examined.  Not having 

to know the arc-chain matrix explicitly is absolutely necessary for this method to 

be computationally feasible. 

A few comments on the signs of the multipliers are now In order. We have 

defined the multipliers consistent with the decomposition theory, and thus they 

are opposite in sign with respect to the usual simplex multipliers. The multipliers 

associated with the current basis of the restricted master are defined by 

0 
TT P-0 jj'O;  TTPQ-1     for basic columns 

0 0 
It is easy to see that if s.  is basic TT » 0 . Now if s. is nonbasic TT. > 0 

since we are at each stage optimal with respect to a subset of columns including the 

current basis and the nonbasic slack. Note this is exactly analogous to the 

0 
decomposition situation. The TT  are in fact prices, just as they were before, 

and represent additional tarrifs associated with the use of the capacited arcs. 

As before, this additional tarrlf Is added to the unconstrained travel time  t, 

forming a new "cost", and the flow is rerouttd accordingly. We may also determine 

(k) 
the sign of -uo        1° an easy manner.  Since at Itast one variable from each 

commodity subset must be basic [3], we may write 

-uok) + l(ti +  'ri)a^
) - 0       for some J 

■- -^-l^m: 
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0 
or rewriting and noting thet    ^ > 0 and ^ > 0 , we have 

-WO00 - l(ti  + f1)a^
) > 0 Vk (3.9) 

UQ Is the length of the shortest path between the k      origin-destination pair 

that Is currently In the basis.    All such paths for the k      commodity must have the 

same length. 

Rather than discussing  the relative merits of  this arc-chain formulation at 

this point, we will put this aside until the end of  the next section.    In the 

next section, we will shov that the arc-chain formulation is equivalent to a 

decomposition formulation and thus the problems encountered will be similar. 
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4.     EXTENSION OF THE ARC-CHAIN FORMULATION 

The similarity between the  two previous  formulations  lead    us to 

Investigate further their relationship.    The outstanding similarity is  that in 

each case prices are put on the arcs at capacity which are added directly to the 

uncapacitated travel  times of the arcs.    The flow allocation is then re-examined 

with respect  to  these  new composite  travel  times.    Also in the decomposition 

approach we solve a subproblem which is a minimal spanning tree, or shortest 

route to all nodes of  the network.     In the arc-chain formulation, we solve a 

shortest route between an origin-destination pair.    Let us then make the 

following transformation of variables on the arc-chain formulation (3.4): 

x(k) . x(k)v(k) Vk (4>1) 

This results  from dividing each flow requirement equation by the required flow; 

in effect normalizing  the   equations.     Thus,  we may write  the arc-chain problem 

as follows in terms of  the new variables. 

min v(l)  r     (1)   (1) + v(2)  l    (2)   (2)  +    _  + v(m)  j    (m)x(o) 

V       j V      3 ^mJ      J 

s1 - k1       Vi 

subject to 

v<» I ."V'1' + v<2> I .«V2> ♦ .... + v« I .<»V-' + 
J1J       J J       ^-J      J J       ^J       J 

1 22 Jm 

I X™ - 1 (4.2) 
h 

I f) 
- 1 

I N<m) 
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Now our program looks exactly like the restricted master of a decomposition 

(k) (k) program. Note that each subsum of A.   equals one and thus the \ may 

be considered as weights associated with the corresponding columns. Also, It 

is easy to see that each column is a path between the k  origin-destination 

(k) 
pair with the appropriate flow on it, namely V   . Thus, equation set (4.2) 

is really a full master for a decomposition problem whose subproblems are shortest 

route problems between an origin-destination pair. By full master, we mean that 

(4.2) contains all the extreme point solutions of the subproblems. The reason 

why we do not have to explicitly know the arc-chain matrix is simply that we 

bring up the needed extreme point solution, ie. shortest path, from the sub- 

problem only when it prices out negative.  Since network techniques are used on 

the subproblems, they could be formulated in the usual node-arc manner. Thus, 

we have shown that the arc-chain formulation and solution technique is equivalent 

to the decomposition technique. The decomposition problem for which (4.2) is the 

full master is as follows: 

(k) find tK  '  > 0    s > 0 , and min Z 

subject to 
[ t t t . . 

E 

to] 

III.. 

E 

I I 

(D 

(2) 

(3) 

(P) 

Z  (min) 

(1)' 
q 
.(2) 

(3) 

(P) 
where q (k) 

r      n 
0 

1     • 

0 

L« 
0 

0 

v(k> 

0 

: 

1 o m                 * 

(4.3) 

The similarity between this and our original node-arc formulation is very great. 

\ • v 
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Where before we had M usbproblems, which Involved finding the shortest path to 

all other nodes, here we have M(M-l)  subproblems, which Involve finding the 

shortest path between an orlgln-destlnatlon pair. 

Thus, we have shown that the arc-chain formulation simplifies the subproblem 

considerably, but at the same time It expands the number of subproblems 

considerably.  Both the node-arc and the arc-chain procedures depend on the same 

principles.  We solve a number of routing problems given a set of prices on the 

capaclted arcs and check optlmallty.  If we are not optimal, we re-evaluate our 

prices and resolve our routing problems again with respect to the new prices.  In 

both procedures the prices associated with the arcs not at capacity are zero. 

Thus, In the aic-chain formulation we must theoretically Invert a matrix the 

rank of the number of arcs at capacity plus the number of requirement equations. 

A criticism that might be lodged against the arc-chain formulation is that the 

number of subproblems has become prohibitively large.  Indeed the number of 

subproblems places a bound on the size problem we can handle, but in fact these 

M(M-l)  shortest route problems may be solved more quickly than the M un- 

constrained minimal cost flow problems.  This is true since the M(M-l) problems 

are solved by applying the dynamic programming algorithm for minimal spanning tree 

routed at a particular node M times.  Each application solves M-l of the sub- 

problems.  Since this must be done in the minimal cost flow situation plus 

assigning flows and adding appropriately for each arc, it will be quicker. The 

difficulty with the method is that there are considerably more multipliers 

associated with subsum equations to be calculated. 

Note that in each case we assumed that we had a basic feasible solution to 

the restricted master.  This is usually not the case, but the method outlined by 

Dantzig [1] may be used to obtain one.  We simply add artificial variables to the 

restricted master and minimize the infeasiblllty form.  The method is the same as 

that described for the decomposition approach.  Here the unconstrained travel time 

on the arcs is considered zero, and a price is put on those arcs that are associated 
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with an infeaslble equation. 

f'hus, we have shown how a pricing mechanism forces the re-allocation of 

cüisaoUity flow until an overall optimum is attained. For a given set of prices, 

we check to see if the current flow allocation is optimal; and If not we find 

new prices for the arcs and reroute flow accordingly. The simplex criteria tell 

us which new route (chain) should be considered and which old route should be 

dropped.  Then new prices are found consistent with the new basis and the 

processes repeats itself. 
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5.  COMPUTATIONAL STATUS 

Now that the theory has been demonstrated, It seems appropriate to say a 

few more words concerning computational possibilities. We have Indeed shown that 

the problem can be formulated as two slightly different decomposition problems. 

The first defines commodity as that flow leaving the k  node. Thus, for M 

commodities, or centrolds, we have M uncontralned minimal cost flow problems. 

The second, an extension of Ford & Fulkerson's work, defines commodity as flow 

between the k  origin-destination pair. Thus, for M centrolds we have M(M-l) 

shortest route problems. The differences are only slight and only slightly 

different solution techniques are Implied. 

The unconstrained minimal cost flow problems of the first formulation may 

be solved in two ways. First, a straight forward application of the out-of-kilter 

algorithm will yield a rapid solution as the problems are unconstrained. Also, 

since the objective function is the same for each subproblem at any iteration, 

the solution of the 1  subproblem can be used as a starting solution for the 

1+1   subproblem at any Iteration - thus speeding convergence. As an 

alternative, it appears that using t.he solution of the 1  subproblem at 

Iteration t as the starting solution for the 1  subproblem at iteration 

t + 1 will make convergence extremely rapid as the right hand sides will be 

identical and the objective functions only slightly modified. Of course, this 

entails storing in some manner the M solution vectors of the subproblems from 

iteration to iteration. Note that this causes no real difficulty as the solution 

vectors currently in the basis of the restricted master will be, if not 

equivalent. Just as useful. The second method to solve the subproblems, which 

has been used in practice, is to solve a minimum tree routed at a particular node 

for each subproblem. Thlr is done extremely rapidly by application of the dynamic 

programming algorithm for "shortest path" (actually shortest path to all nodes 

and thus minimum tree). This computation may be shortened by judicious choice 

of the order in which the subproblems are solved. That is, if the appropriate 

* 
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node Is chosen adjacent to the one for which the minimum tree was just calculated, 

a great deal of the new minimum tree will be the same.  Unfortunately, their 

presently exists no systematic technique for doing this.  To find the column 

to introduce into the basis, we need the flows on the arcs. Thus, for each 

destination node of a subproblem, we traverse the shortest route to the origin 

(k) 
(ie. in the reverse direction) assigning the demand q    on each arc A . 

When this is done for each destination node, we simply sum the resulting demands 

on each arc to obtain the required total flow on that arc.  Although this method 

of solution is more difficult to describe than the out-of-kilter method, many 

argue that it is as efficient. 

Now with the subproblems solved at some iteration, we want to introduce 

the appropriate column into the restricted master. We could use the straight 

forward application of a linear programming code to optimize the restricted 

master, as this yields the desired prices directly. Clearly, if this method is 

used all those columns that currently price out negatively from solution of the 

subproblems should be introduced into the restricted Taster; then the restricted 

master is optimized. The number of equations is then equal to the number of arcs 

plus the number of commodities (subproblems). Thus, the rank of the restricted 

master constrains the size problem you can solve (ie. as large as the linear 

programming code employed). There is an alternative approach, although it has 

not yet been fully worked out.  That is, we utilize the fact we know the price 

is zero on all arcs not at capacity.  Thus, if we select our matrix to invert, 

it must only be of rank equal to the number of capacitated arcs plus the number 

of commodities.  This is a sizable reduction as the number of capacitated arcs is 

rarely more than sixty percent of the total and often as low as thirty percent. 

This approach has the obvious difficulty that the number of capacitated arcs 

may change from iteration to iteration. 
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The second formulation is of interest because the technique for the sub- 

problems is straight forward.  Here we have M(M-l)  shortest route problems 

between origin-destination pairs. We simply apply the dynamic programming 

algorithm M times; each application yielding the solutions to M-l of the 

shortest route subproblems. Note that no back search is necessary to find the 

flows. The only difficulty with this solution approach in general is that the 

restricted master has n equations for the capacity constraints as before but 

also M(M-l) commodity equations instead of M.  Therefore, the number of 

commodity equations may become prohibitive unless special techniques are 

employed. For a large problem, it is suggested that the generalized upper 

bounding algorithm of Dantzig and Van Slyke be utilized [3]. The algorithm 

given in Vol. II of their paper has a "working basis" of rank equal to the 

number of arcs. 

In conclusion, it would appear that a reasonable size problem can be solved 

straight forwardly by either method. The bound on this "reasonable size" is 

placed either by the linear programming code size utilized to solve the 

restricted master or by the computing time utilized In solution of the subproblems. 

For present computers, a chain Job configuration would have to be used on a large 

problem; this could be quite time consuming, but future machines will eliminate this 

difficulty. 

At this stage there are three areas where further research seems Justified. 

First, an approach using only network techniques would be desirable, but the simple 

pricing mechanism implied by the decomposition approach would seem hard to improve 

upon.  Second, an efficient technique to calculate the prices that uses only the 

information associated with the capacitated arcs would greatly increase the size 

problem the above techniques could accomodate. Third, in practice a systematic 

technique of guesalng the prices might be the best.  Finally, as computer technology 

Increases the amount of rapid access storage available to the user, the above 

techniques should prove to be extremely rapid. 

i 
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APPENDIX 

An intersting extension of the classical traffic assignment problem has 

been proposed by A. Ridley.   The basic concern Is to add a budget which can be 

used to Increase the capacity of any arc.  Thus, the capacity constraints for the 

problem take on a different form.  The right hand side now becomes the sum of two 

capacities, the present existing capacity plus that capacity which can be added 

by spending money on that particular arc.  Thus, we have 

(k) 
< V kj on If 

k J 

(k) 
+ 8J - KJ + kJ    V3 

(A.l) 

Since we want to minimize total travel time on the network, we could Increase the 

capacities on all the shortest paths; but this Is not possible with only a finite 

amount of money.  If we call B , the budget or the total amount we can spend; and 

call r.  the cost per unit Increase in capacity on the 1  arc we have 

pJkJ-B    0n    ]Tiki + s' (A. 2) 

That Is the amount of money spent on each arc, summed over all arcs, must be less 

than or equal the total budget.  The new problem In matrix notation is then 

;(k) find r  '  >0    s>0    k>0    s'   >0    min Z 

subject  to 

I I 

0 0 

[c  c 

I I -I 0 

0 0    r 1 

I*1] [q(1)l 
M k2) 

• i: i 
f mi -      | q(n)| 

1 s K      1 
k B      1 
8 

W          M 

1   ' ■        • ' Z( min) 0   o d]      ■"     J 

tPrivate communication 
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The reason for considering this variation is to show that the proposed solution 

technique also solves this problem as an easy extension. The subproblems are 

obviously exactly the same as they were in the initial formulation. Thus, let us 

now consider the restricted master. 

find X(1) > 0 X(2) > 0 s > 0 k > 0 s' > 0 max f0 

P0f0 + I  S^M^  + I s[2\[2) + Is -  Ik - K (A.4) 
1    "      A 1 

rk+ s'   - B 

y A(1) 

i 1 

Note  that this only adds one more equation to the problem whil-  adding several 

more variables.    Thus,  any straight  forward method for optimising the restricted 

master,  such as the revised simplex method, will yield prices Just as It did 

before.     In fact,  the solution technique for this problem is identical with that 

of the  first formulation except shortcuts for obtaining prices may not be 

applicable. 

Since the objective is to minimize total travel time regardless of cost, 

assuming we are within the budget,  the solution is intuitive.    We will spend 

money to increase the capacity of  the shortest paths on critical arcs until one of 

two things happens.    Either all  commodities will be traveling over their shortest 

paths only or the budget will be constraining. 
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