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ABSTRACT 

This  report describes the  status of the fifth in a series  of five 
M 

experiments ii semi-automated mathematics.     This effort extended 

from June  1,   1963 through September  30,   1966.     These experiments 

culminated in large complex computer programs which allow a 

mathematician to prore mathematical theorems  on a man-machine 

basis.     SAM V,   the fifth program,   uses a cathode ray tube as the 
IT 

principal interface between the mathematician and a high speed digital 

computer.     An elaborate language and logical capability has  been im- 

plemented in SAM V.     These include I/O languages for expressing 

mathematical statements  in a form  suitable for both thr   mathema- 

tician and the machine to recognize and handle with ease and con- 

venience;  a language for expressing and handling  sorts and range of 

symbols;  and an auto-logic algorithm and matching routine.      ITie 

latter constitute the capability for handling,   automatically,   logic with 

equality.     This capability is particularly useful at an intermediate 

slate of the proof when it is desired to have the machine try and 

verify automatically a given portion of the proof. 
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SUMMARY 

1 

This final report describes a series  of five computer programs, 

called SAM I through V,   which are experimental tools  for  study-;ag 

techniques in theorem proving via human interactic     with computers. 

The approach of semi-automated mathematics which underlies  this 

series of programs is  that of using man-machine  interaction to 

achieve results which neither component could achieve alone.     The 

first four programs  are  described in detail in  [1,2,3,4]    (See 

Bibliography).     Each of the five programs  concentrated on attacking 

specific phases  of the problem.      The current program is  oriented 

primarily toward the development of efficient automatic techniques 

for handling  some of th#   smallest processes  of mathematical deduc- 

tion and toward the  realization of efficient  real time  interaction be- 

tween man and machine through the use  of CRT displays. 

The first program,   SAM I,  implemented the propositional cal- 

culus  in a framework of natural deduction;  the  goal of human inter- 

vention in SAM I was  to obtain proofs   ->f minimal length.     SAM II 

dealt with quantifier-free first-oroer  axiom systems  of mathematics. 

SAM 11 was  adequate  to investigate elementary mathematical theories 

including geometry and elementary set theory.      The program left 

the entire  burden of proof generation with the  user.     SAM II was 

responsible for  checking the validity of steps  and generating conse- 

quences by the basic  rules.     SAM III saw the  beginning of the develop- 

ment of auto-logic,   which contained the capability for  automatically 

handling predicate  and functional logic  containing equality.      This 

capability is  particularly useful at an intermediate  stage  of a proof 
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when it is desired to have the machine attempt to verify a portion 

of P  proof without   requiring    the  user to supply all the elementary 

steps  in the derivation.     The years have seen continual increase in 

the power of auto-logic to automatically verify the truth of complex 

deductions.     SAM III initiated development of sophisticated input/ 

output techniques and contained the first general purpose languages 

for expressing mathematically statements in suitable form for both 

mathematician and machine. 

The programs.   SAM I,   n,   and III,   were implemented on a 

sr.all scientific computer,   the IBM 1620.     SAM IV expanded th«- 

capability of SAM III in a number   of directions and was implemented 

on an IBM 7040,   a medium ^cale  scientific computer.     The improve- 

ments were primarily in auto-logic and in the use of SLIP (a list 

processing language) as the underlying framework for the program. 

SAM V  saw advances in auto-logic with respect to the semi- 

automatic handling of equality and the algebraic aspects of mathe- 

matical theories.     It has also seen the implementation of a CRT 

display as  the primary interface between man and machine.     This is 

a most convenient and flexible means  of interaction and the first 

allowing truly real time communication between man  and machine at 

a rate  that is efficient for the user.     The program was implemented 

on a PDP-6,   a large-scale computer with a time-sharing system. 

Time  sharing is  a mode of operation which allows efficient and econom- 

ical interaction between man and machine at the convenience of the user. 

This report expands and brings up to date the material contained 

in IT.SJ,     Our intention is to make this  report a self-contained 

description of SAM V as  it existed on September  30,   1966. 
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SECTION I 

SYMBOLS AND FORMULAS 

In this section we describe the symbols and formulas  of SAM V 

from the viewpoint of logical structure.     The symbols  and formulas 

are the language of SAM,   the fundamental entities with which the user 

is concerned.     In semi-automatic mathematics they bear the entire 

responsibility for expressing theorems and steps  in proofs.     Mathe- 

matical investigations in symbolic logic have shown that a small 

collection of basic kinds of entities and rules for combining them into 

formulas are sufficient to represent mathematical theorems  and proofs. 

In part,   the  success of SAM depends on the ability of its formulas  to 

conveniently express mathematical ideas in a way which lends itself 

to efficient algorithmic methods.     In Section III (Control,   Input/Output) 

we describe the manner in which formulas and proofs are actually 

presented to the user in ways which promote understanding and rapid 

communication.     In this  section our description is cast in terms of 

representations internal to SAM.     This is convenient in m&king precise 

the sense of the attributes carried by the language of SAM. 

There are four types of symbols  represented in SAM V.     These 

are variables,   constants,   logical symbols,   and punctuation.    Variables 

and constants are represented internally by a number which corres- 

ponds to a single alphabetic letter of a single alphabetic letter with a 

subscript.     Certain bits in this representation of a symbol indicate 

syntactical status  of that symbol.     For convenience in debugging they 

appear as bits reflected in the leading digits in the  "subscript". 
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Subscripts  are positive  integers less  than 2   .      These  subscripts are 

written in octal notation.      There is  a table  used in SAM V vhich 

specifies which of the  symbols  are constants and which are variables. 

The  standard table has the symbols* starting with    A    through    H 

and    P    through    S    as constants  and the remaining symbols as 

variables.     A given variable can have three distinct representations 

in SAM V according as the variable is free,   bound,   or temporarily 

fixed.     (A fixed variable corresponds to a variable which,   in an in- 

tuitive  sense,   has been fixed by a statement such as  "let    x    be a 

positive number").     Constants have  a single internal representation. 

The internal representation of variables and constants is as follows: 

Bits  3 and 4 are 00,   11,   10,   or  01   according as  the  symbol is a 

constant,   variable,   bound variable,   or a fixed variable;  bits  5 through 

11  are  the  subscript (no subscript is  represented by zero;  and bits  12 

through 17 are the 6-bit ASCII code for the alphabetic character.     A 

subscript 100 through 177 indicates  a  "shadowed" variable.      The use 

of "shadowed" variables is a technique used to avoid clashes of free 

variables.      This  technique  is  described in more  detail in Section 11. 

A subscript between 40 and 77 and  140 and  177 indicates a variable 

which has  temporarily been changed to a constant,   called a "frozen" 

variable.     "Frozen" variables are a technical device used to simplify 

the matching and instantiation routines.     (See the description of 

Matching in Section II)    A subscript of 20 to 37 or  60 to 77 indicates 

a variable which has been turned into a constant by the Skolemizing 

process described below.     These constants  are called "Skolemized 

variables".     The logical symbols are typed as  LAM,   AL..L,   IS,   =, 

IMP,   OR,   AND,   IFF,   NOT,   TRU,   and FAL .      Thrse are  represented 

internally respectively by the octal numbers   1   tbrougn 13  right justi- 

fied in bits  3  through  17. 

B 
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The punctuation symbols  are left and right parentheses,   comma, 

and left and right square brackets  (the  square  brackets are  repre- 

sen ed by angle brackets on output).     Punctuation has no internal 

representation and is used only for rudimentary I/O.     (The  rudi- 

mentary I/O language in which we express formulas in this  section 

is convenient for debugging and explanation of Section III.) 

Tue symbo.'s above are combined by the following rules to form 

formulas: 

1, A single variable or constant is a formula. 

2. If    b    is a variable or constant and    a,, a.,..., a      are formulas. 
12 n 

then 

b(?   . ..., a )    is  a formula 
n 

3. If    b    is a formula v'-lh more than one  symbol and    a.,.. . , a 7 In 
are formulas,   then 

[bj a. i... i a       is  a formula 

4. If    b    and    c    are formulas  and    d  ,d  , ...,d       are variables, 
1    £ r 

then 

(b=c) 

(ALL djHb) 

(IS djHb) 

(LAM d1.d2....,dr)(b) 

(b IMP c) 

(b OR c) 

(b AND c) 

(b IFF c) 

NOT(b) 

are f rmulas. 

^4^-4 



mm 

Formulas are represented internally by list structures.     These 

list structures  are manipulated by a package  of subroutines which we 

have called TROLL for  Threaded,   Ringed»   Oriented List Language. 

Figures  1  through 3 on the next page show the  representation of two 

formulas  as  TROLL lists.     A description of TROLL is included in 

Section V. 

In SAM V,   only certain types  of formulas are considered inter- 

nally.     These formulas are those which can be formed by using 

variables,   constants,   =.   LAM and NOT.     This  set of symbols,   how- 

ever,   is sufficient to represent any mathematica    entities which can 

be described in an omega-order predicate c: tculus. 

To see this we define the miniscope form and the Skolemization 

of a formula. The Skolenization of a formula is logically equivalent 

to the original formula. 

Definition.     A    wff    is converted to its  miniscope form by applying 

the following replacement rules  (repeatedly using the first applicable 

ruler we write    x ■ A    to mean    x    is not free in    A): 

Rule Replace Subformula 

1 NOT NOT A 
2 A IMP B 
3 A IFF B 
4 NOT (A OR  B) 
5 NOT (A AND B) 
6 NOT (ALL x) A 
7 NOT (ISx) A 
8 (ALL x) A 
9 (IS x)  A 

10 (ALL x)  (A OR  B) 
11 (ALL x)  (A OR B) 
12 (IS x)   (A AND B) 
13 (IS x)   (A AND B) 

by Subformula if 

NOT A OR  B 
(NOT A OR  B) AND (A OR NOT B) 
NOT A AND NOT B 
NOT A OR  NOT B 
(IS x)  NOT A 
(ALL x)  NOT A 
A x 
A x 
A OR  (ALL x) B x 
(ALL x) A OR B x 
A AND (IS x)  B x 
(IS x) A AND B x 

^ A 
i A 

i A 
i  A 
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Rule   Replace Subformula 

14 {ALL x)  (A AND B) 
15 (IS x;   {A OR  B) 
16 (ALL x)  ((A AND B) OR  C) 
17 (ALL x)  ((A OR  (B AND C)) 
18 (ISx)  ((A OR  B) AND C) 
19 (ISx) (A AND (B OR  C» 

by Subfornmla 

(ALL x) A AND (ALL x) B 
(IS x) A OR (IS x) B 
(ALL x) (A OR C) AND (ALL x) (B OR C) 
(ALL J ) (A OR B) AND (ALL x) (A OR C) 
(IS x) (A AND C) OR (IS x) (B AND C) 
(IS x) (A AND B) OR (IS x) (A AND C) 

Definition.     The Skolemization of a    wff A    is  obtained by applying the 

following steps  to    A : 

1.        Completely lambda-convert    A . 

Take the  universal closure  of    A . 

Convert   A   to its  miniscope form. 

2. 

3. 

4. 

5. 

Reletter the  universally bound variables   so that no variable 
appears with two universal quantifiers. 

Replace an occurrence of a subformula of the form (IS x) B    by 

6. 

7. 

F(xlI. •.x  ) 
B 

n 

where  this  occurrence  of    (IS x) B    is within the  scope of univer- 

sal quantifiers  binding    x ,...,x    (n >  0)     and    F    is  a new 

constant. 

Delete  the universal quantifiers   (after all possible  applications  of 
step 5  have  been completed). 

Put the  result in conjunctive normal form,   i. e.,   replace  sub- 
formulas  of the form    (A AND B) OR C    and    A OR  (B AND C) 
by     (A OR C) AND (B OR  C)    and    (A OR B) AND (A OR  C) 
respectively. 

Remark: Any quantifiers  or  logical connectives which occur within 

the  scope of a non-logical function or predicate are  to be  ignored by 

the  miniscope and Skolemization procedures. 
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C) 
C) 

In proofs,   the conjuncts  of the Skolemization of a formula 

are treated as  separate formulas.     The disjuncts  of each of the 

conjuncts  are represented as a list.     This list is called a pseudo- 

disjunction (PSD).     These disjuncts  are either atomic formulas  or 

negations  of atomic formulas.     As an example we apply Skolem- 

ization to the formula below and write it in the form used by 

SAM V.     For example,   the formula 

(ALL X)(E(X U) IFF E(X,V/) IMP U=V 

which says (when reading E(A, B) as A C B) that two sets are 

equal if they have the same members, rs transformed to the two 

PSD's: 

NOT E(F(U,V),U) 

NOT E(F(U,V),V) 

U=V 

and 

E(F(U.V),Ü) 

E(F(U.V),V) 

U=V 

The meaning of the new constant function    F    is  that    F(U, V)    is 

to be a member of exactly one of the  sets    U    or    V    if they are 

not equal.     Hence if    F(U,V)    is  in both    U    and    V    or  if 

F(U, V)    is  in neither    U    nor    V ,   then in fact    U=V .     While in 

this example the two PSD's generated seem somewhat remote from 

their progenitor,   this  remoteness is  an exception rather than the 

rule.     For example,   the  Skolemization is frequently a rather natural 

restatement of the original formula. 

For SAM to deal effectively with any complicated mathematical 

r-: 



structure,   it must have an efficient means  of distinguishing and 

ordering the various  classes  ("sorts") of variables and constants 

which it encounters  therein.      This problem does not arise  in,   say, 

a three-axiom elementary treatment of group theory,   because  all 

variables  and constants are assumed to be elements of the group in 

question.     Suppose,   however,    that we wish to axiomatize a system 

involving several distinct vector  spaces  over a giv^n field of scalars. 

Here,   some  variables will  stand for  spaces,   others for subspaces of 

a given space,   and still others  for field elements.     Moreover,   such 

constants  as the  zero vectors in the spaces and the two identity ele- 

ments  of the field must be distinguished and placed under the proper 

headings. 

Heretofore,   we have gotten around this prob'  m in a rather 

artificial manner by extensive  use  of PSD's.     In order to tell SAM 

that scalar multiplication distributes  over vector  addition,   one needed 

to write something like: 

NOT P(Z) 

NOT Q(X1,Z) 

NOT Q(X2,Z) 

NOT Q1(U) 

G(U,H(X1,X2))  =  H{G(U,X1),G{U,X2)) 

where     G    is  scalar multiplication,     H    is  vector addition,     Q    is 

membership in a vector  space,     Ql     is a membership in the  scalar 

field,   and    P(Z)     is  the  statement  "Z is a vector  space".     Disjuncts 

of this  kind are  cumbersome  on both sides   of the man-machine 

interface. 

The   recent implementation of sorts  in the  SAM package  gives 

us  a more  convenient and powerful method of handling axiom systems 



involving  different types  of variables  and constants-     By setting up 

a sort structure  for  the  linear  algebraic  system mentioned above, 

we  can indicate  with  a single  statement that whenever  an      X (with 

or  without subscript)  appears  i.r  our  axiomatization,   it is  to be 

considered as  a r..ember  of the  sort of all vectors,   that subscripted 

or  unsubscripted    Y's     belong to the  sort of vectors  in the vector 

space %    ,   that subscripted or unsubscripted    U's    belong to the 

sort of scalars,   and so on,   with all constants  being similarly 

placed in the  sort to which they  belong.     With this  set-up,   it is 

possible  to express many algebraic notions in a more straightfor- 

ward manner,   without the  use  of disjurtcts.     Only the  equality 

G{U,H{X1.X2))  =  H(G(U,X1),G(U,X2)) 

is  needed for diJtributivity,   since  the  sort structure  automatically 

sees  to  it that the  variables     U, X1,X2     are properly identified. The 

cne major  criterion which a sort structure must meet in order for 

SAM to be able to work with it is that the sorts be partially ordered 

by inclusion.      That is,   if two subsorts  of a given  sort have non- 

empty intersection,   one  of them must wholly contain the other.     Ad- 

missible  sort structures  may thus  be  represented by tree  diagrams 

such as  the following for  a system consisting  of two vector  spaces 

and    U)    over the  complex numbers: 7 
Universal Sort 

/        \ 
X u, c 

A 
Y.A     W,B V,D 

< 



Here,     X    represents  the  sort of all vectors,     Y    represents  the 

sort of vectors  in the space ^   ,     W    the  sort of vectors  in   (p , 

U    the sort of complex numbers,   and    V    the sort of reals.     The 

diagram also establishes the convention that distinguished vectors 

in   *\J    (the zero vector,   basis vectors,   etc.) will be denoted by 

subscripted or unsubscripted A's    and similarly for    B,   C,   and D . 

We are thus  spared the necessity of using a separate axiom to place 

each distinguished constant in the  sort to which it belongs.     The 

above sort structure is entered very economically in SAM with the 
statement 

S(S(X, S{Y. A). S(W. B)), S(U, C, S(V, D))) 

which is inserted separately from the axioms for the system. 

<Ä==i 
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SECTION n 

AUTO-LOGIC 

The purpose of the AUTO-LOGIC routine  is  to generate 

"interesting" consequences of a finite  set of pseudo disjunctions. 

Such a routine is useful in two ways: firstly,   it can be used to 

generate new theorems which may be of interest to the mathematician 

and which may be useful in further applications  of AUTO-LOGIC; 

secondly,   a formula    A    is proved to be a consequence of a list of 

pseudo-disjunctions  if    FAL    is obtained as  a consequence of the 

list augmented by the PSD or  PSD's  representing the logical negation 

of    A .     The underlying principle by which AUTO-LOGIC generates 

useful consequences is as follows.     It has four processes  called re- 

duction,   expansion,   digression,   and contradiction.     Reduction uses 

a set of PSD's from the initial set to 'reduce1  or  'simplify*  a given 

PSD from the  set using  the logical rules of an omega-order predicate- 

function calculus with equality and lambda notation.     Expansion and 

digression use these same rules  to generate new PSD's from a finite 

set of PSD's.     Contradiction eliminates  "trivial" PSD's by automatic- 

ally Skolemizing a copy of the negation of the  PSD and attempting to 

find a contradiction in a limited period of computer time.     AUTO- 

LOGIC  starts with a finite set of PSD's and applies these four pro- 

cesses  in a pattern which allows  the newly generated  PSD's  to stay 

in the set only if they cannot be reduced by reduction or deleted by 

contradiction. 

SAM V lays  special emphasis  on developing and experimenting 

with different reduction,   expansion,   digression,   and contradiction 

10 
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processes  as well  as  various  patterns  for  applying these processes. 

The reductions which are currently used in AUTO-LOGIC are 

of two types. 

The first type,   called self-reduction,   reduces  a single  PSD. 

Self-reduction makes  the following obvious kinds  of simplification: 

1. The  PSD is deleted if it contains  a disjunct of the form b=b 

or a disjunct of the form     TRU    (in this  and similar cases we 

say the  PSD has been reduced to     TRU ). 

2. If the  PSD contains a disjunct of the form    NOT( b=b)     or  a dis- 

junct of the form    FAL    then such disjuncts  are  deleted.     If 

there were no additional disjuncts we  say that the original PSD 

disjunction was  reduced to    FAL .     In this  latter   case  the main 

control of AUTO-LOGIC is notified that a contradiction has  been 

found. 

3. If two disjuncts  occur,   one  of which is  the negation of the other, 

the  PSD is reduced to    TRU    and the  PSD is deleted. 

4. If twr' identical disjuncts  occur,   one is  deleted. 

5. A disjunct of the form    NOT(NOT{b))     is  replaced by    b . 

The  second t/pe  of reduction uses  a single  PSD to reduce a 

feecond  PSD.      Tl. reductions  fall into three kinds,   depending on 

whether  the  PSD is an equality,   a single disjunct which is not an 

equality,   or  a PSD which has  two or more  disjuncts.      The first kind 

depends  on the fact that the  terms  which appear  in SAM V are given 

a well-ordering.     Equalities  in SAM  V  are  always written so that the 

left side of the equality is  at least as  high  in this  ordering  as  the 

right side  of the equality.      This  ordering of   the  terms  in an equality 

is  convenient for  both reduction  and expansion.      The  well-ordering  is 

described at the end of this   section. 

II 
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An    a=b    reductioa of    c    is  obtained by replacing all in- 

stances of    a    in    c    by the appropriate  instance of    b .     Under 

the assumption that lowness in this  ordering can be equated with 

simplicity,   this  type of reduction is in fact a simplification.     In 

the  second kind of reduction,   where a PSD consisting of a single 

disjunction    b    reduces a PSD    c ,   instances  of    b    are applied 

to the disjuncts of    c    in order to replace them where possible by 

either     TRU    or    FAL ,   a disjunct of    c    being replaced by 

TRU(FAL)  if it is an instance  (negation of an instance)  of 

am instance of    b .     In the third kind of reduction,   where  a PSD 

b    has    n    disjuncts    (n    1),   a PSD    c    is replaced by    TRU    ix 

n    disjuncts from    c ,   considered as a PSD,   form an instance  of 
b . 

In a similar classification expansions are of two types. The 

first type called self-expansion takes a single PSD and applies the 
following rules: 

1.        If the  PSD has more than one  disjunct,   one of which has the 

form    NOT(b=c),   where    b    and    c    can be made to corres- 

pond by some instantiation of the PSD,   a copy of the  PSD is 

made with the equality deleted and the instantiation made in 
the copy. 

If a PSD consists  of a single disjunct of the form    NOT(b=c) 

where    b    and    c    can be made to match by some instantiation, 

the main control of AUTO-LOGIC is notified that a contradiction 
has been obtained. 

If a PSD has two disjuncts    b    and    c    which can be made 

identical by some  instantiation,   the  instantiated copy of the  PSD 

with  one  of the disjuncts  deleted  is  generated. 

2. 

3. 

12 



The  process  of finding  a common instance  of t"vo formulas  we 

call matching.     Matching  is  fundamental  to  several portions  of 

AUTO-LOGIC and is descr'.bed later. 

The  second type of expansion uses  a PSD,   b ,   to expand a 

second PSD,   c .     These expansions  are exactly like the first two 

of the  three  reduction casas  mentioned  above  eJ.cept that an instan- 

tiation of    c     as well as     b    is  required to make  the corresponding 

reduction.     In these cases an instantiated copy of    c    is made and 

the appropriate reduction applied.     In addition,   there is  an operation 

of expanding with two multi-disjuncts.      This operation,   called reso- 

lution by some authors,   generates  a third multi-disjunct by joininp 

appropriate instances of the original two multi-disjuncts  and deleting 

two disjuncts of the form    A    and    NOT(A) . 

Digression is an attempt to use on a simple level the proof 

strategy of temporarily complicating  a proof to gain some  later  sim- 

plification.     Digression expands a formula    d    with an equality    b=c 

by replacing an instance of the  "simpler" term    c     in the formula    d 

by the  appropriate  instance  of    b .     When the  result of this  digression 

is  brought up from the  list of expansions,   its progenitors  and,   in 

particular,     b=c    is not used to reduce the  digression.     If no other 

PSD's  reduce  the  digression,   it is  deleted.     If some  reduction by a 

PSD other  than    b=c     Is possible,   the  digression is  kept and business 

goes  on as  always.     Hence,   digression  represents  the  use  of  "one step 

backward" in simplification. 

We  now describe the  method currently  implemented in AUTO- 

LOGIC for applying these  expansion processes.      Two ordered lists of 

PSD's  are  kept during each phase of the algorithm.     Initially,   the 

first list,   the  list of reductions  (LR),   contains  the  original  PSD's  in 
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the order given to AUTO-LOGIC.     The  second list,   the list o* 

expansions  (LE),   is initially empty.      There is  a main pointer 

called    LOW    which proceeds  through    LR    starting at the top 

and proceeding down.     At the top of the main loop,     LOW    dis- 

tinguishes  an element from the     LR .      The  algorighm proceeds 

as follows:    self-reduction is applied to the distinguished PSD, b . 

If    b    is reduced to    FAL    the  '   Ejorithm halts and the fact that 

a contradiction has been reached is  signalled.     If    b    is  reduced 

to    TRU   the   LOW   pointer is advanced and    b    is deleted.    Other- 

wise,   the formulas above    b    on    LR    are used,   one at a time, 

to reduce    b .     If at any time    b    is  reduced to    TRU    or    FAL 

the appropriate action is  taken.     If    b    has not been reduced to 

TRU    or    FAL ,   then    b    is used to reduce the  PSD's above    b 

on    LR .     If one of these  PSD's  should be  reduced to     TRU it is 

then deleted;  if reduced to    FAL    the algorithm signals'  the main 

control  and is halted;  but if reduced to some  other  PSD,   this  PSD 

is removed and inserted immediately below the distinguished PSD 

b .     If no reduction is possible,   expansions and digressions of  b 

with the  PSD's above    b ,   and conversely,   are generated.     The new 

PSD's obtained by expanding and digressing are then placed on    LE . 

The PSD's on    LE    are ordered by some criterion of potential 

utility.     Various criteria have been tried with varying results. 

Finally,   after all the reductions upward and expansions have been 

done,   self-expansion is applied to the distinguished PSD and the  re- 

sults placed on    LE . 

LOW    is then advanced.     When    LOW    advances  beyond tl      last 

PSD of    LR ,   the  PSD on the  top of    LE    is  removed and inserted at 
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the  bottom of    LR     and  becomes  fhe  distinguishet'  PSD.      The 

algorithm then continuer.     If    LE     becomes  exhausted the  main 

control is  so signalled and the algorithm halts. 

For the purposes of defining the well-ordering of terms of 

SAM V,   we  consider the  symbols  of SAM  V to be divided into 

two groups:    constants and all other symbols.     Within each group 

we  consider the element*»  to be ordered by the magnitude of its 

numerical representation in SAM V.     A term    A    is  "greater than" 

B    in the  well-ordering of terms  in case 

a) A    contains  more occurrences  of some constant    c 
than     B ,   and both terms  have  exactly  the  same 
number (possibly zero) of occurrences of each of 
the constants  "greater than"    c ,   or 

b) A    and    B    have exactly th<-   same constants each 
with the  same nun:ber of occurrences,   but    A    follows 
B    in the lexicographic  order  where  all constants  are 
considered to be great« .   than all non-constants  and all 
non-constants are assumed to be in the same order 
position,   or 

c) The  "constant structure" of    A    and    B    is the same 
but    A    is bigger than    B    in the lexicographic order 
(i.e.,   there  is  some non-constant    c     in    A    and    d 
in    B    and    A    and    B    are identical up to occur- 
rences at    c    and    d ,   but the numerical representation 
of    c    is greater than that of    d ). 

This well-ordering of terms  has  several  interesting properties. 

First of all it guarantees that a re-lettering of the variables  of a 

term will not drastically change  its position in the well-ordering. 

Secondly,   by using constants of different relative  "size" we can 

give preference to one concept over another.     As an application 

of this  it is  convenient to  symbolize  a newly defined concept with a 
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symbol that is   relatively high compared to the  symbols  used in 

the definition.     While  the  basic  theorems  are  being proved for 

the new concept,   it is  important that terms  containing the new 

symbol be  replaced by their  definition.     Once  all the  basic 

theorem«  concerning  that concept are proved,   we  replace the new 

symbol by a symbol that is  small relative to the  symbols  used in 

its definition.      Then terms corresponding to the definitions can be 

"simplified"  to a term involving  the  new symbol  by  using  the  basic 

thsorems which have just been proven. 

We close  this  section with a description of matching.      Two 

formulas  are  said to match if they have  a substitution instance in 

common.     For  example,   the  formulas    Q(a, x)     and    Q(y,   H(y, z}) 

match because the formula    Q{a, H(a, z))     (called a matching formula) 

riay be  gotten by appropriate  substitutions in either  of them.     In 

this particular example,     Q(a, H{a, z))     is  in fact a general matching 

formula,   since all other matching formulas for  the original pair 

may be obtained from it by substitution.      The process of matching, 

i.e.,   oi obtaining a general matching formula for  two given expres- 

sions,   is  a basic  tool in the  construction oi proofs.      Consequently, 

much effort has  been devoted to developing match algorithms  and 

implementing them in SAM. 

The fundamental match algorithm in AUTO-LOGIC is  described 

below; 

Step 1     Consider    B    and    C    as being  stored at lines  (1) and (2) 

respectively.     Reletter  the variables of line  '^)  so that it has no 

variables  in common with line  (1). 

Step 2     Let us  denote the  n-th symbol  --  ignoring parentheses  and 
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comr.as  --of line  (1) by (1)    . Similarly we define  (2)    . 
n n 

Case a)    If lines  (1) and (2) are identical,   the algorithm out- 
puts  (1) and stops. 

Case  b)    Suppose    n    is the smallest integer  such that (1)    is   n 

different from (2)    .     Since    wffs    are involved and Case a) n 
does not hold,   neither  (1)    nor  (2)    can be vacuous.     We  con- 

n n 
sider four subcases: 

i)      Suppose (2)    is a variable,   say    x ,   while  (1)    is a 
n n 

function or  individual constant.     Then call    D    the 

unique subformula of (1) starting at (1)    .     If    D 

contains    x ,   output DOES*   TOT MATCH and stop.     If 

O    does not contain    x ,   substitute    O    for    x    every- 

where in (1) and (2) .     Go back and  repeat   Step 2. 

ii)    Proceed as  in    i)    if the roles  of (1)  and (2)  are  inter- 
changed. 

iii)   If (1)    and (2)    are different variables,   replace  (2) 
n n n 

everywhere in (1) and (2) by (1) 

iv)   If (1)    and (2)    are different constants,   output DOES n n 
NOT MATCH and stop. 

Examples 

Let us apply matching to    P(G(G(x,G(y,x)), z))    and    P{G(G(x, y), G{x,x))), 

(1) PGG x G y x z 

(2) PGG uvG uu 

(1) PGG x Gy x z 

(2) PGG x v G x x 
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(1) PGGxGyxz 

(2) PGG x G y x G x x 

(1) PGG x Gy x G x x 

(2) PGG x G y x G x x 

Then    P{G(G{x, G(y, x))  ,   G{x,x)))    is the output of the algorithm and 

is in fact a general matching formula for the two    wffs . 

Let us apply matching to    Q{x, x)    and    Q(y, H(y)) . 

(1) Qxx 

(2) Qy Hy 

(1) 

(2) 

Oxx 

Qx Hx 

DOES NOT MATCH 

The variable    x cannot be replaced by    H{x) . 

For a proof tha* this  algorithm actually does  produce a general 

matching formula or a "does  not match"  response  in finitely many 

steps,   see C23 , pp, 26-27. 

The above process,   although quite helpful *n some instances, 

cannot by itself come up with many of the matches  one would like 

to be  able  to find.     Suppose,   e.   g. ,   that    P    is  a commutative func- 

tion.     Clearly the two formulas    P{a, x)    and    P(fe(y).y)    will match 

under  this  assumption --   P{G{a), a)  =  P(a, G(a))     is a general matching 

formula --   but the algorithm will fail.      The obvious  thing  to do here 

is  commute  the  terms  in one  of the expressions  and then  apply the 

algorithm,   but the  trick becomes  a iittle more  difficult when one tries 

to match longer,   more complicated formulas  under  the  assumption of 
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commutativity.     Matching with associativity gives  rise  to  similar 

problems. 

Recently,   a general method for matching  expressions  involving 

commutative  and/or associative functions has been worked out on 

paper and incorporated into SAM.     It works  by first taking the  two 

formulas to be matched as they stand and applying the fundamental 

algorithm.     If a general matching formula is not found in this first 

attempt,   the  arguments  of all the  associative functions  are  associated 

to the  right and another  try is  made.      The process  continues  in this 

way,   associating  and commuting arguments  according to a prescribed 

pattern and invoking the  algorithm  at each  step,   until either  a general 

matching formula is found or all the permissible  rearrangements  of 

terms  are  exhausted,   in which case a definitive  "does not match" re- 

sponse is  given.      The crux of the problem was,   of course,   the dis- 

covery of a method for  generating permutations  of terms  in such a 

way that all allowable regroupings  and reorderings would be gotten 

eventually with a minimum of repetitions. 

To invoke  this  new matching  capability,   the  operator  merely in- 

sertc labels for the commutative and/or associative functions  of his 

system in special program locations.     A certain degree  of control 

over matching and instantiation (a special case of matching in which 

the variables  in one of the formulas  to be matched are treated as con- 

stants)  is  possible  through the  setting of linrts  on the  amount of 

machine  time SAM is to spend applying either process to a pair of 

formulas.     Usually,   the  timers for matching and instantiation are set 

for  two  seconds  and one  second,   respectively,   but they may be varied 

at will depending on the  characteristics  of the mathematical system 
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being  investigated.     U long,   difficult matches  and instantiations 

are  expected to be  important in the  proof of theorems,   the  timers 

can be set higher.     Setting them lower,   on the  other hand,   forces 

SAM to de-emphasize these two processes  in its  development of 

results.     In short,   the  implementation of commutative-associative 

matching offers  the  experimenter yet another means  of interacting 

with SAM,   as well as  a helpful new methc. for generating theorems. 

Despite the  successes  that have  been achieved to date,   it would 

be wrong to say that the matching procedure which SAM currently 

employs  is  am optimal one.     Formula pairs  involving commutative and 

associative functions  frequently have  several general matching form- 

ulas,   but at present SAM finds  only one  of these.     Right now,   this is 

not a major handicap,   but it will  certainly have  to be   jvercome  before 

SAM is able to consider axiom systems in which free function 

variables  are present.     Fortunately,   the  theoretical groundwork for a 

more complete extension current matching techniques has  already been 

laid,   and implementation of same  is  now in progress.     A thorough 

treatment of matching in omega-order logic,   including many of the 

problems we are dealing with at the  moment,   may be found inC^l  . 
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SECTION III 

CONTROL,   INPUT/OUTPUT 

In this  section we describe how SAM operates  as a running 

program and,   in particular,   the  man-machine  interface.     In con- 

ceptual and programming terms  this breaks  up into the two aspects 

of control and input/output.     At the  beginning of this year it seemed 

reasonable to expect that we would soon wish to have sophisticated 

language facilities  for man-machine communication and activity at 

the level of full proofs in a natural deduction calculus.     However, 

experience quickly  showed that AUTO-LOGIC was  so powerful and 

flexible  that it would be  very worvhw'-'le  to work extensively with 

man-machine  interaction at the AUTO-LOGIC level.      Hence,  opera- 

tion of SAM has  evolved into a mode  in which the  user  is  monitoring 

the lists  of reductions  and  expansions  as  the  AUTO-LOGIC algorithm 

is  transforming  them.      The  user  may  intervene  by  stopping the  al- 

gorithm process  and himself adding or  modifying the  lists  of formulas. 

The  use  of the  CRT display and  PDP-6  time  sharing  system are of 

course essential to these activities.     It seems  unlikely that SAM V 

could have grown by a process  of evolution as  it has without the use 

of the  time  shared  system to make programming,   debugging,   ?nd in- 

core  modification feasible and rapid. 

In the  current implementation of SAM the  user  initiates  action 

by setting  up a list of  PSD's  as  the  initial list of reductions  (with a 

void     LE ).     Some  of the formulas  may be  marked with an asterisk 

to indicate  that they are  the  negations   of formulas whose  proof is 
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sought.     AUTO-LOGIC  is  then turned loose   to generate  consequences 

of these  initial formulas.     If none of the  original formulas  are 

starred then the  results  are consequences  of the original formulas, 

presumably axioms  or previously proved theorems.     If some  of the 

original formulas  are starred then all consequences  of the  original 

starred formulas  are  starred and it is  noped that SAM will derive a 

contradiction {prove    FAL ).     In that    event SAM has  demonstrated 

by contradiction that the disjunction of the unnegated versions  of the 

original starred formulas  is a logical consequence of the  other initial 

formulas  (the latter are  usually axioms and previously proved theorems). 

As AUTO-LOGIC works  on the lists  of expansions and reductions, 

the user is able to watch these lists  on the  CRT display.     He sees 

formulas  appearing on the list of reductions,   being reduced to simpler 

form,   reducing other formulas,   generating formulas  for the list of 

expansions,   and disappearing in favor of more powerful formulas.    In 

this monitoring process the user gains  great insight into the logical 

processes of SAM.     It is like having a window on the thoughts of a 

powerful but very different kind of mathematician.     Such an under- 

standing of AUTO-LOGIC as  a dynamic  entity is very important for 

finding useful improvements  to make in the basic  algorithm.     It is 

also important in allowing the user to interact with a given proof. 

The  user  may intervene  in the process  of proof in a number of 

ways.     His  selection and ordering of the  initial formulas  is  of course an 

important factor in determining the  course   that AUTO-LOGIC will take. 

Too many or ill chosen sets  of initial formulas  tend to  send AUTO- 

LOGIC off proving trivial and uninteresting results without ever getting 

to interesting formulas.     From a good starting point AUTO-LOGIC 

will produce useful and interesting results.     As  the user   sees  that 



AUTO-LOGIC is  running out of useful things  to do with the formu- 

las first given,   he can halt the process  and insert additional axioms 

cr other material.     He can also guide the process by deleting formu- 

las which seem unimportant or distracting.     This  real time  interplay 

between man and machine has  been found to be an exciting and  re- 

warding mode of operation. 

Since formulas  both appear  and disappear  in the process  of proof, 

a record is kept of each formula as  it comes  under consideration. 

This  record yields  a history of a session which can be  used for later 

analysis  and review.     A program called HIST can step through this 

history and display on the  scope  only those  bteps  actually used in the 

proof of a sequence pointed at by the  light pen. 

In operating SAM,   the user sits  at a display-teletype  console. 

The  display shows a section of the proof and a set of buttons.     By 

using the light pen on the display buttons  the user controls  the display 

and the  action of SAM.     He can cause  any section of the proof to be 

displayed,   have the proof "roll" by,   or track on the end of the re- 

ductions  --  i.e.,   display the  lowest formulas  on the list.      The dis- 

play is  updated every second to show the  current proof status.      The 

user  can halt the proof procedure,   continue,   indicate a desire to in- 

sert or delete formulas,   request a proof history,   enter the debugging 

mode,   and request a print out.     For insertion or deletion of formulas 

the user indicates position by light pen and,   for  insertions,   types the 

desired formula. 

In Section I we described the  symbols   t-,od formulas  of SAM as 

they  appear in their  simplest form     --   symbols  as   single letters 
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with subscripts and formulas as strings of symbols with parenthe- 

ses   showing complete structure.     Simple routines have been written 

for  input and output of formulas in this notation.     Such routines are 

convenient for debugging and preliminary experimentation.     But for 

more effective man-machine communication we require input/output 

in notation closer to that in common use by mathematicians.     There 

are  two aspects  to this  requirement,   the need for a large set of 

symbols with such features as varying size and position,   e. g.,   sub- 

scripts and superscripts,   and the need for flexibility in the format 

of formulas. 

At the symbol level we are concerned with two distinct situations. 

Hard copy can be quickly and easily produced on teletype and line 

printer.     With the line printer even very large  sets  of formulas  can 

be printed rapidly.     However,   the  set of characters  and the output 

format available are limited and modifications are expensive and slow. 

On the other hand,   the CRT display and incremental plotter can 

accommodate any symbols  and formats  that the user cares to specify. 

However,   the CRT display cannot easily produce hard copy of high 

quality and the plotter is not a fast economical device for producing 

hard copy.     With these considerations in mind,   input/output for SAM 

has been programmed to deal with symbols in three modes. 

Internally a symbol is  simply a number.     The first output mode, 

the character-subscript mode,   treats  this number as  a direct coding 

of the  symbol as a sequence of ASCII characters.     It is useful rep- 

resentation when working on the programming of SAM since output 

may be quickly produced on the line printer and the correspondence 

between internal and external form is constant.     The  second mode. 
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the  actual drawing  of symbols,   associates  with each internal code 

a special symbol which is  drawn in the form that the user wishes. 

For  convenience,  flexibility and efficiency,   the  correspondence  be- 

tween number and form is  kept entirely arbitrary -  a simple  table 

in SAM contains  all the information on the correspondence.      This 

table does not contain actual instructions lor drawing symbols  but 

transliterated codes for the  symbol.     For  example,   the  Greek 

letters'^    and   A appear as >GA    and   |GB ,   the mathematical sym- 

bols  U    and  O   appear  as    \j    and    \M ,     With this  transliteration 

approach the actual service routines for I/O devices can be written 

completely independently.     The use  of transliteration codes  gives  us 

a third mode of output,   that in which symbols are represented by 

their transliterations.      This mode can actually be used to produce 

quick output on the line  printer for  debugging or  cursory  examination. 

More  important,   it allows  for  the  input of arbitrary formulas  from 

the teletype.     In addition,   formulas in transliteration can be  stored 

in machine readable form. 

Since the formulas present in AUTO-LOGIC contain few logical 

connectives  and are  usually short,   the  conveniences  of notation 

which we have  implemented are  restricted to the presentation of 

central binary connectives   (such as     +    and     =  )  between their  argu- 

ments  and  the  suppression of some  unnecessary parentheses. 

In actual operation, the I/O modes are used as follows. Form- 

ulas for display on the scope are transliterated and passed through a 

display  service  routine which produces  suitable  display  instructions. 

Formulas  for  hard copy output are  written out on tape,   drum, 

line  printer  or  teletype  in the form that the  user wishes, 
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transliterated or character-subscript.     From tape  or drum output 

may be later produced on line printer  or plotter.     Plotter output 

is produced from transliterated formulas  in a tape or drum file 

by a small independent program.     Thus it does not slow down the 

use of SAM nor waste  space in the program. 
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SECTION IV 

EXPERIMENTATION WITH SAM  V 

? 

' 

In this  section we  describe  some  of the  experimentation that 

has been done with SAM V.     Along with development of the basic 

program,   experimentation with SAM V has  been a continuing  activity. 

Such experimentation serves  to determine whether  or  not SAM V   is 

progressing toward the ultimate goal of being a program which can 

be of practical utility in proving thi »rema of real mathematical sub- 

stance.     In addition experimentation with SAM indicates  the features 

which are in nerd of improvement and thus   serves  as  a basis for 

plans for the future expansion. 

In the first part of this  section we  discuss  experimentation 

with abstiact algebra,   group theory in particular.     Experimentation 

along tb^se lines  uas  demonstrated that the techniques  of AUTO- 

LOGIC in handling equality and algebraic  notions  are  very powerful. 

In   the   second part,   we  report on an exciting  result of current ex- 

perimentation,   the  actual solution by man-mac.iine  interaction of an 

open problem in the field of lattice  theory.      This  result,   called 

SAM's  Lemma,   can Ke viewed as  a rudimentary demonstration of 

the  great utility of the  man-machine  approach to the  automation of 

matVamatic:   and as  an actual  sample  of a program which partially 

realizes   s'ich aspirations.     In the  third part we present  somo 

examples  of experimentation done with the  simpie  sort structure 

that has  been added to the  repertoire  of SAM. 

The AUTO-LOGIC  algorithm described  fn Section 11 seems  to 
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be quite  successful  in cases  where  the  PSD's  are  equalities.      We 

give  an example from group theory  below in two diif«!rent forms. 

We  take  quantifier-fre,   axioms  for  group theory which say that 

for the  ,;rouP multiplication,C!|    «  /*%   t?;   i    -M-O     is  the left in- 

verse  and    A    is  the  left identity.     In the  first run we  derive  some 

consequences  of these  axioms  (See  Figure   1).     In addition,   we  have 

printed  out the  history of the proofs  of four  of  the more  interesting 

consequences  (See  Figures  2  through 5.     In Figure  6 we  list those 

PSD's which SAM generated but was  unable  to  reduce  immediately 

to      TRU ).      This  should help explain the  subject matter  of Section 

il.     In the  second run we insert the negation of the  statement that 

V    is also a right inverse  and that    A    is also a right identity and 

that    -l(«f)  -1(-1(4 )  =.'\      (See Figure 7)     This  shows  the  second 

mode in which SAM can operate. 
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Experimentation with SAM V and AUTO-LOGIC produced 

an important result,   one which we found both exciting and en- 

couraging  -  the proof of a previously unresolved open problem. 

A mathematician -  one with an intimate  knowledge  of the  innards 

of SAM -  and SAM V obtained the proof in a significant display 

of man-machine  cooperation.     Preliminary work was  being done 

in the theory of modular lattices with a partial goal being to see 

whether SAM V could be guided to a proof of the  results in [6. . 

In addition,   it seemed possible to hope for a later  attack on the 

unresolved problem presented there.     Long before it seemed likely 

that enough development had been mad« along elementary lines it 

was noted that AUTO-LOGIC had proven a formula from which a 

positive solution was an immediate consequence.     That   formula 

was  a crude form of what we now call SAM's Lemma.     In evaluating 

the significance of this demonstration it is important to note the 

interactive aspects of its construction.     The mathematician was 

guiding SAM in the broad lines of development of the theory of 

modular lattices and was present to notice a useful intermediate result. 

At the  same time,   the algorithms  of AUTO-LOGIC were working 

to generate results that might be useful without getting lost in a 

mass of trivial and nearly equivalent formulas.     SAM V was not 

capable of understanding all the consequences of many of the proven 

formulas but the mathematician despite a reasonable amount of prior 

effort,   had not been able to see the key steps  required to obtain a 

useful lemma, 'SAM's Lemma. 

i 

i 

i   ' 

I 

At this stage in the development of SAM we are always 

careful to check the results  of automatic proofs.     In thit.  case the 

check verified the result and,   as usually happens with first proofs 
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in mathematics,   led to a much more  compact way of presenting 

the  key ideas  in the  demonstration.      The  re-phrasing into common 

mathematical terms  is  given below along with a version of the 

proof by AUTO-LOGIC.      The version of the  semi-automatic proof 

that we give is  somewhat shorter  and more  straightforward than 

the  original  since,   with the  benefit of hindsight,   we were  able  to 

guide  the  process  more  directly to the  Lemma.      Note  that the 

phras'    ' of some  axioms  is  imposed by the  search for  simplicity 

in axioms  (e.g.,   the associative  law is  SAM's  choice  of the  simp- 

lest form in a  context where  commutativity  is  also present).    Note 

also the following table of correspondence between the  symbols  of 

SAM and the  notions  mentioned below: 

P 0  (first element) 
Q 1   (last element) 
D meet (analogous  to intersection and minimum) 
A join (analogous to union and maximum) 
A1,B1 the    a,b    of C63 
Rl.RZ (a V b)',   (a A  b)' 
A2,B2 the    x, y    of    [6^ 

Theorem  1,  {Bumcrot   \ji\   )     If (L, -^    )     is  a modular  lattice with 0 
—--——^—•—-—■———————-—— 

and 1  and if    a, b    in    L    are  such that    a V b    and    a A b    have 
I 

(not necessarily unique) complements,   then    a    and    b    have com- 

plements. 

Theorem 2,     (Bumcrot    CO  )     If (L, ^    )     is  a modular lattice with 

0 and  I ,   if    a, b    in    L    have  unique  complements     a'^b*     respec- 

tively,   and if    a V  b    and    a A   b    have  complements,   then    a' \/ b1 

is  a complement of    a /\ b    and    a' Ah'     is  a complement of    a \/ b . 

Open  Problem Bumcrot CfrJ  )      Under  the  hypotheses  of  Theorem 2  is 

it necessarily  true  that the  complements  of    a V  b    and     a A b     are 

unique ? 
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SAM'g  Lemma      Under  the hypotheses  of Theorem  1 

(a v b)'  = x A y 

dually 

(a A b)'  = x V y 

Theorem (Qglesby,   SAM V)     Under the hypotheses  of Theorem 2, 

the complements  of    a, y b    and    a A b    are unique. 

The theorem follows  immediately from SAM's  Lemma since,   by th? 

assumed uniqueness of complements for    a    and    b >     x A y    and 

x v y    are independent of which    (a V  b)*    and    (a A b)'  are used 

in their construction. 

In Figures  8 and 9 we show an early proof of SAM's  Lemma. 

The numbers at tin left margin indicate the  order in which SAM has 

added the formulas to the list of reductions,   missing numbers  corres- 

pond to formulas that SAM has eliminated in favor  of combinations  of 

simpler formulas.      The numbers  at the right margin indicate the 

depth of proof required.     Note how the  introduction of the associative 

axioms is deferred so that SAM can first work on the consequences 

of the  other axioms. 

In Figure  10 we  show the history of a proof of SAM's  Lemma 

on the latest version of SAM.     In this proof   v. A   >  « replace 

A, D,   and P respectively.     In addition,   the functions     v ,   /\       are 

given to SAM as being both associative and commp«-ative so that the 

resulting proof is much simpler.     In fact,   the new proof looks de- 

ceptively simple. 
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SECTION V 

TROLL 

A.     Introduction 

The coding for SAM V has  been done in machine language to take 

advantage of the large flexible instruction set available on the PDP-6 

and <:o achieve the  speed and efficiency necessary to the practical 

operation of SAM.      The  basic framework of the programming of SAM 

has  been a list processing language which we have named  TROLL 

(Threaded,   Ringed,   Oriented L 't Language).      This list processing 

language is  of interest as a separate entity in its  own right.     It is  a 

general purpose list language  of the  type which is  most  aseful for the 

purposes  of SAM.      Within the  requirements  of storage and linking in- 

formation required by SAM it is a most efficient variety of link pro- 

cessing language. 

TROLL is  a set of list processing subroutines designed to be 

embedded in FORTRAN or a machine language.     It could consist of 

a set of primitives,   coded in machine language for a particular 

machine,   and a set of routines  canonically written in FORTRAN,   but 

in actuality coded in machine language for added efficiency.      The 

primitives  could be used to fetch values  from fields within list cells, 

and to store values within these fields.     Obviously by changing the 

primitives  one  can greatly change the nature  of the list processor. In 

our  implementation all the  routines  are written in MACRO-6,   the 

PDP-6 assembly language. 

Ä 
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TROLL is threaded in that the last ceil of a simple  sublist 

links  back to its  reference.      Thus  a pushdown stack is not needed 

when searching  structurally through a simple list.      TROLL is 

ringed  (or knotted) in that it is  possible  to have  multi-referenced 

sublists.     Of course  in searching through a list with mulii- 

referenced sublists,   a pushdown memory is needed in order  to come 

back up through the  stru"ture.      This  is provided in one  set of 

search functions.      TROLL,   unlike  a symmetric  list language,   is 

oriented in that 'here  is  a preferred left to right,   top to bottom 

direction for lisU. 

B.     Definitions 

A list is  either  simple  or multi-referenced. 

A simple list is  a list that is  referenced exactly once. 

A multi-referenced iist is  a list that may be  referenced zero, 

one,   or many times.     A reference  count,   which is  *he num- 

ber  of times  that the multi-reference list is  referred to,   is 

kept  in a designated  item  in the  list called  the  header.      For 

most purposes  the header looks like a one  item list which re- 

fers  to the  simple list which is  the body  of the multi-referenced 

list.     Each item of a list is  stored in a cell,   the exact nature 

of which is determined by the particular implementation of 

TROLL. 

A datum cell is  a cell containing a quantity of information,   the 

size depending on the particular  implementation of TROLL. 

An address cell is  a cell containing a link to an arbitrary data 

structure. 

A reference cell is  a cell containing a link to a simple  list. 
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A multi-reference  cell is  a cell containing a link to a multi- 

referenced list. 

A sublist is  a list which is linked to by a reference  cell or a 

multi-reference cell in another list. 

C.   Cells 

Cells contain the following information: 

The  terminal or _T_ field,   which contains   i  if the cell is  the 

last cell of a sublist (0 otherwise). 

The code or  C field,     which contains: 

0 if the cell contains  a datum, 
1 if an address, 
2 if a reference,   and 
3 if a multi-reference. 

The datum or D field,   which contains  the datum of the cell. 

The link or  L field,   which contains  the address,   reference, 
or multi-referent 

The head or H field,   which contains     1 
header,   0   otherwise. 

if the cell is a 

The count or  N field,   which contains  the  reference  count. 

The successor or  S field which contains  a link to the cell 
to the right of the  current cell. 

In a header cell,   the datum and successor fields  are undefined. 
In a non-header cell the count field and eit'-er the datum or link 
field is undefined. 

On the  PDP-6 a cell is  a single  36-bit machine word with the 
fields  stored as follows: 

i 

^ 

-; 

T C D or  L H N or  S 

0      1 Z 3 17 18 19 35 

When the   N   field exists  (i.e.,   bit  18=1),   the  one's  complement 
of the  reference  count  is  stored  there.      Otherwise  the  fields 
contaiii their actual values  as  de:',ribed above. 
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D. More   Definitions 

There  are five  basic  types  of cells: 

Datum or  D cells 

Reference  or  R cells 

Empty or E cells   -   (special case of reference  cells,   with 
pointer field of zero) 

Address  or  A cells 

Multi-reference or  M cells 

There are four groupings  of cells: 

Word or  W cells   (any cell) 

Element or E cells  (datum or' address) 

Name or N cells  (reference,   multi-reference or header) 

Extreme or X cells  (furthest cell in a given direction on a 
list of sublist) 

From a given cell there are four possible  directions: 

Up    -     U 

Down     -    p 

Left    -     L 

Right    -     R 

Relative to a cell,   there  are four possible locations: 

Top (T) of sublist 

Bottom (B) of sublist 

Left (L) 

Right (R) 

E. Basic   TROLL Programs 

Look functions:     L    *       **    (IP) 

where    *    is a direction and    **    is  a grouping.      They search 

a list starting  at    IP ,   in the direction  indicated,   until a cell of 
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r 
- - 

r 

A 

the  required grouping is found.      They   normally return an 

unflagged pointer to the quantity found;  return a pointer to the 

header and a flag of 3  if a header is found;  return a pointer 

with a flag of 2 to the reference cell if the argument of   LR   ** 

is the last cell of a sublist or if the argument of    LL    **      is 

the first cell of a sublist;  return a flagged pointer to the multi- 

reference cell if    LU **    or    LD    **    requires going into the 

multi-referenced sublist. 

In the  PDP-6 version of    LDW ,   LDE ,   LDN ,    if an address  is 

found in bits 3-17 of the pointer,   the cell with    this address 

functions,   for the look,   as a header;  that is,   if a look reaches 

this cell by way of the successor field of the prtvious  cell,   a 

pointer with a flag of Z  is  returned.     Bits  3-17 is  called a stop 

address, 

New functions;    N    *       ~*       (IP. I) 

where    *    is  a basic type,     **    is  a relative location.      The 

quantity    I    is inserted into a new cell in the  relative location, 

and a pointer to this new cell is  returned. 

ND    **    (IP, I) the datum    I    is placed in the new cell. 

NR    **    (IP, I) I    is  a pointer to an unreferenced 
header.      The header is  erased and a 
reference to the  body of the list is 
created. 

NE    **    (IP) an empty reference is  created.      These 
functions have only the first argument 
since no quantity is  inserted into the 
cell. 

NA    **    (IP, I) the quantity    I    is placed into a new 
cell,   and a new address  cell is 
created,   pointing to the copy of    I , 
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NM    **     (IP, I) The  reference  count on the header 
pointed to by    I    is  increased by    I 

N    *    T(IP,I) and 

48 

N    *    B(IP, I) require    IP    to point to a name cell. 

Instead functions;    IN    *    (IP,I) 
■      

where    *    is a basic type.     Instead functions erase the contents 

of the cell to which    IP    points and inserts the quantity    I    in 

a similar manner to the new functions.     They return the old 
I 

datum,   or quantity pointed at by an address,   or    -1     if the 

original contents were a header or reference,   or    -2    if the 

original contents were a multi-reference. 

Multi-reference look functions:    M    *    **    (IP) 

where    *    is a direction,   and    **    is a grouping.     These are 

similar to look functions.     If a list contains no multi-referenced 

sublists,   they are identical to look,   returning an unflagged pointer 

to the cell found,   and zero if the header of the main list is found. 
i 

Multi-reference looks have a pushdown memory so that a look 

into a multi-referenced sublist,   and return,   is possible.     If such 

a look is  required,   the proper  addition to the pushdown list is 

made and the look continues.     If an    MR    **      or    ML    **      re- 

quires coming out of a (multi-referenced) sublist,   a flagged 

pointer to the multi-reference cell is returned. 

F.    List of Available Space 

The list of available space (LAV) is a linear pushdown list of 

available cells. LAV is initialized by CALL LAS(IPA,IPB) 

where IPA , IPB are (inclusive) pointers to the ends of the 

block of memory to be  initialized.       The first cell  of the available ß: 
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space block is initialized to a header for the list of available 

space.     A pointer to this header  is found in (global) location 

LAV ,     The  second cell of the available space block is initial- 

ized to an empty header for the recursion pushdown list.     A 

pointer to this header  is found in (global) location    LAVS . 

The  rest of the available  space  block is   initialized as  the body 

of    LAV ,   a linear list each element of which is  a zero datum. 

NUC{IX)     returns  a pointer to a new cell,   the previous  top 

cell of LAVS .     LA.C    is updated.     IX    is  a dummy argument. 

ERACEL(IP) zeros  cell    IP ,   pushes it on    LAVS ,   and up- 

dates    IAC . 

JNK(IP) makes  a linear list out of the  cell    IP    and any cell 

linked to by    IP ,   links  this linear list to the  top of LAVS , 

updates     IAC ,   and  relinks  the list in which    IP    originally 

occurred.     If    IP    points  to a header,   the  reference count 

is  decreased by     1 .     If it now is negative,   the whole list is 

erased.     When a multi-reference  cell is  erased,   the  reference 

count is  decreased by     1     and,   if now negative,   the whole 

multi-referenced sublist is  erased. 

NOTE:     By changing the  list pointed to by LAV   one  can use more 
than one  list of available  space. 

H.      Minor  Routines 

LVL(IP) returns pointer to reference  cell for current sublist 
or flagged pointer if same is a header. 

MOV(IP) returns     IP .     Removes     IP    from its  list and makes 

it into a header.     If    IP    not a reference cell,   des 

nothing,   returns  zero. 
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LCOPY(IP)     returns pointer  to header of copy of   IP .     IP 

must be  a header  or  reference. 

MTH{IX) returns a pointer to an empty   (pointer field =  0) 

header.   IX    is a dummy argument. 

I.      Examples 

Let "adr" be a FORTRAN variable containing a pointer to   adr 

Referring to Figure  1: 

Look 

New 

MTH 

JNK 

LRX{"L+1")  returns  L+5 

LLWCL+T")  retu   is  LVS 

LUE{"L+4")  retu.ns  L+2 

LDNC'L+S")  returns  L+4 

LDEC'L+S")  returns  L+4 flagged 

LRWC'L+S")  returns  0 

NAL{"L+3",   3275) inserts an address cell pointing 

to the word containing 3275,   between L+2  and L+3. 

NNR{L+2", N)  inserts  a multi-reference cell between 

L+2  and L+3 and increases  the  reference count of   N 

to 3  (stored as      3). 

NDTC'L+S",   P)  inserts a datum cell pointing to     P 

before L+6. 

The list (1,   (2,3)} can be created by 

I =  NDR(NDT(NER(NDT(MTH(IX),1))>   2).   3) 

JNK("L+l") pushes  L+l,   L+2,   and  L+3  on LAVS,   up- 

dates  IAC ,   changes  the pointer  of    L    from    L+l 

to   L+4   and decreases  the  reference  count of   N 

by   1 . _- y- 
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