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U.   S4   ARMY MATERIALS RESEARCH AGENCY 

STRESS  CONCENTRATION   FACTORS   IN   T-HEADS 

ABSTRACT 

Two simple formulae are presented which predict stress concentration 

factors applicable to a two-dimensional symrr.*trical T-head configuration. 

This configuration consists of a deep head joined to a shank by fillet radii. 

The independent equations that predict stress concentration factors for the 

same geometry are derived for two different leading conditions.  In one 

instance, a tensile force is applied to the shank end of the T-shape. 

Equilibrium of forces is attained by supporting the bottom edge of the head 

section, resulting in the shank section being pulled in tension.  In the 
second instance, a compressive load is appliec to the top edge of the head 

section while the configuration is again supported at the bottom edge. 

Thus, only the head section is stressed and ir,> a compressive manner. 

Because the analysis is not exact, the magnitudes of the stress con- 

centration factors resulting from the predictive equations appear to be 

overly conservative at some ranges of the geometry parameter ratios.  There- 

fore, an arbitrary "limit of application", as it is termed in the text, is 

recommended when using these equations. 

Again, because of the inexactness of the analysis, experimental stress 

concentration factors are indirectly obtained for the first loading condi- 

tion and lirectly obtained for the second loading condition mentioned above. 

These data were obtained for several geometric ratios of the T-head config- 

uration aid compared to the corresponding predicted values. 

It W4s found that the formulae could be utilized, with engineering ac- 
curacy, witiin a certain range of the two pertirent geometry ratios.  Beyond 

these ranges, the error became excessive, but conservative. 
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INTRODUCTION 

A brief literature survey is presented of past work relating to stress 

concentration factors in two-dimensional T-head configurations.  The results 

of the survey are pertinent to subsequent discussions.  Hetenyi  was one of 

the first experimenters to test a two-dimensional T-head configuration.  He 

stressed the body in a similar but slightly different manner than that shown 

in Figure la.  The results were applicable for geometries which included sev- 

eral h/d ratios but only one d/R ratio.  Twenty years later Hetenyi presented 

additional results  which were an extension of Reference 1.  Heywood8 further 

applied an empirical formula to the initial results of Hetenyi.  His objec- 

tive was to extrapolate Hetenyi's data by including the effect of d/R for 

T-heads of various h/d ratios.  Nishihara and Fujii4 obtained, by elasticity 

theory, the stress distribution in a two-dimensional bolt head.  Although the 

results of this reference yield the desired stress concentration factor, the 

formulae are complicated and applicable over a limited range. 

V 

The objective of this report is to obtain an expression for the stress 

concentration factor associated with the configuration and loading shown in 

Figure la.  The formula is developed because: 

a. the empirical expression given in Reference 3 is based on the 

limited data of Reference 1; and 

b. the formulae of Reference 4 are not amenable to simple computations 

and are inaccurate at some ratios of d/R of practical interest. 

Formulae are obtained by 

superposition of various load- 

ing cases of Figure 1 which 

are guided by experimental 

observation.  Two expressions, 
which yield yalues of the 

stress concentration factors 

applicable to Figures la and 

lc, result from this analysis. 

These formulae increase the 

usable range of existing data 

and are easy to apply. 

However, because of the appar- 

ent conservativeness of the 

resulting equations at some 

ranges of the geometry param- 

eters, a limit of application 

is suggested in the text. 

Also, since these formulae are 

not exact, experimental veri- 

fication is provided. 
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Figure 1 . SUPERPOSED T-HEADS LOADINGS 
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FORMULATION 

Photographs of models loaded similarly to those shown in Figures lb and 

lc are presented in Figures 2a and 2b.  In particular, note the isochromatic 

fringe distribution at the fillets.  An experimental determination of the 

location of these fringes at the fillet periphery for both loading cases 

revealed that for this model which had a large D/d ratio: 

a. the stress gradient at and near the maximum stress site was 

relatively small; and 

b. these regions for the two loading cases overlapped. 

fTTT rrm 

r* 

m 
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a. APPLIED LOAD 260 POUNDS b. APPLIED LOAD 580 POUNDS 

Figure 2. ISOCHROMATIC PATTERN 

Case IA, D/d = 4.0, d/R = 10.0 

As the D/d ratio was reduced, while retaining a constant d/R ratio, the 

above statements became less correct.  Even so, it shall be assumed hereafter 

that the maximum stress for the two loading cases occur at the same location 

and can be added or superimposed.  The limitation on such an assumption will 

subsequently be determined.  However, the maximum principal stresses at the 

fillets of Figures lb and lc are superimposed to obtain an approximate rela- 

tionship for the maximum principal stresses at the fillets of Figure la. 

This relationship is given by the following formula: 

rfT rfa + cr fe- rn 

where &fjt   
CTfa» 8nc* aic   are tne maximum principal stresses at the fillets 

of Figures la, lb, and lc. 
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The stress concentration factors for the loading cases shown in Figure 1 
are defined as follows: 

rfT 

liT   = ~n 

Kfa 

and 

t (2) 

,       °"fc kfc s 'v57d)' 

where aj  and cra are the uniformly applied stresses. 

The sign convention adopted for the above stress concentration factors 
is as follows: 

a. positive when the examined stress is the same sign (tension or 
compression) as the nominal stress to which it is compared; and 

b. negative when the examined stress is the opposite sign to the 
nominal stress. 

Substitution of Equations 2 into Equation 1 [note (Xj  a cr^  (D/d)] results 
in a relationship among the three stress concentration factors, given by the 
following: 

kfT~kfa * kfC (3) 

Thus, it is seen that the three concentrators associated with Figure 1 are 
directly superposable, if it can be assumed that jaximum stresses are 
coincident. 

It remains to obtain a relationship between the stress concentrators, 
k£a and kfc, to reduce the number of variables in Equation 3 to one. 
Accomplishment of this is realized by equating the loading state represented 
by Figure lb, for which the stress concentration factor kfa is experimentally 
well known,5"  to the sum of the two loading states shown in Figures 3b fend 
3c.  Figure 3b can, in turn, be reduced to the same loading cases as those 
shown in Figures lb and lc, in which it is again assumed that the points of 
maximum stress of the two cases coincide.  Therefore, the stress states rep- 
resented by the loading cases shown in Figures 3b and 3c are superposable 
and result in the following formula: 

rfa ~ a fb ♦ a fc» (4) 

where cr^  in  the maximum principal stress at the fillet of the configuration 
and loading öhown in Figure 3b. 
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Figure 3. SUPERPOSED LOADINGS OF T-HEAD IN TENSION 

It was indicated in Reference 11 that if the stress loading cr>p could 
have been applied to all horizontal surfaces of the configuration shown in 
Figure 3b as well as on the fillet radii, then the stress concentrator would 
be exactly equal to one.  It was considered impracticable to accomplish this 
loading exactly by experimental means.  However, it was found that as long 
as the fillet radius was small relative to the neck width d the stress at the 
fillet crfb tended to be equal to the applied stress crj when the stress load- 
ing and configuration were the same as that shown in Figure 3b.  Thus, 
Equation 4 can be reduced to the following: 

cr£a  _ <Jj  ♦ o-£c  (R/d be small). (5) 

Defining the stress concentration factors kfa and kfc in terms of the 
applied stress shown in Figures 3a and 3c, we have: 

and 

'fa 

'fc = * 

rfa 

'fc 
crc(D/d). 

Substitution of the above into Equation 5 and consideration of the equilibrium 
of forces on the body shown in Figure 3c yields: 

;fa ♦ (D/d-^-l> Lfc = 1 (6) 
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or 

[fc 
'fa - 1 

D/d - 
d/R 

- 1 
(7) 

(For physically significant geometry D-d-2R>0 and D/d-l-2/d/R>0). 

Substitution of Equation 7 into Equation 3 for kf-r finally results in 
the following formula: 

kfa W*  - dTR)-1 
cfT 

D/d - 
(8) 

d7R - 1 

As previously indicated, experimental data are available for the stress 
concentration factor kfa for various D/d and d/R ratios.  However, an empirical 
formula is given by Heywood in Reference 3 for this concentrator based on the 
experimental data available.  Heywood's equation becomes (using the nomen- 
clature in this report): n ._ 

.       [W -  1) d/R I0'65 
k*a % 1 + I :     . (9) 

[.2(2.8 D/d -2)J 'fa 

This empirical relationship can be utilized to obtain formulae for the 
stress concentrators kfr and kfc, which are dependent upon only the geometry 
ratios D/d and d/R.  Direct substitution of Equation 9 into Equations 7 and 8 
results in the following relationships: 

1 ♦ 
cfT 

["(D/d ■ 1) d/R]°'65 

[.2(2.8 D/d - 2)J 
(D/d - d/R )- 1 

2_ 

d/R D/d - T75- - 1 

(10) 

and 

'fc 
B (D/d - 1) d/R] 
2(2.8 D/d-2)J 

0.65 

D/d - 
2 

d/R 

(ii; 

- l 

The reader is cautioned that Equations 8 and 10 are invalid for small 
values of h/d (see Figure 1) since bending of the flanges of the head is 
precluded from the analysis.  Hetenyi2 indicates that when h/d is equal to 
3.0 or greater, the head of the T can be considered infinitely deep, thus 
eliminating the existence of bending stresses at the fillet. 

A more useful definition of the stress concentration factor for the con- 
figuration shown in Figure 3c is kj • • or, /a , and from Equation 2 we see I, 

A 



that kfc * k£c D/d.  Substitution of this latter relationship into Equation 11 

results in the following: 

,65 

fc * * 

D   Hp/d - i) d/Rl0-' 
1  L2<2-8 °/d - 2)J 

^-äTR-1 

(12) 

LIMIT OF APPLICATION 

The stress concentration factors, kf-r and K£c, described by Equations 10 

and 12, are shown plotted as a function of the constant parameter D/d and var- 

iable d/R in Figures 4a and 4b. There are distinct minimum values for each curve de- 

scribed by D/d in these figures.  As previously indicated, it would seem that 

as d/R is decreased, kfj and kfc should also decrease (which they do up to a 

point) and asymptotically approach a minimum value (which they do not).  It is 

evident that this behavior is not correct and occurs as a result of inexactness 

of the equations which in turn could be cauaeu by: 

a. the approximate nature of the observation that the maximum principal 

stresses occur at the same fillet locations; and 

b. the violation of th* restriction that the radius R be small compared 

to the width d. 

°>T = stress at filltt 
JT = applied stress at shank 
cr     =  applied stress at shoulders 
h/d > 3.0 

4.0  8.0 12.0  16.0 20.0 24.0 28.0 32.0 

d/R 

Figure 4a.  STRESS C0NCEMTRATI0N FACTOR kfT 
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0/d = 1.5 

D/d = 1.75 

D/d =2.0 

D/d = 2.5 
D/d =3.0 
D/d = 4.0 
0/d =5.0 
D/d = oo 

LEGEND 

1 
mi 

Jl 
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mi 

k Hilft 
*t 

"fc -c 
stress at fillet 

applied stress at head 
applied stress at shoulders 
3.0 

4.0    8.0    12.0   16.0   20.0   24.0   28.0    32.0 
d/R 

Figure 4b. STRESS CONCENTRATION FACTOR kfc 

Thus, the accuracy and application of the expressions beyond the mini- 
mum points are questionable.  The seemingly odd behavior indicated above 
wi'l provide convenient practical cut-off points for each curve describing 
kfj and kfc.  (The cut-off points are experimentally checked for two cases 
and are discussed later).  These cut-off points can be determined by th«» 
minimum values of the stress concentration factors defined by particular 
values of d/R as a function of D/d.  These minimum values will provide 
limits on the use of Equations 10 and 12 and shall be called "limits of 
application". 

The limits are analytically determined by simply applying maximum- 
minimum principles to Equations 10 and 12.  The limits of application of 
Equation 10 describing kfj  are given in the following: 

d/R > 
D/d - 1/2 (1-1/n) -/(l/n)(D/d) ♦ 1/4 (1-1/n)2 ' 

The limits of application of Equation 12 describing kjc are given by 

2(1 ♦ n) 

(13) 

d/R > 
n(D/d-l) 

(14) 
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where n = 0.65.  Both limits have been computed and are shown in Figures 4a 
and 4b as lines connecting the minimum point in each curve and are labeled 
"limit of application". 

EXPERIMENTAL STUDY 

Because of the approximations used in the previous section it was neces- 
sary to establish the validity of the derived equations.  Therefore, the pri- 
mary objective of the experimental program was to determine the order of 
magnitude of the inherent error associated with the determination of kff and 
k}-c by Equations 10 and 12. 

To accomplish the above in the simplest manner, the stress concentration 
factors kfa and kj-c were experimentally determined for four cases which had 
the various geometry ratios shown in Table I.  The stress concentration factor 
k£j was then obtained from these data for each of the four cases by simple 
superposition as indicated by Equation 3. 

Table I.  EXPERIMENTAL, SUPERPOSED, AND PREDICTED DATA 

Case d/R D/d 

EXPERIMENTAL DATA SUPERPOSED DATA PREDICTED DATA        j 

hf. >J« kfc kfT 

Coabined Factor, Equation 6 1 

-;.» 
Percent 

di fferencel kf. + (D/d-d7R*mfc E l'6 kn» 
Percent 
difference 

JA 10.0 4.0 2.37 «2.05 -0.51 2.88 0.94 2.86 - 0.7 .1.96 - 4.4  [ 

IB 10.0 2.0 2.25 • 2.48 -1.24 3.49 1.27 3.79 + 8.6 -3.10 -'5.0   j 

IC" 10.0 1.5 1.9S ^2.71 .1.81 3.76 1.41 5.71 +S1.8 -5.43 + 100 

II" 5.1 2.0 1.95 -1.08 -0.54 2.49 1.62 3.13 +25.7 -2.65 + 145 

'Obtained by anperpoaing kfa and kfc according to Equation 3. 

tCoaputed according to Equation 10. 

fCoaputed according to Equation 12. 

**Liaiit of application caae for kfc. 

NOTE: -J> 3.0 

Cases IC and II were designed to determine the maximum error allowed by 
the limit of application.  The geometries for these cases were determined 
according to the limit of application on the concentrator kfc, (Equation 14) 
rather than kfr.  This was done because the minimum points for kfc as shown 
in Figure 4b are slightly more limiting than the corresponding curves in 
Figure 4a.  Thus, for the same D/d value the limiting d/R ratio is greater 
for kj-  than for krj, and, therefore, more restricted. 
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The experimental data were obtained by a photoelastic study using a 
model made of Homalite 100.  The two methods of applying the load and the 
model dimensions for the four cases investigated are shown in Figure 5. The 
model was compressively stressed* by the first method of loading, Figure 5a, 
then by the second method, Figure 5b.  The photoelastic model was stressed 
by the first method to determine the factor kfa» the location of the maximum 
fringe order, and to index this maximum stress site by scribing fiduciary 
lines on the model.  At this location the fringe order was also determined 
when the model was leaded by the second method.  Thus, the nominal fringe 
order at the shank section Nj, the maximum fringe order at the fillet N££t 
and at this same site the fringe order Nfc, were obtained for each case and 
are shown plotted as functions of load in Figures 6 and 7.  These experimental 
data were then utilized to obtain the stress concentration factors kfa and 
kfc, from which kfj  was indirectly determined. 

Figures 2a and 2b are photographs of the isochromatic fringe patterns, 
with a light background resulting from the two loading methods chosen as 
representative of typical patterns of case IA (d/D ■ 4.0 and d/R ■ 10.0). 
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CASE 

IA IB IC n 

R 0.079 0079 OXJT* 0.110 

d 0.790 0.790 0.790 0.969 

0 BJOOO 1.900 1.129 1.129 

/ 2" 2" 2" 2" 

h 7" 3" 5" 5" 

i 1/2" 1/2" 1/2" 1/2" 

NOTES: 
1. DECIMAL  TOLERANCE 

IS ± 0.001" 

2. SHADED AREAS SHOW 
CARDBOARD  PAD 
LOCATIONS 

Figure 5. LOADING AND MODEL PARAMETERS 

•Pads were used st sil contact surfaces to siaulate ■ constantly distributed load. 
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CASE 

IA IB ZC n 

R 0.075 0.075 0.075 0.110 

d 0.750 0.750 0.750 0.565 

0 3000 1.500 1.125 l 125 

ft 2" 2" 2" 2" 

h T 5" 5" 5" 

t 1/2" 1/2° 1/2" 1/2" 

H 

NOTES: 

1. DECIMAL  TOLERANCE 
IS t 0.001" 

2. SHAOEO AREAS SHOW 
CAROeOARD PAD 
LOCATIONS 

-100    -200 -300     -400     -500 

P APPLIED LOAD-LB 

Figure 6. FRINGE ORDER Nfa AND Nd AS A FUNCTION OF APPLIED LOAD 
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CASE 

IA 19 IC n 

R 0.075 04)75 OJOTS 0.110 

d 0.750 0.750 0.750 0.365 

0 3000 1.500 1.125 1.125 

/ 2" 2" 2" 2" 

h r 5" 5H 5" 

t 1/2" 1/2- 1/2" 1/2" 

NOTES: 

I. OECIMAL TOLERANCE 
IS ± 0.001" 

2 SHADED AREAS SHOW 
CAR060AR0 PAD 
LOCATiONS 

R -d- f 
in 

Hfc 

-300    -i*00     -500 

P APPLIED LOAD-LB 

-700 

Figure 7. FRINGE ORDER Nfc AS A FUNCTION OF APPLIED LOAD 

| 

r.- 

I  1 

z~. ■i-jisri 



RESULTS AND DISCUSSION 

A least-square method which incorporated the data shown in Figures 6 
and 7 was used to determine accurately the equation of each straight iine 
designated by Nj, N£a> and Nfc for all cases.  A straight-line fit for each 
curve was corrected to initiate at the origin of the plot.  Residual stresses 
and time edge effects present in the photoelastic model were thus compensated. 
These results were then used to determine the desired experimental concentra- 
tion factors defined as: 

'fa ■' Uli 

lfc 
_Nfc 

and 

kfc " kfc(D/d). 

The stress concentration factors for each case are shown in Table I. 

It is noted that in the formulation of Equation 6, it was necessary to 
make use of: 

a. an experimental approximation, i.e., it was assumed that the points 
of maximum stress of the loading cases shown in Figures lb and lc coincided; 

b. an experimental fact, i.e., from Reference 10 it was determined that 
under idealized conditions the stress concentrator would be equal to 1.0; and 

c. the restriction that the fillet radius R be small compared to the 
small width d« 

If all of the above were true, the left side of Equation 6, which is termed 
the Combined Factor, would be equal to unity (1.0).  This Combined Factor 
could be used as an index, when compared to 1.0, on the relative accuracy of 
Equations 10 and 12, which predict kfr and k£c.  The Combined Factor, for 
which the computations were based on the experimentally determined concentra- 
tors kfa and kfc, as well as the predicted values of kfp and kj«c, and the 
percent difference when compared to experimental values are also given in 
Table I. 

Results given in Table I indicate that when d/R is constant (see cases 
IA, IB, and IC), the Combined Factor approaches the idealized value of 1.0 
with increasing D/d.  Also, when D/d is constant but d/R is increased, as in 

12 
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cases II and IB, the Combined Factor appears to approach the idealized value 
of 1.0.  It is apparent from Table I that as the Combined Factor approaches 
1.0, the percent differences for both kfj and k£c become small.  These dif- 
ferences are based on a comparison of experimental values of krj (and super- 
posed data) and kj-c to those given by the predictive equations 10 and 12. 
Further examination of these relative differences reveals that: 

1. kf-r determined by Equation 10 is accurate, compared to the experi- 
mental value (see superposed data), to within less than 9.0% if D/d 2 2.0 
and d/R > 10.0 (compare cases IA and IB to case IC). 

2. k£c determined by Equation 12 is accurate to within 25.0% if 
D/d > 2.0 and d/R £. 10.0 when related to the experimental data (compare 
cases IA and IB to case IC). 

3. The two cases, IC and II, which are at the limit of application for 
the concentrator k£c, yieJd the maximum differences, 100% and 145%, respectively. 
However, these differences are positive and are considered conservative. 

Comparisons can also be made to the datt given in References 1 and 2 by 
Hetenyi even though the loading configuration used by this author, shown in 
Figure 8a, is different from that shown in Figure 8b.  The difference between 
these two loading states is shown in Figure £c.  It is readily apparent that 
if the fillet radius R is small, the Hetenyi-type stress concentration factor 
termed here as k£jj is approximately equivalent to k£j.  The data from Refer- 
ences 1 and 2 are presented in Table II as well as the predicted values of 
the stress concentration factor k£j given by Equation 10, and the percent 
error when compared to k£|f• 
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Figure 8.  HETtNYl TYPE T-HEADS 
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Table II.  COMPARISON TO EXPERIMENTAL RESULTS OF T-HEADS 
AVAILABLE IN TOE LITERATURE 

Ketenyi's Results - References 1 and 2 

\w 
d/R * 20.0 d/R * 13.33 d/R ■ 10.0 d/R «5.0 

kfH 
kn % «rror kffl kfT* X «rror >>ffl kfT# % «rror kfH kfT# % error 1 

s.o 
2.5 

2.0 

l.S 

4.10 

4.47 

S.00 

|   6.0S 

4.20 

4. SO 

S.10 

i  6.97 

♦ 2.4 

-  1.0 

♦ 2.0 

+15.0 

3. SO 

3.6S 

3.90 

4.90 

3.48 

3.73 

4.25 

6.ÖS 

- 0.6 

+ 2.2 

♦ 9.0 

+24.0 

3.10 

3.02 

3.30 

4.70 

3.08 

3.30 

3.79 

5.71 

.  1,0 

♦ 9.3 

+14.8 

♦21.5 

2.52 

2.35 

2.60 

2.38 

2.58 

3.10 

•  5.6 

+ 9.8 

♦19.2 

*Coap«ted according to Eqeatioa 10 (AH values of kfT aro within the liait of 
application fiten by Eqaatioa 13) 

NOTE: -y>3.0 

A comparison of the results given in Table II indicates that as D/d in- 
creases, with d/R remaining constant, the.error generally decreases.  This 
is because the points of maximum stress for the various loading cases tend 
to coincide and the stress gradient becomes small as D/d becomes large. 
The results also indicate that, generally, Equation 10 becomes more accurate 
as d/R increases, with D/d remaining constant.  This is due to: 

a. the restriction that the fillet radius R be small compared to the 
width d in the analysis; and 

b. as R becomes small the Hetenyi-type concentration becomes equivalent 
to kfj. 

It is also seen from Table II that as the error becomes large, it is 
positive.  Further, if one is interested in accuracy of 10% or better, then 
Equation 10 can be used when: 

a. D/d is equal to or greater than 2.5 and d/R lies between 5.0 and 
20.0; and 

b. D/d is equal to or greater than 2.0 and d/R lies between 13.33 
and 20.0. 

Analytically computed results for the stress concentration factor kfj as 
a function of d/R when D/d * 2.325 are given in Reference 4.  These 
data, as well as those obtained from Equation 10, can readily be compared 
and are shown in Figure 9.  It is seen that these curves compare to within at 
least 10% of each other when d/R is between 3 and 28; beyond the value of 28, 
the difference is excessive.  As d/R increases, kfj becomes more accurate. 
On the other hand, the mapping function utilized in Reference 4 becomes in- 
exact for large values of d/R.  This difference is attributed to the method 
used in Reference 4 when d/R > 28.  However, it is expected that when d/R is 
small, the method given by Reference 4 is quite accurate. 
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Figure 9. COMPARISON OF STRESS CONCENTRATION FACTOR kfT 

SUMMARY OF CONCLUSIONS 

1. The difference between the experimentally determined concentiaLors, 

kfj and kr, and the equations used to predict them become quite small when 

either:  (a) the ratio of d/R is increased, while retaining D/d as a constant 

parameter; or (b) the ratio of D/d is increfsed while retaining d/R as a 

constant parameter. 

2. When compared to the experimental value, if D/d > 2.0 and d/R>10.0, 

kfj can be determined by Equation 10 within a difference of 9% or less. 

Equation 10 can be used in other ranges with a corresponding increase in the 

difference, which appears to be conservative.  Alternatively, the formula of 

Reference 4 can be used in those regions. 

3. The prediction of kfc by Equation 12 could be useful as a first-order 

approximation, and it is considered probable that the error in predicting this 

concentrator will be conservative. 

4. The Hetenyi-type concentrator kfjj can be determined by Equation 10 

within an error of 10% or less if:  (a) D/d > 2.5 with d/R between 5.0 and 

20.0; and (b) D/d > 2.0 with d/R between 13.33 and 20.0. 
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