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ABSTRACT 

Estimation and detection of optical signals distorted by diffraction, 

additive background noise, and multiplicative (detection) noise are 

studied.   Assuming that the output of the detector is a Poisson process, 

that the signal and noise are additive, and that they have prescribed 

moans and covariance matrices, the optimum linear estimate of the 

optical signal or object is obtained.   In the physical detection process, 

the interaction between the incident radiation and the detector produces 

an effect called multiplicative noise which must be taken into account 

in obtaining the optimum linear estimate«   The performance of the 

estimation procedure is evaluated for several special cases.   Both white 

and colored noise are considered in the estimation problem.   The problem 

of discriminating between optical signals is considered.   Optimum 

procedures are derived for detecting known and unknown optical signals 

using fixed-sample detectors.   The properties of sequential detectors 

which are optimum for the detection of random or unknown optical 

signals are investigated.   A comparison is :.iade of the average test 

lengths of these optimum random signal detectors with those of a 

detector designed for particular optical signals.   The test lengths of 

the fixed-sample detector and sequential detector are compare for a 

particular example. 
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INTRODUCTION 

In an optical system the final image is not an exact representation 

of the original object.   In general the image differs frcnthe object due to 

diffraction and  stray light or additive background noise.   The problem is 

further complicated when the image is measured.   When measurements 

are made, detection noise (multiplicative noise) is introduced. 

In the absence of any noise, with distortion due only to diffraction, 

Harris (1964) showed that the object can in principle be reconstructed 

exactly if the object is known to be spatially bounded.   In general, however, 

additive and multiplicative noise will be present and will give rise to error 

in any restoration procedure.   In establishing such a procedure, we need 

to take into account any known statistics since the restoration procedure 

in the presence of noise may be different from the procedure used when 

noise is absent. 

In this paper, methods of detecting and estimating optical signals which 

have been distorted by diffraction, additive noise, and multiplicative noise 

are investigated.   The estimation procedures considered are the minimum 

mean-square-error estimate, the maximum a posteriori estimate, the 

maximum likelihood estimate, and the Bayes1 estimate.   The main 

emphasis will be on the minimum mean-square-error estimate.   For the 

detection procedures, both fixed-sample detection and sequential detection 
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are studied.   Comparisons are made between detecting known signals and 

unknown signals to determine the deterioration in performance due to 

ignorance about the unknown signals. 
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STATEMENT OF THE PROBLEM 

Throughout this paper thä conditions necessary for Fraunhcfer 

diffraction will be assumed to be satisfied (Born and Wolf,   1964; Stone, 

1963)«    In essence,  these conditions require that the effective distances 

from a point in the object plane (or observation point in the image plane) 

to any two points in the aperture plane differ by not more than a small 

fraction of a wavelength*   Also, the radiation will be assumed to be 

spatially incoherent and quasi-monochromatic.   By qu jisi-monochromaU.: 

we mean that the radiation has a frequency bandwidth which is much 

smaller than the frequency itself.   Unless stated otherwise, the observed 

quantities will be number —of-photoelectrons and the estimated quantities 

will be average-number-of-photons per unit time (mean rate). 

Under the conditions of Fraunhofer diffraction, the techniques of 

Fourier analysis caa be used to investigate the characteristics of the 

optical system (O'Neill,  1963).    The optical system can then be treated 

as a linear filter of spatial frequencies whose properties are describerl 

by a transfer function A (ff, f ) where % and ^ are image-plane coordin- 

ates.   For incoherent illunanation, the spatial frequency spectrum cf 

the image V (f., f ) is found by multiplying the spatial frequency spectriun 

of the object W (f , f ), where a and |3 are the object-plans coordinatas, 

by the system transfer function A (f , f ) (see Appendix).   Alternately, 

by the convolution theorem, the image intensity distribution v(4,  4) is 



obtained by convolving the object   intensity distribution   vv( a, ß ) with 

the point spread function  a( |, ^ ) of the optical system.   Hence, 

vCtO^wd^Saß.O (I) 

where   w( |, ^ ) is the object intensity distribution referred to the image 

plane and   *  denotes convolution. 

The image  v( |, ^ ) is further distorted by additive background 

noise   q( £ , £ ) and the resulting image intensity distribution is 

rU . 4 )   *    VU . C )    +    q( 6 » ^ )•     During the detection of r( £ , £ ) 

the interaction between the impinging radiation and the detector produces 

a multiplicative effect or detection noise resulting in an image   u( £ , £ ) 

or a stream of photoelectrons   z.   Our objective is to count the number 

of photoelectrons in the output and from this, estimate   w(£ , ^ ) or 

discriminate between two alternative signals   w ( £ , ^ )  and 

w~( £ » £ ).   The estimation and discrimination procedures we develop 

depend upon the statistics of the additive and multiplicative noise as well 

as any a priori information available concerning the optical signals to 

be estimated or detected. 



7:  ? 

-   :f 

j 

STATISTICAL MODEL 

Radiation can be observed only through its interaction with matter. 

The interaction process we will consider results from the photolectric 

effect.    The receptor in the image plane will be assumed to be a photo- 

sensitive surface divided into a large number of very small regions or 

cells.    It is assumed that the cells are small enough that the illuminance 

is approximately constant within a given cell.    Consider the radiation 

incident upon the elementary regions or cells to be streams of photons 

each with energy hv where h is Planck's constant and v is the fre- 

quency of the incident radiation.    The average number of photons y 

incident upon a cell in the time interval r is equal to the incident 

energy of that cell rr divided by hv,  where r is the received intensity 

due to the diffracted object and additive noise.    The cells are labeled 

with the index i, and y. represents the number of photons incident 

upon the i     cell.    The number of photoelectrons z. emitted from 

the i     cell depends upon the incident energy and also upon the multi- 

plicative effect of the receptor.   Because of the stochastic nature of 

the interaction between radiation and matter, for a given y. the 

quantity z. is a random variable rather than a determinintic quantity 

ar"* must be described in probabilistic terms. 

The number of photoelectrons z. emitted from each cell consitiuten 

the observed data.    It is assumed that the location where each photo- 

electric event takes place can be determined. 



The photons that strike the light sensitive surface of the rnceplor will 

cause some type of reaction that can be measured.   For example,  in Hie 

photographic film case, the photons will cause many of the silver hülkla 

grains to become developable.    The pattern that results on the develcpe-I 

photographic film will be a measure of the number of the photons reaching 

the image plane.    In this case» film grandularity and saturation must be 

taken into account when determining the number of incoming photons.   In 

the photomultiplier tube case, a single photon that strikes the light sens- 

itive plate g    JS rise to many electrons in the output.    By scanning the 

image plane with a photomultiplier tube it is possible to obtain an estimate 

of the number of photons that are incident upon each of the incremental 

cells.   For a simplr photon-electron converter, a photon gives rise to a 

single photoelectron with probability r\.    The quantity r\ is called the 

quantum efficiency.    The photon-electron converter is a degenerate case 

of the photomultiplier tube case in which we consider only the first stage 

of the phoU multiplier tube. 

Throughout this paper we will acsume that if the incident energy per 

unit time v. (or mean rate of signal photons s.) from an optical signal is 

known, the signal photons statistics are Poisson with the probability thp1: 

th 
exactly s. signal photons will impinge upon the i     cell in time T given by 

Pis.) = 
(Ta.) i e       i 

■i' 
(?•! 
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where the mean rate 's. s v./hv .    Likewise!  if the incident energy per unit 
11 

time tr (or mean rate of noise photons n.) from the additive noise is known, 

the noise photon statistics are assumed Poisson with the probability that 

exactly n. noise photons will impinge upon the i    ceil in time T given by 

n.      -Tn. 
—     i i 

(Tiii)     e 

P(ni) STi  (3) 

where the mean rate n. = q./hv . 
i      n 

For the unknown signal case, the mean rate of signal photons s. 

incident upon the i     cell in the image plane is a random variable.    The 

statistical properties of 7. need to be considered since they influence the 

statistical properties of the signal photoelectrons emitted during the re- 

ception of a signal.   For this case the prior distribution of s. will be as- 

sumed to be the following gamma distribution (Goodman.   1965; Farrell, 

1966): 

u. -1   -ß.s. 
p. O.s.)  l     e    l ' 

f(7.) ,        sso (4) 
i i — 

= 0, otherwise 

_        - — 2 2. 
where E(s ) = i   = u /ß. and var (s.) = «r-      = u./ß.   !    For this unknown 

i i       i    i i s^ i    l 

signal case the probability that s. signal photons will impinge upon the i 

cell in time T is given by 

(r>) P(s.) =    j    PCs.  /s.)   f (s.) d s. 



where 

pc/V - 

_    8- 
(TT)    

l e 
•T8. 

8il 
(6) 

and f(7i) is the gamma distribution in (4). 

For the case of known signal and noise both the signal and noise 

photons obey Poiseon statistics.   Because of the additive nature of the 

Poisson distribution the total photon stream has a Poisson distribution. 

The probability that y. signal-plus-noise photons .will impinge upon the 

cell in time T is given by 

[T(8   +n)]   le          l        l 

PtV8!. ITi)   s     (?) 
n« 

y. 
(Ty,)'1    e-TVi 

yil 

For the case where the mean rate of signal photons 7. is unknown 

and the mean rate of noise photons is known the probability of exactly 

y. photons impinging upon the i     cell in time r is given by 

p(y 

(TTX> 
U. 

1    )' 
1 

e -Tni   - 
(niT) 

Itu.) 
jao 

 r(Ui+j) : 
(Vi  -J)l   JllÄ.CT   +  ßtf 

(S) 

When the mean rate of noise photons n. is unknown we will aaenme its 

prior distribution to be the following gamma distribution: 



7 
u.-l      -A.n. 

MX.n.)  l     e      ' * 
i   i i 

"«>' " r-riu.,    •        »i ->« (" 

■    0, otherwise. 

When the mean rates of noise photons n. and signal photons s. are un- 

known (i. e., y, = i. + n. is unknown) we will assume that the prior 

distribution 01 the sum n. + s, is given by the following gamma distribution; 

u.-l 
a.(a.;.) '        -Vi 

f{y.) = f (i. + fi.)3    l   ll e  .   y. > 0 

r(ui» Cu) 

s   0» otherwise. 



10 

MATRIX REPRESENTATION 

In this paper the spatially bounded objects are divided into small 

celU over which the intensity is approximately constant.   If these cells 

are made small enough, they may represent poir' sources.   By knowing 

the point spread function of the system, the image can be approximated 

for incoherent light by superposition of the point spread functions result- 

ing from all the point sources of the disected object.   Here we are assuming 

spatial invariance.   By this we mean that the object is small enough that 

points of a given intensity located anywhere on the object gives rise to 

the same point spread function   in the image plane.   The location of the 

point spread function is determined by the position of the point source 

(O'Neill,  1963). 

The number of photons emitted from the  j      region (point source) 

of the object plane  x.( a., p .) can be represented by a delta function 

x.( or., ß .)    =    x. 6(   «-cf.,ß-0.) where a and ß are the coordinate 
J J J J J J 

representation in the object plane.   Consider the system impulse responoe 

or point spread function  a( |, *,) where ^ and t, are the coordinate 

representation in the image plane.    The optical image or point spread 

function in the image plane due to the single point source   x,[ a., ß.) 

is, using image plane coordinates,   x.(|., t,.)   * a( ^ ,  t,)   = 

x   ÖU-I, i;-U   *  aU.£)   =  xa(e-i, t-r  )   =   s(|-e.,?.-U. 
J J i 3 3 3 j        i J 

The total image is the superposition of the images of all   m  point eourccn. 

i 



n 

That is, 

m m 

j=1 J      )      J   j=1 J    .      J 
(11) 

1    „ lv The image at the point  ( £  , £  ) will be. due to the images of the 

m  point sources, and hence we have 

m m 
sd^1)«?■ Me-e4, r-u«^ ad1^.. c'-o- 

i«i J 
j=i y J 

(12) 

i    *K Let  s.   =   s( § , ^ ) and  a..   =  a( g    -|., 4*-L).   The quantity 

s. is the number of photons due to the optical signal incident upon the 

i    cell of the image plane.   We can then write 

m 
s. =  2   a..x.. 

1   j.l    XJJ 
(13) 

In matrix notation this can be written as 

s = Ax (H) 

where 

ct* . •    •    •    cl 

M I  M /  ir ' '   lm\ 
s =   : j, x = : L and A s : 

l.s0 ; \x / la,,,. . . a      / 

If additive noise is present at the image,  each measuremont of s. 

will be corrupted by an additive nr'^e element n.; hence, we h?.ve 
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m 
y. = s. + n. =  2 a..x. + n.. (15) 

i       i       i    j=1    ij J       i 

The quantity n. is the number of photons due to additive noije, incident 

th 
upon the i     cell of the image plane.   In matrix notation the obser-. ed 

vector is 

y   =   s   +  n    =    Ax   +  n (16) 

where 

y = i .   j    and n = j ,    i, 
\ y ; > n   / 

The vector   y   will, during the detection process, be contaminated 

by multiplicative noise, the form of which will be discussed later. 

We will assume throughout this paper that the vector representation 

of the object is sufficiently accurate tfiat any error associated with it is 

negligible. 
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MINIMUM MEAN-SQUAP,E-ERROR ESTIMATE 

Introduction 

In this section we investiage the problem of obtaining optimum 

estimates of an optical signal or object distorted by diffraction, additive 

background noise, and multiplicative noise using the criterion of minirmun 

mean-square error. 

Consider the photon-stream vector   y  impinging upon the light 

sensitive surface in the image plane and giving rise to the output vector 

z.    The quantity   y. is the number of photons due to the optical signal ard 

additive noise incident upon the i     cell of the image plane.    The quantf i-/ 

z. is the number of photoelectrons due to the optical signal, additive 

th 
noise, and multiplicative noise, being emitted from the i * cell of the 

image plane.    The quantity z. can be thought of as the number of counts 

(i.e., photoelectronjj for the photomultiplier tube case and devslopsb;^ 

gru-'.ns in the photographic film case) in the output of the detector.    Th-? 

system being considered is illustrated in Figure 1. 

For a given mean rate vector n we will assume that the noise   n 

has a conditional covariance matrix K .   We will assume that for a P'-'cn n 

mean rate vector   x   the object  x   has a conditional covoriance matr'- 

K   and that x and   n  are conditionally independent (i. c., corrJitiornd 

en knowing   n   and x ).   Also, we will assume that the mean rate vector 
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Object Plane        Aperture Plane 

(a) 

n 

Optical 
Cystem 

A 

Image Plane 
(Detector) 

S=AX   »(i|)y=AX+n> 
Detector 

(b) 

Figure 1.    Optical system configuration. 
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fi   has mean   ü  and a covariance matrix   K_   and tbat tho me"?,n rate 
n 

vector   ::   has a mean  x  and a covariance matrix   K-   and thp.t  5 and 
x 

ft   arc independent.    K-   and   x   as used here represent our prior infor- 

nrii-Won about the mean rate of the object rather than any actual statistical 

fluctuation of the object.    Large terms in K     indicate small prior infor- 

mation about the mean rate of the object and small terms imply large 

prior information. 

Photomultiplier Tube Detector 

For the case where the photomultiplier tube acts as the detector of 

the optical image, a photon  k   gives rise to B.   electrons in the output 

of the detector.    The output due to each photon is assumed ':o be inde- 

pendent   of the outputs due to other photons but identically distributed 

2 
with mean  b  and variance   <r,   .   From the photon stream incident upon 

b 

the i     cell of the image plane we have 

z. =  S  B,. d'*} 
i   ,   ,     k k=l 

The element   z. is a random number of independent rancTom varicbJen 

CP-'Tzen,   1962).    Because of the Poisson nature of the photon stream th 

conditional mean and conditional variance of   y.   are equal   (i.e., 

var   (y./ x, n)   =   E{y./x, n) ).    The mean and variance of z. are 

respectively 
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E(z.) =E(y.)Em) = (a.x + n^Tb, (18) 

Var (?!.) = E(yi)Var(B) + Var(yi)E
E(B) 

= T,2 T(A.X + n.) + b2(a.K a.' + K^   ) * T^a.K-a.' + K- - ) 
b    x i r ixi n-ni' * i  x i n,n/ 

i ^ ii 

= (o-if + b ) T(a.x + n.) + TV(a.K-a.1 + K) (19/ b '       i r * i  x i ff.ir 
i i 

where  a.   ie defined as the i     row of the system matrix A and the 

prime on  a,   denotes transpose.    Thus, 

Xl' 

a.* = V-^in,     :        = ail^ + ''' aim^m- (20' 
x ' 

m 

The quantities x  and   n.   are defined as   E(x) and E(n.) respectively. 

Point spread functions a., for various optical system apertures are 

derived in the Appendix. 

For the vector case, the expected mean of z is 

EU)   =   r MAJC +n) (?') 

and the covariance matrix of z is 

Cov(z.,z.)   =   E(zz<)   -   E(z)   E(z') 
J 

where 

E(z) E(z^   =   T   b   (AXi'A'   +Aää•    +   fiX'A'    + fiu).       (Z?) 



We need to calculate £(22')   which can be written as 
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E(2Z ) = 

£(z,z,) . . . E{z.z   )1 

E(z   2 )   . . E(2   2   ) 
ml mm 

(?A) 

For the diagonal terms of (24) we have 

E^z..) = E[E(zi2i/x, n)] 

= T b [a.(K-+xx,)a.   + n.x'a.   + a.xn. + K- - + ;~.n.] 
1    x ii        11       nini     l l 

+ b [a.K a/ + K      ] + T<r, (a.x + n.) 
1  x i n.njJ b    1 1' iH 

2 . ,2 2.2 ==1, - -1    1 

(25) 

= (<r     + b )T(a.x + n.) + T b [aa'K   -xx )a.t + n.x a.   + a.xn. 
b i 1* '•ix 1       ii        11 

+ K +n.n.3, 
n.n.       1 x 

t 1 

Now consider the off-diagonal elements of (24) which are 

E(2.2.) a E[E(2.2./x n)] 

= T b [a.(K_+Ii )a,1 + a}Äfi.+5.5,a.   + K-_   -f-n.H.l (2<>) 1 1    x j        i    j       1     j n-n        1 jJ 

«I 

+ b[a.Ka.   +K      ] + p..<r,    E\/(a.x + n.)(a.x + n.) 
^   7   x j n.n.J     rij b      vx 1 1" j j' 

where p.. is the correlation coefficient of 2.   and   2..    We will na ho !".ie 

following definition: 

C    =[C      1 ^ 
2ij 

(p..E\/(a.x + n.)(p.x -f n.)   ) 
^ij 1 1    j j (^ 
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Thus we can write 

ECzz') = b2T2[A(K- + xxV + räV + Axn' + K- + nn ] 

+ b2[AK A* + K 1 + o-.2 C 1     x rr      b     s 

(23) 

In this paper we will assume that the number of photoelectrons 

emitted from disjoint regions or cells of the detector are statistically- 

independent (Helstrom,   1964; Farrell,  1966).   Hence, the multiplicative 

noise will be assumed to be uncorrelated.    For uncorrelated multi- 

plicative noise (i.e., p.. n 0 (i ^ i) and p., s 1) we have ij »      •»» ii       ' 

C   = T(a.x + fi.)6.. = 
z        ' 1 '' xj 

T(a.x + fi.) 
i i 

T(a   x + n   ) 
' m        m' 

The covariance matrix of z   can now be written as 

(29) 

Cov {z„ z.) = o-2 C   + b2(AK A* + K ) 
i    j        b    z x     x n' 

= T«r 2 (a.x + n.) 6.. + b2(AK A* + K ). 
b   ' i i     ij x n' 

(30) 

We will assume for convenience that the number of photons impir.g'-»;, 

upon different regions or cells of the detector are statistically indeperulor 

This assumption is by no means essential.    This assumption nvik.is ihe 

matrix sum of  AK A1   +  K     diagonal, and due to the Prv.sson n^ure 

of the photon stream this sum becomes    T (a.X + fi.) 6...      The 
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covariance matrix of   z   is then 

2        2 5      " 
Cov (2.,z.) = (c,   + b )T(a.x + n.1* 5.. . (31) 

Also, 

E(zzl) .= ((rb   + b )Cz + TVfACK.+ ^^A1 +^IA, +A:Iä, + K-+nn ].   (3^) 

We now wair    > find the linear estimate X of  x   which will minimize 

the mean-square error   (MSE),    That is,  find   x   to minimize 

.A, A 

e = E[(x-x)1 (x-x)] = tr E^x-xHx-x)"] (33) 

where   tr  denotes the trace of a matrix. 

For the linear estimate of  x   we write 

A 

x = HZ/T + v. (34) 

To simplify the mathematics later on let 

v = -Hb(Ax + n) + u. (35) 

The linear estimate of   x   is then 

x = H[Z/T - b(Ax + n)J + «. (3-\ 
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Wc need to find a matrix   H (discrete linear filter) and a vector u    r.uoh 

thr\t the mcan-pquare error is minimized.   Substituting   (36) into (33) 

r.nd expanding yields 

e = (---) tr ErHCzz'-bTzx'A'-bTzn1 + b2T2Axx A* 
to 

T 

+ b T   Axn  +bTnnA   +bTnn -brAxz -bTnz )H 

+ H (Tzw'-bT Axw -bT nu -rzx + bT Axx  + br nx ) (37) 

.  i       « ,   2  si. i .   2  2<   -  i  . ,   2.SI.I  . ,   2-r.t.TTi 
+ (Twz -br wx A -tr wn-Txz  + bi  xx A  + br xn )H 

.2    '    2-i    2« I       2--t 
+ (T   «W  -T   UX  -T   XW    + T   XX )] . 

Carrying out the expectation operation we obtain 

E(3zf) = (<rZ- + b )C   + b T [ A(K- + xxV' + nx'A1 + Axn  + K- + nn'], i?S] 

E(zx ) = br (Axx  + nx ), 

E(xxf) = K-+xx,, (4P> 

ECOJX') = to:?, (4i: 

E(wzf) = ^(CJ^'A' + un'), (4Z) 

•*#- 
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Efxz') - bT2^' + K-) A* + bT2^*, (43) 

etc, 

Ss.i>»Eiituting the expected values of (38)-(43) into (37) yields 

e = -V tr fH[b2T2{AK-Äl + K-) + (T 
2 + b?') C  ]H 

i       I   L '     x n'     ^ b '    zJ 

T 

-bT2HAK—bT2K-AlHl + T
2
^' - T^JÜI^X« (44) 

X X 

+T2(K.. + ra)]. 

Minimizing (44) with respect to w requires that   u = x and minimizinf; 

with respect to   H   requires that 

H =  TT-A   (gC   + K- + AK-A1)"1 

b ,0   z       n x 

(45) 
=  ■?■ [A'fgC   +K-)"1A + K.'1]"1A,(gC    +K-"1) o        vo   z       n' x    ■' z       n 

2       2,22 
where   g   =   (or,     +b)/Tb. 

D 

This is the optimum discrete linear filter in the MSE senso.    The 

optimum linear estimate of  x is now 

:- = Ffz/T-o(Ax + n)] + x = H(z/T-bn) + (I-bHA) x 

=  ^[A'CgC    + K-^A + VmiflA\gc   + K-r^z/T.bn) (46) 

, • -i       -i,-i    -i - 
+ [A (gC    + K-)    A + K-    ]      K-     x. 

"^      0   z        n' x    J x 

If the mean E(x) of an estimate   x   equals x, the r.rti^ate x c' 

x is said to be unbiased; if not,  the difference   E(x)-x is definnd r i 'dir 
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Figure 2.    Minimum MSE estimation system. 
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bias of the estimate.   In the absence of a priori infox-mation about the 

estinv ^, it is desirable that the bias of the estimate be small or zero. 

We win now check to see if the estimate   ":   is biased n-hei e  x     is some 
o o 

actual tut unknown mean rate object vector.    If  x    is unbiased thru J o 

E(x ) = E(x ) = i   .     For the case being considered 
o o        o 

"     *• " 
bias s E[ H(z-bT(Ax + n)) + rx] - x T 

= H(bAx T - brAx) + xT-x T , ..,. 
o ' o ('..■/) 

a (bHA-I) (x -X)T 

whore I is the identity matrix.     The estimate   x     in unbiased if eit' or 

1) x   = x    or 
o 

2) SHA   =  I. 

The second condition implies that  K =0 where 0  is a matrix of 

zeros. 

The covariance matrix  K- is related to the a or'ori informaHon 
x 

about the object.   If tke elements of  KÄ  are large (particu'arly las 

diagonal elements) the prior information about the signal is small.   Hence, 

for lar^e a priori uncertainty about the object, K-     ~ 0.    By 

X.    a 0   we mean that the elements of K.      arc small in ccmnaricon x       - * 

withA'(gC    +KSlA. z        n 

For large a priori uncertainity we can write H zc. follows: 



I! = -i- [At{pJCz + K-^A] 'l A,(gCz + K-)"1. (46) 

Since   K.    « £  for large a priori urcertainty, the estimate   x     for this 

case is unbiased« 

To evaluate the optimum estimation or restoration procedure, we 

must find the MSE for the actual but Unknown object vector   x . rf o 

Assuming large a priori uncertainty we have for our minimum MJ'T 

estirmte of  x 

x   =  i [A!(gC    + K-)""^]"1 A^gC    + K-)"1 (z/x-bn). (-9) 
o      b L     '0   z        n'        ■' 0   z        n' 

Given that the object vector is x , the MSE is given by 
o 

e = tr E [(x -x ){x-x ) ]. (50) ,•, o    o' o' ■' 

bubstituting (49) into (50) yields 

e = tr [[A^gC    + K-)'^]"1 A^gC    + K-j'^gC  (x ) + K-] 
L       0   z        n'       * ^   z        nJ    wt    z    o'        :iJ /^.. (^,' 

•[gcz + K-r1 A[A(gcz + K-r1^"1 ] 

where   w (x )   =   T (a.x     +  n.) 6.. 
z   o i o i      ij. 

Let us consider a simple example to i ivestiga^c: the weighing 

due to x    (the actual object vector).   Assume that we have a slit ü; ^rt 
o 
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white noise, and that the object is made up of two point sources which 

are separated by the Rayleigh criterion distance.   We will make   k 

measurements at the. peak of each point spread function.   Also, let 

D/vR equal one.   See the Appendix for clarification of these assumptions. 

The 2k x 2 matrix A becomes 

A = 

1 0 
• • 
1 0 
0 1 

0 I 

^k 

|-2k 

Substituting this matrix into (51) and carrying out the indicated operations 

yields 

■'4 
2     t2 

<r.    +b 

Tb 
(X01 + X02 + 

-       = 2 1 
nl+n2)<trn\ 

(52) 

where  k = 0,   I, 2, .  . . and the actual object vector is    x   a (• 
01 

The weighting due to x   is not significant if    n    + ii-   »   x       -I- x 
02/ 

02 

(small signal-to-noise ration (SNR) ), ifT becomes large, or if  cr      is 

large.   Figure 3 'shows how the error varies with T for various signal 

values, a single noise value, aud k a 1, 

^b +b >      - = In general as T becomes very large, K-»gC   = =  (a.x+n.)ö... 
n z        _tt i      i     ij 

Tb 
Hence, as T  becomes very large (51) reduces to 

e=tr(A,K5"'1Ar1. (53) 
2 

For the special case of white noise (i.e., K. = o*.   I   where   I is the r n       n 

identity matrix; we have 

?* 



26 

70 

60 

50      .. 

40 

30      - 

20 

10 

Figure 3-     Error e versus observation time T for the case of two 
measurements of the image of two point sources separated 
by the Rayleigh criterion distance. 

pfer 



27 

e a er. tr (A A)    . (54) 

1 . The factor (A'A ) in (54) can be thought of as an amplifier of the 

noise tr - . The amplification increases with decTeased aperture size 

and/or decreased spacing between the point sources.    Let 

G = tr (A'A)"1, (55) 

To investigate the nature of G let us consider the infinite slit aperture. 

The point spread function for this case is 

D2      sin2TT KD/vRH^-b)! 

v2R2   T^pD/vR^e-h)]2 

(56> 

whore D is the width of the aperture, h is the distance of the point source 

from the origin, and R is the distance from the image plane r.nd object 

plane to the aperture plane.    For simplicity, cornider r.n object 

consistirg of two point sources (one at the origin and one at a distance 

h from the origin,  see Figure 4).    The A matrix becomes 

A = 

.2/  2^2. .2,  2   2. 
(D  /v R ) sine    p/vRH^-h)]  (D /v R ) sine  [DCj/vR] 

'2* 
L(D2/v2R") sine2 |p/vR)(|  «h)]  (D2/vZR2) fr~c2[D*U/;•:>■; 

(S7) 

where   |, and    ^    are the measurement positions in the image pLv e 
1 w 
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Figure 4.    Optical system configuration for an infinite slit aperture 
and two point sources. 
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and   sine x = sin irx/ trx.    If we make one measurement at the peak of 

each point spread function and let   vR equal one, we have 

A = 
2 2 

D   sine  (Dh) 

D   sine (Dh) 

~2 

The amplification factor G then becomes 

{3,?> 

G^MA'Af1.   Ml^sinc    (D^l 
D4 [1-sinc4 (Dh)]2 

Figure 5 shows how the amplification factor G varies with aperture 

width D and .reparation of point sourcer.   h.    The atrup*: ircreare cf 

log.-G occurs when the size of the object (separation of the two poirt: 

sources) becomes approximately the size of the point spread function 

(see Harris and Rushforth (1966)). 

Specir.! Cases 

Because of the complexity of the general estimate in (46) we will 

consider various special cases in order to gain a better undevntandirr? 

of the estimation procedure. 
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Figure 5.    The logarithm of the amplification G versus point source 
separation h for several values of aperture width D. 
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Prior information dependence 

2 2 2 
Let   C    =   <r      I,    K- =   <r-  i    and K- =   <r-    I.     Our estimate of a zxx nun 

x then becomes 

A 
M 

X ■ 
^T 

A«A 

gor     +ar- 
a        n 

A'A 
2 ^      2 

g<r     +(r- .    z        n 
(T- 

x 

X 

-1 

11 A'Cz-btg) 
2 ^     2 go-     +cr- 

z        n 

(60) 

2 2 2 
For large a priori uncertainty,   fl*-      »go*      +   cr-    »  we have x z n 

x« —- (A*A)"1 A1 (z-brn) (6i) 

which indicates that we ignore the a priori mean x.     For large prior 

2 2 2 
information.    g<r       +(r.    »(r_    .we have 

'    0    z n x 

m ■ 
X « X (62) 

which means that our prior mean is very reliable and that we Icrrn ve- v 

little from our experiment. 

    - . . .« 
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Large a priori uncertainty 

Considsr the case of large a priori uncertainty (i. c., K- "   » 0). 

Our estimate of x becomes 

x = -7 [AtgC
2 + ^^A]"1 Al(gCz + K-r^z-bTS) (63) 

and the MSE is 

e = tr[[Af(gCz + K-)"1^"1 A,(gCz + K-)"l{gCz(xo) + K-) (64) 

.(gCz + K-)"1 A[A,(gCz + K-)"^]"1]. 

Matrix A with inverse.   If the system matrix A is square and 

invertible (63) reduces to 

x = A ^z/bT-S) (65) 

and (64) reduces to 

e = tr [A"1(gCz(xo) + K^A'"
1
]. (66) 

The above estimate of  x  is an intuitive estimate since all we do io 

divide out the multiplicative effect,  subtract the noise, and then pass 

this result through an inverse filter.   This procedure is illustrated in 

Figure 6. 
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Small signal-to-noisn ratio.   For small signsl-to-noise ratio 

(SNR) {i.e., a.x «fl.) the linear filter   H becomes 

H =   l [A^gTn.ö.. + K-^Al^A'teTa.ö.. + K-)"1        (67) 

and the MSE becomes 

-l.,-l e - trfA^grn^.. + K-)    A]    . (68) 

The MSE error becomes independent of x   for small SNR (see Figure 

3). 

If the noise is independent of i (uniform noise) then 0.6..   =   NI 

where   R   = N   for all i.    For uniform, white noise we have 
i 

H =   1 (A'AfV (69) 
b 

and 

e = (gTN+ <r-) tr (A1 A)"1. {"•- 

Perfect detector.    For a perfect detector, P. in (17) is a constant 

and hence each photon gives rise to exactly the same number, b, of 

2 
photoelsctrons   (i.e.,  0".      =   0).    For this case 

2., .-l^-l  .«,  ,    =. = .,     .    2T, ,-1 H s  1   [A (T(a.x + n.)ö.. + T K-)    A]      A (Tfajc + n.)ö.. + T K-) 
b i i   ij n        J ^     i i' ij n' 

(v: 
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and 

=:(l/T2ltrr[A,(T(a.rc + H.)ö..+T2K.r1A]"1A,rT(a.M.)ö..+T2K_]"1 

(7^ 

K UTfa 5+5 ^6   +T  K  l" AFA'/TI» x+H ^   +T?-r  T^AT
1
! •[T(a.x +n.)^..+T K_][T(a.x+n.)ö..+T K.1    ATA (T(a.x+n.)ö..+T'K.) 'A] 1     i o    i   ij        n-"'     i      r ij nJ       L i      i' ij n       J J* 

Except for the constant b in the expression for H these are the same 

results that one would obtain if he were to count the photons ir-Ment 

upon the image plane and in turn find the minimum MSE estimate of the 

mean rate of signal photons emitted from the optical object (i. e., 

minimum MSE for no multiplicative or detector noise). 

Large rjditive noise covariance matrix.    For large K_   (i.e., ——t*—- - a 

K. »gC ) we can write 

H=   1   (A'K-^AfVK-"1 (VD 
b n n 

c.^d 

e -- tr (A'K-^A)"
1
. C'r 

n 

For thif assumption the minimum MSE becomes independent of the 

multiplier' ive noise. 
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Photon-electron converter 

The photon-electron converter is a degenerate case of the photo- 

multiplier tube case in which we consider only its first str.ge.    This is 

th.ii detector model that Helstrom (1964   uses in some of his work on 

optical signal detection.   We are assuming that the stream of photons 

y. that impinge upon the i     cell aas a conditional Poisson distribution 

with a conditional mean rate of y. = (a k + n.); hence,  E(y./x, n) = 
ill i 

var (y /ii, n) = y..     In the photo- -electron converter each photon gives 

rise to an emitted electron with probability  TJ.   The stream of pboto- 

electrons z. being emitted from the i     cell, therefore, has a conditions! 

Poisson distribution with a conditional mean rate of rifa.x + n.)   =      ri v. 
i i '   i 

since a Poisson process is preserved und  r random selection (Parzen, 

1962).   Hence,    var(z./Ä,n)   =   E(z./x,n)   =     qy..     The incormng photons 

and emitted photo el ectroac   are related by their means: 

•nZ(y.)   =    ■nE(a.x + n.)   =   E(z.).     Since   z   is a Poirson process, 

var(z./x,n)   =   E(z./x,n)   =    r\E{yJy:th).   From previous results snd 

«P4.n<T the l^btesondistribution properties, we have    E(z./-c,n)   = 

22 
bE(y./x,n)   and   var(z./x,n)   =   («r .     + b )E(y./x,n).    Kencc.  we can 

i i b i 

use the previously obtained results and apply them to the photon-elcrtrnn 

converter case.    This is done by replacing b by T| and replacing 

2       2 
0"       +b   by  T| .    Hence, for the photen-electron converter (assurninj 

large a priori uncertainty) we have 



H=   i [A'CC  /n+TaK      lA]~lA{C Z^ + ^K-)'1 
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(75) 

and 

e =(l/T2)trr[Af(C  /n +T2K-r1A]"1Al(C  /r] + ^K-f^C (i? )/n+'2K-) 

.(C2/n + T2K-)"1A[A,(C2/11 +T2K-)"lA]"1J. (76} 

As T] approaches unity these results approach those for the case of no 

multiplicative noise.    T.te case of   i^ =1 (perfect detector) implies 

that every photon that impinges upon the detector causes an electron to 

be emitted with probability one.   As rj approaches zero,  the error 

becomes extremely large. 

Estimation of mean rate x from observations of z 

In many realistic cases where we have large number of cmnt?, 

equipment capabilities allow us to measure only intensity cr r~2 an 

rate of photoelectrons z.   (We are assuming that th^; sample mean 

emals £ by the law of large numbers.)   For this case we want to find the 
A 

linear estimate x of x from observations of z which wi.U minimise tbe 
/\ 

mean-square error; that is, find x to minimize 

e = tr E[(x-x)(x-x) ]. (7^ 

From the estimate x we can obtain an estimate of tbo irten-'ty vert-'r 
A 

by multiplying x by h v .   From previous rssults z = by.    We also have 



y   =   Ax + n, (in) 

E(y)   =   y   =   Ax + n, (79) 

HZ)   =   i   =   h(Ak + n), (80) 

Cov(yi, y.)   =   (AK-A'+K-), (81) 
■I 

Cov(z.,  z.)   =   b2(A3>LA« +K-). (82) 
x     j x n 

Fcr the linear estimate of x we can write 

x = H[2 -b(Ax + 5)] +«. (P^) 

/\ 
Substituting this expression of x into (77) and carrying out the e:v?ectati 

operation, we obtain 

H=   1.   K-A'CK-+AX«AV1 =    i(AlK-'1A + K-"lrlAlK-"1.    (U) IjXnx ]jn x n 

Hence, oar estimate of x is 

x =   1 (AK-^A + K-'S'VK-'^S-bn) + (A'K."^ + K-"1)'^-'x.(8?) 
b n x   ' n '     x       n x   '      Jt 

For K-'   ~ £  (large a priori uncertainty) the minimum MSE is 

e   =   trtA'X^A)"1. (8^ 
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This is the samo result that wan obtained iu (53) where we let T become 

large.    Except for a constant b, these results are the ü.xmc as thoce 

for the case of measuring image intennity, and fiom thl^ estimating 

the intensity of the object vector in the absence oi' £ny nrmlUpUcative 

noise (Rushforth,  1965). 

Estimation of mean rate y from z 

The purpose of considering the estimate of y from measurements 

of z is to use the results in a later section for the detection of unknown 

signals. 

We want to find the linear estimate y of y which will minimize the 

mean-square error 

e   =   trE     [fi-y) fi-yr] (87) 

where   y   =  H{  z /T   -by) + y.       When y is substituted into (S7) 

and the expectation operation carried out, we obtain 

e = tr[H(b2K- + (o-^ + b2) C  /T2
) H-bHK- - bK-H' + K- 1 .   (88) 

"■yb 'z' y y yJ 

The H that minimizes (88) is 

b 

2       2        2 2 
where   g   =(,r.     + b )/ T  b .    Hence, the minimum MJE estirr-;te of 
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y   is 

?* brK-^2 + b2) Cz + bVlC-J-^z-b^) + y
2. (90) 

2.       Z 
For the photon-electron converter   b = ri and (tr, ' +b )   =11; hence. 

y a TlC- (Cz + nT  K-f    {z-Vy) + y. 

2 
For K_   = (r-   6..   we can write the estimate of y. as 

Ttr-   (s.-nTy.) 
y.     1        1 

(91) 

yi=   =r   22     +yi- (9 »» 

Ty. + T <r- 
yi 

For the statistical model we have been assuming   y.   =   u,/«, ^-irl 
1 11 

2 2 
<r .       =   u./ «.     (see (7) and (10) ); hence, after substituting thes« 

yi l      1 

values into (91) and rearranging we obtain 

-v       z. + n. 

n = ^ü7- '"' 

Optimum Sampling Scheme 

V'hen the additive noise covariance matrix is lar^e or fo- largo T 

the error expression reduces to that of the additj.ve-noire-on'y case: 



e   =   tr (A'K-^A)"1. (94) 
a 

The problem we now face is to determine an optimum sampling 

procedure which will minimize the above error expression.    We are able 

lo vary the matrix   A   by varying    our sampling positions.    T'VAS, for 

some optimum sampling positions the MSE will be minimized.    The 

optinvim sampling procedure for this case also applies to t'">e c?.ye '1 

small SNR with uniform noise. 

White noise 

2 
For v/hite noise   K_   =     cr_ I  and 

n n 

e =0-3 tr (A'A)"1. i«) 

Single pojnt source.   Consider an infinite slit aperture which irs 

equivalent to reducing the optical problem to one dimenuton.    The 

point spread function for this case is 

D2/v2R2|sinc2 [JL (e-h)] (96) 
vR 

[s^e Figure 4 and the Appendix).    Consider the normr.lisod cas^ whe:*^ 

he point spread function is 
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sine 
2
(e.h) s S|l Jjlikilil. 

ir2 (l-h)2 
(97) 

Our objective is to minimize   tr{AlA)       by properly locating our 

samples.    For a single point source located at the origin in the object 

plane and making   k   samples in the image plane, the matrix   A   becovrioi 

a vector of the form 

2 

A = 

sine    % 

sine    § 

{ Jc 

where    |   ,    £,..., |      represent the positions in the image pl->^e 
k A 

where the samples are taken.   A'A is then T,  sine    c, p.nd 

-1 ~1 k 4 i=l 

tr (A'A)       =  (A'A)       - l/Z  sine   |.. Si^ce we are free to 
1=1 l 

make the measurements anywhere in the image plane, we want to mak^ 
k 4 

the measurements such that S  sine   £.   is a maximum.   It ir. obvious 
\=\ i 

that we want to make all of the measurements at the origin   (i. e,, 

C .   =   C,    i   =   1, 2, ..., k).    Hence,   tr(A'A)*1   =  l/k.    Th°n for the 

minimum error expression we have 

Vln^n2^^^^ i^j 

The error is inversely proportional to the number c' •.ncrvru'-emont.T. 
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As k apprciches infinity ,   &    .      approaches zero.    The above samplinr; 
mm 

scheme applies to all well-behaved point spread functions for the C3r?e 

ol white noise. 

m point sources and t  measurements.   Assume that our object 

consists of  m   point sources and that they are separated by the Rsylei^h 

criterion distance.    By the Rayleigh criterion distance, we mean that 

the maximum of the diffraction pattern of one point source overlapT the 

first minima of the diffraction patterns due to adjacent point cou:;cc3. 

2 -1 
We want to minimize    e   =   «r _    tr (A'A)      when we have m point ccurcf^s 

and make  I measurements. 

Slit aperture.    For a slit aperture the general cxpressicn for '.he 

poir.f: spread function is 

0       8inc2[_D_(e-j)]. 
v R 

(100) 

vR 

To simplify the mathematics we assume that the point spread 

function is normalized with   D/v R set equal to unity.    The point spread 

2 
function is then   sine ( ^-j) where   j   =   ...-3,   -2,  -1,0,   1,2,3,  .... 

Thr- norriaUzed system matrix for the slit aperture rape became'-. 

A = 

»2 2 ' 
sine  (£-1). .  .  sine  (^.-m) 

*   2 *   2 
sine (lj -1) . .   sine  ((j^-m) 

(101) 
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Figure 7.    Optical system configuration for an infinite slit aperture 
and pojnt sources separated by the Rayleigh criterion distance. 
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The optimum sampling procedure for this case {see Appendix) 

is to sample   l Im times at the peak of each point Spread function.    If 

£ /m is not an integer {i. e. ,    . Vm = k + n/m)   the optimum procedure 

is to make k measurements at the peak of each point spread function and 

one additional measurement at the peak of any n of the m point spread 

tions.    If   i Im = k (integer) 

2 i-12 
e = cr-   tr (A A)      =0".. m/k (10^) n u 

where m is th« number of point sources and k in Ih? r- r.ibrr of 

measurements per point source. 

Rectangular aperture.    For the retangular aperture the general 

expression for the point spread function is 

2,2 
a b      .    2     .    .    .. 2a 

v  R vV^ vT- 

Mormalizing this point spread function by letting   a/i'R = b/v R = 1 

2 2 
"iel-!s sine    (^ -j) sine    ( l-i) where 1, j = ...-2,  -1,  0,   1,  2,  3,  ...   . 

The optimum sampling procedure and MSE for ibis case are the 

ervme as for the slit aperture case. 

Tor point source spacings less than the Raleigh criterion d;r!?.nre 

the optimum sampling procedure becomes verv complicate1. s.nd w?l' 

not be considered here,    Harris a.i- nusa'orth {19öo? v •-1:    or* r—-^ 

a )ccific c::o.r.iplcs of this case. 
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Colored noise 

Because of the complexity of the colored noise case only a single 

point source and two measurements in the image plane will be considered. 

Wc will assume a noise covariance matrix of the form 

(104) 

where   jdl is the distance between the measurement positions (i- a., 

jd(    = [4.  - |-1)     and c is a correlation constant.    The inverse of the 

K_ matrix is 
n 

/   1 .e-CldH 

v-i 1 L-cidi 1   , 
5 7.      ,     -2cldl ' Uw'' or«        1-e        '  ' n 

For the present case of two measuremeF^s and one point source the 

system matrix A is a two-element vector.   If we assume that the point 

source is located at the origin of the object plane, the normalised 

system matrix A becomes 

i sine %   \ 
A = j M (ins 

where    ^   and    |_   are the measurement positions in the image plane. 

As c approaches infinity, K-   approaches    or_  ( ni)   =    o--   I whirh 

implies that the additive noise is uncorrelatcd at any two positions or 

■hat we have white noise.   As c approaches zero, K- approp.chos 
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<r-   (j  ) which imp'.ies perfect coi*relation ol the additive noise at any 

two positions« 

We need to solve the error expression to find the measurement 

2 
positions necessary to minimize it.   The error expression (with cr-   =1) 

e s tr (A'K-^Af1 = n      ' 
l.e"2cldl 

sine   §,-2 sine   5    sine   ^_ e    '    5- sine i- 

(10?) 

There are four cases that can possibly minimize the error 

expressions of (107),   Each of these cases need to be inveetigrted iz 

order to determine the minimum error conditions.   There four case; 

are listed below. 

Case 1.   Let £. s   i2 - 0,   This implies   that e - 1. 

*. 
Consider the general aperture case with one point source and two 

measurements and an arbitrary covariance matrix of the form 

n       n   1 a  1 / 
/a,\ 

and let A* 
.a,, 
\  2/ 

Evaluate e for a   a s.   and a = 1.   In general -       ? 

^ -    -1    -1 »jd-a) 
e = ti: (A K-   A)     n —- ^ 

n c 
al  -2aia2a + a2 

For a.s a?, 

Now for aal, 

e » 
<r- (l+a) 

n * 

2a 
2     * 

2/    2 6=0-- /a.  , n      1 

i 

it* 



Case 2.   Let   ^     = -|     which implies that 
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e = 
i + e-

2cN 
2 sine   | 

(iC8) 

Case 3,    Let    €- = 0 and vary     %    which implies that 

;   ■ 

r-  : 
,_, i 

e » 
1 - e-2c l^ll 

I -Zsinc2^   e"0'^ 
(109) 

Case 4.    Let   ^_ approach infinity and vary   £  .    This implies 

tliat e has a minimum of unity for   I,   =   0. 

Cases 2 and 3 need to be investigated and comparrd with cases 1 

and 4.    Cases 2 and 3 were programmed and the error G      rmined for 

varying    (=   and also for different values of c.    Cas.^s 2 antl 3 were 

found to be always as good or better than cases 1 and 4.   Ths value of 

c determines which of cases 2 and 3 gives the minimum error.    For 

c less than about 1.5, case 2 gives the minimum error; and for c 

3?.rger than 1.5, case 3 gives the minimum error.   Figure 9 shows 

the minimum error possible versus c.    Figures 10 and .11 show the 

error obtained for varying   %.   for cases 2 and 3. 

In Figure 10, for case 3, note that as the value of c beccmec small 

tho error becomes small and in fact approacheg zero as c r.pproftches 

zero.    When c is zero the noise is constant from on* pc: itk.n to 

another.   Hence,  if the noise plus signal is mrasured at the peak of 
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1.0    _ 

c 
B 

IkiiAjimum possible error 

Case 3 

Case 2 

.8 

.4 

.2 

10 

Figure 9.    Minimum possible error versus correlation constant c for 
the case of colored noise, a single point source,  and two 
image plane measurements. 

- .i^ggssg 
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Figure 10.    MSE e versus distance |d| between the two measurement 
positions of case 3. 
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1.4 

1.2     - 

1.0 

«»       .6 

Figure 11. MSE e versus distance |d| between the two measurement 
positions of case Z. 
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the point spread function and the noise is measured at the null 

positions, the noise can be subtracted from the measurement   at the 

peak and only the true signal will remain since the noise for both 

positions is the same.    Note, however, that in this latter case the 

multiplicative noise must be considered. 
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OTHER ESTIMATES 

Introduction 

In this section we will investigate three other types of estimates: 

the Bayes1  estimatei  the maximum likehihood esfimatei  and the maximum 

a nostoriov.i «»sHmate.    Throughout this section and fhe remaining sections 

we will consider only the photon-electron converter detector with a 

quantum efficiency of TJ.   The incoming photons due to both known signal« 

and known noise will be assumed to be Poiscon distributed.   Unless other- 

wise stated, whenever an a priori density function is needed for the me-n 

rate of incident photons we will assume it to be a gemma distribution 

with known parameters (see Statistical Model section).   Onr motivation 

for using this distribution is due to its unique characteristic of generr,f:n<r 

another gamma distribution as an a posteriori density function when 

combined with a conditional Poisson distribution in the Bayes' formul  . 

The gamma distribution is also physically reasonable   (Goodman,  1965; 

Farrell,  1966). 

V/e have defined y. to be the mean number of photons that are in- 

cident upon the i     cell of the image plane per unit time and T|y. a3 the 

mean number of photoelectrons that are emitted frcm the light üenritive 

.th     „ .     . 
i     cell per unit time. 

Since the stream of incoming photons are Poisson distributed for 

-;■ 
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known signal and noise, the probability that y. photons strike tho i     coll 

in time T,  given y..  is 

(V^ e  ^i T 

p{y/y)s     . (ilOJ 
yi ! 

t'i Likewise, the probability that z. photoelectrons are emitted from the i 

cell in tune T,  given y.,  is 

p(2/^)S 
l—I        . (Ill) 

1 

If we assume that the photoelectrons or "counts" are independent for 

each region (i. e.,  the number of electrens emitted in each region is 

independent of those emitted from other regions or cells) w^ cm writs 

p(z/y) = p (Zj, z2, ...,am/y) 
m 

jn m     {^Ty,)zi   e "Tl'ryi 
= 11 pi^v) = TT 

- .Z. -tiT v (Ü2) 

i 

This is the probability that z. electrons are emitted from cell 1, z., 

electrons are emitted from cell 2, ...,  and z     electrons are err-itted 
m 

from cell m all in time T.    We will also assume that fhe mean rate of 

noise photons is fixed and known when the noise is considered indfpr.ro, 

cntly of the signal. 

The estimates of f. obtained in this section will be used for the 

estimator correlator detector in the section on fixed-sample detection- 
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Dayea1 Estimate 

By definition, thi Bayes'  estimate is the J (z) which minimizcii the 

average risk.   When an incorrect decision or ectimato is made a loss or 

a cost results.   If y is the true state of nature and we say that y is the 

state of nature, we lose an amount c(y, y).   The information Pbout the 

experiment is contained in the conditional density function p(a/y). which 

ij assumed known for each y.   With the a priori density function f(y),  the 

loss function c{y, ^), and the conditional density function p(2/y) for each 

y, thf* estimate y can be found which minimises the average loss. 

The mathematical form of the Bayes' estimate is obtained as follor-s. 

If y is the true state of nature and we observe z, then we lose an amount 

c[y, y(a)] by using the estimate y.   When y is the true state of nature 

the risk is the average of this loss fvncticn over all possible outcomes of 

the experiment.   That is. 

piY'V)*    /... |  c[y.y(z)]p(z/y) dz. 
•'-eo1 

(1U; 

The risk depends on both the state of nature y and on the estimate y. 

The average rirk is the average o{p(y,f) over all possible rstrte, 

of nature.   That is. 
lOO 

p(?)s f**fp{yty)iiy)<*y* f,..f*[y'yi''-)]?(zfy)tiy)te'*y- 
"oo v   "00 

(•14) 

Using Bayes' Theorem we obtain 
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^      r ^ r       ^ 
P{y) =   |.../   c[y, y(7.)jf(y^)piz)dyda 

(11! 

00 

«^ ~   00 ^ p   00     p _     ^ 
where p    (y) =  /»••/    ct y. y{z)]f(y/2)dy is the conditional risk.   Since 

Jmeä J 

p (s) ig non-nega ive and independent of y, we need only minimize p    (y) 
z 

<*.     • 
for each s in ordor to mininiisse p-(y). 

It is now necessary to specify a IOPS function c(y, y).    We will con- 

- C 2 
Rider the quadratic loss function K(y-y)    where II it a positive constant. 

Using this loss function our problem reduces to minimizing 

?ZW=K ^..^9-y)2f(y/=)dy :ii6) 

for each z by choosing the appropriate estimate y.      This minimizaticit 

is accc-itlished by differentiating p   (y) with respect to y and equating 

the result to zero.    That is. 

-^. t- a(v) =-2K L.. / (y-y)f(y/z)dy = 0. 
äy      " --co J 

; 1\ 

The solution of this equation for y yields the Bayes1 estimate 

9= r.T.r yf(y/z)d9. die) 
"oo 

F.once, for a quadratic loss function the Bayes'  estimate y is the mean 

of the a posteriori distribution f(y/2). 

We will nov find the ?aye3k  o^fimato of y. which ir the average 

number ef signal-plus-noise photcr ^ which are incident upon t>e i "* ;■ V 

«Q*f* 
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of the image plane per unit time.   Assume that the a priori density funrtioa 

of tha m^an rate of signal-plus-noise photons y is 

,    .. .UJ-1     -a.y. 

f(y)= TJ HYJ* TT—     * 
i-1 i=l 

r (u.) 
y. > 0 

i — 
(119) 

s 0. otherwise 

where rn is the number of cells in the image plane.    The conditional Poisson 

cHstribution of the oua it photoelectrons z is 

m m       '^Yii T-\
zi 

(120) 

.th 

ial lal 

where z. is the number of photoelectrons or "counts" emitted frctn the i* 

cell durir.g time T .   The a posteriori density function of y. f(y/s). is given 

by Bales' formula 

where 

Hytz) P(z/y)f(y) 
P(8) 

p(z) = f.„ f   P(»/y)f{y)dy 

"^   u.        z 
m    art MnT)  i T (z.+u.) 

i'    i 

(27.1) 

(1?2) 

The a posteriori density function becomes 

m («i+TlT)[9i(«i+r1T)]8i+«r1e^V^^'i 
f(y/z) = n -x -^  {\??\ 

l    . 
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The Bayes.   estimate (conditional mean of y ) is then 

ys       a.+u. 

For this case the conditional variance of y. is 

z.+ u. 
var tf./z) s i-_ . {i25) 

«»i +iTr) 

As T becomes large,E(y./z) approaches z./r\f and var (y./z) approaches 

zero.   Hence, as T becomes li   ge the estimate y. approaches the true 

value of y. since the variance approaches zero.   For multiple sampling 

the Bayes1 estimate becomes 
k   j 
S z.  +u. 

n(k)^is       (a.+knT) (126> 

where ,he superscript k represents the number of samples. 

Now assume that the a priori density function of the mean rate of 

signal photons a {a * Ax) is 

m m     ßO 8.)Vle"^i8i 

i=I i.l ^ (127) 

= 0, otherwise. 

The mean rate of noise photons are now assumed to be fixed and known. 

The distribution of the output photoelectrons z. is 
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p{z.) =     /    p(z./a)f(s)do 
o 

7,.J   r(u.) 
i i 

s 
{vr +/?.)

ai+ul-Ä 

{128) 

z. 1     s z.!/(z.-fc) I ^l  . (129) 

Using the Be /es1 formula and (120),  (127),  and (128) yields 

f(8./z) = i z. 

e      i      '   '  i(s. + n.)  i s.  i    (TIT + p.)  l       i 

S   (     i 1  [^(iiT+ßi)] ^(z.+u       ) 
fc =0 \ £ 

The Bayes'  estimate of s. is then 
i 

S1/ZiVi(Pi^T)3J
r(zi+U.+l-j) 

i * V   '      (r«; +T1T) z. 

Ä=0^ I 

(130) 

(131) 

For n. = 0 this estimate becomes s. = (z. + v.)I Iß. + nT) which io the 
i i     ' i       i'       i      ' 

came as (124). 

The estimate of the object x using the estimate of the object«-,1 imrr^e 

s is 

where s = 

C t     -1   iC 
x = (A A)    As UJ;-) 

--:-  ■ 
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i>rd (A1 A)' A*   is the pseudoinverse of the matrix A (Deutsch.  1965). 

The direct derivation of the Bayes' estimate of the mean rate of photo.is 

>: emitted from the object is very difficult and will not be considerc«'. 

Maximum A Posteriori Estimate 

i 

When no costs are specified in an estimation problem, a reasonable 

estimation procedure is to maximize the a posteriori density function 

'(y/') = f(y) P (z/y)/p{z).   The maximum a posteriori estimate y is 

defined as the value of y that maximizes f(y/2). 

The maximum a posteriori estimate of y is found by solving the m 

simultaneous equations. 

    f(y/2)=0        {i s 1. 2 m). (133) 
an 

i 

Since f(y/z) is a monotonic function.   £ n£(y/z) has its maximv-- "cr the 

same va-.ues of y that maximizes f(y/z).    Hence, v/o can KOIV« \nc r.-»v •- 

■> Lent m sinultaneouo equations. 

~—    Anf(y/z)=0 (i si, 2, .... m}. {'•'■) 

There may be several roots of these eqtiati^na in v;Vic!? enne tlr^ soV't^n 

y'that yields the highest peak of the function t(y/7.) must be chosen.    Ciar.: 

the denominator of f(y)p(z/y)/p(z) does not depend on y, mf.xinizJ-r-j; 

f(//z) is equivalent to maximizing f(y)p{z/y). 

We will now find the maximum a posteriori estimate of. y. vhich is 



the average number of photonj that are incident upcn the i*"    cell or region 

of the image plane per unit time.   Assume that the a priori donsity fuaction 

of the mean rate of signal-plus-noise photons y is 

m m 
?{y) = n ah) = n   i 11 

ot.ia.y.) i'   e ' ^ 

1=1 ial r (u.) 
•-. y, > 0 (135) 

= 0. otherwise. 

The conditional Poisson distribution of the output photoelectrons z io 

m m    e   '     i diTy.)  i 
P(z/y) = TT Pi^'v) * FT  r-j-^— 

i=l i-1 i 
(1?A) 

Now maximize p(z/y) f(y) with respect to y.    That is. 

m 
A-   Änp(z/9K(9) a -i-     Z    [  tof(9.) +    top(z./9)] 
^ Sy.    i=l 

(u.-l) 
T1~    =   0. 

J y. 
J 

137) 

Mence. tbe maximum a posteriori estimate of y. is 

^       z. +u. -1 
x       i y,   =   

a. + nr 
(U?) 

Now assume that the a priori density function o:. Sie mcr.n rr"-« o^ 

signal photons is 

# 

i 
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*i 

tu* n -1^ .   ;,0 

0» otherwise. 

(139) 

Assume that the noise is fixed and known.   Maximize p(z/s) ffp), vhero 

p{z/s) is given in (US), with respect to s.    That is« 

-2-1 a p(z/i)f(i) a -2_    s       [ fcnfis) + £n p(z /s)] 
ös. 3s.     i=l 

J J 

u.-l 
(140) 

ßj-n^+T1 

s. s. + n. 
J J       J 

Hence, the maximum a posteriori estimate of s. is 

s. = 
i 

z.+u..i-n.(TiT + ^.) + \/i^rr^i^zi+ur\]/'+4zi(ui-r)j 

2{T,T + ß.) 

This solution becomes the same as (138), as it shculd. wb.tn. thn mean 

rate of noise photons n. is equal to zero.   Again the estimmte of the object 

x using the estimate of the objects' image s is that of (i32). 

Consider finding the estimate of x directly v;l?er. the a priori density 

function of s is that of (139).    To find the maximum a postcric: i ectirrate 

of x we must find the value of. x that maximizes p(a/K)f(ü).    Thir: vain^ 

of x is found by taking a derivative of p(z/8)f(s; with recrect to r. and 

setting *he result equal to zero.   When th-s is done we obtain 



r.i       (u.-l) 
S    [-4 
.   ,       a.x 
isl % 

z. 
i 

m 
ß i + «T +   r-r— 1 a.. = S   Y.a.. ~. 0 l      ' a.x+n.     J    ij   .   .     i ij 

ii J   i=l ^ 
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(14:.) 

\v; here Y. = [ (u.-l)/ a.x - ß . + TIT + a.'(a.x + n.)].   In matrix rr-•V.tlmi 
i     ^ x i    '      i       r i       ' i      i i'J 

{XdZ)      can be written as 

Y •<*. = 0 
J 

.th 

(j = 11 2«  ...» m) (\43) 

where a . is the j     column vector of the system matrix A.   Since (14?,) 
J 

rr.ust hold for all j = 1. ... > m. it constitutes a set of m equations with 

m unknowns» x. > ... > x   » which are to be estimated.    For the set of m 
1 m 

equations we have 

A • Y = 0 = (K*.) 

which says that Ymust be contained in Lhe null space of A*.   If A haa aa 

inverse, the null space of A' contains only the zero vector.   In thla ca-jc 

'.ve have the solution Y = 0 which is a unique solution.   Y = £ i."    ' "uya a 

solution of A» Y = 0, but if A is not square there will be other so-uticnc 

(::.J unique solution).    For Y'A = 0» Y must be orthogonrl to all tho coHnnns 

of A. 

Wc will consider the solution Y = 0 which implies that 

a.x = z. +u.-l-n.(nT + ß .) +'^n.(TiT +ß .).z.4a.-l] "+47,.(u.'I) (145%- 

=  S. 

in matrix notation this becomes Ax = 1 or 
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x = (A'A)"^' i . (146) 

This particul-r solution gives the same result that was obtained by first, 

finding the estimate of s pnd then using it to find the estiraate of x.    V/e 

must keep in mind that, for the present case,  (144) has other solutions 

besides (145) and that there may exist several relative maxima of 

£n p(z/s)f(s), from which we can have only one maximal value.    It is quJte 

nf^ible that the solution of (145) does not give rise to the c.')solute max- 

imum of p(z/s)f(s) in which case (145) would not be the maximum a 

posteriori estimate. 

Maximum Likelihood Estimate 

The maximum a posteriori estimate der ends on the a priori prcbabUtxy 

density function, but for some situatiors no such a priori in'ormation may 

b'j available.    Under these circumstances we need to conoider <"ie max- 

imum likelihood estimate.   Also,  if the a priori density function is Lror,' 

tnd flat and relatively independent of y over the region where p{z/y) io 

significant (i. e.,  initial knowledge of y is very smalT) tJ.cn mf;::im; -rina 

]>\''''y) is nearly equivalent to maximizing   f(y/z).    The value of y wMc? 

maximizes p^/y) is defined as the maximum likelihcovl estimate of • . 

S'Tice p(z/y) is a monotonic function we can solve either of t'ie *•'-o 

equations hp(z/Y)/^yi = 0 or ^ &np{z/y)/öyi =0 to* the estimate o^ y.    Th", ?. 
I 
I 

J J 

ive have 
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-5- tDp(z/y) aS.      s       [a jytifnTy^-nry Hln(a !)]   = -i- -^T .     (147) 
0ij ä'j   1=1 l yj 

Hence, the maximum likelihood estimate of y, is 

i 

i ~   il T 
{148) 

The maximum likelihood estimate of ö is found in the same manner 

as abovo.    That is. 

-^-  £np(z/y) =—i—      -TIT   = 0. 
08: s. + n. 

(\W: 

Kence, the maximum likelihood estimate of s. ie 

8. = —— -n. 
i 

(150) 

The estimate of the object x using the estimate of ehe object1 s Image s 

is the same as in (132). 

Now consider finding the maximum likelihood estimate of the 

object x.   To find this estimate we need to find the v;lue of x that max- 

iri.izes p(s/:";) or alternately 8, np(z/x).   Taking the derivative of £np(•:/:") 

with respect to x and setting the result equal to zoro yields 

^                        m           z. 
-^-   mp(z/i) = S    [ i- 

1=1     a. x+ n. 

m 

lJ   1.1     1 l3 
n. 

I« 
-    ■ 
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where Y. =2./{a.x + n ) -TIT .   In matrix notation this is written as 
i      )      i i'     ' 

Y» a  = 0 (j = 1.  ....  m) (152) 

where a, is ^he j     column vector of the system matrix A.    Equation 
ti 

(151) holds for j = 1.2 in; hence,  it constitutes m equations in the 

m unknowns x. x    which we want to estimate.    Using matrix 
1 m 

notaticT this set of m equations can be written as 

A»Y = 0=    : (Mi) 

which means that Y must be contained within the nul1 i-ace of A'.    Tlie 

discussion of the solutions oi (144) for the maximun a posteriori estimate 

of ;: also applies to (152).   We will consider the solution Y - 0 which im- 

plies that 

z. 
a.x =  ~±—   -n. . (If'*) 

For gener. I A the maximum likelihood estimate of x is 

J s (A'A)"^^-^- -n) »(A.'A)"^' (?-n) = (AfA}"1^ (5). (?>^ 
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This is the same es;;"iate that is obtainnd Nvhen v/e esamate ü iirst and 

then use this estimate to eKtimnte x,   it c'iould again be pointed out th.it 

(153) has other solutions besides (154),  one or more of which may give 

rise to a maximum value of p(s/x), which is larger than the value due f> 

(154),  in which case (154) would not be the maximum   likelihood e?it<m."»*o. 

Discussion of Estimates 

The Bayes*  estimate and the maximum a posteriori estimate have 

received nome criticism.    The basic argument alpinst them is b&sed 

vpon the requirement of a priori probability density functions for the 

random variables to be observed during an experiment.    The maximum 

likelihood estimate has objectionable small-sample-size properties 

{Deutsch,  1965). 

It should be pointed out that all the estimates of y. of th'.a section- 

r'ven that y. has a gamma distribution,  are linear ejtimc.tcp   (linear 

vl-h respect to the observable z ) as is the minimum MSE estimate- 

Kcwevcr, the Bayes' and maximum a posteriori estimates oi :■. ~nd b , 

^;v^n that s. has a gamma distribution,  are not linear estimates.    The 

i-qyas1 estimate of y. is the same as the minimum Mo" esllmrve cf "., 

-;iv2n that y, has a gamma distribution.    The m^-:cimr-", ?. por'.cr:;.'.;. 

 -.L^-_r_:;:_.:^_. 

I 
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estimate o£ y. differs from the minimum MSE eatimates only by a minus 

•r 2 in the numerator.    The maximum a posteriori estimate bc«-omon ihr- 

rame as the Bayes*  and minimum MST^ estimatos fnr large values of u . 
i 
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FIXED-SAMPLE SIGNAL DETECTION 

Introduction 

For the fixed-sample detection procedure, we will consider the 

Bayes' decision r< le.   By definition, Bayes1 decision rule is the decision 

rule that minimizes the average loss. 

We will consider only situations iu which there are two possible states 

of nature,    w. and   u-»   We will assume thit ihe a priori probabilities 

p( a).) and p( u  ) are known.   Also, we will assume the probabilities 

p{ z / w .) (i « 1, 2) are known. 

We observe the outcome of the experiment and decide which state of 

nature is present.   If we choose  w. as the state of nature when  u. is 

the true state of nature, we lose an amount  c( w., w.)   =   c. -   We want 

to find the decision rule that minimizes the average loss. 

To determine the form of Bayes* decision rule, first calculate the 

average loss resulting when decision rule d(*) is used.   If we observe z 

when  u. is the true state of nature we lose amount  c[w.,d<z)]   .   Also, 

when  u. is true, z occurs with probability p(z/ «.).   For the average 

loss or risk we can then write 

p(wi,d)S:  E c[Wild(z)jp(z/«i). (156) 
zsO 
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g- 

i 
Since   u. occurs with probability p( u .), the average loss or risk r-jsultinj 

• 
when the decision rule d is used is 

2 
P{d)= S P(wifd)p{«).                                        (157) 

Ul 

By definition Bayes1 decision rule d* is that rule which minimizes 

the average risk.    That is, we require that   p (d*) < p(d) foi all possible 

decision rules d. 

M 

The derivation of this rule follows. 

2 
p(d) = S p(« )  S c[u) ,d{2)]p(z/« ) 

ial z=0 
00     fc x ■ 

a   S    ?1    c[U,d(z)]p(u /z)p(z) 
Z=0i=l 

» S p(z)pj(d). 
z=0 ^ 

2 
The quantity P  (d)   =   Z   c[w.,d(z)]p(il)./z) is called the conditional risk» 

ial 

Since p(z) is non-negative and does not depend on our decision rule, we 

c?.n minimize p(d) by choosing the decision rule d that minimizerr.   P J.3) 

for each z.   The conditional risk can be written as 

Pz(d) = c^diz^p^/z) + cF^, d(z)]p(a,2/z). (15^) 

In accordance with the decision rule we must choose cither d(z} ~ w . o-r 

d(z)   =   w_.   If we choose d(z)   «   u t then   p   (d)   -   c.-plw-Zs)   + 
C 1 Z 11 1 

c21p( w2/z).   Similarly, if we choose d(z)   =   w-   then p   (d)   = 
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C12P^ Wl^   +  C22P^ "z^2^*   Baye8'<*ecision rule ,>ecome85   choose 

Uj   ifCjjpC Wj/z)   +   c21p(«2/z)    <    c12p(Ul/2)   +  c22p( W2/z)   or 

by using Bayes1 formula we have: 

where 

choose u. if £ (z) > 6, 

choose w, if t(z) < 6, 

ö Ä P<"2)/C21"C22 
"   ?("1)Vc12-c11 ) 

(160) 

(161) 

and 
?(«!» »»•••» /Wj) 

* (z) =  «(«,, a,,. . ., z    ) s -;--; r^TTi I    i m      pCZj, z2^,,,zm/«2) 
(162) 

is the likelihood ratio of the observation and p(z..... z  / u.) is the r   V        m      i 

conditional probability of observing "counts" z., ..., z     when  «. is the 
l m i 

true state of nature.   We have assumed Mat these "counts" are independ- 

ent; hence, we have 

i.l P^? 
(163) 

We will assume throughout the rejt of this paper that C-, = c      =0, 

c 2 = c2l, and that p( Uj) s p(W2)   = 1/2; hence,     6=1. 

Since the natural logarithm is a monotonically increasing function of 

its argument, the logarithm can be taken of both sides of the inequalities 

in (160) to obtain an equivalent decision procedure.   Bayes' decision rule 

becomes: 
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choose u. if L(z) s  tiS,(z) > 0, 

(164) 
choose ü)_ if L(z) < 0. 

Our problem ir to observe the "counts" at the output of the detector 

and from this decide which of the two signals gave rise to this output. 

Figure 12 illustrates the problem. 

We will be interested in assessing the error associated with Bayes1 

decision rule.   When anal/zing the error probability, we will consider 

throughout the remainder of this paper only one region or cell in the 

image plane where measurements will be made.   Tlus assumption is 

for mathematical convenience : nd docs not introduce a serious loss of 

generality.   Hence, for error analysis our problem is reduced to a case 

of a scalar signal.   At the end of this section a comparison will be made 

of  he error probabilities for the various cases that will be considered. 

Two Known Signals 

Assume that at the input of the detector we have one of two possible 

signals with known mean rates y. and y   both of which contain any 

constant background noise that may be present.   For convenience in 

discussion, we will refer to y. and y_ as the signals.   For the present 

case, we have two possible states of nature; 

w   :   y   =   y     (known), 
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where y..   > y,.     Knowing that signal y.    is present is equivalent to 

knowing that x. is present.     The objective of our discrimination precedure 

is to decide which of the two states of nature,   u    or w   , is the true 

state of nature. 

The probability of z. photoelectrons being emitted in time T from 

th 
the i     cell of the image plane, given that w. is the true state of nature, 

J 

is 

,   . %
zi   -W^ 

pizju) *  J_       (j^ 2) (165) 
i 

where y.. is the i     component of signal  y.(i, e., y. =(y..,... ,y..,.., y.    )). 

Hence, the likelihood ratio is 

z. 

where m is the number of cell or measurement positions in the image 

plane.   A more convenient form is 

A m 

L(2) = tn {{z) = S  [z. Nyji/^^-ilT^.-^.) ]. (167) 

Bayes' decision rule becomes: 

m m 
choose ^ if S  ^My^y^) > ryr Z W^'Y^, (1<'>8) 

i=l ' inl 

choose u- otherwise. 
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This detector has the form of a digital matched filter where the filter 

is matched to   fcn(y   /y2i).   This detector is illustrated in Figure 13, 

The above case may, as a special case, be considered as two known 

signals i. and s, (s, may cr may not be zero but s. > i.) imbedded in 

known noise n.    The two possible states of nature for this case are: 

w    •   y = s + n   (known signal plus noise), 

u   : y = L+ n   (known signal plus noise). 

Bay es' decision rule for this case is: 

choose 
m /e^+iijX m 

"i" * zi Krrs:; >*r * (vs2i>' 1=1 2i    i i=l 

choose w   otherwise, 

.th 

(169) 

where s.. is the i    component of the vector signal ».,   For the case 

where s. « 0, the noise is uniform (i. e., fl. = n   for all i), and we have 
£ i       o 

a small signal-to-noise ratio   s}./n. for all i, Bayes1 decision rule 

reduces to: 
na m 

choose wf if  S z.s.. >nTn    S  s,., 
1      i=l  1 ^ 0 i=l   lx 

choose w? otherwise. 
(170) 

This detector has the form of a digital matched filter where the filter 

is matched to the signal s..     This detector is illustrated in Figure 14. 

We will new determine the error probability associated with the 

general case of two possible known signals   y. and y .   As mentioned 

earlier, only a single cell of the image plane will be used in our error 

-t. 
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analysis, thus reducing the problem to one of a scaUr signal.   Bayes' 

decision rule now becomesi 

^(y.-y,) 
choose w, if z > —rs-nr-r = v» (171) 

choose w, otherwise, 

where z, y., and y   are all scalars. 

We w;.ll now determine the error probability for this procedure.   The 

general expression for the error probability is 

Pe = p(u1)P(FD) + p{«2)P(FA) (17?.) 

where P(FA) is the probability of saying y     is present when y, is 

present (probability of false alarm), and P(FD) is the probability of saying 

y. is present when y  is present (probability of false dismissal).   Assume 

that p( « 2) s p( w ^ = 1/2.   Thus 

Pe = iP[z>7/U2]+iP(z <7/a)1] 

- 2 

•y (trry,) e 
i -s — £ 

- .z   'Wz 

z=0 zl 

- z "^n 
y (TlTy.)   e 

+ S - 
Z^C 

zl 

(173) 

II 

For large values of z the Central Limit Theorem applies and hence 

z becomes approximately Gaussian.   In order to completely specify 

the Gaus'r.an densities   f(z/ w   ) and f(z/ «   ) we need to find the conditkuU 

means, E(z/ Uj) and EU/w,), and the conditional variances, var (z/« ,) 

and var (z/ w   ).   These are given as follows: 
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Ete/«^) s ^ s ^ryj, (174) 

E(a/«2) = w 2 = tiTy2, (175) 

Var (z/wj) = o-j   = iiTylf (176) 

Var (z/w2) « o-
2 s ^Y,» (177) 

Hence, using (174) - (177) and assuming a Gaussian probability density 

function approximation wo have 

P   « 
oc 

r. 
L Y 2 

i- « 

2- 

(x. «^ 

• 2«r '   .   L  r    l e   2 ^r/./^r- f. 
.^f 

(X-Uj) 

"2S7"^ e 1     dx 

(178) 

= 1 e 
•oc/Z 

e dx 

Under conditions where the Gaussian approximation holds, thia form 

of the error probability would be very useful in analyzing the error 

probability for the general case of m ceils or measurement positions 

in the image plane (see (168)). 

It is desirable to compute the error probabilities of these two 

methods to determine how good the Gaussian approximation is.   The 

Gaussian approximation turns out to be good even for very small values 

of z.   The approximation is good for small values of z because we are 
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working with the "tails" of two distributions and when they are added 

the approximation errors of the distributions compensate.   This does 

not hold in general for   p( u. )   ^   1/2.   For an indication of the validity 

of this approximation,  see Figure 15 and Table 1.    Figure 15 compares 

the ratio of the Poisson error probability and the Gaussian-approxima- 

tion error probability for different ratios of the signals y. and y?.    The 

Poisson error probabilities and the approximate error prubabilities 

have a significant difference only for situations where the error 

probabilities become small (e.g.,    P    <  10    ).     For the case of very 
e 

small error probabilities, we are far o'-.c on the "tails" of the distribu- 

tions and our approximation breaks down.   The approximation breaks 

down because the Central Limit Theorem does not coverge linearly and 

hence the Gaussian approximation holds on1./ t~r the center portion of 

the distribution. 

Two Unknown Signals 

Now assume that at the input of the detector v/e have one of two 

possible signals y   and y , both of which contain any background noise 

that may be present.    These signals are assume d fixed but unknown 

and having each of their elements taken from statistically independent 

gamma distributions with known parameters: 
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• y2 = i 
o y2«10 
A y2 = 100 

1.0 -«k- 

Ü 

.6 

.4 

I. 0 1.2 1.4 1.6 1.8 Z. 0 

V*2 

Figure 15.    Ratio of Poisnnn error probability and Gaussian- 
approximal ion error probability versus ratio of 
y.  and y    for (he case of Hipcriminating between 
two known signals y,  and y_ where   ',1 T ss 1. 
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u..-l   -a..y., 
m m  a..(a..y..) e    ^   ^ 

%.) *TTHY  ) «T7   &   P # u  (j=lt2). ?. >0 
1     isl     J        ia* ji' 

« 0, otherwise. U'-N 

Our two possible states of nature are: 

wi! y = 7,   (unknown), 

w,: y = y,  (unknown), 

where   y    >   y,.   (The quantity y is the expected value of y.)   We want 

to decide which of these two states of nature is present. 

The likelihood ratio in this case is 

UZ,S^^S7pV.2.y2)f(y2)#2 

31 (^y-)    e 

and 
00 

m /   a..    \ 

i=l    ji   ' z.l(iiT+a..)Zir(u..) 
i * '      Ji ji 

(180) 

where        P(Z/W   y.)sn—Ü-J  (181) J J   i=i       v 

z. (!B2) 
ül/   «;;    N   J1 <11T)    r(z.+u,.) 

Ji-   (j=1.2). 



Hence, the likelihood ratio becomes 

05 

.*< 

«2i "(«^nr)    r<VU2i)r(ull> 

(183) 

Assume for convenience that u,,   =   u..   s   u. for all i, then 
li 2i i 

i=iwiy w^^ (184) 

or 

m 
L(z) =£n£(z) = S 

1=1 A^)-H^><¥>] (185) 

Bayes' decision rule becomes: 

choose w. if S z.fcnf-—--) > S «     taf -^i- »-Änv -^ ) .    (180 

choose u- otherwise« 
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For this case the detector has the form of a digital matched filter where 

the filter is matched to   in|( Of,. + nr  )/(«.,+ if-)!.   This detector is 

illustrated in Figure 16. 

For an error analysis, we again consider the single cell case. 

Bayes' decision rule for this case becomes: 

choose w. if z > u -1 «y» (187/ 

choose u. otherwise« 

The error probability is 

Pe^ 
i-s £-- + i  i 

zsO zl 
z=0 ^-'I- (188) 

Again assume a Gaussian approximation for z.   The condition?,! rreaus 

and variances necessary to specify the Gaussian densities  £{::/ &„)      * 

and f(z/ Q ) are as follows; 

E(z/Wi) = E[E(z/wi, y.)] = Edvr^.) = nTu/«., (JO-,) 

g|r 



87 

i-H C« 4 
3 3 
". A 
II A II 
>- J- 
A v| 
>« <4-l 
•H •ri 

2 
"o 
X 
(0 
V 
u >^ 

•H /7v 
fH H H 

J2 a CT tr 
•M ■^ + + 

•H •H •H 
(M CN rH 

3 Ö a 
d N-' ^m/ 

o e c 
(0 <>; o< 

**-4 t__f 1 
h •H 
(4 3 
0. 
E ew ii 
o 
U 

•H 
II 
r- 

+ r® ri -<& 
tM 

c 5 

•       •       • 

-0 
5 

Ö 

o 
c 

o 

V 

0 

n3 

c 

in 

•0 
M 
O 

•4-» 

U 
V 

1) 

o 
m 
hi 

u 

o. 

■M C 

o    ^ 

ra t)0 

P in 

0) 
u 
tiO 

h 

-■^S;^- —--- -■ 



88 

ECz/u^)   "  Uj  "   HTU/Oj^, (190) 

E(Z/üJ2) • u2 - nTu/o2: (191) 

Var (z/t^) = E[Var(z/ü)1,y1)] + VartECz/^^)], (192) 

2 2 VarCz/o^) - Oj   ■ nxu/o. + (nt/a.) u, (103) 

2 2 
Var(z/(^) " »2    " nTU/a2 + (nr/o-) u. (194) 

Hence, using (189)-(194) and a Gaussian probability density function 

approximation we have 

Pe.t 

w 2 «'o 

r   1 Ä-
x '2^ . r   i 

.7-u. -7+^ 1 

(195) 
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We need to compute the error probabilities for these two cases 

(Poisson and Gaussian-approximation) and compar    them to determine 

how good the Gaussian approximation is for the two-unknown-signals 

case. 

See Figures 17 and 18 and Table 1 for a comparison of the Poisson 

error probabilities with the Gaussian-approximation error probabilj'ics. 

Figure 17 shows the Poisson error probabilities and the Gaussian- 

approximation error probabilities for the cases where both signals 

are known and I     » signals are unknown.   The Poisson error probabil- 

ities, known and unknown signals, coincides with the Gaussian- 

approximation error probabilities for known signals.    The Gaussian 

approximation for unknown signals is reasonably accurate only for 

cases where the variances of the unknown signals are smaller than 

about 0. 1.    Figure 18 compares the ratio of the Poisson error probability 

and the Gaussian-approximation error probability for different ratios 

of the expected values of the signals (i. e., y. and y ) and different 

- =2    , values of u (note that var y. = y.    / u (i = I, Z)). 

One Unknown Signal and One Known b? ;nal 

Consider the case of having present at the input of the detector ei'.hcr 

the known signal y or the unknown signal y . For this case we have th*. 

two possible states of nature: 
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•    Gaussian (two unknown signals) 
- A    Gaussian (two known signals) and Poisson 

(two known signaUand two unknown signals. ) 

. 5 

^ 
-^^ 

\ 

VV^^-^^""'1 
.4 XN-x^^^^^*—^ 

- 
^^v   ^^N.        ^l0 

.3 - ^\     ^C 
- 

N^v           lOO^V^^ 

.2 - ^Cr^ 

.1 - 

0 L—     .„1                    1                    1 
1.0 1.2 1.4 1.6 1.8 2.0 

h'h 

Figure 17.   Poisson error probabilities and Gaussian-approximation . 
error probabilities versus the ratio of y   and y_ for the case 
of two known signals and the case of two unknown signals 
where y2 = 10 and    ^ T« 1, 
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Figure 18.    Ratio of Poisson error probability and Gauissian* 
approximation error probability versus ratio of y, 
and y    for the case of discriminating between two' 
unknown signals f. and y^ where   T) T  s  i. 

1 
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u ■•   y = y, (unknown), 

S{   y s y-> (known), 

where f.   > y.«   We consider this case because of its advantages in 

analyzing the detection error from which we can gain additional insight 

to the detection process.   This case corresponds to physical cases of 

large signa- -to-noise ratio in which we neglect the «oise and discriminate 

between two signals.    The unknown signal y. is assumed fixed but unhnown 

and having each of its elements taken from statistically independent 

gamma distributions with known parameters: 

m m   a.(a.y,.) e —       _ 
HyJ 'Jlfiy^ -U^   ili rC}l) * yl -0 096) 

i»l     X1     i-1 uui; 

« 0, otnerwise. 

Bayes1 decision rule is: 

choose u.  If liz) » —7—7—r > I, 1 p(z/<^) 

choose u- otherwise, 

(lr,7) 

where 

,    -    ,Z1    ~nT5F2i n> (nty,.)      e 
pCz/to.) - TT—--—T-,  09.) 

1-1 V 

?**r 



and 

zi m       a.    u.   (nt)    rCz^-u.) 

The likelihood ratio becomes 

L(2) - £n)l(z) - I ru1tn(a——-)- )lnr(u1)+)lnr(z1+u1) 

■2i inly^tm-HxJ] +wy2i\' 

Bzyes1 decision rule becomes: 

loose   ^ If   S   fÄnr(2i+u1)-2i£n[y2i(nT+fti)]l 

> Z Unr(u.) + u.£n( ——h^i 

choose u« otherwise. 

Using the approximation that 

93 

p m a.     u.   Km)      I\X4TU,J 

viz/*) - p^'v^my^dy -n( +-;T)   —;—-V— '   (^9) 

my2i 

Taking the logarithm of the likelihood ratio yields 

m 

(201) 

(202) 

«,n r(x+l)  zUin2Ti-**(x^)  Inx (20 •»n"» 

!*» 
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we can write for Bayes' decision rule: 

m 
choose üj.   if    Z 

1       1-1 
(204) 

o.+nr 
' I    (u1^)ln(u1-l) + u.Äo (       -)-nTy2ll 

choose ok otherwise. 

This detector is illustrated in Figure 19.    For the single cell case, 

Bayes* decision rule becomes: 

choose u   If (z+u-%) £n(z-Hi-l)z an[y2(nT-hx); z 

>(u-h) En(u-l) + nlnP—^-ryty-, 
(205) 

choose u. othenrlse. 

To analytically find the error probability of this decision rule as was 

done in the previous cases appears very difficult.    For this casr, 

computer simulation (Monte Carlo method) was used to analyze the error 

probability.    The results are discussed later. 

Unknown Signal Imbedded in Known Noise 

Consider thf case where we have one unknown signal 9 which if prc7f'-i;. 

at the input of the detector is imbedded in known noise n.   The two possib' 

states of nature are: 
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u {   y = i + n   (unknown signal plus noise), 

u :   yen  (noise alone). 

The signal s is assumed fixed but unknown and having each of its 

elements taken from statistically independent gamma distributions with 

known parameters: 

u.-l    "Bjä. 

f(i) « TTf(s-) -TT ^-t—s  8.>0 (206) 

For this case 

and 

Hence, 

0, otherwise. 

m (nrn )      e'nTni 

pCz/o,,) - TT-  1—-.  (207) 

zi -nTCCj+nj) 
PU /U,2,S) -fT-Il!l(ÄS-i)^..e  . (2CS) 

1-1 «j« 

-  .-    z. pCz/^.s)        m    / s.+n \ i 

p(z/u2,s)      i«! \    ■ni  J 

eye 



Our likelihood ratio then becomes 
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Mz) 
o '  'VPi+nT/ [n,(ß.+rTT)]zl r(u,) 

i-i 1   r 1' 

(210) 

Bayes1 decision rule becomes: 

choose u   if    £ 
1        1-1 

ta[Jo(JI5i(ei+nT),3r(zi+ui-j)] 
(211) 

1    m /B<+nT\ 

choose    „ otherwise. 

Using the approximation of (203) Bayes1 decision rule becomes: 

choose "l if    Z Unf 
i-ll     Lj 

2i  ^(^i+m)!^ fs.+Ui-j) 

(Zj-j)!  j! •] 

+  2 1Itn 21-l-£n[n1(ß1
J-nT)]. + Uln z^ 

m 
>    I    i(u.-lj)  Än(u -l)-u +1J, 

i-I        l 

choose w- otherwise. 

(?12) 

@kf 
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This detector is illustrated in Figure 20. 

For the single cell case Bayes' decision rule becomes: 

choose Wl if inf   j ^(ß-HiT))3 rU + u-j)   1 
1        Lj=o      <Z-J)1 Jl J 

+ zhn z-l-to[n(ß+TiT)]l+ i £n z (213) 

>{u -i) in (u-1) -u+ 1, 

choose w. otherwise. 

To find the error probability of this decision rule analytically appears 

extremely difficult, if not impossible.   For this case it is hard to use 

appropriate approximations without approximating the problem away. 

About the only course left open is to simulate the problem. 

Estimator-Correlator 

We have been considering the optimum detection (Bayes' decision 

rule) of Poisson signals with unknown parameters (mean rates) where the 

a priori probability distributions of the unknown parameters are available 

at the receiver.    It follows from the optimality of the solution that it is 

not possible to improve the detection performance by estimating the 

unknown signals first and then using these estimates in a detector as if 

sfcr 
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they were the true input signals.    Kailath (1963) has shown that for thn 

special case of Gaussian signals with unknown parameters the optimum 

detector can be interpreted as a minimum mean-square-error estimate 

of the signal followed by a detector that treats the estimate as the true 

value of the input signal.   We will refer to this type of detector as an 

estimator-correlator.   The results of the Gaussian signal case do not 

apply in general to other signal distributions. 

The question arises as to the difference between the Bayes1 decision 

rule and the decision rule associated with an estimator-correlator when 

the unknown signals have conditional Poisson distributions with ankr>o\vn 

mean rates which have known gamma distributions. 

Consider the case of receiving at the input of the detector one of two 

possible signals with conditional Poisson distributions and fixed but 

unknown mean rates   y   and y_.    Each of th        *rt*es are taken ft cm 

gamma distributions with known parameters.    For this case Bayes1 

decision rule (scalar cafe) was found to be: 

rin{aJa) 
choose a), if z > u'  *— -1 

choose u. otherwise. 

« y. (214) 

**c*^,■ 
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For the known signal case,  Bayes1 decision rule is: 

r\f{yl - y2) 
choosey if z>     — - )    , (215) 

choose u)   otharwice. 
M 

Hence, for the estimator-correlator with which we make a comparison 

we have: 

n^y, - y2) 
choose«, if z>   „   ,2   .2 .    , (21 J) 

i t-My^Yz) 

choose w   otherwise. 

where y. and y_ are estimates of the unknown mean rates, and here we 
1 Z 

consider these estimates to be the true mean rates. 

Using the assumption that y   and y   are taken from known ganm*. 

"istributions our estimates of them are as follows: 

1)   Maximum a posteriori estimate 

z + u,-l 

1 
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2)   Bayes* estimate 

•v      z + u. 

3)   Minimum mean-square error estimate 

i      ' 

4)  Maximum likelihood estimate 

Y. =    -~    (i = 1.2)  • (220) 
1 t|T 

It is observed that the Bayes' estimate and the minimum MSE estimate 

are equal.    The maximum a posteriori estimate differs from the^s two 

oRtitnates by a minns one in the numerator and for u »  1 all three 

r rttimates become approximately equal. 

Consider the maximum a posteriori estimate in the estimator- 

correlator.   The decision rule becomes: 
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{u-l)( -, ) x      "a.-HIT       a^+nT1 

choose w   if z > = =     ' (221) 
1 /a2+1lT 

..,. «.-HIT    a +Tvry 

choose w_ otherwise. 

When the Bayes1 estimate and the minimum MSE estimate are used 

in the estimator-correlator the decision rule becomes: 

, 1 1 . 
u( -     ■    '      ) 

choose w, if z >   -^ • (222) 

J'jZl) . (-1 L^ 

choose w? otherwise. 

The thresholds for the above two decision rules differ only by the terms 

u and u-1.   For u »   1 the two threshold become approximately equal, 

and hence the decision rules become approximately the same.    The 

maximum likelihood estimate does not work in this case because there 

is no a priori information contained in it and hence there is no way to 

distinguish between y. and y .   A comparison of the error probabjlit'.es 

resulting from the decision rules of the estimator-correlators v.ith the 

error probabilities resulting from Bayes1 decision rule v/ill fol^w. 
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Comparison of Error Probabilities 

In this section comparisons will be made of calculated and simulftt^d 

error probabilities resulting from the various fixed»sample detectors 

that we have considered. 

Figures 21, 22, and 23 show the calculated error probabilities for 

the two-known-signals case, the two-unknown-signals case, and both 

cases of the estimator-correlator for various ratios of the signals y. rrl 

y?    and three values of u.   As u increases (var y.   decreases) the error 

probabilities of the two-unknown-signals case and the two cases of 

estimator-correlators approach the error probabilities of the two-known- 

signals case, and in fact they all coincide for u = 100.   The Eayes' and 

minimum MSE estimator-correlator appears to be superior to the mixhnar; 

a posteriori estimator-correlator for small values of u.   Figures 24 

and 25 correspond to Figure 22 where the measuring interval (ryr ) has 

been increased to 2 and 3 respectively.    Figures 26,  27 and 28 are th^ 

computer-simulated error probabilities corresponding to Figures 22, 24, 

and 25.   The simulated results compare very favorably with the 

calculated results.   For both the calculated and simulated res'-'lts, t'rz 

Bayes1 and minimum MSE estimator-correlator is consistently h^t"- 

;;han the maximum a posteriori estimator-correlator.   Figure 29 cl'-O'va 

:he error probabilities for the case of one unknown sign-1 in known 

noise and the case of one unknown signal and one known S'^T^I.    Th-.'r 

. rjor probabilities are compared with the simuJ^.teJ. error prrbuMV'u-; 
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.3     _ 

0« 

• Two known signals 

O TWo unknown signals 
A  Bayes1 and minimum MSE estimator-correlator 
X Maximum a posteriori estimator-correlator 

-* * H H  

. I    h- 

l. 0 1.2 1,4 1.6 1.8 2.0 

h'h 

Figure 21.    Calculated error probabilities versus ratio of y. and 
y_   for various detectors,  u = 1,  y9 = 10, and r\ T   =1. 
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& 

.2  _ 

.1 

I. 0 

•      Two known signals and the two unknown sign us 
O      Bayes' and minimum MSE estimator-correlator 
x      Maximum a posteriori estimator-correlator 

1.2 1.4 1.6 1.8 2.0 

Figure 22.    Calculated en or probabilities versus ratio of y. and 
y    for various detectors,  u = 10,   y. = 10,  and    »1 T   = 1, 
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04 

2.0 

yl  y2 

Figure 23.    Calculated error probabilities /ersus ratio of y    and 
y     for various detectors,  u = 100,  y    = 10,  and   t] T s 1, 
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.4    _ 

.3 

& 

or 

2    _ 

'igure 24.    Calculated error probabilities versus ratio of y ,  and 
y^ for various detectors,  u = 10,  y    = 10,  and    TI T = 
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Figure 15.    Calculated error probabilities versus ratio of y   and 
y-    for various detectors,   u = 10,  y    - 10,  and    ti T    =3. 
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Figure 26.    Computer-simulated error prc.babili'.)'»« versus ratio of y. 

and y_ for various detectors, u - 10,   /    =10, and - T   = l. 
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Figure 27,    Computer-simulated error probabilities versus ratio of y 
and y   for various detectors,  u = 10,  y2 = 10, and YJ T   = Z. 
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Figure 28.    Computer-simulated error probabilities versus ratio 
of y   and jL for various detectors,  u = 10,  y_ = 10, 
and   T) T   = 3. 
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O    Two known signals 
•    One unknown signal imbedded in known noise 
x    One unknown signal and one known signal 

1.0 1.2 1.4 1.6 1.8 2.0 

y/yj 

Figure 29.    Computer-simulated error probabilities versus ratio 
of y   ar.d_y2 

u = 10,     y, 
for both cases of one unknown signal, 

10,  and   n = 1. 
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of the two-known-signals case.    One thousand trials were  nade for 

each of the simulated results. 

In general, if the error probabilities do not become less than about 

0. I, it can be seen that knowing the signal parameters (mean rates) is 

not much better than only knowing their probability distribution», 

particularly if the Bayes1 decision rule or the Bayes estimator-corrr'-tnr 

is used.    In many problems of signal detection,  error probabilities  «  . I 

are important.    Errors of this size were more difficult to calculate on 

the computer because of overflow problems and hence fewer results 

were obtained for these small errors.    For error probatilities of thi? 

size, the difference in error probabilities of the various fixod-sanvle 

detectors becomes significant (see Table 1). 
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SEQUENTIAL DETECTION 

Introduction 

In many problems of optical data processing, detection speed is 

important.    For these situations a sequential detection procedure should 

considered as an alternative to the conventional fixed-sample de- 

.i^tion procedure.    The sequential detection test,  which was developed 

by Wald (1947),  minimizes the average test length for given P(FD) sn^. 

?(FA) and hence has a shorter average test length than the fixed- 

sample test.    In the sequential test we introduce two thresholds at 

the output of the detector such that we declare the "signal present'' if 

one of the thresholds is exceeded and "signal absent" if we fall bei"" 

the other threshold.    The number of observations or test length is net 

fixed in advance.    The number of observations required by the sor-v-n- -., 

test depends on the outcome of the experiment and is,  'uerefore,  net 

predetermined bvt a random variable. 

Let p(z/ü) ) be the probability distribution of the observed ran-om 

variable z when u. is the true state of nature and p(z/w ) be the pr >=•,- 
1 u 

bility distribution when Q   is the true state of nature.    If we make j 

successive observations of z,  the probability density for the svmp1e 

(~,  ,  z  ...,  zJ) is given by p.(z/w ) = p(z    ,...,  z /u.) v l.en r    is „v 

trr » st-.te cf nclnrc and p.(z/a) ) = p{z    , ...,   "'Vw-) when t.^ is the t;    . 

r*" te of -'•••,    re.    The cnantity z' i: a vecto" wno^o ^ •■-^-'-.s -    .-•   —ui    ' ? 

OU;: v': of r.^ch r' Ihn   -.i C^,1S O^ the :"   v, 'e r''   '"  (•'• •• • ,   ^    "    -','',   "-,     • • .  ? 
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We need to determine two positive constants A and Bi both depending 

on the error probabilities P{FD) = ß and P(FA) = o which are specified 

beforehand.    P(FD) is the probability of false •dismissal and ?(FA) is the 

probability of false-alarm.    The constants A and B have the approximate 

realationships (Wald,   1947): 

A «     1 ' ß (223) 

and 

B -   -T£-~   . (224) 
1 - a 

Bussgang and Middleton (1955) consider the sequential probability 

ratio test (SPRT) for testing «. against w?.    The definition of the SPRT 

for the m cell case is as follows: at each stage of the experiment, compute 

the probability ratio 

P.izjw.) p(2   ,2   ,    ....    Z3/^.) 

rj        2 p(z  .z ,..., zvw,) 

choose «. if    £,(k) > A, 

choose u- if    £(k) < B, 

continue the experiment by making another observation if B < £,(j) < A. 

We are also assuming   that the number of electrons being emitted from 
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■ 

{■ Ff 

ft: { 

the different regions or cells of the image plane are independent. Hence, 

given « . the probability of 2j electrons being emitted from region 1,..., 

*m electrons from region m all during the j observation Intervals is 

m 
p.U/w)   *]T     p(a /« V       (qSl,2) (226) 

where mis the n-imber of cells in the image plane.   The likelihood or 

probability ratio can then be written as 

p.Cz/w.)        m   p.Cz./«.) 

Pj(2/fa,2>   Ui pj<^/w2, 

II' the j successive observations are statistically independent, the prob- 

ability ratio becomes 

p(z , •. • 12 /&} )        j     m   p{za V«,) 

£ü)« ——--1 3 fr TT —V-1- (228) 
p(z ,...#ZJ/«,) i=l    kz\   p(2     /Wi) 

Vhe natural logarithm of thiu ratio may be taken for computational con- 

venience.   The probability ratio can then be expressed as 

A J   i» PC«. /wJ       j 
R. ^   m £(j) = S   S   £n —ir—I- a  S r. (^^1 

J 1=11=1       pte//^)      Ul   i 



where 
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r. s S  in 
m        Pte^/wj) 

4cl        pi**/^) 
(230) 

The test procedure then becomes: 

choose Wj if Är* in A, 

choose «2 if R <   mB. 

make another observation if u n B < R. <   m A. 
J 

In our evaluation of this test procedure we are primarily interested 

in the average number of samples required to terminate the test and the 

Operating Characteristic Function (OCF). The OCF (L{y)) is defined as 

the probability of choosing w2 when the actual signal is y. Bussgang and 

Middleton {1955) show that 

My) = 
Ah-1 

Ah.Bh (221) 

where h is chosen such that 

oo oo 

<& • * •   S 
zi=o    zUo Pj(z/«2) 

rh 

p.(z/y) = I. (232) 

4 
i<- 
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The quantity L(y) is needed in the calculation of the Average Sample Number 

(ASN).   The average value of R    {see (229)) is equal to the value of the 

bounds  (thresholds &n A and    tnB) weighted by the probability that they 

will be reached.   That is» 

E(Rk) = L(y) «n B + [1-L(y)3 ^n A. (233) 

Also« 

Eeg. S in      ,     i    . 
%sl k    Ä    2 

(234) 

For statistically independent observations we have 

E(Rk) = E( S rj) = kE(r) (235) 

where r. is given in (230). 

The ASN for statistically independent observations becomes; 

.;T'   I- 

;:; k      ß*nB + (l-ß)tnA 
E(r) 

(2SA) 



for wi as the true state of nature, 

120 

E(r) (237) 

for «2 a8 the tr«« state of nature, and 

k*  LCy)^A+fl-L(YntnB 
E(r) 

[23m 

for general signal values y.   When the observations are not statistically 

independent, the ASN is found by solving for fc from the following: 

ß «nB + {l.ß)ÄuA =E ""tn  Pk(z
Ä
/wl>' 

£S1      Pk{i!il/w2) 
(239) 

for Wj as the true state of nature. 

a to A + (1 -a) 2 n B s E E .n  P4^ (240) 



for w- as the true state of nature»  and 
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L<y) yi A + [1 -L(y)3 fa B^E S  «n    *   li  \ (241) 

\ 

for general signal values y. 

Two Known Signals 

We will first consider two known signals y   and y2 as the poesible 

input signals to the detector where y   and y. are the average number of 

photons that are incident upon the image plane or detector.   The signaln 

y   and y   contain any constant background noise that may be present.   For 

this case we have the two states of nature: 

«Y   Y s Yj (known), 

w2: ys ^2<known^ 

M 

■     ft 

where y. > y?.   The objective of our sequential test procedure is to de- 

cide which of the two states of nature, u. or «-. is the true state of 

nature. 

The probability of z .   photoelectrons being emitted frrm the» % 

cell of the image plane in time T during the i     observatJon.  givf n t'?3 



(i)   is the true state of nature,  is 
q 
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Pfc^/Wq) =   ^ 
(^„y* e^^qt 

^i 

(q*i,2) (242) 

th - i 
where y     is the  i    element of signal y   and z.    is the actual number of 

th th 
photons emitted from the ^     cell during the i     observation. 

Using (228) and (242). the likelihood ratio can be written as 

A3) 
/yiAiS^-^irV (243) 

The logarithm of    £(j) is 

(244) 

Equation (244) can also be written as 

m 

l-l 

(245) 

where R   = 0. 
o 



I 

123 

The SPRT procedure is: 

choose u»   if R,   >     to A, 

choose w   if iL<     to Bi 

continue testing if      to B < R.<  In A, 

In order to find the ASN for this test we must solve the following 

equation: 

EiKJ s L(>; jtn B + [1 -LC/)] f. n ^ (246) 

Using (244) we have 

I m 
E(Rk) = k^T  S   [^ tniYh /y2 J-^ ^y^)]. (247) 

8^1 

Hence, for the ASN we have 

m.   tßj£jL±jiMä **■— ,2«, 
„TEtf 'n(yu/y2tHylf-;2t)) 

for signal y in general« 

jjjggygfeeBggJH» 
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R(y,) = 
ßanB + (l"ß) ftnA 

^fl^llt^^U^Zl^U+^l 
(249) 

for y. presenti and 

My2) = 
et m A + (i^>r)t n B 

^ f Cy^t^/y^)^ +y2Jt] 
«sl 

(250) 

for y_ present. 

Consider the single cell case (i.e.» m = 1) where y » y.» y> z> and 

k are scalars. For this case 

J 
RjS(S   z^n^/y^^Tj^j-y^ (251) 

ijs Rj-Rj,i =zj Än (y1/y2)-tiT<y1-y2^ (252) 



and 
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"    Wlf ^iy1fv2)'y1 +y2] U53) 

The quantity L(y) is found from 

L(y) 
Ah-1 

Ah.Bh 
(254) 

where h ie chosen such that 

oo 
S 

2=0 P(z/w2) 

nh 
so 

p(2/y) « s 
2=0 

(^/yp^^^l^jW^^l. (255) 

This equation can be solved to yield 

f.J^^ 
i^/y/'i] 

(256) 

By choosing values of h we can plot L(y) versus y.   Using the corres- 

ponding values of L(y) and y we can determine and plot k(y) versus y. For 

the special case of h s 0 

 .. .„    i 
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L(y) = m At ia{AJB) (257) 

and 

k(y) = 
*gn A &n B 

E[[Z Myj/ygH^yj-^)] ] 

-ox A m B (258) 

[ [var(z)+E2(z) jÄn2(y j /y2).E(z)2 Än(y j /y^i^ -y2y+(tiT)2(y l .y2)2 ] 

An example is shown  a Figure 30 of the calculated ASN versus actual 

signal values y for a sequential detector designed for two particular sign.M 

mean  rates whose preassigned values of « and ß are equal.   Figure 31 

shows the OCF for the same example and sequential detector (OCF   is 

defined as the probability of choosing state «_ to be present when the 

actual signal is y).   Figures 32 and 33 are simulated results corresponding 

co Figures 30 and 31 respectively.   As the ASN becomes larger the cal-. 

culated and simulated results compare more favorably.   This is due to the 

approximation of the thresholds A and B. which becomes more accurate 

as the ASN becomes large.   Figures 34 and 35 show calculated ASN and 

OCF versus actual signal values y for a sequential detector designed lo* 

two particular signal mean rates whose preassigned values of a and ß are 

not equal.   For this example the detector is inclined to make decisions 

in favor of signal y, being present since fr r ß > a the detector guards less 

against false dismissal (saying state u? is present when w. is the true 

», 
»*«»> 
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j-   5- 

2 
w 

Figure 30. Calr.ulatnd ASN voraus ?ictaai signal values y for a 
fic«iu«u;iul detector designed for two known signals» 
various values of   a s •) ,       jr. s 20, and y   = 10. 
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Figure 31. Calculated OCF versus actual signal values y for a 
sequential detector designed for two known signals, 
various values of  a * p,     ^ s 20, and y2 = 10- 
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1 * 
i-v 

2 

Figure 32.    Computer-simulated ASN veiwus actual signal values 
y for a sequential detector designed for two known 
signals,  various values of a = B ,  y.  - 20,  «rid y? = 10. 

t, 
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I 

Figure 33,   Computer-simulated OCF versus actual signal values y 
for a sequential detector designed for two known signals» 
various values at a s ß,    ^   = 20, and y   = 10. 

*;. 



131 

].    = 

■ 

- 
/ 

120 

„ / \       P s io'3 

100 - 

i 
/ Xf\ 

80 — 

/ / 

60 .- 
/ 

/ 

/ 

lo-1   \V 

40 y 
/ 

/ ^ sj 
20 / 

/ ^v. NS^S 

0 i.      i « \ iiit 1 _    i—.1 
10 11 12 

Figure 34. Calculated ASN versus actual signal values y for a 
sequential designed iox two known signals, various 
values of p ,   a = 10"  ,  jfj = 12, and y2 = 10. 
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Figure 35. Calculated OCF versus actual signal values y for a 
sequential detector designed for two known signal» 
various values of p. o s 10"3. y. « 12. and y, alo. 
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state of nature) than it does against false alarm (saying state   Uj is 

present when   u, is the true state of nature).   One hundred trials were 

m ade for each of the simulated results of Figures 32 and 33. 

The case just discussed may, as a special case, be considered as 

having two known signals   ij and i2 imbedded in known noise n.   The two 

states of nature for this case are: 

w j   y = Sj + n  (known signal plus noise). 

«,:   y = i, + n (known signal plus noise), 

where   s.   > i,.   The values of i, may or may not be zero. 

Using these conditions for the single cell case we have: 

l/Kip -^v-V- (25,, 

1      f*l**\ -   - (260) 

k .   L(i)  ^n B ■<• Cl-L(s)] tn A    ^ (261) 



iJ4 

Mi) Ah-1 

Ah-Bh (262) 

and 

8  ■ 
(Sj^   -   Sg)   h 

K 
(263) 

Two Uakoowa Signals 

Assume that we are to discriminate between two signals y   and y 

both of which contain any background noise that may be present.   These 

signals are fixed but unknown, and each of their elements are taken from 

statistically independent gamma distributions with known parameters; 

u   -1   -o 
m m     a ,  (ct .f.)   ^     e   q 

f(yfl)-TTf(y^)-TT   q&   q£ ^ 
q'      'f^l^1        £-1 T%i> 

iyql 

(q-1,2),  y^^O      (264) 

-o. otherwise. 

Our two states of nature are: 



1 

i 
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«.!  y = v'|   (unknown), 

w 2:  ? s y?  (Wiknown), 

where y^ > y^.    We want to apply the SPRT procedure to decide which of 

these two states is present. 

The conditional probability distribution for the observed random 

variable z is 

P.d/« .yJ " f?    FT  ^oi**1 ^'^^    (q-1. 2). (265) 
^        *    * £-1 1-1 1  , 

The likelihood ratio becomes 

m. J^Z£hLh!. ^(yi)dyi 
JjPjCs/^, y2)   f(92)d?2 

»  "l^V^prC^z^,) (a.^nt);,/^. (266) 
■n i— • 

t'1      U2 ^       i E    z1-^ 
«2*    r(uU)r(J 1

8iSi)   (aU+^T)i-l^    U 
1"1 

Taking the logarithm of this equation yields 
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Rj - *n)l(J) 
m 
I    In 
£«1 

,1 

U2 J      1 £  K'+U,, a2£    ^"U^^X,)  <«1£+J^)lal
4    UJ 

.(267) 

The SPRT procedure is then: 

choose   «   if R > *n A. 
1        k - 

choose   J.V, if R, < An A, 
"2        k - 

continue testing if ,£n  B < R. <inA. 

Consider the single cell case (i. e., m - 1) where  y., y,, y, z, and k 

are all scalars«   Assume that  u   = u. = u.   For these conditions we have 

R. • E   «Vl—irj+u     tnl-2^     - id—)]. (268) 

Also, 

li'*i 

J"1 l      f   /a2+Jf,T\        /o9+jnT-nT \"| 

(269) 
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We can now apply the SPRT procedure to discriminate between the two 

states of nature,   u. and  w , 

We now attempt to find the ASN, !c, from 

EO^) - L(y)  tnB + Cl-L(y)3  An A. (270) 

If we assume that E(R. )   &   i-lRr) we can write 

Ed^)   »   itn(a
2^-)[kniE(y)+u] - u In (a^a^. (271) 

Thus we have 

/ a.+knT\ 
rCnTE(y)+u] ftn\04RnT)

isL<y) lß B + Cl-t(y)] ÄnA + u inCo^/o^) (272) 

for general signal values y, 

i02+knT\ 
Ckniu/aj^+u]  fenlö +|^77w  P an B + (i-P)  *n A + u    In (a2/<x1) 

(273) 
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for y. present« and 

Cl^tu/a2+u] in L2+EnT)»    a £n A + (l-a)tn B + uln^^a^ iZ14) 

for y? present. 

These last two equations must be solved by a "cut and try" procedure 

(or graphically) to obtain k (ASN).   For general signal values, y, L(y) is 

very difficult, if not impossible to obtain analytically. 

Figures 36, 37, ami 38 sh.)w graphical solutions of ASN for the case 

of y.    present for both the two-known-signals case and the two-unknown- 

signals case.   It can be seen from these figures that for the two-unknown- 

signals case and small enough values of or   and ß , given some value of 

R.   (R.   s "(R./y, j))(neither threshold will be crossed regardless of 
J J J 

how large ASN becomes. 

For general signal values y the ASN and L(y) can be found by computer 

simulation.   Figure 39 shows the simulated ASN versus actual signal 

values y for the two-unknown-signals case that we have just considered. 

Simulated and calculated ASN for the sequential detector designed for 

two particular signal mean rates are also shown for comparison. 

Figure 40 shows the OCF for these cases.    One thousand trials were 

made for each of the simulated results of Figures 39 and 40. 
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figure 36.   Calculated mean cumulative information verfius sample 
number for sequent:   ' detectors designed for the two- 
known-signals case and the two-unknown signals case 
for u s 1000.  y. s 20.   y » s 10,  and y ■ 20. 
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Figure 37.   Calculated mean cumulative information versus san.ple 
number for sequential detectors designed for the two- 
known-signal^ case and the two-unknown-signals case 
for u a 100. y   s 20.  y, ■ 10. and y a 20. 
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Figur« 38.   Calculated mean cumulative information versus sample 
number for sequential detectors designed for the two- 
known-signals case and the two-unknown-signals case 
for u s 10. y. s 20, y, = 10. and y s 20- 
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Figure 39.   Computer-simulated ASN versus actual signal values 
v for a sequential detector designed for two unknown 
signals and compared with calculated and simulated 
ASN of the two-known-signals case for y   = 20» y_ ■ 10. 
asps 10"3. and u ■ 1000. 

S 
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Figure 40.   Computer-simulated OCF versus actual signal values 
y for a sequential detector designed for two unknown 
signals and compared with calculated and simulated 
OCF of the Jwo-known-signals case for y   = 20.  y. =10. 
a = ß = lo" t and u « 1000. 

* 



144 

One Unknown Signal and Ooe Known Gign&j 

Assume that at the input of the detector  we have either the known 

signal   /_ or the unknown signal y..   We have as the two states of nature; 

u »   y s y,   (unknown), 

"2t y = y2  (known), 

where y    > y »     We again consider this case because of its advantages 

in analyzing the detection error from which we can gain additional insight 

into the detection process.     The 'Jinkncwn signal y.   is assumed fixed 

but unknown and having each of its elements taken from statistically 

independent gamma distributions with known parameters: 

u,.-l »«, 

'(Pi yj - TT f(y11) - TT    u  u n 5 . yu± 
t-i    "     Ä-i r(u,.) 

(275) 

- 0, otherwise. 

The conditional probability distribution for the observed random 

variable z, given  w. and y , is 

** -nry. 

/i-i i-i 
(276) 

•*. 



es 

t- 

- 
( 

5 

^i 

Also, 

The likelihood ratio becomes 

oo 

?.(«/«,)      / ^(z/w,,?,) f (y.) dy 
UJ) - -J—^ - v}-1—1—* *—i 

fif^—) 
"u-J 

Kf ,*"u) '3nt'" * 1-1 

Taking the logarithm of this equation yields 

RJ ' Lf'nr(i.lZ*+Uu) + ""^^I^) + JnT?2£ 

145 

t1 - 

M^.fr A i^; i^ü!. (277) 
3 4 £-11-1 1  , 

(278) 

(279) 
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We can now use this expression in the SPRT procedure to discriminate 

between the states of nature    ^ and  w . 

Now consider the single cell case where   y,, y., y, z, and k  are 

scalars.   For the single cell case we have 

- in r^) 

(280) 

Using the approximation 

InT (xfX)» %to2ir-x +(x4*j) in x 
(281) 

we can write 

3      i 1     ± ». »   (E    z +u -Js) in (Z   z^-hx-l) ~ (u-Ij) to (U--1) 
J        i«l l»l        A X X 

(282) 

ul Än(v^r)+ ^2 -(^f^n^C^+JnT)]] 

i 

1 

•u 
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and 

J     i 

I    - R -R        -(E    *i'hirh) tolr— j+ z^taf   E z^-l) 

1«1 l 

-'3 "£ '^(sS^)"2J tt ^'VJ-"'] 

(Z83) 

To solve for ASN and OCF analytically appears extremely difficult 

in this case.   We will consider only computer-simulated solutions. 

Figurer 41 and 42 show respectively the simulated ASN and OCF versus 

actual signal valu*    ' for a detector designed for one signal with known 

mean rate and one signal with unknown mean rate.   Figure 43 shows, 

for comparison, the ASN for the two-known-signals case,   the two- 

unknown-signals case, and the case just considered.   It can be seen from 

this figure how the ASN increases as less is known about the signals. 

Two hundred trials were made for each of the simulated results of 

Figures 41 and 42. 

-:1 
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Figure 41.   Computer-simulated ASN versus actual signal values 
y for a sequential detector designed for one_known 
signal y   and one unknown signal y. where y. s 20 
and y   a IQ. 
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Figure 42.   Computer-simulated OCF versus actual signal values 
y for a sequentail detector designed for one known signal 
y. and one unknown signal y   where y   = 20 and y   = 10. 
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Figure 43.   Comparison of simulated ASN versus actual signal y 
for the sequential detectors designed for the two-known* 
signals case,  the two-unknown-signals case and the 
case of one known signal and one unknown signal where 
Yj ■ 20, y   =10, u = 1000, and a = ß = 10"3. 
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Unknown Signal Imbedded in Known Noise 

Consider the case where we have one unknown signal i which, if 

present at the input of the detector, is imbedded in known noise n.   The 

twc states of nature are: 

w j   y = s + n  (unknown signal plus noise). 

« ; y =   n  (noise alone). 

The signal s   is assumed fixed but unknown and having each of its 

elements taken from statistically independent gamma distributions with 

knowii parameters: 

m »      o /« - NU.-1    -ß.a &AB939ri * e "1*1   _ (284) f (i) - IT f (i,) «rr V!tV fc  e ^ . >n 
*-i    1     £-1        r(u.) » sfc-0 

=0, otherwise. 

The conditional likelihood ratio is 

P.Cz/w.,  s)        m   /n+s\£      z - 
(J/5) "   ATäIT— "  TT (-H^j i-1    l e-^T8£ PJ(z/cd2) t-lXn£    / 

(285) 
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The likelihood ratio becomes 

ÄÜ)=   ^Tü/8)f(8)di 

isi Y s «^ ,286} 

rCu^Cn^CB^+jnV)]^ 

Taking the logarithm of this equation and assuming the single cell case 

we have 

(287) 

+ »n 

■ a 

^»[nO+^T)]16^ zSu-k) 
r,   —-—: isi  
k-O (s z1 - k)l  kl 

i=l 

This expression can then be used in the SP*     procedure to discriminate 

between the states of nature,     w. and w  . 

An exact analytical solution of ASN and OCF for this case appears 

extremely difficult, if not impossible.   It appears that the only reasonable 

method of analysis of this case is by computer simulation. 

-+- ■ 
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Figure 44 shows the simulated ASN versus actual signal values y 

for a detector designed for a signal with unknown mean rate imbedded 

in Poisson noise with known mean rate.   Figure 45 shows the correspond- 

ing OCF.   Two hundred trials were made for each of the simulated 

results of Figures 44 and 45. 

Information Content of Samples 

An important property of the sequential detector is the informai.cn 

content of the samples.    We will consider the mean information of a 

sample to be 

I  « E(I /y, j) S E{R /y. j) - E(R     /^ j). (288) 
J J J J 

The information is favorable to the hypothesis that w. is the true state of 

nature when the abov* expression is positive.    When the information is 

negative, the sequential detector tends to choose w    as the state of 

nature.   We will determine the amount of information provided by the 

samples of the various sequential detectors that we have previously 

considered. 

For the detector designed for two known signals, the mean infor- 

mation per sample is constant regardless of the actual signal y which 

may be present and is given by 

1 
* 
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< 

Figure 44.   Computer-simulated ASN versus actual signal values 
y for a sequential detector designed for an unknown 
signal s which if present is imbedded in known noise 
ii where 8=10» n = y. =10. y. = 20. and u ■ 10. 

&» 
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Figure 45.   Computer-simulated OCF versus actual signal values 
y for a sequential detector designed for an unknown 
signal s which if present is imbedded in known noise 
n where s = 10? n = y2 = 10, y. s 20. and u = 10. 

i 
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t s ^T [y m (Yj/y^ - Yj + y2]. (289) 

The expected cumulative information for the j     sample is 

Rj = E(Rj/yt j) = t^Tj [y «n (YJ/^) - yj + y2] (290) 

where the true mean rate is y.      Figure 46 shows the mean cumulative 

information versus sample number for this case where the detector is 

designed for y. = 10  and for various values of y..    The positive values 

result when   w.   is the state of nature (? = y.)$ and the negative values 

result when  u. is the state of nature (y = y.). 

Whenever either or both of the two signals have unknown mean rates, 

the information per sample is no longer constant.   For the detector 

designed for one unknown signal y   and one known signal y, the mean 

cumulative information for the j     sample is 

R   s E[ in r(S  z1 + Uj)] - jtrryta^orj +JT1T)] + jt^ 

+ u. 9n (—~—:) -^n rCu.). 1      \tt   +}r\rj V 

(291) 

öbr 
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Figure 46.   Calculated mean cumulative information versus sample 
number for a sequential detector designed for two 
known signals where y   s 10 and y a y . 
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E(R.(a)/y, j) « R.(5) (292) 

and 

£n.r(x+l) « i Än2Tr - x + (x+|) Änx (293) 

we can write 

Rj « (j^y + u^) nn (jtr»y + Uj-X)^-^ ^(Uj-l) + n^t/   ^ j 

+ Jr(Ty2-jiiTy - JT|Ty £n [^(«j + JnT)] 

and 

(294) 

-    -       t    /j^y + v1     \ 

a.+jriT -      -        /   «^JT    \ -        - 
-JTiTy.ChTy-nTy) fcn f      ^j^T-^Ty  ■1lTy ^^^1 + ^J] 

-u, fcnf—-r——T'l+^y-»» 
1      \al+mr'r\r/ 2 

(295) 

"9. 
mm 
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The limit of I. as j approaches infinity gives us an indication of 

what the detector is doing as the sample number becomes larga.    The 

mean information per sample provides us with a measure of the adaptive 

capability and the performance of the detector.    It provides some insight 

into the spt t i by which the detector will make a decision.    The limit of 

R. as j approaches infinity gives us some upper bound to the information 

that we can attain and may point out some limitations of the detector. 

For the case of the detector designed for one unknown signal y. and one 

known signal        the limit of the mean cumulative information as j 

approaches infinity is 

Xim R «u   aiff.y-a.y-Cu 4)Än(ui 'U+K -1)+ limrjtiT[yÄn(y/y?)-y+y ] 
^-oo   i     l       l      l        l * *        j-<x>L c L 

-itnCjirry+Uj-l)]   . (296) 

The limit of the mean information per sample as j approaches infinity is 

limf. =T1T[y )ln{y/y-) -9 + y_]. (297) 
j-oo  J Z 2 

For   w. as the state of nature the detector imiially «iocs not know the 

true mean rate of the signal and the mean information per sample provided 

about the state   u   is small.   As more samples are taken, the detector 

adapts to y.  and thus becomes more effective.   As the sample number 
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becomes large, the detector learns y , and then the mean information 

per sample becomes the same as for the case when the signal was known 

beforehand.   If w- is the state of nature the detector is most effective 

to begin with, and as more samples are taken the detector performance 

begins to deteriorate since the mean information per sample decreases 

and in the limit the mean information per sample approaches zero.   The 

mean cumulative information approaches infinity as j approaches 

infinity when either   u. or to . is the state of nature but the mean 

cumulative information for state   u. approaches infinity faster than for 

state   w .    The mean cumulative information versus sample number for 

this case is shown in Figure 47.    The detector for this case is designed 

for a known signal with a mean rate of y   = 10 and for an unknown signal 

with various expected mean rates y..    The positive values result when 

w     is the state of nature (? = y ) and negative values result when u   is 

the state of nature (y = y?). 

For the case of one unknown signal s imbedded in known Poisson 

noise a, a similar result holds.    For this case when   w    is the true state 

of nature the detector approaches the two-known-signals case faster than 

does the detector of the case just discussed where one signal is known 

and one signal is unknown.   Also, when   «    is the true state of nature, 

the detector does not deteriorate as rapidly.   The mean cumulative 

information versus sample number for this case is shown in Figure 48. 

The detector is designed for known noise n = y   = 10, and several values 
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Figure 47.   Calculated mean cumulative information versus sample 
number for a sequential detector designed for one known 
signal y_ and several mean values of the unknown signal 

'1 
where y   s 10.  y = y. and u s 10. 
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•cT 0 

Figure 48.   Calculated mean cumulative information versus sample 
number for a sequential detector designed for the 
unknown signal s which if present is imbedded in known 
noise n where y_ = n= 10. y a y. « i + n, and u -• 10. 
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of unknown sigual s or y    = 5 + n.   Positive values result when   w   is 

the s.   te of nature (y = y.), and negative values result when   u    is the 

state of nature (y = y.). 

When we have the two-unknown-signals case,  the mean information 

per sample for the j     sample is 

and the mean cumulative information for the j     sample is 

Rj=jTiTy£nVvj^)+u t Kv^-y - te<*2'«i>i. •     {299) 

For this case the detector is most effective to begin with,  regardless 

of the true state of nature, and as more samples are taken,  the detector 

performance begins to deteriorate because of t^e decrease in the mean 

information per sample and in the limit the mean information per sample 

approaches aero.    The limit of the mean cumulative information approache; 

some constant depending or» the actual signal present and is given by 

lim  R. = y (ar -a ) - u £n(a  /a ). (300) 
j-co    J Ä    * *    l 

j 
> 
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Figure 49 shows the mean cumulative information versus sample number 

for this case when the detector is designed for an unknown signal with an 

expected mean rate of y. = 10 and for an unknown signal with various 

expected mean rates y..    The positive values result when   u   is the state 

of nature (y = y.) and negative values result when   w   is the state of 

nature (y - y.). 

Figure 50 shows the mean information per sample versus sample 

number for the two-known-signals case and the two-unknown-signals 

case.    The {.usitive information is obtained when   w    is the state of nature 

(y = Yi)» an^ negative information is obtained when   u   is the scate of 

nature (y = y_).    Figur« 51 shows the calculated mean cumulative infor- 

mation versus sample number and also a computer-simulated sample of 

the cumulative information for a detector designed for two known signals 

when   u   is the state of nature (y « y ).    Also shown in Figure 51 is 

the computer-simulated mean of the cumulative information versus sample 

number.    This simulated sample mean compares very favorably with the 

calculated values.      Figure 52 shows the results for the same detector 

when   w   is the state of nature (y = y ).    Figures 53 and 54 show results 

that correspond to Figures 51 and 52 respectively, for a detector designed 

for two unknown signals.    Figure 55 shows the computer-simulated mean 

cumulfctive information versus sample number for a deector designed 

for two known signals,  y   « 20 and y   = 10, and for various values of 

actual signals present.   Figure 56 shows the computer-simulated mean 
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Figure 49.   Calculated mean cumulative information vereus sample 
number for a sequential detector designed for two un- 
known signals where y   = l(h y = y.. and u s 10. 



16 

3.86 

-.    0 

Figure 50.   Calculated mean information per sample versus sample 
number for a sequential detector designed for the two- 
known-signals case and the two-unknown-signals case 
where y^ s 20, and y   = 10. 
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Figure 51.   Calculated and simulated mean cumulative information 
versus sample number and a simulated sample of the 
cumulative information versus sample number for a 
sequential detector designed for two known signals 
when u. is the state of nature and y. = 20i  y   =10. 
and y = 20. 
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Figure 52.   Calculated and simulated mean cumulative information 
versus sample number and a simulated sample of the 
cumulative information versus sample number for a 
sequential detector designed for two known signals 
when w. is the state of nature and y, s 20. 
and y = 10. 

1 
y2 = 10. 
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Figure 53.   Calculated and simulated mean cumulative information 
versus sample number and a simulated sample of the 
cumulative information versus sample number for a 
sequential detector designed for two unknown signals 
when w. is the state of nature and y   = 20>  y. e 10. 
y ss 20, and u s 100. 
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Figure 54.   Calculated and simulated mean cumulative information 
versus sample number and a simulated sample of the 
cumulative information versus sample number for a 
sequential detector designed for two unknown signals 
when «.is the state of nature and y. = 20. 
y s 10. and u = 100. 
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Figure 55.    Computer-simulated mean cumulative information versus 
sample number for a sequential detector designed for 
two known signals,  y   = 20 and y   = 10. and for various 
values y of actual signal present. 
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Figure 56.    Computer-simulated mean cumulative information versus 
sample number for a sequential detector designed for two 
unknown signals and iorvarious values y of actual signal 
present where y. - 20, y   = 10, and u s 100. 
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cumulative information versus sample number for a detector designed 

for two unknown signals, with mean rates y. = 20 and y   = 10,   and for 

various values of actual signals present.    Figures 36, 37, and 38 show 

the calculated mean cumulative information versus sample number for 

different values of u.    These figures can be used to find graphical 

solutions of ASN for the case of y     present ( u   as the state of nature). 

Two hundred trials were made for each of the simulated results of 

Figures 51,   52,  53,  54,  55, and 56. 

To simulate the mean cumulative information,   it was necessary to 

find the sample means I,, I,.  • -., I. (i. e., averages of 200 samples). 

These sample averages were then added to yield the simulated mean 

cumulative information. 

Savings of ASN 

One of the advantages of sequential detection over fixed-sample 

detection is in the savings of the average number of samples needed to 

achieve a specified reliability of decision.    We are interested in making 

some comparison of these two detectors to obtain an idea of the difference 

of ASN. 

Figure 57 shows the calculated ASN of the two-known-signals case 

versus error probability for the fixed-sample detector, where p( u.)   = 

p{ w _)   =   1/2, and the sequential detector for both    CJ. and   u>2 as the states 

of nature.    This figure shows that for the particular example considered. 
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Figure 57.    Calculated ASN for the two-known-signals case versus 
error probability for the fixed-sample detector (p(w.) s 

p(w  ) = 1/2) and the sequential detector for both states 
of nature w   and «. where y    = 12 and y2 * 10. 
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the sequential detector has about a 40% savinjs of ASN.    Figure 58 shows 

the co nputer-simulated results corresponding to Figure 57.    The 

simulated results show that for small sample numbers the fixed-sample 

detector actually does better than the sequential detector, but as the 

sample number becomes large the sequential detector is substantially 

better than the fixed-sample detector.    Figure 59 shows the computer- 

simulated results corresponding to Figure 5C except that the sequential 

detector is designed for two unknown signals.    Four hundred trials were 

made for each of the simulated results of Figures 58 and 59. 



176 

35    . 
fixed-sample detector 

sequential detector (state u.) 
sequential detector (state ut.) 

30 

25 

20 

2 
3 

15 

10 

,1 .4 

Figure 58.    Computer-simulated ASN for the two-known-signals case 
versus error probability for the fixed-sample detector 
(p(w ) = p(ti»  ) = 1/2) and the sequential detector for both 
states of nature u    and w. where y    = 12 and y, = 10. 
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Figure 59.    Computer-simulated ASN for the two-unknown-signals 
case versus error probability for the fixed-sample detector 
(p(w.) = p(w   ) s 1/2) and the sequential detector for both 
states of nature «   and «    where y   « 12, y    = 10, and 
u = 1000. 
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SUMi ARY AND CONCLUSIONS 

In this paper the problems of estimating and discriminating between 

extended optical signals which have been distorted by diffraction, additive 

background noije, and multiplicative noise have been studied.    Poisson 

statistics have been assumed throughout this paper since in many real 

situations they are more realistic than Gaussian statistics which ar<~ more 

commonly used. 

For the estimation problem, an optimum linear estimate using the 

minimum mean-square-error criterion was cr. sidered..    Detection 

noise (multiplicative noise) as well as additive noise was considered 

since for any measurement technique there will be some interaction 

between photons and matter which iu turn will give rise to detection noise. 
m 

The performance of the minimum mean-square-error estimation procedure 

was evaluated for several special cases.   Som    results pertinent to 

optimum sampling schemes were obtai ned for both white and colored 

noise. 

Other estimates besides the minimum mean-square-error estlmai^ 

were considered.    These other estimates included the Bayes' estimate, 

the maximum likelihood estimate, and the maximum a posteriori estimate. 

These estimates were considered primarily to find estimates of the mean 

rate of signal-plus-noise photons y incident upon the image plane.    These 

estimates were then used in an estimator-correlator in conjunction with 
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fixed-sample detection.    Given that y. is taken from a gamma distri- 

bution with known parameters, the minimum mean-square-error 

estimate and the Bayes1 estimate of y. were found to be the same. 

The Bayes1 decision rule was used in the fixed-sample detection 

procedure to discriminate between extended optical signals.    Only 

problems involvii g two possible states of nature,    «. and u-,  were 

considered.    Various amounts of a priori information were assumed about 

the two possible signals which may be present at the input of the detector. 

In the error analysis only a single cell of the image plane was considered. 

For cases of unknown signal parameters (mean rates), the parameters 

were assumed fixed but initially unknown having been taken from a known 

gamma distribution.   Several estimator-correlators were considered. 

The Bayes* and minimum mean-square-error estimator-correlators 

were found to be superior to the maximum a posteriori estimator- 

correlator for the cases considered.    It was found in general that if the 

error probabilities are greater than about 0.1, knowing the signal para- 

meters (mean rates) is not much more of an advantage than knowing only 

the probability distributions from which they were taken, particularly 

if the Bayes* decision rule or the Bayes' estimator-correlator is 

used.    For error probabilities   « . 1 the above statement does not 

hold and the difference in error probabilities becomes significant. 

V/hen speed is important in processing optical data,  sequential 

detection should be considered.    The sequential detection test developed 
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by Wald (1947) minimizes the average test length and hence has a shorter 

average test length than the fixed-sample test for a given P(FA) and 

P(FD).   A comparison was made of the test length of these two detectors 

to obtain some insight into the savings of time that the sequential detector 

has over the fixed-sample detector.   Sequential detectors were derived 

for various canes of known and unknown optical signals and their 

performances compared.    For the case of a sequential detector designed 

for two known signals, the information per sample remained constant 

for all samples.    It was found that if only one of the signals for which the 

-. equential detector was designed were unknown and if that particular state 

of nature ( u .) were the state of nature present, the information per 

sample is smallest for the first sample and as more samples are taken 

the information per sample increase and approaches the constant 

information per sample of the two-known-signals case.    The performance 

of the sequential detector for these cases thus improves as more samples 

are taken.    It was also found that if the other state of nature ( M ) were 

present Ihe information per sample is greatest for the first sample and as 

more samples are taken the information per sample decreases and thus 

the performance of the sequential detector deteriorates as more samples 

are taken.    For the case of the sequential detector designed for two 

unknown signals, the information per sample is greatest for the first 

sample and decreases as more samples are taken regardless of which 

state of nature is present.    The average samnle number and Operating 
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Characteristic Function (probability of choosing state   u- when signal 

y is present) versus actual signal y were determined for the cases 

mentioned above.   For most of the cases considered, analytical solutions 

appeared extremely difficult to obtain; hence,  the analysis was to a 

large extent carried out by computer simulation. 

For future work in this area,  it is recommended that the discrete 

sequential detector that i as been discussen in this paper be considered 

in terms of a continuous sequential detector where only one observation 

is made and the duration time of the observation is varied.   Also, 

multiple detection should be considered for cases with more than 

two states of nature. 
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Two Dimensional Optical Transform Theory 

Imaging Configuration 

We will use Huyghen's principle in this development.    According to 

Huyghen's principle, each point ( a, ß   ) acts as the source of a wavelet 

ikr 
that propagates with the Green's function   e      Ix for radiation from a 

point source where r is the distance from the source and k is equal to 

2 TTV /c (c is the speed of light and  v   is the frequency of the radiation). 

The electric field at the aperture is then found by adding the vector 

amplitudes of all the wavelets originating at the object plane.   The strength 

of each wavelet depends on the complex amplitude of the electric field 

in the object plane. 

We again employ Huyghen's principle just to the right of the aperture. 

Each point (p/Y)   of the aperture acts as the source of a secondary wave- 

ikr 
let that again propagates with the Green's function e      IT.    The total 

electric field at the image plane is found by adding the vector amplitudes 

of all the wavelets originating at the aperture plane where the strength 

of these wavelets depends on the incident electric field at the points of 

the aperture. 

Let £{«, (3) be the complex amplitude of the monochromatic source 

point in the object at point (a#p ).    Using Huyghen's principH,  the electric 

field just to the left of the aperture is 
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ikR, 
E(«,ß)-~--  . (301) 

Rl 

We are assuming Fraunhofer diffraction; hence, 

^^10   s   2Rio   ^  2R' 

and 

We can rewrite (301) as 

(302) 

R2+R20"   2R20  ^    2R' (303) 

Rj «   R. (304) 

E(a,p)eikRl. (305) 

R2 = R^-^-a^-ey-ß)2 = R10
2^2-ß2. (306) 

R2 = R2
2-((r+e)2-(YH)2= R20

2-e2^2. (307) 

V^K^-ä^q-/-™. 



2       2     Z 
where p    = or +7   . 

106 

R, - R. 2       20      R2+R20      R2+R20 
(<re+Y&). (309) 

Then 

Kl  K10      2R R      ' 
(310) 

R2'R20 

2 

R 

(311) 

For small aperture, p    /2R   can be neglected.   Hence, 

Äl  "-10 R 
(312) 

and 

R ,R   . iifTL R2 R20 "       R       * 
(313) 
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Let    f_    s c /vRand  f        = Y / v R.   We now can rewrite (305) as 

«&,„   lk(Rl.Rl0) IkR.«c^) 
E(aff ß)e e = E(ar ß)e e 

;3i4) 

ikR 0 -iZwif^a+f ß). 
s E(a, P)e e lo "*-"*v  7- 

Coherent Light 

Since R 0 is approximately constant over the object pattern, we can 

ikR i n neglect   e      lö  or absorb it into   E( «, ß )   since it is only a constant 

phase term, and we cannot observe phase bat only intensity. 

The electric field at point («r, 7) just to the left of the aperture plane 

is the sum of all contributions at that point due to all the points in the 

object plan«.   This is true because amplitudes add for coherent light. 

« -i2ir(f «+f ß) 
W(£<rJy«jfjE(tftß)e *     T     dttdß. (315) 

Let  T(f     f   )   represent th» aperture function.   The electric field 

at point (o-, 7) just to the right of the aperture plane is then 

u(f(r.y = w(fff,yT(f(r,y. (316) 

J 
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Again using Huyghen's principle, the electric field at (I, ^ ) in the 

image plane due to the point (or, y) in the aperture plane is proportional 

to 

ü(VV e 
JKK20 eik[p<I/2R+ (<re+U)/Rl> (317) 

2 . Neglecting the term   p   /2R for small aperture and neglecting the constant 
i up 

phase term  e      20  we can write 

0(VV .&*r6WU/R. U^.^) .""«'.r«^1'). (318) 

Mow the total electric field at the point ( ^ C,) in the image plane 

due to all the points in the aperture plane is 

" i2ir(fi+£,U 
u(|.U«   jT/U^ye T     df^. (319) 

~co 

This is the inverse Fourier transform of  U(f    , f    ), i.e., 
cr       «y 

F {u(|, i)y = ü(fff# fy) = W(fff.ty) Ti^,£y). (320) 

■*. 
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Using the convolution theorem we can write 

«(l,U«E(|,U*t(|,t) (321) 

where 

^.U-JjT^ye       '     Y    df^dfy (322) 

"w 

is the impulse response of the system. 

In the image plane, intensity is the quantity that is actu»      observed 

and not the amplitude.   That is, we observe 

|u{|.U|2-v(|,U. <323> 

Incoherent Light 

For incoherent light, intensities rather than amplitudes add. 

W- will now find the expression for the intensity at (|, £ ) due to a point 

source in fie object plane ( a, ß ) and then integrate over the object plane. 

In this case we can take advantage of the previous discussion and write 

for the electric field at point (crl'y ) just to the right of the aperture the 

expression 
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ikRin  -.iZtrii e + f ß) 
(324) 

where the subscripts a and p infer that this expression is due to the point 

source at point ( or, ß ).    "he electric field at (g, ^ ) due to the electric 

field at {r^ ) is 

ikR20   ik(<rg+y4)m 
e (325) 

Let   f^   =<r/vR   and  f     s-y/vR.   Then we have 

V^.'^***'^ - T« ,UE(1„^,e
ik(R"'+R", 

a, py «r' Y o" y' (326) 

•e 
iz^yi-*] + ^ft-ß]). 

The total electric field at point { |, £ ) due to the point source at point 

( ar, ß ) is 

\p^^se "^IO-^W ft 
^T(VfY)EKß)e^<f

<rf^3+f
7^-ß]) 

(327) df df . 0-    y 
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The intensity (the observable) at U, r, ) due to the point source at point 

(<*, ß) »s 

|E(«,ß)|2[[[/V(fff,f ) T*(/,f') e42^«-!)^-^) (328) 

.».,« •.-^■'"V^'df^af^. 

To find the tota^ intensity at (|, ^ ) due to all the point sources in the 

object plane we must integrate over the object plane.    That is. 

00     «i 

'ft.i) = K,ui •ll]ßvt.it) THS.^ w ^.t'.{y.^     ,.a,, 
?» 00 

Äi2Tr|(f -f )   iZirUf -f ) t    t 
.e     *%o-   o-'e      bV7 Vdfdfdfdf 

<r   Y   0"   Y 

where 

W(V;.'Y-V = /Jp(«,p)|2 e-l2"^-V e'^W^p. (330) 

Now let     |E(a,p ) i     =    w(afß ) and 

——;—:■.■. -■'■ 



ir   <r*   v      &    *      & ' 

i ■ 
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Then 

ys V^1 S's Y"7' ^ ^7a "dy• <331) 

ee     « 

vci.u-luct.ut - rrrrT(vf7) T*^-z'f7-y>e i2ir(ea+&y) 

OÖ       00 

• w^, y) df df dz dy (332) 

ee 

=JTwKy)^«^   (f 
-oo 

T(fr,fY)T*(f(r-2.fy-y)d£o.dfy 

co 

dz dy. 

Let 

00 

A{z,y) * jfjT T^,^^ * (fff -z. fy-y) df^dfy. (333) 

eo 

A^y)«     T^.fy)*^,^). (334) 

a = F{A} s   F{T*T}, (335) 
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i       i 

I i 

Thus 

00 

(e.U = fjA{*,y) W (a.y) ei2,r{^ + ^) d8dy. (33b) 

;   | 
i   i 

and 

v«VVsA(£^Vw(VV' (337) 

The quantity A(lt , f    ) is the transfer function for the incohereni 

light case.   Using the convclution theorem we can write 

v(U)aa(|,U*w(|^) (33^) 

where  a(|t ^ ) is the point spread function of the optical system. 

Derivation of Point Spread Functions 

The Iburier transform pair in two dimensions is 

i9 -i(|« +4« ) 
T(f(r* V S //  t{U )e        *     y d|d^ (339) 
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-to 
(T    7 

(340) 

Rectangular Aperture 

Consider the rectangular aperture with sides a and b.   For this case 

the aperture function is 

T(o-.Y)».ri((r/a)riey/b) (341) 

where Tfe. JsJlfr/a) is defined by 

T(«r) ■{ 
0, |<r| > a/2 
jj, |flr| sa/2 
1, |o-| <a/Z. 

(342) 

This can be rewritten in spatial-frequency coordinates by defining 

f      = «r /VR and f     - y/v R.   Hence, 

Tiif, ty) «n^vR/a^Uf vR/b). (343) 
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The point spread function of intensity is the square of the two-dimensional 

Fourier transform of T(f    , f    ), 
(r       Y 

Hi.*.) «  fjrUf^R/aJrUf vR/b) e1   W(r+ ^ , 
-oe 

s\ /,-n(fr
vR/a) ei2frl<rldf 

i_-» 

ab 

00 

^^y <344) 

iZirf t, 
fni^R/h) e      Y dfY 

y-j   sine (ag/vR) sine H/vR). 
v R 

Normalizing this expression we have 

^«■«•« sine (a|/vR) sine (b^/vR) (345) 

=r.T:i 

or for the normalized intensity- we have 

t(&. *.) i 2 

t(0, 0) = sine (al/vR) sine2 (b^/vR). (346) 

This is the point spread function or impulse response due to a point sourc« 
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Slit Aperture 

Investigate the point spread function of an infinite slit and an infinite 

line source.   This i* the same as considering a one dimensional case 

where we have a point source and a one-dimensional aperture.   The 

aperture function for this case is 

T(a)Sn(a/D) (347) 

where  D is the aperture width.    Written in spatial-frequency coor- 

dinates (347) becomes 

T(y «_rufyit/Dj. (348) 

The point spread function is the square of the Fourier transform of 

TU    ). 

oo D/vR 

Hi)s   rrU* vR/D)e1|afrdf   *   f ei2Trio"C'df 
-oo -D/vR 

K(D/uR)8inc (D|/vR). 

(349) 
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||ij   «sinc^D^R). (350) 

Cifcular Aperture 

For mathematical convenienc«? rewrite the two-dimensional Fourier 

transform pair in polar coordinates.   Let 

f  s f cos Ö, | = r cos <|>, 

£   s f sin 9, and £ = r sin ^. 
7 

(351) 

To make the transformation, use the relationships (Olmsted,  1956) 

jfjld, tfcidL r ffgCr^^J^^ldrd* (352} 

;   - 

I- 

where   g(r, 4»)   =   «Kr, ♦),    ^ (r,  4» ) ) and 

f/rh(£(r.€y)d^dfv> « jT/k^ejjJC/iJjdfdS (353) 



where  h(f, 9 )   =  h(^   (f, 9 ),   fy (f,9 )). 
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Jlr'*) = alt)' 
Sr cos ^     c>T cos $ 

ftg sin 4>     ^r lia^ 

= r* 

J(f,9 t
      ^tV 

M£.e) 

Sf cos 9    || oos 9 

^f sin9    Sf sin 9 
& 09 

= f. 

(354) 

(355) 

Making these substitutions yields: 

t(r, *) = f f^TCf. 9) *i{XuCOB * C08 9 + ^ 8ia * flin 0)fdfd9,       (356) 

o o 

.. -.      T  T   .    ..   -i(urcos 9 cos ^ + ur sin 9 sin ^)   ,   ,.       |4C7\ 
T(f,9)s  /   /   t(r,<{>)e   l rdrd*.     (357) 

o lo 
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If  T(ff 9 ) and   t(r, (^ ) are symmetrical and have no dependency 

upon 9  and $ we can write 

r lit 

t(r)s jT(f)   ^ iwr cos (4>-9) 
d9 

o u o 
CO 

fdf 

2ir r T(f) Jo (ur)fdf 

(358) 

and 

CO 

T(f) = Zir f t(r) Jo{«J')rdr. (359) 

h 

The point spread function of intensity is the square of the two- 

dimensic al Fourier transform of T(f). 

Let a be the radius of the aperture and p be the radial coordinate in 

the aperture plane.   The spatial frequency is   f   = p / vR. 

a/vR 2irra/vR 
t{r) =* 2ir ^ Jo(<or)fdf = -J—   f        J^xjxdx 

Zttv 

2   fZJ^ZTrra/vR) »if 
v R   •- Zwra/vR 

(360) 

n^mr.^^i~- -*>*-^- 
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The normalized intensity is then 

[ t{a)J    " [  2Trra/vR J   * 
(361) 

Derivation of ~ptimum Sampling Scheme 

Consider the case of white noise where the point sources are 

separated by the Rayleigh criterion distance.   We will assume that the 

number of measurements ft is equal to a multiple of the number of point 

sources km.   Our problem is to find a sampling procedure to minimize 

tr(A'A)"1. (362) 

If ft measurements are made ei the peak of each point spread function 

then 

;363) 

and 

(A'A)-1 .I 
1/k        0 

C    ''l/k, 
(364) 
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Therefore, for m point sources 

tr (A^A)"1 = m/k = m2/ , (365) 

i i 

We want to show that these are the conditions necessary to minimize 

-1 
t^A'A)      when we have white noise and Rayleigh criterion distances 

between point sources. 

To prove the above we need to consider several lemmas. 

Lemma 1 

A'A is a symmetric matrix. 

Proof: 

(A^)'   «  AHA*)*   =  A^   . (366) 

Lemma J 

A'A is a positive definite matrix. 

Proof:  By definition, AlA. is a positive definite matrix if <x, k*AK> > 0 

(Zadeh and Desoer, 1963) where < > denotes an inner product.   Since 

A'A is a symmetric matrix with real valued elements, it is a Hermitian 

matrix.   Hence, 

(A'A)+ ^      [(A'A)*]' =    (A'A)'   =  A»A. (267) 

tr 

M 

- 
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Consider Schwartz's inequality 

i 

<x,xXy,y>  >  <«,y><y,x>sj<«,y>| (368) 

where equality holds if and only if y = ex where c is a scalar constant. 

Hence, we have 

<xtxXftY>  >  ^ciy><yfx>  >   0. (369) 

For any intelligent estimation procedure 

<«tx> > Oandjcj   > 0, 

For y = ex we have 

^»x><y,y> = <S£,y><xiy>S:jcj    <äc,x^^c.x> > 0 

which implies that 

<y.y> > o. 

Let y = Ax, then 

</, y> = <Ax, Ax> a <«, A+Ax> a «c, A,Ax>  >  0, 

(370) 

(371) 

(372) 

(373) 

I 

! 

i I 

I 

I 
I 

i 
V 

\ 

t 
I 

-■. 

I ■ 

I 

- - - 



' 
? i 
I     I 
t I 

! 

I      i 

Now consider the case of y  ^  ex.   We now have 

B   sb.. IB,. U  S b..bs. |B4. ,, I 
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<«txXyfy>  >   <ä£,y>^cty>  >   0 (374) 

hence, 

<r,Y>>0. (375) 

Let  y - Ax, then 

^T,y> s 'Ax, Ax> a *x, A*Ax> s <«, A,Ax> > 0. (376) 

Hence, A'A is a positive definite matrix. 

Lemma 3 

Let A'A » B. 

(377) 

where |B..  ..   I    is the cofactor of b..  In B..   and |B.. I   is the cofactor 
'   lujk ' jk n »   n ' 

of b.. in B. 
ii 

Proof; 

m m 
JB| rS b.,JB..Ub..JB..|+ S b..jB..|. (378) 

^^»-^^■»^"'v^ü^^^a-^fl^it •■ ■ 



Hence, we need to show 

204 

V11* 
m 

-b,, S b., 13 •.. S b.. [3,,.  ., 1. 

Mi 
(379) 

By definition. 

IB^I   - (-.^  M^ (380) 

and 

lBa.Jkl-<-'),+t+j+kMu.jk (381) 

where M    and M arc complementary minors (Wylie, I960).   For 

j < i we can write 

18 V "bii{Bü. ji f -bi2lBii. j 2I - • • -bü-i lBii. ji.i I 

(382) 

-b 
m 

ii+liBü.ji+l|-
bJBü.jml s ^jl^ik^ii-jkl- 

k/d 



: 

; 

! 
I 

■ 

t - 
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For  j > i 

.....b. (-l)1+i+J+mM..,.    . ux*    ' ii* jm] 

jil     il<   ii.jl'     12«   ii*j2l-.,.-b..  .   B.....  . u-1 '   u» ji-1' 

m 
-b«,,|B..  ..^,1 -b.   (B..  .    I s-b.^  S    b., {B..   ,1 

k^ 
Hence» 

m 

and therefore 

m 

k,4i 

ji+1 

(383) 

b..JB..j= »b., S b.jB..  .,1 (384) 

Mi 

|=b   IB..J-S    b..b..|B..   .. I (385) ii'   ii' ji ik1   ii*jkl« *      ' 

-4 ■ .-fc-i 
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Lern»» 4 

U B * A'A is a symmetric, real, and positive definite matrix then 

B'   is positive definite. 
-I 

Proof:  Given   <x, Bx >    >0.      Let x - B    y, then 

<x, Bx>- <B'1y,BB"V - <B"1y,y>   - ^.P" y ** 0' (386) 

Hence, B"   is a positive dsftoite matrix. 

Lemma 5 

tn 
I 
j,k-l 

^1 bik ^ll-lkl* 0 (387) 

for b    and b . not equal to zero, 
ji ik 

Proof:   The matrix B^   -  (A ^ £ A ^ ^ is a positive d««»"6 matrix 

since the matrix B.. is a submatrix whose principle diagonal lies along 
ii 

the principle diagonal of B.   Therefore,     IB.J    is positive.    This? also 

implies that B..'    is positive definite.   We can write 
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« .    m iß 

-1|   K       .    IT,    I  <h  . B   -U >  . (388) Biil    ;t , VPil    I  bik   -   lBiJ  <bi'Bli      V 

Mi 

The quantity     <bt, B.."^. >    >   0  for b, #0   since   B^   is a positive 

definite matrix.   Hence, 

a 

*    , ^1 blk   I Bi-I jk I   > 0 <389> 

k#i 

for b.. and b . not equal to zero. 
ji ik 

Lemma 6 

If B = (A^) is a symmetric positive definite matrix: 

(a) iBl =  b.. i B., I  for each i if B is diagonal, 
'II u I      ll! 

(b) |B I   <   b..   | B., j for at least one value of i if B is not diagonal. 

Proof: 

(a)  If B is diagonal, then an expansion by cofactors along the i 

I 
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row will give b. .[B. i   Hence, 

M-^JB^I . (390) 

(b)   Using lemmas 3 and 5 we can write (assuming that b.. and b., 
ji ik 

are the off-diagonal elements which are not equal to ^ero) 

B| '11 lBlll -^ b
ji

bljl
Bii.Jjl 

< blllBill   ' 
(391) 

Hence, 

|B|   <   b..  JB..I   . (392) 

Note:   By hypotheses B is not a diagonal matrix; hence, there are at 

least two non-zero symmetrically located off-diagonal elements (since 

B is symmetrical).   Assume that these two non-zero elements are b 

and b... 

Lemma 7 

B is a symmetric, positive definite matrix with diagonal elemet.ts k, 

and with arbitrary off-diagonal elements tmch that the matrix is positive 

definite.    The elements along the principle diagonal of B     will be a 



■ i 

- i 

f 
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minimum of l/k. if and only if B is ft diagonal matrix. 

Proof;  If B is a diagonal matrix then 

-1      „»   v ,     _ l. \ (393) B     - (l/k,) 613 - 

From lemma 6 

0 " l/k» 

0<iBlibii!'iil 

cr 

__1     ,    iBii{ 

since b    > 0  and | B '   >   0,   The expression 

(' 

•„.-i\ . B-i. /M 
lj    / 1   |B| 

implies 

11 

(394) 

(395) 

(396) 

(397) 

mms^mammmm --   m mmm—mm ^^-^^=^-^- -.- -      .-.-..-^ ^—-^^.J.. 
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then 

-i     l'iil 
11 IB! 

u   'l 1 1 
b.. >       —    s        _ 

11 KJ 

(398) 

099) 

If B is not a diagonal matrix then 

-1 
u 

ii i 

(400) 

Hence, if B is not a diagonal matrix then 

N < biilBiil 
(401) 

for some   i = i   which i.nplies that 
o 

-1 lEll 

1 1 o o 

OjO'  1 
PI      b * 

1 1 o o 

1 (402) 

1 1 

1 1 i 
i : 
1 I 

■:   - ! 

t 

r - ; 
1 ■ 



t 

;        i 

t ■ 

| i 

1; 
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Lemma 8 

m 
S 1/a  is & minimum when the a's are equal (i. e., a   * a, ■ 
l«l 

m 
.,,,   sa      -   Ä /m)  given that    ^ a- s £ • 

Proof:  We will use dynamic programming to show this pi oof.   Given 

the function 

«a., a . .... a   )=   1+   1    +...+   1   ,        (403) 
it m        a,       a_ a 12 m 

we want to minimize  f(a1(..ta   ) for a  >     0,   a->. 0,..., 
X ill X w m'm 

a__ >   0 and subject to the constraint a.+a-+...+a      - % 
m — 12m 

and 

Hence we can write 

rain rain 
)<a < t — ra-   m •£0 

• 

Vi^0 

« rain 
L   m 0<a < I 

al Vl     aaJ 

(404). 

a  '^O m-1— 

subject to   a    +a-+   ...  +  a      ,   -   &-a       =   £       ,.    If we define 
*       c m-i m m-1 

£ <t ) -   rain f —+ f    .  (I -a )1 IAMX 
*   m 0<a < t I- 8ra       m*1     ^   B J <405> m 
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W ■nin     i " i 
Oia1<Ä1     1       1 

(406) 

which implies that  a     =    i.    and    t     =   fe     .   a? .    Also, 

f2a2) - mln C 7 + f, (^-a,)] • min        j —? =-l 

'2 - "2 <*2&l2 L£2a2-a2. 
(407) 

To minimize (407) we require that 

3f2 
3^ " 0 * -£2  (fc2-?-a2) 

(408) 

and 

i2f 

T4 mZi2>o (409) 

(sufficiency condition for minimum) which implies that  a.   s *   /2. r 2 2 

Hence,   f^ Ij   =  4/ Ä,   and   £ j   = i 2-a2   ■    ly £2/2   = £ 2/2 

which implies that  aj   = Ä
2/2 s a2 .   We will finish the proof by using 
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mathematical introduction.   Assume lemma 8 is true for  m-1 (i.e., 

a     =  a,   =   ...   s  a      .) and prove true for   m     (i.e., a.   « a,   « 
1 2 m-i * " 

. ..aa =  a   ).   Assuming lemma 8 is true for m-l implies th*.t 
m-1 m 

Vl 

t    .      £ -a m-1      _in   m 
m-l       m-1 

(410) 

sincea1=a2S... »a^and  a1+a2 + ... +am_1 = i m-l 

We can write 

= a   -a   . 
m    m 

mm       0<a <l   La       m-l   m   m J 
— w m     m 

2 
. ft -m A -2«a 1 iln m       mm 

•<* <fc - *    , 2 
— mr- m L   a.i -a.,     J 

mln 
o<a 

mm   m 

(411) 

f 

For minimization we require that 

^'•.           7                         2 2 
■r-S • -t ^ + ?a t   + (mZ-2m) *J - 0 aa           m           m m m 

m 

and 

(412) 

3
2f 

3a 
-I - 2£   -^ (m -2.-n) 'a    > 0 for n > 2 
2 mm — 

m 

(413) 
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(sufficiency condition for minimum).   Hence, 

a   ■ 
o 

£ fl+dn-l)] w 

-nj(m-2) 
(414) 

For the plus sign we have  a     = -I   /(m-2)    < 0  which does not meet 

the requirement of a     >0.     For the minus sign we have  a     - I     /m>0. 

We can then write 

a, + a   + ... + a       a (m-l)a     . s £    - a    a ma   -a    =(m-l)a  (415) i       2 m-1 m-i      m      m      m    m m 

which implies that  a 
m-1 *   a«« •    Hence, m 

a. a a. — ..,  = a s^ 
I       2 m-1       m (416) 

From the above lemmas we can see that in order to minimize the 

trace of B*   * (A«A)"   we must make the off-diagonal elements equal 

to zero.    This implies that we make al» our measurements at peaks of 

point spread functions.   In doing this for A'A the diagonal elements 

become larger as the off-diagonal elements go to zero; hence, the trace 

is further reduced.    From the last lemma, we see that each of the dia3oral 

elements of .JA must be equal which implies that the same number of 

measurements be made at the peak of each point spread function. 

± 

' * 
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