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FOREWORD
This interim report was prepared by Dr, Gdalia Kleinstein, Research
Associate Professor of Aeronautics and Astronautics at New York Unjversity,
and presents research carried out under a National Science Foundation
Institutional Grant, "Statistical Methods and Their Ajplication to Fluid
Dynamics Problems", and Contract No. AF33(615)-2215, "Boundary Layer

Characteristics for Hypersonic Flow in the Presence of Mass Addition",

Project No, 7064,
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ABSTRACT
Based on the logarithmic velocity distribution at distances not so far

from the wall and a turbulent shear variation proportional to the cubic power
of the wall distance in the immediate proximity of the wall, an analytical model
for an eddy viscosity throughout the wall region is derived leading to a closed
form expression for the velocity distribution. An extension of the above
analysis to include shear variation results ir a generalized law of the wall
from which the effect of Reynolds number on the velocity distribution is
derived. While many applications of the generalized solution are envisaged,
as an example, the velocity distribution for the case of injection or suction
is considered. The theoretical result is shown to be in agreement with

available exzperimental data.
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NOMENCLATURE
mean flow velocity (streamwise compomnent)
friction velocity (local) u, = [T(Y)/p]%
wall friction velocity u = (uT)w = [T(O)/p]%

+ -, %
dimensionless mean flow velocity u = u/u

dimensioniess friction velccity u: = uT/u*
eddy viscosity

dimensionless eddy viscesity e/v

normal coordinate

*
dimensionless normal coordinate y+ =yu /v

dimensionless injection velocity v: = vw/u*

vi

- s . ——— ¢ Ty - - - e —
A A - s

e Mt a wima b b

{
{
|
|
i




A S ot s s ey

e

faiog

INTRODUCTION

The validity of the logarithmic nature of the law of the wall, which
may be derived on the basis of substantially different underlying assumptions
such as dimensional analysis as well as the Malkus theoryl, has been satis~
factorily verified by a large volume of experimental data. Since the law of
the wall as such does not hold through the transition region (buffer zone) and
obviously not in the laminar sublayer, it has been desired to obtain a
formulation which will connect continuously and smoothly the laminar sublayer
velocity distribution to the law of tne all. Most successful has been
Reichardt2 who from considerations of the behavior of the velocity fluctuations
in the immediate vicinity of the wall deduced that the eddy viscosity must grow
at least as the cubic power of y. Accordingly, by choosing a function which
satisfies the y® behavior near the wall; and, asymptotically approaches the
required linear dependence on y, he was able to construct an eddy viscosity
model which in turn led to a velocity distribution in agreement with
experimental data fromy = 0 to the law of ihe wall region. Other formulas
for the eddy viscosity have been suggested by Deissler3 and Van Driest4
which, although successfully predict the velocity distributiocn, raise the
objectioa that they do not satisfy the y* requirement of Reichardt's theoretical
result,

In this paper it is shown that by taking the velocity as the independent
variable, an eddy viscosity model can be derived from the law of the wall and
Reichardt's y® decay requirement without introducing a8 new arbitrary function.
The resulting eddy viscosity model yields an integrable closed form expression
for the velocity distribution as compar.d with the models of Reichardt, Deissler
and Van Driest which require a numerical integration.

By employing a simple transformation the above formulatioan is further
extended to include the effect of shear variation. Consequently, 2 generalized
form for the law of the wall is obtained; and in particular it is shown that

1




for regions where the 2ddy viscosity is much larger than the kinematic
viscosity the law of the wall has a universal nature independent of the
shear distribution. The application of this result to pipe flow provides an
explanation for the effect of Reynolds number on the velocity distribution
which has been observed by Hinzes. As an additional example, the generalized
formula has been applied to the problem of wall injection and suction vhere
good agreement with experimental data has been demonstrated in regions close

to the wall including the buffer laye..




ANALYST.S

1. Introduction

The total shear associated with the transport of momentum in the directlon

normal to the wall is given by

v W

If a concept of an eddy viscosity is adopted the turbulent contribution may

be expressed by the relation

v

VU = pe \2)
P an
where Eq. (2) is taken as a definition of the eddy viscosity. 1In terms of the

* — *
nondimensional quantities y+ = (pu y)/u, u+ = ufu , e+ = pe/u; where u = (Tw/p)%’

Eqs. (1) and (2) may be combined in the form

+
Lo e )
w oy
or
+
(w2 (1+e+)§i’-; 3"
y

where u: = uT/u* = [T/Tw]% is the nondimensionalized friction velocity.
Transforming the variables from (x,y) to (x,u) yields Eq. (3') in the

desired form i.e.

e+ 4+ 1= (u:)a QXi (4)

ut

By dimensional analysis considerations, Prandtl in his momentum transport
theory6 proposed an eddy viscosity model which in the present notation takes
the form

+ +.2 du+
« =K@y — (5)
dy
where partial derivatives have been replaced by an ordinary derivative to
indicate a dependence on a single variable. Eliminating du+/dy+ from Eq.

(5) by Eq. (3") where e+ is taken much larger than unity yields an equivalent

model in the form,

. e o
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- kxu'.:y+ (6)
The model given by ERq. (6) has been previously used by Ferrat17 in

several problems and specifically in problems related to turbulent boundary

layer separation. Ecs. (4) and (6) in conjunction with the requirement of

(y+)3 decay at the wall constitute the basis for the derivation of the complete

velocity distribution and eddy viscosity formulation given below.

2. Constant Shear Solution

1f the shear is assumed constant, u: = 1, and Eqs. (4) and (6) become

+=d /l
€ _Z; “")
and
+ +
€ =lky
In Eq. (4) e+ is taken much larger than unity and a dependence on a

single variable is assumed.

Eliminating e+ between Eqs. (4') and (6') and integrating yields, the

logarithmic law

ut = i‘l‘bny"' + k' = %{bnkay'* (7

where Iy = 0.4 is the von Karman universal constant, and ks is taken equal

to 7.7 which is obtained from k' = 5.1.
Using u+ as the independent variable Eq. (7) is written as
v = & explqu’) ®)
and correspondingly the expression for e+ becomes
& = ey Q)
In order to extend the above solution to the wall (i.e. y+ = 0) the
behavior of B:’G’ and u must be specified in this region. For the immediate
vicinity of the wall.Reichardtz has shown that the turbulent shear varies
proportionally to at least the cubic power of the distance from the wall, and
since for the same region the mean velocity u varies linearly with the same
dimension it follows from the definition -pv u = pedu/dy that
pe ~ y> ~u® (10)
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Now including a correction term in Eq. (9), €+ may be written in the
form
e.l = %[exp (ky u+) + f(ly u+)] (11)
where f must satisfy the asymptotic condition

tim + + '
+ _ _f(gu )exp(-kyu ) =0 (12°)

y o
and, in accordance with Eq. (10), the boundary conditions

£(0) = £/(0) = £(0) = -1 @12")

While Eq. (12) obviously does not define f uniquely, an exponential

representation for f in the form clexp(c3k1u+) where ¢; and c¢; are arbitrary
constants is clearly excluded by Eqs. (12’) and (12”). Taking then the highest
degree polynomial which satisfies both conditions and at the same time ~ es
not introduce new arbitrary constants yields,

£ g uh) ={1 + (uh) 4 %(k1u+)2] (13)

Accordingly, the modified expression for e+ becomes,

.
¢ = ‘-;"t[exP(kx“-* )] - (14 (gu’) + %(kx “+)2]} (14)

Inserting Eq. (14) into Eq. (4) with u: = 1, and integrating subject to the

boundary condition y+ 0 yields the velocity distribution

yt =t 4 %B{Eexp(klu"’)] - [+ Gauh) + 30quT 4 2aqu®R} )

A plot of Eq. (15) is given in Fig. (1) where the classical law of the
wall and the laminar velocity distribution for the sublayer are included for
comparison. Fig. (2) is a reproduction of Fig. (3) of Lindgren's recent
report on experiments in turbulent pipe flow of distilled wacers. The solid
line is a plot of Eq. (15) using the loglojj+ representatici. The agreement
with these measurements is surprisingly good within the range 0 < u+ < 18.
The deviation beyond this region, although small in the beginning becomes more
and more significant as the wake region is penetrated.

A comparison between et as given by Eq. (14) and the measurement of

5
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Abbrecht and Churchill9 are shown in Fig. (3). While the agreement is by no

means as satisfactory as in the case of the velocity distribution the .eviation
assumes a nmaximum value of less than 107% around y+ = 75 and thep starts to

drop again. In the velocity distribution, where y+ is obtained as an integral
quantity of e+ with respect to u+, this deviation becomes completely insignificant.

3. Variable Shear Solution

The velocity distribution obtained in the previous section was based
on the constant shear assumption. The result obtained is "universal" in the
sense that independent of the Reynolds number,y+ is a function of u+ only,
In order to obtain a more general form for the law of the wall the simplification
intrcduced into the analysis by taking u: = 1 in Eq. (6) will be dropped. Thus,
following the same procedure as in the previous case, Eqs. (4) and (5) are

written first for the region where e+ > > 1, namely

€ =u” dy (16)
T TF
du
&= uly’ an
Introducing a new variable u+
du’
U= 5 (18)
ou
T
into EBqs. (16) and (17) and eliminating e+ regults in the equation
+
+_dy
by =35 (19)
which upon integration gives,
+
U= % Loy + Ky = % L0K3y
1 1
A comparison of this result with the known solution for the u: =1
case yields Kg = kg; and the logarithmic law becomes
U= i Lakyy' (20)
1

Thus, for regions where e+ > > 1 the logarithmic law of the wall holds
independent of the particular shear distribution provided U replaces u+

6
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as tie variable. Taking U as the independent variable,

y' = i-exp(rw
and

e = u: %exp(hU)

(21,

(22)

Now, since independent of the nature of the shear distribution there always

exists a narrow region close enough to the wall where U may be taken equal to

u+, it follows from Reichardt condition that

e 'R~ '~ oy

and consequently by the identical arguments of the previous section,

¢ =it Hlew ] - 1L+ G0 + 30407}

Integrating the equation

+
+ _ +dy
e +1= uT au

(23)

subject to the boundary condition y+ =0 at U = 0 yields the generalized law

of the wall in the form,

U
y o= j Ly %;{[exp(k,u)] - [1+ GqU) + 200)% + %(klu)e]} (24)
ou
.

It shoule be noted here that there is a furndamental difference between

Eq. (24) and Eq. (15). wWhile Eq. (15) represents y* 18 a function of u+ only

Eq. (2+) may depend on the Reynolds number as for example in a pipe where the

shear is given by

T, x
T d

(25)

Now, if Eq. (24) is to predict the correct velocity distribution for a

pipe it remacins to explain the apparently good agreement of Eq. (15) with

experimental data where the shear was assumed constant.

Since in pipe flow

seventy to eiphty percent of the centeriine velocity is attained within a

region close to the wall, corresponding to 2y/d of the order of fifteen to

twenty percent, and, since heyond this region the €flow field is definitely

within the region of the law of the wake it is required (i) to show

that Eq . (24) and Eq. (15) do coincide within the range 0 < 2y/d < 0.20

7
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to a close approximation independent of the shear variation and (2) to determine
t h e Reynolds numher dependence of the law of the wall in a pipe.
In terms of the nondimensionalized variables, the friction velocity for

the pipe is given by

*
e a-i. a2 (26)
d

which for small values of the ratio 2y/d may also be written as,

+ * ok * %
w =1-y/d + 0y /d)°] (26")
+ + +
For the zero order solution of (24), designated by Yo let uT = (uT)o =1

Correspondingly U = u+; the integral term reduces to U and therefore to u*;
and, thus the velocity distribution of Eg. (15) is recovered. For the first

order solution let

y+
U“(U)l—l‘—g
d
Hence, + +4
u u +
’
r
U=J"‘“ = | (4 —2)du’ =ut 4
1] +
o uT o d

+ @ 3N 4 -k:'—.xe-{[exp(klu-'-)] -1+ Gau®) 4 0quH 2u’y +

1 +4]}]
+ 24/kiu ) (27)
4+, 4 +
and taking into account that y (u') =y (U),
U U gt ° ©
r 7
1= - fa+2a -+
=) ¥
o T o d

+ @ ﬁg Lexp(q )] - [1+ (qU) + 20 00% + 2aqu® + T-0qv)*1}}
(28)

Wich U as a known function of u+ and I resolved in terms of U, Egs. (27) and
(28) in conjunction with Eq. (27) completely describe the dependence of the
velocity distributior on the Reynolds number d+ = u*d/v.

As an immediate cconsequence of this solution it is apparent that for
any fixed value of u+,y: approaches the constant shear sclution yz as the
Reynolds number d+ approaches infinity. This result may also be directly

8
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inferred from Eq. (20) since a fixed ut implies a fixed y:.

In order to assess the maximum deviation between y+ and y: it is necessary
to consider the asymptotic region where independent of how large d+ is, the
ratio 2y2/d+ may as~ume values up to 0.20. PFor the asymptotic region Eq. (27)

and (28) reduce respectively to

+ 1 <+ P
U=u + -—-k—gzexp(klu ) 27°)
and
1 '
I=U+ + & kﬂexp(klu) (287)

Substituting Eq. (28) in Eq. (24) yields

+
y U4 (5= 4 Liexp(iqU) (29)
ky
dk
where for the time being quantities of the order of (d+)-1 are retained with
respect to U.

Using Eq. (27) to eliminate U from Eq. (29) yields

+ + 1 1 + 1 1 + 1 1 +
y =u Tkx_l;exP(klu ) + (;:—k: + 1)—kaexp(k1u )exp[;-_: gexp(kau )].

+
Now, since asymptotically y: = i—exp(klu ) the above equations may be

written as

gyt y+
+ _ +
n =u +%;—-—9-+(——+ 1y exp(—)=

14 dk, at

y* y+ gyt
=u++-1——2+'—1—+1)y (1+-—4 OL( )J)
kgt d+k1 Q
y.—

('t +y)+—;Ly +--J OL( )_j

+
But since yo > >4t and y > > %—- the asymptotic value of y; becomes
1

+
o=y -—] "L(") ] (30)
While as far as y:' is concerned, this deviation may be as large as ten percent,
as far ac the velocity distributicn is concerned where ut is taken proportioral

to Lny+, the deviation Au+/u+ given by

0
W
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Aut ‘ Lay -Lnyo N yo/d
+ + +
u &nyo Lnyo

is approximately within one percent,
A different interpretation of this result may be given as follows. Let

y+ be taken as a function of d+ then at a fixed value of y:

+ y+ y+ + d;- A+
Aoe@+-a--2)=1+y E=2
ya & da d da
+ .+t + +
Thus, for &z > d; @ 5 > y2. Furthermore,since at increasing values of Yo

the difference between y: and y; increases,it follows that as the Reynolds
number increases the slope of the straight line in the u+ ~ Lny+ representation
increases and correspondingly the intersection with the y+ £ 1 line occurs at

+
a lower value of the u coordinate. In terms of the notation

= -llzl-ény". + ko
it means that 1l/k increases while ke decreases with an increasing Reynolds
number. This dependence on the Reyrnolds number has been shown to exist in
Nikuradse's data by Hinzes.
In order to see the effect of the Reynolds number on the laminar sublayer

a series expansion of the solution in this neighborhood is considered.

Accordingly

+ +
y' et s eyt + @H WY +k3k2120(k1 BEEI €Y
By comparing this result to the strictly laminar distribution
+ + +.-1
A 1 N
which for large Reynolds numbers and y/d < 1/2 may be written in the form,

+ 4 +.-1 43 -2
u

vt=ut+ @ + ofhH

the extent of the laminar sublayer may he obtained from the condition

Lauy << @hlaty

E‘|"’

10

B s o




-

.« T

Taking as the definition of the edge of the laminar sublayer the point where

_];__1_ + 4 _ +,.-1, + 2
o 25 tatg y )7 = 0.1(d) “ug ;)
yields, after introducing the numerical constants
+
Ys.L.

and by substitution into Eq. (31)

~ 27(d%)¥

+ u*d X
gL, =27 &)
or

~ 27 57

*
Ys.L. ud, -3/2
a v

(32)

(33)

Hence, it follows that the laminar sublayer has a thickness proportional to

the inverse three half power of the Reynolds number based on the frictional

velocity, and the diameter d.

4, The Law of the Wall for Injection or Suctica

The shear distribution in the wall region with injection or suction {is

determined for a flat plate with zero pressure gradient from the equation,

v du _14d7
wdy p dy
Integrating (34) yields
oV u
%’ =l
w w

which in the present notation may be written as
+.2 + +
=V u
(u,r) " + 1

+ *
where vV =V /u
w W

From Eq. (18)
+

u u

rdu’ du’ PN LN ;

U= i 2 T + L(1+ku )4-1]

dr o(V, u'+1) v,

+

and the integral term in Eq. (27) becomes,

11
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(36)
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+

U u +

) ? [} P v U
1= J Su__fdu i—&n[1+v+u+ = 2—&n[1+—£——} 37)
- + +.2 + w + 2

° u, o(u?) v, V.

Substituting Eq. (36) into Eq. (24) yields the law of the wall for injection or

suction in the form,

+
+ -’-—&n[1+\:"—uj L lexp(iqU)) - [1+(k U)+E(k U)3-+-]-'(k1U)3]} (38)
YR F 27 *igltee e 2137 7
w

where U is given by Eq. (36). Now, either from the asymptotic form of Eq. (38)
or directly from Eq. (20), the region outside the laminar sublayer and the buffer
layer is described by the equation

U =1 Lnk3y+
Y

Written explicitly in terms of u+ as determined by Eq. (36), Eq. (20) becomes

2 roaa gt _1 +
v+[(1+ku )y<4-1] = kltnkay (35)
W

which is identically the modified law of the wall as suggested by Stevenson10
based on his experimental data.

In Fig. (4) the law of the wall for injection or suction is shown for four
different cases (a) v} = 0.45 (b) v’ = 0.064 (c) v = -0.051 and (d) v| = -0.066.
In Figs. (4a,b) the data of Stevenson is included while in Figs. (4c,d) the data
from Black and Sarneckill, as measured by BlackH is presented, While in either
the large injection or the large suctinn cases agreement is satisfactory, in the
law V. cases where experimental scatter seems to be more pronounced, the
agreement is at most faijr.

It is important to note that as the injecfion rate increases the buffer
region swells on the lower side of the distribution while the wake component
appears at lower values of the parameter U, thus leaving an extremely narrow
region for the logarithmic region. It seems however that as long as such a
region exists regardless of how narrow it is,the buffer layer is satisfactorily
represented by the present theory.

12
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SUMMARY ‘

A generalized law of the wall and an eddy viscosity model for wall A
boundary layers has been derived for regions of the flow field which
depend only on a single space variable, The derivation is based on Reichardt's
result, viz., that the turbulent shear decays as the cubic power of thedistance
from the wall and on the validity of the logarithmic law of the wall for a
constant shear flow f. 1d.

Considering the velocity as the independent variable and expressing
¢ as a function thereof yields, in the constant shear case, a closed form
solution for the velocity distribution. The resulting distribution is
shown to be in good agreement with experimental data. Included in the
comparison are some recent experiments where special care has been taken
in order to obtain accurate measurements in the region very close to the
wall.

By introducing a transtormation, an excension of the above formulation
to variable shear has been obtaijined. The generalized form has been then
applied to the investigation ¢ two problems (1) the effect of Reynolds
number (u*d/v) on the velocity di trit.{ion in a pipe and, (2) the deri *iomn
of the law of the wall for boundary layers with injection or suction.

In the first problem, it has been demonstrated that, altl..ough to
a very small extent there is nonetheless a steepening effect un the
slope of the logarithmic portion of the law of the wall with an increcse
in the Reynolds number. This result is in agreement with Hinze's analysis
of Nikurudse's data. Furthermore, an expression for the thickness of the
laminar sublayer has been obtained which shows that (yS.L/d) is inversely
proportional to the 3/2 power of the Ieynolds number (u*d/V).

In the second problem a law of the wall for injection or suction
has been derived in terms of the parameter V. Good agreement with
available experimental data has been indicated and a tendency for a

13 g
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decrease in the extent of the logarithmic porticn of the law of the wall
with increase of injection has been observed.

From the experimental data considered, it seems that the model
proposed above correctly predicts the velocity distribution in the wall
region for a variable shear flow. Obviously,a more complete description
requires the matching of these results with an eddy viscosity for the outer

region.
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