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FOREWORD

This interim report was prepared by Dr. Gdalia Kleinstein, Research

Associate Professor of Aeronautics and Astronautics at New York University,

and presents research carried out under a National Science Foundation

Institutional Grant, "Statistical Methods and Their Application to Fluid

Dynamics Problems", and Contract No. AF33(615)-2215, "Boundary Layer

Characteristics for Hypersonic Flow in the Presence of Mass Addition",

Project No. 7064.
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ABSTRACT

Based on the logarithmic velocity distribution at distances not so far

from the wall and a turbulent shear variation proportional to the cubic power

of the wall distance in the inmediate proximity of the wall, an analytical model

for an eddy viscosity throughout the wall region is derived leading to a closed

form expression for the velocity distribution. An extension of the above

analysis to include shear variation results in a generalized law of the wall

from which the effect of Reynolds number on the velocity distribution is

derived. While many applications of the generalized solution are envisaged,

as an example, the velocity distribution for the case of injection or suction

is considered. The theoretical result is shown to be in agreement with

available experimental data.
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NOMENCLATURE

u mean flow velocity (streanivise component)

T friction velocity (local) u = [, (y)/P]ý
*~ *

u wall friction velocity u (u )w [(O)/p

u dimensionless mean flow velocity u u/U

S+ *
u dimensionless friction velocity u T = uT/U

G eddy viscosity
+
C dimensionless eddy viscusity e/v

y normal coordinate
+ + *

y dimensionless normal coordinate y f yu /v

vw dimensionless injection velocity v = vw/U

vi



INTRODUCTION

The validity of the logarithmic nature of the law of the wall, which

may be derived on the basis of substantially different underlying assumptions
l

such as dimensional analysis as well as the Malkus theory , has been satis-

factorily verified by a large volume of experimental data. Since the law of

the wall as such does not hold through the transition region (buffer zone) and

obviously not in the laminar sublayer, it has been desired to obtain a

formulation which will connect continuously and smoothly the faminar sublayer

velocity distribution to the law of tne all. Most successful has been

Reichardt 2 who from considerations of the behavior of the velocity fluctuationq

in the immediate vicinity of tho wall deduced that the eddy viscosity must grow

at least as the cubic power of y. Accordingly, by choosing a function which

satisfies the y3 behavior near the wall; and, asymptotically approaches the

required linear dependence on y, he was able to construct an eddy viscosity

model which in turn led to a velocity distribution in agreement with

experimental data from y = 0 to the law of Lhe wall region. Other formulas

for the eddy viscosity have been suggested by Deissler 3 and Van Driest 4

which, .although successfully predict the velocity distribution, raise the

objectioa that they do not satisfy the ya requirement of Reichardt's theoretical

result.

In this paper it is shown that by taking the velocity as the independent

variable, an eddy viscosity model can be derived from the law of the wall and

Reichardt's y3 decay requirement without introducing a new arbitrary function.

The resulting eddy viscosity model yields an integrable closed form expression

for the velocity distribution as compar,.d with the models of Reichardt, Deissler

and Van Driest which require a numerical integration.

By employing a simple transformation the above formula.ion is further

extended to include the effect of shear variation. Consequently a generalized

form for the law of the wall is obtained; and in particular it is shown that
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for regions where the eddy viscosity is much larger than the kinematic

viscosity the law of the wall has a universal nature independent of the

shear distribution. The application of this result to pipe flow provides an

explanation for the effect of Reynolds number on the velocity distribution

which has been observed by Hinze5. As an additional example, the generalized

formula has been applied to the problem of wall injection and suction uh-re

good agreement with experimental data has been demonstrated in regions close

to the wall including the buffer laye,.

2



ANALYSIS

1. Introduction

The total shear associated with the transport of momentum in the direction

aormal to the wall is given by

r=6 - v u

If a concept of an eddy viscosity is adopted the turbulent contribution may

be expressed by the relation

-Pv u PC (2)

where Eq. (2) is taken as a definition of the eddy viscosity. In terms of the

nondimensional quantities y (pu y)/1, U =u/u*, f p(ip; where u (Tw//P)

Eqs. (1) and (2) may be combined in the form

- (l+c+'-6u4 (3)T w =y 4•-

or

T+y

where u + = = [T/Tw]) is the nondimensionalized friction velocity.T T

Transforming the variables from (x,y) to (x,u) yields Eq. (31) in the

desired form i.e.

S+ = (4)
T u+

By dimensional analysis considerations, Prandtl in his momentum transport
6

theory proposed an eddy viscosity model which in the present notation takes

the form

+ 2 + du+
E+ k1 (y) u4- (5)

dy

where partial derivatives have been replaced by an ordinary derivative to

indicate a dependence on a single variable. Eliminating du /dy4 from Eq.
+

(5) by Eq. (3') where c is taken much larger than unity yields an equivalent

model in the form,

3!4
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k+ T k+y+ (6)

The model given by Eq. (6) has been previously used by Ferrari7 in

several problems and specifically in problems related to turbulent boundary

layer sep&ration. Eqs. (4) and (6) in conjunction with the requirement of

(y+)3 decay at the wall constitute the basis for the derivation of the complete

velocity distribution and eddy viscosity formulation given below.

2. Constant Shear Solution

If the shear is assumed constant, u 1, and Eqs. (4) and (6) become

+f + d u - ( 4 A)
+

and d

Q + ky +

In Eq. (4') -+ is taKen much larger than unity and a dependence on a

single variable is assumed. +!

Eliminating c+ between Eqs. (4') and (6') and integrating yields, the

logarithmic law

u= tny + k 4 = nkay+ (7)

where k = 0.4 is the von Karman universal constant, and ka is taken equal

to 7.7 which is obtained from k1' = 5.1.
+

Using u as the independent variable Eq. (7) is written as

+ 1+y I~exp(ku+) (8)

and correspondingly the expression for c+ becomes

C+ = Lexp(k u+) (9)

+
In order to extend the above solution to the wall (i.e. y = 0) the

behavior of PV u and u must be specified in this region. For the immediate

vicinity of the wall, Reichardt2 has shown that the turbulent shear varies

proportionally to at least the cubic power of the distance from the wall, and

since for the same region the mean velocity u varies linearly with the same

dimension it follows from the definition -pv u pcu/6y that

WE ~y3  -u (10) j
4A
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Now including a correction term in Eq. (9), c may be written in the

form

k[exp(kx U') 4 f(kýu+)] (11)

where f must satisfy the asymptotic condition

.tim
Y+ y 4 .of(kiu )exp(-klu+) = 0 (12')

and, in accordance with Eq. (10), the boundary conditions

f(o) = f'(0) = f"(o) -1 (12")

While Eq. (12) obviously does not define f uniquely, an exponential

representation for f in the form cjexp(ckju +) where cl and c2 are arbitrary

constants is clearly excluded by Eqs. (12') and (12"). Taking then the highest

degree polynomial which satisfies both conditions and at the same time es

not introduce new arbitrary constants yields,

f(qu+) =-l + (k u+) 4 -(kiu+).- (13)

4Accordingly, the modified expression for i becomes,

= - [exp(ku )] - [I + (kju+) + 1(k1 u+)2I (14)

+2

Inserting Eq. (14) into Eq. (4) with u = 1, and integrating subject to the
+

boundary condition y = 0 yicelds the velocity distribution

y += u + -l[exp(ku)] - [1 + (klu+) + 1(k, +)2 -qI(k u+)3 (15)

A plot of Eq. (15) is given in Fig. (1) where the classical law of the

wall and the laminar velocity distribution for the sublayer are included for

comparison. Fig. (2) is a reproduction of Fig. (3) of Lindgren's recent

8report on experiments in turbulent pipe flow of distilled water . The solid
+

line is a plot of Eq. (15) using the log 10 y representaticiL. The agreement

with these measurements is surprisingly good within the range 0 < u+ < 18.

The deviation beyond this region, although small in the beginning becomes more

and vA)re significant as the wake region is penetrated.
+

A comparison between c as given by Eq. (14) and the measurement of

5
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Abbrecht ant Churchill9 are shown in Fig. (3). While the agreement is by no

means as satisfactory as in the case of the velocity distribution the deviation

assumes a maximum value of less than 107. around y f 75 and ther starts to
+

drop again. In the velocity distribution, where y is obtained an an integral
+ +

quantity of f+ with respect to u , this deviation becomes completely insignificant.

3. Variable Shear Solution

The velocity distribution obtained in the previous section was based

on the constant shear assumption. The result obtained is "universal" in the

+ 4
sense that independent of the Reynolds number,y is a function of u only.

In order to obtain a more general form for the law of the wall the simplification
+

introduced into the analysis by taking u 1= in Eq. (6) will be dropped. Thus,

following the same procedure as in the previous case, Eqs. (4) and (5) are

written first for the region where c > > 1, namely

T=ue dy+ (16)

du+

E = k u y (17)

Introducing a new variable +u

= rd J(18)
ou

T

+into EqS. (16) and (17) and eliminating e results in the equation

+ -

ky = dU+ (19)

which upon integration gives,

U tny + I t f nlW IyI •
+

A comparison of this result with the known solution for the u 1
T

case yields Y9 = k; and the logarithmic law becomes

U =Lnkgy (20)
+

Thus, for regions where * > > 1 the logarithmic law of the wall holds

independent of the particular shear distribution provided U replaces u+

6



as tie variable. Taking U as the independent variable,

+ 1

y = -exp(kU) (21)

and

u = 1 -exp(kiU) (22)

Now, since independent of the nature of the shear distribution there always

exists a narrow region close enough to the wall where U may be taken equal to
+

u , it follows from Reichardt condition that

+ (+p (+p
C + - (Y+ )' - (U +)3 _ (U)3

and consequently by the identical arguments of the previous section,

JEI
+ = [exp(kxU)] - [I + (kU) + (,U)2 (23)

T 2

ntegrating the equation+d+

f +1u
T dU

+
subject to the boundary condition y + 0 at U = 0 yields the generalized law

of the wall in the form,

U

[exp(k.U)] - [I + (k1U) + 21+1k (24)
o u

T

It shoule be noted here that there is a fundamental difference between

Eq. (24) and Eq. (15). While Eq. (15) represents y.L is a function of u+ only

Eq. (2-) may depend on the Reynolds number as for example in a pipe where the

shear is given by

w = d (25)T w d

Now, if Eq. (24) is to predict the correct velocity distribution for a

pipe it renains to explain the apparently good agreement of Eq. (15) with

experimental data where the shear was assumed constant. Since in pipe flow

seventy to eighty percent of the centeriine velocity is attained within a

region close to the wall, corresponding to 2y/d of the order of fifteen to

twenty percent, and, since beyond this region the flow field is definitely

within the region of the law of the wake it is required (1) to show

that E q . (24) and Eq. (15) do coincide within the range 0 < 2y/d < 0.20

7
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to a close approximation independent of the shear variation and (2) to determine

t h e Reynolds number dependence of the law of the wall in a pipe.

In terms of the nondimenp.ionalized variables, the friction velocity for

the pipe is given by

+ vu 221- )% (- )% (26)
T d

which for small values of the ratio 2y/d may also be written as,

u+ =1 - y*/d* + 0[(y*/d*)2] (26')

+ + +
For the zero order solution of (24), designated by y0, let u T.(u ) .T ¶

4•. 4
Correspondingly U = u , the integral terra reduces to U and therefore to u ;

and, thus the velocity distribution of Eq. (15) is recovered. For the first

order solution let 4
4 u+Y

u = (U )+ = ' 1
T d4

Hence, u+ u 4

U =fi=j' (1 4 Y)du' =u +
o u o d

T

+4(d+)- l ut. 4 l~ [epklu1  "l (k.1' 1 Ikl+)2+./,U)
T- k1 vxPx/ K- Lk44 2 6 +

+ .L/kl,,+)4] (27)

and taking into account that y 0 (u y 0)(U),

U U +"~dU' Yo U
I_= f-dU- = J(i + !)dU' =U4

0 T 0 d•

+ (d-i1 [ -[.2 4 --1-{rexp(kc1U)] - 1:1 + (k1U) + jI(k 1.U)2 + -Ik~U) 4 -k)

(28)

With U as a known function of u4 and I resolved in terms of U, Eqs. (27) and

(28) in conjunction with Eq. (27) completely describe the dependence of the

velocity distribution on the Reynolds number d4 = u*d/v.

As an immediate consequence of this solution it is apparent that for

44 -4
any fixed value of u , yl approaches the constant shear sclution y as the

Reynolds number d+ approaches infinity. This result may also be directly

8
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inferred from Ea. (20) since a fixed u+ impliea a fixed yo+

+ +In order to assess the maximum deviation between y and y it is necessary

to consider the asymptotic region where independent of how large d+ is, the

ratio 2yo/d may asr-ume values up to 0.20. For the asymptotic region Eq. (27)

and (28) reduce respectively to

U = u 4 exp(ku ) (27')
d d4 k,1r-

and

I = Ukexp(kU) (28')

Substituting Eq. (28') in Eq. (24) yields

y =u+ 1)i exp(k U) (29)d+1

where for the time being quantities of the order of (d+) are retained with

respect to U.

Using Eq. (27) to eliminate U from Eq. (29) yields

+ u+ 1  1 1 + 1y = 4 exp(ku ) + _+ 1)- exp(klu )exp[- ,';exp(klu4)].
d4k k ek2 A, 1  

d +

+ 1 +Now, since asymptotically yo =-exp(kju ) the above equations may be

writtdn as + +

+ + 1 Y + +
y+ = u+ + + + I)yexp( -) =

+ dk 0 d

+ + +
= u+ + + ++ 1 )y"(l + - I-o

d+ d+k1  d( J

Y(u + 2 Y
u+y) +oy + 0 2

+ u+ + 2 +

But since yo > > u and Y > > - the asymptotic value of y+ becomes

+ +

YJ=yjL I + d + d 4 02j (30)
+

While as far as y1 is concerned, this deviation may be as large as ten percent,
+

as far as the velocity distribution is concerned where u is taken proportional

to Jny+ the deviation u +/u+ given by

9.



N

+ + + +
A__+ tnly .4lky 0 Y%)/d

u + tny+
0 0O

is approximately within one percent.

A different interpretation of this result may be given as follows. Let
++ +

y be taken as a function of d then at a fixed value of yo

00
+ +

+ +

Thusfor ic > de ae Yt > Ys . Furthermore,since at increasing values of y o

4 +
the difference between Yd and yt increases,it follows that as the Reynolds

++

number increases the slope of the straight line in the u t ny+ representation

increases and correspondingly the intersection with the y4 5 1 line occurs at

+
a lower value of the u coordinate. In terms of the notation

4 1 +

u4 = •-4ny + k2

it means that I/k1 increases while ka' decreases with an increasing Reynolds

number. This dependence on the Reynolds number has been shown to exist in

5
Nikuradse's data by Hinze

In order to see the effect of the Reynolds number on the laminar sublayer

a series expansion of the solution in this neigbborhood is considered.

Accordingly

Y =u+ 4-I 1 1 i u 4 )4 + (d+)'l[(u+)2 + (, - 0 (+. .. ] (31)

By comparing this result to the strictly laminar distribution

+ = Y+ - ly +
u =y - ( )y

which for large Reynolds numbers and y/d < 1/2 may be written in the form,

Y4 = u4 + (d+)-l1 u 4 0[(d+)-2

the extent of the laminar sublayer may be obtained from the condition
1 1 +' -l 4
1. 1-(ku + < < (d+)'1(u1f

10



Taking as the definition of the edge of the laminar sublayer the point where

11 ,.u )4 -i= 4-( + )2 (32)
ke 24 (kUS.L. = O'(d ) (uS.L.

yields, after introducing the numerical constants

u+ 27(d+)k

uS.L.
and by substitution into Eq. (31)

+ 2 ud
YS.L. 27

or

YS. L. 27 d -3/2 (33)
d -V

Hence, it follows that the laminar sublayer has a thickness proportional to

the inverse three half power of the Reynolds number based on the frictional

velocity, and the diameter d.

4. The Law of the Wall for Injection or Suctica

The shear distribution in the wall region with injection or suction is

determined for a flat plate with zero pressure gradient from the equation,

du 1 dT
vwy T (34)

Integrating (34) yields

T pv u

w w

which in the present notation may be written as

(u )a .v+ u 4 + 1 (35)
T w

wherev v /u
w W

From Eq. (18)
+ +

u u
r du . du '[lv~+kl (36)

U dT4  CO(V+u +l+) w
w w

and the integral term in Eq. (27) becomes,

ii



U u ++U
du' du' + 2 v [J +- nl (37)

0 U, o(u ) V V1o 9 ouj w w

Substituting Eq.(36) into Eq. (24) yields the law of the wall for injection or

suction in the form,

v+.

-+ 1nl4- + t1"[exp(k4U)J - [1(U ](U (38)
V

w

where U is given by Eq. (36). Now, either from the asymptotic form of Eq. (38)

or directly from Eq. (20), the region outside the laminar sublayer and the buffer

layer is described by the equation

U f- k tnkýy+

Written explicitly in terms of u as determined by Eq. (36), Eq. (20) becomes

2 (l4v+u) k+ (35)
Vk w(35

w

which is identically the modified law of the wall as suggested by Stevenson 1 0

based on his experimental data.

In Fig. (4) the law of the wall for injection or suction is shown for four
+ +=

different cases (a) v w = 0.45 (b) vw = 0.064 (c) vW -0.051 and (d) vw . -0.066.

In Figs. (4a,b) the data of Stevenson is included while in Figs. (4c,d) the data

11
from Black and Sarnecki , as measured by Black is presented. While in either

the large injection or the large suction cases agreement is satisfactory, in the

law v cases where experimental scatter seems to be more pronounced, the

agreement is at most fair.

It is important to note that as the injection rate increases the buffer

region swells on the lower side of the distribution while the wake component

appears at lower values of the parameter U, thus leaving an extremely narrow

region for the logarithmic region. It seems however that as long as such a

region exists regardless of how narrow it is, the buffer layer is satisfactorily

represented by the present theory.

12



SUMMARY

A generalized law of the wall and an eddy viscosity model for wall

boundary layers has been derived for regions of the flow field which

depend only on a single space variable. The derivation is based on Reichardt's

result, viz., tnat the turbulent shear decays as the cubic power of the distance

from the wanl and on the validity of the logarithmic law of the wall for a

constant shear flow fL 1d.

Considering the velocity as the independent variable and expressing

c as a function thereof yields, in the constant shear case, a closed form

solution for the velocity distribution. The resulting distribution is

shown to be in good agreement with experimental data. Included in the

comparison are some recent experiments where special care has been taken

in order to obtain accurate measurements in the region very close to the

wall.

By introducing a transtormation, an extension of the above formulation

to variable shear has been obtained. The generalized form has been then

applied to the investigation z two problems (1) the effect of Reynolds

number (u d/v) on the velocity di triK.Lion in a nipe and, (2) the deri lion

of the law of the wall for boundary layers with injection or suction.

In the first problem, it has been demonstrated that, alt'.ough to

a very small extent there is nonetheless a steepening effect an the

slope of the logarithmic portion of the law of the wall with an increzse

in the Reynolds number. This result is in agreement with Hinze's analysis

of Nikurudse's data. Furthermore, an expression for the thickness of the

laminar sublayer has been obtained which shows that (yS.L/d) is inversely

proportional to the 3/2 power of the Reynolds number (u d/V).

In the second problem a law of the wall for injection or suction
+

has been derived in terms of the parameter v . Good agreement with
w

availabule experimental data has been indicated and a tendency for a

13
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decrease in the extent of the logarithmic portion of the law of the wall

with increase of injection has been observed.

From the experimental data considered, it seems that the model

proposed above correctly predicts the velocity distribution in the wall

region fbr a variable shear flow. Obviously,,a more complete description

requires the matching of these results with an eddy viscosity for the outer

region.

1
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