


I 
I 
I 
I 

ON POSITIVE PRINCIPAL MINORS 

BY 

George B.  Dantzig 

TECHNICAL REPORT NO.   67-1 

January 1967 

Operations Research House 
Stanford University 
Stanford, California 

Research of G.  B.  Dantzig partially supported by Office of Naval 
Research, Contract ONR-N-OOO14-67-A-0112-0011, U.  S.  Atomic Energy 
Commission,  Contract No.  AT(04-3)-326 PA //IS, and National Science 
Foundation Grant GP 6431;   reproduction In whole or In part for any 
purpose of the United States Government Is permitted. 

i 



n 

ir 

ON POSITIVE PRINCIPAL MINORS 

by 

George B. Dantzlg 1) 

r When a matrix is symmetric, the property of having all Its 

principal minors positive, Is equivalent to being positive definite. 

When a matrix Is non-symmetric this Is no longer true. For example 

(1) -{:■: 
has all positive principal minors, but 

2 2 
xMx " ^ " 7xix2 + «2 * 0 for x " (xi»x2^ " (1»1) 

The converse,  however, as shown In Gale-Nikaido  [i ],  Cottle [2 ] 

Is true: 

Theorem 1;    The class with positive principal minors properly Includes 

those which are positive definite. 

Proof;  Assume    M    Is positive definite,    M    Is non singular for If not, 

then there would exist    x - x    t 0    such that   Mx    » 0; yielding 

x Mx    - 0, a contradiction.     It follows that every principal submatrlx 

of    M    Is also nonslngular. 

1) The author acknowledges leads suggested by David Gale. 
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Thus det M and its largest order principal minor have the same sign. 

Inductively, since first-order principal minors are positive, so must 

the' second order ones, etc., up to the highest order. Finally, 

example (1) shows that the Inclusion Is proper. 

Although positive definite matrices M do not comprise the entire 

class of positive principal minors, they can be used to generate a 

larger class by multiplying M by diagonal matrices on the right 

and left' to form DME.  For example. 

i 

■: 

7  0 

.0 1. 

1 -1 

.0 1, 

1/7 0 

. 0 ij 

positive 
definite 

1 -7 

Lo   IJ 
positive principal minors but 
not positive definite 
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It Is not difficult to show that for 2x2 matrices the entire 

positive principle minor class can be so obtained from the positive 

definite class. The following is easily seen. 

Lenma; Let D - [d ], E - te ] be diagonal matrices with the 

property that d-.e  > 0, then for any M the sign (+, -, or 0) 

of any principal minor of DME is the sarae as that of M.  If M 

is positive definite, then DME has positive principal minors. 

Theorem 2; If M has positive principal minors and there exist 

diagonal D and E such that M - D~SlE"  is positive definite, 

then there exists a diagonal matrix F such that F MF is positive 

definite. 

— — T Proof:    If    M    is positive definite so is    AMA      for any nonsingular 
— T    T        — T A    (since    x(AMA )x    - yMy    > 0   where    x j* 0    and    y - xA j4 0).    We 

consider   AMAT - AD"1ME~1AT    and choose   A    so that    AD-1 - (E^A1)"1 

T 
or    A A - ED.    Thus    A -  fa.i.J    could be chosen as a diagonal 

matrix such that  a^  -+-/d    e  .        Then    F -  [fl1]    is the 

,-l.T 
diagonal matrix F - E A  where f  - + /d-./e  . 

Theorem 3;  The characteristic roots of (any) M are the same as 

F~htF    for (any) nonsingular F. ' 

2) A well known result of matrix theory. 
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Proof: By definition, A is a characteristic root of M if there 

exists an x j* 0 such that Mx ■ Xx.  Setting Fy ■ x then y »* 0 

if x j 0    and we have MFy - AFy or (F~ MF) y - Xy so that X 

is a characteristic root of (F #F) also. 

Theorem 4; If M is positive definite, the real part of every 

3) characteristic root Is positive. 

Proof; Let Mx - Xx, x i* 0 and let x - u + iv, X - R + iS, then 

by substitution and equating the real and imaginary parts 

Mu - Ru - Sv      (u,v) +  0 

Mv - Rv + Su 

Now R > 0 follows from 

•IU.    i^       2   2 
0 < u Mu + v Mv - R (u + v ) 

The following is known, see Gale - Nikaido [ 1 ]. 

Theorem 5; If M has positive principal minors, then every real 

characteristic root is positive. 

3) A well known result in matrix theory that is reviewed here for 

non-symmetric M. 
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Proof; The characteristic equation Is obtained by setting 

det [M - XI] 

this yields 

(-X)m + C.C-X)1""1 + C- (-A)"1"2 + ... + C - 0 
i. i m 

I 

where C  Is the sum of the J-th order principal minors.  For 

matrices with positive principal minors, C.> 0. It Is not possible 

that A _<_ 0 because then all terms above would be non-negative 

and the last term positive so that the left hand side would be 

strictly positive, a contradiction. 

Theorem 6 CKalman*): There exist matrices M with positive principal 

minors that have characteristic roots not all of which have 

positive real parts; for such matrices no transformation M - DME 

exists with diagonal matrices D and E such that M is positive 

definite. 

In a letter to D. Gale dated 9 July 1962, Rudolf E. Kaiman showed that 

10/3 - 4   - /ll.l 

8/3   1/3 - / 1.1 

_-/899.1-/89.1    30 - 

had positive minors but had     complex  characteristic roots with 
negative real parts. 

5 
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Proof: If such D and E did exist» then by Theorem 2, an F would 

exist such that FMF   Is positive definite. By Theorem 4 FMF~ 

would have to have characteristic roots with positive real parts. 

By Theorem 3 the same would be true for M. However M in the 

example below does not have this property. 

M 

1-10 

1 1 17 

4  0  1 • 

The first order principal minors are 1, 1, 1 whose sum C - 3, 

its second order ones are 2, 1, 1 whose sum is C» ■ 4. Its third 

order one is C_ ■ 70. Thus M has positive principal minors. Its 

characteristic equation is 

or 

X3 - C X2 + C A - C3 - 0 

A3 - 3X2 + 4A - 70 - 0 

which factors into 

(X - 5)(X + 2X + 14) - 0 
j ■ 

The characteristic roots are 

ll " +5, x2 " ":l + 1^3, A3 " "1" i*^3 
I 

Since the real parts of X. and X- are negative, this establishes that 

the class of positive principal minor matrices form a larger class 

♦ 

r . *• 
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than those generated from the positive definite: ones by simple 

rescaling of the rows and columns. 

In mathematical programming one seeks p-vectors x,y „> 0 

that satisfy y - Mx + q such that the products x.y. - 0 for 

1 • 1,2,.. »p. The latter conditions may be replaced by the 

T    T     T 
minimum value of xy-xMx+xq, a quadratic function which is 

convex if and only if M Is positive definite. Certain solution 

procedures based on convexity [ 2 ], [ 3 ] > [ 4 ] turn out to be also 

valid even when M has positive principal minors. This leads to 

the speculation that by a simple change of units of x,y one could 

obtain a new system y • Mx + q, (yjX^O, yJc.- 0 for i - l,..,p 

-T--  -x 
in which the quadratic function x Mx + x q is convex. However 

we have shown that this is not always possible to do. The class 

of positive principal minor matrices does not appear to be a 

trivial extension of positive definite matrices. Solution 

techniques also valid for the latter have somehow gotten around 

the difficulties of local optimallty usually associated with 

nonconvex programming problems. 

An open question posed by Gale and Kaiman and closely related 

to considerations found in a paper by Arrow and McManus [5] is the 

following: 

Suppose for all diagonal matrices D such that d.. >0, that 

M has the property that the real part of every characteristic 

root of MD is positive, does this imply there exists a D-D0 

such that D0M is positive definite? 

I 
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