
AFCRL-67-0167

at

3

CRT-AIDED SEMI-AUTOMATED MATHEMATICS

James H. Bennett
William B. Easto v
James R. Guard
Larry G. Settle

APPLIED LOGIC CORPORATION
ONE PALMER SQUARE

PRINCETON, NEW JERSEY

Contract AF 19(628)-3250
Projec No. 8672

FINAL REPORT

Period Covered: 1 June 1963 through 30 September 1966

January 1967

This research was sponsored by the Advanced Research
Projects Agency under ARPA Order No. 700

Contract Monitor: Timothy P. Hart

Distribution of this document is unlimited

Prepared
for

n
,."•■

ii _ -

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES
OFFICE OF AEROSPACE RESEARCH

UNITED STATES AIR FORCE
BEDFORD, MASSACHUSETTS 01730

mam mm
^

AFCRL-67-016?

CRT-AIDED SEMI-AUTr MATED MATHEMATICS

James H. Bennett
William B. Easton
James R. Guard
Larry G. Settle

APPLIED LOGIC CORPORATION
ONE PALMER SQUARE

PRINCETON, NEW JERSEY

Contract AF 19(628)-3250
Project No. 8672

FINAL REPORT

Period Covered: 1 June 1963 through 30 September 1966

January 1967

This research was sponsored by the Advanced Research
Project.- Agency under ARPA Order No. 700

Contxact Monitor: Timothy P. Hart

Distribution of this document is unlimited

Prepared
for

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES
OFFICE OF AEROSPACE RESEARCH

UNITED STATES AIR FORCE
BEDFORD, MASSACHUSETTS 01730

1
-
I

i *

3

TABLE OF CONTENTS

ACKNOWLSDGMENTi

PERSONNEL

A1*STRACT

SUMMARY

Section I Symbols and Formulas

Section II AUTO-LOGIC

Section III Control, Input/Output

Section IV Experimentation with SAM V

Section V TROLL

BIBLIOGRAPHY

Page

i

ii

iii

iv

1

10

21

27

42

51

5

4

11

steS- I

ACKNOWLEDGMENTS

The authors wish to acknowledge the encouragement given

them during every phase of the work by their technical monitor,

Timothy Hart, and by Ivan E. Sutherland of the Advanced Research

Projects Agency.

During the early phases of the work three of the authors

were affiliated with Princeton University, and one of them was also

affiliated with The University of Michigan. All wish to acknowledge

the encouragement and support they have received from their respec-

tive universities.

Finally, thanks to the staffs of Applied Logic Corporation,

Socony Mobil Oil Co. Inc., and the Princeton and Rutgers University

Computation Centers for their helpful assistance.

PERSONNEL

i The authors wish to express appreciation
for the whole-hearted efforts on the part
of the following personnel:

Roger Haydock
David B. Loveman
Thomas H. Mott, Jr.
Francis C. Ogles by
William L. Paschke
Eleanore G. Wells

ii

ABSTRACT

This report describes the status of the fifth in a series of five
M

experiments ii semi-automated mathematics. This effort extended

from June 1, 1963 through September 30, 1966. These experiments

culminated in large complex computer programs which allow a

mathematician to prore mathematical theorems on a man-machine

basis. SAM V, the fifth program, uses a cathode ray tube as the
IT

principal interface between the mathematician and a high speed digital

computer. An elaborate language and logical capability has been im-

plemented in SAM V. These include I/O languages for expressing

mathematical statements in a form suitable for both thr mathema-

tician and the machine to recognize and handle with ease and con-

venience; a language for expressing and handling sorts and range of

symbols; and an auto-logic algorithm and matching routine. ITie

latter constitute the capability for handling, automatically, logic with

equality. This capability is particularly useful at an intermediate

slate of the proof when it is desired to have the machine try and

verify automatically a given portion of the proof.

in

s

■^ a Eg S -30

SUMMARY

1

This final report describes a series of five computer programs,

called SAM I through V, which are experimental tools for study-;ag

techniques in theorem proving via human interactic with computers.

The approach of semi-automated mathematics which underlies this

series of programs is that of using man-machine interaction to

achieve results which neither component could achieve alone. The

first four programs are described in detail in [1,2,3,4] (See

Bibliography). Each of the five programs concentrated on attacking

specific phases of the problem. The current program is oriented

primarily toward the development of efficient automatic techniques

for handling some of th# smallest processes of mathematical deduc-

tion and toward the realization of efficient real time interaction be-

tween man and machine through the use of CRT displays.

The first program, SAM I, implemented the propositional cal-

culus in a framework of natural deduction; the goal of human inter-

vention in SAM I was to obtain proofs ->f minimal length. SAM II

dealt with quantifier-free first-oroer axiom systems of mathematics.

SAM 11 was adequate to investigate elementary mathematical theories

including geometry and elementary set theory. The program left

the entire burden of proof generation with the user. SAM II was

responsible for checking the validity of steps and generating conse-

quences by the basic rules. SAM III saw the beginning of the develop-

ment of auto-logic, which contained the capability for automatically

handling predicate and functional logic containing equality. This

capability is particularly useful at an intermediate stage of a proof

IV

when it is desired to have the machine attempt to verify a portion

of P proof without requiring the user to supply all the elementary

steps in the derivation. The years have seen continual increase in

the power of auto-logic to automatically verify the truth of complex

deductions. SAM III initiated development of sophisticated input/

output techniques and contained the first general purpose languages

for expressing mathematically statements in suitable form for both

mathematician and machine.

The programs. SAM I, n, and III, were implemented on a

sr.all scientific computer, the IBM 1620. SAM IV expanded th«-

capability of SAM III in a number of directions and was implemented

on an IBM 7040, a medium ^cale scientific computer. The improve-

ments were primarily in auto-logic and in the use of SLIP (a list

processing language) as the underlying framework for the program.

SAM V saw advances in auto-logic with respect to the semi-

automatic handling of equality and the algebraic aspects of mathe-

matical theories. It has also seen the implementation of a CRT

display as the primary interface between man and machine. This is

a most convenient and flexible means of interaction and the first

allowing truly real time communication between man and machine at

a rate that is efficient for the user. The program was implemented

on a PDP-6, a large-scale computer with a time-sharing system.

Time sharing is a mode of operation which allows efficient and econom-

ical interaction between man and machine at the convenience of the user.

This report expands and brings up to date the material contained

in IT.SJ, Our intention is to make this report a self-contained

description of SAM V as it existed on September 30, 1966.

.i '

SECTION I

SYMBOLS AND FORMULAS

In this section we describe the symbols and formulas of SAM V

from the viewpoint of logical structure. The symbols and formulas

are the language of SAM, the fundamental entities with which the user

is concerned. In semi-automatic mathematics they bear the entire

responsibility for expressing theorems and steps in proofs. Mathe-

matical investigations in symbolic logic have shown that a small

collection of basic kinds of entities and rules for combining them into

formulas are sufficient to represent mathematical theorems and proofs.

In part, the success of SAM depends on the ability of its formulas to

conveniently express mathematical ideas in a way which lends itself

to efficient algorithmic methods. In Section III (Control, Input/Output)

we describe the manner in which formulas and proofs are actually

presented to the user in ways which promote understanding and rapid

communication. In this section our description is cast in terms of

representations internal to SAM. This is convenient in m&king precise

the sense of the attributes carried by the language of SAM.

There are four types of symbols represented in SAM V. These

are variables, constants, logical symbols, and punctuation. Variables

and constants are represented internally by a number which corres-

ponds to a single alphabetic letter of a single alphabetic letter with a

subscript. Certain bits in this representation of a symbol indicate

syntactical status of that symbol. For convenience in debugging they

appear as bits reflected in the leading digits in the "subscript".

**#?=*

Subscripts are positive integers less than 2 . These subscripts are

written in octal notation. There is a table used in SAM V vhich

specifies which of the symbols are constants and which are variables.

The standard table has the symbols* starting with A through H

and P through S as constants and the remaining symbols as

variables. A given variable can have three distinct representations

in SAM V according as the variable is free, bound, or temporarily

fixed. (A fixed variable corresponds to a variable which, in an in-

tuitive sense, has been fixed by a statement such as "let x be a

positive number"). Constants have a single internal representation.

The internal representation of variables and constants is as follows:

Bits 3 and 4 are 00, 11, 10, or 01 according as the symbol is a

constant, variable, bound variable, or a fixed variable; bits 5 through

11 are the subscript (no subscript is represented by zero; and bits 12

through 17 are the 6-bit ASCII code for the alphabetic character. A

subscript 100 through 177 indicates a "shadowed" variable. The use

of "shadowed" variables is a technique used to avoid clashes of free

variables. This technique is described in more detail in Section 11.

A subscript between 40 and 77 and 140 and 177 indicates a variable

which has temporarily been changed to a constant, called a "frozen"

variable. "Frozen" variables are a technical device used to simplify

the matching and instantiation routines. (See the description of

Matching in Section II) A subscript of 20 to 37 or 60 to 77 indicates

a variable which has been turned into a constant by the Skolemizing

process described below. These constants are called "Skolemized

variables". The logical symbols are typed as LAM, AL..L, IS, =,

IMP, OR, AND, IFF, NOT, TRU, and FAL . Thrse are represented

internally respectively by the octal numbers 1 tbrougn 13 right justi-

fied in bits 3 through 17.

B

■^äSsFSSSääiiti:-: ^^ -

The punctuation symbols are left and right parentheses, comma,

and left and right square brackets (the square brackets are repre-

sen ed by angle brackets on output). Punctuation has no internal

representation and is used only for rudimentary I/O. (The rudi-

mentary I/O language in which we express formulas in this section

is convenient for debugging and explanation of Section III.)

Tue symbo.'s above are combined by the following rules to form

formulas:

1, A single variable or constant is a formula.

2. If b is a variable or constant and a,, a.,..., a are formulas.
12 n

then

b(? , a) is a formula
n

3. If b is a formula v'-lh more than one symbol and a.,.. . , a 7 In
are formulas, then

[bj a. i... i a is a formula

4. If b and c are formulas and d ,d , ...,d are variables,
1 £ r

then

(b=c)

(ALL djHb)

(IS djHb)

(LAM d1.d2....,dr)(b)

(b IMP c)

(b OR c)

(b AND c)

(b IFF c)

NOT(b)

are f rmulas.

^4^-4

mm

Formulas are represented internally by list structures. These

list structures are manipulated by a package of subroutines which we

have called TROLL for Threaded, Ringed» Oriented List Language.

Figures 1 through 3 on the next page show the representation of two

formulas as TROLL lists. A description of TROLL is included in

Section V.

In SAM V, only certain types of formulas are considered inter-

nally. These formulas are those which can be formed by using

variables, constants, =. LAM and NOT. This set of symbols, how-

ever, is sufficient to represent any mathematica entities which can

be described in an omega-order predicate c: tculus.

To see this we define the miniscope form and the Skolemization

of a formula. The Skolenization of a formula is logically equivalent

to the original formula.

Definition. A wff is converted to its miniscope form by applying

the following replacement rules (repeatedly using the first applicable

ruler we write x ■ A to mean x is not free in A):

Rule Replace Subformula

1 NOT NOT A
2 A IMP B
3 A IFF B
4 NOT (A OR B)
5 NOT (A AND B)
6 NOT (ALL x) A
7 NOT (ISx) A
8 (ALL x) A
9 (IS x) A

10 (ALL x) (A OR B)
11 (ALL x) (A OR B)
12 (IS x) (A AND B)
13 (IS x) (A AND B)

by Subformula if

NOT A OR B
(NOT A OR B) AND (A OR NOT B)
NOT A AND NOT B
NOT A OR NOT B
(IS x) NOT A
(ALL x) NOT A
A x
A x
A OR (ALL x) B x
(ALL x) A OR B x
A AND (IS x) B x
(IS x) A AND B x

^ A
i A

i A
i A

fc-

Rule Replace Subformula

14 {ALL x) (A AND B)
15 (IS x; {A OR B)
16 (ALL x) ((A AND B) OR C)
17 (ALL x) ((A OR (B AND C))
18 (ISx) ((A OR B) AND C)
19 (ISx) (A AND (B OR C»

by Subfornmla

(ALL x) A AND (ALL x) B
(IS x) A OR (IS x) B
(ALL x) (A OR C) AND (ALL x) (B OR C)
(ALL J) (A OR B) AND (ALL x) (A OR C)
(IS x) (A AND C) OR (IS x) (B AND C)
(IS x) (A AND B) OR (IS x) (A AND C)

Definition. The Skolemization of a wff A is obtained by applying the

following steps to A :

1. Completely lambda-convert A .

Take the universal closure of A .

Convert A to its miniscope form.

2.

3.

4.

5.

Reletter the universally bound variables so that no variable
appears with two universal quantifiers.

Replace an occurrence of a subformula of the form (IS x) B by

6.

7.

F(xlI. •.x)
B

n

where this occurrence of (IS x) B is within the scope of univer-

sal quantifiers binding x ,...,x (n > 0) and F is a new

constant.

Delete the universal quantifiers (after all possible applications of
step 5 have been completed).

Put the result in conjunctive normal form, i. e., replace sub-
formulas of the form (A AND B) OR C and A OR (B AND C)
by (A OR C) AND (B OR C) and (A OR B) AND (A OR C)
respectively.

Remark: Any quantifiers or logical connectives which occur within

the scope of a non-logical function or predicate are to be ignored by

the miniscope and Skolemization procedures.

"^r^^c

C)
C)

In proofs, the conjuncts of the Skolemization of a formula

are treated as separate formulas. The disjuncts of each of the

conjuncts are represented as a list. This list is called a pseudo-

disjunction (PSD). These disjuncts are either atomic formulas or

negations of atomic formulas. As an example we apply Skolem-

ization to the formula below and write it in the form used by

SAM V. For example, the formula

(ALL X)(E(X U) IFF E(X,V/) IMP U=V

which says (when reading E(A, B) as A C B) that two sets are

equal if they have the same members, rs transformed to the two

PSD's:

NOT E(F(U,V),U)

NOT E(F(U,V),V)

U=V

and

E(F(U.V),Ü)

E(F(U.V),V)

U=V

The meaning of the new constant function F is that F(U, V) is

to be a member of exactly one of the sets U or V if they are

not equal. Hence if F(U,V) is in both U and V or if

F(U, V) is in neither U nor V , then in fact U=V . While in

this example the two PSD's generated seem somewhat remote from

their progenitor, this remoteness is an exception rather than the

rule. For example, the Skolemization is frequently a rather natural

restatement of the original formula.

For SAM to deal effectively with any complicated mathematical

r-:

structure, it must have an efficient means of distinguishing and

ordering the various classes ("sorts") of variables and constants

which it encounters therein. This problem does not arise in, say,

a three-axiom elementary treatment of group theory, because all

variables and constants are assumed to be elements of the group in

question. Suppose, however, that we wish to axiomatize a system

involving several distinct vector spaces over a giv^n field of scalars.

Here, some variables will stand for spaces, others for subspaces of

a given space, and still others for field elements. Moreover, such

constants as the zero vectors in the spaces and the two identity ele-

ments of the field must be distinguished and placed under the proper

headings.

Heretofore, we have gotten around this prob' m in a rather

artificial manner by extensive use of PSD's. In order to tell SAM

that scalar multiplication distributes over vector addition, one needed

to write something like:

NOT P(Z)

NOT Q(X1,Z)

NOT Q(X2,Z)

NOT Q1(U)

G(U,H(X1,X2)) = H{G(U,X1),G{U,X2))

where G is scalar multiplication, H is vector addition, Q is

membership in a vector space, Ql is a membership in the scalar

field, and P(Z) is the statement "Z is a vector space". Disjuncts

of this kind are cumbersome on both sides of the man-machine

interface.

The recent implementation of sorts in the SAM package gives

us a more convenient and powerful method of handling axiom systems

involving different types of variables and constants- By setting up

a sort structure for the linear algebraic system mentioned above,

we can indicate with a single statement that whenever an X (with

or without subscript) appears i.r our axiomatization, it is to be

considered as a r..ember of the sort of all vectors, that subscripted

or unsubscripted Y's belong to the sort of vectors in the vector

space % , that subscripted or unsubscripted U's belong to the

sort of scalars, and so on, with all constants being similarly

placed in the sort to which they belong. With this set-up, it is

possible to express many algebraic notions in a more straightfor-

ward manner, without the use of disjurtcts. Only the equality

G{U,H{X1.X2)) = H(G(U,X1),G(U,X2))

is needed for diJtributivity, since the sort structure automatically

sees to it that the variables U, X1,X2 are properly identified. The

cne major criterion which a sort structure must meet in order for

SAM to be able to work with it is that the sorts be partially ordered

by inclusion. That is, if two subsorts of a given sort have non-

empty intersection, one of them must wholly contain the other. Ad-

missible sort structures may thus be represented by tree diagrams

such as the following for a system consisting of two vector spaces

and U) over the complex numbers: 7
Universal Sort

/ \
X u, c

A
Y.A W,B V,D

<

Here, X represents the sort of all vectors, Y represents the

sort of vectors in the space ^ , W the sort of vectors in (p ,

U the sort of complex numbers, and V the sort of reals. The

diagram also establishes the convention that distinguished vectors

in *\J (the zero vector, basis vectors, etc.) will be denoted by

subscripted or unsubscripted A's and similarly for B, C, and D .

We are thus spared the necessity of using a separate axiom to place

each distinguished constant in the sort to which it belongs. The

above sort structure is entered very economically in SAM with the
statement

S(S(X, S{Y. A). S(W. B)), S(U, C, S(V, D)))

which is inserted separately from the axioms for the system.

<Ä==i

NM

SECTION n

AUTO-LOGIC

The purpose of the AUTO-LOGIC routine is to generate

"interesting" consequences of a finite set of pseudo disjunctions.

Such a routine is useful in two ways: firstly, it can be used to

generate new theorems which may be of interest to the mathematician

and which may be useful in further applications of AUTO-LOGIC;

secondly, a formula A is proved to be a consequence of a list of

pseudo-disjunctions if FAL is obtained as a consequence of the

list augmented by the PSD or PSD's representing the logical negation

of A . The underlying principle by which AUTO-LOGIC generates

useful consequences is as follows. It has four processes called re-

duction, expansion, digression, and contradiction. Reduction uses

a set of PSD's from the initial set to 'reduce1 or 'simplify* a given

PSD from the set using the logical rules of an omega-order predicate-

function calculus with equality and lambda notation. Expansion and

digression use these same rules to generate new PSD's from a finite

set of PSD's. Contradiction eliminates "trivial" PSD's by automatic-

ally Skolemizing a copy of the negation of the PSD and attempting to

find a contradiction in a limited period of computer time. AUTO-

LOGIC starts with a finite set of PSD's and applies these four pro-

cesses in a pattern which allows the newly generated PSD's to stay

in the set only if they cannot be reduced by reduction or deleted by

contradiction.

SAM V lays special emphasis on developing and experimenting

with different reduction, expansion, digression, and contradiction

10

I

processes as well as various patterns for applying these processes.

The reductions which are currently used in AUTO-LOGIC are

of two types.

The first type, called self-reduction, reduces a single PSD.

Self-reduction makes the following obvious kinds of simplification:

1. The PSD is deleted if it contains a disjunct of the form b=b

or a disjunct of the form TRU (in this and similar cases we

say the PSD has been reduced to TRU).

2. If the PSD contains a disjunct of the form NOT(b=b) or a dis-

junct of the form FAL then such disjuncts are deleted. If

there were no additional disjuncts we say that the original PSD

disjunction was reduced to FAL . In this latter case the main

control of AUTO-LOGIC is notified that a contradiction has been

found.

3. If two disjuncts occur, one of which is the negation of the other,

the PSD is reduced to TRU and the PSD is deleted.

4. If twr' identical disjuncts occur, one is deleted.

5. A disjunct of the form NOT(NOT{b)) is replaced by b .

The second t/pe of reduction uses a single PSD to reduce a

feecond PSD. Tl. reductions fall into three kinds, depending on

whether the PSD is an equality, a single disjunct which is not an

equality, or a PSD which has two or more disjuncts. The first kind

depends on the fact that the terms which appear in SAM V are given

a well-ordering. Equalities in SAM V are always written so that the

left side of the equality is at least as high in this ordering as the

right side of the equality. This ordering of the terms in an equality

is convenient for both reduction and expansion. The well-ordering is

described at the end of this section.

II

L

I
An a=b reductioa of c is obtained by replacing all in-

stances of a in c by the appropriate instance of b . Under

the assumption that lowness in this ordering can be equated with

simplicity, this type of reduction is in fact a simplification. In

the second kind of reduction, where a PSD consisting of a single

disjunction b reduces a PSD c , instances of b are applied

to the disjuncts of c in order to replace them where possible by

either TRU or FAL , a disjunct of c being replaced by

TRU(FAL) if it is an instance (negation of an instance) of

am instance of b . In the third kind of reduction, where a PSD

b has n disjuncts (n 1), a PSD c is replaced by TRU ix

n disjuncts from c , considered as a PSD, form an instance of
b .

In a similar classification expansions are of two types. The

first type called self-expansion takes a single PSD and applies the
following rules:

1. If the PSD has more than one disjunct, one of which has the

form NOT(b=c), where b and c can be made to corres-

pond by some instantiation of the PSD, a copy of the PSD is

made with the equality deleted and the instantiation made in
the copy.

If a PSD consists of a single disjunct of the form NOT(b=c)

where b and c can be made to match by some instantiation,

the main control of AUTO-LOGIC is notified that a contradiction
has been obtained.

If a PSD has two disjuncts b and c which can be made

identical by some instantiation, the instantiated copy of the PSD

with one of the disjuncts deleted is generated.

2.

3.

12

The process of finding a common instance of t"vo formulas we

call matching. Matching is fundamental to several portions of

AUTO-LOGIC and is descr'.bed later.

The second type of expansion uses a PSD, b , to expand a

second PSD, c . These expansions are exactly like the first two

of the three reduction casas mentioned above eJ.cept that an instan-

tiation of c as well as b is required to make the corresponding

reduction. In these cases an instantiated copy of c is made and

the appropriate reduction applied. In addition, there is an operation

of expanding with two multi-disjuncts. This operation, called reso-

lution by some authors, generates a third multi-disjunct by joininp

appropriate instances of the original two multi-disjuncts and deleting

two disjuncts of the form A and NOT(A) .

Digression is an attempt to use on a simple level the proof

strategy of temporarily complicating a proof to gain some later sim-

plification. Digression expands a formula d with an equality b=c

by replacing an instance of the "simpler" term c in the formula d

by the appropriate instance of b . When the result of this digression

is brought up from the list of expansions, its progenitors and, in

particular, b=c is not used to reduce the digression. If no other

PSD's reduce the digression, it is deleted. If some reduction by a

PSD other than b=c Is possible, the digression is kept and business

goes on as always. Hence, digression represents the use of "one step

backward" in simplification.

We now describe the method currently implemented in AUTO-

LOGIC for applying these expansion processes. Two ordered lists of

PSD's are kept during each phase of the algorithm. Initially, the

first list, the list of reductions (LR), contains the original PSD's in

13

——HWH—y^MPi

the order given to AUTO-LOGIC. The second list, the list o*

expansions (LE), is initially empty. There is a main pointer

called LOW which proceeds through LR starting at the top

and proceeding down. At the top of the main loop, LOW dis-

tinguishes an element from the LR . The algorighm proceeds

as follows: self-reduction is applied to the distinguished PSD, b .

If b is reduced to FAL the ' Ejorithm halts and the fact that

a contradiction has been reached is signalled. If b is reduced

to TRU the LOW pointer is advanced and b is deleted. Other-

wise, the formulas above b on LR are used, one at a time,

to reduce b . If at any time b is reduced to TRU or FAL

the appropriate action is taken. If b has not been reduced to

TRU or FAL , then b is used to reduce the PSD's above b

on LR . If one of these PSD's should be reduced to TRU it is

then deleted; if reduced to FAL the algorithm signals' the main

control and is halted; but if reduced to some other PSD, this PSD

is removed and inserted immediately below the distinguished PSD

b . If no reduction is possible, expansions and digressions of b

with the PSD's above b , and conversely, are generated. The new

PSD's obtained by expanding and digressing are then placed on LE .

The PSD's on LE are ordered by some criterion of potential

utility. Various criteria have been tried with varying results.

Finally, after all the reductions upward and expansions have been

done, self-expansion is applied to the distinguished PSD and the re-

sults placed on LE .

LOW is then advanced. When LOW advances beyond tl last

PSD of LR , the PSD on the top of LE is removed and inserted at

14

the bottom of LR and becomes fhe distinguishet' PSD. The

algorithm then continuer. If LE becomes exhausted the main

control is so signalled and the algorithm halts.

For the purposes of defining the well-ordering of terms of

SAM V, we consider the symbols of SAM V to be divided into

two groups: constants and all other symbols. Within each group

we consider the element*» to be ordered by the magnitude of its

numerical representation in SAM V. A term A is "greater than"

B in the well-ordering of terms in case

a) A contains more occurrences of some constant c
than B , and both terms have exactly the same
number (possibly zero) of occurrences of each of
the constants "greater than" c , or

b) A and B have exactly th<- same constants each
with the same nun:ber of occurrences, but A follows
B in the lexicographic order where all constants are
considered to be great« . than all non-constants and all
non-constants are assumed to be in the same order
position, or

c) The "constant structure" of A and B is the same
but A is bigger than B in the lexicographic order
(i.e., there is some non-constant c in A and d
in B and A and B are identical up to occur-
rences at c and d , but the numerical representation
of c is greater than that of d).

This well-ordering of terms has several interesting properties.

First of all it guarantees that a re-lettering of the variables of a

term will not drastically change its position in the well-ordering.

Secondly, by using constants of different relative "size" we can

give preference to one concept over another. As an application

of this it is convenient to symbolize a newly defined concept with a

15

,

*isa

I

\\

symbol that is relatively high compared to the symbols used in

the definition. While the basic theorems are being proved for

the new concept, it is important that terms containing the new

symbol be replaced by their definition. Once all the basic

theorem« concerning that concept are proved, we replace the new

symbol by a symbol that is small relative to the symbols used in

its definition. Then terms corresponding to the definitions can be

"simplified" to a term involving the new symbol by using the basic

thsorems which have just been proven.

We close this section with a description of matching. Two

formulas are said to match if they have a substitution instance in

common. For example, the formulas Q(a, x) and Q(y, H(y, z})

match because the formula Q{a, H(a, z)) (called a matching formula)

riay be gotten by appropriate substitutions in either of them. In

this particular example, Q(a, H{a, z)) is in fact a general matching

formula, since all other matching formulas for the original pair

may be obtained from it by substitution. The process of matching,

i.e., oi obtaining a general matching formula for two given expres-

sions, is a basic tool in the construction oi proofs. Consequently,

much effort has been devoted to developing match algorithms and

implementing them in SAM.

The fundamental match algorithm in AUTO-LOGIC is described

below;

Step 1 Consider B and C as being stored at lines (1) and (2)

respectively. Reletter the variables of line '^) so that it has no

variables in common with line (1).

Step 2 Let us denote the n-th symbol -- ignoring parentheses and

16

■

comr.as --of line (1) by (1) . Similarly we define (2) .
n n

Case a) If lines (1) and (2) are identical, the algorithm out-
puts (1) and stops.

Case b) Suppose n is the smallest integer such that (1) is n

different from (2) . Since wffs are involved and Case a) n
does not hold, neither (1) nor (2) can be vacuous. We con-

n n
sider four subcases:

i) Suppose (2) is a variable, say x , while (1) is a
n n

function or individual constant. Then call D the

unique subformula of (1) starting at (1) . If D

contains x , output DOES* TOT MATCH and stop. If

O does not contain x , substitute O for x every-

where in (1) and (2) . Go back and repeat Step 2.

ii) Proceed as in i) if the roles of (1) and (2) are inter-
changed.

iii) If (1) and (2) are different variables, replace (2)
n n n

everywhere in (1) and (2) by (1)

iv) If (1) and (2) are different constants, output DOES n n
NOT MATCH and stop.

Examples

Let us apply matching to P(G(G(x,G(y,x)), z)) and P{G(G(x, y), G{x,x))),

(1) PGG x G y x z

(2) PGG uvG uu

(1) PGG x Gy x z

(2) PGG x v G x x

17

(1) PGGxGyxz

(2) PGG x G y x G x x

(1) PGG x Gy x G x x

(2) PGG x G y x G x x

Then P{G(G{x, G(y, x)) , G{x,x))) is the output of the algorithm and

is in fact a general matching formula for the two wffs .

Let us apply matching to Q{x, x) and Q(y, H(y)) .

(1) Qxx

(2) Qy Hy

(1)

(2)

Oxx

Qx Hx

DOES NOT MATCH

The variable x cannot be replaced by H{x) .

For a proof tha* this algorithm actually does produce a general

matching formula or a "does not match" response in finitely many

steps, see C23 , pp, 26-27.

The above process, although quite helpful *n some instances,

cannot by itself come up with many of the matches one would like

to be able to find. Suppose, e. g. , that P is a commutative func-

tion. Clearly the two formulas P{a, x) and P(fe(y).y) will match

under this assumption -- P{G{a), a) = P(a, G(a)) is a general matching

formula -- but the algorithm will fail. The obvious thing to do here

is commute the terms in one of the expressions and then apply the

algorithm, but the trick becomes a iittle more difficult when one tries

to match longer, more complicated formulas under the assumption of

18

1 —

i^

commutativity. Matching with associativity gives rise to similar

problems.

Recently, a general method for matching expressions involving

commutative and/or associative functions has been worked out on

paper and incorporated into SAM. It works by first taking the two

formulas to be matched as they stand and applying the fundamental

algorithm. If a general matching formula is not found in this first

attempt, the arguments of all the associative functions are associated

to the right and another try is made. The process continues in this

way, associating and commuting arguments according to a prescribed

pattern and invoking the algorithm at each step, until either a general

matching formula is found or all the permissible rearrangements of

terms are exhausted, in which case a definitive "does not match" re-

sponse is given. The crux of the problem was, of course, the dis-

covery of a method for generating permutations of terms in such a

way that all allowable regroupings and reorderings would be gotten

eventually with a minimum of repetitions.

To invoke this new matching capability, the operator merely in-

sertc labels for the commutative and/or associative functions of his

system in special program locations. A certain degree of control

over matching and instantiation (a special case of matching in which

the variables in one of the formulas to be matched are treated as con-

stants) is possible through the setting of linrts on the amount of

machine time SAM is to spend applying either process to a pair of

formulas. Usually, the timers for matching and instantiation are set

for two seconds and one second, respectively, but they may be varied

at will depending on the characteristics of the mathematical system

19

being investigated. U long, difficult matches and instantiations

are expected to be important in the proof of theorems, the timers

can be set higher. Setting them lower, on the other hand, forces

SAM to de-emphasize these two processes in its development of

results. In short, the implementation of commutative-associative

matching offers the experimenter yet another means of interacting

with SAM, as well as a helpful new methc. for generating theorems.

Despite the successes that have been achieved to date, it would

be wrong to say that the matching procedure which SAM currently

employs is am optimal one. Formula pairs involving commutative and

associative functions frequently have several general matching form-

ulas, but at present SAM finds only one of these. Right now, this is

not a major handicap, but it will certainly have to be jvercome before

SAM is able to consider axiom systems in which free function

variables are present. Fortunately, the theoretical groundwork for a

more complete extension current matching techniques has already been

laid, and implementation of same is now in progress. A thorough

treatment of matching in omega-order logic, including many of the

problems we are dealing with at the moment, may be found inC^l .

20

SECTION III

CONTROL, INPUT/OUTPUT

In this section we describe how SAM operates as a running

program and, in particular, the man-machine interface. In con-

ceptual and programming terms this breaks up into the two aspects

of control and input/output. At the beginning of this year it seemed

reasonable to expect that we would soon wish to have sophisticated

language facilities for man-machine communication and activity at

the level of full proofs in a natural deduction calculus. However,

experience quickly showed that AUTO-LOGIC was so powerful and

flexible that it would be very worvhw'-'le to work extensively with

man-machine interaction at the AUTO-LOGIC level. Hence, opera-

tion of SAM has evolved into a mode in which the user is monitoring

the lists of reductions and expansions as the AUTO-LOGIC algorithm

is transforming them. The user may intervene by stopping the al-

gorithm process and himself adding or modifying the lists of formulas.

The use of the CRT display and PDP-6 time sharing system are of

course essential to these activities. It seems unlikely that SAM V

could have grown by a process of evolution as it has without the use

of the time shared system to make programming, debugging, ?nd in-

core modification feasible and rapid.

In the current implementation of SAM the user initiates action

by setting up a list of PSD's as the initial list of reductions (with a

void LE). Some of the formulas may be marked with an asterisk

to indicate that they are the negations of formulas whose proof is

21

I
I
k

mi

feu

22

:;

sought. AUTO-LOGIC is then turned loose to generate consequences

of these initial formulas. If none of the original formulas are

starred then the results are consequences of the original formulas,

presumably axioms or previously proved theorems. If some of the

original formulas are starred then all consequences of the original

starred formulas are starred and it is noped that SAM will derive a

contradiction {prove FAL). In that event SAM has demonstrated

by contradiction that the disjunction of the unnegated versions of the

original starred formulas is a logical consequence of the other initial

formulas (the latter are usually axioms and previously proved theorems).

As AUTO-LOGIC works on the lists of expansions and reductions,

the user is able to watch these lists on the CRT display. He sees

formulas appearing on the list of reductions, being reduced to simpler

form, reducing other formulas, generating formulas for the list of

expansions, and disappearing in favor of more powerful formulas. In

this monitoring process the user gains great insight into the logical

processes of SAM. It is like having a window on the thoughts of a

powerful but very different kind of mathematician. Such an under-

standing of AUTO-LOGIC as a dynamic entity is very important for

finding useful improvements to make in the basic algorithm. It is

also important in allowing the user to interact with a given proof.

The user may intervene in the process of proof in a number of

ways. His selection and ordering of the initial formulas is of course an

important factor in determining the course that AUTO-LOGIC will take.

Too many or ill chosen sets of initial formulas tend to send AUTO-

LOGIC off proving trivial and uninteresting results without ever getting

to interesting formulas. From a good starting point AUTO-LOGIC

will produce useful and interesting results. As the user sees that

AUTO-LOGIC is running out of useful things to do with the formu-

las first given, he can halt the process and insert additional axioms

cr other material. He can also guide the process by deleting formu-

las which seem unimportant or distracting. This real time interplay

between man and machine has been found to be an exciting and re-

warding mode of operation.

Since formulas both appear and disappear in the process of proof,

a record is kept of each formula as it comes under consideration.

This record yields a history of a session which can be used for later

analysis and review. A program called HIST can step through this

history and display on the scope only those bteps actually used in the

proof of a sequence pointed at by the light pen.

In operating SAM, the user sits at a display-teletype console.

The display shows a section of the proof and a set of buttons. By

using the light pen on the display buttons the user controls the display

and the action of SAM. He can cause any section of the proof to be

displayed, have the proof "roll" by, or track on the end of the re-

ductions -- i.e., display the lowest formulas on the list. The dis-

play is updated every second to show the current proof status. The

user can halt the proof procedure, continue, indicate a desire to in-

sert or delete formulas, request a proof history, enter the debugging

mode, and request a print out. For insertion or deletion of formulas

the user indicates position by light pen and, for insertions, types the

desired formula.

In Section I we described the symbols t-,od formulas of SAM as

they appear in their simplest form -- symbols as single letters

23

with subscripts and formulas as strings of symbols with parenthe-

ses showing complete structure. Simple routines have been written

for input and output of formulas in this notation. Such routines are

convenient for debugging and preliminary experimentation. But for

more effective man-machine communication we require input/output

in notation closer to that in common use by mathematicians. There

are two aspects to this requirement, the need for a large set of

symbols with such features as varying size and position, e. g., sub-

scripts and superscripts, and the need for flexibility in the format

of formulas.

At the symbol level we are concerned with two distinct situations.

Hard copy can be quickly and easily produced on teletype and line

printer. With the line printer even very large sets of formulas can

be printed rapidly. However, the set of characters and the output

format available are limited and modifications are expensive and slow.

On the other hand, the CRT display and incremental plotter can

accommodate any symbols and formats that the user cares to specify.

However, the CRT display cannot easily produce hard copy of high

quality and the plotter is not a fast economical device for producing

hard copy. With these considerations in mind, input/output for SAM

has been programmed to deal with symbols in three modes.

Internally a symbol is simply a number. The first output mode,

the character-subscript mode, treats this number as a direct coding

of the symbol as a sequence of ASCII characters. It is useful rep-

resentation when working on the programming of SAM since output

may be quickly produced on the line printer and the correspondence

between internal and external form is constant. The second mode.

24

g f-ir- -figT-ai

the actual drawing of symbols, associates with each internal code

a special symbol which is drawn in the form that the user wishes.

For convenience, flexibility and efficiency, the correspondence be-

tween number and form is kept entirely arbitrary - a simple table

in SAM contains all the information on the correspondence. This

table does not contain actual instructions lor drawing symbols but

transliterated codes for the symbol. For example, the Greek

letters'^ and A appear as >GA and |GB , the mathematical sym-

bols U and O appear as \j and \M , With this transliteration

approach the actual service routines for I/O devices can be written

completely independently. The use of transliteration codes gives us

a third mode of output, that in which symbols are represented by

their transliterations. This mode can actually be used to produce

quick output on the line printer for debugging or cursory examination.

More important, it allows for the input of arbitrary formulas from

the teletype. In addition, formulas in transliteration can be stored

in machine readable form.

Since the formulas present in AUTO-LOGIC contain few logical

connectives and are usually short, the conveniences of notation

which we have implemented are restricted to the presentation of

central binary connectives (such as + and =) between their argu-

ments and the suppression of some unnecessary parentheses.

In actual operation, the I/O modes are used as follows. Form-

ulas for display on the scope are transliterated and passed through a

display service routine which produces suitable display instructions.

Formulas for hard copy output are written out on tape, drum,

line printer or teletype in the form that the user wishes,

25

JLu

transliterated or character-subscript. From tape or drum output

may be later produced on line printer or plotter. Plotter output

is produced from transliterated formulas in a tape or drum file

by a small independent program. Thus it does not slow down the

use of SAM nor waste space in the program.

26

^^,
i

SECTION IV

EXPERIMENTATION WITH SAM V

?

'

In this section we describe some of the experimentation that

has been done with SAM V. Along with development of the basic

program, experimentation with SAM V has been a continuing activity.

Such experimentation serves to determine whether or not SAM V is

progressing toward the ultimate goal of being a program which can

be of practical utility in proving thi »rema of real mathematical sub-

stance. In addition experimentation with SAM indicates the features

which are in nerd of improvement and thus serves as a basis for

plans for the future expansion.

In the first part of this section we discuss experimentation

with abstiact algebra, group theory in particular. Experimentation

along tb^se lines uas demonstrated that the techniques of AUTO-

LOGIC in handling equality and algebraic notions are very powerful.

In the second part, we report on an exciting result of current ex-

perimentation, the actual solution by man-mac.iine interaction of an

open problem in the field of lattice theory. This result, called

SAM's Lemma, can Ke viewed as a rudimentary demonstration of

the great utility of the man-machine approach to the automation of

matVamatic: and as an actual sample of a program which partially

realizes s'ich aspirations. In the third part we present somo

examples of experimentation done with the simpie sort structure

that has been added to the repertoire of SAM.

The AUTO-LOGIC algorithm described fn Section 11 seems to

27

be quite successful in cases where the PSD's are equalities. We

give an example from group theory below in two diif«!rent forms.

We take quantifier-fre, axioms for group theory which say that

for the ,;rouP multiplication,C!| « /*% t?; i -M-O is the left in-

verse and A is the left identity. In the first run we derive some

consequences of these axioms (See Figure 1). In addition, we have

printed out the history of the proofs of four of the more interesting

consequences (See Figures 2 through 5. In Figure 6 we list those

PSD's which SAM generated but was unable to reduce immediately

to TRU). This should help explain the subject matter of Section

il. In the second run we insert the negation of the statement that

V is also a right inverse and that A is also a right identity and

that -l(«f) -1(-1(4) =.'\ (See Figure 7) This shows the second

mode in which SAM can operate.

28

m

00001 (u ' il * f r „ * (g * *)

0000? •'(„) e „ -. fl

00003 fl ^ «. - v

3000*4 C"«) - N) » ►! - «j

00005 "*(«) O („ O „j) « „j

00011 T'f«!?) ' fi - .-.j

00012 "r'C'f«!))) e .j - fi

00013 "f"f-,(",(»,.n)) «^ A -

000H+ ■,c,(8.1n = W1

00015 »j o ''W1) .-. p

00017 («j e -'Uj)) » « - ^

00023 «j " ("*(«!? * *) ' «

fiXM

flXH

0000? 0! OF 00003 (01>

00001 RED OF 0000!+ (0?)

0000? EXP OF 00005 (031

30005 EXP OF 30011 (0'4)

00005 L'XP OF 00012 (05)

00011 RED OF 30013 (061

0000? EXP OF 30011+ (07)

00003 DI OF 00016 (12)

00001 RED OF 3001? (li)

Figure #1

29

00001 U * q) c * .- „ * <g „ »)

3000? "'«> <« ^ - fl

00003 fl ■' « - ^

0000'* (-(te) ' «) o - ,.
i 1

00005 ■,rN) ? f« o ,,^1 .-. „j

0001.1

00012 "(

00013 '(

0001,4

00015

li Uji) c n r, V1

(" n

«i c q . r<1

RXM

flX?1

0000? D' OF 30003 (01)

00001 RED OF 3000'4 (0?}

0000? EXP OF 00005 (03^

30005 t'XP OF 00011 (0,4)

00005 fXP OF 30013 C05)

00011 RED OF 30013 (06)

0001'+ RED OF 3001,1 (07)

Figure #2

30

00001 u * e: o r -. * <- fß <. •)

0000? 'x(*) * « ^ fl

'<10003 fl « K ; >

0000*4 Cf«) <» *) * «j --. ^j

00005 "'(•.) » f« <• ^j^ ■ »j

00011 T*^)) P ?: - «j

0001? "'("V-V^j))) c „j .- q

00013 "f,f",(",f«1n)) c p - ^j

0001'4 "("Uj)) r: „j

0001B c, c 'C«,1 r P

pxn

flXM

00002 DI CIF 00003 f01i

00001 RED ÜF 0000,4 (0?)

0000? tXP OF 20005 (03)

00005 CXP ÜF 00011 (0,4J

00005 KP CF 3001? '05)

00011 RED OF 00013 f06)

0000? LXP ÜF 200IW (07)

Figure #3

31

00001 U: c g) * f r- „ o (g „ f)

0000? "U) * * - R

00003 fi «• „ » „

00001* (-(«) . w3

00005

00011

00012

00013

000r4

'I Ml

1

'1 1

rv^)).

flXM

0000? 01 OF 00003 (01)

00001 RED OF 0000,4 (02)

00002 fc'XP OF 00005 (03)

00005 EXP OF 00011 (0k)

00005 E.XP OF 00012 '05)

00011 RED OF 000^3 (06)

i

Figure #4

32

m

00001 '« «« r «• r ^ «. «• .f * n

3000? "(•.) • ^ - fl

00003 n « >. ■ ■«

3000(4 ('!•«) * «l) * «M ~ .vj

00005 "V».) • (« « ^j.l - r.J

00006 "''ft) e «j ^ Wl

00007 "rrfl)) * «j - «j

0001W "fp) " PI

PXM

0000? DI OF 00003 (01)

00001 RED OF 0000!+ (Q?.)

00003 EXD OF 30005 (03i

00005 IXP OF 30006 f0,4)

0000? tXP OF 00007 (05)

Figure #5

33

^i

000131 („ * et ?*-;,(, (g

0000? ■■'„) c „ .- q

00003 fi o t. .. ^

0000^ rV«) o«)«.
^1 ^ -1

00005 "(e.) <• („ o „jl - „

-1 ~ "1 '(fl) *• 00006

00007

00010 "''0) - R

rrfl)) c ^j

'f'Uj)) <• R ^3
-•,-•,.»,

00011

0001?

00013

00014

0001 «5

00016

00017 («j c 'Uji) c w .-. x

000?0 «j ^ ff^) * v) . *

000?1 * o ^ . -f., « Än „ 0

'1

'1 « R

*! <• '«jl =■ R

PXM

flXM

0000? D! OF 00003 (01)

00001 RED OF 000011 t0?)

00003 EXP OF 00005 (03)

00005 EXP OF 00006 (01+)

0000? EXP OF 30007 (05)

00003 EXP OF 00005 (03)

00005 EXP OF 00011 f0,4)

00005 EXP OF 00012 r0S)

00011 RED DF 00013 (06)

0001!+ RED DF 00011 (07)

0000? EXP OF 0001!+ (07)

00003 DI OF 00016 (10)

00001 RED OF 00017 (11)

00001 EXP OF 00015 (10)

Figure #6

34

0000? 0 * c - -«

30003 7«) • « « fl

0000'4

00005

00006

00012

00013

00014

00015

{* o y: * * - * * (# *

t («j) o»<i) * *« ~ m

"*(■*'„)) efts«

00016 » « fi - «

0001? • NOT (Cp " ''Cj) - fl)
NOT (Cj " P = C^)
NOT (C3 - r^i

000?0 • N0T (C2 o "rCg) - fl)
NO

T (Cj « R = r.j)

000?1 • NOT (Ca o ''.Cg) - fl)
NOT (Cj - fj)

000?2 • NOT (C2 * *(C2) - fi)

00023 «» f«) ^ fl

00021* • NOT (fl - fl)

00025 • ^flL

flXM

00002 DI OF 00003 f01)

0000,4 RED OF 00005 (02)

00003 EXP OF 00006 (03)

00006 EXP OF 30012 (0!+)

00006 EXP OF 00013 (05)

00012 RED OF 00014 C06)

00015 RED OF 00012 (07)

00015 RED OF 00001 (07)

RED OF 00017 (10)

00016 RED OF 00020 (11)

RED OF 00021 (12)

00003 EXP OF 00015 (07)

00023 RED OF 00022 (13)

RED OF 00021+ (14)

Figure #7

35

Experimentation with SAM V and AUTO-LOGIC produced

an important result, one which we found both exciting and en-

couraging - the proof of a previously unresolved open problem.

A mathematician - one with an intimate knowledge of the innards

of SAM - and SAM V obtained the proof in a significant display

of man-machine cooperation. Preliminary work was being done

in the theory of modular lattices with a partial goal being to see

whether SAM V could be guided to a proof of the results in [6. .

In addition, it seemed possible to hope for a later attack on the

unresolved problem presented there. Long before it seemed likely

that enough development had been mad« along elementary lines it

was noted that AUTO-LOGIC had proven a formula from which a

positive solution was an immediate consequence. That formula

was a crude form of what we now call SAM's Lemma. In evaluating

the significance of this demonstration it is important to note the

interactive aspects of its construction. The mathematician was

guiding SAM in the broad lines of development of the theory of

modular lattices and was present to notice a useful intermediate result.

At the same time, the algorithms of AUTO-LOGIC were working

to generate results that might be useful without getting lost in a

mass of trivial and nearly equivalent formulas. SAM V was not

capable of understanding all the consequences of many of the proven

formulas but the mathematician despite a reasonable amount of prior

effort, had not been able to see the key steps required to obtain a

useful lemma, 'SAM's Lemma.

i

i

i '

I

At this stage in the development of SAM we are always

careful to check the results of automatic proofs. In thit. case the

check verified the result and, as usually happens with first proofs

36

in mathematics, led to a much more compact way of presenting

the key ideas in the demonstration. The re-phrasing into common

mathematical terms is given below along with a version of the

proof by AUTO-LOGIC. The version of the semi-automatic proof

that we give is somewhat shorter and more straightforward than

the original since, with the benefit of hindsight, we were able to

guide the process more directly to the Lemma. Note that the

phras' ' of some axioms is imposed by the search for simplicity

in axioms (e.g., the associative law is SAM's choice of the simp-

lest form in a context where commutativity is also present). Note

also the following table of correspondence between the symbols of

SAM and the notions mentioned below:

P 0 (first element)
Q 1 (last element)
D meet (analogous to intersection and minimum)
A join (analogous to union and maximum)
A1,B1 the a,b of C63
Rl.RZ (a V b)', (a A b)'
A2,B2 the x, y of [6^

Theorem 1, {Bumcrot \ji\) If (L, -^) is a modular lattice with 0
—--——^—•—-—■———————-——

and 1 and if a, b in L are such that a V b and a A b have
I

(not necessarily unique) complements, then a and b have com-

plements.

Theorem 2, (Bumcrot CO) If (L, ^) is a modular lattice with

0 and I , if a, b in L have unique complements a'^b* respec-

tively, and if a V b and a A b have complements, then a' \/ b1

is a complement of a /\ b and a' Ah' is a complement of a \/ b .

Open Problem Bumcrot CfrJ) Under the hypotheses of Theorem 2 is

it necessarily true that the complements of a V b and a A b are

unique ?

37

SAM'g Lemma Under the hypotheses of Theorem 1

(a v b)' = x A y

dually

(a A b)' = x V y

Theorem (Qglesby, SAM V) Under the hypotheses of Theorem 2,

the complements of a, y b and a A b are unique.

The theorem follows immediately from SAM's Lemma since, by th?

assumed uniqueness of complements for a and b > x A y and

x v y are independent of which (a V b)* and (a A b)' are used

in their construction.

In Figures 8 and 9 we show an early proof of SAM's Lemma.

The numbers at tin left margin indicate the order in which SAM has

added the formulas to the list of reductions, missing numbers corres-

pond to formulas that SAM has eliminated in favor of combinations of

simpler formulas. The numbers at the right margin indicate the

depth of proof required. Note how the introduction of the associative

axioms is deferred so that SAM can first work on the consequences

of the other axioms.

In Figure 10 we show the history of a proof of SAM's Lemma

on the latest version of SAM. In this proof v. A > « replace

A, D, and P respectively. In addition, the functions v , /\ are

given to SAM as being both associative and commp«-ative so that the

resulting proof is much simpler. In fact, the new proof looks de-

ceptively simple.

38

0001

»eg?

0003

0004

00e5

0006

0007

0010

Stil

^ROOF OF SAM's LEMMA

with 0611 & 0622 vnve lattice

-MO
ü

0T (0(X,2) - X))
(2,A(X.Y)) = A(X,0(Y.2))(

»0T {D(X,2) = i\
Ö<X.A(Y.2M = AC^DU.YM

modular lattice

'O(U.A) s X

0004 ExP OF 00i)5

3005 EXP OF 0013

Implied by 0072-0100

(SAM was able to prove these
and did so earlier)

:)

R2 a complement of
D(Al.Bl)

i(A1 ,A(Bl,Rin = (Tl Rl aeon

> A(AI.
KH1 ,A(A1.Ö')) = ?J

,(R1.U(A1,;<?)) - 92*"

(Rl.DCBl.??)) = k2j

omplement of
Bl)

^iOT 10(Y,?)
A(Y,^) a y

Def. of A2 & 32

0004 EXP OF 0100

0004 EXP OF 0076

0007 RED OF 0550

(00)

(00)

(0*3)

(00)

(00)

(00)

(00!

(00)

(00)

(00)

(01)

(0^)

(00)

(00)

(00)

(00)

(30)

(00)

(0fei)

(00)

(00)

(00)

<31)

(01)

(03)

Figure #8

39

13555

0557

0563

0564

0600 *

Al = Q

^OT (B^ = P)
81 = 0

0070 RED OF 0554

0066 RED OF 0556

(03)

(05)

MT (D(A1,A<B1,'?1)) « A(81,R1)) 0551 EXP OF 0074(84)
Al = Q

MOT (0(6 .,R2) = P)
A(Al,0(Bl,H2)) - Al

0551 EXP OF 0073 (04)

0(B2.A(Rl,y)) s A(Rl,D(B2fY)) 0006 RED OF 0577 (04)

0611 |-r~A{a«,A(X,Y))=A(X,A(Y,*))

0617
«621

0622

0630

1^634

A(R1,B2) = 82
HOT (ACAl.B1) = P)
H\ = 0

0014 RED OF 0616
0074 RED OF 0620

JjH 2 ,0 (X, Y))=(D(X,w<y,2))

P) 0073 RED OF 0627 NOT (D(A1,B1)
R2 = Q

NOT vü(Bl.O(Rl>R2})«O(dl»R2))0006 RED OF 0633
A 2 -- Rl

* Key result
** SAM's Lemma

Figure #9

40

(00)

(J.0)
(£16)

(80)

(06)

(06)

0636 D(Rl,0(B2.c))=0{Rl i) 0006 RED OF 0635 (03) :

0637 ^OT IP2 = Rl)
A(B2'D<R1.Y))=RJ

0636 RED OF 0575 (06)

0641 D(Rl,A(B2.Y))sRl 0543 RED OF 0640 (05> |

0643 0(Rl»0(A2.if>)sD(Rl 2) 0006 RED OF 0642 (03) v:

k)645 0(R1,A'A2,Y)) s Rl 0542 RED OF 0644 (05»
-:■

-

0650 ö(Al.D(A2,i«))=P 0002 RED OF 0647 (03)
<

:

0653 ÖCB1.D(92»2))2P 0002 RED OF 0652 (03) ■

0656«« D(A2.82) = Rl 0001 RED OF 0655 f

t

■-- ^=>T-*I

1 (Y v X» A X - X

'Y A X) v X - X

3S»3 - (2 A X - XJ

?H A Y) v X - 'Y v XJ A Z

RX^

n v x - 'Y v XJ A z

3 A X - O CJM

3BS13 fR3 A flj 1 / Rj - B2 qx?1

30015 flg A ^1 " 3 C|X1

90021 ^ Rl " Ri 00001 EXP OF (»0,3 ^

00032 o v X -- X

0003B
(ftg A Y) v Rj - (Rj y Y) A q^

000+5

fRj A ^ftg A Rj)) V P. - B^ A «n

000"46

(Rg A O) / Rj - B^ A fig

Figure #10

41

0000? tXP OF 00005 (01)

00003 EXP OF S00r7 r0?)

00013 EXP OF 3003?: f03)

00015 RED CF J0045 (0,4)

000'+7 R, / o - ?2 A 0^ ggg^ RE[j Qp C00^6 r05)

00050 B;J A q2 .- Rj g^^ ^^ 0F 200,47 /gei

*i3 «i

SECTION V

TROLL

A. Introduction

The coding for SAM V has been done in machine language to take

advantage of the large flexible instruction set available on the PDP-6

and <:o achieve the speed and efficiency necessary to the practical

operation of SAM. The basic framework of the programming of SAM

has been a list processing language which we have named TROLL

(Threaded, Ringed, Oriented L 't Language). This list processing

language is of interest as a separate entity in its own right. It is a

general purpose list language of the type which is most aseful for the

purposes of SAM. Within the requirements of storage and linking in-

formation required by SAM it is a most efficient variety of link pro-

cessing language.

TROLL is a set of list processing subroutines designed to be

embedded in FORTRAN or a machine language. It could consist of

a set of primitives, coded in machine language for a particular

machine, and a set of routines canonically written in FORTRAN, but

in actuality coded in machine language for added efficiency. The

primitives could be used to fetch values from fields within list cells,

and to store values within these fields. Obviously by changing the

primitives one can greatly change the nature of the list processor. In

our implementation all the routines are written in MACRO-6, the

PDP-6 assembly language.

Ä

42

mm

TROLL is threaded in that the last ceil of a simple sublist

links back to its reference. Thus a pushdown stack is not needed

when searching structurally through a simple list. TROLL is

ringed (or knotted) in that it is possible to have multi-referenced

sublists. Of course in searching through a list with mulii-

referenced sublists, a pushdown memory is needed in order to come

back up through the stru"ture. This is provided in one set of

search functions. TROLL, unlike a symmetric list language, is

oriented in that 'here is a preferred left to right, top to bottom

direction for lisU.

B. Definitions

A list is either simple or multi-referenced.

A simple list is a list that is referenced exactly once.

A multi-referenced iist is a list that may be referenced zero,

one, or many times. A reference count, which is *he num-

ber of times that the multi-reference list is referred to, is

kept in a designated item in the list called the header. For

most purposes the header looks like a one item list which re-

fers to the simple list which is the body of the multi-referenced

list. Each item of a list is stored in a cell, the exact nature

of which is determined by the particular implementation of

TROLL.

A datum cell is a cell containing a quantity of information, the

size depending on the particular implementation of TROLL.

An address cell is a cell containing a link to an arbitrary data

structure.

A reference cell is a cell containing a link to a simple list.

43

A multi-reference cell is a cell containing a link to a multi-

referenced list.

A sublist is a list which is linked to by a reference cell or a

multi-reference cell in another list.

C. Cells

Cells contain the following information:

The terminal or _T_ field, which contains i if the cell is the

last cell of a sublist (0 otherwise).

The code or C field, which contains:

0 if the cell contains a datum,
1 if an address,
2 if a reference, and
3 if a multi-reference.

The datum or D field, which contains the datum of the cell.

The link or L field, which contains the address, reference,
or multi-referent

The head or H field, which contains 1
header, 0 otherwise.

if the cell is a

The count or N field, which contains the reference count.

The successor or S field which contains a link to the cell
to the right of the current cell.

In a header cell, the datum and successor fields are undefined.
In a non-header cell the count field and eit'-er the datum or link
field is undefined.

On the PDP-6 a cell is a single 36-bit machine word with the
fields stored as follows:

i

^

-;

T C D or L H N or S

0 1 Z 3 17 18 19 35

When the N field exists (i.e., bit 18=1), the one's complement
of the reference count is stored there. Otherwise the fields
contaiii their actual values as de:',ribed above.

44

L: 10 L + 1 -^0

r

L+i:;*jo|io 1L+2 |O I L+4 H^Jr^foTn 1 N lo 1 L+SI^L+S^I i |IO|L+6|O| L

L+2

^

— denotes I's complement

: ^ 1 10 N+l 1 2 |

(
„ J

H:S 1 00 Ilpll 0 1 N

Figure 1

45

^SäM

D. More Definitions

There are five basic types of cells:

Datum or D cells

Reference or R cells

Empty or E cells - (special case of reference cells, with
pointer field of zero)

Address or A cells

Multi-reference or M cells

There are four groupings of cells:

Word or W cells (any cell)

Element or E cells (datum or' address)

Name or N cells (reference, multi-reference or header)

Extreme or X cells (furthest cell in a given direction on a
list of sublist)

From a given cell there are four possible directions:

Up - U

Down - p

Left - L

Right - R

Relative to a cell, there are four possible locations:

Top (T) of sublist

Bottom (B) of sublist

Left (L)

Right (R)

E. Basic TROLL Programs

Look functions: L * ** (IP)

where * is a direction and ** is a grouping. They search

a list starting at IP , in the direction indicated, until a cell of

46

-^„M

r
- -

r

A

the required grouping is found. They normally return an

unflagged pointer to the quantity found; return a pointer to the

header and a flag of 3 if a header is found; return a pointer

with a flag of 2 to the reference cell if the argument of LR **

is the last cell of a sublist or if the argument of LL ** is

the first cell of a sublist; return a flagged pointer to the multi-

reference cell if LU ** or LD ** requires going into the

multi-referenced sublist.

In the PDP-6 version of LDW , LDE , LDN , if an address is

found in bits 3-17 of the pointer, the cell with this address

functions, for the look, as a header; that is, if a look reaches

this cell by way of the successor field of the prtvious cell, a

pointer with a flag of Z is returned. Bits 3-17 is called a stop

address,

New functions; N * ~* (IP. I)

where * is a basic type, ** is a relative location. The

quantity I is inserted into a new cell in the relative location,

and a pointer to this new cell is returned.

ND ** (IP, I) the datum I is placed in the new cell.

NR ** (IP, I) I is a pointer to an unreferenced
header. The header is erased and a
reference to the body of the list is
created.

NE ** (IP) an empty reference is created. These
functions have only the first argument
since no quantity is inserted into the
cell.

NA ** (IP, I) the quantity I is placed into a new
cell, and a new address cell is
created, pointing to the copy of I ,

47

}

I

NM ** (IP, I) The reference count on the header
pointed to by I is increased by I

N * T(IP,I) and

48

N * B(IP, I) require IP to point to a name cell.

Instead functions; IN * (IP,I)
■

where * is a basic type. Instead functions erase the contents

of the cell to which IP points and inserts the quantity I in

a similar manner to the new functions. They return the old
I

datum, or quantity pointed at by an address, or -1 if the

original contents were a header or reference, or -2 if the

original contents were a multi-reference.

Multi-reference look functions: M * ** (IP)

where * is a direction, and ** is a grouping. These are

similar to look functions. If a list contains no multi-referenced

sublists, they are identical to look, returning an unflagged pointer

to the cell found, and zero if the header of the main list is found.
i

Multi-reference looks have a pushdown memory so that a look

into a multi-referenced sublist, and return, is possible. If such

a look is required, the proper addition to the pushdown list is

made and the look continues. If an MR ** or ML ** re-

quires coming out of a (multi-referenced) sublist, a flagged

pointer to the multi-reference cell is returned.

F. List of Available Space

The list of available space (LAV) is a linear pushdown list of

available cells. LAV is initialized by CALL LAS(IPA,IPB)

where IPA , IPB are (inclusive) pointers to the ends of the

block of memory to be initialized. The first cell of the available ß:

Iß

space block is initialized to a header for the list of available

space. A pointer to this header is found in (global) location

LAV , The second cell of the available space block is initial-

ized to an empty header for the recursion pushdown list. A

pointer to this header is found in (global) location LAVS .

The rest of the available space block is initialized as the body

of LAV , a linear list each element of which is a zero datum.

NUC{IX) returns a pointer to a new cell, the previous top

cell of LAVS . LA.C is updated. IX is a dummy argument.

ERACEL(IP) zeros cell IP , pushes it on LAVS , and up-

dates IAC .

JNK(IP) makes a linear list out of the cell IP and any cell

linked to by IP , links this linear list to the top of LAVS ,

updates IAC , and relinks the list in which IP originally

occurred. If IP points to a header, the reference count

is decreased by 1 . If it now is negative, the whole list is

erased. When a multi-reference cell is erased, the reference

count is decreased by 1 and, if now negative, the whole

multi-referenced sublist is erased.

NOTE: By changing the list pointed to by LAV one can use more
than one list of available space.

H. Minor Routines

LVL(IP) returns pointer to reference cell for current sublist
or flagged pointer if same is a header.

MOV(IP) returns IP . Removes IP from its list and makes

it into a header. If IP not a reference cell, des

nothing, returns zero.

49

LCOPY(IP) returns pointer to header of copy of IP . IP

must be a header or reference.

MTH{IX) returns a pointer to an empty (pointer field = 0)

header. IX is a dummy argument.

I. Examples

Let "adr" be a FORTRAN variable containing a pointer to adr

Referring to Figure 1:

Look

New

MTH

JNK

LRX{"L+1") returns L+5

LLWCL+T") retu is LVS

LUE{"L+4") retu.ns L+2

LDNC'L+S") returns L+4

LDEC'L+S") returns L+4 flagged

LRWC'L+S") returns 0

NAL{"L+3", 3275) inserts an address cell pointing

to the word containing 3275, between L+2 and L+3.

NNR{L+2", N) inserts a multi-reference cell between

L+2 and L+3 and increases the reference count of N

to 3 (stored as 3).

NDTC'L+S", P) inserts a datum cell pointing to P

before L+6.

The list (1, (2,3)} can be created by

I = NDR(NDT(NER(NDT(MTH(IX),1))> 2). 3)

JNK("L+l") pushes L+l, L+2, and L+3 on LAVS, up-

dates IAC , changes the pointer of L from L+l

to L+4 and decreases the reference count of N

by 1 . _- y-

50

*|5

BIBLIOGRAPHY

ClJ "Introduction to Semi-Automated Mathematics" J. H. Bennett,
W. B. Easton, J. R. Guard, and T. H. Mott, Jr.
Final Report No. AFCRL 63-180. April 15, 1963. (Con-
tract No. AF 19(628)-468)

£23 "Automated Logic for Semi-Automated Mathematics" J. R. Guard.
Scientific Report No. 1 AFCRL 64-411. March 30, 1964
(Contract No. AF 19(628)-3250)

C3j "Toward Semi-Automated Mathematics: The Language and Logic
of SAM III" J. H. Bennett, W. B. Easton, J. R. Guard, and
T. H. Mott, Jr. Scientific Report *No. 2. AFCRL 64-563.
May 1, 1964. (Contract No. AF 19(628)-3250)

C4 3 "Semi-Automated Mathematics: SAM IV" J. H. Bennett, W. B.
Easton, J. R. Guard, D. B. Loveman, T. H. Mott, Jr.
Scientific Report No. 3. AFCRL 64-827. October 15, 1964.

(Contract No. AF 19(628)-3250)

C53 "A Matching Procedure for fcl-Order Logic" by William Eben Gould.
Scientific Report No 4. AFCRL 66-781. October 15, 1966.
(Contract No. AF 19(628)-3250)

C6J .Robert Bumcrot, Proceedings of the Glasgow Mathematical Asso-
ciation, Vol. 7, Part 1, 1965, pps. 22-23

^73 "CRT-Aided Semi-Automated Mathematics" Semi-annual Report
covering period: July 1, 1965 through December 31, 1965.
(Contract No. AF 19 (628)-3250).

^8^ "CRT-Aided Semi-Automated Mathematics" Semi-annual Report
covering period: January 1, 1966 through June 30, 1966.
(Contract No. AF 19(6281-3250).

51

i
4*.

m^J

\

i I

I

^^^

Unclassified
Sccuticy CUi»i(ica:io<i

DOCUMENT COKTROL DATA ■ R«0
(Stcuritf elat$ification of title, hody efablfüft end intltnin muottuion mum 6c tittered when the overall rtport it clasufitd)

I. OmOINATINO ACTIVITY (Coymu mSÖrj
Applied Logic Corporation
One Palmer Square
Princeton. New Jersey

lit. RC»0*T ItCUMITV Cl.A$$iriCATtOH
Unclassified

*■ MCFONT TITte

CRT-Aided Semi-Automated Mathematics

4. DMCRi^Tivt HOTtt (Type ofrtpait mlhdatii* tätet;

Final Scientific Report 1 June 1963 through 30 September 1966
f. AUTMOHT^ (but namt, fint MM*, uuthl)

Bennett, James H. Guard, James R.
Easton, William B. Settle, Larry G.

* RCPOftT OAT«'

January 1967
ARPA Order

No. 700

•A COfcVSACT OR OttAMT NO.
AF19(628)-3250
k. pnojtCT MO.

8672
«■ iU&t DoD Element No. ei54501R

l DoD Subelement n/a

7a TOTAL NO. Or P>AOCt

60
IS OmOINATOlft RtPOHT NUMOIMTS;

Final Report

»ft. NO. or NCPt

6

»*. OTy W »«»ONT ^JMNy «*» m**tn ihalmayie

AFCRL-67-0167
10. AVAHMtLITY/IMITATION NOTIC«

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

it. turrkCMCNTARv NOTU Prepared for

Hq., AFCRL, OAR(CRB)
United States Air Force
L. G. Hanscom Field. Bedford. Maes.

Advanced Research Projects Agency

JK^Hp^f^Tiae report describes the status of the fifth in a series of five
experiments in semi-automated mathematics. These experiments culmin
ated in large complex computer programs which allow a mathematician
to prove mathematical theorems on a man-machine basis. SAM V. the
fifth program, uses a cathode ray tube as the principal interface betweei
the mathematician and a high speed digital computer. An elaborate lang-
uage and logical capability has been implemented in SAM V. These in-
clude I/O languages for expressing mathematical statements in a form
suitable for both the mathematician and the machine to recognize and
handle with ease and convenience; a language for expressing and hand-
ling sorts and range of symbols; and an auto-logic algorithm and match-
ing routine. The latter constitute the capability for handling, automatical
ally, logic with equality. This capability is particularly useful at an
intermediate state of the proof wh*n it is desired to have the machine
try and verify automatically a given portion of the proof. ^-^

V
m roM
"^ I JAN M \m

i

-i

Unclassified
Security Cla»*ifkilion

52

l

