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ABSTRACT

Estimation and detection of optical signals distorted by diffraction,
additive background noise, and multiplicative (detection) noise are
studicd. Assuming that the output of the detector is a Poisson process,
that the signal and noise are additive, and that they have prescribed
moans and covariance matrices, the optimum linear estimate of the
optical signal or object is obtained. In the physical detection process,
the interaction between the incident radiation and the detector produces
an effect called multiplicative noise which must be taken into account
in obtaining the optimum linear estimate. The performance of the
estimation procedure is evaluated for several special cases. Both white
and colored noise are considered in the estimation problem. The problem
of discriminating between optical signals is considered. Optimum
procedures are derived for detecting known and unknown optical signals
using fixed-:sample detectors. Tke properties of requential detectors
which are optimum for the detection of random or unknown optical
signals are investigated, A comparison is :nade of the average test
lengths of these optimum random signal detectors with those of a
detector designed for particular optical signals., The test lengths of
the fixed-sample detector and sequential detector are compare for a

particular example,
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INTRODUCTION

In an optical system the final image is not an exact representation
of the original object. In general the image differs fromthe object due to
diffraction and stray light or additive background noise, The problem is
further complicated when the image is measured, When measurements
are made, detection noise {multiplicative noise) is introduced,

In the absence of any noise, with distortion due only to diffraction,
Harris (1964) showed that the object can in principle be reconstructed
exactly if the object is known to be spatially bounded. In general, however,
additive and multiplicative noise will be present and will give rise to error
in any restoration procedure, In establishing such a procedure, we need
to take into account any known statistics since the restoration procedure

in the presence of noise may be different from the procedure used when
noise is absent,

In this paper, methods of detecting and estimating optical signals which
have been distorted by diffraction, additive noise, and multiplicative noige
are investigated, The estimation procedures considered are the minimum
mean-square-error estimate, the maximum a posteriori estimate, the
maximum likelihood estimate, and the Bayes' estimate. The main
emphasis wiil be on the minimum mean-square-error estimate, For the

detection procedures, both fixed-sample detection and sequeatial detecticn

b
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are studied. Comparisons are made between detecting known sigrals and
unknown signals to determine the deterioration in performance due to

ignorance about the unknown signals.




it

i

)it

§
w

STATEMENT OF THE PROBLEM

Throughout this paper the¢ conditions necessary for Fraunhcfer
diffraction will be assume/c; to be satisfied (Born and Wolf, 19564; Stone,
1963), In essence, these conditions require that the effective distances
from a point in the object plane (or observation point in the irnage plane)
to any two points in the apexture plane differ by not more than a small
fraction of a wavelength. Also, the radiation will be assumed to be
spatially incoherent and quasi-monochromatic. By quusi-monochromat;.
we mean that the radiation has a frequency bandwidth which is much
smaller than the frequency itself. Unless stated otherwise, the observed
quantities will be number —~of-photoelectrons and the estimated quantities
will be average-number-of-photons per unit time (mean rate).

Under the conditions of Fraunhofer diffraction, the techniques of
Fourier analysis cau be used to investigate the characteristics of the
optical system (O'Neill, 1963), The optical system can then be treaied
as a linear filter of spatial frequencies whose properties are describer
by a transfer function A (fg, f‘;) where £ and { are image-plane coordin-
ates, For incoherent illun.ination, the spatial frequency spectrum of
the image V (f,, f{,) is found by multiplying the spatial frequency spectriia
of the object W (fa, fﬁ)’ where « and § are the object-plane coordinatss,
by the system transfer function A (fg, fg) (see Appendix). Alternately,

by the convelution theorem, the image intensity dist»ibution v(£, () is

W
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obtained by convolving the object intensity distribution w( a, p ) with

the point spread function a( £, { ) of the optical system., Hence,

viE,t) = w(g, §) * a(g, t) (1)

where w( §, § ) is the object intensity distribution referred to the image
plane and * denotes convolution,

The image v( £, % ) is further distorted by additive background
noise q{ £, ¢ ) and the resulting image intensity distribution is
r(¢ ,¢) = v(iE,t) + q(t,?). During the detectionof r( £, 1)
the interaction between the impinging radiation and the detector produces
a multiplicative effect or detection noise resulting in an image u( £,%)
or a stream of ghotoelectrons 2z, Our objective is to count the number
of photoelectrons in the output and from this, e:timate w(§ ,¢ ) or

discriminate between two alternative signals wl( £E,0) and

wz( £,% ). The estimation and discrimination procedures we develop
denend upon the statistics of the additive and multiplicative noise as well
as any a priori information available concerning the optical signals to

be estimated or detected,
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STATISTICAL MODEL

Radiation can be observed only through its interaction with matter.
The interaction process we will consider results from the photolectric
effect. The receptor in the image plane will be assumed to be a photo~’
sensitive surface divided into a large number of very small regions or
cells, It is assumed that the cells are small enough that the illuminance
is approximately constant within a given cell. Consider the radiation
incident upon the elementary regions or cells to be streams of photons
each with energy hv where h is Planck’s constant and v is the fre-
quency of the incident radiation. The average number of photons ;
incident upon a cell in the time interval T is equal to the incident
cnergy of that cell T r divided by hv, where r is the received intensity
due to the diffracted object and additive noise. The cells are labeled
with the index i, and A represents the number of photons incident
upon the ith cell, The number of photoelectrons 2z, emitted from
the ith cell depends upon the incident energy and also upon the multi-
plicative effect of the receptor. Because of the stochastic nature of
the interaction between radiation and matter, for a given A the
quantity z, is a random variable rather than a determinintic quantity
ar- must be described in probabilistic terms.

The nuniber of photoelectrons 2, emitted from each cell consitiutes
the observed data, It is assumed that the location where each photo-

electric event takes place can be determined.




The photons that strike the light sensitive surface of the racepi~r wiil
cause some type of reaction that can be measured. For examnle, in the
photographic film case, the photons will cause many of the silver halide
grains to become developable. The pattern that results on the develcpc:l
photographic film will be a measure of the number of the photons reachir;
the image plane. In this case, film grandularity and saturation rust be
taken into account when determining the number of incoming photons. I
the photomultiplier tube case, a single photon that strikes the light sens-
itive plate gi :8 rise to many electrons in the output. By scanning the
image plane with a photomultiplier tube it is possible to obtain an estimate
of the number of photons that are incident upon each of the incremental
cells. For a simple photon-electron converter, a photon gives rise to a
single photoelectron with probability . The quantity n is callad the
quantum efficiency. The photon-electron converter is a degen=rate casa
of the photomultiplier tube case in which we consider only the first stage
of the phot. multiplier tube.

Throughout this paper we will acsume that if the incident energy per
unit time v, (or mean rate of signal photons ;i) fom an optical signal is
known, the signal photons statistics are Poisson with the probability tho¢
exactly 5, signal photons will impinge upon the ith cell in time T given by

(Tii)si e ~T8;

Plsy = 51 (2




T,
il it

where the mean rate ;i = vi/hv . Likewise, if the incident emergy per unit
time 9 (or mean rate of noise photons 'r;i) from the additive noise is known,
the noise photon statistics are assumed Poisson with the probability tuat

exactly n, noise photons will impinge upon the i ceil in time T given by

- T Ei
(Tny) e
P(n,) =

n.
i}

(3)

where the mean rate ;i F qi/hv 0

For the unknown signal case, the mean rate of signal photons ;i
s .th
incident upon the i

cell in the image plane is a random variable. The
statistical properties of ;i need to be considered since they influence the
statistical properties of the signal photoelectrons emitted during the re-
ception of a signal. For this case the prior distribution of ;i will be as-

sumed to be the following gamma distribution (Goodman, 1965; Farrell,
1966):

0 si: 0
r (ui)

otherwise

_ . - 2 2.
where E(Si) =8, = ui/Bi and var (s,) = 0= = ui/Bi :

For this unknown
i
signal case the probability that s, signal photons will impinge upon the il
cell in time T is given by

o

p(s,) = f P(s; /Ei) f(Ei) d'éi

(%)

a7 e e s
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where s, -T 8,

(ts) e

p(si/si) = (6)

and f(s;) is the gamma distribution in (4).

For the case of known signal and noise both the signal and noise
photons obey Poisson statistics. Because of the additive nature of the
Poisson distribution the total photon stream has a Poisson distribution.
The probability that A signal-plus-noise photons will impinge upon the

cell in time T is given by -
y, -[7(s; +n)]

_ [‘H?.l +;i)] ‘e
P(Y-llsl, Bl) = {7)

For the case where the mean rate of signal photons :i is unknown
and the mean rate of noise photons is known the probability of exactly
A photons impinging upon the i‘:h cell in time T is given by
0
p/m) = [ pufa R G 65,
(%)

B = Yi ‘
S S Sl £ W r(ui 4 ) ;
THB ;) jro (Y tUUIm (T + B

When the mean rate of noise photons n, is unknown we wi'l assume its

prior distribution to be the following gamma distribution:
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i

7
ui-l -?\"‘
f(5.) = MO e n >0 (5)
i rr(“i) ' i—
= 0, othecrwise.

When the mean rates of noise photons r'xi and signal photons 5, are un-
known (i. e., ;'i =8 + ﬁi is unknown) we will assume that the prior

distribution o1 the sum ﬂi + Bi is given by the following gamma distribution:

. - ai(ai;i) l e-miyi
£(7) = £ (5, +4)_

" » 1 20
ru)

(%)
0,

otherwise.
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MATRIX REPRESENTATION

In this paper the spatially bounded objects are divided into small
celi: over which the intensity is approximately constant, If these cells
are made small enough, they may represent poir' sources, By knowing
the point spread function of the system, the image can be approximated
for inccherent light by superposition of the point spread functions result-
ing from all the point sources of the disected object. Here we are assuming
spatial invariance. By this we mean that the object is small enough that
points of a given intensity located anywhere on the object gives rise to
the same point spread function in the image plane. The location of the
point spread function is determired by the position of the point source
(O'Neill, 1963).

The number of photons emitted from the j':h region (point source)
of the object plane xj( aj, B j) can be represented by a delta function
xj( avj, [3J.) = xj o( a-c:j,ﬂ-pj) where @ and § are the coordinate
representation in the object plane. Consider the system impulse response
or point spread function a( £, ¥ ) where £ and { are the conrdinate
representation in the image plane. The optical image or point spread
function in the image plane due to the single point source xj( aj, ﬁj)
is, using image plane coordinates, xj( F,j, C.j) *¥*a(E, t) =
x, 5(§-€j. g - Lj) *a(g,8) = xja(&.-&]. 4 -(-J.) = 3.(§-§j.§-§j).

J

The total image is the superposition of the images of all m point souicen,



1
That is,
m m
8(6,0) = 2 xa(S-E, L-0.) = % 8. (E-5, {=.) (11)
=1 3 J 3oy 3 3 J
J= JE
The image at the point ( §l, L 1) will be due to the images of the
m noint sources, and hence we have
i i 0 i i i
s(§,t)=> s.(§-5., & =£.) =% a(§' -5, L =L.)x.. (12)
iny J J 3. J 3 J
j=1 j=1
Let s, = s( g‘, g‘) and a,, = a( g‘ B IV e gj). The quantity
i ij j
s, is the number of photons due to the optical signal incident npon the
ith cell of the image plane, We can then write
m
8, = Z a x. (13)
In matrix notation this can be written as
s = Ax (14}

where

w

1]
i ———
‘_nm s m

i 2 .0 v e @

1 (1 11 *Im
' x=\: «.and A={, . ).
L x
1 21 im

If additive noise is present at the image, each measvrement of s,

will be corrupted by an additive nri-e element ni; her:ce, we hove
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(15)

The quantity n, is the number of photons due to additive noise, incident

th
upon the i cell of the image plane, In matrix notation the obser-ed

vector is
y =8 +n = Ax + n (14)
where
H K
o i .
Y= | andn=|, ’.
'y ‘n
yR, A

The vector y will, during the detection process, be contaminated

by r:ultiplicative noise, the form of which will be discussed later.

-

We will assume throughout this paper that the vector representatio

of the object is sufficiently accurate that any erroar associated with it is

negligible,
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MINIMUM MEAN-SQUARE-ERROR ESTIMATE
}'_ptroductlon.

In this section we investiage the problem of obtaining optimum
estimates of an optical signal or object distorted by diffraction, additive
bazkground noise, and multiplicative noise using the criterion of minimun
mean-square error,

Consider the photon-stre;m vector y impinging upon the light
sensitive surface in the image plane and giving rise to the output vector
z, The quantity A is the number of photons due to the optical signal ar:
additive noise incident upon the i':h cell of the image plane, The quantiiy
z is the number of photoelectrons due to the optical signal, additive
noise, and multiplicative noise, being emitted from the ith cell of the
image plane. The quantity z, can be thought of as the nuirber of counts
(i. e., photoelectrons for the photomultiplier tube case and developabi»
gr.'ns in the photographic film case) in the output of the detector, Th-
system being considered is illustrated in Figure 1,

For a given mean rate vector i we will assume that the noise n
vas o conditional covariance matrix Kn' We will assume that for a gi-ren
racon rate vector X the object x has a conditional covariance ratris
.T{x and that x and n are conditionally independent (i. c., cenditliornd

ca knowing o and X ). Also, we will assurne that the mean rate vec‘or
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N

/
e
/

Object Plane Aperture Plane Image Plane
(Detector)

(a)

Optical
X Syiem Detector | > Z

(b)

Figure 1. Optical system configuration.
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(53]

i kas mean A and a covariance matrix l\ﬁ and that the me2n rate
vector I has a mean J:C and a covariance matrix Ki and that & and

f. are independent, Ki and % as used here represeat our prior infor-
mn‘ion about the mean rate of the object rather than any actual statistical
fluctuation of the object, Large terms in KR indicate small prior infor-
mation about the mean rate of the object and small terms imply large

prior information,

Puotomultiplier Tube Detector

For the case where the photomultiplier tube acts as the detector of

the optical image, a photon k gives rise to B, electrons in the output

k
of the detector. The output due to each photon is assumed %o Le inde-
perdent of the outputs due to other photons but identically distributed
bz. From the photcn streain incident upca

th
the i cell of the image plane we have

with mean b and variance o

The element z, is a random number of independent random variabies
{D-~rzen, 1962). Because of the Poisson nature of the pioton stream th-
conditional mean and conditional veriance of yi are equal (i,e.,

var (yi/ X, n) = E(yi/;c, n) ). The mean and variance of z, are

respectively

[




E(z,) = Ely,)E(B) = (ai:=: +0,) T, (18)
Var (n,) = Ely,)Vaz(B) + Var(yi)EZ(B)

= th T(a.x +n,) + bz(a.K a, +X__ )4 Tabz(a-K-a. + K~ =)
1 1 1 X1 nin1 1 X1 nini

2

= (o'b

2 B .8 2.2 1 9
b)) Tlax+n)+ T b (aKea 4 K-Hin_i) (19}

where a, ie defined as the ith row of the system matrix A and the

prime on a, denotes transpose, Thus,

¥n

— =
X = see N = a, sas N .. ?‘O:
3% = Bjppeeend A%t 4 m (

im

———

Ty

Hne e ._jtu

m

The quantities % and r-ii are defined as E(%) and E(ﬁi) respectively,
Point spread functions aij for various optical system apertures are
derived in the Appendix,

TFor the vector case, the expected mean of z is

E(z) = ~b(AX +3) (2%)

and the covariance matrix of z is

Cov (z,,z) = E(zz) - E(z) E(z') (7o

where

E(z) E(z) = - O (ARR'A' + AZR' + BR'A' +&0). (00
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We need to calculate E(zz') which can be written as

1
' E(zlzl) * o o E(zlzm) i
E(zz) = . E (4)

E(zmzl) o o E(zmzm)J .
For the diagonal terms of (24) we have

E(zizj) = E[E(zizi/x, n)]

2.2 =Sy, - - T | - =
=T b [ai(K§+xx Ja, +nxa’ +axn + K~ =450, ]

2, = 1 = 2, = =
+b [aina + K“i“i] + 7o, (aix +n,)

i (25)

2 2 = = s= == -
+60)T(ax +5.) + Toba (K- -5k ), 4 n.x'a, + axn,
i i i x i i 1 i1

= (o‘b

Now consider the off-diagonal elements of (24) which are

E(zizj) = E[E(zizj /=, n)]

== = = ' ==
%[, +BXa, +X_- +na]  (26)
i) i j n.n, ij

P
= 2b[a (x_ +7R)a +a
% j D

2, = 1 = 2 '
+b [ainaj + K“i“j] + Pii"b E\/(aix + ni)(ajx + nj)

where pij is the correlation coefficient of zi and zj. We will ma lte tue

following definition:

18 (pijr-:\[ (ax +n)ex ¥ n) ) (2

Cz::[C

r
-

zij

-




Thus we can write

E(zz') = bz"'z[A(Ki + %% )A' +nxA' + \xn + K- +nn ]
+ b AR A' +R ]+0.%C .
X n b "2

In this paper we will assume that the number of photoelectrons
emitted from disjoint regions or cells of the detector are statistically
independent (Helstrom, 1964; Farrell, 1966), Hence, the multiplicative
roise will be assumed to be uncorrelated, For uncorrelated multi-
plicative noise (i.e., ‘oij = 0 (i £j)and Py = 1) we have

- -

C = ‘r(ai:": +18,)5,. = ‘ . (29)
0 ‘!'(amx + ﬁm)

- s

The covariance matrix of z can now be written as

2 2, =~ .t =
Cov (zi, zj) =0y Cz +b (AKxA + Kn)
2, = = 2 ' (30)
=T o
Ty (a.ix + ni) 6ij +b (AKxA + Kn) |
We will assume for convenience that the number of photons impingi=-,
upon different regions or cells of the detector are statistically indepe=cor..
This assumption is by no means essential, This assumption makas the
matrix sum of AI—(xA' + I—{—n diagonal, and due to the Pcisson n2ture

of tae photon stream this sum becomes T (a.i§ + in) 6ij' The
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covariance matrix of z is then

2 2 2 =
Cov (zi, aj) = (crb +b )‘r(aix + ni‘ 5ij . (31)
Also,

2 2 a= 4] =& ==
B(zz'} = (crb +b )Cz + TZbZ[A(K;é-}xx' )A' +nx A' +Aza' + Kﬁ+nn']. (3

r . . - . . A - - » » » »
e now wap > find the linear estimate X of X which will minimize

A

the mean-square error (MSE), That is, find X to minimize
f.‘ -1 : - : - L - | |
e = E[(x-x) (x-x)] = tr E[(x~x)(x~x) ] (33}

where tr denotes the trace of a matrix,

For the linear estimate of X we write

A
x = Hz/T + v. (34)
To simplify the mathematics later on let

v = ~Hb(A% + ) + w. (35}

The linear estimate of x is then

= Hz/T - b(A; + ﬁ)] + . (

niy
{2

3
B 4
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We need to find a matrix H (discrete linecar filter) and a vector w suzh
th~t the mcan-square error is minimized. Substituting {36) into (32}

ond expanding yields

(--—-) tr E[H(zz ~bT2zx'A'~brzn’ + b T Ax:. A

T
+bor2 AZR' + b2r23RA" + b2r 2R brARZ -braz )
2 2= 2 ==1 R
+ H (T2w' =bT Axo' -bT R0’ =TzX'+ bT ARR + b7 nx ) (37)

- .- 2
+ ('rwz -b'r wx A -LTan-sz + by 2x:c'A +brzn )H

+ (Tzww -'rzwx -'rzxw + 'rz"')].

Carrying out the expectation operation we obtain
1
E(zz) =

0,5 +B)C, + BT [A(K_+ Xx)A' +ax'A" + AXR' + K= + na') (78

E(zx') = bT (Akx + nx'), (373
E(xx') = K + o (40)
E(wx') = we', (41
Elwz') = br(ux'A’ + i), (42




- == ' zal
E(xz') = b‘rz(:u:' + K;.) A+ b‘rzxn ’

etc,
Substituting the expected values of (38)-(43) into (37) vields

1 2 2 - 1 2 2 1
= tr[H[b T (AK-A +Kz)+ (o, +b7) C_]H

2 221

=bT HAK;:-bTZK;A'H' + Tzww' - Tzwx-‘l‘ XW

a3 ]

2 =21
FKe 4 ) ]
X
Minimizing (44) with respect to w requires that « = x and minimizing

with respect to H requires that

A

H= <A (ecCc +XK Al
=3 (g z+ E+AK£ )

t -l -], =11 -]
=z [A(gC, +Ka) A+ K] AR, + KT

Gfre

where g = (o 2 +b2)/1'2b2.

(=

21

Ay

(44)

Thic is the optimum discrete linear filter in the MSFE sensa, The

optimum linear estimate of X is now

A

= Flz/7.5(A% + R)] + % = H(z/7-bn) + (I-EHA)S

1 u -1 L wi.=1 1t -1, .=
= E[A (ng+Kﬁ) A+Ix- ] A(gcz+xa) (z/7-bn)

-1.-1

t -] o
+[A(gC, +K2) A+ KT ] KT &

~

A ~ - B2 4
If the mean E(X) of an estirnate % equals x, the retimate % of

" SN o g . g
x i3 said to be unbiased; if not, the difference E(X)-% is defin~d 05 ¢!

{46)

a2

e e



-b(Ax+n)T

Figure 2.

Minimum MSE estimation system.
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bias of the cstimate. In the absence of a priori infermation abcut the

estimstz, it is desirable that the bias of the estimate be small or zerc,
2 -

We wiis now check to see if the estimate 2 is biased svhere x is some

~
actual tut unknown mean rate object vector, If :‘:o is unbiased chen

E(§ )= E(x )= io. For the case being considered

o
P
o
w
]

Ef H(z'bT(A'.‘:E + ?x)) + T:zc] - ;Eo'r

-
-

H(bAiEor - bTAX) + xf-ior

= (bHA-I) (x_-x)r

~
wheare I is the identity matrix., The estimate io is unbiased if eit>ov

o
2) YHA = L
The second condition implies that K’t-l = 0 where 0 is a2 matrix of

zeros,
ey, : . * . s s .
Iie covariance matrix Ki is related to the a priori information
about the cbject. If tiie elements of K_ are large (pa=ticu'arly lae

diagenal el-ments) the prior information about the si;nzl is small, Heuce,

1Y)

for large a priori uncertainty about the object, K- = 0, By
o

¥,

-1 -1
'(:‘c = 0 we mean that the eletnents of Kq arc small in comnaricen

with A'(gC" + Kﬁ)- lA-

For large a priori uncertainity we can write Il 2= fol'ows:




o LAY e “lgg=l Y - -1 raan
= 5 [A (gbz + Kﬁ) Al A (guz + Kﬁ) . (40

Since K’.‘. Ly 0 for large a priori urcertainty, the cstimate §° {or this
case is unbiased,

To evaluate the optimum estimation or resteration procedure, we
must find the MSE for the actual but utnknown object vecto. io.
Assuming large a priori uncertainty we have for our minimum M!"T
estimate of io

5
x

1 t "1 "1 ! -1 :. AN
o = -1; [A, (gcz + KI.;.) A} A (ng + Kﬁ) (ZIT"bn;. (")I

Given that the object vector is s':o, the MSE is given by

~

A
- - - - '
= ) - - 50
e=trE [(xo x _)x =% ) ]l. (50)
Substituting (49) into (50) yields

! w] el ot -1 =
= tr[[A (gC_ + K- - -1
e=tr([A(gS, + K1) AlT AleC_+ K21 [gC_( ) + K=

—~
[ ]
»a
-

. Rt ! R )
[eC, + Kz1™ AlA (gC_ + k=)' ]

where pz(xo) = T(aix + ni) 6i.

Je

Let us consider a simple example to i.vestigatc the weighting

(o]

due to :':o (the actual object vector). Assume that we have a slit ajerioe,
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white noise, and that the object is made up of two point sources which
are separated by the Rayleigh criterion distance., We will make k
measurements at the peak of each point spread function, Also, let

D/vR equal one. See the Appendix for clarification of these assumptions,

The 2k x 2 matrix A becomes

O "0 r= 0 e

Substituting this matrix into.(Sl) an& carrying out the indicated operations

yields
1 "bz +b° z = 2
- = - - - . £ 52
e k[ 5 (%g; +%gp t 1y +10,) 102 ] {52)
Tb
iOI
where k=0, 1, 2, . . . and the actual object vector is X = (- .
o X0
. . - . s . . = = S - -
The weighting due to x is not significant if B, + n, > X01 + X052

(small signal-to-noise ration (SNR) ), if T becomes large, or if o‘ﬁz is
large, Figure 3 ‘shows how the error varies with T for various signal

values, a single noise value, and k = 1,

2 .2

by +b) o

8
In general as T becomes very large, K->>gC = ~——n—— (a.x4#n.) ...
n z ‘rbz i i)

Hence, as T becomes very large (51) reduces to
1 - -

e=tr (AR, A, (53)

For the special case of white noise (i.e., K. = ¢ ZI where I is the

identity matrix} we have

i
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k=1

n12+ 2=100
c-“210

n

(@,2+,2/ 2=2

5 10 15 20 25

Error e versus observation time T for the case of two
measurements of the image of two point sources separated
by the Rayleigh criterion distance.
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e = cr.f‘ tr (a'a)7, (54)

-1
The factor (A'A ) ~ in (54) can be thought of as an amplifier of the
2
noise c- . The amplification increases with decreascd aperturc size

and/or decreased spacing between the point sources, Let

G=tr(a'a)’, (55)

To investigate the nature of G let us consider the infinite slit aperture,

The point spread function for this case is

D>  sin’y fD/VR(£ =b}] (56}

v2R® *IvR:(&-h)] 2

where D is the width of the aperture, h is the distance of the poirt cource
from the origin, and R is the distance from the image plane r.»d object
plane to the aperture plane, For simplicity, corsider ~n object
cousistirg of two point sources (one at the origin and one at a distanze

h from the origin, see Figure 4). The A matrix becoimcs

£

A =

(0% 1v2R?) sinc? [D/vR) (&, -h)] (0% /v2R%) sine:z[Dgl/vR]‘l
- , (
0% Iv2R?) sinc? [D/VR)(E, -h)] (D%/v*R?) sic[pE_tum

where gl and gz are the measurement positions in the image pir-e




28

Figure 4. Optical system configuration for an infinite slit aperture

and two point sources.
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and sinc x = sin wx/ wx, If we make one measurement at the peak of

cach peint spread function and let vR equal one, we have

2 2
D D sincZ(Dh)]
A= . (57)
D2 sincZ(Dh) D2
The amplification factor G then becomes
=1 2]l + si 4 o)
G=tr(a'a)”} - 2[l#sinc (TM)] (5

)
D* [1-sinc® (Dn))*

Figure 5 shows how the amplification factor G varies with aperture
width D and separation of point sources h, The atrupt ircrease cf
1°g10G occurs when the size of the object (separation of the two poirt

sources) becomes approximately the size of the point spread function

(see Harris and Rushforth (1964)).

S_Eeci:.‘.i Cases

Because of the complexity of the general estimate in (46) we wiil
consider various special cases in order to gain a better underatandino

of the estimation procedure,
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Figure 5.

The logarithm of the amplification G versus point source
separation h for several values of aperture width D.
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Prior information dependence

2
Let Cz= c, I, Ki= T

5° and Kﬁ = q‘ﬁz I. Our estimatc of

X then becomes

sl am 1] A
ur 2 2 2 2 2
gor +o. o~ ge_ +0.
& n X z n
(60)
A'a 1]t %
+ + .
2 2 2
gr +o- - o
x
A : 2
For large a priori uncertainty, g >> go, + Tq » We have
£= L @a'a) Al (g-briy (61)
b
which indicates that we ignore the a priori mean ;"c For large prior
information, g o 2 +0 -Z >'><r,,z , we have
zZ n X
T =
X ® X (62)

which means that our prior mean is very reliable and that we lnrrn ve" v

little from: our experiment.

oo e e e e T S e
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Large a priori uncertainty

Consider the case of large a priori uncertainty (i.c., KS’; = 0).

Our estimate of X becomes

LX),

L e y~lar=l ! ! = 63)
= — [A'(gcz +X=)TA]T A(gC, + K2} (z-ba) (63)
and the MSE is

e =tr[[a'(eC, + K2) A T A'teC + ko) (gC_(R ) + K=) (64}
*(gC, + Kﬁ)-l A[A'(gcz + KE)-IA] -t ]

Matrix A with inverse. If the system matrix A is square and

invertible (63) reduces to

2 . =
x=A " (2/bT-n) (65)

and (64) reduces to

e =tr [A'l(gcz(-;o) + Ka)A"l]. (65)

The above estimate of X is an intuitive estimate since all we do is
divide out the multiplicative effect, subtract the noise, and then pass
this result through an inverse filter. This procedure is illustrated in

Figure 6,
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Small signai-to-noisz ratio. For small signal-to-noise ratic
(SNR) (i.e., ai):c <<1;xi) the linear filter H becomes
H= L[a'grhs,, + ka1 A gras, + k)™ (6T
b iij n’ R OB § n
and the MSE becomes
e= tr[A'(g‘rx;; 5.. + K-)-IA] -1 (68)
iij  “n '

The MSE error becomes independent of io for small SNR (see Figure
3).
If the noise is independent of i (uniform noise) then ﬁiéij = NI

where fi, = N for all i, For uniform, white noise we have
1

H= »(a'a)la' (69)
b
and
2 a1 e
e=(g1'N+o';)tr (A'A) 7, (e

Perfect detector, For a perfect detector, B in (17) is a constant

and hence each photon gives rise to exactly the same number, b, of

2
photoclectronz (i.e., O'b = 0). For this case

- 1 ! - =\‘ 2--1 -1 t = = 2_-1 -t
H [A (‘r(a,ix + ni'éij +T Kn) Al " A (‘I'(aix + ni)éij +T Kn) (755
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and

. 2\ ' = 2 =] =] 1 == .. 2 -1
= 2 PR f 0
e (1/1‘ 'tr [[A (T(ai + ni)éij-!-‘l‘ Kﬁ) A] A ‘T(aix+ni)oij+‘r Kﬁ]

(725
e[rlax +r=1.)5..+1'2K_][1'(a. %45 )6 +-rZK ]'IA [A'(r(a x+i )6 +1-?‘h )"1A”'1
iTo i 1§ R i il fi O Lt TR Ul

1
I

F:xcept for the constant b in the expression for H these are the same
results that one would obtaiv if he were to ccunt the photons ir-ident
upon the image plane and in turn find the minimum MSE estimate of the

mean rate of signal photons emitted from the optical object (i, e.,

minimum MSE for no multiplicative or detector noise).

Large ¢dditive noise covariance matrix, For large Kﬁ (i.e.,
K!. >>ng) we can write
4

)

3

o
b
n

l_ (A'K--IA)-IA'K-“I
b n n

(el

o
"

1. =1, .=1
tr (A 1’\1_'; A) .

(4
For thir assumption the minimum MSE becomes independent of the
multiplic>‘ive noise,
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Photon-electron converter

The photon-electron converter is a degenerate case of the photo-
multiplier tube case in which we consider only its {irst ste.ge, This is
the detector model that Helstrom (1964 usecs in some of his work on
optical signal detection, We are assuming that the stream of photcus
v that impinge upon the ith cell has a conditional Poisson dictribntion
with a conditional mean rate of ;’i = (a.i:'( + ﬁi); hence, E{ yi/:':, f) =
var (yx/:':, n) = }.ri. In the photo :-electron converter each photon gives
rice to an emitted electron with probability 7. The stream of phuto-
electrons z, being emitted from the ith cell, therefore, has a conditicn=!
Poisson distribution with a conditional mean rate of n(aii + ﬁi) = v,

1

gince a Poisson process is preserved unc r random selection (Parzen,

1952)., Hence, var (zi/x,ﬁ) = E(zi/:':,'n) 'rn'ri. The ircoming photeons

and emitted photoeleciroas are related by their means:

nE(y,) = nE(ax+n) E(z,). Since z isa Poicson precess,

var (zi/;:, n) = E(z,/%,0) = nE(y./#,n). From previous results ~nd
i i

veing the Misscndistribution properties, we have E(zi:"'c,ﬁ) =

- - - - 2 - -
bE(yi/x, n) and va.r(zi/x,n) = (o + bz) E(yi/x,n), Hence, vie can

b

use the previously obtained resuits and apply them to the photon-eloctron
converter case, This is done by replacing b by n and replacing
2 2

o b +b by nm. Hence, for the photen-electron converter (assuming

large a priori uncertainty) we have
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o
~—

= 1.ra? - 1, .=1 ¢ 2 -1
H= ;[A(Cz/n-i'r K A] A(Cz/n-l-f K-) (7

and

H

- =(1/1‘2)tr“A‘(Cz/q + TzKa)-lA]-lA'(Cz/n + 721{;)—1( cy(fo)/n-wzxa)

H(C,/m + 77K ALAC /n + 77Ko) A ] R
As n approachecs unity these results approach those fnr the case of no
multiplicative noise, 1.ie case of n =1 (perfcct detectcr) implies

that every photon that impinges upon the detector causes a:: electron to

e emitted with probability one. As n approaches zero, the error

becomes extremely large.

£stimation of mean rate X from observations of z

In many realistic cases where we have large number =f counlz,
equipment capabilities allow us to measure only intensity or rean
rate of photoelectrons z, (We are assuming that ths sample mean

ernzls z by the law of large numbers,) For this case we want to find the

Fa
linear estimate x nf x from observations of z which wil! minimize the

A
mean-square error; that is, find % to minimize

N A 1
e = tr Ef(x-x)(x-x) ]. (7
A
From the estirnate X we can obtain an estiinate of thn irfen-itv vertor

A
by multiplying 2 by hv . From previous rasults z = by. We alss have
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¥y = A% +n, (7%)
E(j) = § = AR +4§, (79)
™z) = z = blAk + 1), (e0)
COV(vi. yj) = (AI<_;:A' +K=-), {81)
Cov (5., 5.) = bX(AK_A! + K-=) (82)

i’ % X n’
Fcr the linear estimate of X we can write
A- - -
% = H[Z - b(A% + 2)] + o (82)
ral

Substituting this expression of X into (77) and carrying cut the erectati-n

operation, we obtain

1 1

"'1 - ﬂl -1 1 -
H= 1 K-A'(X- + AT ' = lLa'k. - e 4
= B (K~ 4+ AX-A') E(AI«:n A+Es") AKs". (84,

Ilcnce, our estimate of X is

1 1

e .
- 5 1 A:K_- A+ I{..-l -1 ] -l = = 1 - =l =1 _1..: .
% S'( 2 A+KT) AR (E-bR) + (AKST A +KS) K] 5(85)

-1 A . - .
For K; * 0 (large a priori uncertainty) the minimum MSE is

e = u-(A':g," IA)-I. (841
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This is the same result that wan obtained in (53) wherc we let T become
large., Except for a constant b, these resulis are the same as thoce
for the case of measuring image intensity, and fiom this estintnting
the intencity of the object vector in the absence ol any multipiicative

noise (Rushforth, 1965).

Estimation of mean rate y from 2z

The purpose of considering the estimate of y from measurements
of z is to use the results in a later section for the detection of unkrown
signals,

o -
We want to find the linear estimate ¥ of y which will minimize the

mean-square error
A2 .
e = trE [(Y"Y) (Y"Y)’] (87)

where y = H( z /T -b’)zr) +§. When "'): is substituted into {57)

and the expectation operation carried out, we obtain

2 2 2 2. .t
e =tr[H(b'1Z- + +b7°)C /T7YH -bHK- - bK-I* + X-1 . (88)
[H( = (wb ) ” ) - 7 yl

Tue H that minimizes (88) is

-1 .
H= K- C o (3o}
y (g 2t Ky)
b
2 r4 2 2 ‘s o : .
where g = (¢, +tb )/ v b . Hence, the minimu:a M3E estimie i

b
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y is
~ -
- 2 2 z 2 1 =1 - = )
= brlK- 17 - he- . (9C)
Y Y[(t!'h-i~b)Cz+b‘)'u.yj (z=bty) +y
2 2
For the photcn-electron converter b =nand (o-b +b) =n; hence,
c 2 1 - -
a r r - - b -. (;*
y TIxy (Cz +nT Zx.y) (z=mTy) + ¥ (¢1)
ForK_ = o'-z 6ij we can write the estimate of ?i as
i
2 =
: To-;:i (“i-n‘ryi) -
= v 23
hWETE 2T tw St
¥ Y,
Tor the statistical model we have been assuming §’i = Ui/ai LI
0"., 2 = ui/ a,z (see (7) and (10) ); hence, after cubstituting these
. i
‘i
values into (91) and rearranging we obtain
z. +u,
-~ i i
Y. =TT (93)

1 nT +ai

Optimum Sampling Scheme

When the additive noise covariance matrix is larje or fn- large 7

the error expression reduccs to that of the additive-noire-orly case:
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1

e = tr (A‘Ka' A)-l. (94)

The problem we now face is to detcriine an ortimium rarpiing
nrocedure which will minimize the above error exjpression. We are able
to vary the matrix A by varying our sampliag rositions, Thus, for
some optimum sampling positions the MSE will be mirnimized. The
optimnm sampling procedure for this case also applies to the case =&

samall SNR with urniform noise,

White noise

For white noise K_ = 0'-21 and
f n

e= a'r-? tr (A‘A)-l. £63)

Sinple point source, Consider an infinite slit aperture waich is

equivalent to reducing the optical problem to cue dimension, The

noint spread function for this case is
[p?/v?R%)sinc? (2 (-] (9¢;
v

(see Figure 4 and the Appendix). Consider the normnlized cas~ whera

“he noint spread function is

o R
v = T S T
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2

sinc’(g-n) = 252 Lo (97)
m (E-h)

C s ce -1 .
Our objective is to minimize tr(A'A) by properly locating our
samples, Ior a single point source located at the origin in the olject
plane and making k samples in the image plane, the matrix A becomes

a vector of the form

sinc gl
.
A=y, {JE)
*
sinc gk

where E,l, ﬁd, 0000 gk represent the positions in the image plane

k 4
wherc the samples are taken, A'A is then 3 sinc "¢, and
-1 -1 k 4 i=1 h
tr (A'A) = (A'A) = 1,'21 sinc gi. Since we are frec to
1=

make the measurements anywhere in the image plane, we waat to mak-

k 4
the measurements such that .21 sinc gi is a maximum, It is obvious
i=]

that we want to make all of the measurements at the origin (i.e.,

L. =6, i 1, 2, «.., k}. Hence, tr(A'A)‘l = 1/k. Thuaen far the

1

riinimum error expression we have

L2 1 -1_ 2 fan
e -O'ﬁ tr(AA) —ﬂ'ﬁlk. \9,;

min

The error is inversely proportional to the number ¢’ menzuvemeonts,
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As Kk apprciaches infinity , e . approach-s zero, The abave sampline

min ;
schicme applies to all well-behaved point spread functions for the case
ol white noise.

m point sources and &, measurements, Assumec that our object

consists of m point sources and that they are scparated by the Reyleigh
criterion distance. By the Rayleigh criterion distance, we mean that
the ma ximum of the diffraction pattern of one point source overiaps the

{irst minima of the diffraction patterns due to adiacent point sovrces,

. L. 2 -1
We want to minimize e = v tr (A'A) ~ when we have rm point ccurces
and make t measurcments,

Glit aperture, For a slit aperture the general expressicn for the

poirt spread function is

2
D 2
sinc” [ D__ (£-))].
szz vR

(i07)

To simplify the mathematics we assume that the point spread
function is normalized with D/v R sect equal to unity, The point spread
. .2 . .
functisn is then sinc ( § -j) vhere j = ...-3, -2, -1,0, 1, 2,3, ....

Tt~ normalized system matrix for the slit apertuvre case becrmes

P

‘sincz(%-l) .« o Bincz(gl'm)
A= . . (i

-si;mcz(gl -1} . . si;zcz(gz-m)_' .
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Figure 7. Optical system configuration for an infinite slit aperture
and point sources separated by the Rayleigh criterion distance.

o
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The optimum sampling procedure for this case (see Appendix)
is to sample £ /m times at the peak of each point 8pread function. If
£ /m is not an integer (i.e.,, -¥m =k +n/m) the optimum procedure
is to make k measurements at the peak of each point spread function ani
one addition:l measurement at the peak of any n of the m point sprecad

tions, If ¢ /m = k (integer)

e = o_ﬁZ tr (A'A)"l = 0'1.? m/k (10?)
IS

where m is the number of point sources ~ad k iz tL2 romber of
measurements per point source.
Pectangular aperture, For the rctangular aperture the genera!l

ervpression for the point spread function is

2.2

ab 2 2

——— ginc [_2_(£-j)] sinc” [ __ (L~i)]. 1
2.2 [ = (£-iN = (L-i)] {

Normalizing this point spread function by letting a/vR =b/v R =1
: 1 . 2 F . . 2 t‘ z . .
+iel's sinc (& -j) sinc ( §-i) where i, j=...-2, -1, 0, 1, 2, 3, .., .
The optimum sampling procedure and MSE for this case 2re the
same as for the slit aperture case,
Teor point source spacings less than the Ralcigh criterion Qiciance
the optimum sampling procedure becomes verv comrlicates! and wiil

not be considered here. Harris aud Zushiforth (1936 voovh ort novoe

sohecific emzairles of this case.



46

‘aoueIsSIp UoiIalrId ydrardey ayj
Aq pojexedas sadinos jutod pue aanjazade zemBueidoes e 103 vonjeandiyuoo wwysAs resnndo

-g 2an8y 1

TR



i

g

fika

47

Colored noise

Because of the complexity of the colored noise case only a single
point source and ‘{wc measurements in the image plane will be consider=d.
We will assume a noise covariance matrix of the form

! o-cldl
T(- = - 4
B I | (104)
e 1
where Idl is the distance between the measurement positions (i. e.,
la] = [gl - gzl) and c is a correlation constant, The inverse of the

Kﬁ matrix is

1 _e-C|d!
=1 1 _e-C!dl 1
%2 =3 eE (165
crﬁ' | Y ¢ |d|

For the present case of two measuremen's and one psint source the
system matrix A is a two-element vector, If we assume that the noint
source is located at the origin of the object plane, the normalized

system matrix A becomes

‘ sinczg1
A =y 2 (104,
\sinc §2
where gl and g, are the mcasurement positions ir the image plane,

As c approaches infinity, Kﬁ approaches o'ﬁz( (1)(1)) = r:'iz I which

implies that the additive noise i3 uncorrelated at any two pocsiticns ox

*hat we have white noise. As c approaches zero, K. approaches
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1
1

two pogitions,

c= (1 } which imjlies perfect correlation i the addiiive noise at any

We need to solve the errox expressicn to find the mensuroment
positicns necessary to minimize it, The error expression (with o~ = 1)
is

I e-Zc ]

[ -1 -1
e=tr (A'K-"A) = cldl, .4
O - ‘,52

(107)

. 4 .2 .2 -
sinc gl-z sinc gl sinc gze

There are four cases that can possibly minimize the error
expressions of (107), Each of these cases necd to be investigated i~

order to determine the minimum error conditions, These four casec3

are listed below,

Case 1, Let §1 = gz = 0, This implies* thate = 1,

* . .
Consider the general aperture case with onz point souzce and two
measurements and an arbitrary covariance matrix of the form

K___:d__z(l a)
n n {a 1/

2
and let A =( a

a

\ 2/
Evaluate e for a1 = a,z and a = 1, In general

2
q o1 =1 0’5 (1"3 )
e=tc(A K~ A) "= =

a.1 -Zalaza + 3‘2

Fora,=a

2
1 2 0'5 (1+a)

e:: _2——.

Za1

Now for a =1, 5 2
e=0c~ [a, ,
n 1

e o = i e




il
i

il

i

49

Case 2, Let §1 = —§2 which implies that

"20'51'
e = l+e < . (1C8)
2 sinc gl

Case 3. Let §2 = 0 and vary 51 which implies that

1 o7 1% 109
e = . {1C9)
1-2 sincztg1 e cl&y

Case 4. Let gz approach infinity and vary gl. This implies
that e has a minimum of uaity for gl = 0,

Cases 2 and 3 need to be investigated and compared with cases 1
and 4, Cases 2 and 3 were programmed and the error ¢ rmined for
varying gl and also for different values of c. Cas-»3 2 anc 3 were
found to be always as good or better than cases 1 and 4. The value of
c determines which of cases 2 and 3 gives the minimum error. Tor
¢ less than about 1.5, case 2 gives the minimum error; and for c
In»ger than 1.5, case 3 gives the minimum error. Figure S shows
the minimum error possible versus c, Figures 10 and 11 sliow the
error obtained for varying gl for cases 2 and 3.

In Figure 10, for case 3, note that as the value of c beccmes small
thz error becomes small and in fact approaches zero as c aapreaches
zero, When c is zero the noise is constant from ore nccitic.a to

ancther. Hence, if the nnise plus signal is mezsured at tie peak of
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Litaimum possible error

C

Figure 9. Minimum possible error versus correlation constant ¢ for

the case of colored noise, a single point scurce. and two
image plane measurements.
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1.4
6, &
L _46 l'_
1.2 | Case 3
°
c= lo 0
1.0 |
-
5
¢ : 10
.6 |
50
.4 L
- .1
L4 2 .
S —/
o $ 1 1 1 1 1 1 1 A 1
0 .2 .4 .6 .8 1.0
Figure 10. MSE e versus distance |d| between the two measurement

positions of tase 3.
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Case 2
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0 ,2 .4 " 3 75 TI0
ldi = |€1 'gzl
Figure 11. MSE e versus distance |d | between the two measurement ;
positions of case Z.
f
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the point spread function and the noise is measured at the nuli
rositions, the noise can be subtracted from the measurement at the
peak and only the true signal will remain since the noise for both
pcsitions is the same, Note, however, that in this latter case the

multiplicative noise must be considered.

e e A R




OTHER ESTIMATE!

Intr oduction_

In this section we will investigate three other types of estimantes:
the Bayes' estimate, the maximum likehihood estimate, and the maximum
a posteriori estimate. Throughout this section 2nd the romaining secticns
we will consider only the photon-electron converter detector with a
quaatum efficiency of n. The incoming photons due to both known signals
and known noise will be assumed to be Poiscon distributed. Unless other-
wise stated, whenever an a priori density function is needed for the mea~n
rate of ...cident photons we will assume it to be a gamma distribution
with known parameters (see Statistical Model section). Our motivatiosn
for using this distribution is due to its unique characteristic of genercting
another gamma distribution as an a posteriori density functio~ when
combined with a conditional Poisson distribution ir. the Bayes' formul .
The gamma distribution is also physically reasonable (Goodman, 1965;
Farrell, 1366).

We have defined )'ri to be the me an number of phctens tl;at are ‘-
cident upon the ith cell of the image plane per unit tine and m'r.l a3 the
mean number of photoelectrons that are emitted frcm the light cenritive

th

i cell per unit time.

Since the stream of incoming photons are Poisson distributed for
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known signal and noise, the probability that y. photons strike tho itb' cell
p y Y;

in time T, given )'ri. is

R A M A
Py, /y) = - (110}

y; !

t

Likewise, the probability that z, photcelectrons are einitted from the i

cell in time T, given §., is
’ 1

- Z,
. (‘r"l' ‘Ii) 1 a -yifn
P(z./9) = = . (111)

1

If we assume that the photoelectrons or ""counts' are independent for
each region (i.e., the number of electrcns emitted in each region is

independent of those emitted from other regions or cells) we con writz

p{z/$) =p (z} z, ....zmlir)

’ - (112
m m  (qT }'ri)z‘l e MY
= ]I Plz/9 =TT 2 :
i=] i=1 i

This is the probability that z, electrons are emitted from cell 1, z.,
electrons are emitted from cell 2,..., and Zon electrons are e~iited
from cell m all in time T. We will also assume that the mean rate of
noise photons is fixed and known when the noise is considered inderor ..
cntly of the signal.

The estimates of yi obtained in this scction will be used fcr the

estimator correlator detector in the section on fixed-sample detection-

i sateriandae bt ey




Bayes' Estimate

Ty

By definition, th: Bayes' estimate is the ¢ (z) which miaimizca the

average risk. When an incorrect decision or ectimatc is made 2 loss ox
”~
a cost results. If ¥ is the true state of nature and we say that y is the
&
state of nature, we lose an amount c(§, §}. The information about the
experiment is contained in the conditional density function p(z/y!, which
is assumed known for each §y. With the a priori density function £(§), the
~N
loss function ¢(¥, §), and the conditional density function p(z/y) for each
”~

¥, the estimate y can be found which minimizes the average loss.

The mathematical form of the Bayes' estimate is obtained as follows.
1f -y: is the true state of nature and we observe z, then we lose an amount

= & & o

c(y: y(2)] by using the estimate y. When y is the true siate of nuture

the risk is the average of this loss fincticn over all possible outcomes of

the expcriment. That is,

o33 = [o [ ey Sialeta/s da. (1

0"

D

The risk depends on both the state of nature y and on the estimate

el

The average rirk is the average of p (¥, §) over all possible rtetes

of nature. That is,

A 00 A L o & - - - ne g
P = [on [ ot3, M7 = [ov: [ <3 yenleta/iind. (14

Using Bayes' Theorem we obtain

il

|

wafiwiflibasso i

T s

bt



il

il

57
A pwp D
0 = [on [ cli it apiadies
= (11E:
m Y é
- [/ b die, (V)dz
8 L u

) ®© &
where P, ly) = [:..[ cl v, y(2)] £{y/2)d¥ is the conditional risk. Since
oS -
-~ ~
P (=) is non-nega .ve and indeperdent of y, we need only minimize P, ly}
-~ -
for each t in order to reinimize ply).
~
It is now necessary to specify a loss function ¢(3, y}. We will con-

22
sider the quadracic loss function K{y-vy) where Il i+ a positivc constant.

Useing this loss function our problem reduces to mirimizing

3 ®p.T2 - -
2 (=K [ [G-9 512165 516)
1 -m '
~
for each z by choosing the appropriate estimate y.  This mianimizatien
”~

is accomriished by differentiating P, (y) with respect to ’;: and equating

the result to zero. That is,

-3:_:— + o(y) =-2K ﬁo-[‘(if-if)f(;f/z)dy: 0. I
y \.‘.,,<>° [

N
The solution of this equation for y yields the Bayes' estimat:
A w0 - -
v= Lo [ $85/2)85. {1:2)
o o
~
"eace, for a quadratic loss function the Bayes' cstimate y is the mean

of the a posteriori distribution f(y/z).

Vie will now {ind the Rayes' esrimate of 1A which ir the average

%,
PR L]

number of signal -plus-noise phot<r s which are incident vnon the i ¢ ¢
g P e

e SR cainog, . v &
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Assume that the a priorn <density funrtion

<f the image plane per unit time.
of the mi~an rate of signal-plus-noise photons Vv is
@i e T

. m m o
£ - -
4y = TTiy) =TT )
i=1 L i=l E
otherwise

The conditional Poisson

=0,

(120)

- 1'-. - 23
e Vi 33l

distribution of the ou.} 1t photoelectrons z is
m

- m
pla/y) = TT ple/y) =
i=1 i=l

where z, is the number of photoelectrons or "counts" eraitted frein the i

z!
i

where m: is the number of cells in the image plane.

(121)

cell durizg time T. The a posteriori density function of y, £(v/z), is given

by Baves! formula
=1 = PLZ/VEY)
f(y/z) o(2)
where
p(z) = fm [ arminey
m_ @ inT) % Tz b
= —~u. ¢ (123
I N TN e )
(122)

The a posteriori density function becomes
- Zitu.=l ~(a.+nT),
m (al"""lf)[yl(al"'ﬂf)] l+“l IC (a}"‘ﬂ )'3.
T \::i+ui)

fly/2) =
i=1
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The Bayes estimate (conditional rnean of i.l) is then

A zi+ui
e (124

For this case the conditional variance of ;'i is

z2.+u,
1

var (ii/z) = (125)

2
@, +17)

As T becomes large,E(fri/z) approaches zi’"T and var (fri/z) approaches
zero. Hence, as T becomesl: ge the estimate ;’i approaches the true
value of ’.’i since the variunce approaches zero. For multiple sampling

the Bayes' estimate becomes

k j
Z z, + u,
£ k j=l
= = 1
vk =¥ (a, +Fa7) (126)
where "he superscript k represents the number of samples.
Now assume that the a priori density function of the mean rate of
signal photons s (8 = Ax) is
m m ﬁi(BiEi)uiule'Bisi i
fiey= 11 £3,) = 17 N . 8, >0
i=l i=l i (127)
=0, otherwise.

The mean rate of noise photons are now assumed to be fixed and known.

The distribution of the output photoelectrons z, is
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(s
p(z;) = f p(z,/5) {(s)da
o (128)
e'ﬁi"T(nr)ziBiui z; zi\ ﬁ: r("’i*' u.—&'.)
= zi! r(ui) 9.2-:-.0 ‘2 (nT +(,)z +uy -2

where

(z;) =zt /(z=2) 1yt (229)

N

Using the Bz yes' formula and (120), (127), and (128) yields

-3 T)s. - =
eyt )Sl(si+ni)zis Yr +B)z1+“

f(§i/z) = . (130)
1 Z.

- L
15 [ni (nT + Bl)] r(zi + ui’ %)

L =0 £

The Bayes' estimate of Ei is then

1\[n (8. m-)]*'r(z +u.+1j)
- 1

z (
z (
=0 \

W)

(131)

[ni(@i‘h"r)] 2?"\'zi'5'ui"‘ £)

A~ =
8

=(z, + v.i)/ (ﬂi +nT) which is tha

Tor ﬁl = 0 this estimate becomes
came as (124).

The estimate of the object x nsing the estimatc of the objects' imaje

| i




A

il

il

61

ard (A'A) 'IA' is the pseudoinverae of the matrix A (Deutsch, 1965).
The direct derivation of the Bayes' estimate of the mean rate of phuious

% emitted from the object is very difficult and will not be considerct'.

Maximum A Posteriori Estimate

When no costs are specified in an estimation problem, a rca:onable
estimation procedure is to maximize the a posteriori density function
”~~

£y/~) = £(y) p (2/y)/p(z). The maximum a posteriori estimate y ig

cefined as the value of y that maximizes f(y/z).

The maximum a posteriori estimate of y ig found by solving the m

simultaneous equations.

-—a.—'- f(;/Z): 0 (l = l: 0ocoop n'l)o
ayi

(133)

1
Since f(y/z) is a monotonic function, £ nf(y/z) has its maximeu:: "¢ the

same va'ues of y that maximizes f(v/z). Hence, we can colva the foméea

oiem

t m sinultaneous equations.

2 tn f(§/z)=0
3,

(i =l. 29 "o 0 m).
1
Thare may be several roois of these egnatiraz iss whick cnne thin goltion
y'that yields the highest peak of the function f(y/~) must be cinsen. Cinc:
the dencminator of £(y)p(z/y)/p(#) does not depend on ¥, mrximizie

fiy/z) is ecuivaleat to maximizing £(7)p(z/y)-

We will now find the maximum a posieriori estimat» o Y, vhich ig
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the average number of photons that are incident upcn the i cell or recicn

of the image plane per unit time. Assume that the a priori density {uaction

of the mean rate of signal-plus-noise photons y is

- u,.-1 - ;r
i”1
m ai(aiyi) i e

m
=TT ay)= T1 - ¥;20 (135)
i=l i=l r (ui)

0, otherwise.

The conditional Poisson distribution of the output photoelectrons z io

-nTYV. - Z.
m en Y (ﬂTYi)z‘

. z, ! ) (124)
1

- m -~
pz/y) = TT plz, /) =
i=1 i1

Mow maximize p(z/y) f{y) with respect to y. That is,

- | |
2 inpe/Hi s 2 T [ iy + tnplz, /) RED
9y, dy, i=1
] J
(a,-1) .
= - -a, '!'—:'L—' -n7 = 0.
y Ty,
J J

Ilence, the maximum a posteriori estimate of ;'i is

PN z, +u. -1
= 1 1
Y‘ = .

i
ai+ nT

1%

(122}

Now assume that the a priori density function o ‘he mern re*e of

signal chotons is

e e i e
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-.u.-1 -Bs,
m B.(B. “-)u1 i
f(s)= 11 —-120 .,  85.50
i=l r(ui) 1=
(139)
= 0, otherwise.

Assume that the noise is fixed and known. Maximize p{z/s) £(7), vhere

p(z/3) is given in (136), with respect to s. That is,

d

m
~— 2 n p(z/s)f(s) = 2 3 [ tnf(s) + m p(z_/s)]
55 a; i=} b
J J
{140)
u,-1 z,
= J -B_ _.n-r .i._J.__:.. = 0.
§j J s. +n,

J J

Hence, the maximum a posteriori estimate of Si is

~
8,

s = - a N
) 7 + “i'x'ni("‘riﬂ)_f VI ni(-qT + Bi)-zi+ ui-l] + 4zi(.1i-1) .
1

2(nT +B)

(g
This solution becomes the same as (138), as it skculd, wien the 1juenn

rate of noise photons n, is equal to zero. Again the estimate of the object

x usingz the estimate of the objects' image 8 is that of (:32).

Consider finding the estimate of x directly when the a priori density

function of s is that of (139). To find the maximum a posteric:i estimate

of % we must find the value of x that maximizes p{z/¢)f(3). This vai:-

of % is found by taking a derivative of p(z/8)f(s, with resrect to » and

setting *he result equal to zero. When thic is dovue we cbtain

e DR
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A (uiel) z, m
- T — .= 5 a.. = 40
. [ ax By+nr+ a x4n, ] alJ .> Ytau o (144)
i=1 1 i i i=1

where Yi 3 | (ui-l)/ ai:.: - ﬁi + 0T + z.l_’(ai;: + ﬁi)]. In matrix = ~*otion

{142)  can be written as

Yia =0 (G=1: 20 «v0s m) (143)

where aj is the jth column vector of the system matrix A. Since (142)
nust hold for all j= 1, ..., m, it constitutes a set of m equations with
™M unknowns, X, ... ,:':m. which are to be estimated. For the set of m

1

cquations we bkave

0
A'Y:E: . ’ (2<4)
0

which says that Ymust be contained in ihe null space cf A'. If A has an
inverge, the null space of A' contains only the zero vector. In this caze
"ve have the solution Y = 0 which is 2 unique solution. Y =0is *"~.ysa
golution of A'Y = 0, but if A is not square there will L2 other sviaticns

{0 unique solution). For Y'A = 0, Y must be orthogonzl to 2il th2 ccluniis
ci A,

We will consider the solution Y = 0 which implies that

= ¥ n n £ - [y o : +4 (N . ) '
ax =z + ui-l-ni(n‘l' +p i) +‘\r[ni('q1'+ B i) zi-} L 1j +471(“i i) (145

me)

i

”~ -~
in rmatrix notation this becomes AX = 8 or
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1 &
(146)

)

x=(A'A) Ats.
This particul:r solution gives the same rcsult that was obtained by first
finding the estimate of s and then using it to find the estimate of x. We

rust keep in mind that for the present case, (144 has other solutions

besides { 145) and that there may exist several relative maxima of

.n p(z/s)f(8), from which we can have only one maximal value. It is quite
neasible that the solution of (145) does not give rise to the 2hsolute max-
i'nur of p(z/s)f(s) in which case (145) would nct be the maximum a

posteriori estimate.

Maximum Likelihood Estimate

The maximum a posteriori estimate der ends on the a priori prcbabiltiy

density function, but for some situatiors no such a priori inlsrination may
2 avatlable. Under these circumstances we need to consider (:e max-
Also, if the a priori density function is Lvon’

imum likelihond estimate,
znd flat and relatively independent of y over the region where p(z/y) is

significant (i. e., initial knowledge of y is very sr2ail) then manimisine

ix.'y) is nearly equivalent to maximizing f(y/z). The value of y whic!

manzimices p(#/y) is defined as the maximum likelihco:! estimate of <.
S'nce p(z/Y) is a monotonic function we can solve either of e tvn

equations ap(z/§)/a§j = 0 or O tnp(z/y) /a;rj =0 for thc cstimate of Tt

we have
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d .3 . m SN %
== - dnp(z/y) == 2 [z. mtTyy) -nTy.-4n(z.l)] = =~ -q7. (147)
oY DY . i i i Y.
J j oi=l j
Hence, the maximum likelihood estimate of y, is
~ zi
Y, = ————, 148)
y,). nT { !
The maximum likelihood estimate of 38 is found in the same inanner
as abova. That is,
3 z,
—_— n,np(z/y) = - J - -nt = C. {14
8. S, +n,
9 J bl
lence, the maximum likelihood estimate of Ei i
PN zi
8 = -ﬁ, . (15'))
1 nrT 1

The estimate of the object x using the estimate of the object' s inage s
is the same as in (132).

Now consider finding the maximum likelihood estimate of the
object x. To find this estimate we neced to find the v:ive of % that max-
i=uizes p{z /%) or alternately anp(z/x). Taking the derivative of gnp(=/*}

vith respect to x and setting the result equal to zerc yvields

m Z, m

——?— mp(z/%) = & [————— ntla, =3 Y. =0 (174}
%, izl a. X+n, )= J

h] i i
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where Y, --zi/(aii +n) -nT. In matrix notation this is written as
i
Y! a:=0 (j--l; ne vy m) (152)
J
: .t : :
where o, is the j  column vector of the system matrix A. Eguation
(151) holds for j = 1,2, ..., m; hence, it constitutes m equaticns in the
m unknowns ;‘l' cees ;‘m which we want to estimate. Using matrix
notation this set of m equations can be written as
0
A'Y=0={. {1573)
0

which means that Y must be contained within the nul' cr2ce of AY,

e

T
discussion of the solutions o1 (144) for the maximum a posteriori estimate

of 2 also applies to (152). We will consider the solution Y =0 which im-
plies that

%
X = -n, . {EE
ax o n, (189
For gener. 1 A the maximum likelihood estimate of x is
< ta =t 1,2 tay=l, 1,0 « 1, =12 155
x = (A'A) A(F -n) =(A'A) A’ (j-n) = (A A} A (s) (155

=== 22
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'This is the same esiimate that is obtainod when vwse estimate & {irst and

then use this estimate to esiimate i_ It c:ould again be pointed out th:t
A

{153) has other solutions besides {154), one or more of which may give

rise to a maximum value of p(z/x), which is larger than the value due tn

(154), in which case {154) would not be the maximum likelihood estima‘e.

Discussion of Estimates

The Bayes' estimate and the maximum a posteriori estimate have
received some criticism. The basic argument agrinst them is bacved
vnon te requirement of a priori probability density functions for the
random variables to be observed during an experimen*. The maximum
likelihond estimate has objectionable small-sample-size properties
(Deutsch, 1965).

It should be pointed out that all the estimates of '}i of thia section:
civen that ;’i has a gamma distribution, are linear esiimates (linear
it respect to the observable z ) as is the minimum MSE estim=‘e.
Hewever, the Bayes' and maximum a posteriori estiiates of "Ti and ;.i'
~iven that §i has a gamma distribution, are not lirear estimates. The
izyes! estimate of ;'i is the same as the minimum M&T estimate of -,

~iven that A has a gamma distribution. The maximi= 2 porizvicsl :

A

gy
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astimate of y. differs from the minimum MSE estimates only by a minus

72 in the numerator. The maximum a posteriori estimate beroines the

-

came as the Bayes' and minisnum MSE estimates for large values of ui.

e e e e s T R

[ ¥
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FIXED-SAMPLE SIGNAL DETECTION

Introduction

For the fixed-sample detection procedure, we will consider the
Bayes' decision rvle, By definition, Bayes' decision rule is the decision
rule that minimizes the average loss,

We will consider only sicuations iu which there are two possible states
of nature, Wy and Wye We will assume that the a priori probabilities
Pl w 1) and p{ wz) are known. Also, we will agssume the probabilities
plz /wi) (i =1, 2)are known,

We observe the outcome of the experiment and decide which state of
nature is present, If we choose wj as the state of nature when Wy is
the true state of nature, we lose an amount c¢( W wj) = cij' We want
to find the decision rule that minimizes the average loss,

To determine the form of Bayes' decision rule, first calculate the
average loss resulting when decision rule d(*) is used. If we observe z
when w, is the true state of naturc we lose amount ¢ [‘"i’ d(z)] . Also,

when w, is true, z occurs with probability p(z/ wi). For the average

loss or risk we can then write

p(wi, d) = ; cfw,, d(z)]p(z/wi). (156)
z=0




'\l’

71

i

Since W occurs with probability p( wi). the average loss or risk rasu'tinz

when the decision rule d is used is

2
p(d) = = plwy, d) plw) (157)
i=1
By definition Bayes' decision rule d* is that rule which minimizes
the average risk, That is, we require that p (d*) < p(d) foz all possible

decision rules d,

The derivation of this rule follows,

2 o
pld) = Z p(w) Z c[w, d(z)]p(z/w,)
i=1 2=0
P (158}
=% % c[wi,d(z)]p(wi/z)p(z)
z=0i=1
= ’3 p(z)pz_(d).
z=0
2

The quantity Pz(d) = Z c[wi, d(z)] p(wi/ z) is called the conditional ri~k,
i=1

Since p(z) is non-negative and does not depend or our decision rule, we
c?n minimize p(d) by choosing the decision rule d that minimize> p ”(.3)

for each z. The conditional risk can be written as

pld)=c fw,, d(z)]p(wl/z) + cfwz, d(z)] p(wzlz). (153)

In accordance with the decision rule we must choose cither d(z) = w« 1 0

d(z) = w If we choose d(z) = mlthen pz(d) = cllp(wl’z) +

2.
imi i = \ =
CZIP( wzlz). Similarly, if we choose d(z) W, then pz(d,
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clzp( wl/z) + czzp( wzlz). Bayes' decision rule becomes: choose
w if c“p( wl/z) + c21p(wz/z) < clzp("’l/z) + czzp( wz/z) or

by using Bayes' formula we have:

choose @y if2 (2) > 6,

(160)
choose w, if g(z) <6,
where 58 Plo,) ( ) (161)
olwy) \e
Play, 2yyeees2_fay)
d = gese, = m
an t(z) n(zl, z, zm) P(zl' T zm/“’z) (162)

is the likelihood ratio of the observation and p(z TRTES / w;) is the

conditional probability of observing ""counts" z 'UREETL N when Wy is the

true state of nature. We have assumed that these ''counts’ are independ-

ent; hence, we have

m pl~, /wl)

% (2) -quf e o) * (163)

We will assume throughout the rest of this paper that €yp =

c 1’ and that p( wl) = p(uz) =1/2; hence, &= 1,

122
Since the natural logarithm is a monotonically increasing function of
its argument, the logarithm can be taken of both sides of the inequalities

in (160) to obtain an equivalent decision procedure, Bayes' decision rule

becomes:

- 7
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choose W if L(z) g m(z) >0,

(164)
choose w, if L(z) <0,

Our problem ir to observe the ''counts' at the output of the detector
and from this decide which of the two signals gave rise to this output,
Figure 12 illustrates the problem,

We will be interested in assessing the error associated with Bayes'
decision rule. When analyzing the error probabi'lity, we will consider
throughout the remainder of this paper only one region or cell in the
image plane where measurements will be made. Th.s assumption is
for mathematical convenience : nd doss not introduce a serious loss of
generality. Hence, for error analysis our problem is reduced to a case
of a scalar signal, At the end of this section a comparison will be made

of ‘he error probabilities for the various cases that will be considered,

Two Known Signals

Assume that at the input of the detector we have one of two possible
signals with known mean rates 7y and i’rz both of which contain any
constant background noise that may be present, For convenience in
discussion, we will refer to )-rl and §2 as the signals. For the present
case, we have two possible states of nature:

Wty = ;'l (known),

¥ = ¥, (known),
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where ;"1 > ;'2' Knowing that signal ;'i is present is equivalent to
knowing that :'ci is present, The objective of our discrimination precedure

is to decide which of the two states of nature, w,k or w 2! is the true

1
state of nature,
The probability of z, photoelectrons being emitted in time T from

.th . . .
the i ceil of the image plane, given that uj is the true state of nature,

is
-5 '"7;‘;
(nTin) e v
p(zi/wj) = T (=1, 2) (165)

1

- . .th . - - = - - -
where in is thei component of signal yj(i. e., ¥; -(yjl. coes in' cey yjm)).

Hence, the likelihood ratio is

z.
plz/w)  m ¥, \' -y, -¥,.)
1 h)e i 721 (166}

plz/o,) ~ i \Ty;
where m is the number of cell or measurement positions in the image
plane. A more convenient form is

m

L(z) £enfz) = 231 [z, oty /7,017y, ¥,.) 1 (167)
im

Bayes' decision rule becomes:

m m
choose w, if ifl z, ‘m(yli/YZi) > nfii (V314 (168)

choose w, otherwise,




-

This detector has the form of a digital matched filter where the filter
is matched to zn(;:li/;'Zi). This Cetector is illustrated in Figure 13,
The above case may, as a special case, be considered as two known

signals 8. and e‘:2 (§2 may a may not be zero but § > EZ) imbedded in

1 1
known noise fi, The two possible states of nature for this case are:

W y= §l + 2 (known signal plus noise),

W

2

y= %4— n (known signal plus noise).

Bayes' decision rule for this case is:

) . m “(;li'".ii o
choose wl if i§1 ziz :;-l-?!; >1~“l' '231 (sli-SZi).

choose “w, otherwise, (169)

where ;js is the ith component of the vector signal §j. For the case

where s‘z = 0, the noise is uniform (i, e., ni = ﬁo for all i), and we have

a small signal-to-noise ratio 3 i,ai for all i, Bayes' decision rule

1

reduces to:

m _ m
choose w, if = z.,8,. >ntn_ T s8_,,
1 =] 1 1 .1 li

(170)

choose W, otherwise,

This detector has the form of a digital matched filter where the filter

is matched to the signal s This detector is illustrated in Figure 14,

l.
We will mw determine the error probability associated with the

general case of two possible known signals ;'l and ;’2' As mentioned

earlier, only a single cell of the image plane will be used in our error :
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analysis, thus reducing the problem to one of a scalar signal, Bayes'

decision rule now becomes:?

y Ty, ~¥,)
> . = =
choc»sem1 z ’-’_‘??1732) v,

choose wy otherwise,

(171)

where z, ;'rl. and ';'rz are all scalars,

We will now determine the error probability for this procedure, The

general expression for the error probability is

P, = play)PFD) + plu,)P(FA) (172)

where P(FA) is the probability of saying 91 is present when )'rz is
present (probability of false alarm), and P(FD) is the probability of saying
92 is present when ')'rl is present (probability of false dismissal), Assuire

that p( wz) = pl wl) = 1/2, Thus

P_=1P[z> ylw,] +%P|;z <Y/w ]

e
Ty -nTy (173)
- Z 2 - Z 1
Y (nry,) e v (n7y,) e
i 2 1 .
=272 1-2Z 21 + b 1
z=0 z=:C z i

For large values of z the Central Limit Theorem applies and hence
z becomes approximately Gaussian, In order to completely spscify
the Gaus’ian densities f(z’/ z) and f(z/ w l) we need to find the condiii sl
means, E(z/ wl) and E(z/ w z), and the conditional variances, var (z/w i;

and var (z/ w 2). These are given as follows:
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E(z/w) = uy "";1' (174)
E(z/w,) =u, =n17,, (175)
Var (z/w)) = o'lz = ’m-'z' (176)
Var (z/w,) = 022 = nr;z. (177)

Hence, using (174) - (177) and assuming a Gaussian probability density

function approximation we have

e 2
\/ Z'lm'Z -0 Zmr1
(178)
N 1 -x /2 /" 1 ex /2
= — dx + dxi.
B [ JZn . Var
i ¥T, (~Y+;;,l vy

Under conditions where the Gaussian approximation hoids, this form
of the error probability would be very useful in analyzing the error
probability for the general case of m ceils or measurement positions
in the image plane (see (168)).

It is desirable to compute the error probabilities of these two
methods to determine how good the Gaussian approximation is. The
Gaussian approximation turns out to be good even for very small values

of z, The approximation is good for small values of z because we are
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working with the '"tails'" of two distributions and when they are adde?
the approximation efrors of the distributions compensate, This does
not hold in general for p{ wl) # 1/2. For an indication of the va:idity
of this approximation, see Figure 15 and Table 1, Figure 15 comnares
the ratio of the Poisson error probability and the Gaussian-approxima-
tion error probability for different ratios of the signals ;’l and 92. The
Poisson error probabilities and the approximate error probabilities
have a significant difference only for situations where the error
probabilities become small (e.g., Pe < 10-3). For the case of very
small error probabilities, we are far o':c on the "tails' of the distribu.
tions and our approximation breaks down. The approximation breaks
down because the Central Limit Theorem does not coverge linearly and
hence the Gaussian approximation holds on'y t_c the center portion of

the distribution,

Two Unknown Signals

Now assume that at the input of the detector we have one of two
possible signals 91 and ;’Z’ both of which contain any backgrouad noise
that may be present. These signals are assumed fixed but unknown
and having each of their elements taken from statistically independent

gamma distributions with known parameters:




(P)/P_(G)

P

- ° ;2 =1
° ¥y, = 10
_ 4 y,=100
1.0 < e e——— Q= <
.8 |- !
.6
.4
. 2 =
0 | l | | —
1.0 1.2 1.4 1.6 1.8 2.0
v, /v,
Figure 15. Ratio of Poisson error probability and Gaussian-

approximation error probability versus ratio of
¥, and ¥, for the case of discriminating between
two known signals ;'l and 'yz where 4T = 1.
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U, .=l =qa, )7
. m m aji(aji{j_i) n il )
ty) =TTt =TT YT (j=1.2), ¥, 20
bodal iz i
= 0, otherwise, (177,

Our two possible states of nature are:

w1:§ ;’l (unknown),

W,y

2 Y, (unknown),

where frl > §'2. (The quantity fr is the expected value of §¥,) We want
to decide which of these two states of nature is present,

The likelihood ratio in this case is

pla/o) f;(z/ul. A AL

1(z) = =  6pa (180)
plalog)  fStat, 7,657,247,
o
z, =-nTV.
R 1 i
where (z/ ) "!2" (‘ﬂ"’)’ji) € ’
g plz/w,¥.) = (1&1)
i i=l zi'
/ = v v )dv
and plz'o) f JCIEREA AL
° " z; (182)
) mC a. > ji (nT) r(zi-l-uji) 1
- . .."'l'!‘r zi (J" [ )'
i=l “ji zil(n'r-!'aji) I‘(uji)
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Hence, the likelihood ratio becomes

1
T ay 1 (ay;4n7) Zi”zi*“n) ru,,) [T )zi

- (183)
izl uZi( nr Y, \nTHay
@i legginT) Uz, r(uy)
Assume for convenience that w T Uy = ui for all i, then
u,
m i i
1i

rz) = TT (= (184}

i=l

or

m a,. T a,.mT
_ _ 2i 2i
L(z) = n2(z) = 12.-:.1 zizn(au-l'n‘l' ) +u, [ m( ) ‘n( ] « (185)

°

Bayes' decision rule becomes:

Poga U et et

m ST m M7
choose w, if = z.mCZ‘ ) [ (2-.‘..\ /a’-‘ )] , (184

choose w, otherwise,

B
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For this case the detector has the form of a digital matched filter where

the filter is matched to zn{g a, + 17 )/ (& 4 + 1\1'8. This detector is

illustrated in Figure 16,

For an error analysis, we again consider the single cell case.

Bayes' decision rule for this case becomes:

m(az/al)
choosewllfz>u '—-‘;;;‘-'T—- -1l] =Y, (187;
m(al-l-qr )

choose w, otherwise,

The error probability is

)2 e"ﬂ"'“/“z -nfu/al

(nTu/a (nTule )z e
p =3[1.% 2 ¢ 51 . (188)
e z=0 z! 2=0 zl

Again assume a Gaussian approximation for z, The condiflion:l :reaus
and variances necessary to specify the Gaussian densities f{=:/ ,.) .

and f(z/ ul) are as follows:

E(z/w,) = E[E(z/w,, ;i)] = E(,,T;i) = nru/e, (rem

il
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E(z/wl) “u = n‘ru/al, (190)
E(z/wz) -y, = nru/uz, (191)
Var (z/u,) = E[Var(z/wiji)] + Var[E(z/u;,¥,)], (192)
Vat(z/ui) - 012 = rrm/cc1 + (rrr/al)zu, (193)
2 2
Var(z/w) = 0,” = ntu/a, + (nt/a,)"u. (194)

Hence, using (189)-(194) and a Gaussiun probability density function

approximation we have

rol 212, P 1 x2/2
1 1 1
pe”"[f = dx+‘/ﬁ /e dx]. (195)
V-t v,
[+ 2 o

——————— T




We need to compute the error probabilities for these two cases
(Poisson and Gaussian-approximation) and compar. them to determine
how good the Gaussian approximation is for the two-unknown-signals
case.

See Fignres 17 and 18 and Table 1 for a comparison of the Poisson
error probabilities with the Gaussian-approximation error probabilitics,
Figure 17 shows the Poisson error probabilities and the Gaussian-
approximation error probabilities for the cases where both signals
are knownandt . signals are unknown. The Poisson error probabil-
ities, known and unknown signals, coincides with the Gaussian-
approximation error probabilities for known signals, The Gaussian
approximation for unknown signals is reasonably accurate only for
cases where the variances of the unknown signals are smaller than
about 0,1, Figure 18 compares the ratio of the Poisson error probability
and the Gaussian-approximation error probability for different ratios
of the expected values of the signals (i, e., §'1 and ?}2) and difierent

- =2
values of u (note that var Y, Y, lu(i=1, 2)).

One Unknown Signal and One Knowr =iinal

Consider the case of having present at the input of the detector ei’hcer
the known signal ','rz or the unknown signal ?1. For this case we have th~

two possible states of nature:

R e C A e R R R
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¢ Gaussian (two unknown signals)
4 Gaussian (two known signals)and Poisson
(two known signalsand two unknown signals. )

| 1 1 {
1.0 1.2 1.4 1.6 1.8

2.0
y,/¥,

Figure 17. Poisson error pro.abilities and Gaussian-approximation

error probabilities versus the ratio of y, and ¥, for the case

of two known signuls and the case of two unknown signals
where ;'2 =10and g r=1.




1.0

.6
o
)
o,
.
&
0.4
fa,
L z o
0 ] | — b —
1.0 1.2 1.4 1.6 1.8 2.0
y,/¥,

Figure 18. Ratio of Poisson error probability and Gaussian-
approximation error probability versus ratio of ¥
and §_ for the case of discriminating between two
unknown signals ¢, and y, where n T = 1,

e




92

€

[ 2 o

-<
n

;’l {(unknown),

<1
"

Y, (known),

where §l > ?2. We consider this case because of its advantages in
analyzing the detection error from which we can gain additional insight

to the detection process, This case corresponds to physical cases of
large signa'-to-noise ratio in which we neglect the noise and discriminat~
between two signals, The unknown signal ~;'1 is assumed fixed but unhmown
and having each of its elements taken from statistically independent

gamma distributions with known parameters:

u,-1 -o ?
- i 11
n m o la,y,,) e s
- - 174714 >0 28
£(7,) =TT£G5;,,) =T » Yy = (159)
Vo MW Flu,)
= 0, otnerwise.
Bayes' decision rule is:
P(z/wl)

choose W if 2(z) = m > 1,
(177 .

choose W, otherwise,

where

(n¥ )21 Yoy
v(z/w,) = !E!' T’ ° (i
: 2 g=1 zi!

L




and
o zi
F _ﬂ_ ui uy (n1) I‘(z{-%uj)
- ') zlw,,V )f( )dy ( ) Tm e i
N e A T TR
o
The likelihoad ratic becomes
nty
m a, u I‘(zi+-,) e 4l
0@ = T () L e

{e1 @ +nT = 51
i ["21(""’“1)] F(u))

Taking the logarithm of the likelihood ratio yields

(1

m
L(z) = nt(z) nifl[uiln( ”:H\

—). 9nr‘(u ;+2n1‘(z :l)
i

¢ nlF,, (nrda )] +nr§'21]-

Bayes' decision rule becomes:

m
cioose  1f I [znr(zimi)-zizn[yn(mmi)]]
{=1

m ui+m
> I [z \(u,) + u ta( S— )-myzi] ,
{=?

choose Wy otherwise,

Using the approximation that

2n T{x+l) = Lkin2m-x+(x#s) nx

93

(199)

(200)

(201)

(202)

{207}
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we can write for Bayes' decision rule:

m -
choose wy i1f I [(zi+u1-55) ﬂ.n(zi-i-ui-l)-zi ‘m[”zi(“’”“i)]'zi]

i=1
(204)
m a,+nt _ ]
b [(ui——‘f)m(uiul) + uiﬂ,n " )-ntyzlJ,
i=1 i
choose w, otherwise,

Y4
This detector is illustrated in Figure 19. For the single cell case,

Bayes'! decision rule becomes:

choose w, 1if (z+u-%) tn(z+u-1)-z R.n[irz(n'r-tu).' -2

(205)
>(u-) ta(u-1} + uta®yom,,

choose w, othervise.
To analytically find the error probability of this decision rule as was
done in the previous cases appears very difficult. For this cass,

computer simulation (Monte Carlo method) was used to z2ralyze the error

probatility, The results are discussed later,

Unknown Signal Imbedded in Known Noise

Consider the case where we have one unknown signal 8 which if preze=
at the input of the detector is imbedded in known noise n, The two possibt’'~

states of nature are:
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wl, y =8 + i {unknown signal plus noise),

wzz 3-’ =n {noise alone).
The signal s is assumed fixed but unknown and having each of its

elements taken from statistically independent gamma distributions with

known parame ters:

( )ui-l '813'1
m m B,(B,8 e
£(3) =« TT£(s) =TT =11 . .50 (206)
i.,l 1 1“1 r(ui) 1"
= 0, otherwise.
For this case
- i -ntil
m (ntd,) " e e
plz/uy) = T1—--3— (207)
= Zi!
and
_ . zq - (&)
p(z /uy.E) =TT IMTELHED] e (208)
{=] zi! *
Hence,
p(z/4,8) m (84 %4 _
= R S 11 -nT€ "
1(z/8) p(z/uw,,S) 1.1(. ny ) 2 e
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Our likelihood ratio then becomes
z, [° 2
o« u. - . :
[ . m BN z‘( jmi(ﬁihﬂ]’ M(z,+u, <))
2 (z) =/ ¢(z/8)f(s)ds =TT(———-> $=0~— - (210)
0 BtnT, [f (B ) 131 T(uy)
i=1 .
Bayes' decision rule becomes:
m z E ]
choose w 1if [ [zn[ 21( [Ei(Bi+nt)] I(z 1+ui-_1)] (211)
1 i=1L “4=0}3
- m 81+n‘r
-z, Zn[ni(81+nt)]]> T [uizn(-—g— R.nI‘(ui)]’
i=] i
choose 2 otherwise.
Using the approximation of (203) Bayes' decision rule becomes:
n z, [, (8 4m) T ftu-9)
choose w 1if I [mn[ g .4 tz Y j;l' 1 "J
1=1 1=0 1
(212)
+ zilzn zi-l—ln[ﬁi(ﬁi*nr)]] + kin zy
m
> {(ui-%) zn(ui-l)-ui+1],
i=]

choose Wy otherwise.
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This detector is illustrated in Figure 20,
For the single cell cxse Bayes' decision rule becomes:
2 pe j .
choose w, if m[ i[n(phf)r Nz + usj) ]
l . (z=j)1 it
=0
+ z{!n z-l-m[ﬁ(pmr)]]+% in z (213)

>(u~1%)en (u~l) ~u+1,

choose w, otherwise,
To find the error probability of this decision rule analytically appears
extremely difficult, if not impossible, For this case it is hard to use
appropriate approximations without approximating the problem away,

About the only course left open is to simulate the problem.

Estimator-Correlator

We have been considering the optimum detection (Bayes' decision
rule) of Poisson signals with unknown parameters (mean rates) where the
a priori probability distributions of the unknown parameters are available
at the receiver, It follows from the optimality of the solution that it is

not possible to improve the detection performance by estimating the

unknown signals first and then using these estimates in a detector as if
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they were the true input signals, Kailath (1963) has shown that for th-
special case of Gaussian signals with unknown parameters the optimum
detector can be interpreted as a minimum mean-square-error estimate
of the signal followed by a detector that treats the estimate as the true
value of the input signal, We will refer to this type of detector as an
estimatcor-correlator, The results of the Gaussian signal case do not
apply in general to other signal distributions.

The question arises as to the difference between the Bayes' decision
rule and the decision rule associated with an estimator-correlator when
the unknown signals have conditional Poisson distributions with unkrown
mMean rates whizh have known gamma distributions.,

Consider the case of receiving at the input of the detector one of two
possible signals with conditional Poisson distributions and fixed hut
unknown mean rates 91 and ;'Z' Each of tb = .... .ates are talen from
garnma distributions with known parameters., For this case Bayes'

decision rule (scalar ca:e) was found to be:

mla,/a.)
choose w, if z > ul- 2 1

‘ [ w2

¢ T

=l}= v (214)

choosge “2 otherwise.
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For the known signal case, Bayes' decision rule is: {

Ty, - ¥,)
choose w, if z >

A N AR 28

choose wZ otharwise.

‘ Hence, for the estimator-correlator with which we make a comparison |

| we have: |

~

Ty, - v,)
choose w, if z > =

s {(21¢
1 inly, 17,) ! e

choose wz otherwise,

”~ ~
where ¥, and y, are estimates of the unknown mean rates, and here we

consider these estimates to be the true mean rates,
Using the assumption that 91 and 92 are taken from known garima
{istributions our estimates of them are as follows:

1) Maximum a posteriori estimate

z+u, -1

1 -
= et i= (2 }
i ai+n‘f (i=1,2)

<D
1

= e SR
TS SEESEY P 1S =
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2) Bayes'® estimate

z2+u

-
4

i a

1)

= =12, (218)

3) Minimum mean-square error estimate

A z + ui
Y, = aFm (i=1,2), (219)
4) Maximum likelihood estimate
.= 2 (i=1,2). 22
¥, = - (i=1,2) (220)

It is observed that the Bayes' estimate and the minimum MSE estimate
are equal., The maximum a posteriori estimate differs {rom thezec two
catitnates by a minns one in the numerator and for u >> 1 all three
catimates become approximately equal.

Consider the maximum a posteriori estimate in the estimator-

correlator. The decision rule becomes:
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1 1
Sl e
choose w, if z > ' (221)
1 -az-l-n‘l‘ ( 1 1
m(almf ) B Aalm‘r' a2+n‘l',>

choose ., otherwise,

2

When the Bayes' estimate and the minimum MSE estimate are used

in the estimator-correlator the decision rule becomes:

1 . 1 )
al'l-‘n‘l' az-l-'r]‘l‘
choose w, if 2 > — , (222)

1 +nT
m("z )_(al i 1)

\GI'H']T l+n1‘ QZ'H'\ 4

u(

choose w. otherwise,

2
The thresholds for the above two decision rules differ only by the terms
uand u-1, For u >> 1 the two threshold become approximately equal,
and hence the decision rules become approximately the same, The
maximum likelihood estimate does not work in this case because there
is no a priori information contained in it and hence there is no way o
distinguish between ;’1 and ?2. A comparison of the error probzbilitics
resulting from the decision rules of the estimator-correlators vith the

error probabilities resulting from Bayes' decision rule will follrw,
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Comparison of Error Probabilities

In this section comparisons will be made of calculated and simulated
error probabilities resulting from the various fixed-sample detectors
that we have considered.

Figures 21, 22, and 23 show the calculated error probabilities for
the two-known-signals case, the two-unknown-signals case, and both
cases of the estimator-correlator for various ratios of the signals 5'1 arl
§’Z and three values of u, As u increases (var 9.1 decreases) the error
probabilities of the two-unknown-signals case and the two cases of
estimator-correlators approach the error probabilities of the two-known..
signals case, and in fact they all coincide for u = 100, The Cayes' and
minimum MSE estimator-correlator appears to be superior to the rmaxinnr.
a posteriori estimator-correlator for small values of u, Figures 24
and 25 correspond to Figure 22 where the measuring interval (nr ) has
been increased to 2 and 3 respectively, Figures 26, 27 and 28 are th>
computer-simulated error probabilities corresponding to Figures 22, 24,
and 25, The simulated results compare very favorably with the
~alculated results, For both the calculated and simulated res=its, t2
Bayes' and minimum MSE estimator-correlator is consistently batt~-

-han the maximum a posteriori estimator-correlator, Figure 29 ch:o'wa

‘he error probabilities for the case of one unknown sigr.-! in known

L2}

noise and the case of one unknowr. signal and one known s®r=al. The '

~ryor prchabilities are compared with the simulatel error prebulil’ e




« Two known signals

O Two unknown signals

3 4 Bayes' and minimum MSE estimator-correlator
X Maximum a posteriori estimator-correlator
.5 % % o " *
.4 |
.3
v
2
1 A
0 ] l | |
i.0 1.2 t. 4 L6 1.8 2,0
51/;2

Figure 21. Calculated error probabilities versus ratio of ;' and

Y,

for various detectors, u =1, ¥, = 10, and n v =1,
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¢ Two known signals and the two unknown signpls
0 Bayes' and minimum MSE estimator-correlator

» Maximum a posteriori estiinator-correlatof

0 ] i i i
1.0 1.2 1.4 1.6 1.8 2.0

U

Figure 22. Calculated error probabilities versus ratio of ; and
;'Z for various detectors, u = 10, 92 =10, and n T =1,
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- e Two krown signals, two unknown signals,
Bayes' and minimum MSE estimator-
5 correlatcr, and maximum a posteriori
T estimator-correlator
4 |-
.3
[
A
0 2 =
1 I ]
0 | 1 I I
1.0 1.2 1. 4 1.6 1.8 2.0

Figure 23, Calculated error probabilitizs rersus ratio of ; and
572 for various detectors, u = 100, )72 =10, amd1 nT
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e Two known signals

O Two unknown signals

a4 Bayes' and minimum MSE estimator-correlajor
x

Maximum a posteriori estimator-correlator

0 ! I 1 i |
1.0 1.2 1.4 1.6 1.8 2.0

y,/Y,

Figure 24, Calculated error probabilities versus ratio of ; , and

Y, for various detectors, u = 10, ;'2 =10, and T =2,



e Two known signals
= 0 Two unknown signals
& Bayes' and minimum MSE estimator-correlajor
5 »* Maximum a posteriori estimator-correlator
. 4
.3
.2
* l
0 ] L i i l
1.0 1,2 1.4 1.6 1.8 2.0

n/Y,

Figure 25. Calculated error probabilities versus ratio of y, and
iz for various detectors, u =10, S;Z =10, and n 7T
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e Two known signals
- o Two unknown signals
a Bayes' and minimum MSE estimator-correlator
5 x Maximum a posteriori estimator-correlator
. 4
.3
©
B4
.2
.1
0 1 i i A
1.0 1.2 1.4 1.6 1.8 2.0

Figure 26, Computer-simulated error probabilities versus ratio of
' and ;"2 for various detectors, n = 19, ?2 = 10, and nT =

110
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e Two known signals
r O Two unknown signals
a Bayes' and minimum MSE estimator-correldtor
& X Mnximum a posteriori estimator-correlator
.4
v .3
R
.2
1
0 | ] | I
1.0 1.2 1. 4 1.6 1.8 2.0

/7,

Figure 27, Computer-simulated error probabilities versus ratio of y
and 72 for various detectors, u = 10, 72 =10, and q 7 =

R ] s 2y - SRS BTty S i




e Two known signals
- o Two unknow signals
a DBayes' ant minimum MSE estimator-correijtor
5 x Maximum a posteriori estimator-correlator
.4
.3
.2
.1
0 1 1 | |
1.0 1.2 1.4 1.6 1.8 2.0

- /."-'
'Y,

Flgure 28. Computer-sxmulated error probabilities versus ratio
of y_ and §_ for various detectors, u = 10, yz = 10,
and nT =
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0 Two known signals
- e One unknown signal imbedded in known noise
x One unknown signal and one known signal
.5
SC I
L
.3 -
.2
e -
0 1 | ! |
1.0 1.2 1.4 1.6 1.8 2.0

/v,
Figure 29, Computer -simulated error probabilities versus ratio
of y, and y for both cases of one unknown signal,

kn’ yz =10, and N7 =1,
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of the two-known-gignals case, One thousand trials were ‘nade for
each of the simulated results,

In general, if the error probabilities do not become less than about
0.1, it can be seen that knowing the signal parameters (mean rates) is

not much better than only knowing their probability distributions,

x

particularly if the Bayes! decision rule or the Bayes estimator-correcininr
is used, In many problems of signal detection, error probabilities << ,1
are important., Errors of this size were more difficult to calculate on
the computer because of overflow problems and hence fewer results

were obtained for these small errors. For error probatilities of thi=

size, the difference in error probabilities of the various fix>d-sam le

detectors becomes significant (see Table 1).
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SEQUENTIAL DETECTION

Introduction

In many problems of optical data processing, detecticn speed is

a3

important. For these situations a sequential detection procedurc shculd

considered as an alternative to the conventional fixed-sample de-
~«tion procedure, The sequential detection test, which was developed
by Wald (1947), minimizes the average test length for given P(FD) an/
P(FFA) and hence has a shorter average test length than the fixcd-
sample test. In the sequential test we introduce two thresholds at
the output of the detector such that we declare the ''signal present' if
one of the thresholds is exceeded and ''signal absent" if we fall bel-

the other threshold., The number of observations or test length is nct

fixed in advance. The nuinber of observations raquired by the seqnonii-

test depends on the outcomic of the experiment and is, *Lerefore, nci
predetermined but a random variable.
Let p(z/wl) be the probability distribution of the obhserved randon

variable z when w, is the true state of nature and p{z/w,) be the p: .~~~
4

bility distribution when w, is the true state of nature. If w2 make j

successive observations of z, the probability density for the s=mp!

l-.l, zz..., z'l) is given by pj(z/wl) = 1_;»(2l yeeey zJ/ul) v.aen 4 is .an

2

1 j . .
trvn stite ¢f nainre and pj(z/wz) =p(z2 ,ee4, :',J/wz) waen « is tho tr o

J

rete of »~"re, The ouantity 0 1o o vecte wansa el hanmts 0 S e

ou-vief cuch cl the nerlgof the D ive v v Uony, o =

T

+
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We need to determine two positive constants A and B, both dependirg
on the error probabilities P(FD) = 3 and P(FA) = a which are specified
beforehand. P(FD) is the probability of false-dismissal and 2(FA) is the
probability of false-alarm. The constants A and B have the approximate

realationships (Wald, 1947):

An_1-8 (223)

and

Bussgang and Middleton (1955) consider the s2quential probability

The definition of the SPRT

ratio test (SPRT) for testing w, against w

1 2’

for the m cell case is as follows: at each stage of the experiment, compute

the probability ratio

p)(z,@l) ) p(zl. 22. R zj/wl)

5,z o) . (225)

gl = .
p(zl. zz. e zJ/wz)

cloo8e Wy if k) > A,

choose w, if (k) < B,

2

continue the experiment by making another observation if B< g{j) < ~.

We are also assuming that the number of electrons being emitted {»m



I
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the different regions or cells of the image plane are independent. Hence,

given wq. the probability of z, electrons being emitted from region 1,
z

elactrons from region m all during the j observation intervals is

m
pj(z/wq) = H p(zzluq) (a=1,2) (224)

where m is the number of cells in the image plane. The likeiihood or

probability ratio can then be written as

p.(z/ul) m p (zzl“’l)
) = -’7— = ~ . (227)
pj(z wz) El pj(zﬂlwz)

If the j successive observations are statistically independent, the prob-

ability ratio becomes

. ese j/ gl
- plz, .z. w;) _ i m p(zl-/wl). (228)
.1 J H H i
plz', ..o, 2 Iwz) i=l g=1 p(zz lw.)

i'he natural logarithm of thiy ratio may be taken for computationa! con-

venience. The probability ratio can then be expressed as
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where

m Pl fo))
ri s 2 n —_— {230)
=l plz /u)

The test procedure then becomes:

k: Ln A,

choose w, if Rk_<_ 2n B,

choose Wy if R

make another observation if ¢ n B < Rj < maA.

In our evaluation of this test procedure we are primarily interested
in the average number of samnples required to terminate the test and the
Operating Characteristic Function (OCF). The OCF (L(y)) is defined as
the probability of choosing w, when the actual signal is y. Bussgang ard

Middleton (1955) show that

L) = L (221)

where h is chosen such that

-~ h
() o [ p.(z/w,)
>IN I M p.z/y) = 1. (232)
2320  zl=0 pj(z/uz) J

P e e
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The quantity L(§) is needed in the calculation of the Average Sample Numbe-=

(ASN). The average value of Rk (see (229)) is equal to the value of the
bounds (thresholds gn A and

¢ nB) weighted by the probability that they
will be reached.

That is,

E(R,) = L(y) m B + [1-L{y)] 2n A,

(233)
Also,
fm pk(z llwl)}
E(Rk) =E| T gn ik {234)

L s BlR )

For statistically independent observations we have
k -
E(R,) = E(ii r,) = KE(r) (235)

where r, is given in (230).

The ASN for statistically independent observations becomes;

g BinBi(l-p)ina
. E(r)

(239
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for @, as the true state of nature,

E(r)

for w, as the true state of nature, and

T L)enA + [1-L{y)]en B (235

E{r)

for general signal values y. When the observations are not statistically

independent, the ASN is found by solving for Kk from the following:

m pk(z"/wl)

BMB+(l-f)laA=E|T tn ~——uns (23%) ,E
ps1 Pil#g/e;) _ |
for w, as the true state of nature,
a nA+(leg)inB=E|Z &n = 7o) . (24¢0)
p=l Pi'%e/9 _l

b

e —————t——an
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for w, as the true state of nature, and

m

. . Pl [w))
L{y) sn A + [1=L({y)]ta B=E|Z 2n L

Tz o) (241)
=1 a.'k(zz wz)

for general signal values y.

Two Known Signals

We will first consider two known signals y

, and ‘.’Z as the poesible
input signals to the detector where y, and y, are the average number of
1 2797, g

photons that are incident upon the image plane or detector.

The signal
Y and i}z contain any constant background noise that may be present. For

this case we have the two states of nature:

R ART (known),

Wyt Y=Y, (known),

where §1 > §2. The objective of our sequential test procedure is to de-
cide which of the two states of nature, w, or w,e is the true state of
nature.

The probability of z

% photoelectréns being emitted from the £ o
cell of the image plane in time T during the i

observation, given that

:
i
i
il
I
L
!
I
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mq is the true gstate of nature, is
- zi -r‘l’;
i (ﬂfyqz) Le ! qL
pPlz, /w )= - (g =1,2) (242)
£ q i
F zl

where y__ is the B etement of signal ;'q and gz, ! is the actual number of
photons emitted from the o th cell during the ith observation.
Using (228) and (242), the likelihood ratio can be written as
i .
m - E zlz - T.‘_ -_ )
Yig Yi=1 "MV

#3) =’ﬂ( =—

(243)
2=1 ?Z 2

The logarithm of g(j) is
m j i - - -
% =] [(ifl “al 3 0y ) = O 72 ")] . .

Equation (244) can also be written 2s




The SPRT procedure is:

choose @, itR, > @A,
choose w, if Rk < @B,
continue testingif B < Rj< Ln A,

In order to find the ASN for this test we must solve the following

equation:

ER,) = L{y; 2n B+ [1=Liy)] en & (246)

Using (244) we have

m .
E(R y=k v v Jv. iy v A 247
R =knr = [y, anly) /v, )-'¥) ¥,))] (247)
=1
ilence, for the ASN we have
&) = rkb’_). on B-+ [l:L(Y)ZI- m :ﬁ (248)
nT z [Y En(yll /YZ z)'(yl R.YZQ )]

=1 £

for signal y in general,




124
- L + (1-f) in A
Ry =~ LinBrlfira (249)
T 2 [, 1ty [F3,0°¥1, +¥5]
for ;’l present, and .
- a A+(l=g)in B
Ry, = —m—o At lUe)tnB (250)

for y, pre sent.

Considur the single cell case (i.e., m = 1) where il' ;'2' y, 2z, and

k are scalars. For this case

- i" - - Ly -_

% -(iz_ |2 e Gy /bty Y (251)
- - = j - - - .-

L =Ry=R, =i vy /¥, ) Ty, =y, ) (252)
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and

(5) = LlanB + [1-LG)] ;A
1]1'[7 m(yl YZ)'.Y.I + ?z] *

(253)
The quantity L{y) is found from
h
- -1
L(y) = "; o (254)
A -B
where h ie chosen such that
%’ p(zlﬂl) h . oo _ z —nf(i Y— )h - ze-'qf;
—— = v i (ryle 3
2| BTe,) p(z/y) i_o{(yllvz) e 1 2} = =1, (255)

This equation can be solved to yfeld

yo Gy

T (256)
By choosing values of h we can plot L(y) versus y. Using the corres-

ponding values of L(y) and y we can determine and plot k(y) versvs y. For
the special case of h =0

p o
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L{y) = tn A/ 2a{A/B) (257)
and
r((;;): -U:A_an - = .2
(258)

, -mA B _
[ [var(enE @) )en®(F, 17,)-E()230(5, 15, (5, =7, am o, 7,)° ]

An example is shown "2 Figure 30 of the calculated ASN versus actcal
signal values y for a sequential detector designed for two particular signn!
mean rates whose preassigned values of ¢ and § are equal. Figure 31
shows the OCF for the same example and sequential detector (OCF is

defined as the probability of choosing state w, to be present when the

2
actual signal is y). Figures 32 and 33 are simulated results corresponding
to Figures 30 and 31 respectively. As the ASMN becomes larger the cal-,
culated and simulated results compare more favorably. This is due to the
approximation of the thresholds A and B, which becomes more accurate

as the ASN becon:es large. Figures 34 and 35 show calculated ASN and
OCF versus actual signal values y for a sequential detector designed fo-
two particular signal mean rates whose preassigned values of o and  are
not equal. For this example the detector is inclined to make d=cisions

in favor of signal 92 being present since fr r p > a the detector guards less

against false dismissal (saying state ) is present when W, is the true

CRe N
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a=f= 1077
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<
Figare 30. Calculated ASN versus actaal signal values § for a
scquencinl detector dzsigned for two known signals.
various values of a=3, ;'l = 20, and ;-2 = 10.
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Figure 31. Calculat ed OCF versus actual signal values y for a
sequential detector designed for two known signals.
various values of a = f: {rl = 20, and ?2 = 10,
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4 y
' § Figure 32, Computer-sxmulated ASN ver.us actual signal values
=i y for a sequential detector designed for two known
signals, various valucs of a=f, "l =20, and v, =10,
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Figure 33, Computer-simulated OCF versus actual signal values y

for a sequential detector designed for two known signals,
various values ata = 8, 9‘1 = 20, and 92 = 10.
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Figure 34.

Calculated ASN versus actual signal values y for a

sequential designed I_oi two known signals, various
valuesof g , o =10 7, 91 =12, and y, = 10.
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Figure 35.

11
y
Calculated OCF versus actual signal values y for a

sequential detector designed for two known signal,
various values of p, a = 10-3, Yy =12 and Y, =10.
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state of nature) than it does against false alarm (saying state Wy is
present when wy is the true state of nature). One hundred trials were
m ade for each of the simulated results of Figures 32 and 33.

The case just discussed may, as a special case, be considered as

having two known signals 51 and 32 imbedded in known noise i, The two

states of nature for this case are:
1t n (known signai plus noise),

,* fi (known signal plus noise),

where El > iz. The values of Ez may or may not be zero,

Using these conditions for the single cell case we have:

1o AR .
Rj-:-lz )ln(-g—z—;ﬁ' -m‘j(sl-sz), (259)

3 <s1+n L
Ij = 2" &n 524-!1) ~m (s;-s,),

(260)

fa LGE) B+ [1-1(s)] tn A

+ {1 , (261)
5 [; "“(':'gli)' (51';2)]
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h
- A -1

L(s) = . (262)

PLI

and

s, - 8,) h

= _ (81 Sz) (263)

G-

Two Unknown Signals

Assume that we are to discriminate between two signals 91 and -yz
both of which contain any background noise that may be present. These
signals are iixed but unknown, and each of their elements are taken from

statistically independent gamma distributions with known parameters:

u -1 -a ;
- 9, ~ e qiigk
_ m LI P Y =
£G,) =TT £G ) =TT (321,2), y,,>0 (264)
T e W e ru_,) 9
ql
= 0, otherwise.

Our two states of nature are:
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¥ =¥, (unknown),

V= 92 (urknown),

where -;l > i"rz. We want to apply the SPRT procedure to decide which of

these two states is present,

The conditional probability distribution for the observed random

variable z is

n 3 N 7
Po(2fu,5) = T] 1T (Mgt " (gu1, 2). (265)
b q’'q g=1 qm] ar
.
The likelihood ratio becomes
J or,(zlw,, v,) 4 (yv,) dy
b @t T VT T
f‘: Pj (z/wy. ¥,) -F(yz) dy,
oY) I 1 e
ﬁ %38 T (uy IT(F, 2ty y) (B, 4gT) P07 2 . (266)
B o j
18] 3 1
uuuzl‘(uu)l‘(t z:'-l-uu) (un-rjnt)i:_lzzﬂu

i=]1

Taking the logarithm of this .quation yields
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3
1
i 2 +u
u h| 2 2%
n %12 ur(un)r(z z:-*uu)(auﬂlnf)bl *
Ry = tnt(g) = L tn i=1 —1. (267) C

L=l u j i E z"‘-&un_,

2
San ) TE_zpbuyy) Gyphned) 8

The SPRT procedure is then:

choose w, if R

1 R Zan4,

L
choose wzika < nA,

continue testing if .tn B < Rj <in A,

Consider the single cell case (i.e., m = 1) where 91. ?Z’ ¥, 2z and k

are all scalars., Assume that ul = uz =u, For these conditions we have

j &, o, Nt P
5 20 2 - fnf =2
Rj f'lzﬂm al+jnt)+ u [zn(clﬂn'r) m(“l) . (268)
Also,
j-1 1 a,+int a, tinr-nt
I =Rk, . - (_42 _ (,z.._.__)
I B S (f_lz +u) [z“ o Hne & o Fhe—nt
(269)
+ “.2131‘_‘).
u1+jn-r i
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We can now apply the SPRT procedure to discriminate between the two

states of nature, w and @

We now attempt to find the ASN, k, from

E(R) = L(y) 2nB + [1-L(y)] n A, (270)

If we assume that E(Rk) & E(RE) we can write
u2+knt (271)

E(Rk) = zn(u;r{m—) [kmE(y)+u] - u 2n (azlul).

Thus we have

a +knt - _
[kntE(y)+u] fn (‘W)ﬂ.(y) tn B + [1-L(y)] tnA + u in(a,/a,) (272)

for general signal values y,

(273)

ity

7 f _ a.+knt
: [kﬂru/al-i-n] ln(a‘i;ﬁ;;)ns BenB+ (1-8) tn A+ u £n (czlal)

BRIl

g
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for i'rl present, and
a,+kn
[En't\l/azw] in (;-i-:ﬁ:'?:-)l a in A+ (l-ﬂ)ln B + u’»n(az/ul) (274)

for ;'2 present,

These last t“'ro equations must be solved by a 'cut and tr~y" procedurc
(or graphically) to obtain k (ASN), For general signal values, y, L(y) is
very difficult, if not impossible to obtain analytically,

Figures 36, 37, and 38 show graphical solutions of ASN for the case
of ;l present for both the two-known-signals case and the two-unknown-
signals case, It can be seen from these figures that for the two-unknown-
signals case and small enough values of « and 3 , given some value of
ﬁj (Rj e.»?(l-?j /¥, j))neither threshoid will be crossed regardless of
how large ASN becomes.

For general signal values y the ASN and L()'rl___ can be found by computer
simulation, Figure 39 shows the simuiated ASN versus actual signal
values ¥ for the two-unknown-signals case that we have just considered,
Simulated and calculated ASN for the sequential detector designed for
two particular signal mean rates are also shown for comparison,

Figure 40 shows the CCF for thase cases, One thousand trials were

made for each of the simulated results of Figures 39 and 40.
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F.gure 36. Calculated mean cumulative information versus sample
number for sequent: ° detectors designed for the two-

known-signals case andgthe two-unknown signals case
for u = 1000, Y, = 20, Y, = 10, and y = 20,
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Figure 37.

R s 2 Sy st o o

Calculated mean cumulative information versus san.ple
number for sequential detectors designed for the two-
known-signals case and the two-unknown-signals case
for u = 100, y, = 20, ¥, = 10, and y = 20.
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Figure 38. Calculated mean cumulative information versus sample

number for sequential detectoras designed for the two-
known-signals case and the two-unknown-signals case
for u = 10, ;l = 20, ?z =10, and y = 20.
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e two unknown signals (simulatJd)

14 o two known signals (calculated)
x two known signals (simulated)
12 -
16 |
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Figure 39. Computer-simulated ASN versus actual signal values
v for a sequential detector designed for two unknown
signals and compared with calculated and simulated
ASN of the two-known-signals case for ?1 = 20, ?2 = 10,
a=p=10"3, and u = 1000.
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¢ two unknown signals (siinulated)
o0 two known signals (calculated)
X two known signals (simulated)

OCF

0 ' - : S
10 12 14 16 18 20

Figure 40. Computer-simulated OCF versus actual signal values
y for a sequential detector designed for two unknown
signals and compared with calculated and simulated
OCF of the two-known-signals case for ?1 = 29, ?2 =10,
a=f=10 ",and u = 1000.
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COne Unknown Signal and One Xnown Jignal

Assume that at the input of the detector we have either the known

signal -‘iz or the unknown signal ?l‘ We have as the two states of nature:
mlt y= ;l (unknown),

wzt y=vy, (known),

where §1 > )-rz. We again consider this case because of its advantages
in analyzing the detection error from which we can gain additional insight
into the detection process, The wnknown signal ;l is assumed fixed

but unknown and having cach of its elements taken from statistically

independent gamma distributions with known parameters:

= -1 -a,.y
- m . n a,, (o .y )“19. 12712 -
f(3y) =TT £(5;) =7 LbArle e *Tieto (275)
=1 g=l I‘(uu)
= 0, othervise.

The conditional probability distribution for the observed random

variable z, given w, 6 and ;'1, is

1

1 =
_ mn J O T
Pozlin y,) = ("“i@) e .
3N Tll H-l K
L1 (276)
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Also,

m = z: -m§
Pj(z/"’z) -ﬁ ﬁ (myu) e 2% .
=]l i=] zi '
I

The likelihood ratio becomes

o0
P, (z/w,) P (z/wy,¥,) € (¥,) dy
,,(j)._i__l.\[—i w Bl A (il

Pj (2/,5) Pj (2/ip)

u b -
12 i Ity
Mz zitu, ) ™V2
-% Gy \ (1_1 L 12
jup\O gt/ 1

1
SN CARLLY I TN

Taking the logarithm of this equation yiclds

. J 4 ) -
Rj = i-l[lnr(i.lzzﬂu) + ullzn(;;ﬁj—m‘- + jmyzz

3 -
-!.nr(uu) - i-lzi)ln [yzz(uv-_l-jm)]].
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(277)

(278)

(279)
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We can now use this expression in the SPRT procedure to discriminate

between the states of nature ™ and Wy

Now consider the single cell case where S'rz, 3-’1’ Y, z, and k are

scalars. For the single cell case we have

h - o
Rj =tnl (] gi...ul) + jmyzﬂlzn(a—f%}—"-) - &n I‘(ul)

ixl
(280)
3 -
-z zi)zn [yz(al-!-jm')].
03 |
Using the approxirnation
(281)
fal (xt+l)s Min2w-x +(x+%) fn x
we can write
i 4 1
Rj # (L 2 +u1-35) tn (T =z -l-ui-l) - (ulo-k) £n (ul-l)
i=] i=1 (282)

3
z

al ) F -
+ u, £n (W)-i- jmy2 -(1.121’[1+2n[y2(a1+jm)]]
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and
14
314 oy 3. (34
1 (z zm-k) : +z£n(zz+u-1)
I B £ S VP ool oy 11 1
L 2z +ul-1
1=1
(283)
-1 a +jn't
-zj -(’Z zi)o.n(
=]

m)— J in [yz(a +jnt)]

u1+j nr -
! m(a1+jnr-nr )+ Ntyae

To solve for ASN and OCF analytically appears e:'tremely difficult
in this case, We will consider only computer-simulated solutions,

Figurer 41 and 42 show respectively the simulated ASN and OCF versus
actual signal value

7 for a detector designed for one signal with known
mean rate and one signal with unknown mean rate.

Figure 43 shows,
for comparison, the ASN for the two-known-signals case, the two-

unknown-signals case, and the case just considered

It can be seen from
this figure how the ASN increases as less is known about the signals,

Two hundred trials were made for each of the simulated results of
Figures 41 and 42
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Figure 41. Computer-simulated ASN versus actual signal values

y for a sequential detector designed for one_known
signal y, and one unknown signal Y, where yl =20
and Uy = 10.
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Figure 42. Computer- -simulated OCF versus actual signal values

y for a sequentail detector designed for one known signal
Y, and one unknown signal Y, where yl = 20 and yz = 10.
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Figure 43. Comparison of simulated ASN versus actual signal y

for the sequential detectors designed for the two-known-
signals case, the two-unknown-signals case and the
case of one known signal and one unknown signal where
y, = 20, ¥, = 10, u = 1000, and @ = p = 10-3.
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Unknown Signal Imbedded in Known Noise

Consider the case where we have one unknown signal s whicli, if

present at the input of the detector, is imbedded in' known noise n, The

twe states of nature are:

ot Yy = 8 +n (unknown signal plus noise),
w,: y = n (noise alone),

The signal s is assumed fixed but unknown and having each of its

elements taken from statistically independent gamma distributions with

Xnowa parameters:

- B m - \u,~1 =83
f(s) =T f(si) "TT 82(8152) 2 Te LR = o (284)
=1 g=1 I'(u,) » S
=0, otherwise.

The conditional likelihood ratio is

- - - 3

P .(z/w,, 8) m /n.+s T z _

AT e A s o (i PR
Pj (z/uz) RN

(285)

e EE e s
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The likelihood ratio becomes

f :(j/Q)f(E)d;
o j

20)

e

5
o ( ‘) j :286)
i=1 BE i
T Py }i 120 17 (8, (g¥inTI] r(Z =, +u,-k
i

14
r(uz)[ﬁz(ﬁiﬂﬁ)]id *

Taking the logarithm of this equation and assuming the single cell case

we have

R, -um<p s 7) n r\u)+£n[(E z)!] (2 )‘n[n'ﬁﬂnf)]

i=1
(287)
.i
1-1 [n(§ +J~.‘r)] I’(E 2" +u-k)
+ fn} 2 7 .
k=0 (E z ~k)i ki

i=l

This expression can then be used in the SP. procedure to discriminate

between the states of nature, and Wy

“1
An exact analytical solution of ASN and OCF for this case appears

extremely difficult, if not impossible. It appears that the only reasonable

method of analysis of this case is by comput=r simulation,




153

Figure 44 shows the simulated ASN versus actual signal values v
for a detector designed for a signal with unknown mean rate imbadded
in Poisson noise with known mean rate, Figure 45 shows the correspond-
ing OCF, Two hundred trials were made for each of the simulated

results of Figures 44 and 45,

Information Content of Samples

An important property of the sequentiai detector is the informai_cn
content of the samples. We will consider the mean information of a

sample to e

= A= o = . - .
L S EW/7,5) = BR,/%.,3) - ER,_ /7, §). (288)

The information is favorable to the hypothesis that ‘w. is the true state of

1
nature when the abov: expression is positive. When the information is
negative, tiae sequential detector tends to choose w, as the state of
nature, We will determine the amount of information provided by the
samples of the various sequential detectors that we have previously
congidered.

For the detector designed for two known signals, the mean infor-

mation per sample is constant regardless of the actual signal y which

may be present and is given by

[
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Figure 44. Computer-simulated ASN versus actual signal values

y for a _sequential detector designed for an unknown
signal s which if present is unbedded in known noise

n where 8 = 10, n= Y, =10, y1 = 20, and u = 10.
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1.

OCF

20

Figure 45. Computer-simulated OCF versus actual signal values
y for a sequential detector designed for an unknown
signal s which if present is imbedded in known noise
n where 8 = 10, n = y, = 10, y, = 20, and u = 10.
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=at Ly @y /y,) =y +v,] (289)
N . .th oz
The expected cumulative information for the j  sample is
- A - - - - - -
= i} = 3 » =) 290
R, = E(R;/y, ) = n7ily tn {y) /y,) =y +v,] (290)

where the true mean rate is y. Figure 46 shows the mean cumulative
information versus sample number for this case where the detector is
designed for ?z = 10 and for various values of ?1. The positive values

result when w, is the state of nature (} = ;1), and the negative values

1
result when w, is the state of nature (y = ?Z).

Whenever either or both of the two signals have unknown mean rates,
the information per sample is r» longer constant, For the detector

designed for one unknown signal ?l and one known signal 5'(2 the mean

cumulative information for the jth sample is

[ ° j 3 - - -
R =E[n T (Z 2" +u))] - jnrytafy,le, +in7)] + jnry (291)
J i=] 2

*)
+ ul fn <W> =in l‘(ul).
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Figure 46. Calculated mean cumulative information versus sample
number for a sequential detector designed for two
known signals where y, = 10 and y = ;1.
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Using the approximations that
E(R;(=)/7, ) = R,(z) (292)
and
mT({x+l) = 3 in2r ~x + (x-l-%:) inx (293)
we can write
“1
N L . S 21Vl oL - W S S
Rj Gnry + u, =) n (jnry + v, 1) {u, 3} xn (u1 1} + u, nC’I'*jﬂf)
{294)
+ inTy,=inTy = Ty [y, (e, + 7))
and
) L . jnTy + u -1 .
Ij = (jnTy=-nTy + ul-i“'n(]?? - 11"'4;:"' a _1>+ Ty Wn(jnT + ul-l)
~imTy=(jnTy-nTy) ¢n (m -7y mfy,le, +inT)] (295)

, al+j111'. .
-u, n aml+j1]f'ﬂ7>+ nTyz.
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The limit of ij as j approaches infinity gives us an indication of
what the detector is doing as the sample number becomes larg2, The
mean information per sample provides us with a measure of the adaptive
capability and the performance of the detectnr, It provides some insight
into the spc«1 by which the detector will make a decision, The limit of
I-Rj as j approaches infinity gives us some upper bound to the information
that we can attain and may point out some limitations of the detector,
For the case of the detector designed for one unkn-wn signal )71 and one
known signal  the limit of the mean cumulative information as j

approaches infinity is

Jl_.ilg R=u) ma,y=a,y-(u, —3) oy, ~1)+(u, -1)+j}ir; [J‘n.f[vm(y/vz )-y1y,]
en(jury +u,=1) ] (296)

The limit of the mean information per sample as j approaches infinity is

lim 1, =nrly enly/y,) = ¥ +,]. (297)
jroo J

For w, as the state of nature the detector iuicially Jdoes not know the

1
true mean rate of the signal and the mean information per sample provided

about the state W) is small, As more samples are taken, the detector

adapts to il and thus becomes more effective, As the sample number
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becomes large, the detector learns ;1, and then the mean information
per sample becomes the same as for the case when the signal was known
beforehand. If wy is the state of nature the detector is most effective

to begin with, and as more samples are taken the detector performance
begins to deteriorate since the mean information per sample d ecreases
and in the limit the mean information per sample approaches zero, The
mean cumulative information approaches infinity as j approaches

infinity when either «, or 2 is the state of nature but the mean

1
cumulative information for state 0 approaches infinity faster than for
. state Wy The mean cumulative information versus sample number for
this case is shown in Figure 47, The detector for this case is designedl
for a known signal with a mean rate of ;'2 = 10 and for an unknown signal
with various expected mean rates 61' The positive values result when
w is the state of nature (¥ = §rl) and negative values result when Wy is
the state of nature (¥ = ?2).

For the case of one unknown signal s imbedded in known Poisson

noise i, a similar result holds, For this case when @y is the true state

of nature the detector approaches the two-kuown-signals case faster than
does the detector of the case just discussed where one signal is known

and one signal is unknown., Also, when «, is the true state of nature,

2

the detector does not deteriorate as rapidly. The mean cumulative

information versus sample number for this case is shown in Figure 48,

The detector is designed for known noise fi = }2 = 10, and several values
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Figure 47. Calculated mean cumulative information versus sample

number for a sequential detector designed for one known
signal y, and several mean values of the unknown signal
y, where y, = 10, y=y, and u = 10.
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Figure 48. Calculated mean cumulative information versus sample
mumber for a sequential detector de signed for the
unknown signal s which if pre sent is imbedded in known
noise n where yz-n- 10, y = yl =8 +n, andu = 10.
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of unknown sigaal s or ?l = § + n. Positive values result when Wy is
the s. te of nature (¥ = ?1), and negative values result when Wy is the
state of nature (y = ?2).

When we have the two-unknown-signals case, the mean information

per sample for che jth sample is

AtinT +Jn1'-n1' - aptinT
=(InTy -nTy+ —_ 2
(.m y-nTy+u “\a +n“'> m( mT-nT +n1‘y fn alﬁnf) (298)

c . . .th )
and the mean cumulative information for the j sample is

Ao +J'f!“> a,+inT
j = inTyen( - 0T - ta(a,/a,)]. - (299)

For this case the detector is most effective to begin with, regardless

of the true state of nature, and as more samples are taken, the detector
performance begins to deteriorate because of ti'e decrease in the mean
information per sample and in the limit the mean information per sample
approaches zero. The limit of the mean cumulative information approaches

some constant dependirg or the actual signal present and is given by

Jl_.mO; ﬁj =y (az-al) -u R_n(azlal). (300)
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Figure 49 shows the mean cumulative information versus sample number
for this case when the detector is designed for an unkrnwn signal with an
expected mean rate of 52 = 10 and for an unknown signal with various
expected mean rates 51. The positive values result when w) is the state
of nature (¥ = ?il) and negative values result when wy is the state of
nature (y = §'2).

Figure 50 shows the mean ‘nformation per sample versus sample
number for the two-known-signals case and the two-unknown-gignals
case, The pusiti-e information is obtained when Wy is the state of nature
(y = §'l)’ and negative information is obtained when w, is the state of
nature (;' = ;2). Figur~ 51 shows the calculated mean cumulative infor-
mation versus sample numbe> and also a computer-simulated sample of
the cumulative information for a detector designed for two known signals
when Wy is the state of nature (y = 91). Also shown in Figure 51 is
the computer-simulated mean of the cumulative information versus sample
nuraber, This simulated sample mean compares very favorably with the
calculated values. Figure 52 shows the results for tF e same detector

when ,_ is the state of nature (y = '}z). Figures 53 and 54 show results

2
that correspond to Figures 51 and 52 respectively. for a detector designed
fo» two unknown signals, Figure 55 shows the computer-simulated mean
cumulxiive information versus sample numter for a de'ector designed

for two xnown signals, 91 = 20 and ;'2 = 10. and for various values of

actual signals present, Figure 56 shows the computer-simulated mean
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Figure 49. Calculated mean cumulative information versus sample

number for a sequential detector designed for two un-
known signals where ;2 =10, y= ;’l' and u = 10.
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Figure 50. Calculated mean information Per sample versus sample

number for a sequential detector designed for the two-

known-sgignals case 2and the two-unknown-signals case
where ?l = 20, and ?2 = 10.
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Calculated and simulated mean cumulative information
versus sample number and a simulated sample of the
cumulative information versus sample number for a

sequential detector designed for two known signals

when_m1 is the state of nature and ;l = 20, ;' =10,
and y = 20. '
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52. Calculaced and simulated mean cumulative information

versus sample number and a simulated sample of the
cumulative information versus sample number for a

sequential detector designed for two known signals
when w, is the state of nature and ¥, = 20, Y, = 10,

and y = 10.
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Figure 53. Calculated and simulated mean cumulative information
versus sample number and a simulated sample of the
cumulative information versus sample number for a
sequential detector designed for two unknown signals
when w, is the state of nature and y, = 20, y, = 10,
- 1 2
y = 20, and u = 100.
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Figure 54. Calculated and simulated mean cumulative information
versus sample number and a simulated sample of the
cumulative information versus sarnple number for a
sequential detector designed for two unknown signals
when w, is the state of nature and Y, = 20, ;'2 = 10,
y = 10, and u = 100.
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Figure 55.

Computer -simulated mean cumulative information versus
sample number for a sequential detector designed for

two known signals, y, = 20 and y_ = 10, and for various
values y of actual signal present.
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Figure 56, Computer-simulated meanr cumulative information versus
sample number for a sequential detecior designed for two
unknown signals and for_various values y of actual signal
present where ?1 = 20, ;rz =10, and u = 100,
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cumulative information versus sample number for a detector designed
for two unknown signals, with mean rates i'rl = 20 and §2 = 10, and for
various values of actual signals present. Figures 36, 37, and 38 show
the calculated mean cumulative information versus sample number for
different values of u, These figures can be used to find graphical
solutions of ASN for the case of ;'l present ( w, as the state of nature).
Two hundred trials were made for each of the simulated results of
Figures 51, 52, 53, 54, 55, and 56,

To simulate the mean cumulative information, it was necessary to
find the sample means Yl’ 1

zp “ney

These sample averages werz then added to yield the simulated mean

I.j (i.e., averages of 200 samples).

cumulative information,

Savings of ASN

One of the advantages of s>quential detection over fixed-sample
detection is in the savings of the average number of samples needed to
achieve a specified rellability of decision., We are interested in making
some comparison of these two detectors to obtain an idea of the difference
of ASN,

Figure 57 shows the calculated ASN of the two-known-signals case
versus error probability for the fixed-sample detector, where p( wl) =

plw 2) = 1/2, and the sequential detector for both w, ard w, 88 the states

1

of nature, This figure shows that for the particular example considered,

ey cmey
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Figure 57, Calculated ASN for the two-known-signals case versus

error probability for the fixed-sample detector (p(w,) =
p(w,) = 1/2) and the sequential detector for both states

of nature w, and w, where Y, = 12 and Yy = 10,
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the sequential detector has about a 40% savings of ASN, Figure 58 shows
the co nputer-simulated results corresponding to Tigure 57, The
simulated results show that for small sample numbers the fixed-sample
detector actually does better than the sequential detector, but as the
sample number becomes large the sequential detector is substantially
better than the fixed-cample detector. Figure 5% shows the computer-
simulated results corresr~nding to Figure 50 except that the sequential
detector is designed for two unknown signals. Four hundred trials were

made for cach of the simulated results of Fizures 58 and 59.




ASN

176

35 |
¢ fixed-sample detector
X sgequerniial detector (state w,)
O sequential detector (state uz)
30 |-
25 -
20 L
18 |-
10 |-
5 -
(1) n | A 1 1 | e i A L
0 1 .2 .3 4 5
P
e

Figure 58. Computer-simulated ASN for the two-known-signals case
versus error probability for the fixed-sample detector
(p(m ) = p(w ) =1/2) and the seqnentxal detector for both

states of nature w, and w, where yl =12 and yz = 10,
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Figure 59. Computer-simulated ASN for the two-unknown-signals

case versus error probability for the fixed-sample detector
(plw,) = p(w,) = 1/2) and 1he sequential detector for both
1 2 = =
states of nature w, and w , wherey =12, y_, =10, and
t 2 1 2
u = 1000.
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SUM! 'ARY AND CONTLUSICNS

In this paper the problems of estimating and discriminating between
extended optical signals which have been distorted by diffraction, additive
background noise, and multiplicative noise have been studied. Poisson
statistics have been assumed throughout this paper since in many real
situations they are more realistic than Gaussian statistics which ar.. more
commonly used,

For the estimation problem, an optimum linear estimate using the
minimum mean-square-error criterion was co. sidered. Detection
noise (mult:plicative noise) as well as additive noise was considered
since for any measurement technique there will be some interaction
between photons and matter which in turn will give rise to detection noise.
The performance of the minimumn mean-square-error estimation procedure
was evaluated for several special cases. Som results pertinent to
optimum sampling schemes were obtained for both white and colored
noise,

Other estimates besides the minimum mean-square-error estimaie
were considered. These other estiinates included the Bayes' estimate,
the maximum likelihood estimate, and the maximum a posteriori estimate.
These estimates were considered primarily to {ind estimates of the mean
rate of signal-plus-noise photons y incident upon the image plane. These

estimates were then used in an 2stimator-correlator in conjunction with
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fixed-sample detection. Given that ;'i is taken from a gamma distri-
bution with known parameters, the minimum mean-square-error
estimate and the Bayes! estimate of ;'i were found to be the same,
The Bayes! decision rule was used in the fixed-sample detection
procedure to discriminate between extended optical signals, Only

problems involvii g two possible states of nature, w, and w,, were

1 2’
considered. Variouc amounts of a priori information were assumed aboat
the two possible signals which may be present at the input of the detector.
In the error analysis only a single cell of the image plane was considered.
For cases of unknown signal parameters (mean rates), the parameters
were assumed fixed but initially unknown having been taken from a known
gamma distribution, Geveral estimator-correlators were considered.
The Bayes! and minimuin immean-square-error estimator-correlators
were found to be superior to the maximum a posteriori estimator-
correlator for the cases considered. It was found in general that if the
error probabilities are greater than about 0.1, knowing the signal para-
meters (mean rates) is not siuch more of an advantage than knowing only
the probability distributions from which they were taken, particularly
if the Bayes! decision rule or the Bayes' estimator-correlator is
usad. For error probabilities << .] the above statement does not
hold and the difference in error probabilities becomes significant,

Y/hen speced is important in processing optical data, sequential

detection should be considered. The sequential detection test developed
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by Wald (1947) minimizes the average test length and hence has a shorter
average test length than the fixed-sample test for a given P(FA) and
P(FD). A comparison was made of the test length of these two detectors
to obtain some insight into the savings of time that the sequential detector
has over the fixed-sample detector, Sequential detectors were derived
for various cases of known and unknown optical signals and their
performiances compared. For the case of & sequential detector designed
for two known signals, the information per sample remained constant

for all samples. It was found that if only one of the signals for which the
: equential detector was defigned were unkrown and if that particular state
of nature (o 1) were the state of nature present, the information per
sample is smallest for the first sample and as more samples are taken
the information per sample increase and approaches the constant
information per sample of the two-known-signals case, The performance
of the sequential detector for these cases thus improves as more samples
are taken, It was also found that if the other ciate of nature ( "’A) were
present _he information per samgle is greatest for the first sample and as
more samples are taken the information per sample decreases and thus
the performance of the sequential detector deteriorates as more samples
are taken, For the case of the sequential detector designed for two
unknown signals, the information per sample ie greatest for the first
sample and decreases as more samples are taken regardless of which

state of nature is present, The average sam‘{-.le rumiver and Operating
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Characteristic Function (probability of choosing state w, when signal
y is present) versus actual signal ;r were determined for the cases
mentioned above. For most of the cases considered, analytical solutions
appeared extremely difficult to obtain; hance, the analysis was to a
large extent carried out by computer simulation.

For future work in this area, it is recommended that the discrete

sequential detector that. as been discussed in this paper be considered
in terms of a continuous sequential detector where only one observztion
is made and the duration time of the observation is varied. Also,
multiple detection should be considered for cases with imore than

two states of nature,

e st peieetolalaty Al Sl 5 Lt a2
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Two Dimensional Optical Transform Theory

Imaging Configuration

We will use Huyghen's principle in this development. According to
Huyghen's principle, each point { @, ) acts as the source of a wavelet
that propagates with the Green's function eikr/r for radiation from a
point source where r is the distance from the source and k is equal to
2 mv /c (c is the speed of light and v is the frequency of the radiation),
The electric field at the aperture is then found by adding the vector
amplitudes of ail the wavelets originating at the object plane, The strength
of each wavelet depends on the complex amplitude of the electric field
in the object plane,

We again employ Huyghen's principle just to the right of the aperture,
Each point (p,y) of the aperture acts as the source of a secondary wave-
let that again propagates with the Green's function eikr/r. The total
electric field at the image plane is found by adding the vector amplitudes
of all the wavelets originating at the aperture plane where the strength
of these wavelets depends on the incident electric field at the points of
the aperture,

Let E(a,p) be the complex amplitude of the monochromatic source
point in the object at point (@,p ). Using Huyghen's principl~, the electric

field just to the left of the aperture is

e e
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ik.Rl
E(a’ nG) -

We are assuming Fraunhofer diffraction; hence,

1'\‘!+R10 = ZRIO = 2R,

R2+R20= ZRZO = ZR,
and

R. = R

We can rewrite (301) as
Efa, 8) e 21,

2 2 2 2
R -R1 w(c=a) ~(y-3) -Rlo -~

2 2 2 2 2 .2 .2
R® = R,“-+£)"-tr40) = R, “-£°1”,

R, -R, = —b 2__ ia +7p),

1710 R1+R10 R1+R10

2 2 2
-8°.
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(301)

(302)

(303)

(304)

(305)

(306)

(307)

(203)



where p2 S o-z-wz .

2
£ 2 Ky
R,-R,.= + (oGHyL)
27720 0 R,#R,.  R,4R,,
Then
2
R.-R. . = £ . fgatd)
17710 ° 2R R °
2
Ry"Ry0= 2R+ EEHYL)
R

For small aperture, p z/ZR can be neglected, Hence,

R.-R =M
1 710 R
and
R -R.. = oc€+Y, .

186

(309)

(310)

(311)

(312)

(313)
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Let fo' = ¢ /VvR and f'Y = Y /vR., We now can rewrite (305) as

. " . i U'CH‘YE
ileo xlc(R1 RIO) 1kR1° ik( R )
E(a, Ble e

= E(a, 8)e e

314)

ikR, . =i2w({f _atf B).
=Ele,ple % ° Y

Coherent Light
Since R1 0 is approximately constant over the object pattern, we can

neglact e1kRm or absorb it into E( «,p) since it is only a constant

phase term, and we cannot observe phase but only intensity,
The electric field at point (¢, Y) just to the left of the aperture plane
is the sum of all contributions at that point due to all the points in the

object plane, This is true because amplitudes add for coherent light.

~i2n(f_atf p)
W(fo,,ﬁv)-:[‘E(a,ﬂ)e ety dadp. (315)

iLet 'I‘(itr f'Y ) represent th: aperture function, The electric field
]

at point (¢, v) just to the right of the aperture plane is then

U, £ = WIEL£) T (L0 (316)
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Again using Huyghen's principle, the electric field at (§,¥ ) in the

image plane due to the point (o, %) in the aperture plane is proportional

to

UL, L) e 20 ik[p"/2R+ (c&-l-'YZ,)/R]. (317)
=&y

Neglecting the term szZR for small aperture and neglecting the constant

phase term o "R20 we can write

UE,.5,) e <OEVENR, e g ) 12Tl EHHE), (318)

Mow the total electric field at the point ( £, ) in the image plane

due to all the points in the aperture plane is Z

5 i2m(f_C+4+£ L)
ulg,t) = /T ULt ) e oty &, dt, . (319)

(-]

This is the inverse Fourier transform of U(fo_ , I ), i.e.,

RN A

(i

i}

Falf, L0} = O, € ) = WIEL L) T L), (320)

i
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Using the convolution theorem we can write
u(g, £) = B(E, L) * t(§, L) (321)
where
® i21r(£°_§+£ L)
tE, L) = f fT(fo..sy) e Y af e, (322)
)
is the impulse response of the system.
In the image plane, intensity is the quantity that is actus™ observed
and not the amplitude, That is, we observe
2 323
[w(€, )| = viE, L) (323)

Incoherent Light

For incoherent light, intensities rather than amplitudes add.
W= will now find the exprassion for the intensity at (£, { ) due to a point
source in the object plane ( @, 8 ) and then integrate over the object plane,
In this case we can take advantage of the previous discussion and write

for the electric field at point (o,Y ) just to the right of the aperture the

expression




kalo ~i2w(f « +£ 8)
6(£ £ )= T, E )E(a,a)e e R § (324)

where the subscripts ¢ and g infer that this expression is due to the point

source at point (@,B8 ). ~he electric field at (€,L ) due to the electric

field at (o,v ) is

1kR20 ik(eg+yL)/R 3
(3(£ £ Je e . (325)

Let fo‘ =¢/vR and f'Y =v /vR. Then we have

(R, 3R, )

ikR IZTI’(f -,+f L) _ T(f £ )E(o:,,’B)e (326)

p(f 1£)e

« o127 [Eoa] + £ [£-B]).

The total electric field at point ( §, { ) due to the point source at point

(a,B)is

ik(R, +R :
ug plert) = o 10820 ffT(f £ 1B, Ble’ (£ [ﬁ-a]+f [t-8]

-]

af df , (327)
ey

S— 5 - = — =

A ga
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The intensity (the observable) at (€, ) due to the point source at point

(a, p)is

2
Yo, 015D = [, g6 ) | 2w, i) u, wie, )

= |Eta, ) ] [ f [ T4 ) T*(f;.{; y 2Tl -5;) (328)

0 o t
: e'lzw(p"g)(f,y "%,) dfo.diydf;d-t;o

To find the tota. intensity at (£, { ) due to all the point sources in the

object plane we rnust integrate over the object plane, That is,

viE, L) = ug, !.;)I‘2 f[[[fma"v) T*(fof,f,;) \''4 (fo_-f;,f'v-g;) (329)

9 !
Jel2TEl ) Jamiie L) dfo_df,ydf;df;

where

r '
] W(fo' -f;. f‘Y -{; ) = | mE(a, ﬂ)lz e-iZmr(fo. -fcr) e-lz"’mf'y -f:y )dadp. (330)

-

ity

i

il ol

Now let |E(a,p )!z = w(a,p)and

e R
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L] =fo"£¢:' f; = fo_-z, df; = ~deg,
£t g =t daf =-d 3
y=£L-5, L, =f-v an y = =9 (331)
Then
vt i = [0, 0| = [ [] 76,00 T, -2, ¢ -y) £ ZEZEY)
*w{z,y) dfcdf‘ydz dy (332)
-] . [+ ]
- /T w(z.y)e;zn(-‘;zﬂy)[ /‘[‘ T(E,.8,) THE -2, £,Y-y)dfo_d£!v] dz dy.
Let
Alz,y) = ff TULL T * (-2, fy;y) ar et . (333)
Alz,y)= T, f,Y) *TH, f‘Y) . (334)
a=F{A}) = F{T*T), (335)

T T T

iy
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%;; Thus
A w6, 0 = [[ate ) W (a,y) 2764V gy, (336)
L"'t:t:o
and
VU8 ) =ALL)W L), (337)

The quantity A(i.'u_ . f'y ) is the transfar fuuction for the incoheren:

light case. Using the convclution theorem we can write

| viE,L) = a(E, L) * w(t, L) (23%)
where a(§, () is the point spread function of the optical system,
3 Derivation of Point Spread Functions

The Fburier transform pair in two dimensions is

=~ “i(fw_+lw )
Tt = [[uecre 7 Vaga, (339)
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i(&wo_ﬂ;w'vﬁ _

0
teog) = ffT(fa..f,Y.‘ e dio_df'v. (340)
w0

Rectangular Aperture

Consider the rectangular aperture with sides a and b. For this case

the aperture function is

T(e,Y) =1 (o/a) " (v/b) (341)

where Tl )=] [(c/a) is defined by

0, |o] >a/2 (342)
TE) =i, |0l =a/2
1, jo) <a/2. {

This can be rewritten in spatial-frequency coordinates by defining

fv =¢ VR and £, = v/v R, Hence,

T(fc’ f,Y) =_r—|_(f°_vR/ a)r[(f'va/b). (343)
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The point spread function of intensity is the square of the two-dimensional

Fourier transform of T“c‘ . f’Y )

g i(Ew +0q.)
t¢, u=f\ ﬁn«fcvn/a)mryvn/b)e TN g

/ a3y

& ® i2nf ¢
=[ [ vria) e*z"fwgde[ [rie rmye Y dfv]

(344)

-

= -% sinc (ag/vR) sinc bl /vR).
v R

Nermalizing this expression we have

¥(0, 0) = #inc (af/vR) sinc (bL/vR) (345)
or for the normalized inteusity we have
ge, 1) ]2 2
[tw. 0) ] = otnc"(ag/vR) sinc” (b¢/vR). (346)

This is the point spread function or impulse response due to a point source,
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Slit Aperture

Investig: te the point spread function of an infinite slit and an infinite
line source, This i« the same 25 considering a one dimensional case

where we have a point source and a one-dimensional aperture, The

aperture function for this case is

T(o) =/ Lo /D) (347)

where D is the aperture width, Writtena in spatial~-frequency coor-

dinates {347) becomes

T(f,) = LU YR/D;} (348)

The point spread function is the square of the Fourier transform of

T(E ).
a
= D/vR
ug)= [[,vR/D) eig“‘"dfc = [ ezzwggdfa (349)
- -D/vR

=(D/vR)sinc (DE/vR).

e
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The normalized intensity is then
. 2
t .2
[t—:g%-]! = sinc (DENM R). (350)

Circular Aperture

For mathematical convenience= rewrite the two-din:ens.onal Fourier

transform pair in polar coordinates, Let

fo_--fcoae, £ =rcos ¢,

(351)
f'Y =f8inH, and §{ = r sin ¢.
To make the transfirmation, use the relationships (Olmsted, 1956)
fff(gl DdEdt = [Tg(r.t# )‘ J(r, ¢)| drdé (352}
\ !
where g(r, ¢) = f(€ (r, 4’): t(r, ¢ ) ) and
ffh(fc,iv)dicdfw = ,P/it(f,e}%J(:, f;)'afds (353)

T
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where h{f,0) = hify ({,8), £Y (£,8 )).
dxcosd Arcosd
or 3¢
Ir, ¢) = i) o = 354
(z, &) S T (354)
T sin or sin
or 3
of cos 6 éj cos O
3,0 ty) 3 90
A 2 cece————— = = £, 355
o= SEe = i
ofsin® df 8ind
of 99 ; -

Making these substitutions yields:

o &%

t{r, $) = [‘ /‘ Tit, 0) ei(rucos ¢ cos 9 + wr 8in ¢ sin e)fdfde, (356)
o0

o 27

T(£,0) = /‘ [‘ t(r, 6) e-i(wrcos 0 cos $ + wr 8in 8 sin “rdrdcb. (357)
o ‘o
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If T(f, ® )and tr, ¢ ) are symmetrical and have no dependency
upon 6 and ¢ we can write
= 2n
t{r) = f T(f)[ f =B el (4"9)&9] faf (353)
) ‘o J
[<2]
= 211"/‘ Tif) J_ (wr)fat
[o]
and
-]
T(f) = 27 f or) J_(ws)rdr, (359)
[+]

The point spread function of intensity is the square of the two-

dimensic.:al Fourier transform of T(f).

Let a be the radius of the aperture and p be the radial coordinate in

the aperture plane. The spatial frequencyis f = p/vR,

a/vR . 2rra/vR
t(r) = 2n [ J (w)fdf = o= f J (x)xdx
: o 2 o
o 2y Yy

(360)

‘ “aZ [ZJ’I(anaIVR)} 2

v ZRZ 2nra/vR

B s S SN =gt
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The normalized intensity is then
2 27, (2rra/vR) @
LI R R . (361)
t{a) 2rra/vR
Derivation of Tptimum Sampling Scheme -
Consider the case of white noise where the point cources are =
separated by the Rayleigh criterion distance, We will assume that the
number of measurements £ is equal to a multiple of the number of point
sources km, Our problem is to find a sampling procedure to minimize
-1 ,
tr (A'A) ., {362)
If 4 measurements are made :: the peak of each point spread function
then
k 0 :
AA=l °, 1363)
0 °k,
and
= 1/k 0
(AA) "= “a . (364)
¢ ‘1/k

I

i
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Therefore, for m point sources
t .=l 2
tr (AA) =m/k=m /". (365)
We want to show that these are the conditions necessary to minimize
t:r(A'A)-l when we have white noise and Rayleigh criterion distances
between point sources,
To prove the above we need to consider several lemmas,
Lemma 1
A'A is a symmetric matrix,
Proof:
(A'A)! = AYA')Y = A'A . (366)

Lemma 2

A'A is a positive definite matrix,

Proof: By definition, A'A is a positive definite matrix if <, A'fx> > 0

(Zadeh and Desoer, 1963) where < > denotes an inner product. Since

A'A is a symmetric matrix with real valued elements, it is a Hermitian
matrix,

Hence,

(arayt 2 =

[aa)*] = (an) = aa,

(267)




Consider Schwartz's inequality

<%, x><y, y> _?_ <%, yO<y, x> = ! <x,y> ' £

(368)

where equality holds if and only if y = cx where c is a scalar constant,

Hence, we have

%, x>%7,y> > <%, y><,x> > 0,
For any intelligent estimation procedure
%,x> > 0and|e| >0,
For y = ¢cx we have
%, X5, 7> = %, y>%, y> = |¢| % <, x>%, x> > 0

which implies that

S,y> > 0.

Let y = Ax, then

Y, y> = <Ax, Ax> = <, AtAx> = <, A'Ax> > o,

s ot o — s

(369)

(370)

(371) b

(372)

(373} )

it s 5
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Now consider the case of y ¢ cx. We now have

X, x>, y> > %, y>%,y> > 0

(374)
hence,
<y, y>>0, (375)
Let y = Ax, then
<7, y> = “Ax, Ax> = <x, ATAx> = <, A'Ax> > 0, (376)
Hence, A'A is a pr.sitive definite matrix,
Lemma 3
Let A'A =B,
2 377
Bl =by; 1By 1= = by Byl (377)
Jik=1

where |B,. ... | is the cofactor of b, in B_, and |B.. | is the cofactor
ii, jk : jk ii ii

ofb . in B,
ii

Proof:

m

m
| B| =j§1bjil Bjil =b,| Bii|+j§1bji] Bji[ : (378)

jH




Hence, we need to show

by Byl = by flbxkigihak‘ (379)

ki

By definition,

"
|Bij| = (1)} M,, (380)

and

IR TE T oA
‘Bﬁ_jk | = (=1) Mii‘jk (381)
where Mij and Mii' ik are complementary minors (Wylie, 1960), For

J<i we can write

i+ 442
Bisl Byl = byl by, (1) M0 51°Ppp(=1) Mo 52
4 4{i-1) LHAHi+1)
ety (-1) Mig. j1-1P5341 (1) T

(382)

+ooatb ( 1)""“’*’“1\411." ]

=Pl =Dy Byt g1 ] =BaByy. s ol =e e =By 1 By, ji-tl

Piia1 By sir1| Pual Biso jenl = b4

gD Bt PN 1
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For j>i

o iH+j+
bjilBji‘ = bji [bn( 1)

i+i+j42
SCTRTRL PN fiej2
it +j+(i-1) ititj+(it+l)
+. 0 [y b - t .s = - i
by (1) iie jiel "Piga (-1 My i
(383)
i+i+j+m
oo b (=1) Myio jm]
=b.[-b. /B . . |[=b.|B... . ,
JBY il iRkl 2174 JZ‘ -...-'bﬁ_l !Bii'ji-ll
7 m
“bys41) Byz. 5i+1‘ b0l Bize jm‘ by 131 Dol Bis. ,k‘.
k#
Hence,
m
by | Bjil= 'bjikz_:_lbik‘Bii-jk‘ (384)
k#i
and therefore
m
Bl =y (Bl = = byby By el (385)
k=

j#i
k#i
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Lemma 4

If B = A'A is a symmetric, real, and positive definite matrix then
B~ is positive definite,

Proof: Given <x, Bx > >0, Letx- B~ ly, then
1

<x, Bx>= <B’1y,BB~ y> = <B—1y,y> - <v,B-1y >» 0. (386)

Hence, B  is a positive dafinite matrix.

Lemma 5
: Byl
L b,. b B >0 (387)
If
ki s
’ i
for b, and b, not equal to zero, ‘
ji ik .

1
Proof: The matrix Bii = (A 4i A 4 i) is a positive definite matrix
since the matrix B , is a submatrix whose principle diagonal lies along
the principle diagonal of B, Therefore, lBiil is positive, This also

implies that B..'l is positive definite, We can write
ii

St

ey

ity MBI DY

it

g
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T bub By ol = 1Byl : |Byy . gk
g,kmp S LRI dK ke T ®y1Pai
141 184 11
ki ki
- -1 - -1 388
L 2 on byy By | by = Bl < bys By by X
3
i
i

- -1 aca
The quantity <b,, B.. lb. > > 0 forb #0 since B, ~ is a positive
i Ti i i ii

definite matrix, Hence,

jzk_l by by | Byt gk | >0 (389)

his!
(321

for b, and b__ not equal to zero.
ji ik

Lemma 6

If B = (A'A) is a symmetric positive definite matrix:
(a) |B| = b, | B | for each i if B is diagonal,

(b) |B] < b, | Bii' for at least one value of i if B is not diagonal,

Proof:

(a) If B is diagonal, then an expansion by cofactors along the ith
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row will give bii' B,|. Hence,
3
Bl = by | Byl - L
(b) Using leimnmas 3 and 5 we can write (2ssuming that bji and bik
are the off-dianonal elements which are not equal to =ero)
o { (391)
[B] = by, [Byy | 'jzk_l bygPyylByg, g5 < Oygl Byl -
hi2!
Hence,
(B < b, | B, - (392)

Note: By hypotheses B is not a diagonal matrix; hence, there are at
least two non-zero symmetrically located off-diagonal elements (since

B is symmetrical), Assume that these two non-zero elements are bji

and b, .,
1}

., Lemma 7

B is a symmetric, positive definite matrix with diagonal elemerts ki

and with arbitrary off-diagonal elements such that the matrix is positive

definite. The elements along the principle diagonal of B'l will be a

:,lv!‘
R
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< minimum of l/ki if and only if B 13 a diagonal matrix,
Proof: If B is a diagonal matrix then
llk1 0 303
3‘1-(1/k)5 - ., (393)
N " 1/k
0 m/ .
From lemma 6
(394)
0 <|B] <b, |B,]
er
1 | Byy|
5 s 3 (395)
11 |3
since b, > 0 and | B! > 0, The expression
{b -1 Ll PPy ' (396)
i3 f
|31
implies
o 1o LPul (397)
H i1
|&]




If B is not a diagonal matrix then

b !
11

1 1
b,k

ii
Hence, if B is not a diagonal matrix then
1Bl < by [By]

for some { = io which inplies that

B
=1 l i‘o"oi 1

14 " TR b k
oo 1010 10

(400)

(401)

(402)
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Lemma 8

m
z 1/a
i=l

m
- = 1 - ’- °
seee -a.m 3 /m) given that &1 ai

is a minimum when the a's are equal (i,e., a_ =a_ =

i 1 2

Proof: We will use dynamic programming to show this p.oof. Given

the function

1

Ao X (a0
a a a

f(a.a.oon.a )".
1" 72 m 1 2 m

we want to minimize f(a ,am) for 3.> 0, a2 0,..., and

1’00

a_ > 0 and subject to the constraint a

1

+ +... = *
1 az +a.m L

Hence we can write

min min [__]'.+ LX) +L—+a—1—]

O<a 54 !'m allo a, 1 'm
am-llo
(404)
= min [-al—-r[min (§—+°°'+~§";)]]
O<a < £ m a,>0 '1 m-1-
-m m 1-
am—ll(’
subject to a, +a2 + ... 4 a a°- l-am = lm-l' If we define
A i -a )
£(8) % min  [L-sf (4 2] (405)

O<a < { m
-m m

P e R A AR - e
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we can write

1 1
£.(R,) = min = =< 406
11 < 8, 2 (406)
—1-71
which implies that a, = 21 and "l = lz - a,. Also,
1 )
£,(2,) = min [ 24 £ (2,-2,)] » min . (407)
2+2 0<a, < £ 8 AR 0¢a,c2 za-az -
—2— "2 2552 =T%97 %2
To minimize (407) we require that
of , (408)
Ta, T 07 "l (gley)
and
a2¢,
5‘.‘_‘2-2- = 222 >0 (409)

(sufficiency condition for minimum) whick implies that a, = 2 2 /2.

Hence, fz( lz) = 4/ L. and ¢ , = zz-az = 8, lz/Z =zz/z

which implies that a, = lz/Z =a, . We will finish the proof by using

- oty
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mathematical introduction, Assume lemma 8 is true for mej (i, e.,

sttt

a, =8, = ... = "m-l) and prove true for m (i.e., a, =3, =
a.m). Assuming lemma 8 is true for m-1 implies thut

teennd s

S W . (410)
n-1 m-1 m-1
since gl =az = L. =am-l and a.l +a2 +... +a -1 =9 m-1 = zm-am'
We can write
nin 1
fm("m) - 0<a_ <% [a + fm—-].(!'m-am)]
—m-m m
{(411)
2
- min "m"“l am-zm.am
o<a_ <t at ual *
e amom
For minimization we require that
of
B 24 2 2
3am zm + “am"m + (m"~2m) a o ‘ (412)
and
azfm 2
aa 2 = 2!,m 4 (m -2m) ‘ay > 0 for n > 2 (413)
m




k !J .
4

(sufficiency condition for minimum). Hence,

¢t [1+(n-1)]
8 = (414)
= =m(m-2) .

For the plus sign we have a_ = -ty /lm-2) < 0 which does not meet

the requirement of a_ 20. For the minus sign we have a = L m/m>0.

We can then write

- = - = -1ja 5
m M m™m (m-1)g, (415)

al + az + 400 + am-l = (m-l)am_l = !'m

which implies that L = a_ . Hence,

=a . (416)

From the above lemmas we can see that in order to minimize the
trace of B.l = (A'A)"1 we must make the off-diagonal elements equal
to zero. This implies that we make al! our measurements at peaks of
point spread functions. In doing this for A'A the diagonal elements
become larger as the off-diagonal elements go to zero: hence, the trace
is further reduced. From the last lemma, we see that each of the diagonal
elements of ..'A must be equal which implies that the same number of

Measuremunts be made at the peak of each point spread function.
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