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SYNOPSIS 

This report describes three topics considered 

during the second quarter of Contract AP19(628)-5981. 

Three three topics reported on are: 

a) the estimation of the spectra of tran- 

sient signals with additive noise, 

b) the theoretical aspects of clustering 

seismometers in a large aperture seismic 

array, 

c) the results of tests of a revised 

automatic pP phase detection technique. 

A method has been devised to estimate the energy 

density spectra of transient events in such a way that 

the variance of the spectral estimates produced by addi- 

tive noise is minimized. . 

The study of clusters shows: 

1) greater spacing between sensors would im- 

prove the S/N performance of the arrays, 

2) a way in which to determine the amount of 

clustering possible without S/N degrada- 

tion depending on noise conditions at the 
» 

receiving site, 
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Tests with, the revised automatic pP detector 

have shown 100$ correct results with surface focus 

events (6), 83$ correct results for earthquakes (12), 

with the remaining earthquakes producing anomalies. 
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SECTION I 

Introduction; 

This is the Second Quarterly report on Contract 

AP19(628)-5981. It describes, in part, the studies con- 

ducted during the period from 15 June to 15 September. 

In addition to the special task mentioned above, 

three topics were considered in detail.  These topics are: 

a) The development of a computation technique 

for the estimation of the spectra of transi- 

ents corrupted by additive noise which min- 

imizes the variance in the spectral estimate, 

b) A theoretical examination of the effects of 

clustering on the signal-to-noise properties 

of LASA's for a variety of noise conditions, 

c) An extension and expansion of the earlier work 

on the automatic identification of the pP 

phase for shallow earthquakes. 

In the study of estimation of the spectra of 

transients imbedded in noise, a "smoothing" technique was 

developed, somewhat analogous to that of Blackman and Tukey 

for estimating the spectra of random processes. 

The cluster study results indicate that larger 

clusters than those currently used in Montana should be 

used in order to increase the signal-to-noise ratio gain 
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of an array. In addition, a method is given to choose 

the maximum amount of clustering which can be used with- 

out degrading performance. This limit is set "by the dis- 

tribution of local and teleseismic noise at a given re- 

ceiving site. 

The revised pP detection scheme was tested with 

12 earthquakes and six surface events.  All of the earth- 

quakes studied had depth picks from other sources.  None 

of the surface focus events indicated a pP phase, while 

ten of the quakes showed depths in good agreement with the 

previous data. One of the remaining quakes showed a peak 

in the test statistic for a depth appreciably shallower 

than the reported depth, while the other showed three peaks 

in the test statistic, one of which corresponded to the 

reported depth. 
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SECTION II 

A.  Introduction 

In the last quarterly report, it was noted that 

microseismic noise was independent from cluster to cluster 

in the Kontana LASA.  Further, it was observed that signal 

correlation was quite high (mean value of 0.97) across the 

array. As a result, the signal-to-noise enhancement which 

should he obtained from phased summation of the clusters of 

the array is very nearly equal to the number of clusters 

summed.  Actual experience at LASA bears out this estimate, 

since the on-line gain achieved is approximately 13 dE, 

and the number of clusters summed is 21.  The work reported 

on in this section represents an extension of this previous 

effort to include the effects of clustering elements of an 

array on the signal-to-noise enhancement which can be 

achieved. 

Specifically, three types of signal processing will 

be discussed in conjunction with clusters for a LASA. 

1. Delayed sum (DS) processing, in which the 

element outputs are added with each output 

delayed in order to have coherent addition 

of signals. 

2. Weighted delayed sum (WDS) processing, 

which is the same as DS processing with the 

addition that each element output is given 

a weight that is inversely proportional to 

its noise power. 

3. Pilter and sum (PS), in which each element 

is filtered before summing to form a maximum - 

likelihood estimate of the noise fieli in 

order to remove as much noise as possible 

from the summed output. 

-3- 



GENERAL ATRONICS CORPORATION 

Further details of these processing methods are pre- 

sented elsewhere (4). 

Results of experiments with these three processing 

techniques obtained by UED and Lincoln Labs. (1-3) will be 

used here to arrive at recommendations for signal processing 

on a LASA. Also, some theory dealing with LS processing is 

developed. Furthermore, it is shown that a seismic array is 

actually a diversity system so that much of the current tech- 

nical literature dealing with diversity systems may be applied 

to seismic arrays. 
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B. A Comparison of PS Processing with. PS Processing; 

Experiments performed by UED on actual events show 

that for the existing LASA, PS is somewhat better than PS 

(l).  Lincoln Lab's experimental results show that PS for the 

present LASA is much better than DS (2).  This is true even 

if prefiltering of the signals is used to remove noise that 

is out of the signal band, even though the PS processing gain 

is reduced.* However, present computational facilities can- 

not handle on-line PS processing of LASA. 

The poor results of DS processing on the present 

LASA are to be expected because the small subarrays maintain 

high noise correlation between the elements, preventing power 

gains anywhere near the number of elements in the array. 

Recently, experiments at Lincoln Labs  (3) have shown that by 

increasing the size of a subarray from a 7 km diameter to a 

22 km diameter will raise the DS gain to almost the same level 

(about 3 dB less) as the PS gain, whereas the PS gain is in- 

creased only slightly.  The conclusion, then, is that FS pro- 

cessing is not worth the additional complexity and time that 

it requires when it performs only slightly better than DS 

processing. 

The overal] gain of PS processing with prefiltering is 
actually increased over that of PS processing alone, but 
the amount of gain due to the PS processing is reduced. 
The rest of the gain is a result of prefiltering. 

-5- 



GENERAL ATRONICS CORPORATION 

G.  Seismic Array as a Diversity System 

In thi3 section it is shown that DS and WDS process- 

ing are two types of diversity combining.  This is a field 

that has recently received much attention in the technical 

literature, particularly with respect to troposcatter communi- 

cations. 

By the term diversity system, Brennan (5) refers 

to "a system in which there are two or more closely similar 

copies of some desired signal." With m such copies 

fj_(t) i=l,...,m , 

each copy composed of signal and noise, 

f±(t) = si(t) + n±   (t) 

a general linear combination will be considered 

m 
f(t) =a1f1(t-T1) + ... + amfm(t-Tm) -£ aifi(t-T.) 

i=i 

Each f.(t) is weighted by a combining coefficient a. and de- 

layed by time T. SO that when the a.'s and T.'s are properly 

chosen we can expect f(t) to be "better" in some sense than 

any f^t). 

There are three common linear combination, or diver- 

sity combining, techniques.  In all three the T.'S are chosen 

so that the signals, the s.'s are aligned along the time axis 

at the point of summation.  The first type is equal-gain di- 

versity, in which all the a.'s are equal.  This is the same 

as the DS processing mentioned previously. 

Secondly, there is maximal-ratio diversity. In this 

technique the weighting factors, the a.'s, are chosen to max- 

imize the signal-to-noise ratio of the sum.  If P , is the 

signal power at the ith element, and P^. the noise power at 

the ith element, then the optimum weighting factors for noise 

which is uncorrelated between elements can be shown to be (5) 
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\ Psi 
1  rM 

The signal-to-noise ratio of the sum, then, is the sum of the 

signal-to-noise ratios. This type of diversity becomes weighted 

delayed sum (WDS) processing for the case where all signals, 

are equal, so that the weighting of each element is inversely 

proportional to its noise power. The equal-gain, or DS, tech- 

nique is a special case of this technique when all element 

signal powers P . are equal and all element noise powers P . 

are equal, 

The third type of diversity is selector diversity. 

In this case, the input with the highest signal-to-noise ratio 

is chosen, and all the others are removed.  In other words, 

if element 3 has the highest signal-to-noise ratio, the weight- 

ing factors are: 

a. = °i ^ . 

The problem involved with using maximal-ratio diver- 

sity or selector diversity in a LASA is that the signal ampli- 

tude, as well as the noise power, must be known.  The signal 

amplitude at any element is not constant for different events, 

nor is it constant over the array for any single event, (ex- 

periments conducted at Lincoln Labs (3) have unearthed events 

in which the signal amplitudes differed as much as 9 to 1 

over the LASA.) The difficulty in estimating the short dura- 

tion signal accurately at each element with a noisy background 

makes the use of these two diversity techniques too difficult. 

Of the two remaining techniques, DS (equal-gain com- 

bining) and WDS (the variation on maximal-ratio combining), 

WDS requires that an estimate of the noise power be made at 

each element and used there as its weighting factor.  This means 

that WDS processing is more complex than DS processing.  Fur- 

ther comparison of the two techniques is presented in Section D. 
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D. A Comparison of D3 Processing with WPS Processing 

Because the signal amplitude at each element is not 

measured in the LASA processing one must use a processing 

technique that does not require this information. In its 

absence, it is reasonable to assume that all elements have 

the same signal amplitude. Under this assumption, and the 

assumption of uncorrelated noise from element to element, 

WDS processing is the optimum combining technique.  However, 

to the extent that the equal signal assumption does not hold 

for an event WDS processing gains begin to fall off. 

Experiments conducted at Lincoln Labs (3) have shown 

that the WDS processing gain in the LASA is significantly 

better than the DS processing gain when the 7 km. subarrays 

are used. When the subarray size was expanded to 22 km., 

the two gains both increased because of the decrease in noise 

correlation between the elements.  The more significant gain 

increase was in DS processing, so that for the larger subarrays 

the DS processing gain was, on the average, within 1 dB of the 

WDS processing gain.  With only a 1 dB difference, WDS does 

not seem to be worth the extra complexity. 

For the case of a LASA with large subarrays (large 

enough so that the noise between elements can be assumed to be 

decorrelated), we can derive an expression for the loss in 

gain by using DS processing instead of WDS processing.  For 

the same set of input signals and noises to the two process- 

ing schemes, the loss L is simply the ratio of the output 

signal-to-noise ratio of DS (SNR^g) to the output signal-to- 

noise ratio of WDS (SNR^-pg).  Assuming the signal to be per- 

fectly correlated over the array, we have 
m 

(<E ^)2 
•i-_L.  si' 

SNR. DS -  v 

1=1 
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where    P . is the signal power at the itt element 

I,• is the noise power at the itb element 

m is the number of elements  In the array. 

VPsi 

i=l Also     SNR• . (.K   ~Tm   ) 

m  -, 

i= 1 ^Ni 

Then the loss is given by 

T     
SN

*DS i=i   S J   i=i *E 
h   = SNIW      TXT7 

WDS /   ^    *    si m 

We can consider the signal power across the array as 

a random variable, of which each P . is a sample.  The noise 

power can be regarded in the same manner, with its samples P„.. 

With E ^ | indicating expectation, we can approximate 

itn. P
NI L FNi J 

j^ PNi * mE i^1 I 

t£ ^ * mE ^ > 
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Assuming P . and P„. to "be independent random variables, we 

can write 

p 
E {--2i | = E VPsi } E { pi- }. 

The equation for the loss in gain then becomes 

I «    X (i) 

•Ni 

or 

L * —- 
2 m 

m       m 1U .11    -I 

Ni 

Note that the above approximation is exact when the 
signal power across the array is constant.  The accuracy of the 
approximation begins to deteriorate as the samples of signal 
power begin to spread„  The approximation itself, however, 
depends on the samples of noise power only. 

If we assign a reasonable probability density to 
the variable PJTJ* we can compute the lose L of equation (1). 
For simplicity we shall use a symmetrical triangular density, 
shown in Figure 1 *     Computation of the loss L gives 

2 

Jj ^ 

_w 
2T] 

E (jrj-j E |PN.)   (2TI + w) la (lljf). (2T,-w)ln(-5) 

where t) is the mean of the density and w is its width. 
This loss is plotted in Figure 2 as a function of J, a 0*°ean w    spread 

•n 
parameter. Note that even at ~= „5, the lowest reasonable value 
allowed by the assumed distribution, the loss is only 1.4 dB. 
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P(PNi} 

Ni 

FIGURE 1 - ASSUMED PROBABILITY DENSITY OF NOISE 
POWER ACROSS THE ARRAY 
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Loss 
(dB) 

-1 

-l.il 

2 . Mean 
a)   Spread 

FIGURE 2 - LOSS OF DS PROCESSING BELOW WDS PROCESSING 
VS. MEAN/SPREAD PARAMETER OF DENSITY IN FIGURE 1 
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Within the accuracy of the approximation to the loss in gain, 

then, WDS processing offers negligible improvement over DS 

processing in exchange for a sizable increase in processing 

complexity. 

-13- 



GENERAL ATRONICS CORPORATION 

E. Array Gain with JS Processing 

The primary reason for building an array is to im- 

prove the signal-to-noise "atio over that present at a single 

elemento  This improvement, or gain, should be written in a 

functional form to determine which variables affect it. In 

this section the gain equation is derived based on certain s 

stated assumptions, the most restrictive being that the signal 

amplitude is the same at all element outputs and that the 

noise power is the same at all element outputs. Although these 

assumptions have frequently been violated in actual events 

recorded at the LASA, the gain derived in this section may be 

used as a first approximation to what is expected in a seismic 

array and as a basis for the design of the array when DS pro- 

cessing is employed,, 

In an array that uses DS processing (all element 

outputs appropriately delayed and then summed), the array gain 

may be easily computed as a function of the number of elements 

in the array, the average signal cross-correlation between all 

pairs of elements, and the average noise cross-correlation 

between all pairs of elements. With m elements, let the output 

of the ith\element be x. „  The array output then is simply the 
J-       m 

sum of all the element outputs,y x..  The average power in the 

array output is : 1--L 

• <J, <f 
v2 

1=1 

m 

i=l d=i   i 

m   m 
3 

m   m 
P = & &  *r *i 
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If we assume stationarity of the outputs, at least for the 

duration of a signal, we can write 

1 rT 
Xi Xj = ii* ^J-T Xi^  XD  (t) dt* 

=R..(o), 

where R., . (T) is the cross-correlation function of x. and x. 

Under the assumption that the output power is the same at 

each element (si = x ), we can write 

x. x. = R..(o) = P.. 7 , 

where P, . is the correlation coefficient between the 
J 

outputs  of the 1th and  jth elements.     Thus, 

mm —w o —75- —«• 
p =£      S        p..  x2  =   (m2  - m)P x2     + mx2   ,     (2) 

i=l  ,3=1        ^ 

where "p is the average correlation coefficient of all possible 

element pairs. 

If we now consider the element outputs to be composed 

of two uncorrelated components, signal and noise, the average 

power of the array output is the sum of the signal power P_ s 
and noise power P-^, so that applying equation (2) gives 

2     —  2     2" Pa = (m - m) P_ s  + ms s s 

and    P„ = (m - m) Pn n  + m n , 

where    s is the signal power at each element 

n is the noise power at each element 
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P_ is the average signal correlation between all s 
element pairs 

PJJ is the average noise correlation between all 

element pairs 

The gain in signal-to-noise ratio, then, is 

Ps/PN     (m-1) 7S +1 

The above equation can be applied to any summed 

array where the signal amplitude at each element is constant, 

the noise power at each element is constant, and the signal is 

uncorrelated with noise.  In the case of a seismic array like 

the LASA, however, it is useful to break the noise into its 

two contributorss  local noise and teleseismic noise. 

These two components differ, insofar as the array 

is concerned, by the fact that the wavelengths in the plane 

of the array of the local noise are much smaller than those 

of the teleseismic noise. Thus, one would expect the local 

noise correlation to fall off more quickly with distance than 

that of the teleseismic noise. A second difference is that, 

if the noise power is normalized to a signal a given distance 

away, the normalized local noise power varies more from site 

to site than does the normalized teleseismic noise power. 

Because of these differences between local noise and 

teleseismic noise, a gain formula will be developed that sep- 

arates these two noise components. In this derivation several 

assumptions will be made s 

1. Signal amplitude is the same at all seismometer 
outputs. 

2. Local noise power is the same at all seismometer 
outputs o 

3c  Teleseismic noise power is the same at all seis- 
mometer outputs. 

•16- 
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4. Signal, local noise, and teleseismic noise are 
all uncorrelated. 

5°  The average cross-correlation for local noise 
over any cluster is constant for all clusters, 
but local noise is uncorrelated between clusters. 

6, The average cross-correlation for teleseismic 
noise over any cluster is constant for all 
clusters. 

7. Signal is perfectly correlated between all 
seismometers (6). 

The first five assumptions are essentially the same as were 

made in deriving formula (3)» 

Some additional definitions are needed before de- 

riving the gain formula in its two-component noise form. 

These are: 

nj. = local noise power at each element 

nT = teleseismic noise power at each element 

2   2 
R = nL / nT 

P-r = local noise power at the array output 

PmG = teleseismic noise power at the output of each 
clustero 

Pm = teleseismic noise power at the output of the 
array 

P-r = average correlation of local noise across any 
clustero 

Pnv, = average correlation of teleseismic noise across 
any cluster 

Pmp -  average correlation of teleseismic noise between 
clusterso 

c = number of elements per cluster 

m = number of clusters in the array, 
c 

If filtering is used following the DS, the linearity 

of the technique allows us to picture each element output as 

being prefiltered before summing. The noise powers and corre- 

lations considered here are those present after this prefiltering. 

-17- 
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The signal power after the phased sum is 

2 ~Z 
P = m s  « s 

using the assumption that the signal is perfectly correlated 
over the array. The local noise power out of the array, based 
on equation (2) and the assumed zero correlation between 

clusters, is 

PL = c [(c-1) 7L + l] n^ . i . 

The teleseismic noise power out of any cluster is 

PTc = ° [ (c-1) 'Tl + 1 n T 

and the teleseismic noise power out of the entire array is 

P = (JL) 
<TT !> >T2 + 1 Tc 

giving 
P = i rT   c (m-c) PT2 + 

c (c-1) PT1 + 1 n T 

the gain in signal-to-noise ratio can then be written as 

T  "2" 

G = 
nT + nL 

(nT + nL) m 

[(C-1)PL + l]nL + 1/c [(m-c) ?T2 + c] [(C-1)PT1 + 1 

Using R, the ratio of local noise to teleseismic noise at the 
site, we have: 

G :   (1 + R) m 

[(c-l)PI + l]R + I [(m-c) PT2 + c [(C-1)PT1 + 1 
U) 
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The importance of this equation can be seen if it is 

applied to the present LASA, where c = 25 and m = 525.  In this 

case the clusters are email enough to consider the teleseismic 

noise to be perfectly correlated over a cluster, P•, = 1. We 

shall also assume that the clusters are separated enough so 

that teleseismic noise is uncorrelated between clusters, p~2 = 0, 

Thus, for LASA 

G LASA 
= 525Jl + R)       . (5) 

(24PL + 1) R + 25 

Equation (5) is plotted in Figure 3 for several 

values of R.  The dotted line Indicates the gain achievable 

when the noise between elements is completely uncorrelated. 

The curves show the degradation in gain as "p-r increases and/ 

or as R decreasesc  The degradation in gain is primarily due 

to the correlation of teleseismic noise across a cluster, and 

it is Increased by increasing amounts of local noise correla- 

tion across a cluster.  The effect of local noise correlation 

is, of course, diminished by a smaller ratio of local noise to 

teleseismic noise, but then the effect of teleseismic noise 

correlation is enhanced. 

Clustering of seismometers in the LASA was originally 

proposed (7) to ease signal transmission problems over the en- 

tire 200 km diameter array. The size of a cluster (7km.) was 

chosen so it would reduce local noise, which has an average 

wavelength of about 4 km*  Teleseismic noise, with an average 

wavelength of about 16 km. is well correlated over the 7 km. 

cluster, so that the action of a cluster is indeed to reduce 

only local noise* Expanding a cluster sufficiently allows it 

to strongly reduce teleseismic noise as well as local noise. 

(This is supported by an UED experiment (1) in which the 

power gain of an array formed by DS processing the outputs of 

one element from each LASA subarray was found to be the 
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28 r- 

26 

GAIN 
(dB) 

22 

10 log10 525 

18 

14 = 

12 0        .2        ,i|        .6        .8        1^0 
AVERAGE LOCAL NOISE CORRELATION OVER A CLUSTER (pL) 

FIGURE 3 - DS GAIN OF LASA VS. AVERAGE LOCAL NOISE CORRELATION 
FOR SEVERAL RATIOS OF LOCAL NOISE TO TELESEISMIC NOISE 
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number of elements in that array, indicating no noise correla- 

tion between the element,,)  The action of an expanded cluster 

cannot be viewed solely as suppression of local noise.  The 

cluster concept now becomes elements grouped together only for 

cabling efficiency. 

Since an expanded subarray reduces teleseismic noise 

as well as local noise, at a quiet site such as the Montana 

LASA where teleseismic noise is dominant, one would expect to 

see a very large gain improvement in DS processing by using 

the expanded cluster.  A Lincoln Labs experiment (3) shows 

that this is indeed the case when a subarray diameter of 22 

km, instead of 7 km, was used* The ratio of local noise to 

teleseismic noise at an array site, in fact, has been shown 

above to be a strong factor in array performance with DS pro- 

cessing and noise correlation between the elements so that 

it must be considered in array design and performance. 

Considering a LASA with expanded clusters, we see 

that at a quiet site (R<1) such as the one in Montana, further 

decorrelation of local noise by expansion of cluster size does 

not improve the gain much0  However, with a cluster diameter 

of 22 km, or greater the teleseismic noise correlation across 

a cluster "p•, will decrease appreciably from 1, providing a 

large gain improvement over the array with smaller clusters. 

With the present concentration of clusters near the center of 

the Montana LASA, however, as the cluster size is expanded 

the outer elements of each cluster will come close to each 

other, causing an increase in the teleseismic noise correla- 

tion between clusters pL„ and a corresponding decrease in gain. 

To take fall advantage of the additional array gain provided 

by cluster expansion, then, the dense array center must be 

thinned by removing several clusters from that region and 

placing them in the less dense outlying regions of the array. 

In other words, a more uniform distribution of clusters is 

desired, 

-21- 
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The relatively high density of elements in the center 

of the array might, in fact, have a more detrimental effect on 

the array gain, an effect that is not immediately obvious.  It 

is conceivable that thinning the center of the array by re- 

moving elements, but not placing them anywhere else in the 

array, could actually increase the array gain. In other words, 

including these elements in the array not only wastes seismo- 

meters, but also reduces the array gain. 

As a simple example of a case in which the addition 

of an element can actually reduce the array gain, consider an 

array composed of three equally weighted elements that are 

separated so that there is no noise correlation between them 

(pN = o). If the signal is perfectly correlated (PS = 1), 

then application of equation (3) gives a gain of G=3.  If a 

fourth element is added with perfect signal correlation near 

enough to one of the original elements so that its noise 

correlation with that element is 0.9, but its noise correlation 

with the remaining two elements is zero (See Figure 4), the 

average noise correlation becomes PN = .15»  The gain of equa- 

tion (3) then becomes 

G = _4 _ = 2.76, 
3(.15) + 1 

less than the gain G=3 with the three element array. 

A general condition for the deterioration of the 

array gain by the addition of an element can easily be de- 

rived. Assuming that the signal is perfectly correlated over 

the array, equation (2) gives the m-element array gain as 

m   1 + (m-1) Pm 

Adding an element gives 
m+1 

Gm+1 
1 + m pm+l 
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2o 

NOISE CORRELATIONS 

4 p12   -   p2^   -   P13   -   Pli4   -   p2i|   -   0 

P34  •   0.9 

FIGURE 4 - SKETCH OF AN ARRAY IN WHICH AN EXTRA 
ELEMENT DECREASES THE GAIN 
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The additional element causes a drop in gain 

wben Sal * i. 

which results in 

Gm 

1-P. 

m 
p" -, - V = AP> —rr5   • (6) Km+1   m  u 

Equation (5) is the condition for loss of gain by- 

addition of an element to the array.  An equivalent condition 

may be derived by noting that 

_    2    m 3 
pm = m(m-l)42 £=1 

pl,j  » 

where P< ^ is the noise correlation between the 1th element 

and the jtt element.  Also 

-     2 
m+1 ' (m+ljm 

Using equation (5), we have 

m 3 m 

(m+Dm £      i.j       ^  pi,m+i  " iTmTTT  j=2    i^l  pi,j 

2             f      f 1 " mTmrTT  j=2 iti  pi,j   , 
 , 2  

which results in 

m        m+1 + (2m+l) (m-1) P 

±5L 
Pi,m+1>        2m 

m 
(7) 
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Equation (7) is a condition for loss of gain with an 
additional element that puts a bound on the sum of the noise 
correlations "between the added element and the existing ones in 
terms of the number of elements and the average noise correla- 
tion in the original array. For an array with many elements 
we can approximate equation (7) by 

m 
p.  _ «* m p.  _ > 4- + mP  .   (7a) ^i,m+l     i,m+l  2   Km     v' ' 

If the array already has fairly high noise correlations between 
its elements (such that mp"m »£)m the condition for a decrease 
in gain with an additional element is simply that the average 
noise correlation between the additional ejL^ment and the other 
array elements be greater than the average noise correlation 
across the original array. 

As far as the 1ASA is concerned, this detrimental 
situation might very conceivably occur if an element were added 
in the dense center of the array, where its average correlation 
with the present elements would be relatively high.  Conversely, 
the DS array gain might very conceivably be increased by re- 
moving an element from the array center, and it would be fur- 
ther increased by relocating that element in the sparsely 
populated outskirts of the array. Applying this reasoning to 
more than one of the central elements leads to the requirement 
that the array elements be distributed more evenly; 
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P. Conclusions 

Several conclusions can be drawn from this report. 

The first is that the present 7km diameter cluster size is 

too small, and expansion of the cluster size will increase 

the signal-to-noise ratio gain of the LASA. With expanded 

clusters DS processing gains are close to those of PS pro- 

cessing and WDS processing without the additional complexity 

of these two techniques. DS processing with expanded 

clusters, then, is the type of processing to use. 

Along with cluster expansion it is also desirable 

to spread the clusters far enough apart so that there is 

very low noise correlation between elements of adjacent 

clusters, because noise correlation decreases the array gain. 

It is shown that removal of an element whose noise is rela- 

tively highly correlated with the noise at other elements 

may actually decrease the array gain, so that low noise 

correlation is indeed desirable.  The combination of cluster 

expansion with cluster separation in effect means a more 

uniform arrangement of elements than is present in the 

existing LASA. 

A gain formula for DS processing is derived that 

considers the local noise and the teleseismic noise separately 

because the two have different spatial variations in their 

correlations and different power.  The formula is given by 

equation (4). 

Finally, it ia shown that a seismic array with DS 

or WDS processing may be viewed as a diversity system with 

a commonly used diversity combining technique. The benefit 

of this approach is that it can take advantage of the Im- 

portant developments and theory that are appearing in the 

technical literature. 
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SECTION III 

A. Introduction 

It has been suggested that earthquakes and nuclear 

blasts result in seismograms that differ significantly in 

their spectral energy content.  If this is the case, the 

analysis of the spectral distribution of energy might provide 

useful statistics for discriminating between these two events. 

This chapter is concerned with the estimation of the energy 

density spectrum of a transient signal in the case where the 

desired signal is corrupted by additive, stationary, Gaussian 

noise.  Although this investigation is motivated by the poten- 

tial seismic applications, it is felt that the results may be 

of interest for other applications as well. 

There is a considerable literature associated with 

spectral estimation, but the majority of the papers are con- 

cerned with the problem of estimating the power density spec- 

trum of a stationary random process on the basis of one sample 

function observed during an interval of limited duration. 

Although these papers are relevant, they consider a problem 

that is fundamentally different from the one of interest here 

— that of estimating the energy density spectrum of a transient 

which is corrupted by additive stationary noise.  We are aware 

of two papers, by Mclvor [8] and by Larrowe and Crabtree [9], 

that have attempted to apply a concept of a time-varying 

spectrum to transient seismic data;  however, we do not feel 

that these papers have handled the problem satisfactorily. 

These two papers will be discussed in a later section. 

The problem under consideration can be formulated as 

follows.  There is a finite energy "signal", x(t), for which 

the Fourier Transform, 
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X(f) = /  x(t)e~j2*ft dt, (1) 
— oo 

is assumed to exist.  It is desired to calculate the energy 

density spectrum (EDS), |X(f)|  for this signal.  The available 

data consist of a record of x(t)+n(t), where n(t) is stationary 

Gaussian noise, with autocorrelation function, 

oo t 

Rn(x)   =  n(t)n(t+i)   =   /     Sn(f)ej27rft   df, (2) 
— oo 

where S (f) is the power density spectrum (PDS) of the noise. 

It is assumed that the approximate onset time of x(t) is known, 

but that its duration is somewhat uncertain.  The problem is 

then to devise a method of estimating |X(f)| .  In doing this 

a major problem will be the variability in the estimates 

caused by the stochastic nature of the noise, and, in trying 

to reduce this variability, the resulting distortion in the 

"signal" contribution to the estimate will have to be considered 

The "direct" method of estimating spectra, which essen- 

tially consists of calculating the magnitude-squared of the 

Fourier Transform of a finite-time sample of the process, will 

first be considered.  It will be observed that this method 

has serious statistical deficiencies in that the variance of 

the noise contribution to the estimate is always greater than 

the square of the expected value of the noise contribution. 

Furthermore, this will be the case even if the observed sample 

is multiplied by a "time window" before transforming.  One 

approach to alleviating this variability problem is the indirect 

method discussed at length by Blackman and Tukey [10]. This 

method was proposed by them as the best means of estimating 

the PDS of a stationary process and it has since been widely 

applied to that problem.  However, as will be discussed below, 

it does not appear to be a useful method of estimating the EDS 

of a transient corrupted by additive noise.  From these dis- 

cussions it will be concluded that a direct method, despite 
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its inherent statistical shortomcings, is the appropriate method 

for this problem.  Suggestions will also be made for improving 

the statistical quality of the method as further experimental 

data become available.  A potentially valuable method of re- 

ducing variability will then be discussed.  This scheme is based 

on subtracting, from the observed x(t)+n(t), an estimate of the 

noise that is based only on the noise preceding the onset of the 

signal.  The last section consists of a critical discussion 

of the papers of Mclvor [8] and of Larrow and Crabtree [9]. 

Finally, details of derivations are presented in Appendix A. 

There are a few topics that are omitted from this dis- 

cussion that would have to be considered before implementing 

these recommendations with actual data.  For convenience, con- 

tinuous representations of the waveforms are employed through- 

out the report.  As calculations will presumably be done on 

digital computers, it is necessary to consider the problem of 

discrete representations of these waveforms.  This should not 

be particularly difficult, but there are some issues to be 

resolved.  In applying these calculations there will be several 

parameters to be chosen and varied experimentally.  No de- 

tailed recommendations for choosing and varying these parameters 

are included in this chapter. Finally, there are potential 

problems of approximation that should be considered.  The noise 

prediction scheme involves operations closely related to 

"whitening".  Some consideration should be given to the sensi- 

tivity of the overall results to the approximations and com- 

promises that will of necessity be involved in the computer 

implementation of the predictor. 
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B. The Time Window 

It is assumed that all calculations are performed on 

z(t) = a(t)[x(t)+n(t)] (3) 

where a(t) is called the "time window", and is assumed to have 

a Fourier Transform 
oo 

A(f)   =   /     a(t)   e"j27rft   dt (4) 
— oo 

Specifically, |Z(f)|  will be calculated, where 
00 

Z(f) = /  a(t)[x(t)+n(t)]e"J2lTft dt 

= zx(f) + Zn(f) (5) 

Perhaps the simplest choice of a(t) would be 1 for the time 

interval that is thought to contain "most of" the signal, and 

0 outside.  However, there are two reasons for choosing a 

smoother off-on transition for a(t).  In the application under 

consideration, the "duration" of x(t) is not known.  Presumably, 

a(t) should be "turned off" when x(t) becomes small compared to 

the noise level.  An intuitively appealing way to incorporate 

the uncertainty about an appropriate turn-off time is to turn 

off a(t) gradually.  In this way, times with good signal-to- 

noise ratios would be weighted more heavily than those without. 

The signal contribution to Z(f), Z (f) is simply 

Zx(f) = A(f) fi X(f) (6) 

where &   indicates convolution.  To reduce the distortion in 

going from X(f) to Z (f), A(f) should be a narrow pulse at 

the origin of the frequency domain.  If a(t) is a rectangular 

pulse, A(f) will have relatively large "side lobes".  These 

can be reduced by a more "rounded" choice of a(t). 

In the discussion which follows,the "width" of A(f) 

and the size of its sidelobes will be important parameters. 

To illustrate the relation between the shapes of A(f) and a(t) 
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two examples are presented in Fig.  5.  The first example involves 

a rectangular shape for a(t), which leads to relatively large 

sidelobes in A(f).  The second example is the Hanning Window, 

which has been recommended by Blackman and Tukey as a "lag 

window".  (The lag window will be defined and discussed below.) 

The Hanning window is more rounded than the rectangular one and, 

hence, has relatively small sidelobes and a somewhat wider cen- 

tral peak.  It will be convenient in much of what follows to 

assume 

A(f) =0       |f| > l/T (7) 

The two examples just considered indicate the degree 

of this approximation. 

C. Noise-Alone Case 

1. Direct Method 

In order to characterize the variability problems that 

result from the noise it is easiest to begin by considering the 

case of noise alone, i.e., the case of x(t) = 0.  In Section D. 

these results'will be generalized to include the signal contribu- 

tion and any interaction terms. 

|Zn(f)|
2 = /da/dga(a)a(3)n(a)n(8)e-j27Tf(a-6) (8) 

Taking expected values, and interchanging the order of integra- 

tion and expectation, 

E[|Zn(f)|
2] = |Zn(f)|

2 = /da/dea(a)a(g)Rn(a-e)e-
J'2irf(a"6) 

(9) 

Recognizing that the result of the 3 integration is simply 
/    \   ii   n   /    \   —j 2 nf a a(a)   8   Rn(a)e   J 

|Zn(f)T   =   /daa(a)   Jdu   eJ^Ua   A(u)Sn(u+f) (10) 2 f,      /    \    r J        j 2 TTU a =   Jdaa(a)   Jdu   ed 

Interchanging the order of integration, and integrating over a, 
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1 xx(t) 

1.0 

-T/2 T/2  t 

xx(f) 

1.0 

x2(t) 

^-(l + cos-y-) 

T , T 
" 2<t:<2 

-T/2 T/2 

FIGURE 5 - EXAMPLES OF TWO TIME-WINDOWS AND THEIR TRANSFORMS 
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|Zn(f)|
2 = /du A*(u)A(u)Sn(u+f) 

= /dv Sn(v)|A(v-f)|
2 

= Sn(f) g |A(f)|2 (11) 
o 

Thus, the expected value of |Z (f)|  is a "smoothed" version 

of the true PDS, s
n(
f)> where the "smoothing" is accomplished 

by a convolution in the frequency domain. 

Similar calculations, which employ the well-known 

property of zero-mean Gauss variables, 

n(t)n(x)n(a)n(e) = n(t)n(i) n(a)n(6) + n(t)n(o) n( r)n(B) 

+ n(t)n(S) n(a)n(T) (12) 

are presented in Appendix A, and: yield 

cov[|Zn(f1)|
2,|Zn(f2)|

2] = |/duSn(u)A*(u-f1)A(u+f2)|
2 

+ |/duS_(u)A*(u-f,)A(u-f0)|
2 

(13) 
which specializes to 

var[|Zn(f)|
2] = |/duSn(u)|A(u-f)|

2|2 + |/duSn(u)A(u+f)A*(u-f) 

= (E[|Zn(f)|
2])2 + |/duSn(u)A(u+f)A*(u-f)|

2 

(l'O 

This last result is a generalization of the standard "periodo- 

gram" result (see, e.g., Davenport and Root, Ell], pp. 107- 

108), which may be obtained from the above by choosing 

A(t) = 1//T     0<t<T (15) 

= 0        elsewhere 

The important observation from Equation (14) is that, no 

matter what a(t) is chosen 

var[|Zn(f)|
2]- (E[|Zn(f)|

2])2 (16) 

In particular, using longer and longer observation times will 
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never reduce the variance to less than the square of the mean. 

Thus, |Z (f)|  cannot provide a "consistent" estimate of S (f). 

Equation (16) implies that the direct method, without 

any modifications or further calculations, would not be a satis- 

factory method for estimating the PDS of a stationary random 

process.  There are, of course, ways to modify the method that 

would improve its statistical features, and these provide one 

way of motivating the indirect method.  Before considering these 

modifications, a few properties of Equations (11), (13) and (14) 

should be noted. 

For the present discussion, it is assumed that a(t) 

is zero outside of an interval of length T.  It is further 

assumed that within this interval a(t) has been chosen in such 

a way as to minimize the width of A(f).  As illustrated by 

example in the previous section, this could result in an A(f) 

having a total width of roughly 2/T.  Assuming, therefore, that 

A(f) =0       |f| > 1/T (17) 

2 2 Equation (13) implies that |Z (f,)|  and |Z (f?)|  are uncor 

related for 

||f1|-|f2|| > 2/T (18) 

i.e., for frequencies separated by more than 2/T.  And, Equa- 

tion (14) implies that 

var[|Zn(f)|
2] = (E[|Zn(f)|

2])2    |f| > 1/T  (19) 

Considering only the samples |Z (2K/T)|  for K *   0, n 
these results may be summarized by 

|Zn(24)|
2 = [Sn(f) 8 |A(f)|2]f=(2K/T)        (20) 

cov[|Zn(
2^)|2, |Zn(|^)|

2] = 0  for |K|*|*|   (21) 
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|Zn(2K/T)|
2       K *   0 

var[|Z(f^)|2] = { ^2 (22) 
2|Zn(0)\

d K = 0 

2. Direct Method with Further Smoothing 

In considering these equations an important question is 

how rapidly S (f) varies with f.  If it varies slowly compared 

to 2/T, then the convolution of Equation (20) will not distort 

the power density spectrum, i.e., 

Sn(f) S |A(f)|2 - cSn(f) (23) 

If, furthermore, it varies slowly compared to frequency inter- 

vals of several times 2/T, then, the samples |Z (2K/T)|2, will 

have the same expectation for several successive values of K. 

In this case, a local average of these statistics would be an 

appropriate estimate of this expectation and, since successive 

values of |Z (2K/T)|  are uncorrelated, the local average would 

be better statistically than the individual samples.  A conve- 

nient measure of the variability of a single statistic is the 

"coefficient of variation", which is defined as the ratio of 

the standard deviation of the mean.  It is easy to show that 

adding together M uncorrelated random variables with identical 

means and variances results in a new random variable with a 

coefficient of variation that is 1//M times that of the original 

variable. 

To summarize, for K>0, |Zn(2K/T)|
2 has a coefficient 

of variation of unity.  If T is large enough that S (f) is 

essentially constant over frequency regions of length 2M/2T, 

then the local averages taken over M of the samples |Z (2K/T)| 

will yield spectral estimates with coefficients of variation 

equal to 1//M.  The calculation just described — the "direct" 

method, followed by further "smoothing" in the frequency domain 

— could be a perfectly satisfactory way of estimating the PDS 

of a stationary random process, provided it were possible to 
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choose T large enough to achieve a low coefficient of variation 

for the spectral estimates.  This method is essentially equiva- 

lent to the "indirect" method of Blackman and Tukey, as will be 

discussed below.  A more careful, and thorough discussion may, 

of course, be found in Blackman and Tukey. 

An operation similar to that of adding M adjacent values 

of |Zn(2K/T)|
2 would be convolving |Zn(f)|

2 with Q(f), where Q(f) 

is a pulse of width 2M/T located at the origin of the frequency 

domain.  Because this operation does in a sense combine M uncor- 

related samples, one would expect it to result in coefficient 

of variation of roughly 1//M.  Defining the result of this fur- 

ther  smoothing as P(f)  yields 

P(f) = |Zn(f)|
2 8 Q(f) (24) 

and, therefore, 

POT = |Zn(f) |2 8 Q(f) 

= Sn(f) 8 |A(f)|2 g Q(f) 

= c Sn(f) 8 Q(f) (25) 

2 where the last approximate equality is based on |A(f)|  being 

narrow compared to Q(f), which will be the case if Q(f) is 

sufficiently wide compared to 2/T that a low coefficient of 

variability results.  P(f) is sometimes called a "smoothed 

periodogram". 

3. Indirect Method 

To relate this method to the indirect method of Blackman 

and Tukey, it is easiest to make a few specific assumptions and 

definitions. 

Let 

a(t) = 1//T      o < t < T (26) 

0 elsewhere 

and 
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0nd) = i /     n(t)n(t+|x |) dt (27) 

Then  it   is   easy  to  show  that 

Vf)   =   jr0n(T)   e_J2lTfT   dT =   |Zn(f)|
2 (28) 

Let D.( T) be a symmetric function of i that is zero for 

|T| > TM, and 

Qi(f) - /Did) e_J2*f'r di (29) 

Then 

P1(f)=|Zn(f) |2aQ.(f) = $n(f)SQ1(f) = /dT e"J'2lTf TD1( T)01(T) (30) 

This last equation states that the direct method fol- 

lowed by smoothing in the frequency domain is equivalent to 

calculating an estimate of the noise autocorrelation function, 

0 (T) [Equation 27], multiplying this by a "lag window", D.(i), 

and then calculating the Fourier Transform of the result.  By 

assumption D.d) is zero for |T| > T„.  TM is called the "maximum 

lag".  If D.(T) is chosen appropriately, Q,(f) will have a width 

of approximately 2/TM, and the coefficients of variability of 

the resulting spectral estimates will therefore be approximately 

The label "Indirect method" is applied to the Blackman- 

Tukey approach because it begins with the estimation of the 

autocorrelation function.  Actually, Blackman and Tukey recom- 

mend 

<6o( T) = T^JIJ  /     n(t)n(t+|T|)dt = ijr^-y 0nd)     (3D 

as the estimate, rather than 0 (T).  C (x) has some appeal n     oo 
as the "natural" way to use all of the available data to esti- 
mate the autocorrelation function, and it is an unbiased esti- 

mate in that 

E[Co( 0] = Rnd) (32) 
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However, there is some dispute as to which is preferable, and 

Parzen, for example, recommends the biased estimator 0 (T). 

According to Parzen [ln],0 (T) has a smaller mean square error 

than QjQ(T)> and the Fourier Transform of 0 (T) will always be 

positive [see Equation 28], which is not the case for CJQCT). 

In practice, the lag window is applied in two steps. 

The first, and usually the most significant in its effect, is 

setting the estimated autocorrelation function to zero for all 

values of the argument larger than the maximum lag.  The second 

is the multiplication of the remaining function by the lag 

window.  In the discrete formulation appropriate for digital 

computers it is often easier to implement the second step by 

an appropriate convolution in the frequency domain after trans- 

forming the autocorrelation function (which has already been 

truncated at the maximum lag).  The problem of selecting a lag 

window is discussed at some length, with several illustrations, 

by Blackman and Tukey.  There is no straightforward method of 

determining a "best" window, but it does not seem to matter 

much which of several "good" possibilities are used. 

In using these calculations to estimate the PDS of a 

stationary random process, it is first necessary to make some 

guesses about the rate of change of Sn(f) with frequency in 

order to select the maximum width of Q(f) that could be toler- 

ated without distortion.  It is also necessary to specify the 

desired coefficient of variation for the estimate;  for the sake 

of illustration assume this is 1/3.  Then T must be chosen so 

that about nine intervals of 2/T are included within the width 

of Q(f).  Specifying the width of Q(f) is equivalent to specifying 

the maximum lag, T...  To achieve a coefficient of variation of 

1/3, T must be at least as large as 9TM. 

To summarize, the direct method by itself leads to spec- 

tral estimates with a coefficient of variation of at least unity 

and an expected value, 
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|Zn(f)|
2 = Sn(f) 8 |A(f)|2 (33) 

And, this will be the case no matter what time window, a(t), 

is chosen.  To reduce variability it is necessary to perform 
p 

additional smoothing, after calculating |Z (f)|  (or, equiva- 

lently, in the indirect method, by multiplying the autocorrelation 

function by a lag window).  This additional smoothing leads to a 

spectral estimate P(f), with expected value, 

P(f) = Sn(f) 8 |A(f)|2 &  Q(f) (34) 

Typically Q(f) is much broader than |A(f)| , so that 

|A(f)|2 8 Q(f) = cQ(f) (35) 

and hence 

PUT = cSn(f) fi Q(f) (36) 

Furthermore, the coefficient of variability of P(f) will be 

proportional to the square root of the ratio of the widths of 

|A(f)|  and Q(f).  This ratio may be expressed as TM/T, where 

TM is the "maximum lag" and T is the total observation interval 

D. Signal Plus Noise Case 

1. Direct Method 

The observed waveform z(t) is now assumed to include 

the transient "signal", x(t). 

z(t) = a(t)[x(t)+n(t)] (37) 

As shown in Appendix A, this leads to 

E[|Z(f)|2] = |Z(f)|2 + |Z (f)|2 (38) 
A 11 

var[|Z(f)|2] = var[|Zn(f)|
2] + 2|Zx(f)|

2|ZR(f)|
2 

+ 2ReZ 2(f)/duS (u)A*(u+f)A(u-f)     (39) 
A - 1 
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And, as before, for frequencies f, and fp separated by more than 

the width of A(f), |Z(f1)|  and |Z(f2)|  are uncorrelated random 

variables.  (In Equations 38 and 39, Z (f) is as defined earlier 

in Equation 6, Z (f) is the quantity discussed in Section C a/id 
n „ 

the mean and variance of |Z (f)|  are given by Equations 11 and 

14.)  By examining Equations (38) and (39), it may be observed 

that the expected value of the estimate is just the sum of the 

contributions of signal and noise, but that the variance includes 
2      Z an interaction term proportional to both |Zx(f)|  and |Z (f)| 

plus another interaction term that will be zero for f larger in 

magnitude than half the width of A(f).  The implications of 

these results will be discussed after considering the indirect 

method. 

2. Indirect Method 

To dismiss the possibility of applying the indirect 

method, with the customary choice of parameters, to the problem 

of estimating the EDS of a transient, it is sufficient to con- 

sider the effect of the indirect calculation on the signal term 

alone.  In Section C the case of noise alone was considered. 

The total spectral estimate includes both of these plus an 

interaction term.  The signal contribution, obtained by setting 

n(t) = 0, is 

P (f) = |Z (f)|2flQ(f) = |X(f)flA(f)|28Q(f)    (40) 
A. Jv 

where a(t) is a rectangular pulse of duration T, and A(f) there- 

fore has its first zero crossings at ±l/rT)   and a width of approx- 

imately 2/T.  The customary choice of parameters for the indirect 

method leads to Q(f) having a width of approximately ten times 

that of A(f).  In this application, that would involve smoothing 

over a frequency interval of 20/T, which could easily be com- 

parable to the frequency interval covered by the entire spectrum 

of X(f).  In order to view the problem in the time domain, it 
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should be recalled that T is chosen to correspond roughly to 

the duration of x(t).  A pulse of length T has an autocorrela- 

tion function extending from -T to +T.  Applying the indirect 

method with TM = (1/10JT corresponds to truncating this autocor- 

relation function at 1/10 of its duration.  In short, using 

the indirect method with parameters chosen to constrain the 

standard deviation of the spectral estimate to be a small frac- 

tion of the expected value of the noise contribution to the 

spectral estimate, results in a potentially severe distortion 

of the signal's EDS. 

E. Recommended Method 

The recommended method is essentially the direct one, 

except that it could be followed by further smoothing of the 

kind accomplished by the indirect method.  However, the parti- 

cular smoothing that would be appropriate depends on the de- 

tailed statistics of this process, and cannot at this time be 

specified.  To understand the considerations that should go 

into this smoothing, it is useful to review the properties of 

the direct method. 

As before, 

z(t) = a(t)[x(t)+n(t)] (41) 

Defining 

the earlier results may be summarized as follows 

yK = |Z(2K/T)|2 (42) 

where 

yK = |Zx(2K/T)|
2 +|Zn(2K/T)|

2 (43) 

|Zx(f)|
2 = |A(f) 8 X(f)|2 (44) 

|Zn(f)| * = Sn(f) S |A(f)|2 (45) 

cov(yK,y£) = 0   for |K| j*   \l\ (46) 
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var yK = [|Zfi(2K/T)|^  + 2|Zx(2K/T)|
d \ Z^{2K/T)|^](1+6R Q) 

(47) 
The  term 

6K,0 
1 
0 

K=0 (48) 

results from the integral /duS (u)A*(u+f)A(u-f) in Equations 

(14) and (39).  This integral is zero for |f| > 1/T and equals 

Z (0)I2 for f=0 

Defining 

nK = |Zn(2K/T)| 
2 

gives 

XK = |ZX(2K/T)| 

^ = *K + nK 

(49) 

(50) 

(5D 

(52) var yK = nK
2+2xKnK](1+6R^Q) 

In the application under consideration the nK may be 

assumed known.  In practice these could be obtained by per- 

forming the (indirect) Blackman-Tukey calculation on a long 

section of noise preceding the signal.  In this calculation 

the lag window would be chosen so that the expected value of 

the noise contribution to both calculations would be the same. 

This Implies 

D1(T) = a( T) 8 a(-t) (53) 

or equivalently 

Q±(f) = |A(f)|2 (54) 

The remaining statistical problem is then, given the 

random variables y„, and assuming the nK are known, how should 

the xK  be estimated?  An interesting aspect of this estimation 

problem is that not only the mean of yK, but also its variance, 

depend on Xv- 
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If nT^<<x^ little difficulty would be expected in esti- 

mating \v»   but in the case where nK = xK> the problem becomes 

difficult.  There are two general ways to proceed.  The first 

is to consider each yK separately and develop some rule for 

estimating xK from it.  An obvious rule, but certainly not the 

only possibility, would be to use the unbiased estimator y^-iv, 

which, of course, has the same variances as y„, (nK +2xKnK) (1+<5K'/n) 

This approach would give good results where the signal-to-noise 

ratio (perhaps defined as Xv/^v)   is large, but might not be 
satisfactory where it is small.  The other approach would be 

to try to improve the statistics having high coefficients of 

variability by in some way combining adjacent statistics.  Since 

the yK are uncorrelated, rules for combining that would lead 

to a reduced coefficient of variability in the new statistic 

could be specified.  Of course, the new statistic would be a 

measure of the energy spectrum in a broader region of frequencies, 

and it probably would not be simply the total energy in this 

region of frequency. 

If it is desired to combine adjacent statistics, there 

are again two alternatives.  The first, and simplest, is simply 

to add them.  If they had comparable means and variances, this 

would result in a new statistic with a smaller coefficient of 

variation (by a factor of 1//2 if pairs are combined).  In 

general, however, it would be better statistically to take a 

weighted sum, where the weighting would depend on both the 

mean and variance of each statistic*  The disadvantages of this 

* For example if it were desired to choose a and 6 in such a 
way as to minimize the coefficient of variation of Z = ax+gy, 
where x and y are uncorrelated random variables, a suitable 
choice would be 

a = (l/x)[u/(u +u )], 
J  

A y 

and similarly for 3, where 
,-2 u  = varx/x 

This results in u  = (u u )/(u +u ) z     x y    x  y 
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weighting are twofold.  To choose the weights it is necessary to 

know, or make some assumptions about, both \K  and nK, and the 

statistics that result from a weighted sum would correspond 

roughly to some unequal weighting of different frequencies in 

the EDS. 

For the present it seems reasonable to defer development 

of rules for combining adjacent statistics until some further 

information concerning the detailed statistics of these variables 

is obtained.  Once this is available, it may turn out that some 

compromise between simple summation and an optimally weighted sum 

seems appropriate.  It may also be the case that signal-to-noise 

ratios for some of the yK are typically good enough that no com- 

bining seems necessary, while for others some combining always 

seems necessary. 

F. Improved Method Based on Subtracting an Estimate of the 

Noise Waveform 

Because the "signal" is probably confined to a relatively 

short time interval (e.g., 2 or 'I seconds) and because the noise 

appears to be correlated over times comparable to this, it should 

be possible to reduce the variability of the spectral estimate 

by subtracting from the observed signal an estimate of the noise 

that is based on the noise preceding the observation interval. 

Mathematically, this turns out to be very similar to the stan- 

dard minimum-mean-square-error filtering problem (see, e.g., 

Bode and Shannon, [133)» but there are some important differ- 

ences.  Specifically, the optimum predictor for this applica- 

tion will not be time invariant, as it is in the standard 

smoothing or prediction problem. 

For this discussion, it is convenient to assume that 

the observation interval is (0,T).  The problem is to devise 

an estimate n(t), which is based on n(t) for t<0.  3efore an 

optimum estimate can be formulated it is necessary to specify 
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some criteria.  One possibility would be to choose n(t) in such 

a ways as to minimize 

E[(n(t)-n(t))2] 

for each t.  A more appropriate criterion might be to minimize 

var[|Z(f)| ] where z(t) is now defined by 

z(t) = [x(t)+n(t)-n(t)] a(t) (55) 

Unfortunately this latter criterion is not only difficult to 

apply analytically, but it cannot be applied without knowledge 

of |Z (f)| .  A related, but simpler criterion would be to 

minimize I zn_f,( ^) I *> the expected value of the noise contri- 
bution to the spectral estimate.  In the stationary case (with- 

out n(t)) the square of this term was one contribution to the 

variance (Equation 1^4).  The same result holds here as well 

(see Appendix A and details below).   This criterion will be 

discussed after considering the simpler one of minimizing 

E[(n(t)-n(t))2]. 

the same estimate. 

p 
E[(n(t)-n(t)) ].  It will turn out that both criteria lead to 

1. Choosing n(t) to Minimize (n(t)-n(t))2 

In addition to assuming that n(t) is a zero-mean, 

stationary Gaussian process, it is now assumed that S (f) 

is such that a realizable whitener, with a realizable inverse, 

exists.  [For a discussion of the restrictions on S (f) implied 

by this assumption, see Davenport and Root, 1959> Chapter 11]. 

In equation form, it is assumed that h~ (t) and h(t) exist, 

where both are impulse responses of realizable systems (i.e., 

h_1(t) = h(t) = 0 for t<0), and 

h_1(t) a h(t) = uQ(t) (56) 

h(t) 8 h(-t) = Rn(t) (57) 

or, equivalently, 

|H(f)|2 = Sn(f) (58) 
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Continuing with these assumptions, it is useful to consider 

the following hypothetical system. 

n(t) w(t) h(t) 

realizable 
whitener 

-n(t) 

realizable 
inverse 

FIGURE 6 

The output of this hypothetical system is n(t) because of 

Equation (56).  w(t) is white noise, with 

w(t)w(t+x) = UQ(T) (59) 

Since n(t) can be recovered immediately from w(t) with the 

realizable filter h(t), nothing is lost by basing the estimate, 

n(t), on w(t) for t<0 rather than on n(t) for t<0, and some 

mathematical convenience is gained. 

By inspection of Figure 6 

(a) 
w( a) 

n(t) 

/ n(3)h 1(a-6) dp 

(t) 
/    w(a)h(t-a) da 

(60) 

(61) 

where the limits in parentheses are redundant due to the 

realizability of h(t) and h-1(t). 

Rewriting Equation (61) 

0 (t) 
n(t) = /  w(a)h(t-a)da + /   w(a)h(t-a)da 

0 
(62) 

Because w(t) is white, and the two integrals involve nonover- 

lapping sections of w(t), these two integrals define independent 

(zero mean, Gaussian) random processes.  The first integral 

represents the contribution to n(t) of the white noise preceding 

t=0.  The second integral is that of the white noise following 
2 t=0.  To minimize (n(t)-n(t)) , the first integral should be 

chosen as n(t). 
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0 
n(t) = / w(a)h(t-a)da 

— oo 

0 (a)    , 
= /  doh(t-a) /   dgh x(a-6)n(6) 

— OO —CO 

0      ° -1 
= /  d(3 /  dah(t-a)h 1(cx-B)n(g) (63) 

(6) 

With this choice, the error, n (t), will be 

(t) 
n (t) = n(t)-n(t) = /   w(a) h(t-a)da        (6*1) 
e 0 

and, as already observed, n (t) and n(t) will be independent, 

zero-mean, nonstationary Gaussian processes. 

The autocorrelation function of n (t) will be needed 

in the next section.  In Appendix A it is shown that 

A min(t,T) 
b(t,x) = n (t)ri ( T) =   /    h(v)h(v+|t-x| )dv 

(0> (65) 
whereas 

R (t-i) = n(t)n(t+x) = /  h(v)h(v+|t-T I)dv  (66) 
n (0) 

2. Choosing n(t) to minimize E[|Z (f)|2] 

As indicated earlier, another criterion of some in- 
2 terest would be choosing n(t) to minimize E[|Z (f)| ].  Because 

n(t) is assumed Gaussian, the optimum (in the sense of mini- 

mizing |Z (f)|l predictor may be written as a linear operation 

on n(t) , t<0. 
0 

n(t) = /  g(t,a)n(a) da (67) 

2 The problem is to choose g(t,a) to minimize |Z (f)| .  It is 

not at first obvious whether or not this can be done indepen- 

dently for all f, so for the present, f is regarded as a single 

fixed number.  The details of the derivation appear in Appendix 

A, and only an outline of the important steps appears below. 
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Since, 

n (t) = n(t) - /  g(t,a)n(a) da (68) 

|Z (f)|2 = J/dtdx aCt)a(t) e-J2l,f(t"T)n (t)n0(x) 
e 

is a functional of g(t,a).  Considering 

g(t,a) = gQ(t,a) + eg (t,a) 

(69) 

(70) 

it is desired to choose gn(t,a) in such a way that |Z (f)| 

will be a minimum at e = 0, for any choice of g (t,a).  Choosing 

g0(t,o) to satisfy 

0 
/  dagn(t,a)Rn(o-B) = R (t-B)  for B<0 '0 n n 

does insure that 

IT iz%<f>i2 =   0 
e = 0 

and 

(71) 

(72) 

3e h iVf)|2 >   0 
e = 0 

(73) 

The   integral   equation,   (7D>   is   solved  by 

0 i 
g0(t,oc)   =   / dBl-i      (B-a)   h(t-B) (7^) 

( a) 

Inspection of Equation (63) indicates that g0(t,o), 

as specified by Equation (7*0, leads to the same n(t) as 

discussed in the previous section. 

With this choice of gn(t,a) and hence of n(t) it is 

possible to write expressions for |Z (f)|  and var[|Z (f)| ], 
Hs He 

but unfortunately, since ne(t) is a nonstationary process, these 

equations are not easy to simplify. 

Zn(f)I  - P(f,-f) (75) 
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var[|Zn(f)|
2] = |F(f,-f)|2 + |F(f,+f)|2     (76) 

min(t,T) 
F(f,,f9) = //dtdxa(t)a( T) /        dvh(v) • 

1 0 
-j2TT(f t + f?T) 

• h(v+|t-TI)e     
x (77) 

This can be simplified somewhat to yield 

00        °°     Ot 

F(f*-f) = 2/   da/ dg/   dva(a)a(a+6)h(v)h(v+3)cos2TTfg 
(0)   0   (0) 

(78) 

F(f*f) = 2/  da/ de/  dva(a)a(a+B)h(v)h(v+e)e"J27Tf(3+2a) 

(0)  0  (0) (79) 

In both cases, the corresponding expressions for the stationary 
2 case, (|Z (f)|  without using n(t)) may be obtained by 

changing the upper limit on the v integration from a to +°°. 

In the stationary case these expressions can be simplified 

in terms of the Fourier Transforms of a(t) and h(t).  Unfor- 

tunately, comparable simplification does not appear possible 

in the nonstationary case considered here, unless specific 

assumptions about a(t) and h(t) are made, and thus far even 

this has not helped much. 

In Appendix A expressions are given for F(f,-f), 

assuming a(t) and h(t) are rectangular pulses of arbitrary 

length.  In the case where they have the same length, these 

expressions reduce to 

|Z (f)|2 = 1/2 IZ (f)|2 (80) 
e 

In the stationary case, discussed earlier, it is usually 
2 possible to neglect |F(f>+f)| , the second term in the expres- 

2 sion for var[|Z (f)| ].  It is not yet clear whether or not 

this is also true of the nonstationary case.  Even for the 

special case of rectangular a(t) and h(t),we have as yet been 

unable to obtain a simple expression for |F(f,+f)| . 
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Physically, the reduction in the variance of the spec- 

tral estimate would be expected to depend on the ratio of the 

durations of a(t) and h(t), with the variance being quite small 

(i.e., n(t), a very good estimate) when a(t) is short compared 

to h(t) and relatively large when the reverse is true. (If h(t) 

= 0 for t>B, n(t) = 0 for t>B). 

In summary, it appears possible to reduce the noise con- 

tribution to the spectral estimate by subtracting an estimate 

of the noise waveform that is based on the noise preceding the 

signal.  The analytical predictions of the resulting variability 

in the estimate have yet to be worked out, and will probably 

require some simplifying assumptions and approximations.  The 

details of implementing some approximation to this calculation 

on a digital computer also have to be worked out.  In general, 

the output of the whitener depends on the infinite past, and 

this dependence would have to be truncated in any implementa- 

tion.  Actually the finite-discrete version of the problem is 

essentially the same as the linear mean square regression prob- 

lem [see, for example, Crame'r, 195^, pp. 302-305] and should be 

straightforward to program. 

G. Some Comments on the Papers of Mclvor and by Larrowe and 

Crabtree 

Both of these papers attempt to apply to seismic 

waveforms a concept of a time-varying power spectrum. The basic 

concept can be described in the notation of this chapter by 

allowing the location of the time window, a(t), to vary.  In 

this notation, then, 

zt   (t)   =  a(t-tQ)y(t) (81) 
'0 

and 

Z.    (f)|2   =   |/a(t-tn)y(t)e  J2lTftdf|2 (82) 
0 
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y(t) is used here for the seismic waveform to avoid specifying 

whether it is a transient (as x(t) was)  or a continuing process 

(as n(t) was). |ZtQ(f)|  would be labelled by words such as 

instantaneous power spectrum. 

With this formulation, several questions immediately 

arise, most of which stem from the nontrivial question of what 

is the meaning of |Ztn(f)| ?  Is it an estimate of a power (or 

energy) density spectrum or is it an interesting functional 

of y(t) in its own right.   Whereas the power density spectrum 

of a stationary random process and the energy density spectrum 

of a transient both have appealing "physical" interpretations,* 

it is not at all clear what interpretation is to be given to 

|Zt„(f)| , unless assumptions are made about how slowly it 

varies with tQ. in our opinion there is a burden on the user of 

a "time-varying spectrum" to demonstrate its physical rele- 

vance, its utility, or, preferably, both, we do not believe 

this is satisfactorily done by either of the papers considered. 

Mclvor completely neglects the problem of variability, 

which can, of course, be important.  If, for example, y(t) 

is a stationary Gaussian process, then, no matter what a(t) 

is used 

var[|Z. (f)|2] - (E[|Z. (f)|2])2 (83) 

Furthermore, he is fundamentally in error when he asserts 

that Blackman and Tukey's lag window is just another time 

window and claims that their indirect method is simply a 

special case of his (essentially direct) method. 

Larrowe and Crabtree briefly mention, and then ignore, 

the' problem of variability by making assumptions that imply it 

does not exist.  They divide the observation interval into 

*The average power (or the total energy) of the output of a 
narrow band filter at frequency FQ  is proportional to the value 
of the power (or energy) density spectrum evaluated at fQ. 
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several subintervals, and, for each, they apply the equation 

(their Equation 36) 

P(w) z   2ir(t -t )    1/ n   f(t) e"Ja,t dt'2    (84) n  n-1'   t  -, 
n-1 

to estimate the PDS.  In this equation, f(t) is the seismic 

waveform.  They assume (page 16) "each [subinterval] long enough 

to permit a reasonably accurate computation of p(w)" [using 

this equation].  As discussed in Section C of this chapter 

(and elsewhere), no matter how long the interval, if f(t) 

is a stationary Gaussian process, 

var[p(u>)] - (pU))2 (85) 

Two pages later, in a derivation based on this assumption, 

they let At = t -t  , go to zero! J n  n-1 B 

It turns out that the result of this derivation is 

essentially correct and is of some interest.  This result is 

that an equivalence exists between the time window and a 

suitably defined frequency window.  This equivalence is also 

demonstrated by Mclvor, but his derivation is a little diffi- 

cult to follow because it involves several normalizations 

that are needed later in his paper.  As this equivalence is 

fairly easy to demonstrate in the notation of 

a brief derivation follows. 

-j2Ttfnt 
Zt (fQ) = /  a(t-tQ)y(t)e    

u  dt (86) 
0       — °° 

Considering a filter with impulse response 

hf (t) = a(-t) cos2irfnt (87) 

and output w(t), yields 
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w(t) = y(t) fl h  (t) 

= /y(T)a(T-t) cos27Tf0(t-T) di 

= Re[/y(T)a(T-t)eJ27Tfot e_J27rfoT di 

= Re ej2lTfotZt(f0) 

= |Zt(f0)|cos(21rf0t + <Zt(fQ)) (88) 

Thus the envelope of the output of the filter at time tn is 

equal to |Ztn(f0)|, and therefore using the time window 

a(t-tQ) located at tQ, to estimate the PDS at f~ is in a sense 

equivalent to using the frequency window p[A*(f-fQ)+A*(f+fQ)], 

located at fQ, and examining the envelope at time t0.  Of 

course, in practical situations, calculating the envelope 

may be difficult, but in the case where |Ztn(f0)| varies only 

slowly with t„, there should be no problem.  In principle, 

another filter h?(t) with 

h2(t) = a(-t) sin27rf0t (89) 

could be used, in which case the sum of the squares of the 

outputs of the two filters at time tn would be proportional 

to |ZtQ(f0)|
2. 
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3..JCTIOI: iv 

Automatic Test for p? in Shallow 'larthgual-'es 

The use of the reflected phase pP to determine the 

depth of shallow earthquakes is often rendered ineffective by 

the masking of pP by the coda of P. Por earthquakes above the 

Moho, pP is usually buried in the first 13 seconds of coda 

following P onset where it is often intractably unrecognizable 

even by the skilled observer. Consequently, a test has been de- 

vised to extract pP from the overlying coda by computer. 

The method is based on signal enhancement of pP 

through phased sums of a seismic array of continental dimensions 

(3000-7000 kilometers).  This processing scheme is similar to 

one previously reported*, however, several important additions 

have been made to facilitate comparison of shallow quakes and 

surface events.  (As previously given, the test was unable to 

distinguish between the two classes.) 

Assume a set of stations i=l,...,n and epicentral 

distances i.. Determine the angle of incidence i, for each A* 

(Richter, 1958, pp. 664-6)„ Assume a set of test depths, h. 
J 

in the range 10 to 41 kilometers.  (Increments of 1.6 km were 

used).  Calculate a set of time delays T.. of P-pP by: 

Tii = (2h,/c) cos ii 

Por each test depth h. align the seismograms for proper relative 

displacement according to T.J. Form a weighted sum of the seis- 

mograms, by multiplying each by a factor 

*GAC Report 1456-2026-9, January 1966, 
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Si {.(1/3?!)  j   -^(iOdt} 
-_     -  .———.—'-it ^ ••••••• ^—•  

'1 (1/T2)   j   Sj(t) dt 

where S^ and N. are the mean energies in the P and noise regions 

respectively.  For this computation a P interval of one second 

was chosen.  This interval was centered about the first definite 

zero crossing of P.  The noise interval chosen was from 13 to 3 

seconds before P onset.  The weighting factor is derived in 

Appendix B, using the constraint that the signal-to-noi3e ratio 

of the phase-sum seismogram be a maximum with respect to all 

other possible weighting factors. 

After alignment and weighting, sum seismograms s.(t) 
J 

are formed for each test depth h.. A window of duration T is 

placed about the location T =(2h-/c) in each s.(t), and the 
j J- j 

average energy in that window measured: 

S,i   • \     JTJ-I/2 8j(*)« 
V 

The corresponding average energy C. ofthe P-coda of S.(t) is 
j j 

measured outside the window about T., and a test statistic formed: 
J 

A plot of this statistic v.s. h. should show peaks at certain 

values of h.. One reason, in the case of a shallow earthquake, 

is the presence of pP in the T. interval. A second reason for 
J 

peaks abserved with surface and deep events is the purely ran- 

dom occurrence of more energy in one interval than in the others. 
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The ambiguity is easily removed by formation of a new test sta- 

tistic, .., which is the product of e, and the average cross 
J J 

correlation of the n seismograms on the interval of duration T 

in which e. is a maximum: 
J 

M  = e  P peak 
J   J 

When n.  is plotted, the shallow earthquakes are emphasized more 
J 

than the events with no pP in the coda interval.  Typically, 

P   , for shallow earthquakes is .5, whereas for surface and 

deep events it is close to zero.  (See Table 1). 

The test has been applied to twelve earthquakes and 

six surface events. Plots of r\.  for earthquakes are shown in 
J 

Pigures 7 and 8.  Plots for the surface events are not shown, 

as TI . for all six was found to be negligible. Maximum values 
J 

of r\ .  for surface events and earthquakes are given in Table 1, 
J 

along with the h-'s at which they occurred.  For surface events, 
J 

the mean Tl_a_ was .11 while for shallow earthquakes it was 5.1. 

Values of depth, h^, agree very well with the nominal depths in 

nine of the ten cases, standard deviation being 2.8 kilometers. 

The earthquake of 15 July 1963, while nominally at 60 km depth, 

registered a distinct peak at 19 km on the 7 diagram.  (This 

anomaly will be investigated more closely.) The 25 August 1963 

earthquake is peculiar in that it's t|-h diagram has three distinct 

peaks, but these may have been caused by water-air and earth-water 

interfacial reflections under the Sea of Okhotsk.  This problem 

has not been resolved conclusively yet. 

Further research will be reported on this topic as 

more events are tested. Also, the use of P^gav as a possible 

discriminant between shallow earthquakes and shots bears further 

statistical investigation. 
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APPENDIX A 

1. General Nonstationary Case 

Definitions and assumptions: 

n(t):  a zero mean, not necessarily stationary, 

Gaussian process, with n(t)n(T) = R (t,x) 

x(t):  a pulse "signal" for which the Fourier Transform, 

X(f) = Jx(t)e~J'27rftdt, exists 

a(t):  the "time window"; it is assumed that A(f) exists 

Z(t) = a(t)[x(t)+n(t)] 

With these definitions, the following equations may be written 

by inspection. 

Z(f) = A(f) 8 X(f) + /a(t)n(t)e"J2lTft dt     (A-l) 

Zx(f)    +     Zn(f) (A-2) 

E[|Z(f)|2] = //dtdTa(t)a(T)[x(t)+n(t)][x(T)+n(T)]e"j2TTf(t_T) 

= |A(f)fiX(f)|2 + //dtdia(t)a( x)Rn(t,T)e"
J'27Tf(t"T) 

= |Zx(f)|
2 + |Zn(f)|

2 (A-3) 

2 The expected value of |Z(f)|  is simply the sum of the signal 

and noise contributions.  It should be noted for future re- 

ference that the integral defining |Z (f)|  must be real and 

nonnegative for any legitimate R (t,i). 

covUzCf^l^lZCf^l2] = EC|Z(f-L)|
2|Z(f2) |2] - 

- ELIZCf^ |2]E[|Z(f2)|
2]    (A-4) 

E[|Z(f1)|
2|Z(f2)|

2] = J///dtdTdadga(t)a(T)a(a)a(8) • 

-J2irf1(t-T)  -j2Trf2(a-S) 
• e e 

• Lx(t)+n(t)JLx(t)+n(T)JLx(a)+n(a)][x(0)+n(8)]  (A-5) 
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When the integrand is multiplied out and expected values are 

taken, only terms with 0, 2 or 4 factors of n(*) will be non- 

zero.  To simplify the expression involving all four of the 

n(-)5 the following property of zero mean Gauss processes is 

employed. 

n(t)n(-r)n(a)n(B) = Rn( t ,T ) Rfi( a, g )+Rn( t, a )Rn( T, 6 ) + 

+ Rn(t,g)Rn( T,a) 

Define 
-j27r(f1t + f2a) 

and 

F(f15f2) = //dtdaa(t)a(a)Rn(t,a)e 

note that F(f1,f2) = F(f2,f1) = P*(-f1,-f2) and that 

(A-6) 

(A-7) 

|Z (f)|  = F(f,-f).  With this notation, the various contri- 

butions to the integral of Equation (A-5) may be tabulated as 

follows. 

Term in Integrand 

1) n(t)n(i)n(a)n(6 

2) x(t)x(T)x(a)x(8 

3) x(t)x(T)n(a)n(6 

l\)   n(t)n(T)x(a)x(6 

5) x(t)x(a)n(x)n(6 

6) x(t)x(B)n(T)n(a 

7) x(x)x(a)n(t)n(6 

8) x(i)x(3)n(t)n(a 

Since 

Contribution to Integral 

F(f1,-f1)F(f2,-f2)+|F(f1,f2)|
2+|F(f1,-f2) 

|Zx(i1)|
2F(f2'-

f2) 

|Zx(f2)|
2F(f1,-f1) 

Zx(f1)Zx(f2)F(-f1)-f2) 

Zx(f1)Zx*(f2)F(-f1,f2) 

Zx*(f1)Zx(f2)F(f1J-f2) 

Zx*(f1)Zx*(f2)F(f1,f2) 

z(fx) Z (f, ) x  1 + F(f1J-f1), (A-8) 

E[|Z(f1)| ]E[|Z(f2)| ] will have four terms, which are identical 

to the terms appearing in lines 2-4 and the first entry in line 1 

of the above table.  Thus the covariance (Equation (A-4)) is given 

by the second and third entries of line 1 plus lines 5-8. 
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covClzCf^l^lzCf^l2] = |p(f1,f2)|
2+|P(f1,-r2)|

2 

+ 2Rte[Zx(f1)[Zx(f2)P(-f1,-f2)+Zx«(f2)P(-f1,f2)]  (A-9) 

This specializes to 

var[|Z(f)|2] = |F(f,f)|2 + |F(f,-f)|2 

+ 2ReZ 2(f)F(-f,-f)+2|Z (f)|2F(f,-f) (A-10) 

where the fact that F(f,-f) is real has been used in dropping 

the real part operator from the last term. 

2. Stationary Case, R (tfi) = R (t-x) 

In the case where 

ln(t>T) = Rn(t_x) = /Sn(f)' df (A-ll) 

the expressions of the previous section may be simplified, 

Specifically, 
-J2*f,t       -j2 7Tf?CC 

F(flsf2)   =   //dtdaa(t)a(a)R   (t-o)e e 

-J2irf,t -j2Trf   t 
=   Jdta(t)e x   [a(t)e 8  R   (t)] 

The term in the brackets has a Fourier Transform 

A(f+f2)Sn(f) 

Thus the total integral is 

F(flsf2) = A(f) 8 A(f+f2)Sn(f) f=f 

= /duA(f1-u)A(u+f2)Sn(u) = JduSn(u)A*(u-f1)A(u+f2)  (A-12) 

This gives 

Z(f)T = |Zx(f)r + JduSn(u)|A(u-f)| (A-13) 
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var[|Z(f)|2] = |/duSn(u)|A(u-f)|
2|2+|/duSn(u)A*(u-f)A(u+f)|

2 

+ 2|Z (f)|2/duS (u)|A(u-f)|2+2ReZ 2(f)/duS (u)A*(u+f)A(u-f) 
Ail Ail 

(A-14) 

Oov[|Z(f1)|
2,|Z(f2)|

2] may be obtained by substituting (A-12) 

into (A-9). 

A special case of some interest occurs when 

A(f) = 0   for |f| > W (A-15) 

If (A-15) holds, then for any f-,,f2 such that 

ll^l-lfgM *  W 

FCf-i^fp) will be zero and thus 

cov[|Z(f1)|
2,|Z(f2)|

2] = 0 (A-16) 

Furthermore, if (A-15) holds 

A(u+f)A*(u-f) = 0  for |f| > W (A-17) 

and, therefore, for |f| > W 

var[|Z(f)|2] = |/duSn(u)|A(u-f)|
2|2+2|Zx(f)|

2/duSn(u)|A(u-f)|
2 

= (|Z(f)|2)2 + 2|Z (f)|2|Z(f)|2        (A-18) 
n A        n 

3. Nonstationary Case Using n (t) = n(t)-n(t) as Derived in 

Section F 

In Section F, an estimate of n(t), n(t), that is 
p 

optimal in the sense of minimizing n  (t), where 

ne(t) = n(t)-n(t) (A-19) 

and n(t) is based only on values of n(t) for t<0, was derived 

by considering the hypothetical system shown below. 
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n(t) h   1(t) w(t) 

realizable 
whltener 

This estimate was given by 

0 
n(t) = /  w(a)h(t-o)do 

h(t) 

realizable 
inverse 

n(t) 

(A-20) 

which gives 
(t) 

n (t) = /   w(o)h(t-a)da 
e       0 

(A-21) 

where the upper limit in parentheses is redundant since h(t) 

is the impulse response of a realizable system. 

For convenience, define 
 „    (t)   (T) 

b(t,x) = ne(t)ne(T) = /   da/   d6w(a)w(3)h(t-a)h(t-B) 
0 

Since 

w(a)w(6) = uQ(a-6) 

Equation (A-22) may be simplified to 

(min(t,T)) 

/o 
dah(t-o)h(x-a) 

b(t,x) = { 

0 

min(t,T)>0 

min(t,T)<0 

Letting 

v = min(t,T) - a 

this may be rewritten as 

min(t,T) 
/       dvh(v)h(v+|t-T | ) 

b(t,x) = { ° 
0 

To contrast this with R (t-x), note that 

Rn(x) = h( x) fi h(-x) 

min(t,x)>0 

min(t,T)<0 

(A-22) 

(A-23) 

(A-24) 

(A-25) 

(A-26) 

(A-27) 
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and therefore 

Rn(t-T) = / dvh(v)h(v+|t-T|) (A-28) 
n        0 

Now defining 

z(t) = a(t)[x(t)+ne(t)] 

2 
the moments of |Z(f)|  may be obtained by substituting b(t,x) 

for R (t,x) in the expressions of Section 1 of this appendix. 

This leads to 
min(t,T) 

P(f1}f2) = //dtdxa(t)a(x)/       dvh(v)h(v+|t-x|)• 

-j2u(f t + f x) 
• e      x   ^ (A-29) 

Separating this integral into the two regions, t<x and t>x 

and substituting 

a = min(t,x),    B =    |t-x| (A-30) 

leads to 
t a -j2TT[f., (a+B)+f?a] 

P(f1,f2)   =   /   dt/   dxa(a)a(a+B)/   dvh(v)h(v+3)e 
— oo — oo Q 

- a -j2Tr[f   a+f   (a+S)] 
+   /  dt/  dxa(a)a(a+B)/  dvh(v)h(v+B)e 

t 0 (A-3D — oo 

CO ^ CO 00 oo oo 

but /   dt/   dx =   /   dx/   dt =   /   da/   dB (A-32) 
— CO —CO _co X _co 0 

and 
CO CO CO oo 

/   dt/   dx   =   /   da/   dB (A-33) 
— oo t —oo 0 

Therefore, 
00        oo        a -j 2 TI( f, +f „) a 

F(f,,f?)   =   /  da/  dB/  dva(a)a(a+B)h(v)h(v+B)e 
1 oo o 0 

-j27Tf   B -j2TTf   B 
•    (e X  +  e d   ) (A-34) 

and, in particular, 

CO OO QJ 

F(f,-f)   =   2/   da/   dB/   dva( a) a( a+B )h( v)h( v+B ) cos2 irf B (A-35) 
-oo o 0 
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F(f,+f) = 2/ da/ dg/ dva(a)a(a+3)h(v)h(v+6)e"J'2^f(2a+B) 

0  0 (A-36) 

To convert Equations (A-3*0 to (A-36) to the stationary 

case (for which the autocorrelation function is given by Equa- 

tion (A-28) rather than (A-26)) it is only necessary to change 

the upper limit on the integration from a  to +°°.  With this 

change, Equations (A-3^)-(A-36) can be simplified as has already 

been demonstrated by Equation (A-12).  Without this change, it 

does not appear possible to simplify these equations further 

without making specific assumptions about a(t) and h(t).  One 

set of assumptions, which leads to some simplification, 

is considered in a later section of this appendix. 

4 . Choice of n(t) to Minimize |Z ,. ( f) | 2 

e 
Considering now an estimate, n(t), of the form 

0 
n(t) = /  g(t,a)n(a)da (A-37) 

2 
the problem is to choose g(t,a) to minimize |Zjie(f)| • [Note, 

by inspection of Equation (63), it can be seen that the choice 

of n(t) considered in the previous section corresponds to 

00 

g(t,a) = /   duh(t-u)h_1(u-a) ] (A-38) 
(a) 

Substituting 
0 

ne(t) = n(t) - / g(t,a)n(a)da (A-39) 
CO 

2 
into the integral defining |Z  (f)|  and taking expectations 

ne 
yields 

Zn. (f)|2 " //dtdxa(t)a(T)e-j2wf(t~x){Rn(t-T)-/ dgg(x,e)- 
e — °° 

0 0 
•Rn(t-B)-/ dag(t,a)Rn(T-a)+//dadgg(t,a)g(T,B) 

^00 — 00 

•Rn(a-B)} (A-40) 

A-7 
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Letting 

g(t,o) = g0(t,a) + Eg (t,a) (A-41) 

the problem is to choose gn(t,a) in such a way that |Zn (f) >0 
is a minimum at e=0 for any g (t,a) 

0 
IrK (f)|2    = //dtdxa(t)a(T)e~J2nf(t-T){0-/ dBg (T,B) • 

e = 0 3e ' m 

0 0 
•Rn(t-B)-/ dag£(t,a)Rn(T-a)+//dad6[g0(t,a)g (T,B) + 

+gn(
T ,B)g (t,a)]R (a-B) } >0 n 

= J/dtdTa(t)a(T)e"J^,TUt Tj{/ dBge(T,B)[J dag0(t,a)- 
— GO — OO 

0 0 
•Rn(a-B)-Rn(t-e)] + / dag£(t,a)[/ dBgQ(T,3)Rn(B-a) - 

-Rn(x-a)]} (A-42) 

A sufficient condition for Equation (A—•M 2) to be zero, for any 

choice of g (t,a) is 

0 
/ dag0(t,a)Rn(a-B) = Rn(t-B)     for B<0     (A-^3) 

Guessing that the solution to the integral equation is given by 

Equation (A-38), which corresponds to the earlier derivation 

of n(t), yields 

-1, 
>0 (t,a) = /duh(t-u)h~ (u-a) 

-1 / dagn(t,a)R (a-B) = / da/duh(t-u)h  (u-a)R (a-B) n n 

(A-44) 

= /°duh(t-u)/dah 1(u-a)R (a-B) 

0 -1 = / duh(t-u)[h x(u) 8 R (u-B)] 
— OO 

[equation continued] 
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0 
= / duh(t-u)h[-(u-B)] 

R (t-B) for B<0 

min(t,B) 
R (t-B)-/       h(t-u)h(s-u)du  for B>0 
n      0 

= Rn(t-6)-b(t,B) (A-45) 

where, of course, b(t,B) is zero for B<0.  Thus gn(t,a), as 

given by Equation (A-^) is a solution to Equation (A-43). 

  To show that this does indeed give a minimum of 

|Zne(f)| > it is necessary to show that the second derivative is 

positive at e =0. 

s2  9 to   r/f  i °   ° 
^-2"|Zni (f) r = //dtdra(t)a( T) e_j27TU t_T > / da/ dBg0(t,a) 
9 e    6 —a>  —oo 

•g0(T,6)Rn(o-B) 

= //dtdTa(t)a(T)e"J"2nf(t"T)/ dBgQ( T , B )Rn(t-B ) 
— oo 

= //dtdia(t)a( T)e"j2uf(t_T)[Rn(T-t)-b( T, t)]    (A-46) 

where Equation (A-43) is used for the first integration and 

Equation (A-^5) for the second. 

and 

Since n(t) and n (t) are independent, zero mean processes 

n(t) = n(t) + ng(t) (A-47) 

it follows that 

Rn(t-t) = n(t)n(t) + b(t,T) (A-48) n 

and therefore the quantity in the brackets in Equation (A-^6) is 

the autocorrelation function of n(t).  Therefore Equation (A-46) 
2 

is simply |Z«(f)| , which cannot be negative. 
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5. Nonstationary Case with Rectangular a(t) and h(t) 

In an effort to obtain some measure of the improvement 

attainable by using n(t), specific assumptions about a(t) and 

h(t) are now considered.  Unfortunatley, even with these assump- 

tions, only rather limited results have been obtained. 

Specifically, it is assumed that 

1 
a(t) = { 

0<t<T 

elsewhere 
(A-49) 

h(t) = { 
0<t<B 

0     elsewhere 

From this it is easy to show 

A(f)   =   e-J2irf(T/2)   sinTrfT 
irf 

S(f)   =    |H(f)|2   =   (sin^fB)2 
n ' ' irf 

Pursuing these assumptions, 

00 00 

F(f.-f)   =   2/   dg /   daa(a)a(a+B) 
0 

T-6   for   6<T 

(A-50) 

(A-51) 

(A-52) 

a 
/   dvh(v)h(v+g)cos2Trfg 

o 

min(a,B-8) 

If  B>T 
T T-6 T 

=   2/   d6cos2irf6   /        da-a   =   /   dBcos2irf B (T-6 )' 
0 0 0 

1,sinTrfT,2   0   /sinirfTN2 
=   2( r7f-)      &   (      Trf      }      - 

If  B<T 

B B-3        T-6 
F(f, -f) = 2/ d6COS2Trf6[J   da-a + /   da(B-g)] 

0 0 B-6 

[equation continued] 

(A-53) 
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B ? 
= / dScos2nf6[(B-0) +2(B-B)(T-B)] 

0 

2K fff     ' ' Iff     ' V "/K TTf 
=   l(^JB)2   a   (^H^B)2+(T-B)(^^)2 (A-54) 

In  summary 

•,(—r?—)     &   ( s—) d. TTI IT I 
|7    ff')l2=prf _f) = { (A-55) 
'   ne'    ' ' ^sln^fB^^sin.fB   2       _B     sinrrfB   2     R<T 

d TTI TTI TTI 

These should be compared to the corresponding expression for the 

same a(t) and h(t), but without n(t).  This is 

|Zn(f)|
2 = Sn(f) 8 |A(f)|2 = (SinTifT^ fi (sin^fB)2    (A_56) 

Examining a few special cases, 

i)   for  B=T      |Zn   (f)|2   =  i|Z(f)|2   =  k^^)2   8   (^^)2 
ili d.        n £ TTI TTI 

(A-57) 

ii)   for  B>>T B(sln?fT)2   «    |Z   (f)|2   >>    |Z      (f)|2 

e 

l,simrfTs2        ,sinTrfTN2 . .   ... 
2(      nf     }      fi   (      Trf      } (A~58) 

iii)   for  B<<T lzn(f) I2   ^    |Z      (f) |2   •   T(SinT^fB}2 (A-59) 
e 

The equations indicate an "improvement" of 1/2 when 

the maximum correlation time of the noise equals the length of 

the observation interval, a large improvement when the interval 

is much shorter than the maximum correlation time of the noise, 

and essentially no improvement if the correlation time of the 

noise is short compared to the total observation interval. 
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APPENDIX B 

Weighting Eactors 

Assume that s,(t) + n,(t) and s2(t) + n2(t) are two 

selsmograms of different signal-to-noise ratio which are to be 

added together coherently. A weight or Mas a is to be given 

to the second so that the signal-to-noise ratio of the sum 

seismogram is a maximum: 

r{»l(t) + as2(t)}
2dt 

V..-~-.,.,. • • - = Maximum 

jl^Ct) + an2(t)}
2dt 

It is appropriate in this case to assume that the noise-cross- 

noise term 

Jn1(t)n2(t)dt = 0, 

as stations 1 and 2 are chosen sufficiently far apart for two 

noises to be independent, and the noise is assumed to be Gaussian. 

J{Sl(t) + as2(t)}
2dt 

jn1
2(t) dt + a2Jn2(t)dt 

Set jn1
2(t)dt = nx

2  jn2
2(t)dt = n2

2 

p 2   T  2 2 
]a1  (t)dt = s1   Js2 (t)dt = s2 

Then our expression becomes: 

* All integrals are assumed to be over unit time for expressional 
clarity. 
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2    2 2    r sl + s2 a + 2aJ si(t)s2(t)dt 
_-   - - 

n  + a n2 

Since the signals s^Ct) and s2(t) are coherent, i.e. 
mutually proportional, the integral may he written: 

js1(t)s2(t)dt =G
si2("t)dt Js2

2(t)dt)& 

= s1s2 

(because the Schwartz inequality reduces to an equality in this 
case.) The ratio to be maximized then becomes 

(B1 + as2)
2 

 2 Tl n  + a n2 

For ease in differentiation, we make the substitution 

(s-j/sg) = kj  (ni/n2)
= k2 

(s_ + as2)     (kx + a)   
s
2 

2   2   =   5 2     2 
nl + a n2     k| + a    n2 

To  find the maximum with respect to a,   set 

d 
da 
d    L^t) %  = o 

v kr, +a    x .    <2 

or 

k2•    "  n2 

2 2 
k,     + a     -a(kn +a)   = 0 

2 
k2    -a^ = 0 
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k n
2  n.2 s, 2  _ 1   2 a 

n l2 

The sum seismogram is therefore 

2 
n,    s, 

S(t) = Sl(t) + rx(t) + -i-   -^ (32(t)+n2(t
,> 

1   n2^ 

Multiplying S(t) + N(t) by a constant does not change the signal- 

to-noise ratio, so we may write an equivalent sum as 

-i2 IV^t) + ^(lOj + -^  fs2(t) + n2(t)J 

Generalizing this  to an arbitrary number of seismograms,   we  find 
that the proper weighting factor  (for seismogram i)   to maximize 
total signal-to-total-noise ratio is 

i2 = {JV(t)dtt 
i      Jn^dodt 

Note:  In practice, signal-to-noise ratio is much greater than 

one, so that we can approximate the true signal power 
2 

Js±
2(t)dt by J(s±(t) + n±(t))  dt. 
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