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ABSTRACT 

The following papers are presented In this report: 

1. Operator for Time Delay Induced by Scattering 

2. A Note on Scattering Variational Prlncinles 

3. Integral Equations for Multi-Channel Collisions 

4. Calculation of Dissociative Attachment in Kot 0» 

5. Quas: -Adiabatic Molecular States: An Alternative to 
the Non-Croesing Rule 

6. Theory of Resonant Dissociative Recombination 

7. Formulation of the Two-State Problem in Terms of 
Adiabatic Potential Curves 

8. Treatment of Angular Momentum in Momentum Space 

9. On the Slope of Energy Curves as They Enter the Continuum 
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1.  INTRODUCTION 

A. OBJECTIVE 

The aim of the work reported here Is to: 

1. Review the available theoretical and experimental data on the 

reactions that control the electron density in missile wakes 

and in the environment surrounding nuclear bursts. 

2. Supplement this by calculating the cross sections (reaction 

rates) for specific reactions of importance in these problem 

areas.  (In its Initial stage», the program has studied re- 

actions in atmospheric gases such as dissociative recombina- 

tion [Example: NO + e ^ N + 0] and related processes.) 

3. Compute other reactions as requested by ARPA. 

4. Develop general computational techniques designed to Improve 

the accuracy and reliability of calculations of this type. 

B. RELEVANCE TO THE DEFENDER PROGRAM 

The program at Defense Research Corporation is directed towards 

the analyses of reaction rates that are directly applicable to several 

critical problem areas in the Defender program.  Some of these are: 

1. Radar return from missile wakes. 

2. Nuclear fireball clutter and scintillation effects. 

3. The expansion of nuclear debris at high altitudes. 

4. Atmospheric disturbances introduced by nuclear weapons. 

The objective at Defense Research Corporation has been to devise 

practical computational techniques for estimating the cross sections of 

the critical reactions connected with these problems.  The personnel 
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assigned to this task, well qualified by training and experience to under- 

take this work, include: 

Dr. B. A. Lippmann, Principal Investigator (half-time). 

Dr. T. F. O'Malley (full time). 

Dr. P. J. Redmond  (half-time). 

C.   SYNOPSIS OF WORK ACCOMPLISHED 

At the present time, the work is proceeding along two lines. The 

main emphasis is being placed on numerical analysis of specific reactions. 

However, auxiliary formal studies relating to questions arising In the 

course of attempting the numerical calculations are also being carried out. 

While some aspects of the work have not yet been completed, or are 

still In the process of being written up, a fair sampling of the work ac- 

complished during the 1966 period Is contained In the list of reports and 

journal articles given In the Table of Contents. Copies of all these 

documents are attached.  In addition, technical assistance In connection 

with the ARPA A&M Physics Program has been furnlshp ' as requested. 
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OPERATOR FOR TIME DELAY INDUCED 
BY SCATTERING* 

by 

B. A. Lippmann 

ABSTRAC: 

The operator that gives the time delay induced by a 
scattering process is exhibited explicitly. 

It is well kn^wn that the time delay induced by a scattering process 
1 2 

is ^iven by the energy derivative of the phase shift.  Some time ago, 

we observed that this theorem can be put in the "suggestive" form S rS, 

where r is interpreted as an "operator," equivalent, in an energy repre- 

sentation, to differentiation with respect to the energy. It is the pur- 

pose of this paper to make this relationship precise by exhibiting the 

time-delay operator explicitly. 

Thtc such an operator might exist is suggested by the action and 

angle variables of classical theory. For, if the action variable J- is 

identified with the energy, the conjugate angle variable if-i has the 

* Published in Phys. Rev. 151. 1023 (1966). 

2 
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! 

This appears to have first been shown quantum-mechanically by E. P. 
Wigner, Phys. Rev. 98, 1A5 (1955), although relationships of this sort 
are well known in filter theory, where the frequency derivative of ';he 
phase characteristic gives the time required for a pulse of energy to 
pass through the filter [ Radiation Laboratory Series (McGraw-Hill Book 
Company, Inc., New York, 1948), Vol. 8, p. 155]. A similar relation 
describes the spatial displacement of a wave packet upon reflect'^n by 
a plane Interface whose reflection coefficient is a function of the 
wave number parallel to the Interface, L. M. Brekhovskikh, Wavas in 
Layered Media (Academic Press Inc., New York, 1960), p. 105. 

See F. T. Smith, Phys. Rev. 118, 349 (1960), Eq. (45). 
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equation ot luOtlon 

h   •   1^   ■    ! • <» 
which  Integrates  to 

A^t)     -    t + (^(0)   . (2) 

One would expect that the first equation would have as Its quantuüi- 

mechanlcal analog the convtr^ional commutation relation that holds for 

conjugate variables, while the second equation, transcribed to quantum 

mechanics, would relate one of the quantum-mechanical operators to the 

time parameter.  It is shown below that these expectatior  can be realized. 

We first introduce the operator for the magnitude of the particle 

momentum 

2    2    2^/2 
P - (Px + Py + P2 ) (3) 

and the operator represrr .ing the projection of the radial coordinate 

upon the momentum 

rp =  (l/p;(p'r) . (4) 

3 
These are analogous to the operators Introduced by Dirac except 

that the roles of position and momentum have ' 5en exchanged. 

As in Ref. 3, we easily find that these operators satisfy the 

commutation relation 

[r p] - 1 (5) 
p» 

and that the operator r + i/p, which is Hermitian, Is canonlcally con- 

jugate to p . 

P. A. M. Dirac, The Trinciples of Quan^m Mechanics (Oxford University 
Pr-ss, New Yovk, 1958), p. 152. 
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The time-delay operator x Is defined by 

2p \ p  p /   \ p  p / 2p 
(6) 

For the free particle Hainlltonlan, H    ■ p   ^m, we find 

[t,Ho]    -    I   . (7) 

Although T, as constructed In Eq. (6) above Is formally Hermitlan, 

some care must ba Mken In developing Its properties, because of the fact 
4 

that H has a spectrum that is limited to positive values (0,»).  . w- 

ever, this circumstance does not impair the Interpretation, which follows 

directly from Eq. (7), of T as an energy derivative in a representation 

in which H is diagonal:  r-i3/3E . 

Calling the operator defined in Eq. (6) T(0), we can also introduce 

the dime-dependent operator 

1H t    -iH t 
T(t) - e 0 1(0)6  0 

- t + T(0) . 

(8) 

The relations given In Eqs. (7) and (8) above art the quantum me- 

chanical analogs of the classical Eqs. (1) and (2). 

The application to the calculation of time delays is made by con- 

sidering the matrix element 

(9) (tJ.a(t),T(0)*a(t)j 

where the state vector i|) (t) is the scattered wave packet, evaluated for 

times after the scattering process has been completed. The time depen- 

dence of this stste vector is then given by the free-particle Hainlltonlan 
-IH t 

alone: ty  (t) " e  0 ^ (0):  here, the last factor represents the 
a a 

For example, the operator < has no eigenfunctions;  see W. Pauli, Hand- 
buch der Physik (Springer-Verlag, Berlin, 1958), Vol. 5/1, p. 63. 
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scattered-state vector ejtrapolated back, to zero time. 

In the following, both the incident and scattered wave packets are 

assumed to be normalized to unity.  Since the scattered state is con- 

nected with the initial state vector $ (0) by the S matrix, (9) can be 

evaluated as below: 

iH t    -iH t 
(*a(0),e 

0 T(0)e  0 ^(0)) 

- (^a(0),|t + T(0)| *a(0)) 

- t + ($a(0),S"
1T(0)S4a(0)). (10) 

If the S matrix has the form S - e     , in an energy representa- 

tion the time delay operator becomes equivalent to energy differentiation, 

and wt find, as a final result 

(*a(t),T(0Ha(t)) - t - 2 ^|^-+ (*a(0),T(0)«a(0)) .  (11) 

In this form the interpretation of the energy derivative of the phase 

shift as the time delay induced by the scattering process Is apparent. 

I am indebted to Professor Massey of University College, Lor- 

don, for his generous hopnitality extended over part of the period during 

which these ideas were clarified. 
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A NOTE ON SCATTERING VARIATIONAL PRINCIPLES 

by 

B. A. Lippmann 

ABSTRACT 

The Schwinger variational principle is converted 
into a slightly modified form of the Kohn-Hulthen 
variational principle. A generalization of the nevi 
form, valid for rearrangement collisions, is given. 

DIRECT COLLISIONS 

We start with the Schwinger variational principle 

(1) 

where 

G = -——    ;  X = E + it  ;  e > 0 o  X -H      a   a a o 
(2) 

The last two terms on the right side of (1) may be combined to yield: 

(♦«->. V |Vt<+) + V ^)]) - -«-'. (Xa-H, |»a + Oo, ♦«!) + !.(♦<->.♦.). 

(3) 

The last term above may be dropped since it vanishes in the limit e -► 0. 

* Submitted to ARP.. for publication clearance. 
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Treating the first term on the right side of (1) similarly, 

(V V ^ • (V^a-V l*a + V *a+)|) " ^^b'^)  (4) 

where, as before, th< last term vanishes in the limit f. -> 0. 

Ab a consequence, (1) takes on the new form 

Da  \ b  aola   o  a | /   \ b     a   | a   o  a | / 

(5) 

where the limit e -► 0 is understood. 

It is clear that i>        and the quantity in the { } are equally 

suitable as trial functions and are equal for the exact state vector. 

Hence, if we regard { ) as the trial function, anJ symbolize it by it      , 

when we pass to the limit E * 0, a slightly modified form of the Kohn- 

Hulthen variation^1, principle results: 

Tb. = K(E-Ho) *a+)) " K"*' &'V   ^D  . (6) 

where E is the common energy of states a and b. 

Starting from (1) again, and combining the terms involving tj^  , we 
b 

obtain 

Tba = ((E-Ho) ^ *a) " ((E-H) C^ *a+))  '        (7> 

The variational principle (6) defers slightly from the usual Kohn- 

Hulthen form; the first term on the rlgiit is more conventionally expressed 

as ^Tjja)triai*  
The present form automatically insures that this term 

emerges. A similar remark holds for (7). 

It will be noted from (1) that the presence of V limits all integrals 

to the region where the potential differs from zero.  The integrals In (6> 
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and (7) should therefore be restricted to the same regions. If the trial 

functions are constructed to represent free particle motion outside the 

region where the potential Is different from zero, this restriction of the 

region of integration is automatically accomplished in (6) and (7). 

Although the manner of derivation of (6) and (7) from (1) Insures 

that the stationary properties of (1) are maintained in the forms (6) and 

(7), Jt is a simple matter to verify directly that (6) and (7) are station- 

ary expressions for T.  when the state vectors are varied about their exact 

values. 

REARRANGEMENT COLLISIONS 

The foregoing may be extended to rearrangement collisions by intro- 

ducing a channel index (o ■ 1,2,...N) on the decomposition of the Hamiltonian 

H » H   + V 
o,a   a (8) 

as well as the state vectors. When this is done, the variatlonal principle 

for the amplitude scattered from channel o, stats a, to channel ß, state b, 

can be put in the two alternative forms: 

Tb.ß;a,a " (*b,ß'^»o,^ ^a+a) " fö *'*  C 
) 

= ((E-Ho,a) ^ *a.a) - MCß'O '  (9> 

COMMENTS 

The two forms given in (6) and (7) treat the initial and final states 

unsymmetrlcally. Clearly, a symmetrical form of the variatlonal principle 

may be obtained by averaging (6) and (7), and similarly for the two forms 

given in (9). 

Th« trial functions appearing In these variatlonal principles cor- 

respond to diagonalizing the momenta of the incident and final states.  If 

UNCLASSIFIED 13 
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the potential is spherically symmetric, forms of the variational principles 

given above are easily obtained, in which the angular momentum is diagonal, 

by introducing the conventional resolution of plane waves to angular mo- 

mentum eigenstates.  In the new forms, the T-matrix for angular momentum, 

£, is given by - — e *■ sin 6 ; only the radial parts of the Hamiltonian 

operators H and H appeal, and the wave functions are purely radial. To 

verify that the expressions for each angular momentum state, £, are indi- 

vidually stationary, we assume that the state vector is given exactly in 

the plane wave form for all i'  f  l\  varying the quantities referring to I 

only, the stationary property of the original (plane wave) expression then 

insures that the terms involving £ alone constitute a stationary expression. 

14 UKCLASSIFIED 
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INTEGRAL EQUATIONS FOR MULTI-CHANNEL COLLISIONS 

by 

B. A. Lippman 

ABSTRACT 

Two new Integral equations to describe multi-channel 
collisions are given: one uses an explicit cut-off 
radius; the other does not. The new integral equations 
possess symmetrical kernels, thereby facilitating the 
application of the Pauli principle 'and permitting the 
asymptotic scattered amplitude in each channel to be 
derived simply. The limit e -> 0 does not result in 
a "homogeneous" integral equation. 

The integral equations appropriate to each of the channels in a 

multi-channel collision are here unified by the use of channel projection 

operators.  Two new integral equations result corresponding to the choice 

of two different types of channel projection operators used: one type uses 

an explicit cut-off radius and the other does not. 

The new integral equations treat all channels on an equal basis; 

permit simple derivations of the asymptotic form of the scattered amplitude 

in each channel — from which the transition matrix elements -'.ire easily 

identified; possess symmetrical kernels, thereby facilitating the applica- 

tion of the Pauli principle; and eliminate the difficulties in principle aris- 
2 

ing from the presence of "homogeneous" equations in some of the channels. 

* Submitted to ARPA for publication clearance. 

1 Related operators have previously been introduced by H. Feshback, 
Ann. Phys. (N.Y.) _5, 357 (1958); 19, 287 (1962); and B. A. Lippmann, 
Lockheed Technical Report NONR 3368(00), 1964 (unpublished). 

2 This apparent lack of uniqueness in multi-channel collision theory 
has led to the introduction of the Fadeeyev equations.  There is no 
lack of uniqueness if e ^0. 
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The derivation is Riven in a general form and also illustrated for 

the case of electron scattering by atomic hydrogen. The electrons are 

first considered distinguishable: the Pauli principle is taken into account 

later. 

For electron-H scattering, there are four channels. Assuming shield- 

ed Coulomb potentials, channel 1 corresponds to electron 1 moving freely 

and electron 2 interacting with the proton; channel 2 corresponds to elec- 

tron 2 moving freely and electron 1 interacting with the proton; channel 3 

corresponds to both electrons moving freely; channel 4 corresponds to both 

electrons interacting with the proton and, if convenient, also with each 
3 

other.  There is some arbitrariness in the division of the interactions 

between H   and V , where H = H   + V (a = 1,2,3,4). o,a     a o,ct   a 

The basis vectors in each channel are 

* (1,2) = E , (2) x .. (1) a, i        a     a 

*a.2 (1'2) = V (1^ V (2) 

* (1.2) = x . HJ X ., (2) 

* , (1,2) = c , (1) u „ (2) a,^        a     a (1) 

where the x's cor~espond to .   particle wave functions and the remain- 

ing symbols describe interacting wave functions. Each $  above is an 

eipenfuiction of the corresponding H o,a 

Assuming the Incident wave is in channel 1, the integral equation 

for the total wave function is 

Va,l " *a.J  +  Go,l Vl va,l (2) 

3 In particular, channel 4 can be defined to include a zero width 
resonant state, with V, being responsible for the energy shift and 
lifetime. 
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where 

G    = i-   ;  A  = E + ie  ;  e > 0 .   (3) 
0,1    A-H,       a     a 

a   o,! 

4 
In channels 2,3, and 4, we have (In the limit e ->■ 0) 

a,l    o,2 2 a,l 

0,3 3 a,l 

- G , V, *(+J  • (4) 
o,4 4 a,l 

The integrations in coordinate space consist of the direct products 

of the individual coordinate spaces of electrons 1 and 2, which we divide 

into channels as follows. In each space, we introduce a distance R around 

the target. Let 11,(1) be the operator that projects onto the space of 

particle 1 interior to R; similarly, let RF(1) project onto the space of 

particle 1 exterior to R. These are the "internal" and "external" regions 

of 1. For any value of the total energy, R can be chosen large enough so 

that if one examines the wave functions of the bound states energetically 

possible in each channel, these wave functions are essentially contained 

within R. 

VJe define four channel projection operators corresponding to the four 

channels that are possible in this special case: 

C1 = RI(2) RE(1)     ;     C2 = RjCl) RE(2) 

C3 = RE(1) RE(2)     ;     C4 = Rjd) RI(2)  .     (5) 

The channel operators are mutually exclusive and their sum covers the direct 

product space completely; 

CiCj = Ci ^j     ;    lCi    ~    l    ' (6) 

4
 B. A. Lippmann, Phys. Rev. 102, 264 (1956). 
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We now multiply Eq. (2) by C., and the successive lines of (4) by 

C , C , and C , and add, thereby obtaining the first of the integral equa- 

tions we have been seeking 

„(+)  _ 
'a,l •' 

:1^1+I CG   V  ^i & o, a a 3, i 
(7) 

In the limit t ->- 0, the second term on the right yields the scattered 

amplitude in each channel.  That is, the projection operators effect a 

separation between those states which only exist in the region internal t-o 

R and those which exist in the external region as welj.: these are the dis- 

crete and continuum states respectively.  If R has been chosen large enough, 

the discrete states in the Internal region that are energetically accessible 

maintain their full c'-thogonality properties unimpaired.  The continuum states 

in the external region tttat combine with these bound states to conserve 

energy are unaffected by starting the integration at a finite value of R; 

the continuum states that do not conserve energy are exponentially damped 

in the external region.  Thus, as R approaches infinity, these exponentially 

damped states contribute nothing.  For the "propagating" states in the ex- 

ternal region, R may be permitted to approach zero. 

Introducing the basi;, vectors for each channel explicitly, (7) be- 

comes 

,(+) ^ = c ,    + y y   ^- T 
,1     1 a,l   Zrf ZJ  ^ ~ K       b,ii;a,l 

a  b 

a t 

a   b 
(8) 

vhere the transition amplitudes are given by 

(+) 
b,ß;a,a \ b, ß  ß  a, a / (9) 

We have assumed distinguishable particles in deriving (8). However, 

if the parcicles are indistinguishable, (7) may be adapted to reflect this 

explicitly by multiplying both sides by the proper symmetrization or anti- 

syrnmotrization operator, s.  With tiie limit E -  0 understood, (8) is then 
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replaced by 

./+j » s c * , + y y ^-V L  tVs ^w\t (10) ra,l 1 Ta,i ZJ   ^     A    " E
K  ^  b»a      a        a,l' 

bot D 

The sum in (10) Includes states that differ only by an interchange of 

particles 1 and 2. If the summation is restricted so that these states are 

excluded — that is, the summation Is only over ""istlnct" channels — (10) 

becomes 

,'<+' - s c, ♦ , +   y   ^-^ (♦„ . v. »w).  du 
a,l      1 a,l      Z-    ,   ,-  ^ b,a  a  a,l/ 

a,b     a   b 
"distinct" 

states 

Thus the transition amplitude, when the Pauli principle is operative, 

is given by 

^.ßja.a = K,e' V*a!i) ' (12) 

The projection operators defined so far correspond to a definite 

choice of a cut-off radius  However, (8) also holds for the channel pro- 

jection operators, defined below, which are Independent of the cut-off 

radius. 

i 
■ 

These C are defined In the terms of the particle energies as follows. 
^* 

In each channel,  say "a,"  the corresponding H        defines the enf.tgies of 
o,a 

particles 1 and 2 — when one of them is in the asymptotic region — unam- 

biguously. We can therefore redefine the C : 

C1 = n(-E2) nCE^    ;    C2 = n(-E1) n(E2) 

C3 - nCE^ n(E2)     ;    C4 = nC-E^ n(-E2) 

2n(x) = 1 + j^r-  . vi3) "R 

UNCLASSIFIED 10 
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The previous considerations hold unchanged for the new definitions 

of the channel projection operators, in particular, (8) no longer requires 

the introduction of a cut-off radius. 
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CALCULATION OF DISSOCIATIVE 
ATTACHMENT IN HOT 02* 

by 

T. F. O'Malley 

ABSTRACT 

The very striking temperature dependence of the dis- 
sociative attachment cross sections found experimentally 
in O2 has been reproduced by a semi-empirical calcula- 
tion, assuming a Maxwell distribution of vibrational 
(v) and rotational (r) states. A recently derived ex- 
pression for the cross section av r is used, and the 
final state potential curve of O2" is parametrized to 
fit the experiments. The temperature shift is found to 
be caused by the effect on excited vibrational states 
of the rapidly varying "survival probability," a 
measure of the competitio.i between autoionlzation and 
dissociation. By-products of the calculation are the 
potential curve for the final dissociating state of 02~ 
together with an estimate of its autoionlzation width, 
ra(R)> and also the contribution of this state to the 
total cross section for electron energy loss to vibra- 
tional excitation and dissociation. 

It has been found experimentally by Fite et al.  that the cross 

section for dissociative attachment (DA) of electrons to 0_ has an extra- 

ordinarily large dt -mdence on the temperature of the 0„. The shift and 

broadening with temperature waj such that at . ^O K the cross rection peak 

was shifted to lower energy by 1 eV while the apparent onset v.v s reduced 

* To appear in Phys. Rev., March 1967. 

W. L. Fite and R. T. Brackmann, Proc. 4th International Conference 
on the lonization Phenomena in Gaseo, Paris, 1963, Vol I, p. 21. 
W. L. Fite, R. T. Brackmann, and W. R. Henderson, IVth International 
Conference on the Physics of Electronic and Atomic Collisions, Science 
Bookcrafters, Inc., Hastings, N.Y. (1965), p. 100. 
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by over 2 eV.  The present calculation was done in an attempt '.o provide 

some understanding of this remarkable effect. 

It is first assumed that the direct effect of the temperature. (T) of 

the 0.-, is to produce a Maxwell distribution of vibrational (v) and rota- 

t'onal (r) states.  The cross section a(T,£), where E is the electron 

enercyi is then the Boltzmann average of the cross sections o   (£) from v, r 
each of the individual excited states, thus 

(T.E)  = ^ 
-(E +E )/kT 

Ne  V r    o  (E) 
v.r^ (1) 

V=v 
mm 

r=r 
min 

where N is the boltzmann no-malization factor, and E and E are the vibra- 
v     r 

tlonal energy and rotational energies of the 0„ molecules, respectively. 

The quantities v .  and r .  are subject to the threshold requirement for 
mm     mm 

the process, viz. E + E + E  '3.6 eV, and the cross section o   is 
v   r ~  „ v,r 

given by the theoretical expression 

o   (E)  = ^ 
k2 

Ui. ih-if) (2) 

The F , r  and p as wei1 as x are evaluated at the final state turning 
ad v 

point R^(E,v,r).  The exact definition of the quantities is given in Ref. 2. 

In particular, k is the electron's momentum, g is an angular momentum and 

spin factor. 

X) autoionization widths, 

F  and P   are the total and partial (for the ground state 
3       3, X 

.e., r = i. r . 
a   J  a,j 

F, is a width for dis- 
ci 

sociation, x  is the vibrational wave function, R the turning point is in 

vlbrational units and p is twice the Imaginary part of tha final state 

phase shift The factor e " is called the survival probability or 

survival factor.  It is given approximately by 

R 

exp |  i (R)dR/ft v(R) 
J       a 

exp -f r (R)dt(R)/JF{ 
J    a 

(3) 

2  T. F. O'Malley, Phys. Rev. 150, 14 (1966). 
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where R is the point where 1' goes to zero, v Is tbi; velocity of dissocia- 
C 3 

tion and t the co-respondin?, classical time. This factor results from the 

competition between autoionization and dissociation. Where the above ex- 
3 

pression is not sufficiently accurate, an exact expression can be used. 

The effect of rotation in (2) is implicit.  It adds a centrifugal term to 

the potential curves for initial and final vibrational motion, and at low 

energies it helps put the total energy above the threshold and thus de- 

termines v ,  in Eq. (1). 
min 

The cross section (2) is completely determined when the potential 

energy curves V, and V, are specified including the width T    of the latter, 
it a 

which is a resonance or autoionizing state. Since V , the ground state 
4 i 

curve for 0„ is well known,  it is necessary only to know the final curve 

V, together with its width F in order to determine the entire family of 

cross sections given by (2). Accordingly, the procedure adopted in the 

present work was to parametrize this potential curve and its width. The 

parameters are then chosen with a view to fitting the experimentally de- 

termined a(T,E), in particular as given by Fef. 1, to the extent that this 
o 

is possible. The curve V^ is first expanded in a series about R ■ 1.21 A 
r o 

(the 02 equilibrium distance), as 

Vf(R) = Eo - V'AR + j V"AR
2 - (1/6) v'"AR3 (4) 

where AR = R - R . For this width, we may either parametrize T (R) and 

then derive p fr^m Eq. (3) or a more exact formula, or else parametrize 

p(R) directly anc 

done in the form 

P(R) directly and derive T   . The latter course proved easiest, ar'. was 

p(R) = p' (Rc - F)
n     (R < Rc) (5) 

3 J. N. Bardsley, A. Herzenberg, and F. Mandl, Atomic Collision Pro- 
cesses (M.R.C. McDowell, ed.). North Holland, Amsterdam, 1964, p. 415. 

4 F. R. Filmore, J. Quant. Spectry. Rad. Trans. _5. 369 (1965). 
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and p - 0 beyond R .  Lest the form of (5) appear arbitrary, this is 

actually the exact form which follows from (3) in the limit that the po- 

tential curve V is approximately linear between R_ and R und V    has its 
L+l/2 C   , a 

threshold behavior P <* (R - R)    , where L is the electron s asymptotic 

angular momentum.  In this case n would be equal to L + 1.  However, the 

present results cover a wider range and so (5) represents simply a 3-pa- 

rameter approximation to the true behavior.  R is interpreted as the 

crossing point between Vf and the target potential curve into which it 

autoionizes, which is where the partial autoionization width F  , and 

therefore its contribution to p goes to zero in the Born-Oppenheimer ap- 

proximation. 

It was found that the best fit to the experimental results was 

obtained with the parameters in (4) and (5) chosen as follows: 

E = 7.8 J 0.2 eV, V' = 27 = 2 eV/X, V" = 110 t 20 eV/A2 , 
o 

V  = 300 t   100 eV/A 93 (6) 

and 

= 1.5 t 0.5, p' = 41 
o-3/2 

3 A   , R = 1.44 i 0.03 A 
c 

(7) 

The uncertainties expressed for the various quantities ate meant to indi- 

cate the sensitivity of the fit to the various parameters, and do not 

necessarily reflect any judgment as to absolute errors. 

The resulting cross sections at 300 and at 2100 K are plotted In 

Fig. 1 together with the experimental results at these temperatures.  The 

theoretical curve for 3000 is also shown.  The normalization of the 300 

cross section was taken mainly from the work of Schulz.  The theoretical 

curves in Fig. 1 have been averaged over a broad distribution of electron 

energies chosen to approximate that employed in the experiment 

oav(T,E) = / dE' f(E') n(T,E') (8) 

G. J. Schulz, Phys. Rev. 128, 178 (1962). See also D. Rapp and 
D. D. Briglia, J. Chem. Phys. 43, 1480 (1965). 

24 UNCLASSIFIED 



UNCLASSIFIED 

8fl9-!lV 
I'       ■ ■■ 

-•jf 

- 
o    sir 

o                \Sr 

§ ^T 
CM J>'^            XL 

J>- v^ 

^ 
0     >. 

i 

>v         o\ 

\ o 

1 

fl) T-l     »I 

!/!      • 
T3 -O (0    4J 
^   M JC   X 
r-l     9) M « 
O   M • 4)   4-1 
tn   D-i-i e* to <fl 
(U 3 J= 

J: C u y 4-i 
H o 01 

h D   c 
iJ <u O -H 

•  ü 4J o 
«   9) i-l -*  T3 

)      •-' ^ fs  a) 
C   <U (0 
o UH l-H     W 
CO  "O O «   3 

rt 4-1   U 
■o  o (0 C   ca 
C   Vi 4-1 « -w 
«8 ,0 ß B  TS 

•H i-l 
O   « o M  sn • 
O a a» a> g rH Si a 
ts  t» rJ X    * o 

•H fl <U   G X, 
U    % 4.1 O tn 
(0 M <U i-l 

c 4) x: 4J O 
to   O B H  « 0) 
C --I i-i ^-i i-i 
0  « u 3 « 
i-l   (0 OJ •   U 
4J  i-l D.ir> f-i (0 
O   3 X a i-i 
01   u 01 • u 
W   r-l U-l 0 

cfl a) 0)   4J o 
0)   U £ (Xi   C o 
(0 4J 01 o 
0  « >W    (0 en 
l-i   C (U O   (U 
U   0) u Id u 

u (fl 4J    O. o 
4J    0) r-l 14-1 

c n CO 3   (U 
m a <y w £ ot 
B ^-i 01    4-1 > 
J   4> ü M u 
O J= »-I O 3 
0]   4-t •r^ V   4J o 
U o Ä 
4->     B 4J  T3 1—1 

«  o <u 0) n 
ki £ O    N u 

a» u-i H *J  iH •H 
> r-l 4-1 

•H   0) 13    Cfl 4) 
u  u • SI M 
as  «a Tl O 

•r4 0) i-l   O 01 
U    U5 •a r-l    C Ä 
O   0) 3 *J 
ta  > 
0)   M 

I-I 

o s c 
C   4) (U 

•H    3 C O   V J= 
Q   U i-i C  JD H 

i-H 

<ü 
M 
3 
00 

^D gl_oE 'NouDis ssoaa 

UNCLASSIFIED 25 



UNCLASSIFIED 

where the electron distribution function fCE') was taken to be a shifted 

Maxwellian corresponding to about 280ÜUK.  The experimental 2100" cross 

section represents the experimental signal normalized to agree in magnitude 

with the presently calculated 2100" cross section, which is 1.3 times as 

large as that at room temperature.  Though the magnitude of the cross 

section (as opposed to the signal) is not given explicitly in Ref. 1, the 

ratio of 1.3 found here is consistent with the cross sections implied by 

the discussion in these papers. 

The theoretical fit to the experiments may be seen from Fig. 1 to be 

good, except that it fails somewhat belcw at the lowest electron energies. 

The experimental plateau above 8 eV is apparently due to some other cause. 

In Table 1, the calculated cross sections a(T,E) are tabulated for a num- 

ber of temperatures. Note that unlike Fig. 1, these are not averaged over 

the electron distribution of Eq. (8). 

In the course of the fitting process, it was found that the three 

parameters E , V' and V" of the potential curve V^ are essentially de- 

termined by the room temperature data, except that E  Is raised by the 
—P 

presence of e  .  The quantity V''' does not affect the 300° result and was 

chosen mainly for its influence on D(E) (see Table 2).  The expansion (4) 

of V should hold till roughly R = 1.55 %. 

_* 
The final state potential curve V^ for the system 0   is shown in 

Fig. 2, together with other relevant states of 09 and 09  taken from 
A 

Gilmore's curves.   It is believed that this potential curve together with 

the approximation (5) and (7) to the width (see also footnote 6) consti- 

tute a significant by-product of the present work.  Note that the curve 

Strictly speaking, one should put at least two terms like (5) into 
p, one for each set of states.  This was tried and found to give 
essentially the same cross sections.  The parameters were found very 
roughly to'be (with n = 1.5) Rcl = 1.52, , 'j = 16; Rp = 1.39, 
, '9 = 27.  This gives approximately F, = 1.5 (1.52-R) and T^  = 2.6 
(1.39-R), while T^ v 0.6 T^.  However, the relative magnitude of 
^ and i 2 was found to be somewhat arbitrary without additional 
experimental information. 
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TABLE 1 

Dissociative attachment cross sections o(T,E) from Eq. (1) 
-21  2 

at various temperatures, in units of 10   cm . The 

electron energy E is in eV and T in K. A sharply 

defined electron energy is aüsumed. 

E/T 2600° 2200° 1800° 1400° 300° 

1.0 5 1 0 0 0   1 

1.5 22 4 0 0 0 

2.0 98 27 4 0 0   | 

2.5 312 119 29 3 o  1 
3.0 650 306 104 20 0 

3.5 1070 610 271 77 0 

4.0 i.^30 1010 560 224 1 

I    4-5 1?20 1430 940 500 21   | 

5.0 2120 1750 1340 890 155 

5.5 2070 1870 1610 1280 520 

6.0 1810 1750 1650 1500 1040 

6.5 1420 1440 1450 1440 1380 

7.0 1000 1050 1100 1160 1310 

7.5 630 670 720 770 930 

8.0 360 381 405 434 520 

8.5 183 190 197 206 229 

1   9.0 82 83 83 83 83   | 
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TABLE 2 

lable of activation energies, D(E), experimental and theoretical 

in eV, given in different approximation. D's are in eV. 

D  comes from 0  of Eq. (8), i.e., with electron spread, 
av av    ^ 

D corresponds to a with no electron spread. 

C is the corresponding coefficient from Eq. (10) 

in units of 10~  cm . 

D was compared with rotation entirely neglected (vibration only) 

E D 
exp 

D 
av 

D D 
v 

C(E)   I 

1.0 — 1.59 2.43 2.61 370 

1.5 — 1.36 2.05 2.12 280 

2.0 1.0 1.14 1.64 1.66 200 

2.5 .92 .93 1.18 1.18 72 

3.0 .79 .72 .89 .91 39 

3.5 .58 .55 .67 .68 23 

3.75 __ ,47 .59 .58 19 

4.00 .29 .40 .50 .50 15 

4.25 — .34 .42 .42 12 

4.50 .15 .28 .35 .35 10 

4.75 — .22 .28 .28 8 
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goes below the dissociation limit at about R = 1.44 A and becomes attrac- 

tive. 1*2  dotted line from about R = 1.55 to 2.1 A represents the way in 

which this curve is assumed to connect up with the known asymptotic form 
? -* 

of the  H  curve for 0„  .  Although no use is made of this dotted region 
u „2 

of the curve, the FI  configuration is fully consistent with the assumed 

electronic structure of the state, which would consist of an electron attach- 

ed loosely to a combination A and C core.  It follows that this state probably 

has a dissociaiion energy of the order of 1 • — eV. 

The heuristics of choosing the parameters for p in (7) may be of 

interest.  They were chosen to fit the 2100 cross section.  The primary 

feature, namely the shift of the peal, by 1 eV, was easily reproduced by 

simply varying the amplitude p'. However, the obvious choice of n = 1/2 

(corresponding to a constant T  )  gave a cross section that was either 
a 

nearly square in shape or double-peaked, depending on R .  It was only 

when n was varied to between 1 and 2 that bell-shaped curves resulted. 

The value of 1.5 which fits best is gratifyingly close to the assumed cor- 

rect threshold value, which as mentioned would give n = 2.  Finally, fitting 

the observed cross section width fixed R loosely at 1.44 •   0.03 A.  The 
c 

value 1.44 for R was a little surprising.  Reference to Fig. 2 shows that 

th'.s lies squarely between the crosring of the A,C system at R ■ 1.39 and 

the crossing of the Xia»t> states at R > 1.55.  R had been expected to —       c 
coincide with one or the other of these crossings.  The intermediate value, 

somewhat closer to A and C, is interpreted as meaning that there is con- 

siderable autoionization to all of the 3 allowed states, ^ith the largest 

part going to A and C.  The value of 1.44 is therefore taken as an average 

i   6 or compromise value. 

The foregoing results, (6) and (7), were derived with the cross sec 
— 1 8 

tions arbitrarily normalized.  Taking the 30üJ normalization of 1.4 x 10 
2 

cnT from Ref. 5 allows T   in (2)   to be determined.  First, assuming the 
,,      a, A 

07  state to be "I! , it follows that the weighting factor g equals 2/3. 

Further, it follows from n = 1.5 in (7) that the width T     is roughly linear 
3. 

in electron energv.  Substituting all this into Eq. (2) with v = 0 and r 
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small yields for the partial capture width fro^ the ?tat» X 
I 

T   = 0.034 E . (9) 
Si A 

This was incorporated in Fig. 1 and Table 1. The total width, r , also v
2 a 

can be computed from p as determined by (5) and (7).  As r is not used 

directly, this was done only roughly, in a linear approximation, with the 

result F (R) ^ 4 (1.44 - R). Near the cross section peak then T v is a asX 
somewhat more than 1/4 of F , which Is also believable. 

a 

An analysis of the physical content of the ca' alation is made in 

Fig. 3, where the 2100° cross section is plotted in five successive approxi- 

mations.  In curve a, we set v = r = p= 0. This would correspond to the 

low temperature cross section without p.  Including excited vibrational 

states in (b) broadens the curve considerably. Applying the rapidly vary- 

ing survival factor e   shifts (b) to (c), while the narrower curve a is 

shifted only to c'.  (Differences in magnitude are suppressed in Fig. 3.) 

To a good approximation for O2, the difference between c and c1 represents 

the entire temperature effect.  If p(E) or its energy variation were 

small, as for some other molecules, then the curves a and b would describe 

the effect and there would be broadening but no shift. Curves d and e , 

representing 0 and 0  respectively, show the modest shift caused by rota- 

tional states (agreeing with the analysis of Ref. 2) and the shift and 

tailing effect of a broad electron distribution.  It can be seen from (d) 

that excited rotational states are of negligible importance compared tc 

vibrational states. 

Figure 4 analyzes the calculation from a slightly different point of 

view. The cross sections a for attachment frcr the vth state are plotted 
v r 

individually.  (The small dependence on r is here suppressed.)  For each 

increase in v, there is a large shift to the left and a subp*antlal increase 

in magnitude (oc is 20 times as large as 0 ). Note that each cross section 
J o 

is cut off below its threshold (E + E =3,6 eV).  These curves show 

graphically the basis for the observed shift and the large low energy tail. 

7 This is in agreement with the qualitative suggestion of Y. N. Demkov, 
Phys. Letters 15, 235 (1965).  See also Ref. 2. 
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A very interesting aspect of the work of Fite et al.  was the finding 

that at the lower energies (E ^ 5 eV and T x  1000JK) the cross sections 

follow very closely the formula 

o(T.E) » C(E) e-
D(E)/kT  . (10) 

Exactly the same was found for the presently computed results.  In Fig. 5, 

log o is plotted against 1/T and the data are seen to lie on straight lines 

from roughly 800 to 3000 K.  The slopes, D(E), which were called activation 

energies, have a clear interpretation ^n the present work.  They are the 

average internal energy (vibrational plus rotational) of the molecule which 

maximizes the summand in Eq. (1), showing the internal states which contribute 

most strongly to the temperature-averaged cross section.  In columns 1 and 2 

of Table 2, the experimental values D  (E) are compared with thr theoreti- r exp 
cal values D  (E) taken from c  of Eq. (8).  The agreement is seen to be 

av av 
within 0.1 eV everywhere.  (Probably the discrepancy at the largest E's 

would be reduced if the experimenters had plotted o rather than the uncor- 

rected current.)  The third column shows D(E), the present result with 

sharply defined electron energies from Eq. (i).  The very large difference 

between D and D   is due to the tailing effect of the hroad electrca dis- 
av 

tribution.  In the fifth column, the corresponding coefficient C(E) from 

Eq. (6) is listed.  The fourth column, labeled D , was calculated with 

vibrational states only (no rotational excitation).  This corresponds to 

the data plotted in Fig. 6, which differs very little from Fig. 5.  The 

difference between D and D is some measure of the relative importance of 
v 

rotation, which seems to be very small except below about 2 eV.  This is 

in disagreement with the assessment of Fite et al.   In this connection, 

it was found that at 2100" rotational states with E >> kT never contributed 
r 

significantly to the sum in Eq. (1) (unlike the situation with the vibra- 

tional states), until E fell below about 2 eV.  Ever at the lowest energy 

of 1.0 eV the average excitation of the rotational states contributing to 

(1) was not much more than 20% of that of the average vibiational state 

(v  13). 
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It is interesting in Table 2 that for electron energies well below 

the threshold of 3.6 eV, the values o'  D(E) (not D ) converge more or 
3V 

less to 3.6-12, the internal energy necessary to raise the system above the 
a 

threshold.  This would indicate that the results for very high vibrational 

states are no longer sensitive to the details of the wave functions, but 

that these may be replaced by a suitable average value, in the statistical 

spirit. Thus, the simple concept of an activation energy does become ap- 

propriate in this limit.  It seems, however, that at the very lowest energies 

(below 2 eV) the dynamical effects of rotation tend to bring D(E) (as 

opposed to D ) below the simple threshold value of 3.6-E. 

Finally, the consequences of the present analysis for processes other 

than dissociative attachment should be pointed out.  Consider only the low 
3 

temperature cross section for simplicity. The accepted interpretation of 

Eq. (2) is that the DA cross section is equal to ü capture cross section to 
-*      -p 

the state Vf of 0~  times e , the chance of surviving to dissociate befc e 

autoionizing to some vibrational level of one of the i "e lowest 0- states. 

Given the presently determined parameters (6) and (7), It follows that the 

capture cross section e  anA is roughly 70 times that for DA, fith a 

peak value of about 1.0 x 10~16 cm at 7.8 eV. From R = 1.44 we would 
9 c 

expect that at least half of this capture cross section will decay to the 

states A and/or C, resulting in dissociation, while the remainder auto- 

ionizes to the states X, a and b, (about half of it to X), resulting in 

excitation of most of the vibrational levels of these states. Whether the 

contribution of this to the respective cross sections is significant is 

not clear at present. 

*> This relation was obtained previously by M. A. Fineman from similar 
experiments done by J. W. McGowan.  (Private communication.) 

' See also Footnote 6. 
4 
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QUAS1-AD1ABAT1C MO'.ECULAR STATES:   ^ 
AN ALTERNATIVE TO THE NON-CROSSING RULE 

Thomae 

by 

F. O'Malley 

ABSTRACT 

Because of the non-crossing rule, the conventional 
definition of adiabatic states has been increasingly 
regarded as unsuitable for describing collisions. 
An alternative definition based on a generalization 
of the resonance is given, defining states which may 
cross freely. As an immediate application, these 
states tend to resolve a serious discrepancy in the 
interpretation of recent He"! recombination data. 

The non-crossing ruin (NCR) of von Neuman and Wigner which states 

that molecular states of the same symmetry cannot cross, has been a source 
2 

of growing dissatisfaction to many molecular physicists interested in 

atomic collisions and reactions. Nevertheles  4'- hi"-  been accepted, al- 

though sometimes -^luctantly, as the appar -nt price that one must pay for 

having an "adiabatic" definition of electronic states, i.e., a definition 

in which the i'nternuclear coordinate R is held temporarily fixed.  It is 

the purpose of the present note to point out that there exists an accept- 

* Submitted to Phys. Rev. letters. 

J. Von Neumann and E. P. Wigner, Phys. Zeits. 30, 467 (1929). 

See for example W. L. Lichten, Phys. Rev. 131. 229 (1963). Lichten's 
emphasis on the physical importance of certain pseudocrossing single 
configuration states is very much in the spirit of the present work. 
These states would be a first rough approximation to the (Jir of the 
present paper. F. T. Smith, D. C. Lorents, W. Aberth and R. P. Marchi, 
Phys. Rev. Letters 15, V42 (1965) have been forced to assume similar 
crossing curves.  See also W. R. Thorson and S. A. Boorstein, in IVth 
International Conference on the Physics of Electron and Atomic Col- 
lisions (Science Bookcrafters, Hastings, N.Y., 196A), p. 218. 
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able and precise definition of adiabatic electronic states which are not 

constrained by an NCR and which, as a result, are able to approximate the 

physical states which are actually followed in various types of rearrange- 

ment collisions. 

The simplest way of presenting the NCR is in terms of two approximate 

trial funcclons, ^. and $„, supposedly representing different states of the 

same syoimetry, whose approximate energy curves cross. In order to get an 

improved approximation, linear combinations of the original states are 

sought which diagonalize the 2x2 electronic Hamiltonian, H ..  When this 

is done, the resulting new states "^ and 4',- are known as "true adiabatic" 

states.  The corresponding true adiabatic eigenvalues E (R) and E-QCR) are 
2      9 

found to be separated by the amount E - E  =  (H,.. - H29)  + AH^- 
1/2 

> 

a positive definite quantity.  In other words they cannot cross, and must 

behave in a way illustrated in Fig. 1(a). This in brief is the NCR. 

In addition to NCR, there is a second and closely related logical 
3 

consequence of defining true adiabatic states which was deduced by Massey. 

Massey's theorem in essence points out that, since by choice the true adia- 

batic states diagonalize H ., it follows that collision-induced transitions 

between electronic states cannot be mediated by a matrix element of the 

diagonal operator H  .  Consequently these transitions must be caused by 

T', the coupling kinetic energy term neglected in the Born-Oppenheimer 

approximation, and so this useful approximation must be abandoned when 

transitions occur. Logical and rigorous as it is, Massey's theorem, like 

NCR in its early days, has had difficulty of acceptance in taat it seems 

to conflict with much of what is known of reactions, especially the theory 
4 5 

of dissociative recombination and attachment.  How misleading (though 

formally correct) these two theorems are when applied to collisionb is 

3 H.S.W. Massey, Negative Ions (Cambridge Univ. Press, N.Y., 1950) 

4 D. R. Bates, Phys. Rev. 78, 492(L) (195Ü). 

5 T. F. O'Malley, Phys. Rev. 150. 14 (1966). 
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brought home by the fact that even Massey was led in 1937 to conclude on 

their strength that dissociative recombination must necessarily be a very 

slow reaction.  It was not until many years later that this was to some 

extent corrected. 

We shall next point out very briefly, for those not already acquainted 

with them, some of the shortcomings of true adiabatic states and the con- 

sequent NCR when applied to collision problems.  Then the alternative "quasl- 

adiabatic" states  11 be Introduced, which have the property that they may 

cross freely and do not require non-adiabatic (T1) coupling.  These states 

should probably be used in connection with all problems involving collis- 
ö 

ions or dissociations. 

Many of the problems and distressing features of the NCR are illus- 

trated with the he.1p of Fig. 1(a) as contrasted with 1(b). The curves in Fig. 

1(b) mlg* : be found, for example, when one first does a calculation with very 

simple lleitler-London or molecular orbitrl functions.  A slightly more 

elaborate calculation, as described above, would give curves with the prop- 

erties of true adiabatic states as shown in Fig. 1(a) with their avoided 

crossings and "obligatory humps." 

Aside from the obvious aesthetic objections to the kind of curves in 

Fig. 1(a), there are a number of more practical drawbacks connected with these 

true adiabatic curves.  First there is the fact if the colliding atoms bve 

almost any finite velocity the probability of their actually following the 

true adiabatic curves as opposed to the crossing curves is known to become 

vanishingly small, as is indicated in the next paragraph. Next, the Born- 

Oppenheimer approximation, which is generally so very useful and accurate 

D H.S.W. Massey, Proc. Roy. Soc. A163. 542 (1937). 

7 D. R. Bates and H.S.W. Massey, Proc. Roy. Soc. A187. 261 (1947). 

8 Dissociation is here taken to mean the dissociation of repulsive 
states mainly, or predlssociation by curve crossing.  Predissociation 
by barrier tunnelling is another matter. 
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for molecular statt-s, breaks down completely in the neighborhood of an 

avoided crossing when one uses true adiabatic states.  This follows from 

Massey's theorem.  Finally, the-e arc two large classes of collisions where 

theorists have long since been forced to abandon the NCR, at least for prac- 

tical purposes, and to think in terms of tie crossing curves in Fig.1(b). 

The first class of collisions whore the NCR has had  to be suspended 

is the slow reactive or inelastic collisions between heavy particles which 
9 

are well described in the low energy region by the Landau-Zener theory, 

together with subsequent improved versions.  In deriving this theory, one 

starts with two "approximate" electronic stages, which arc never defined 

precisely, but whose physical interpretation is assumed to be clear. These 

states have potential curves which "pseudo-cross." The transition proba- 

bility of passing from one of the pseudocrossing curves to the other is 
— 9 A 

derived, after some approximations, and found to be 1 - e   for each pas- 
2 

sage, where 6 = n V /hv &F.  (V is tht energy of interaction between the 

crossing states, so that 2V would be the smallest separation of the true 

adiabatic states; v is the internuclear velocity and AF is the difference 

of slopes.)  One consequence of the Landau-Zener formula, as mentioned 
-26 

above, is that for typical parameters the probability 1 - e   of follow- 

ing the true adiabatic curve becomes negligible for almost any finite 

velocity. Now although this theory has been found to describe accurately 

all sorts of low energy reactions, it is still necessary to apologize for 

the "pseudocrossing" (which is essential to the derivation) and to point 

out that the true adiabatic curves of course cannot really cross. Perhaps 

of more practical concern is the fact that the pseudocrossing electronic 

states simply are not defined, except for being "sufficiently inaccurate" 

to allow them to cross.  As better computer calculations become feasible, 

this shortcoming should become progressively more and more of a problem. 

The second class of collisions, which cannot even be described con- 

ceptually in terms of the true adiabatic states and the NCR, consists of 

9 L. Landau, Physik. Z. Sowjetunion j?, 46 (1932). C. Zener, Proc. Roy, 
Soc. A137. 696 (1932). 
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4       + -•• 
the processes of dissociative reco'inbination  (e T AB <- AB -* A + B), and 

5        »  _       _ r 

dissociative attachment  (e + AB ^ AB - A + B ).  (Fortunately, these pro- 

ce,--ses, when prrperly analyzed, also point the way to the needed definition 

cf "quasi-adiabatic states.")  The recombination process is understood by 

reference to Fig. 1(b). An electron collides with the ion AB , and causes 

an electronic transition to the state labeled (AB)^, which state finally 

dissociates to A + B.  It is seen that the curve (AB) , in coming in from 

= -, first had to violate NCR countless limes and cross an entire Rydberg 

series of the sair.e symmetry before reaching the curve AB .  More seriously, 
+ 

after crossing AB and entering the hatched region (the electronic continu- 

um of AB), the curve must then cu1" through a continuum of states, in flag- 

rant violation of NCR.  This latter situation is exactly the same for the 

closely related dissociative attachment process.  Figure 1(a) is the way 

these curves would have had to be drawn had the NCR not been ignored. 

Innically i he crossing of the continuum, which presents the strongest 

vioiition cf NCR, also points the way to the solution of the entire non- 

crossing dilemma.  For a discrete state like AB which is degenerate with 

(crosses) a concinuum, J.s a familiar situation in theoretical physics and 

Ms been dealt with exhaustively.    Such a discrete state is the  reson- 

ance" or "quasi-stationa/y state."  It is by use of such states that the 

problem of dissociative attachment (and by inference recombination) has 

been surcessfully treated in a fully quantitative way. 

The definition of the resonance or quasi-stationary state for the 

autoionizing electronic states c; molecules is discussed in some detail in 

Ref. 3 as well as elsewhere.   For the present purpose, the main features 

are as follows:  The electronic wave function y of the resonance state is 
r 

artifically restricted in some way to a portion of Hilbert spacv. by a pro- 

10 H. Feshbach, Ann. Phys. (New York) 5, 357 (1958); 19, 287 (1962); and 
references to previous work therein contained. 

.'. N. Bardslov, A. Hcrzrnbcra and F. MandU Arnmir r.nlHsinn Prn.— sae 
(K.R.f. McDowell, Ed.)   North Holland, Amsterdam (1964), p. 415. .T.r.Y. 
Chen. J. Chem. Phys. 4U. 'i'J)7   (1964). 
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jection operator Q  , while its energy eigenvalue 

<Q(3) VHeli Q(o) :(R) (1) 

is made stationary.  (As in any adiabat c definition, R appears parametric- 

ally.) 

Hav^g defined <(> , a new projection operator, Q = $  >< $  is con- 

structed which together with P - 1 - Q decomposes the electronic Hamlltonian 

H ., as fellows 
el 

H 
el 

PH ,P PH ,Q 
el    el 

QHelP QHelQ 

(2) 

The eigenstate corresponding to Pu ^F,  called $ the "potential scatterirg" 

The above decomposition 
ei '        p 

state, is constrained by P to be orthogonal to 4> 

of H 1, or more properly of the full H, f rmed the basis of the new formal 

theory of rearrangement collisions introduced in Ref. 5. 

The two states <$i and d) have been defined to lie in orthogonal por- 

tions ^f Hilbert space and they leave H 1 undiagonalized (note that it is 

only the full H which must be diagonal). One consequence of a non-diagonal 

H  is that transitions from 0  to $^ may be caused by the off-diagonal 

electronic matrix element PH Q, ir contrast to the Massey theorem. Thus 

the coupling term T' is no more important here than in ordinary molecular 

states and the usefulness of the Born-Oppenheimer approximation is preserved. 

More important, und in fact paramount in the present treatment, the mathe- 

matically ortiiogonal and physically distinct states $    and ^ are not now 

combined as were the states of von Neumann and Wigner, into "true adiabatic" 

states of H .., resulting in the NCR.  Rather they are allowed to serve as 

a convenient starting point for an exact solution or the collision problem. 

(This theory will be published elsewhere.)  By thus preserving their ident- 

ity, the energies E and E ot these states are not constrained to avoid 
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crossing, and the levels can and do ore  . The lack of a prohibition 

against crossing may perhaps be made clear by noting that as eigenvalues 

of different Hamiltonians, PHP and QHQ, the two levels are entirely inde- 

pendent of ont another. 

What has been said so far of the quasi-stationary states $ and $ J v p 
has referred explicitly to the hatched region of Fig.1(b), i.e., to the 

region where the state AB , with wave function $ , is autoionizing.  It 

is the burden of this paper to point out that all the difficulties rerult- 

ing from true adiabatlc states, i.e., the NCR and the Massey theorem, arj 

avoided if only one uses exactly the same definition of states (with exactly 

the same projection operators Q   and Q) for all R even after the state 

AB has fallen below the continuum and can no longer autoionize.  It is not 

necessary to make any changes at all in the discrete region. Again the 
(o^ 

quasi-stationary state $    is defined with the same projection operator Q '. 

The resulting new projection operator P is then used to define the ortho- 

gonal "potential scattering" function $ .  Again the correspond.ng potential 

curves e and £  are noc constrained by the NCR or by Massey's theorem. 

The only minor difference is that the name "potential scattering" function 

is no longer very appropriate, si-.ce <|> is now a discrete quasistationary 

state, on the same footing with $ . 
r l 

I 
The name which is suggested for the crossing states $ and $ , defined 

as above and extended to the discrete region, is quasi-adiabatic states, 

short for quasi-stationary adiabatic states. This is appropriate since they 
i 

are adiabatic, beinj, defined w'.th R fixed, but unlike the "true adiabatic" 

sta'-w-s they are only quasi or artificial bound states. 

I 
To avoid possible misunderstanding, something should be said here 

(o) i about what is presently meant and not meant by the projection operator Q 

The obvious definition of this projection operator and presumably the most 
10 

useful is that of Feshbach,  which defines a state in which an electron is 

bounJ to an excited core.  However, Q'   Is rreant to he somewhat morp flPV- 
! 

ible-  Fnr one thing, certain simoliflcat-Jon?; if Fwh^m-h*c  ^r^,.... „„.. uz : 

i 
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12 
desirable.   In general, any artificial restraint on the wave function 

which leads to a physically neaningful and useful state is considered to be 

included as a possible Q   since this rciy always be thought of as being 

produced by some kind of projection operator. As one example, an artificial 

constraint might sometimes be useful for defining ionic states. However, 

at present, only th° Feshbach type of core excited state is actually en- 

visaged. 

There are a number of examples in the literature of states which have 

been defined in such a way that they happen to satisfy the definition of 

quasi-adiabatic states.  Two of these will be mentioned. First, there 
2 1 

is the (o Is)  I    state of H9, as calculated with the simplest single con- 
U     8      13 2 

figuration wave function.   This configuration (o Is) satisfies the defi- 

nition of the lowest Feshbech-type resonance in the H,, system, and so Is a 

quasi-adiabatic state. The potential curve of thi state has been plotted 

as an illustration in Ref. 13. As expected, it cuts right across higher 

states of the same symmetry, crosses the entire Rydberg series and ulti- 

mately becomes autoionizing, just as AB of Fig 1(b). An interesting inci- 

dental feature of the curve is that it becomes ionic at large R. Naturall>, 

as more ambitious calculations have been made, looking for true adiabatic 

states, this state has been mixed with others, resulting in humps and 

avoided crossings as in Fig. 1(a). 

A second example of quasi-adiabatic electronic states in the litera- 
14 

ture is seen in the He7 states found by Mulliken  and labeled B Core states. 
~ 3 + 3 + 

These included the B2s  E , and a B3p  Z      state. The concept of B Core 
g u 

state, as pointed out in Raf. 4, directly satisfies Feshbach's definition 

of a resonance state. Consequently we expect first that these states should 

12 See for example L. Lipsky and A. Russek, Phys. Rev. 142, 59 (1966) 

13 W. Kauzmann, Quantum Chemistry (Academic Press, New York, 1957), p. 397, 

IA 
R. b. I'lU-liiKeii, rnyt.. RfV. J. J» > nyut.    yxyu*/ 
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be autoionizing for small R, and in fact Chey are.  Further, as R increases 

they should cut through the Rydberg series of the same symmetry, which they 

also do.  However, both of these curves have been drawn in Ref. 14 so as to 
3 +     3 + 

avoid crossing the lowest state of the series  ( Z      and  I     ) and so they 
o g       u 

both turn up sharply above R = 2A, somewhat in the fashion of Fig. 1(a). It 

is suggested here that if the definition of quasi-adiabatic state, implied 

by the B Core definition, is applied consistently, then these states need 

not avoid crossing even the 'owest states in the series, but it is possible 

that they would simply decrease monatonically with R as the AB curve of 

3     3 
Fig- 1(b), and dissociate into the lowest  S and ? state of He respectively. 

This last suggestion would tend to remove the dis :repancy which 

presently exists between these curves of Mulliken and subsequent results 

of Robertson.   The latter observed a state of the system which is auto- 
3 

ionizing at small R and which dissociates intc the lowest P state of He 

in apparent disagreement with Mulliken's curves.  But if the definition of 

quasi-adiabatic B core states is adopted as is here suggested, then for 

any given states of the dissociation products (and in particular for those 

found by Robertson) there ought to be a corresponding molecular curve satis- 

fying the definition of a B core quasi-adiabatic state.  This curve would 

be expected to be purely repulsive, following the shape of the B core, and 

at smaller R to cross the Rydberg series and become autoionizing.  Thus, 

the existence of a suxtable potential curve, corresponding to Robinson's 

data, should present no problem once the rrtificiai restraints imposed by 

NCR arc removed by using quasi-adiabatic states.  It is not clear at present 
3 

whether this particular state might be the  Z  curve of Mulliken, redrawn 
3 3 u 

to join B  i, , or perhaps a  n  B core state, similarly redrawn. 

In summary, a definition has been given of quasi-adiabatic states 

which it is proposed should replace the conventional true adiabatic statts 
Q 

for all processes involving collisions or dissociations.   In particular, 

it was shown that such states have the advantage of not being burdened by 

a non-crossing rule, so that they may reproduce the curves that are actually 

followed in a physical collision or dissociation.   PurHiMr t-hat.  An  r.-r 

15 w. W. Robertson, J. Chen;. Phys. 42, 2064 (1965); C. B. Collins and 
W. W. Robertson, J. Chem. Phys. 4_3, 4188 (1965). 
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satisfy Massey's theorem, so that the Born-Oppenheimer approximation may 

be retained. These states may be of most immediate usefujuiess in connection 

with the semi-empirical process of constructing potential curves to fit or 

explain given experimental data. An improved theory of heavy particle col- 

lisions based on these states will be published elsewhere. 

Finally, these states are not meant to replace the conventional true 

adlabatic states in those areas where the latter are actually useful, namely 

where such states are either very widely separated or parallel and where in 

addition the discrete vibrational level of interest is sufficiently low so 

that the Landau-Zener exponent 6 would be very large. 

Thanks are due H. A. Lippmann and P. J. Redmond for stimulating dis- 

cussions. 
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THEORY OF RESONANT DISSOCIATIVE RECOMBINATION 

by 

Peter J. RediPund 

The theory is developed with particular emphasis on 
the interaction of the resonant state and the infi- 
nite set of Rydberg states crossed by the resonant 
state.  It is shown that the interaction is large 
only for a finite subset of the Rydberg states. 

In this paper we consider the process e + AE ->• A + B where the 

atoms in the final state will generally be excited. We shall show that 

the total cross section corresponding to a sum over all possible exit 

channels can be calculated in a fairly straightforward way.  In principle 

the theory also permits the calculation of branching ratios although such 

a calculation would be much more Involved. 

We assume that the reaction proceeds by the formation of a resonant 
* -      + .v      * 

complex AB so that e + AB Z  (AB) -•• A + B.  It is well known that there 

are an infinity of such resonant states lying below the first electronic- 

ally excited state of the AB system.  It is also known that the widths of 

the resonant states are small compared to the spacing of the resonant states 

so that they are excited independently.  However, when the atoms A and B 

separate they move along a potential curve which must cross (or "pseudo 

cross") an infinite Rydberg series of states.  These curve crossings may 

lead to a coupling between the resonant states and will lead to a distri- 

bution of the particles over a variety of exit channels.  It is this latter 

phenomena which makes the theory of dissociative recombination more compli- 

cated than the theory of dissociative attachment.  We shall show that only 

Submitted for presentation at the Fifth International Conference on 
ti»C   * r.ySlCo    OA.    i^xcCt iTuitlk,    üüu   ncwtMXU    Cul i i.£> luU£>« 
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a finite (and usually small) number of the resonant states can be coupled 

In this fashion and that the coupling can be described by an energy depend- 

ent matrix for a reflection amplitude. 

The wave function for the system may be written In the form 

MR.p.k) "  T    A(X,R) $(A,R,p) 

(+) 
V n » (- l " / 

% % 

(1) 

+ B (R) x(  (R.P.k) 
Ox    o     \ X 

+ /dk' E, BCJ.k'.R) X^U.k'.R.P) 

B 

where R Is the nuclear separation and P represents the electronic coordl- 

nates. The wave functions <>(■") are the electronic wave functions for the 

resoncint states.  The \ are the electronic scattering states and 

It Is assumed that they dlagonallze the electronic part of the Hamlltonlan 

In the subspace of states orthogonal to the $(^). The x   satisfy Incom- 

ing boundary conditions and the v outgoing conditions and the vector k 

represents the momentum of the Incoming or outgoinp electron. The term 

Is the Incoming wave and B Is the nuclear wave function of the 
0      + 0 
Initial AB state. The states K>>) and x are slowly varying functions of 

the nuclear separation. This Is possible only If the energy curves E. (R) 

corresponding to the <KX) are allowed to cross. 

The only non-diagonal matrix elements of the electronic Hamlltonlan 

are then 

< $(X,R), H , , .^(j.k'.R) > =   Y (XJ.k'.R) (2) 

and 

' yCsR). Hel, :(u,R) •  W(A,u,R)  . (3) 

1 We use the term resonant .täte to include all those discrete states 
f  Tul  'eutral -vSrcm which Interact with the state initially excited. 
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The Y and W are non-vanishing in separated regions of configuration 

space. The matrix element W is appreciable only in the immediate vicinity 

of a curve crossing whereas the Y'S are non-vanishing only when the reson- 

ant state curve lies above the ground state potential curve of AB . 

Since the $ and x are slowly varying functions of R, the many state 

Born-Oppenheimer (adiabatic) approximation is. appropriate and (E-H) ty * 0 

is equivalent to the set of coupled equations. 

(E - £,(10 +^:v2) A(X,R) = Y.(A,0,k,R) B (R) 

+ / dk' Z.   BQ.k',R) Y (X.j.k'.R) 

+ Z    W{A,u,R) A(u,R) (4) 

and 

,.2 
(E - E^R) -~+ ^ V2) BCj.k'.R) = EA A(X,R) Y^X.j.k'.R)  , 

(5) 

where m and M are the electronic and reduced atomic masses respectively. 

The solution of Eq. (5) which satisfies the proper boundary conditions 

may be written asymptotically 

BCj.k'.R) =  \  E, A(X,R) YtcX.j.k1)  .   (6) 

E - E. -T- + i7y  + ic 3  2m   2M 

If the Green's function in Eq. (6) is expanded in terms of the eigenstates 

of the nuclear Hamiltonian, the discrete states describe elastic scatter- 

ing and vlbrational and rotational excitation. The continuum states con- 

tribute to dissociatiüii although the main contribution to dissociation 

comes irom the ACX^) terms.  For example, the elastic scattering comes 

from the term 
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Bo(R) 6 

J ,   . (J.k'.R) - — r-^  I.   f  dR' B (R') A (R') Y^O.O.k'.k'). 
elastic  \    x        ,2  , ,2      A   %      o %        A %        +    0 

2m  2m 
(7) 

This term interferes with the outgoing wave part of B (R) x  '(0,k,R) to 

give a typical resonance pattern for the elastic scattering. 

In <    to determine the dissociative cross section we take the 

divergence or the heavy particle flux.  We find 

v • I 5:X(A*(> .R) v A(A,R) - A(A,R) V A*(X,R)) 

+ I.   f  dk,(B*(j.k,.R) v B(j,k,,R) - BU.k'.R) V 8*0^'^)) 

- Z (A*(A,R) Y (>,0.k,R) B (R) - A(A.R) /(X.O.k.R) B (R))  .   (8) 
A       X 'r Ox x 'r 0 "^ 

Since there is no incoming heavy particle flux the total cross section 

for dissociation can be obtained by integrating the right-hand side of 

Eq. (8) over all space.  Because of the presence of the factor B (R) on 

the right-hand side of Eq. (8) (and in the integral occurring in Eq. (7)), 

it is only necessary to determine the functions A(\,R) in the Franck- 
x 

Condon region. 

In determining A(>. ,R) it is necessary to consider two different 

possibilities,  if the electron energy is sufficiently high so that all 

the attractive potential curves which are crossed by the resonant curve 

involved correspond to exit channels which are open, then any outgoing 

flux generated on the Franck-Condon region will remain outgoing.  The 

2  T. F. O'Maliey, Phys. Rev. 150. 14, 1966. 

3  J. N. Bardslev, A. Herzenberg, and F. Mandl, Atomic Collision 
Procüsses. edited by M.R.C. McDowell (North Holland Publishing Co., 
Amsterdam iyb4), p. 14b. 
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A(A,R) can then be determined in precisely the same way that O'Malley ^ 
3 

and Mandl and Herzberg treated the dissociative attachment problem. 

The only difference Is that the final formula in the recombination case 

corresponds to several exit channels instead of only one as In the attach- 

ment problem. 

Ii some of the exit channels with attractive potential curves are 

closed, some of the outgoing flux generated in the Franck-Condon region 

will correspond to particles which are temporarily bound and return to 

the Franck-Condon region. The finite number of resonant states coupled 

to such exit channels will then be coupled to each other. These effects 

can be described by a finite rerlection coefficient matrix which gives 

the amplitude of the reflected wave in any resonant state produced by an 

outgoing wave in another coupled resonant state. T..^o matrix can be 

determined by using the Landau-Zener theory (or some variant of it) and 

considering the possible histories of outgoing particles. 

The system e + H_ -> H + H provides a comparatively simple illustra- 

tion of the various possibilities discussed above and the theory will be 

applied to the system at the meeting. 
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FORMULATION OF THE TWO-STATE PROBLEM 
IN TERMS OF ADIABATIC POTENTIAL CURVES* 

by 

Peter J. Redmond 

ABSTRACT 

When two molecular adlabatlc potential curves nearly 
cross, the electronic wave function is a rapidly vary- 
ing function of the intemuclear separation. The one- 
state Born-Oppenheimer approxination is then not valid. 
By introducing appropriatf linear combinations of the 
two adiabatic states involved a two-state Born-Oppen- 
heimer approximation can be made. The resulting pair 
of coupled equations for the nuclear wave function are 
identical with those obtained in the conventional two- 
state theories. However, all the parameters can be 
determined by an inspection of the adiabatic curves 
and the validity of the approximation scheme can be 
justified. 

I. INTRODUCTION 

In the usual approach to molecular problems, or to collision problems, 

one makes the adiabatic (Born-Oppenheimer) approximation. The Hamiltonian 

is written as the sum of a nuclear kinetic energy term and an electronic 

Hamiltonian 

H 
2M  R 

+ Hel (R) (1) 

and the eigenstates of H . are calculated 

Hel *a (R,C) = Ea (R) *a a,C)  * 
(2) 

* Submitted to ARPA for publication clearance. 

1 M. Born and J. R. Oppenheimer, Ann der Phys 84, 457 (1927). 
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The total wp.ve function may be written as a linear combination of these 

electronic states with coefficients which are functions of the Internuclear 

separation R , 

iji - E  F (R) (j.  (R,U  • 
a  a \  a 

(3) 

The equation for F  (R) Is then 

{'k    ^Ea(R)-E)Fa(R)  " 

h (M < VR)' ^ß
(R) *  •  7Fß(R) + 2M <  *a(R)' ^ VR' *  Fß(R))- 

(4) 

The Born-Oppenhelmer approximation consists of setting the right-hand side 

of Eq. (4) equal to zero (although the diagonal terms may fruitfully be re- 
2 

tained).  The equations for the various F then decouple. We shall •  .r 

to this situation as the one-state Born-Oppenheimber approximation.    luse 

of the largeness of the atomic to electronic mass ratio this is a good ap- 

proximation unless the electronic wave functions $ exhibit an anomalously 

rapid variation as the Internuclear separation is changed.  We shall show 

that this is the case when two of the adiabatic curves with the same sym- 

metry come very close to one another ("near crossing"). 

i 
i 

When there is a near crossing it is generally argued that the adia- 

batic states 4» no longer provide a suitable basis for an expansion of the 

wavefunction.  The problem is then reformulated either in a tiro a dependent 
3 4 

way using atomic wave functions or in a time independent way using simple 

2 L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Pergamon Press, 
London-Paris, 1958) p. 275. 

3 C. Zener, Proc. Roy. Soc. (London), A137, 696 (1932); L. Landau, 
Phys. Z. Sowjet Union, 2,  46 (1932); D. R. Bates, H. C. Johnston 
and I. Stewart, Proc. Phys. Soc. (London) 84, 517 (1964); C. A. 
Coulson and K. Zalewski, Proc. Roy. Soc. (London) A268, 437 (1962); 
D. R. Bates, Proc. Roy. Soc. (London) A257, 22 (1960). 

4 N. F. Mott and H.S.W. Massey, The Theory of Atomic Collisions. Third 
Edictlon (Oxford University Press, London, 1965) Ch-p. 13. 
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molecular orbitals.  In both of these formulations the resulting potential 

curves cross and a set of coupled equations are considered which involve 

the two states that cross. 

There are two disadvantages to this approach. Because of the crude 

wave functions used the  electronic Hamiltonian will have large matrix 

elements connecting uitferent states and it ir therefore difficult to 

justify the use of only two electronic states m formulating the problem. 

In addition there is the esthetic disadvantage that the basis of the theory 

disappears if ehe wave functions are sufficiently improved so that the 

curves no longer cross. 

In this paper we reformulate the problem starting from the adiabatlc 

potential curves. The resulting equations for the nuclear wave functions 

ave Identical to those obtained in the conventional approach. However, 

ill the parameters for the theory can be obtained from an Inspection of the 

adiabatlc curve.  In addition, it is easy to justify the use of a two-state 

approximation when such an approximation is applicable. 

II.  THEORY 

The general shape of the adiabatlc energy curves for a near-crossing 

is illustrated by the solid curves labeled E and Eg in Fig. 1. The general 

feature of such potential curves is that the second derivative of the energy 
2    2 

with respect to the internuclear separation (d E /dR ) is large in the 

vicinity of the near crossing and that the curves asymptotically approach 

regions where the second derivative is much smaller. We shall show that in 

this transition region the adiabatlc electronic wave functions $  (R,? .)» 

and ^(Rt^gi) are rapidly varying functions of the parameter R with the two 

W. Lichten -tn TVfh Tnfprnnflnnni rnnferenne on the Physics of Elec- 
t-rnnir and Atomic Colliainna (Science Bookcrafters Inc., Hastings on 
Hudson, 1965) p. 63; V. Fano and W. Lichten, Phys. Rev. Letters 14, 
627 (1965). The molecular orbital approach has the great advantage 
that it provides a large amount of qualitative information about the 
general nature of the potential curves at the cost of relatively 
little effort. 
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Figure 1. Potential Curves and Interaction Energy at a Near Crossing 
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'a an' Yß 

It Is a trivial matter to solve these equations and we find 

E (R) * E + Xp + ( ^— +  wV ) 

ER(R)^i+Xp-(^+U
2n2)1/2 (9) 

^ In the following we shall generally omit the electronic coordinates C« 
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wave functions essentially changing roles as the transition region is cros- 

sed. 

The difference of the slopes of the two energy curves changes sign 

as the transition region is crossed. The slopes must therefore be equal 

at some intermediate point R* given by 

äT * ä/ - x at R " R* ' (5) 

: 
In the transition regie : the electronic wave function $  (R,5 j) can 

be approximately represented as a linear combination of the wave functions 

*oi(R*,5el) and ♦ß(R*,eel) 80 Chat6 

* (R) *   A$ (R*) + B4>0(R*)  . (6) 
a        a       p 

The secular equations have the form 

(E (R*) + Xp - E (R)) A + UP B = 0 
a a 

and       WP A + (E0(R*) + Xp - E (R)) B = 0 (7) 
P <* 

where      p - R - R* 

and       W - < ^(R*) [R ' Hi *R(R*)> • (8) 
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<J> (R)  "-' sin 6 <J) (R*) + cos 9 * (R*) 

*0(R) cos 8 4» (R*) + sin 9 4iß(R*) (10) 

with 

and 

2E - E (R*) + E (R*) ,  AE - Ea(R*) - Eß(R*) 

cot 8 ■ -  J-M , 
f + ((f) * ^ 

111 
(ID 

The equations for ^(R) and ^(R) are readily inverted to give 

4, (R*) - sin e (>a(R) - cos 8 4>e(R) 

4» (R*) -    cos 8 4» (R) + si« 9 ♦gW  • (12) 

The linear combinations of ^(R) and *B(R) occurring on the right-hand side 

of Eq. (12) are therefore slowly varying functions of R. The rapid changes 

in ♦ (R) and <{>g(R) are compensated by the rapid variation of e(de/dR = 

y/AE at R = R*) The particular linear combinations griven by Eq. (12) are 

not the most convenient set since they do not asymptotically approach the 

adiabatic states. The &um and the difference of the right-hand sides of 

Eq. (12) provide more suitable combinations. We therefore define 

MR) = cos x <l>a(R) 
+ sln x 4>6(R) 

MR) - sin x ^(R) + cos x ♦^(R) (13) 

where X - 6 - 45°.  To the left of the transition region x -" 0 so that 

4» - 4», and $0 -•■ *„. At R - R*. X - 45°. To the right of the transition 
a   1     o I 
region x •* 90° so that ♦g - *1  and 4>a ■♦ -$r    Since ^ and *2 do not change 
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appreciably ehe functions 4 and <t)„ have suffered large changes and have 

essentially interchanged. The functions «t», (R) and ♦»(R) provide a suitable 
7 basis to be used when making the Born-Oppenheimer approximation.  The wave 

functions <t>, and ^ can be used to define new potential curves Indicated 

by the dotted line in Fig. 1. The diagonal elements of H - determine E- 

and E? and the off diagonal element determines E.2 the interaction between 

the two curves E. We find 

E.CR)  - cos2x E (R) + sin2x Efl(R) i a p 

E2(R) - 8in2x Eot(R) + cos
2x Eß(R) 

E12(R) - + cos x sin x (Eß(R) - E^R))  . (14) 

We can now make the Bom-Oppenhelmer approximation with confidence 

an-i we get the coupled equations for the nuclear wave functions 

(- -\l   li R2 fe + ^ + E1(W) P1<R) + E12<W 
f2<« " "!<»  ■ 

(- "H IT R2 |r + -^—^ + E9(R)) F-(R) + E (R) F. (R) - EF,(R)  . 
V 2MR2 **        3R   2MR2    2  /  2      12    1       2 

(15) 

These are the usual equations for the two-state problem« except that 

in our case the potentials are determined from the adiabatic curves. The 

usual treatments of the, two-state problem are therefore applicable. 

All of the parameters needed to determine the nuclear wave functions 

can be obtained directly from the adiabatic potential curves except for 

The electronic wave functions vary rapidly with internuclear separa- 
tion in another circumstance - when there is an electronic resonance. 
The Born-Oppenheimer approximation can then not be directly applied 
and the appropriate treatment is quite analogous to ours with the 
resonant state playing a role similar to $.  and $„. See T.F. O'Malley, 
Phys. Rev. 150, 14 (1966). 
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the parameter which is defined hy the matrix element in Eq. (8). However, 

if the near curve crossing is sufficiently close so as to invalidate the 

use of the one state Born-Oppenheimer approximation, u can be obtained to 

sufficient accuracy by fitting the energy curves in the transition region 

with the hyperbola 

(E (R) - EÖ(R))
2 - (E (R*) - Eß(R*))

2 = 4p2 (R - R*)2 .   (16) 
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TREATMENT OF ANGULAR MOMENTUM IN MOMENTUM SPACE 

by 

Peter J. Redmond 

ABSTRACT 

Equations are derived. In a momentum space repre- 
sentation, for the wave function of a many body 
system with a definite angular moaentum. Invarlance 
of the Hamlltonlan under time reversal, parity, and 
exchange has simple consequences for a three-body 
system. 

INTRODUCTION 

The general form of the wave function of a system having a definite 

angular momentum has been given by Wigner. He showed that the dependence 

of the wave function on the orientation could be indicated explicitly so 

that the dynamical problem Involved a set of functions fK which depend 

only on quantities which are invariant under rotations. 

Although the general form of the wave function is known, considerable 

labor is necessrry before equations relating the fg's can be obtained. 

All the treatments familiar to the author consider the problem in config- 

uration space. The kinetic energy is then rapresented by differential 

operators and the central problem is to express these deviations in terms 

of derivatives with respect to angles and derivatives with respect to 

rotational invariants. It is in the nature of this process of changing 

variables that a successful completion of ehe program for a three-body 

system is of little assistance if one is confronted by a four-body problem. 

It is often coivenient to consider a problem in momentum apace rather 

than configuration space (for example, in a scattering problem).  it is the 

* Submitted to ARPA for publication -lerrance. 
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puryoie of this paper to derive t're equations daaoribing a many body system 

with a definite angular momentum xn  the center of mass frame. We believe 

that the results are structurally much r.impler than those obtained in con- 

■'^S'». ration space.  In particular, tht equations have the same structure 

for a four-or-fflore-body problem as  they do for a threv-body problem. 

The paper is divided into four sections.  Section 1 is the introduc- 

tion which you have almost finished reading.  In Section 2 a thumbnail 

sketch of some aspects of the general theory of angular momentum is pre- 

sented in order to establish i notation and a set of conventions.  The 

tMrd section is devoted to a derivation oi  our central result.  In ehe 

last section the effects of parity, exchange, and time reversal invariance 

are discussed for a thvee-body system. 

SOME ASPECT1 OF THE GENERAL THEORY OF ANGULAR MOMENTUM 

The effect* of rotations may be defbribed from two different points 

of view. Acccrd ng to the first point of view one considers the change 

in description of a fixed geometrical configuration produced by a rotation 

of the coordinate axes. According to the second point of view rotations 

are used to describe the motion of a geometrical configuration relative to 

a fixed set of coordinate axes.  Throughout this paper we adopt the second 

point of view. 

Wt consider fur ;tions v({p}) of the set of vectors p., p-, — p„ 

(= (pi) which we denote by an inner product 

^({p}) = < {p}^ > (1) 

An iufinitesmal rotation about the n axis through an angle i>$  causes 

a change in the vector p by an amount 6p given by 

ÖP, 5({i n (2) 

This causes an Infinitesmal change in tht functior, t|»(tp.i) '.;hicb «nay be 

computed by taking the first term In fi Taylor expansion 

5 *(tp; ) = 2, «^'i 3P •K^-'h (3) 
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This may be rewritten as 

(4) 

where we have useü 
3^ - ir and L - I    r    x p  .    This may be l.-tegrated to 
3p 

give 

^((plRCn.^))  - <  (p) | e1*" '  Llt|i > (5) 

which describes the effect of a finite rotation, RCn,*), through an angle 

4> about the axis n. We have given this derivation to emphasize the fact 

that Eq. (5) is a symbolic operator characterization of a generalized 

Taylor expansion and does not depend on the nature of the function ii 

(except that we assume the expansion converges). 

If the rota'-ion R corresponds to the rotation R., (» RCn-.S«) followed 

by the rotation R» - (RCn-.S-)), then 

in.« L0,  in,- LG, 
< {p)RU > - < {p}| e i     e       * >  . (6) 

Since we wish to use the symbols R both in abstract arguments and as 

symbols for the operators e u"  we shall denote the product of two i 

tlons in such a way that the symbols are or^red from left to right, 

R - R1R2 (7) 

We shall make frequent use of the identity 

-1 Rj^ * R(n,9) Rj^ - RCnRj^S) (8) 

which may be proven by simple geometric arguments or by manipulation of 

the operator expressions using the commutation relations 

L x L - 1L (9) 
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We shall make frequent use of the irreducible representations of the 

rotation group defined by 

DLM,tM (R(n,e)) - < L,M'|ei8n,LlL,M > (10) 

Since any rotation can be expressed as a rotation about the z axis followed 

by a rotation about the y axis followed finally by another rotation about 

the z axis (Euler angle representation) it is only necessary to give a 

formula for 

dLMltM(Ö) « < L,MMei6LyiL,M >  . (ID 

If the usual phase conventions are adopted for the matrix elements of L, 

then Eq. (11) leads to the formula given by 'tgner. 

DERIVATION OF CENTRAL RESULT 

For a three-body system interacting through two body central forces 

the time independent Schrodinger equation is 

2    7    2\ 

" 2M1 " 2M2 " 2M3 j      Pl'^' V3\^ > 

- / dg V12(q*) < P! + q. P2 " q. Pjl* > + ...     (12) 

where the omitted terms involve V... and V?_. The total linear momentum 

is a constant of the motion and we shall work in the frame where this 

vanishes. The three momenta then form a triangle and the wave function 

depends on the magnitude of the momenta and on the orientation of the 

triangle. 

We specify the orientation of the triangle by indicating the rotation 

R which carries the momentum triangle from some specified reference orienta- 
P 
tion p to its actual position. We shall introduce three standard reference 

orientations labeled by p - 1»2,3. These are defined by requiring that the 
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three momenta lie in the X-Y plane ana that the directed normal is in the 

z direction. For P ■ j ■ 1»2,3 the momentum p. if in the y direction. 

These standard reference orientations are illustrated in Fig. 1. The wave 

function at the point ip) is related to its value at the reference position 

{♦>} by tho operator equation 

< {p}|4- > - < tp}p|Rpk > (13) 

The potential energy terms change both the magnitude of the particle 

momenta and the orientation of the momentum triangle. These effects s 

illustrated ii. Fig. 2 for the term V... The momentum triangle rotates 

about the p., axis by the angle 4» and the magnitude of the momentum p. and 

P2 is changed to p.,' and p.' . 

Let R ' be the rotation which takes the momentum triangle p-' p»' 

p. from its reference position P to its final position. It is necessary 

to find a relationship between R ' and R . The rotation R ' can be per- 

formed in three steps. First rotate the triangle Pi'Po'p-i ^rom its reference 

posxtlon P to the position given in Fig.1(c). We denote this rotation by 

R ' 
P.3 * 

This is then followed by the rotation R_ which takes p~ into its 

final position and the plane of the momentum triangle into the p.p^p. plane. 

This is then followed jy a rotation through an angle $  about the p- axis. 

Thus 

V • Va R3R<P3»*)  • (14) 

By using Eq, (8) this can be rewritten 

V " RP,3 ^'V  R3  * (15) 

Similar reasoning leads to an expression for R , 

R « R _ R. 
P   P.3 3 (16) 
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CM 

Figure 2.    Effect of a Moraenttim Transfer 
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By eliminating R. we obtain 

V "Va *<*•♦> R3.PRP 

,-i 

(17) 

where R,  ■ R , . 
3,P   p,3 

It Is also necessary to change variable from q to p ', p ', and (ji. 

The Jacobian of this transformation is most easily found in two steps. We 

introduce the symbol A for the area of the triangle, so that 

16Ä = (p14p2+p3)(-p1+p2+p3)(P1-P2+P3)(p1+p2-p3) (18) 

Then ZA'/Pj, P3
,P1

l/p3. and $ form a set of cylindrical coordinates. Thus 

dq = (4/p3
J) A,dA,d(p1

,-p3) d* (19) 

It is then relatively easy to make the additional transformation to obtain 

dq - (l/jpj+p^) p^ p^ dp^ dp2
, d$  . (20) 

2 
An expression for q is also required. After a little algebra one finds 

q2 - (l/p3
2) [(qxp3)

2 + (q-p3)
2] 

- [U/P^)2] [(A2+A'2 - 2AA, cos *)  +  (l/16)(p1
2+p2'

2-p1'
2-p2

2)2]  . 

(21) 

Substituting this into Eq. (12) we obtain 

< {p} |R | * > 
P  P 

('     2    2    2\ 

2M1  2M2   2M3/ 

(T^T)/Pl,dPl,p2,dP2,d* V12^2)<{P,}
P!
R;.3 R^.*)R3,p

Rpl*5 

(22) 
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We have not yet used the fact chat if» is an eigenstate or the angular 
2 2 

momentum operators L and L .  If ^ is an eigenfunction of L and Ls with 

elgenvaluas L(L+1) and M it is possible «-a express the matrix elements of 

the rotation operators in terms of the functions D . 

The functions f defined by 

rP 6(EP) 1M (P^.Pa) ^<H
IVM> (23) 

depend only on the invariants   Ipjjjpjl  and  |p3J.    They üi en satisfy the 

equation 

(2 2 2\ 
Pl        V2        P3    I    P E   'mi  "2M2 " ?M3 i   fL,K (Pl'p2' P3)- 

lr   (l/lp^l)  X
 J?I    P2    dPi'  dp^ d* V12(q2) 

DK\K(Rp;3 ^^  R3,P)   X fU'(Pl,'P2,'P3) + •- (2A) 

The relationship oetween the wave function at an arbitrary point (p) 

and the f's is given by 

< {P}|*LiM > = <  {p}p|Rpl*L,M > = «UP)  ^ fL,K(Pl*P2»P3)^fM(Rp) 

(25) 

It is a simple exercise, which we leave to the reader« to demonstrate that 

Eqs. (24) and (25) imply that the wave function < {p}|i)> > is independent 

of what choice is made for the reference orientation p although the functions 

f do, of course, depend on this choice. 

If the reference orientation p is such that the momentum triangle is 

in the x-y plane then R , is a rotation about the z axis so that D occur- 
P.J 

ring in Eq. (24) is a simple phase factor times d defined in £q. (11)—that 

is, we have the usual Euler angle representation of the rotation group. In 

particular ^ 2 " ^(Z.H+Y). R2 3 " R(z.iiLo), and R- j- R(z,-i-t-g). 
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It should be noted that Eqs. (22), (23) arl (24) are true for any 

number of particles if we add the needed additional kinetic energy terms 

on the left-hand sides and provide the additional scalar arguments for the 

functions f. There are however two fairly serious geometrical compile 

pN are no longer a complete sat of scalars tions. The variables Pn.Pn» ■ 

and an additional 3N-9 scalars must be introduced. Some of these additional 

scalars will change due to the action of V.« and will be complicated func- 

tions of p ', p,',"!» and the initial set of scalars. In addition the de- 

termination of the rotations R . will involve rather difficult geometrical 
P»j 

considerations. 

EFFECTS OF PARITY, EXCHANGE, AND TIME REVERSAL INVARIANCE 

For a three-body system it is fairl, easy to determine the effects 

of a parity or an exchange transformation of the functions f. 

For a three-body system the parity transformation is equivalent to 

a rotation through 180° about the normal, n, to the momentum triangle. 

This is equivalent to first rotating the reference state by 180 about the 

z axis provided the reference state lies in the x-y plane. For even (odd) 

parity states we obtain 

t    <  {pHtJi > =  i <  {p)p|Rp|^ > 

< {-p}lt(l > <   (p)   |R(Z,IT)   R   111/  > r  p1 p,r (26) 

This immediately leads to the relation 

(PARITY) 

t f L,K <-1)K 'I* (27) 

If particles 1 and 2 are indistinguishable it is desirable to know 

the effect on the f's of their exchange.  For this purpose it is convenient 

to use the reference orientation illustrated in Fig. 1(c) where p« is along 

the y axis. The effect of an exchange is illustrated in Fig. 3 and it is 

seen that the directed normal to the plane points in ••he -z direction 
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instead of the z direction. This can be modified by performing a rotation 

about the y axis of 180 .  For states even (!-) or odd (-) under exchange 

we find 

1   fL,K(pl,,VP3) " V ^ K,(P2'P1'P3^ LK'l^y.71)!1^ >     (28) 

Using 

^•.K (R(y»7T)>" 6K'.-K (-1)L"K (29) 

we find 

1   fL.K(Pl'P2'P3) " (-1)L'K fJ.-K <p2'pl'p3) (30) 

if all three particles are equivalent it is possible to use equations 

analogous to Eq. (30) for the exchange of any pair. These results com- 

bined with 

fL.K = V ^.K'VK (Rk,j) 

provides all the needed information—unfortunately in a rather cumbersome 

form. Attempts by the author to define a reference orientation which 

treats all three particles symmetrically, and which leads to simpler ex- 

pressions for the effects of exchange, have been unsuccessful. 

The final symmetry transformation we consider is the behavior under 

time reversal.  Following Wigner we note that solutions can be chosen such 

that 

M 
< {-PH*L>M> - (-1) <  {pmLj.M (31) 

If we apply E;. (26) and observe that 

DK,M <R)* 3 <-VH'K  D-K.-MW (32) 
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we Immediately obtain 

TIME REVERSAL 

(4)* - f!K <33) 

Since we have used Eq. (26), the reference orientation P must be such that 

the momentum triangle lies In the x-y plane.  For bound state problems the 

overall phase of the wave function can always be chosen so that Eq. (33) 

Is satisfied. For scattering problems It Is also necessary that the Inhrno- 

geneous terms be chosen so as to satisfy Eq. (33).  (This may always be 

done.) 
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ON THE SLOPE OF ENERGY CURVES 
AS THEY ENTER THE CONTINUUM * 

by 

Peter J. Redmond 

ABSTRACT 

Let the Hamlltonlan HCA) have a bound state with 
binding energy E(X) such that the E(X) ->• 0 as X -► X*. 
It is shown that dE(X)/dX - 0 at X - X* for s-state- 
and that dE(X)/dX f  0 for higher angular momentum. 
As an application of this theorem it id shown that 
there is a low lying p-wave resonance in the scatter- 
ing of an electron by molecular nydrogcn. 

According to the best available calculation the lowest lying adia- 

batic potencial curve for the system H + H intersects the ground state 

H9 potential at a point to the right of the H minimum. It has been sug- 
2 

gested that the two curves should be tangential at the point of intersec- 

tion whereas the numerical calculations indicate that this is not so. 

Which of these two possibilities is realized is important in deciding 

whether it is reasonable to consider extending the H + H curve beyond the 

intersection point and interpreting it as a potential resonance. The same 

question arises for any A + 6 system and la many other molecular problems. 

We shall show that the e&.sential features of the problem are present 

in a very much simpler situation. We consider the motion of a particle 

governed by a Hamiltonian containing a potential which depends on a pa- 

rameter X•  It is assumed that the Hamiltonian has a bound state with energy 

E(X) over some range of values for X and that E(X) ->■ 0 as X -+■ X*. We 

* Submitted to Phys. Rev. 

1 H. S. Taylor and F. E. Harris, J. Chem. Phys. 39, 1012, 1963. 

* Private communication, B. F. Gray. 
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shall show that dE(A)/dX - 0 at X = A* for s states and that, in general, 

d(E(X)/dA ^ 0 for higher angular momentum. 

Consider the Sehrodinger equation (ff = 1) 

2 
r-^ 

2mr'' 
'ab UT)  r+ii^-+V(r,X)  0(r.X)  = E(A) *(r.X)  . 

(1) 

For simplicity we assume that V(rj\) = 0 for r > r although this is not 

essential to the argument. The slope of the energy curve is given by 

r 

dX    J b2(r.X) ~ V(r,A) r2 dr . (2) 

We now consider the behavior of the s-^ave solutions as E(A) -+ 0. 

lit  distances greater than r the wave function is proportional to 

e KT/r  where K is defined by E{X) = - < /2m. Let the solution to Eq. (1) 

for r < r be denoted by x(f,A) where we normalize x(r»^) to unity. 

/  X2(r,X) r2 dr = 1 . (3) 

Then the wave function x(r,X) will approach a definite well defined limit 

as E(X) ■*  0.  (As a simple example: for a square well potential of range 

ro and variable depth x(r,X) ■* {llrj112  sin (irr/2r )/r.)  The normalized 

wave function then is g.lven by 

4>(r,A)  - N x(r,X)   ,  r < r 

- N(r /r) x(r ,X) e 
o     o 

o 

■<(r-r ) 
r > r (4) 

The normalization factor is readily obtained 
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N2 - (1 + ro
2 x2 (ro,X)/2lc)"

1 (5) 

and 

N2 -»■ 2K/X2 (r ,X) r 2 - 0  as E(X) +  0 . 
o    o 

2 
The possib-'j.ity that the conclusion N  * 0 could be Incorrect because 

X(r ,\) •* 0  can be ruled out by noting that the logarithmic derivative of 
o 

the r cimes the wave function nust be continuou ! at r - r . This gives 

r x(r ,X)  dr 
o   o 

r x(r,X) » - 2K -»■ 0 . (6) 
r=r 

so that drx/dr •*• 0 at r - r .  If x(r ,X) also approached zero then (j)(r,X)/N 
o       o 

would approach a function which was identically zero everywhere. This 

contradicts the assumption that a bound state exists in the vicinity of 

E » 0. 

In order to illustrate the argument for higher angular momentum we 

consider a p-state. The wave function is then given by 

(Kr.X) - N x(r,X)  , r < ro 

-<(r-r ) 
= N(ru/r) x(ro,X) e       (1 + l/.cr)/(l + I/K^) , r > ro . 

(7) 

An axpression for the normalization factor is easily written and one 

readily finds that as E(X) -► 0 N2 -> (1 + r  XZ (r .X*))"1. The argument 
o     o 

is readily extended to higher angular momentum and 

N£
2 Wl + ro

3 x2 (ro.X*)/(2£ - 1) j 1 . ^ > 1 • (8) 

Since the normalization factor approaches a finite non-zero value the slope 

dE/dX given by Eq. (2!1 will generally be non-zero. 
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3 

The above simple treatment of a simple model caii be described in 

more general terms which indicate the wide applicability of the results. 

Consider a many body Hamiltonian which depends on a varying parameter such 

that the binding energy of the system approaches zero. As this limit is 

approached one of the particles will tend to separate from the remaining 

particles. At points where the separation distance, r, between these two 

components is very large the wave function is a product of a bound state 

function of the particles left behind multiplied by Y„ (Q.ilO/r  ,  where 

1 is the relative angular momentum of the two components. For *. = 0 the 

asymptotic wave function is not ncrmalizable at zero binding energy so that 

the probability that the separated particle is in the range of the forces 

of the bound state left behind goes to zero. For h.'gher angular moment m 

the asymptotic wave function is normalized so that the separated particle 

continues to interact with the remaining particles. 

The result is a manifestation of the angular momentum potential bar- 

rier. The non-vanishing of dE/dX for i t 0  suggests that the energy curve 

may be extrapolated into the continuum where it would be identified as a 

resonance. 

As an illustration of these ideas we consider the lowest potential 

curves of the H« molecule and HH system.  The general shape of these 

curves is illustrated in Fig. 1 and the question to be decided is whether 

or not the curves are tangential at the point of intersection.  It is 

easily seen nhat the arguments presented above apply to the difference in 

energy between the two curves. The H„ curve can be loosely described as 

being made up of the molecular orbitals (a )  a . At the point of inter- 

section the extra electron (o ) in the HH" system is in a p-state relative 

3 There are also terms with lower inverse powers of r but these are 
multiplied by powers of K such that the products do not contribute 

to the normalization Integral. 

In application it is important that the long range force experienced 
by the odd particle is dominrited by the centrifugal barrier. This 

is satisfied for the e~ - H- system. 
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to the H. molecule so that the curves cross obliquely. This suggests that 

there should be a low lying p-state resonance in the scattering of electrons 

by H2.
5 

I 
=5 

Figure 1. Lowest Lying Potential Curves of H, and HH" 

3 Experiment' 1 evidence for such a resonance, as well as references 
to previous theoretical and experimental studies, is contained in 
G. J. Schulz and R. K. Asundi, Phys. Rev. Letters 15, 946, (1965). 

UNCLASSIFIED 83 



UNCLASSIFIED 

THIS PAGE INTENTIONALLY BLANK 

84 UNCLASSIFIED 



UNCLASSIFIED 

»curtt, Cl.„.f,c...ön 
DOCUMENT CONTROL DATA .R&D 

f»«ci«f«iy tlMlllcmtlmt al llllt, bodr cl «Xtwwr utt MMmg mmutmilan «MI»« t» a» »»wit rtftl I» fjm^SsA 
I. omaiNATiNS ACTIVITY rcorpimto «utfior) 

Defense Research Corporation 

U. RCPORT tKCURITT CkAtttriCATION 

UNCLASSIFIED 
»». •nour 

1    REPORT  TITLE 

Calculation of Scattering and Reaction Cross Sections 

4. DKtCRIRTIva NOTtt fl>p* ef r«i>«rl anrf IneliMln daM*> 

Technical Memorandum 560  1 January 1966 through 31 December 1966 
i! AUTHonw (Flnl imrn», mum» Mitel, tactnamj 

B. A. Lippmann, P. J. Redmond, T.F. O'Malley 

«. REPORT DATE 

January 1967 
7m.  TOTAL NO. OP PA«CI 

84 
>*. NO. OP RCP1 

38 
M.  CONTRACT OR ORANT NO. 

DA-A9-083-OSA-3132, 
6. PROJECT NO. 

ARFA Order-367 Amendment 8 

M.  ORISINATOR'* REPORT NUMBCRI» 

TM-560 

•6. OTHER REPORT NOIEI (Änf ■»*•» 
IW» nporf> 

nimttn mmt mar *• ma»l0nd 

10. DKTRIRUTION ITATCMENT 

Distribution is Unlimited 

II.  «UPPLEWCNTART  NOTE! 1».  «POHSORINO MILITARY   ACTIVITY 

Advanced Research Projects Agency 
The Pentagon 
Washington D. C.  

The following papers arei presented in this report: 

1. Operator for Time Delay Induced by Scattering 

2. A Note on Scattering Variational Principles 

3. Integral Equations for Multi-Channel Collisions 

4. Calculation of Dissociative Attachment in Hot O2 

5. Quasi-Adiabatic Molecular States: An Alternative to the Non-Crossing Rule 

C-. Theory of Resonant Dissociative Recombination 

7. Formulation of the Two State Problem in Terms of Adlabatic Potential Curves 

8. Treatment of Angular Momentum in Momentum Space 

9. On the Slope of Energy Curves as They Enter the Continuum 

DD PORM 1473 UNCLASSIFIED 
curtly CianaincattOi Security tlon 



UNCLASSIFIED 
Security CiaüsifiCiiUon 

KF. T   «onus 

Adlabatic States 

Atmospheric Gases 

Collision 

Cross Section 

Dissociative Attachment 

Electron Distribution 

Electronic Wave Function 

Electron Density 

Hot 02 

Non-Crossing Rule 

Nuclear Energy 

Multi-Channel Collision 

Quantum-Mechanics 

Resonance 

Recombination 

Scattering 

Vibrational Levels 

!TNn Ag<;TrTFr> 

Security Cl8«»ific»tion 


