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SUMMARY 

We derive a formula for the expected number of crossings of an 

arbitrary,  possibly dlsconMnuous,   curve  in a time Interval     (0,1)     by 

a continuous non-stationary normal process.     It  is chown that  a 

formula analogous to that of M.  R.   Leadbetter and J.   D.  Cryer  [3] 

holds  under conditions more general  than  they considered. 
I 
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Introduction 

We consider the expected number of   (non-tangential)  crossings of an 

arbitrary,  possibly discontinuous,  curve  in a  time    i    by a continuous 

non-stationary normal process.     It  is shown that a formula analogous  to  that 

derived by M.   R.   Leadbetter and J.  D.  Cryer,  holds under conditions more 

general than they considered in   f3].     The method used is  that  developed by 

N.  Donald Ylvisaker in   [4],    For the sake of simplicity we assume  that   the 

process and the curve have been simultaneously normalized so that we may 

consider crossings  of  a curve    v(t)    by a continuous process with mean 

function    0    and with variance    1.     It  is shown  that  if    v(«)     is of 

unbounded variation,   then  the expected number of crossings  is    +*0. 

The proofs  are  somewhat more  intuitive  than  those of   [3]   in  that 

they proceed directly  from a calculation of  the probability  involved 

instead of an interplay of Dirac delta functions and the process 

derivative. 

The formula for the expected number of crossings is a sum of  two 

parts;  the first is just an integral of  Rice's   formula,   the derivation of 

which is  independent  of  the second part  and  follows Ylvisaker,   14).     For 

v(«) • constant  this  gives a slightly more general   form of Ylvisaker's 

proof of the necessary  and sufficient  conditions   for Rice's  formula. 

The second part  of  the sum represents  the  expected number of crossings 

of the vertical component of the curve.     If  the  curve is a step  function. 
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the second part gives the sum of the probabilities of crossing the vertical 

portions of the curve. Examination of this part can give information 

about the error Involved if we replace the curve with a step function, 

(thereby simplifying the necessary calculations). 

As a corollary we get a simplified form of the result of Leadbettcr 

and Cryer under conditions somewhat more general than they consider.  The 

simplification in form is essentially a result of the prior normalization 

of the process and curve to get a process with variance function 1.  If 

this normalization is made, the hypothesis in [3] that  Ti -(t,^)  is con- 

tinuous at diagonal points is equivalent to our hypothesis that the o(t) 

of Theorem 1 is continuous. 

The expected number of crossings of a curve of unbounded variation lias 

little practical application, but the fact that it is always +«  for 

continuous Gaussian processes does give information about the behavior 

of such process; and for non-Markovian processes very little such 

information is available in the literature. 
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Kotation 

Given a point  function    v(«)     of bounded variation,   let    vi*}    be 

the measure determed by: 

v{(o,t]} =   .(t)   -     (o). 

Let the measure  jvI{•} be the total variation of vl«}.  Let 

jvIC«) be the point function determined by  ivji«}: 

|v|(t) - |v|{(o,t]}. 

We shall say that X(t) has crossed the curve  (t)  in the time 

interval T if there exists ti, t.^  in T such that 

(X(ti) - v(t1)) • (X(t?) - v(t?)) < 0.  The number of crossings of the 

curve is then the maximum number of disjoint time intervals in which 

X^) crosses v(«). 

Theorem 1; 

Suppose X(t)  is a non-stationary Gaussian process with mean 

function 0 and variance function 1. 

We assume that the correlation function pUj.t?) = EX(ti)X(t?) 

has the spectral form 

1(t1,t2) = f   cos 2iT\(t^-t1)F(t1,d>) 

with the extended real valued continuous on (0,T)  second spectral 

moment 
00 

a2(t) -J (2TTX)2F(t,d^) 

—J 



Let    N(T)    denote  the number of crossings of a  fixed curve    \(t) 

by  the  process    X(t). 

Then: 

EN(T)  = +« 

if    v(»)     is of unbounded variation,  and if    v(«)     is  of bounded variation: 

T i   2 T 

(1) EN(T)  ^ f 2S11 e"^  (t)dt +f ^(o,v,t)!v|{dt: 
■'0    v Jo 

where 
1       .pjv,(t)|/o(t) 

ii*(o,u,t)  = 2^(v(t.))j  dp/ 4(y)dy 

at  continuity points of    v(«) 

1 

2/  *(pv(t+)   +  (l-p)v(t))dp 
•'0 

at  left  continuous  discontinuity  points of     v(»), 

= if HpvU~)  +  (l-p)v(t))dp 
0 

at  right  continuous discontinuity points of    v(»), 

_ 1 

= 2/[c(pv(t+)   +  (l-p)v(t))  +   ;(pv(t")  +  (l-pMt))]dp 
•'0 

at  points  of  total discontinuity  of     v^). 

Concerning  the  Formula  (1) 

The  first  integral in  (1)   is  just  the integral of Rice's  formula 

for the number of crossings of a  fixed  level;   it does not  involve     /(•). 



-5- 

If v(»)  is constant, then the integral with respect to  [vjl«}  vanishes. 

On the other hand, if >(m)     is  a  step function, then the second 

integral is the sum of the probability that X(t)  crosses the various 

vertical components of v(').  In this sense it may be said that the 

first term represents the expected number of crossings of the horizontal 

component of v(*)  and the second term represents the expected number 

of crossings of the vertical component. 

Proof of Theorem 1; 

Let d ■ {t,: 0 < tj < t2 < ••• < tn, < T}  be a collection of 

points of the interval  (0,T).   Let yj(t) be the stochastic process 

whose graph is a series of straight lines with vertices at  (x(t.) - v(t.), t^). 

Let N.(T)  be the number of axis crossings by y,(t). 

We shall be interested in taking limits over some fixed sequence of 

r    , on 

collections     \d.li    having the property  that    d.   .     contains    d   ,    and 

lim        max ^b+i  " tk^  " "• 

For the portion of the proof dealing with    v^)  of bounded variation, 

00 

we further assume that U d.  contains all the discontinuity points of 
1    i 

v(0. 

Let    N.(T)    be the number of axis crossings by    y.(t),    0  * t * T. 
d a 

Then: 

N(T)   1 N .(T) a 

and if  v(')  is of bounded variation 
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hence 

lim N .(T)   - N(T) 
d 

lim ENJ(T)   - EN(T). 
d 

a.s. 

Taking expectations: 

EN.(T)  ■ P (y.CO    has an axis crossing in    (tj»11^)^ 

- EPrix(t1+1)   >  v(t1+1)}  - Prix(ti+1)   > v(t1+1),  XC^)   > v^)) 

+ t^UtJ > ^(t^l - Prix(ti) > HtJ, x(ti+1) > v(ti+1)l. 

Let    L(h,k,P)    be  the probability  that    Z  > h,  W  ^^ k,    when    Z 

and    W    have a bivariate normal distribution with means    0,    variances    1, 

and correlation    P. 

Then 

ENd(T)  - J:{L(v(ti+1),  v(ti+1),   1)   - L(v(ti+1),  vCt^,  PU^.tj)) 

+ L'(v(t1).   v(ti),   1)   -  L(v(ti),   ^(ti+1),  P(ti+1,tl))} 

" 'Iw^^^^1^' v(ti+l), ^ ' ^i+J- ^W' p^m^i^1! 

+ l\t    1_t   [U^^),   vCt^,   1)   - LMtp,   vct^,   PCt^.t^)]!  •   (ti+1 -  t^ 

r    v(t1+1)   v(ti+1) 

+ I IvKt^-lvKt^ /     / 
Lv(t1)   vCt^ 

*(x,y,p(ti+1,t1)dxdy 

•(M(ti+1)  -   IvUtj)) 

/nj1)(t)dt +/nj2)(t)dt + /n^3)(t)M(dt) 

where    n^     (t), n^    (t),  n.     (t)     are  the step  functions  represented  in the 

braces in the above sums. 

The proof of the  theorem follows  from  lemmas  1,  2,   3,  and 4. 



To simplify the notation let  t be an elemont of the collection 

d. (and hence an element of all subsequent d ),  and let  :  be the de- 

creasing difference from t  to its successor in d,.   We will abbreviate 

p(t,t+T) by P(T). 

Lemma 1.   Under the conditions of Theorem 1, if v(«)  is of bounded 

variation, then: 

lim/ n<1)(t)dt = ^ / e-^^r/ (2.»^(t.d^dt 
0 " 0 0 

in the sense that if one side of the equality is    +^    then both sides 

are. 

(1) (2) Lemma 2.        Lemma 1 is true with    n^    (t)    replaced by    a    ' (t). 

Lemma  3. Under the conditions of Theorem I, If    v(»)     is of bounded 

variation,  then 

T T 

lira JnJ^(t)|v|{dt} - f iKa,v,t)h|{dt} 

where 
1       p|V(t)|/T(t) 

iKo,v,t) - 2*(v(t))/dp/ Hy)<iy 
0        0 

at continuity points of    ^(•), 
1 

- 2/$(pv(t+) + (l-p)v(t)dp 
0 

at left continuous discontinuity points of    v(»), 

1 

- 2/t(pv(t')  + (l-p)v(t))dp 
0 

at right continuous discontinuity points of    ^C*), 
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- 2/ U(pv(t+) +  a-p)v(t)) +  ;(pv(t') +  (l-p)v(t))]dp 
" o 

at points of total CUEcontinuity of    v(«). 

This  completes  the proof of the  theorem when    v(«)     is  of bounded 

variation.     Lemma 4 covers  the  remaining case where    \(*)     is of unbounded 

variation. 

Proof of Lemma 1. Consider 

K(T)  =YtL(v(t+T),   v(t+r),  p(0))  -  L(v(t+i>.   v(t+0.  p(i))J. 

Using  formula 3,  page vi,  of   [1], we have 

arc COSP(T) 

/ exp[-v2(t+t)/1+cos wldw K(T)  «f 
271 

arc cosp(O) 

Then 

Km   < _L arc cos QJJ} 
K{X)    -    271 T 

and by the mean value  theorem 

K(T)   « ^ e-^
2(t-H) C08p(T)^ + 2hl ^ 

To evaluate the  limit  of    K(i),    we use  a series expansion for 

arc sin y: 

arc sin y = y L vl ^ 1       3      vi ^ 1       3      5      vi. 2 
62      A        52      4      6        7  

+  •'•  y        l> 

and 

arc cos  x = arc s in   y/l - x2 

Letting 

A(T) 1 - g2(^ (1+P(T) >/i 
-cos2n 

T2 

' I 
dF(>) 
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we have 

arc cos  (T) . A'.(I) +-ÄI + i . i . s^ßlil + .... ,.-(l) . 0. 

Therefore 

arc COSP(T) 2^l-2co82.  TjF(ttdX) 

0 T 

and 

liJarC £2§£ili1  =  lim2/'(1-COs2:T>t)F(ttd>) 
T+0L T J HÜ 0 T: 

in the sense that if one side of the equality is -f«  then both sides 

are +00. 

1 ^CO*52 TT XT 
But  the non-negative  function     ——    is bounded above by and con- 

T 
,2i2 verges to 2TrA/. It follows that 

^   -T. /(2TiA)-F(t,dA) 

and 

limK(t) .f e-^2(t) 
j(2nA)->F(t,d\) 
.0 

in the sense  that if one side of  these equalities  is    +ou    then both sides 

are    4*°. 

The statement of Lemma  1  follows since    v(t)  =  o(t  ) 

The Proof of Lemma 2  follows   in  the same way. 

a.e. 

I 

Proof of Lemma J.   If  t.  is a point of discontinuity for  -'(•), 

it is a point of positive mass for  Mi*} and we must do better than 

to find the a.e. limit of n_;  (t)  at such points.  For the sake of 
a 
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convenience we will  assume  that    t = t.     is a point  of   left continuity of 
i ' 

v(*);   the necessary modifications are recognizable  if   this  is not  the 

case. 

Letting    T =  t^ -  t^     p(t)  = p(t,t+T): 

I 
V(t+l)     V(t+T) 

nd3  (t)  =   |v|(t+T)  -   |v|(t)      / / C(x.y,p(I))dxdy 

v(t)        vU) 

v(t-fT)-p(l)x 
V(t+T) '       /- T— 

! r /1-P(t) 

" Mu+o - |v|(t)   J     *(x)dxy ^y)dy- 
\<t) v(t)-p(i)x 

/l-p-d) 

(3) i    i (That    n,     (t)     is  bounded above by  a     |v|{• }     integrable  function 

follows  if we  take   1  as  an  upper bound  for  the   integral over    y    and 

<b(o)     as  an upper bound  for  the  integrand of    x.) 

Substituting 

x =  pv(t+T)   +  (l-p)v(t),     0  ■   p  .   1, 

let 

1    ' 0 

1 L 

M(T)   =   Ivljtto   I   |!|(t) ^ ^Pv(t+T)  +  (1-P)v(t))dp   •    Ly)dy 
a 

} avb 
=   |!|(t+i)   -   MO)   /»(Pv(t+T)   +   n-PMt))dp    •      /  ^(y)dy 

aAb 

i 
where 
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a = a(p>T) = v(t) - P( )fPv(t-n) -»- üi£Mm 
/l - .'(T) 

b s b(PfT) = v(t^T) - p(T)[pv(t-f-o + q-pMt)] 

/I - P^T) 

To evaluate lim a(p,T), write 
T+0 

a(p>T) = -p[v(t-H) - v(t)l ±  (l-p(T))[pv(^r) jh (1-P}v(t)] 

/I - O'(T) 

. .p(v(t^v(tM .       T  ^O(T)< 

T       /l - P^TT) 
no 

Since    0  <y   (2TTA)?F(t,dA)   < 4«.,    t,(')     is   twice differentiable,  and 
0 /——— 

we may evaluate    lim i/v/l - P
2
(T)    by squaring and applying L'llospita]'s 

rule: 

lim   = ,  =   
1  - P

2
(T)       -p"(o) o- (t) 

therefore 
■ 

lira a(p,T)  = -pv   (t)/o(t) uniformly in    p,    0 i p i  1. 

Similarly 

+ 
11m b(p,T) = (l-p)v (t)/o(t)    uniformly in p, 0 i p 1 1. 
T40 

Thus 

ayb        (l-p)|v+(t)|/o(t) 

/ *(y)dy = J $(y)dy. 
aAb        -pjv+(t)|/j(t) 
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It   follows   from  the  orthogonal  decomposition of a sipned measure 

that 

^       M(t + T)    -     |v|(t) 1- 

"^ I (l-p)|v+(t)|/.(t) 

M(o)   =  j ^CpvCt"*")  +   (l-p)v(t))dp        / c(y)dy 
0 -p|v+(t)|/-(t) 

1 p|v+(t)|/j(t) 

=  J   C(pv(t+)  +   (l-pMt))dp      j r(y)ciy 

I 
-piv + (t)i/,'(t) 

If    v(*)     Is  of  Unbounded Variation 

Lemma 4. Suppose     vO)     is  a  function  of  unbounded variation and 

o(t)     is  bounded  or  is  extended  real  valued  continuous. 

Then 

^W 
lim lj j :(x,y,. (ti+1,t.))dxdy = +■■ 

max(t.+1-t.) K)     v(ti) 

Corollary. It   follows   from Fatou's   lemma  and  the  inequality    K(T)   _  N/ivC) 

that  if    v(«)     is   of   unbounded variation  and     o(t)     is  continuous  or  is 

bounded on     (0,T),     then    EN(T)   = 4«>. 

Proof of  Lemma 4. As   in  Lemma  3,  we  have: 

v(ti+1)   .(ti+1) 

M(d)   =11 j .'(x.y.i (t.+],t.))dxdy = 

vCt^   .(t.) 

).(  (ti+1) - v(ti))/<r(pv(tl+1) + (l-p)v(t1))dp/<t(x)d 

b 

'x 

a 
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where     a,b    are  as   in  Lemma  3.     We  may   take  a more conservative   range 

of integration by setting 

PlvCt^-vCt^j /l-U^.t.) 

'i+1'   i 

then 

/I-oCt^.t.) 

= |i: c^l-c) 2 5   . 

Then for    1 e  sd    we liave 

J ij.(x)dx 2    I |(x)dx =  6, 
0 0 

M(d)   >  €   •   &   -   4(v)V        |v(ti + 1)   -   vd^j. 

Sd 
If    v(«)     is  a  function of  unbounded  variation,  then   this  sum over 

all     i    is  unbounded for any sequence  of    d    having the property  that 

lim max      (ti+i~ti)    v 0 » 
t  Ed 

thus Lemma 4 follows  from Lemmas 5 and 6, 

^= uv(^(t..,.t.) -V^^v""^+ ,,-^(t'') 
1    ^(p) 

M(d)   2  2)>(ti+1)   -   .(t^l/cdp/ $dx. 
" 0 0 

Let  G = max |v(t)|,  0 < t < T,  and fix t,    0 •- < • 1;  then 

c.(p)(l-£) 

M(d) > e*(v)y|v(t,.1) - v(t,)| • /      t(x)dx. Ll   i+1      i    fi 

Define the set S, depending on d = it f  as follows: 

\.ai+1) -v(t.)|      1 

sd = {i:   n     7i       f " ~)(5+v)l 

? 
c,(p)(l-0       5 
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Lemma 5.   'Hie sequence d = {t. ,t™,...f  may be picked so  that 

^ y 1 - p'(t  ..t )  is bounded above for all i; and max (t  .-t.) • 0. 

Proof, 

(l+c( 
.(l-cos2-Kt.+1-tJ) 

j+1' J ^    (t.^-t 

ii, 

i+i j 
)• 

F id 
j 

(l+o(tj+1.t.))p^Ft (d 
11 

ioctj). 

If o(')  is bounded on  (o,T)  we are through.  If it is continuous 

and integrable, then for a given  i,  let the t. j = I,...,2  in d. 

be picked so that ö(t.) = min .i(t),  t  in the interval 

(j/2i)T 1 t I (.i+l/2i)T.  Then 

T 

)Vi - Tu^Tty < ^(t.xt^j-tj) i /■(t)dt. 

I 
Lemma 6. Let     a.       ^ 0    be  a sequence  s uch that 

L Va!n) = ^ . 
n — i 

1 

Let  b   ^ 0 be a sequence such that 

V,  (n)    ... r •       j      i- ^b.       _ K,  some   fixed    K, 
—   i 

i i 
For arbitrary  fixed    M,     let    S^  =   J i:  a!n)/bSn)  _ M}. 

Then: 

(n) 
L L  a l 

n'-S     i 
= 4- 
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Proof.   Let  SC = |i: a./b. < Ml.  We show v a. Is uniformly           n  '   i i   '           -c i 

bounded: 

I  a,(n) 1  I  M.b;n) 

sc i    SC  1  " n      n 

M^ bjn) 1  II-K. 

I 
Corollary,   (Leadbetter and Cryer)  Suppose that the function v(') 

(and hence the function |v|(«)  and the measure  |v|{»})  are aVsolutely 

continuous with respect to Lebesgue measure.  Then the formula (1) of 

Theorem 1 reduces: 

Tr v,(t)/a(t) 

(2) EN(T)   = /   ±£ie'h^{t)  + a(t)t(v(t))j (2^(y)-l)dy 
0 

dt, 

Proof. In  lieu of  the absolute  continuity of     |v|{«}    we may   rewrite 

(1)   as  an  integral with  respect   to  Lebesgue measure;  consider  the   integrand 

of the second portion of that  integral: 

n(t)  =  Ko.v.t)   *   Iv'U) 

1       p|v'(t)|/<1(t) 

= 2|v,(t)|^(v(t))/dp/ 
o     o 

'l(y)dy , 

1       p(v,(t)/o(t)) 

n(t)  = 2o(t)*(v(t))(v'(t)/o(t))/dp/ ^(y)dy. 
0       Ü 

Writing £ = v,(t)/ci(t), and considering n(t,-J) = n(t): 

n(t,0) = 0 

and 
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■^^^f1- 'U)(2H0-i). 

ITieref ore. 

n(t,0 - r(t);(j(t))J  (2Uy)-l)dy, 

I 
The aorollavu  is unlike the result of [3) only in that we have 

assumed v(»)  absolutely continuous instead of continuously differentiable; 

if we consider a process with variance function 1,  then the hypothesis 

of [3] that r^t.t') exist and is continuous at diagonal points is 

exactly our requirement that o(t)  exist and is continuous.  To show that 

the formula of [3] reduces to (2) when the variance function is 1, note 

the typographical error on p. 510: 

it follows (adding a circumflex to denote the notation of [3]) 

from Lemma 3 of (3) that 

n(t) = (m'-YP^/lYd-P2)15). 

If the variance is unity, the following simplifications may be made: 

92 - a^t) 

o2  - 0. 

With  these substitutions   the formula (2)  of  [3]  may be  reduced to (2) 

above bv  the same method of differentiating with  respect  to    m'(t)/o(t). 

T 
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