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Summary 

Sufficient conditions for consistency of a 

nonparametric maximum likelihood estimate are given 

which are applicable to those problems where a class 

of distribution functions is specified only in terms 

of its graphs. 

Consistency is proven and applications are 

given. 
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Introduction 

In many statistical analyses there may be prior considerations 

which give information about  the shape of a distribution function 

(c.f.   examples 1-3) whereas  there may not be sufficient  information 

to consign the distribution to some class having a finite dimensional 

parameterization. 

Given a class of densities and a sample of  Independent 

identically distributed random variables we may pick the most likely 

density without any reference to a parameterization.     We  intend to 

give conditions on the class  in question which will  insure that the 

corresponding distribution function converges to the  true distribution 

function at points of  continuity of the latter. 

In addition to being a more general consideration, consistency 

of the estimate of the distribution function is in many ways a more 

natural problem than consistency of the estimates of parameters. 

In the paper   [7]   by J.   Kiefer and J.  Wolfowitz  there  is a far- 

reaching paragraph on page 893 which Indicates that  their results can 

be extended to a general case of nonparametric maximum likelihood 

estimation of distribution  functions. 

In most cases of nonparametric maximum likelihood estimation 

that have come to our attention,   (fc.   instance   [8]),  application of 

[7]   or   [3]   is hindered by the  fact that justification of  the hypothesis 

is more difficult than a direct proof of consistency based on the form 

of  the estimates. 
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Condltlons which seem to be amenable to a wide class of 

nonparametric estimation problems are given which are  sufficient 

for consistency of the M.L.E. 

In view of the examples, it is felt that these conditions may 

be more aasily investigated and satisfied than perhaps even Wald's 

hypothesis  [10]  for the classical parametric estimation problem. 

Under our hypothesis the correspondence between the class of 

densities from which we pick the most  likely and  the corresponding 

class of distribution functions may be many to one.     By avoiding 

the requirement that  this relation be one to one we have  included 

(in example 2) consistency in the class of distribution functions 

having unimodal densities. 

Since the M.L.E.   in  this class is, at  some observation,  neither 

right nor left continuous,   there will almost  surely be no M.L.E.  if 

we  consider only a class of densities which are  in one-to-one 

correspondence with their distribution functions.     In this context, 

our result is slightly more general than  [7]  but   in that  paper Kiefer 

and Wolfowitz do not hypothesize that  the distribution functions must 

be absolutely continuous with respect  to some fixed underlying sigma- 

finite measure as is hypothesized here.     (Condition 1) 

Notation 

In the sequel,  a distribution function    ¥(•)     is a monotone non- 

decreasing function with range  in    [0,1]. 

A proper distribution function    F^)     is a right  continuous 

distribution function with range    1, 



•m ■ ■ ■■.■•■■■   •■^■."•-.-    ^.^vw^v   ' ■•■^■se^j!*»-^ ,. • m yijRPW^mq*'-'- / fci; '-f«?   - 

•3- 

Given a distribution function F(«)»  there is, of course, the 

corresponding measure F{'} on R with the property that 

F{x : a < x £ b} » F(b) - F(a) whenever a,b are continuity points 

of F(').    We make no real distinction here, except to reserve the 

notation (•)  for point functions and {•} for set functions. 

We assume that we are given a class &   of proper distribution 

functions, and we have the a priori  knowledge that the distribution 

function of a random variable X to be observed is in &.    We give ^ 

the topology of weak convergence: a sequence  F (•)» n=l,2,... 

converges to F(*) whenever F (x) converges to F(x) for all x 
n 

in the continuity set of FC*)- 

Let Q    denote a compactification of ^ whose elements are 

distribution functions, again we give (j    the topology of weak 

convergence. 

(If 6    contains two or more distribution functions which are 

identical except on the discontinuity set of one, then 6   is not a 

Hausdorff space, but by identifying all such distribution functions we 

may form a quotient space which is Hausdorff, and in this quotient space 

the topology of weak convergence Is the same as the metric topology given 

by: 

p(F,G) = /e"'Xl|F(x)-G(x)|dx. 

It follows that the decreasing sequence of neighborhoods used in 

Lemma 1 and the sequel always exists. In the following it is tacitly 

assumed that when necessary we have in mind this quotient space; that 

"distinct" distribution functions do not differ only on their discontinuity 

■'       1 
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sets; and  Pi ^ ■ G means that D &     does not contain any n n n n ' 

distribution function which is distinct from G.) 

Condition 1. All elements of £ are absolutely continuous with 

respect to some fixed o-finite measure ul')    on R. 

Let £ be a set of densities with the property that every element 

of C    is the density of an element of 6,     and every element of 6    has 

at least one density in £. Our maximum likelihoou estimate will be 

determined by finding the density f t C    that maximizes the likelihood 

of a given sample X, ,...,X = X . To facilitate discussion of the 6 r 1 n     -n 

estimate we assume  that   C     and    6   are so chosen that    C    will almost 

surely contain a    g(*)    which maximizes the  likelihood 

i=l 

where the X  are independent identically distributed random variables 

whose cumulative distribution function is an element of &. 

Condition 2.  There exists a countable subset g , m=l,2,..., of ^—"—-~— m 

C   with the property that for all small neighborhoods &   of    G: 

sup h(x) =  sup  g (x) 
h:He*      g :G EI» m m m 

a.e. u{ •}. 

Let    s(»,d)    denote the supremum function; 

s(x,^) =    sup    h(x). 
h:He# 

Then Condition 2 assures the measurability of s(x,#). We also 

require 
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Condition 3. Given F in ^ G in 6,     there exists a small 

neighborhood  ^ of G such that the function 

ig  s(x,^) 

is bounded above by a function which is integrable with respect to 

FW. 

Main Theorem and Lemmas 

Lemma 1.  Let ^  be a decreasing sequence of neighborhoods of 

G    in   6   such that H^ = G.  Then, if g e C is any density of G, 

we have 

(1)       Lim E Ug s(x,0) - Hg  g(x)] = 0. 
n r        n 

Proof.  Using Condition 3 we have: 

Lim E Ug s(x,rn - £g g(x)] = n r        n 

E_[lirn Ug s(x,^) - Zg  g(x))], 
r   n       n 

We intend to show that the function in round brackets above 

converges in F measure to zero.  It fellows (Halmos, p. 91) that it 

is convergent a.e. (with respect to  F) to the zero function, since it 

is decreasing in n; hence the limit (i) is zero, as was to be shown. 

To show 

LimnF{x : ig s(x,»n)  - £g g(x) >_ E } = 0, 

define (with reference to the countable subset g (•),  m»l,2,...,  of C), 
m 

{x : lg  gm(x) - £g g(x) > e/2} if G^-) z &n 

m 
otherwise. 
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Then 

Lim F{x   :   Äg s(x,a)  -  £g g(x)   >  E}   < Lim F{u B   } n n —       —       n     m    m m 

But ¥{•}    is finite, and B , n=l,2,...  is a decreasing nest 
m 
n 

of sets with 

Lim F{Bm } = 0, 
n  m 

n 

therefore 

Lim F{U B  } = 0.   | 
n  m m 

Lemma 2.  If F E £7 and Q t 6  are distinct elements of Q     and 

f and g are any two corresponding densities in C,    then 

EFUg g(x) - ig f(x)]   <  0, 

Proof.  Let  f have support  S,  then 

EF )lg[g(x)/f(x)] < ig  EFg(x)/f(x) =  ig f  g(x)u(dx) <_0. 

Moreover, E„  «.g[g(x)/f(x)] < £g Et,g(x)/f(x)  unless on S the real 
r r 

valued random variable g(x)/f(x)  is almost surely equal to some 

constant c;  but  c £ 1 since /f(x)ij(dx) = 1 and /g(x)p(dx) <_ 1; 

and c t 1    since F and G are distinct; hence either 

E £g g(x)/f(x) < ig  E g(x)/f(x) or ig   f   g(x)p(dx) = Hg c < 0. I 

Theorem 1.  Let  G in   6,    F e ffc  distinct, and let f  e C    be 

a density of  F.  If X. ,X.,...,X «X  is a sample with distribution 1    ^ n      "n 

function    F,     then there exists a neighborhood     ^   of    G    such that 

Lim sup   r sup    L(h,X  )   - L(f,X  )1   < 
nLh:HE^ ^ "^J 

with    F    probability    1. 
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Proof.  Given G not equal to F there exists (by Lemma 1 and 2) 

a small neighborhood &   of    G    such that 

(ii)  CFUg s(x,£) - Zg  f(x)]  = 

Cv[(ig s(x,») -  Zg  g(x)) + iig  g(x) - ig  fix))]   < 0. 

But 

sup L(h,X ) - L(f,X ) < ~ Ziig  six.»)  -  ig  fix.)), 
hrHer^    "n      "n   n       i i 

and by the law of large numbers the latter quantity converges to the 

negative expression (11). 

Corollary to Theorem 1.     Let X.-.X-,..., and f be as in Theorem 1. 

Let  D be any closed set not containing F. Then 

Lira sup r sup L(h,X ) - L(f,X )| < nLh:HED    "
n      "" J 

with F probability 1. 

0 

Proof.     By Theorem 1,  any    G    in    D    can be covered by an open 

neighborhood    IL,    with the property that 

Lim sup  r sup      L(h,X )  - L(f,X )1  < 0. 
n h:HeU„ "" ^ J 

From the open cover {IL, G e D} of D,  let U, ,...,U  be a finite t» im 

subcover.     Then with    F    plot ability    1, 

Lim sup sup    L(h,X  )  - L(f,X )1   < 
h:HeD "" l' J   " 

Lim sup max I" sup      L(h,X ) 
l_<i<mLh:HEUi ~1Cl 

=    max    Lim sup 
l<i<m 

nr sup      L(h,X )  - L(f,X )]> 0 

as was  to be shown. 
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Theorem 2.  (Consistency of Maximum Likelihood Estimate). 

Let f(",X )    be a point of C    depending on the random variable 
~n 

X,,...,X ■ X  such that for all  f in £ and some fixed c > 0, 
1     n  ""n 

rr fcx^x) 
i 

TTfcx,) 
> c, 

Then    F(',X )     converges to the distribution function    F(«)     of 
"n 

X X      with    F    probability    1. 

Proof.     For notational simplicity, write    F  (•)  = F(',X ), 
  n ""n 

f (•) - f(-.x );   if 
n ^n 

then 

(2.1) 

7 w 
TT f(xj 
i 

>  c  >  0, 

Lim sup N     f(xi) 

n-l/n 

> 1. 

and therefore 

Lim sup  [L(f  ,X )   - L(f,X  )]   > 0. 
n        n "Ti —n       — 

Let U be any open neighborhood of  F.  If F  is outside of 

U infinitely often, then 

Lim sup f  sup  L(h,x ) - L(f,x )] > 
nLh:He^U     "       

n J ~ 
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By the corollary to Theorem 1, this can occur only on a set of measure 

zero.  Now, let U. be a decreasing sequence of neighborhoods of F 

whose intersection is F. Corresponding to each U  there is, by the 

corollary, an event S. of F measure zero such that on the complement 

of S.,  F  is eventually in U..  It follows that on the complement 
00 

of      U   S.,     F      is eventually in every neighborhood of    F.     Thus    F 
i=l 

coverges to    F    with    F    probability    1,    as was to be shown.     | 

.m 

Examples 

Example 1.  (c.f. [9]).  Let ^"' be the class of distribution 

functions on [0,+a>) which passes a Radon-Nykodymn derivative which is 

+00 
nonincreasing and bounded above by m, and let Q* y     .     It follows from the 

form of the estimate and considerations of truncated data that if G  c Q,    and 

t* is fixed,  m > g(t*),  then consistency of the estimate in (j       implies 

consistency of the estimate in 6   at the point t*; but  t* is arbitrary. 

We will show how to compute the estimate in 6    and 

.m 
prove consistency in Q   ;  thus establishing consistency in (j. 

Computation of the M.L.E. in Q.    Given a sample X. <^« • • <^ X ,  it 

is clear that the M.L.E. f (•) of the density will put as little mass 

between observations as is consistent with the hypothesis that f (•) 

be decreasing.  Thus f (•) will be a left continuous step function with 
n 

heights a ,  subject to: 

(i)   a, > a„ >•••> a , 
1 — z —  — n 
n 

(ii)   ^ ai(Xi"Xi-l) - lt 

(letting X0 - 0). 
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If we consider maximizing the likelihood TJa. subject only 
1 

to the requirement (11) we see that the maximum occurs when 

hence 

~i(xrxi^ " WVi* a11 i' 

ai(Xi-Xi_1) = 1/n, 

ai  = l/n(Xi-Xi_1) 

The collection of    a^'s    which maximizes    ]   [a.     subject to the 

constraints   (1)  and  (11) may be obtained  from the sequence    "a.     by 

a direct application of  [1]: 

ai - n 
-1 

max  min  (v-u)[X -X ] 
j    ^ 1        v  u v>i u<i-l 

Thus 

fn^ - n 
v-u 

max  min   _Y 
v>i u<l-l v u 

h-i<yih' 

Consistency of the M.L.E. in G   ■  If  (f (')} is a sequence of n 
.m 

densities in 6   ,     then by the Helly weak compactness theorem there exists 

a convergent subsequence, call it  f  (•)  which converges to a density m 

f(')  in (/ .  If we could show that this implies convergence of the 

subsequence F  (•) of Ö  to the point  F(«)  of Q   ,     then we would 
m 
n 

have shown that 6       is  compact.  Take x  fixed; it suffices to show 

lim  /  f (y>dy = /  lim f (y)dy. n Jn      m J,. n m 

.x 

'0  "n 

/  . 
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This  interchange follows  from the bounded convergence  theorem, 

since any    fC*)     in   ^      is  less  than or equal to 

h(y) = 
m 0  <_ y  < 1/m 

1/y y  > 1/m 

and h(')  is integrable on  (0,x). 

Condition 1 is automatic;  u = Lebesgue measure. 

Condition 2. Let {g (•)) be the densities in Q      which are 

"rational step functions", i.e., step functions with jumps at the 

rationals and rational values. 

Condition 3. ig  s(x,v) <_ ig  m, which is integrable with respect 

to F(')- 

Thus, consistency follows from the theorem on consistency of the 

M.L.E. 

Example 2. (c.f. [9]). Let 3£ be the class of distribution 

functions which passes a Radon-Nikodymn derivative f(') which is 

bounded above by m and is unimodal, i.e., there exists some fixed 

tf such that if t > t > tf or tf  > t2  >  ti'  then ^t?) i^i)" 

(Any such tf will be referred to as a turning point.) 

As in Example 1, consistency of the M.L.E. in the class 

3£ =     (J  SC       follows from consistency of the M.L.E. in 3£   . 
m<+°o 

Computing the M.L.E. in 31   .  As before, to maximize the likelihood 

at the observations it is necessary to make the M.L.E. of the density as 

small as possible between observations subject to the condition that it 

be unimodal.  Thus we can make the following statements about the M.L.E.; 

* 
■'"—"■"• nrr-T [flnr Ji "TyrliB" 
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Some observation X   will be a turning point. At this 

observation the M.L.E. f (•) will have the maximum permissible value 

m, since we may take f (•)  to be discontinuous at this X . 

To the right of X., f (•) will be a left continuous step function 

and will be zero to the right of X . 

To the left of X , f (•) will be a right continuous step function 

and will be zero to the left of x . 

If we knew the turning point X  and knew that f (•)  had mass 6, 

0 <^ 6  <_ 1,     to the left of X.,  then we could proceed as before: 

"'V   \™-Ti 
v-u 

rain  max Y  Y 
v>i+l u<i j  u 

,  X1 1 y < X1+1 

j 

.  v-u 
max  min r—n- 

JIT     J    ^    ~^L 

v>i+l u<i v u 
' Xi <y^Xi+l 

Keeping  X.  fixed and writing the likelihood as a function 6: 

rr f (x) = d^^i-d)"^ • ^(x ...,x > 
i=l  j 

where tyi')     is independent of  6.  Thus the choice of  6 which 

maximizes the likelihood based on the assumption that  X  is the 

turning point is 6 = j-l/n-1.  Hence the M.L.E.  £_(')  is equal to 

that  f  (•)  for which the likelihood (using the optimal choice of 6) is 
n. 
J 

a maximum over all choices of j. 



h(y)  = m,     t     -  1 -  1/m £ y _< tg + 1 + 1/m, 

=  l/y-(t0+l),     t0 + 1 + 1/m < y 

=  l/(t0-l)-y.     y  < t0 -  1  -  1/m. 

Hence  for  fixed,   finite    a,   b: 

,.b „b 
lim 

a a 
nn  /     fn(y)dy =    /    limn  fn(y)dy. 

lim    F   (b)  -  F   (a)  = F(b)   -  F(a) . 
n    n n 

But every element of 31       is the integral of a unimodal density 

and therefore  F (-«.) = 0, ¥(-<")  = 0, nence  F (b) -* F(b)  for all b, 
n n 

as was needed to show 31       compact. 

The conditions 1, 2 and 3 are clearly satisfied;  p = Lebesque 

measure;  {g (•)} may be taken as "rational step functions", and 

£g s(x,H)   < £g m, hence consistency follows from Theorem 1. 
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Conslstency of the N.L.E. in 3f . Again, by considerations 

similar to the Helly weak compactness theorem, we may show that the 

collection of unimodal densities of 3f  is weakly compact.  (Recall 

that 31      will contain other than proper distribution functions.) 

What remains is to show that if F (•). F(*) are in 3fm, and 

f (x) -+ f(x)  at all points of continuity of  fC'), then F (x) ■+ F(x). 
n n 

Let t  be a turning point of f (•)» then if necessary we 
n r        n J 

may take a subsequence  t   which converges to some point  t-, 
m 

-°o < t- < +oo. For all large n,  t  E (^-1,^+1),  thus as before, for 
— u — n    u   u 

sufficiently large n,  f (y) <^h(y), where 
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Example 3. Let 9       (m < +«) denote the class of distribution 

functions F(') with the property that -lg(l-F(')) has a Radon- 

Nykodymn derivative r(') which is bounded above by m, and -r(«) 

is unimodal; i.e., there exists t0, 0 1 t- <^+«>, such that if 

tg £ 'i i t? or if t2 -tl - '"O* then r^t:2^ - r(ti^'  (Any suc1"' 

t- will be referred to as a turning point.) 

Let the class 9=9        be the class of distribution functions 

having unimodal hazard rates. 

Computing the M.L.E. in 9™.     (c.f. [2]). 

As in other examples of hazard rate estimation, the unrestrained 

M.L.E. has a hazard rate which is a step function, in this case it is of 

the form 

i 

I : 

r*(.) = (n-j)(x  -x )  ,  t £ (XJ.XJ^) 

The likelihood is a monotone function of these values and subject to the 

bounds m, e,  it is maximizing by setting 

r- (t) = Cn-jMx  -x )  Am,   t E (x ,x  ) . 
n J+i J J  J+J 

As before, if we knew the turning point  t-,  it would follow that the 

M.L.E. having unimodal hazard rate is just the decreasing "Brunkized" 

version of the "r   (t)  to the left of t« and the increasing "Brunkized" 
n 0 

version of the  r (t)  to the right of t„.  Hence the M.L.E. in 9 
n u 

can be obtained by maximizing this expression over all choices of t 

It follows from the form of the expression (c.f. [8]) that the 

m,E 

0' 

estimate in the class 9 is equal to  (r (t) A ni)  where r (t)  is 
n n 

the hazard  rate of  the estimate   in   9- 

■ umim 

,     ! 

i 
i 

) 

/ 
*   . t 
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, 

Consistency of the ^!.L.E. In 9 

First we show that 3       is compact.  Take G (•)» 
00 00 

n=l,2,...  having hazard rates {r (•))   and turning points  {t } 
n    . n , 

n=l00 n-1 
Then there is a subsequence, call it  {t }   such that t -♦■ t,, 

m , m   ü 
m=l 

0 <^ t„ £ +00.  It follows from considerations similar to the Helly-Bray 
00 00 

lemma that there is a subsequence of  {r (•)}  »  call it  {r (•)}  » 
m  m=l l       £=1 

which converges to some nonincreasing function on [0,tn). Similarly, 

there is a subsequence (call it {r, (•)}  ) of {r (•)}    which 
k=l       i{  i~l 

converges to some nondecreasing function on  [tn,+»). It follows that 
OO 

{r,(•)}   converges to a unimodal hazard function which is bounded 
*      k=l 

above by M; hence, (by the bounded convergence theorem) we have found 

a convergent subsequence of G (•) whose limit is in £7 * ,  as was 

to be shown. 

Again the conditions 1, 2, and 3 are immediate;  y : Lebesque 

measure;  {g } may be taken as densities with hazard rates which are 
m 

unimodal "rational step functions", and  £g s(x,v) <_ £g m. 

Thus consistency follows from the theorem on consistency of the M.L.E. 

Other examples.  In the manner of examples 1-3 wo could also show 

consistency for the class of distributions having Increasing (or 

decreasing) hazard rates bounded above by m.  As in example 1, 

consistency of these classes without the bound follows easily, 

(c.f. [8], [5]). 

t  ' 
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Following the lines of example 3 we could consistently estimate 

a bimodal density and compute the estimate in a similar manner.  It 

should be mentioned that in [9] Rao gives (as the solution of a certain 

heat equation) the asymptotic distribution of the M.L.E. of a unimodal 

density with known mode. 

Similarly one could prove the consistency of the M.L.E. of a 

distribution having convex hazard rate. An algorithm for computing 

such an estimate has been found in [A]. 

In the classical parametric estimation problems it suffices 

(in all those examples we have considered) to take a compactification 

of the parameter space and a countable dense subset of this space. 

The troublesome condition 3 is the same as one of Wald's hypotheses 

[10]. 

< 
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