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ABSTRACT

The following papers are presented in this report:
1. Operator for Time Delay Induced by Scattering

2. A Note on Scattering Variational Princinles

3. 1Integral Equations for Multi-Channel Collisions
4. Calculation of Dissociative Attachment in Eot 02

5. Quas: -Adiabatic Molecular States: An Alternative to
the Non-Crossing Rule

6. Theory of Resonant Dissociative Recombination

7. Formulation of the Two-State Problem in Terms of
Adiabatic Potential Curves

8. Treatment of Angular Momentum in Momentum Space

9. On the Slope of Energy Curves as They Enter the Continuum
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I. INTRODUCTION

A. OBJECTIVE

The aim of the work reported here is to:

1.

Review the available theoretical and experimental data on the

reactions that control the electron density in missile wakes

and in the environment surrcunding nuclear bursts.

Supplement this by calculating the cross sections (reaction
rates) for specific reactions of importance in these problem
areas. (In its initial stages, the program has studied re-
actions in atmospheric gases such as dissociative recombina-

tion [Example: ot + e > N+ 0] and related processes.)

Compute other reactions as requested by ARPA.

Develop general computational techniques desi:ned to improve

the accuracy and reliability of calculations of this type.

B. RELEVANCE TGO THE DEFENDER PROGRAM

The program at Defense Research Corporation is directed towards

the analyses of reaction rates that are directly applicable to several

critical problem areas in the Defender program.

Some of these are:

Radar return from missile wakes.
Nuclear fireball clutter and scintillation effects.
The expansion of nuclear debris at high altitudes.

Atmospheric disturbances introduced by nuclear weapons.

The objective at Defense Research Corporation has been to devise

practical computational techniques for estimating the cress sections of

the critical reactions connected with these problems.

The personnel
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assigned to this task, well qualified by training and experieunce
take this work, include:

to under-

Dr. B. A. Lippmann, Principal Investigator (half-time),
Dr. T. F. 0'Malley (full time),
Dr. P. J. Redmond (half-time).

Cc. SYNOPSIS OF WORK ACCOMPLISHED

At the present time, the work is proceeding along two lines. The
main emphasis is being placed on numerical analysis of specific reactions.
However, auxiliary formal studies relating to questions arising in the

course of attempting the numerical calculations are also being carried out.

While some aspects of the work have not yet been completed, or are
still in the process of being written up, a fair sampling of the work ac~
complished during the 1966 period is contained in the list of reports and
journal articles given in the Table of Contents. Copies of all these
documents are attached. 1In addition, technical assistance ia connection

with the ARPA A&M Physics Program has been furnishe’' as requested.
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OPERATOR FOR TIME DELAY INDUCE
BY SCATTERING *
by
B. A, Lippmann

ABSTRACT

The operator that gives the time delay induced by a
scattering process is exhibited explicitly,

It is well knrwn that the time delay induced by a scattering process

is given by the energy derivative of the phase shift.1 Some time ago,2

we observed that this theorem can be put in the 'suggestive' form S-lrS,

where r is interpreted as an "operator,' equivalent, in an energy repre-
P P q :3 4 P

sentation, to differentiation with respect to the energy. It is the pur-
pose of this paper to make this relationship precise by exhibiting the

time-delay operator explicitly.

Theo such an operator might exist is suggested by the action and
angle varizbles of classical theory. For, if the action variable Jl is

identified with the energy, the conjugate angle variable ¢1 has the

Published in Phys. Rev. 151, 1023 (1966).

(=

This appears to have first been shown quantum-mechanically by E. P.
Wigner, Phys. Rev. 98, 145 (1955), although relationships of this sort
are well known in filter theory, where the frequency derivative of t:he
phase characteristic gives the time required for a pulse of energy to
pass through the filter [Radiation Laboratory Series (McGraw-Hill Book
Company, Inc., New York, 1948), Vol. 8, p. 155]. A simtilar relation
describes the spatial displacement of a wave packet upon reflect’un by
a plane interface whose reflection coefficient is a function of the

wave number parallel to the interface, L. M. Brekhovskikh, Wavzs in
Layered Media (Academic Press Inc., New York, 1960), p. 105,

See F. T. Smith, Phys. Rev., 118, 349 (1960), Eq. (45).
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equation ot uwotion

L] aH rd
LS W S (1)
1
which integrates to
¢.(8) = t+06(0) . 2)

One would expect that the first equation would have as its quantuu-
mechanical analog the convecrtional commutation relation that holds for
coniugate variables, wnhile the second equation, transcribed to quantum
mechanics, would relate one of the quantum-mechanical cperators to the

time parameter. It is shown below that these expectatior . can be realized.

We first introduce the operator for the magnitude of the particle

momentum
;2 2 2
p-(px+p +pz) 3

and the operator represr--ing the projection of the radial coordinate

upon the momentum

r, = (1/p;(px) . (4)

These are analogous to the operators introduced by Dirac3 except

that the roles of position and momentum have ' zen exchanged.

As in Ref. 3, we easily find that these operators satisfy the

commutation relation

- 5
[rp,p] i (5)

and that the operator rp + i/p, which is Hermitian, i{s canonically con-

jugate to p .

3 P. /. M. Dirac, The Principles of Quan.m Mechanics (Oxford University
Pross, New Yock, 1958), p. 152.
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The time-delay operator Tt is defined by

T = 2—p<rp+%)+(rp+%)%' (6)

Tor the free particle Hamiltonian, Ho = p2/2m, we find

[T,Ho] = { . (7)

Although T, as constructed in Eq. (6) above is formally Hermitian,
some care must bz ‘“iken in developing its properties, because of the fact
that Ho has a spectrum that 1s limited to positive values (O,w).a 2 W=
ever, this circumstance does not impair the interpretation, whirh follows

directly from Eq. (7), of T as an enezgy derivative in a representation
in which Ho is diagenal: r—13/23E .

Calling the operator defined in Eq. (6) T7(0), we can also introduce
the dime-dependent operator

iH t -iH t
(t) = e °rro)e ° (8)

= t 4+ T(0) .

The relations given in Eqs. (7) and (8) above are the quantum me-

chanical analogs of the classical Eqs. (1) and (2).

The application to the calculation of time delays is made by con-
sidering the matrix element

(v, @, c@u, @) , (9)

where the state vector wa(t) is the scattered wave packet, evaluated for
times after the scattering process has been completed. The time depen-

dence of this state vector is then given by the free-particle Hamiltonlan

alone: wa(t) = e-iﬂotwa(O): here, the last factor cepresents the

For example, the operator i has no eigenfunctions; see W. Pauli, Hand-
buch der Physik (Springer-Verlag, Berlin, 1958), Vol. 5/1, . 63.
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scattered-state vector extrapolated back to zero time.
both the incident and scattered wave packets are

In the following,
Since the scattered state !s con-

assumed to be normalized to unity.
nected with the initial state vector ¢a(0) by the S matrix, (9) can be

evaluated as below:
iH t -1H°t
0, (0))

(wa(O),e o 7(0)e
- (v, 0.]c + @] v_©)
-t o+ (¢a(0),s‘11(0)3¢a(0)). (10)

y In an energy representa-

If the S matrix has the form S = e215(E)
tion the time deiay operator becomes equivalent to energy differentiation,

(11)

and we find, as a final result
- _ 5 38(E)
(420, 10v,(0) = € - 2 28E, (.0, 700, (0))

In this form the interpretation of the energy derivative of the phase

shift as the time delay induced by the scattering process is apparent,
or-~

I am indebted to Professor Massey of University College, L

» for his generous hosnitality extended over part of the period during

don
which these ideas were clarified.
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A NOTE ON SCATTERING VARIATIONAL PRINCIPLES
by
B. A. Lippmann

ABSTRACT

The Schwinger variational principle is converted
into a slightly modified form of the Kohn-Hulthen
varlational principle. A generalization of the new
form, valid for rearrangement collisions, is given.

DIRECT COLLISIONS

We start with the Schwinger variational principle
- () (=) - ( (=) I _ ‘ .(+))
Tba (¢b’ v ¢a ) k (wb » v ¢a) Vp o |V VGov Ya ’

(1)

where

T g Aa = Ea + 1ie R e >0 5 (2)

The last two terms on the right side of (1) may be combined to yield:

0 b+ 0 o) 6 00 o o) e

(3)

The last term atove may be dropped since it vanishes in the limit ¢ » 0.

* Submitted to ARP.. for publication clearance.
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Treating the first term on the right side of (1) similarly,
R AN _ (+)| _
(0 ¥ 937) = (0pr Q) [og + 0V 0. 7)) - deto0) @
where, as before, the last term vanishes in the limit ¢ - 0.

As a consequence, (1) takes on the new form

Tha = (¢b’(Aa-Ho) ba + GV W§+)I) B (wé_)' (Aa-H) vyt GV ¢§+)l)

(5)
where the limit ¢ > 0 is understood.

It is clear that w;+) and the quantity in the {---} are equally

suitable as trial functions and are equal for the exact state vector.
’

. +
Hence, if we regard {---} as the trial func:iion, and symbolize it by #; )

when we pass to the limit € > 0, a slightly modified form of the Kohn-
Hulthen variation.l principle results:

Ty, = (o) o$0) - (v @ w‘”) : (6)

a a

where E is the common energy of states a and b.

Starting from (1) again, and combining the terms involving w(-)

b » Ve
obtain

o (oo y o) _( (=) <+))
1, = (EH) w0 e ) - (@ o7, ) (7

The variational principle (6) ¢’ ffers slightly from the usual Kohn-
Hulthen form; the first term on the right is more conventionally expressed

as (Tba)trial' The present form automatically insures that this term
emerges. A similar remark holds for (7).

It will be noted from (1) that the presence of V limits all integrals

to the region where the poter.tial differs from zero. The integrals in (6)

1 UNCLASSIFIED
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and (7) should therefore be restricted to the same regions. If the trial
functions are constructed to represent free particle motion outside the
region where the potential is different from zero, this restriction of the

region of integration is automatically accomplished in (6) and (7).

Although the manner of derivation of (6) and (7) from (1) insures
that the stationary properties of (1) are maintained in the forms (6) and
(7), it is a simple matter to verify directly that (6) and (7) are station-

ary expressions for Tba when the state vectors are varied about their exact
values.

REARRANGEMENT COLLISIONS
The foregoing may be extended to rearrangement collisions by intro-
ducing a channel index {a = 1,2,...N) on the decomposition of the Hamiltonian

H = Ho’a + va (8)

as well as the state vectors. When this is done, the variational principle
for the amplitude scattered from channel a, state a, to channel 8. state b,

can ve put in the two alternative forms:

Ty, 85a,0 ™ (¢b,8’(E-Ho,B) "33) - ("’lg:?s’ (E-H) “’m)

a,a

ol (Co R A AT I (G2 A Rl IO

COMMENTS

The two forms given in (6) and (7) treat the initial and final states
unsymmetrically. Clearly, a symmetrical form of the variational principle

may be obtaired by averaging (6) and (7), and similarly for the two forms
given in (9).

Tt= trial tunctions appearing in these variational principles cor-

respond tc diagonalizing the momenta of the incident and final states. If

UNCLASSIFIED =

A AR

T

i

T

i




|
"n

T

il

UNCLASSIFIED

the potential is spherically symmetric, forms of the variational principles
given above are easily obtained, in which the angular momentum is diagonal,
by introducing the conventional resolution of plane waves to angular mo-
mentum eigenstates. In the new forms, the T-matrix for angular momentum,
i, is given by —'% e162 sin 61; only the radial parts of the Hamiltonian
operators Ho and H appear, and the wave functions are purely radial. To
verify that the expressions for each angular momentum state, g, are indi-
vidually stationary, we assume that the state vector is given exactly in
the plane wave form for all &' # &; varying the quantities referring to ¢
only, the stationary property of the original (plane wave) expression then

insures that the terms involving £ alone constitute a stationary expression.
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*
INTEGRAL EQUATIONS FOR MULTI-CHANNEL COLLISIONS
by
B. A. Lippman

ABSTRACT

Two new integral equations to describe multi-channel
collisions are given: one uses an explicit cut-off
radius; the other does not. The new integral equations
possess symmetrical kernels, thereby facilitating the
application of the Pauli principle ‘and permitting the
asymptotic scattered amplitude in each channel to be
derived simply. The limit € + 0 does not result in

a "homogeneous" integral equation.

The integral equations appropriate to each of the channels in a

multi-channel collision are here unified by the use of channel projection

operators.1 Two new integral equations result corresponding to the choice

of two different types of channel projection operators used: one type uses
an explicit cut-off radius and the other does not.

The new integral equations treat all channels on an equal basis;

permit simple derivations of the asymptotic form of the scattered amplitude

in each channel -- from which the transition matrix elements

-

e easily
identified; possess symmetrical kernels, thereby facilitating the applica-

tion of the Pauli principle; and eliminate the difficulties in principle aris-

ing from the presence of "homogeneous" equatious in some of the channels.2

* Submirted to ARPA for publication clearance,

1 Related operators have previously been introduced by H. Feshback,
Ann. Phys. (N.Y.) 5, 357 (1958); 19, 287 (1962); and B. A. Lippmann,
Lockheed Technical Report NONR 3368(00), 1964 (unpublished).

This apparent lack of uniqueness in multi-channel collision theory

has led to the introduction of the Fadeeyev equations. There is no
lack of uniqueness if ¢ ¥ 0.
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The derivation is given in a general form and also illustrated for

the case of electron scattering by atomic hydrogen. The electrons are

first considered distinguishable: the Pauli principle is taken into account
later.

For electron-H scattering, there are four channels. Assuming shield-

ed Coulomb potentials, channel 1 corresponds to electron 1 moving freely
and electron 2 interacting with the proton; channel 2 corresponds to elec-
tron 2 moving freely and electron 1 interacting with the proton; channel 3
corresponds to both electrons moving freely; channel 4 corresponds to both
electrons interacting with the proton and. if convenient, also with eacn

other.3 There is some arbitrariness in the division of the interactions

between H and V , where H = H +V (a =1,2,3,4).
0,0 a oy a

?

The basis vectors in each channel are

¢a,1 (1,2) = Ean (2) Xan (L

¢a,2 (1,2) = na. (1, Xan (2)
b0y (L2 = x 0 (1 xu (2) '
¢a’4 (1’2) = Cav (1) Uan (2) (1)

where the x's cor—espond to . particle wave functions and the remain-

ing symbols describe interacting wave functions. Each ¢ above is an

eipenfur.ction of the corresponding Ho

s

Assuming the incident wave is in channel 1, the integral equation
for the total wave function is

S+ ()
Ya,1 %a; Y S V1van (2)

3 In particular, channel 4 can be defined to include a zero width

resonant state, with VA being responsible for the energy shift and
lifetime.

r UNCLASSIFIED |
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where

«
[}

Aa = Ea + ie 3 e>0 . (3)

In channels 2,3, and 4, we have (in the limit e - O)4

(+ (+)
Ya,1 = 5,2 Y2 %31
+)

G0,3 V3 lpa,l

+)
= A Y Vaa (4)

The integrations in coordinate space consist of the direct products
of the individual coordinate spaces of electrons 1 and 2, which we divide
into channels as follows. In each space, we introduce a distance R around
the target. Let RI(l) be the operator that projects onto the space of
particle 1 interior to R; similarly, let RE(l) project onto the space of
particle 1 exterior to R. These are the "internal" and "external" reginns
of 1. For any value of the total energy, R can be chosen large enough so
that if one examines the wave functions of the bound states energetically

possible in each channel, these wave functions are essentially contained
within R.

Vle define four channel projection operators corresponding to the four

channels that are possible in this special case:
o Rp(2) R (D) ; C, = Ri(1) R(2)

3 = Rg(1) R(D) ; c, = R (1R . ()

(@]
[}

The channel operators are mutually exclusive and their sum covers the direct

product space completely;

C,Cy = € 6y, : ZE c, = 1 . (6)
i

4 B, A. Lippmann, Prys. Rev. 102, 264 (1956).
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We now multiply Eq. (2) by Cl, and the successive lines of (4] by
CZ’ C3, and C&’ and add, therebv obtaining the first of the integral equa-
tions we have been seeking

(+) - (+)
" Cl ¢a,l +I2£ Co Go,u v : (7)

a,l o a 1

In the limit ¢ » O, the second term on the right yields the scattered
amplitude in each channel. That is, the projection operators effect a
separation between those states which ounly exist in the region internal fo
R and those which exist in the external region as weli: these are the dis-
crote and continuum states respectively. If R has been chosen large enough,
the discrete states in the internal region that are energetically accessible
maintain their full c¢rthogonality properties unimpaired. The continuum states
in the external region that combine with these bound states tc conserve
energy are unaffected by starting the integration at a finite value of Rj
the continuum states that do not conserve energy are exponentially damped
in the external region. Thus, as R approaches infinity, these exponentially
damped states contribute nothing. For the "propagating' states in the ex-

ternal region, R may be permitted to approach zero.

Introducing the basi:; vectors for each channel explicitly, (7) be-

comes

I
[@]
0

b,axsa,l

L Gy ¢
o - Z __lu_ T (8)
b a

sl

where the transition amplitudes are given by

: i WP

4
e ¥ , 3
b,3;a,a ( b, a,l

(9)

We have assumed distinguishable particles in deriving (8). However,
if the parvicles are indistinguishable, (7) may be adapted to reflect this
explicitly by multiplying both sides by the proper symmetrization or anti-

symmetrization operator, s. With the limit ¢ > 0 uncerstood, (8) is then

L UNCLASSIFIED
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renlaced by

C ¢
GO N z —a_"bya (+)
Ya,1 & Gy O 5 Z X, - E (¢b.cx' Uy @ wa,l)' (10)

The sum in (10) includes states that differ only by an interchange of
particles 1 and 2. 1f the summation is restricted so that these states are

excluded -- that is, the summation is only over " istinct" channels -- (10)

becomes
s C ¢
) . z o M( )\
ﬂa.l s C1 ¢’a,l + Y - % ¢b.a' Vas wa,l/ * (11)
a,b a b
"distinct"
states

Thus the transition amplitude, when the Pauli principle is operative,
is given by

(+)) .

T‘-"B;apa B <¢b.8' VBS wa,-\. (12)

The projection operators defined so far correspond to a definite
choice of a cut-off radius. However, (8) also holds for the channel pro-

jection operators, defined below, which are independent of the cut-off
radius.

These Ca are defined in the terms of the particle energies as follows.

In each channel, say "a," the corresponding Ho a defines the enrigies of
’

particles 1 and 2 -- when one of them is in the asymptotic region -~ unam-

biguouslv. We can therefore redefine the Ca‘

C1 = ”('EZ) n(El) : C2 = n(-El) "(EZ)

C3 = n(El) n(Ez;

04 = n(-El) n(-Ez)

26(x) = 1+T:—|— . (13)
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The previous considerations hold unchanged for the new definitions

of the channel projection operators, in particular, (8) no longer requires

the introduction of a cut-off radius.
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CALCULATION OF DISSOCIATIVE
ATTACHMENT IN HOT 02*
by

T. F. 0'Malley

ABSTRACT

The very striking temperature dependence of the dis-
sociative attachment cross sections found experimentally
in 0, has been reproduced by a semi-empirical calcula-
tion, assuming a Maxwell di=tribution of vibrational

(v) and rotational (r) states. A recently derived ex-
pression for the cross section gy , is used, and the
final state potential curve of 0; is parametrized to
fit the experiments. The temperature shift is found to
be caused by the effect on excited vibrational states

of the rapidly varying "survivzl probability," a
measure of the competitioa between autoionization and
dissociation. By-products of the calculaticn are the N
potential curve for the final dissociating state of 0,7
together with an estimate of its autoionization width,
Fa(R), and also the contribution of this state to the
total cross section for electron energy loss to vibra-
tional excitation and dissociation.

It has been found experimentally by Fite et al‘1 that the cross

section fur dissoclative attachment (DA, of electrons to 02 has an extra-

ordinarily large d¢ =ndence on the temperature of the 02‘ The shift and

~n0
broadening with temperature was such that at . "7K the cross cection peak

was shifted to lower energy by 1 eV while the apparent onset v:s reduced

*

To appear in Phys. Rev., March 1967,

l W. L. Fite and R. T. Brackmann, Proc. 4th International Conference

on the Ionization Phenomena in Gases, Paris, 1963, Vol I, p. 21.
W. L. Fite, R. T. Brackmann, and W. R. Henderson, IVth International

Conference on the Physics of Electronic and Atomic Coilisions, Science
Bookcrafters, Inc., Hastings, N.Y. (1965), p. 100.
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by over 2 eV. The present culculation was done in an attempt 'o provide

some understanding of this remarkable effect.

It is first assumned that the direct effect of the temperature (T) of
the 02 is to produce a Maxwell distribution of vibrational (v) and rota-
t‘onal (r) states. The cross section o(T,E), where E is the electron
encergy, is then the Boltzmann average of the cross sections Ov r(E) from

1 ]
each of the individual excited states, thus

° -(E +E ) /kT
@ =Y Y s YT o (® D
v=v

, r=r_.
min min
where N is the Boltzmann no-malization factor, and Ev and Er are the vibra-
tional energy and rotational energies of the 02 molecules, respectively,
The quantities v_, und r . are subject to the threshold requirement for
min min
the process, viz., E + Ev + Er > 3.6 eV, and the cross section oy is

”n 1

given by the theoretical expression®

an’g Fay | 'a 2 -p
R A ) L

"
The Ta, Yd and ¢ as well! as X, are evaluated at the final state turning

point RE(E,v,r). The exact definition of the quantities is given in Ref. 2.

In particular, k is the electron's momentum, g is an angular momentum and

spin factor. Fa and Fa Y are the total and partial (for the ground state
y

X) autoionization widths, :.e., Fa = I . I, is a width for dis-

d
the turning point is in

. T
J a,]

sociation, xv is the vibrational wave function, RE

vibrational units and o is twice the imaginary part of the final state
phase shift Er. The factor e - is called the survival probability3 or

survival factor. It is given approximately by

R
c

Re

e exp | - l. Ya(R)dR/h v(R)] = exp[-—}ﬂra(R)dt(R)/ﬁ] (3)

= T. F. 0'Malley, Phys. Rev. 150, 14 (1966).

"~
o
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where Rc is the point where ra goes to zero, Vv is the velocity of dissocia-

tion and t the co-respondinz classical time. This factor results from the

ccmpetition between autoionization and dissociation. Where the above ex-

3
pression is not sufficiently accurate, an exact expression can be used.

The effect of rotation in (2) is implicit. It adds a centrifugal term to

the potential curves for initial and final vibrational motion, and at low

energies it helps put the total energy above the threshold and thus de-

termines Voin in Eq. (1).

The cross section (2) is completely determined when the potential

energy curves Vi and Vf are specified including the width Fa of the latter,
which is a resonance or autoionizing state.
curve for 02 is well known,a
\'

Since Vi, the ground state

it is necessary only to know the final curve

£ together with its width Fa in order to determine the entire family of

cross sections given by (2). Accordingly, the procedure adopted in the

present work was to parametrize this potential curve and its width. The

parameters are then chosen with a view to fitting the experimentally de-
termined o(T,E), in particular as given by Ref. 1, to the extent that this

°
is possible. The curve Vf is first expanded in a series about Ro = 1.21 A
(the 02 equilibrium distance), as

Vf(R) =E - V'AR + % v'ar? - (1/6) v ' g3 4)

where AR = R - Ro. For this width, we may either parametrize Pa(R) and

then derive o from Eq. (3) or a more exact formula, or else parametrize
p(R) directly and derive Fa.

The latter course proved easiest, ar . was
done in the form

p(R) =o' (R - D)7 (R<R) (5)

3 50N Bardsley, A. Herzenberg, and F. Mandl, Atomic Collision Pro-

cesses (M.R.C. McDowell, ed.), North Holland, Amsterdam, 1964, p. 415.

F. R. Filmore, J. Quant. Spectry. Rad. Trans. 5, 369 (1965).
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and » = 0 beyond Rc' Lest the form of (5) appear arbitrary, this is
actually the exact form which follows from (3) in the limit that the po-

tential curve V_ is approximately linear between RE and R und [ has its
£ L+1/2 < a

threshold behavior Fq a (RC - R) , where L is the electron's asymptotic

angular momentum. In this case n would be equal to L + 1. However, the
present results cover a wider range and so (5) represents simply a 3-pa-
rameter approximation to the true behavior. RC is interpreted as the
crossing point between Vf and the target potential curve into which it
autoionizes, which is where the partial autolonization width ra,j and
therefore its contribution to p goes to zero in the Born-Oppenheimer ap-

proximation.

1
It was found that the best fit to the experimental results™ was

obtained with the parameters in (4) and (5) chosen as follows:

[o]
E = 7.8:0.2eV, V' =27 : 2 ev/R, V" = 110 « 20 ev/8% ,

v'''= 300 : 100 ev/R3 (6)
and
- [o]
n=1.5: 0.5 o' =41+ 3 3732, R = 1.44 : 0.03 4 . (7

The uncertainties expressed for the various quantities are meant to indi-
cate the sensitivity of the fit to the various parameters, and do not

necessarily reflect any judgment as to absolute errors.

The resulting cross sections at 300 and at 210OOK are plotted in
Fig. 1 together with the experimental results at these temperatures. The
theoretical curve for 3000° is also shown. The normalization of the 300°
cross section was taken mainly from the work of Schulz.5 The theoretical
curves in Fig. 1 have been averaged over a broad distribution of electron

encrgies chosen to approximate that employed in the experiment

oav(T,E) = [ dE' f(E") ~(T,E") (8)

5 G. J. Schulz, Phys. Rev. 128, 178 (1962). See alsc D. Rapp and
D. D. Briglia, J. Chem. Phys. 43, 1480 (1965).
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where the electron distribution function f(E') was taken to be a shifted
Maxwellian corresponding to about 2800°K. The experimental 2100° cross
section represents the experimental signal normaiized to agree in magritude
with the presently calculated 2100” cross section, which is 1.3 times as
large as that at room temperature. Though the magnitude of the cross
section (as opposed to the signal) is not given explicitly in Ref. 1, the
ratio of 1.3 found here is consistent with the cross sections implied by

the discussion in these papers.

The theoretical fit to the experiments may be seen from Fig. 1 to be
good, except that it fails somewhat belcw at the lowest electron energies.
The experimental plateau above 8 eV is apparently due to some other cause.
In Table 1, the calculated cross sections o(T,E) are tabulated for a num-
ber of temperatures. Note that unlike Fig. 1, these are not averaged over

the electron distribution of Eq. (8).

In the course of the fitting process, it was found that the three
parameters Eo, V' and V" of the potential curve Vf are essencially de-

termined by the room temperature data, except that Eo is raised by the

-

presence of e . The quantity V''' does not affect the 300° result and was
chosen mainly for its influence on D(E) (see Table 2). The expansioa (4)

of V. should hold till roughly R = 1.55 3.

The final state potential curve Vf for the system 02_* is shown in
Fig. 2, togetber with other relevant states of 02 and 02 taken from
Gilmore's curves.“ It is believed that this potential curve together with
the approximation (5) and (7) to the width (see also footnote €) consti-

tute a significant by-product of the present work. HNHote that the curve

foh)

Strictly speaking, one should put at least two terms like (5) into
vy one for each set of states. This was tried and found to give
essentially the same cross sections. The parameters were found very
roughly to be (with n = 1.5) Rcy = 1.52, 'y = 165 R-, = 1.39,

'q = 27, This gives approximately ry = L. 5 (1.52- Rg and T, = 2.6
(1 Y39-R), while g ~ 0.6 I'y. However, the relative magnituae of
»] and ., was found to be somewhat arbitrary without additional
experimental information.
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TABLE 1

Dissociative attachment cross sections o(T,E) from Eq. (1)

at various temperatures, in units of 10

-21 2
cm o,

The

electron energy E is in eV and T in °. A sharply

defined electron energy is assumed.

E/T 2600° 2200° 1800° 1400° 300
1.0 5 1 0 0 0
1.5 22 4 0 0 0
2.0 98 27 4 0 0
2.5 312 119 29 3 0
3.0 650 306 104 20 0
3.5 1070 610 271 77 0
4.0 130 1010 560 224 1
4.5 1220 1430 940 500 21
5.0 2120 1750 1340 890 155
5.5 2070 1870 1610 1280 520
6.0 1810 1750 1650 1500 1040
6.5 1420 1440 1450 1440 1380
7.0 1000 1650 1100 1160 1310
7.5 630 670 720 770 930
8.0 360 381 405 434 520
8.5 183 190 197 206 229
9.0 82 83 83 83 83
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TABLE 2

‘lable of activation energies, D(E), experimental and thecretical
in eV, given in different approximation. D's are in eV,
Dav comes from S of Eq. {8), f.e., with electron spread.
D corresponds to o with no electron spreau.
C is the cor.esponding coefficient from Eq. (10)
in units of 10_18 cm2.

DV was compared with rotation entirely neglected (vibration only).

E Dexp Dav D Dv C(E)
1.0 -- 1.59 2.43 2.61 370
1.5 - 1.36 2.05 2.12 280
2.0 1.0 1.14 1.64 1.66 200
2.5 .92 .93 1.18 1.18 72
3.0 .79 72 .89 .91 39
3.5 .58 .55 .67 .68 23
3.75 -- A7 .59 .58 19
4.00 .29 .40 .50 .50 15
4,25 - .34 .42 W42 12
4.50 .15 .28 .35 .35 10
4.75 = .22 .28 .28 8
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goes below the dissociation limit at about R = 1l.44 X and becomes attrac-
tive. T 2 dotted line from about R = 1,55 to 2.1 g represents the way in

which this curve is assumed to connect up with the known asymptotic form
2

of the “ﬁu curve fgr 02-*. Although no use is made of this dotted reaion

of the curve, the éﬂu configuration is fully consistent with the assumed
electronic structure of the state, which would consist of an electron attach-
ed loosely to a comhination A and C corc. It follows that this state probably

has a dissociat ion energy of the order of 1 : % eV.

The heuristics of choosing the parameters for ¢ in (7) may be of
interest. They were chosen to fit the 2100° cross section. The prinary
feature, namely the shift of the peal. by 1 eV, was easily reproduced by
simply varying the amplitude o'. However, the obvious choice of n = 1/2
{corresponding to a constant Fa) gave a cross section that was either
nearly square in shape or double-pcaked, depending on Rc' It was only
when n was varied tc between 1 and 2 that bell-shaped curves resulted.

The value of 1.5 which fits best is gratifyingly close to the assumed cor-
rect threshold value, which as mentioned would give n = 2. Finally, fitting
the observed cross section width fixed RC loosely at 1.44 : 0.03 X. The
value 1.44 for Rc was a little surprising. Reference to Fig. 2 shows that
th's lies squarely between the crosring of the A,C system at R < 1.39 and
the crossing of the x,a,b states at R > 1.55, RC had been expected to
coincide with one or the other of these crossings. The intermediate value,
somewhat closer to A and C, is Iinterpreted as meaning that there is con-
siderable autoionization to all of the 5 allowed states, ~ith the largest

part going to A and C. The value of 1.44 is therefore taken as an average

or compromise value.

The foregoing results, (6) and (7), were derived with the cross sec -
tions arbitrarily normalized. Taking the 300” normalization of 1.4 x 10-18

e
em” from Ref. 5 allows Fa % in (2) to be determined. First, assuming the
. ’

)
0, state to be “Ru, it foliouws that the weighting factor g equals 2/3.

Further, it follows from n = 1.5 in (7) that the width Fa is roughly linear

in electron energv. Substituting all this into Eq. (2) with v = 0 and ¢

L
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small yields for the partial capture width fron the stats X

Fa,x = 0.034 E ¢))

This was incorporated in Fig. 1 and Table 1. The total width, Fa, also
can be computed2 from p as determined by (5) and (7). As Fa is not used
directly, this was done only roughly, in u« linear approximation, with the

result Fa(R) N~ 4 (lL.44 - R). Near the cross section peak then ro.x is
H

somewhat more than 1/4 of f which i1s also telievable.

An ana.ssis of the physical content of the ca! alation is made in
Fig. 3, where the 2100° cross section is plotted in five successive approxi-
mations. 1In curve a, we set v =1r = p= (., This would correspond to the
low temperature cross section without p. Including excited vibrational
states in (b) broadens the curve considerably. Applying the rapidly vary-
ing survival factor e ? shifts (b) to (c¢), while the narrower curve a is
shifted only to c'. (Differences in magnitude are suppressed in Fig. 3.)
To a good approximation for 0,, the difference between ¢ and c' represents

the entire temperature effect.7

If o(E) or its energy variation were
small, as for some other molecules, then the curves a and b would describe
the effect and there would be broadening but no shift. Curves d and e ,
representing ¢ and 9oy respectively, show the modest shift caused by rota-
tional states (agreeing with the analysis of Ref. 2) and the shift and
tailing effect of a broad electron distribution. It can be seen from (d)

that excited rotational states are of negligible importance compared tc
vibrational states.

Figure 4 analyzes the calculation from a slightly different point of
view, The cross sections Oy for attachment frcm the vth state are plotted
individually. (The small dependence on r is here suppressed.) For each
increase in v, there is a large shift to the left and a subs' antial increase
in magnitude (05 is 20 times as large as co). Note that each cross section
is cut off below its threshold (E + Ev = 3.6 eV). These curves show

graphically the basis for the observed shift and the large low energy tail.

7 This is in agreement with the qualitative suggestion of Y. N. Demkov,
Phys. Letters 15, 235 (1965). See also Ref. 2.
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A very interesting aspect of the work of Fite et al. was the finding
that at the lower energies (E 5 5 eV and T 3 1000°K) the cross sections

follow very closely the formula

o(T,E) = () ¢ DEV/KT (10)
Exactly the same was found for the presently computed results. 1In Fig. 5,
log o is plotted against 1/T and the data are seen to lie on straight lines
from roughly 800 to 3000°K. The slopes, D(E), which were called activation
energies, have a clear interpretation in the present work. They are the
average internal energy (vibrational plus rotational) of the molecule which
maximizes the summand in Eq. (1), showing the internal states which contribute
most strongly to the temperature-averaged cross section. In columns 1 and 2
of Table 2, the experimental values Dexp(E) are compared with thr theoreti-
cal values Dav(E) taken from v of Eq. (8). The agreement is seen to be
within 0.1 eV everywhere. (Probably the discrepancy at the largest E's
would be reduced if the experimenters had plotted ¢ rather than the uncor-
rected current.) The third column shows D(E), the present result with
sharply defined electron energies from Eq. (i1). The very large dirfference
between D and Dav is due to the tailing effect of the broad electrca dis-
tribution. In the fifth column, the correspording coefficient C(E) from
Eq. (6) is listed. The fourth column, labeled Dv’ was calculated with
vibrational states only (no rctational excitation). This corresponds to
the data plotted in Fig. 6, which differs very little from Fig. 5. The
difference between D and Dv is some measure of the relative importance of
rotation, which seems to be very small except below about 2 eV. This is
in disagreement with the assessment of Fite et al.l In this connection,
it was found that at 2100° rotational states with Er >> kT never contributed
significantly to the sum in Eq. (1) (unlike the situation with the vibra-
tional states), until E fell below about 2 eV. Ever at the lowest energy
of 1.0 ¢V the average excitation of the rotational states contributing to

(1) was not much more than 20% of that of the average vibrational state
(v ! 13).
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It is interesting in Table 2 that for electron energies well below
the threshold of 3.6 eV, the values o) DN(E) (not Dav) converge more or
less to 3.6-E, the intzrnal energy necessary to raise the system above the
threshold.8 This would indicate that the results for very high vibrational
states are no longer sensitive to the details of the wave functions, but
that these may be replaced by a suitable average value, in the statistical
spirit. Thus, the simple concept of an activation energy does become ap-
propriate in this limit. It seems, however, that at the very lowest energies
(below 2 eV) the dynamical effects of rotation tend to bring D(E) (as
opposed to Dv) below the simple threshold value of 3.6-E.

Finally, the consequences of the present analysis for processes other
than dissociative attachment should be pointed out. Consider only the low
temperature cross section for simplicity. The accepted inLerpretation3 of
Eq. (2) 1is that the DA cross section is equal to a capture cross section to
the state Vf of 02-* times e-p. the chance of surviving to dissoclate befc e
autoionizing to some vibrational level of one of the . e lowest O2 states.
Given the presently determined parameters (6) and (7), it follows that the

+
capture cross section e 2 is roughly 70 times that for DA, -7ith a

o
peak value of about 1.0 x lgélﬁ cm2 at 7.8 eV. From Rc = 1.44 we would
expect that at least half9 cf this capture cross section will decay to the
states A and/or C, resulting in dissociation, while the remainder auto-
ionizes to the states X, a and b, (about half of it to X), resulting in
excitation of most of the vibrational levels of these states. Whether the
contribution of this to the respective cross sections is significant is

not clear at present.

8 This relation was obtained previously by M. A. Fineman from similar
experiments done by J. W. McGowan. (Private communication.)

9 See also Footnote 6.
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QUAS1-ADIABATIC MO'.ECULAR STATES:
AN ALTERNATIVE TO THE NON-CROSSING RULE

by
Thomas F. 0'Malley

ABSTRACT

Because of the non-crossing rule, the conventional
definition of adiabatic states has been increasingly
regarded as unsuitable for describing collisions.

An alternative definition based on a generalization
of the resonance is given, defining states which may
cross freely. As an immedizte application, these
states tend to resolve a serious discrepancy in the
interpretation of recent He; recombination data.

The non-crossing rule (NCR) of von Neuman and Wignerl which states
that molecular states of the same symmetry cannot cross, has been a source
of growing dissatisfaction2 to many molecular physicists interested in
atomic collisions and reactions. Nevertheles- +*+ ha- heen accepted, al-
though sometimes - :luctantly, as the appar:nt price that one must pay for
having an "adiabatic" definition of electronic states, i.e., a definition
in which the internuclear coordinate R is held temporarily fixed. It is

the purpose of the pres:nt note to point out that there exists an accept-

* Submitted to Phys. Rev. letters.

1 J. Von Neumann and E. P. Wigner, Phys. Zeits. 30, 467 (1929).

See for example W. L. Lichten, Phys. Rev. 131, 229 (1963). Lichten's
emphasis on the physical importance of certain pseudocrossing single
configuration states is very much in the spirit of the present work.
These states would be a first rough approximation to the ¢, of the
present paper. F. T. Smith, D. C. Lorents, W. Aberth and R. P. Marchi,
Phys. Rev. Letters 15, 742 (1965) have been forced to assume similar
crossing curves. See also W. R. Thorson and S. A. Boorstein, in IVth
International Conference on the Physics of Electron and Atomic Col-
lisions (Science Bookcrafters, Hastings, N.Y., 1964), p. 218.
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able and precise definition of adiabatic electronic states which are not
constrained by an NCR and which, as a result, are able to approximate the
physical states which are actually followed in various types of rearrange-

ment collisions.

The simplest way of presenting the NCR is in terms of two approximate
trial funccions, ¢ and 990 supposedly representing different states of the
same symmetry, whose approximate energy curves cross. In order to get an
improved approximation, linear combinations of the original states are
sought which diagonalize the 2 x 2 electronic Hamiltonian, Hel' When this

is done, the resulting new states ¢I and ¢._ are known as '"true adiabatic"

11
states. The corresponding true adiabatic eigenvalues EI(R) and E;y(R) are
2 2] 1/2
- = - y
found to be separated by the amount EI EII (Hll sz, + AHIZ 0

a positive definite quantity. In other words they cannot cross, and must

behave in a way illustrated in Fig. 1(a). This in brief is the NCR.

In addition to NCR, there is a second and closely related logical
consequence of defining true adiabatic states which was deduces by Massey.3
Massey's theorem in essence points out that, since by choice the true adia-

batic states diagonalize H it follows that collision~induced transitions

’
between electronic states i;nnot be mediated by a matrix element of the
diagonal operator Hel' Consequently these transitions must be caused by
T', the coupling kinetic energy term neglected in the Born-Oppenheimer
approximation, and so this usv.ul approximation must be abandoned when
transitions occur. Logical and rigorous as it is, Massey's theorem, like
NCR in its early days, has had difficulty of acceptance in taat it seems
to conflict with much of what is known of reactions, especially the theory
of dissociative recombinationa and attachment.5 How misleading (though

formally correct) these two theorems are when applied to collisions is

3 .S.W. Massey, Negative Ions (Cambridge Univ. Press, N.Y., 1950).

4 D. R. Bates, Phys. Rev. 78, 492(L) (1950).

5 T. F. 0'Malley, Phys. Rev. 150, 14 (1966).
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6
brought home by the fact that even Massey was led in 1937 to conclude on
their strength that dissociative recombination must necessarily be a very
7
slow reaction. 1t was not until many years later that this was to some

exteat corrected.

We shall next point out very briefly, for those not already acquainted
with them, some of the shortcomings of true adiabatic states and the con-
sequent NCR when applied to collision problems. Then the alternative ''quasi-
adiabatic'" states 11 be introduced, which have the property that they may
cross freely and do not require non-adiabatic (T') coupling. These states
should probably be used in connection with all problems involving collis-

ions or dissociations.8

Many of the problems and distressing features of the NCR are illus-
trated with the hel!p of Fig.1l(a) as contrasted with 1(b). The curves in Fig.
1(b) m.gt: be found, for example, when one first does a calculation with very
simple Heitler-London or molecular orbitsl functions. A slightly more
elaborate calculation, as described above, would give curves with the prop-
erties of true adiabatic states as shown in Fig. 1(a) with their avoided
crossings and "obligatory humps."

Aside from the obvious aesthetic objections to the kind of curves in
Fig.1l(a), there are a number of more practical drawbacks connected with these
true adiabatic curves. First there is the fact if the colliding atoms h-ve
almost any finite velocity the probability of their actually following the
true adiabatic curves as opposed to the crossing curves is known to become
vanishingly small, as is indicated in the next paragraph. Next, the Born-

Oppenheimer approximation, which is generally so very useful and accurate

® H.$5.W. Massey, Proc. Roy. Soc. Al63, 542 (1937).

7 D. R. Bates and H.S.W. Massey, Proc. Roy. Soc. Al87, 261 (1947).

8 Dissociation is here taken to mean the dissociation of repulsive

states mainly, or predissociation by curve crossing. Predissociation
bv barrier tunnelling is another matter.
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for molecular states, breaks down completely in the neighborhood of an
avoided crossing when one uses true adiabatic states. This follows from
Massey's theorem. Finally, thd“e are two large classes of collisions where
theorists have long since been forced to abandon the NCR, at least for prac-

tical purposes, and to think in terms of the crossing curves in Fig.1l(b).

The first class of coliisions where the NCR has hiad to be suspended
is the slow reactive or inelastic ccllisions between heavy particles which
are well described in the low energy region by the Landau-~Zener theory,9
together with subsequent improved versions. 1In deriving this theory, one
starts with two "approximate'" electronic states, which arz never defined
precisely, but whose physical interpretation is assumed to be clear. TlLese
states have potential curves which '"pseudo-cross." The transition proba-
bility of passing from one of the pseudocrossing curves to the other is
derived, after some approximations, and found to be 1 - e_26 for each pas-
sage, where & =1 V2/hv £F, (V is the energy of interaction between the
crossing states, so that 2V would be the smallest separation of the true
adiabatic states; v 1s the internuclear velocity and AF is the difference
of slopes.) One consequence of the Landau-Zener formula, as mentioned
above, is that for typical parameters the probability 1 - e-26 of follow-
ing the true adiabatic curve becomes negligible for almost any finite
velocity. Now although this theory has been found to describe accurately
all sorts of low energy reactions, it is still necessary to apologize for
the "pseudocrossing'" (which is essential to the derivation) and to point
out that the true adiabatic curves of course cannot really cross. Perhaps

of more practical concern is the fact that the pseudocrossing electronic

states simply are not defined, except for being "sufficiently inaccurate"

to allow them to cross. As better computer calculations become feasible,

this shortcoming should become progressively more and more of a problem.

The second class of collisions, which cannot even be described con-

ceptually in terms of the true adiabatic states and the NCR, consists of

9 L. Landau, Physik. Z. Soujetunion 2, 46 (1932). C. Zener, Proc. Roy.
Soc. Al37, 696 (1932).
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the processes of dissociatiwve recombinatlona (e + AB+ : ABr -+ & + B), and
1issociative attachment5 (e + AB : AB; ~A+B). (Fortunately. these pro-
cesses, when prcoerly analyzed, also point the way to the needed definition
cf "quasi-adiabatic states.") The recombination process is understood by
reference to Fig.1l(b). An eleccron collides with the ion AB+, and causes
an elactronic transition to the state labeled {AB) , which state finally
dissociates to A + B. It is seen that the curve (AB)r, in coming in from

= a«, first had to violate NCR countless times and cross an euntire Rydberg
series of the same symmetry before reaching the curve AB+. More seriously,
after crossing AB+ and entering the hatched rezion (the electronic continu-
um of AB), the curve must then cur through a continuuwe of states, in flag-
rant violation of NCR. This latter situation is exactly the same for the
closely related dissociative attachment process.5 Figure 1(a) is the way

these curves would have nad tov be drawn had the NCR not been ignored.

lronically 1he crossing of the centinuum, which presents the strongest
violition of NCR, also points the way to the solution of the entire non-
crossing dilemma. For a discrete state like ABr which 1s degenerate with
(crosses) a concinuum, *s a familiar situation in theoretical physics and
las been dealt with exhaustively.lo Such a discrete state is the reson-

ance" or '"quasi-stationa.y state." It is by use of such states that the

problem of dissociative attachment (and by inference recombination) has

been suncessfully treated in a fully quantitative way.

The definition of the resorance or quasi-stationary state for the
autpoionizing electronic states c. molecules is discussed in some detail in
Ref. 5 as well as elsewhere.ll For the present purpuse, the main features
are as follows: The electronic wave function ¢r of the resonance state is

artifically restricted in some way to a portion of Hilbert spac. by a pro-

10 4. Feshbach, Ann. Phvs. (New York) 5, 357 (1958); 19, 287 (1962); and
references to previous work therein contained.

11 . : . .
o N. Bardslev, AL Glerzenbere and Fo Mandl, Aromic Collision Processes

(.R.C. McPowell, Ed.) North Holland, Amsterdam (1964), p. 415. I1.C.Y.
Chen, J. Chem. Phys. 4U, 3207 (1964).
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(o)

jection operator Q y while its energy eigenvalue

<«

i | (0) = 1
s B 1 Q% e = e® (1)
is made stationary. (As in any adiabat c definition, R appears parametric-
ally.)

Having defined ¢r’ a new projection operator, Q = ¢r >< ¢r is con-
structed which together with P == 1 - Q decomposes the electronic Hamiltonian

H , as fcllows
e

-

PH P PH_;Q

=
|

el - (2)
QHe lP QHe lQ

The eigenstate corresponding to PhelP, called ¢p the "potential scattering"
state, is constrained by P to be crthogonal to ¢r. The above decomposition
of He1, or more properly of the full H, f vmed the basis of the new formal

theory of rearrangement collisions introduced in Ref. 5.

The two states ¢r and ¢p have been defined to lie in orthogonal por-

tions ~nf Hilbert space and they leave He undiagonalized (note that it is

only the full H which must be diagonal).l One consequence of a non-diagonal
Hel is that transitions from ¢p to $r may be caused by the off-diagonal
electronic matrix element PHelQ, ir contrast to the Massey theorem. Thus
the coupling term T' is no more important here than in ordinary molecular
states znd the usefulness of the Born-Oppenheimer approximation s preserved.
More important, ¢nd in fact paramount in the present treatment, the mathe-
matically ortuogsnal and physically distinct states ¢r and ¢p are not now
combined as were the states of von Neumann and Wigner, into "“true adiabatic"
states of Hel’ resulting in the NCR. Rather they are allowed to serve as

a convenient starting point for an exact solution o1 thke collision problem.

(This theory will be published elsewhere.) By thus preserving their ident-

ity, the energies ED and hr oI these states are not constrained to avoid
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crossing, and the levels can and do cro . The lack of a prohibitior

against crossing may perhaps be made clear by noting that as eigenvalues
of different Hamiltonians, PHP and QHQ, the two levels are entirely inde-

pendent of one another.

What has been sald so far of the quasi-stationary states ¢r and ¢P
has referred explicitly to the hatched region of Figz.l(b), i.e., to the
region where the state ABr, with wave function ¢r, is autoionizing. It
is the burden of this paper to point out that all the difficulties result-
ing from true adiabatic states, i.e., the NCR and the Massey theorem, are
avoided if only one uses exactly the same definition of states (with exactly

(o)

the same projection operators Q and Q) for all R even after the state
ABr has fallen below the continuum and can no longer autoionize. It is not
necessary tv make any changes at all in the discrete region. Again the
quasi-stationary state @r is defined with the same projection v,erator Q(o).
The resulting new projection operator P is then used to define the ortho-
gonal "potential scattering” function ¢P. Again the corresponding potential
curves Er and CP are not constrained by the NCR or by Massey's theorem.

The only minor difference is that the name "potential scattering” function
is no longer very approupriate, since ¢p is now a discrete quasistationary

state, on the same footing with ¢r.

The name which is suggested for the crossing states ¢r and ¢p, defined

as above and extended to the discrete region, is quasi-adiabatic states,

QU

short for quasi-stationary adiabatic states. This is appropriate since they

are adiabatic, beiny defined w'th R fixed, but unlike the "true adiabatic"

stalcs they are only quasi or artificial bound states.

To avoid possible misunderstanding, something shouli be said here :

)

about what is presently meant and not meant by the projection operator Q(o .
The obvious definition of this projection operator and presumably the most

useful {s that of Feshbach,lo which defines a state in which an electron is 2

(o)

bound to an excited core. However, ¢ is weant te be somewhat more fleax- 3

ible. For one thing, certain simplifications ¢f Fachhach'c crates mas b

e ey

& UNCLASSIFIED




UNCLASSIFIED

desirable.12 In general, ary artificial restraint on the wave function

which leads to a physically neaningful and useful state is corsidered to be
included as a possible Q(o) since this m»y always be thought of as being
produced by some kind of projection operator. As one example, an artificial
constraint might sometimes be useful for defining ionic states. However,
at pcesent, only the Feshbach type of core excited state is actually en-

visaged.

There are a number of examples in the literature of states which have
been defined in such a way that they happen to satisfy the definition of
quasi-adiabatic states. Two of these will be mentioned. First, there
is the (ouls)2 lEg state ig Hz, as calculated with thezsimplest single con-
figuration wave function. This configuration (ouls) satisfies the defi-
nition of the lowest Feshbach-type resonance in the d, system, and so is a
quasi-adiabatic state. The potential curve of th. s:ate has been plotted
as an illustration in Ref. 13. As expected, it cuts right across higher
states of the same symmetry, crosses the entire Rydberg series and ulti-
mately becomes autoionizing, just as ABr of Fig 1(b). An interesting inci-
dental feature of the curve is that it ecomes ionic at large R. Naturally,
as more ambitious calculations have been made, looking for true adiabatic

states, this state has been mixed with others, resulting in humps and
avoided crossings as in Fig. 1(a).

A second example of quasi-adiabatic electronic states in the litera-

ture is seen in the He, states found by Mullikenla and labeled B Core states.

- +
These included the B2s 328 ,» and a B3p 32u+ ctate. The concept of B Core

state, as pointed out in Ref. 4, directly satisfies Feshtach's definition

of a resonance state. Consequently we expect first that these states should

12 See for example L. Lipsky and A. Russek, Phys. Rev. 142, 59 (1966).

13 W. Kauzmann, Quantum Chemistry (Academic Press, New York, 1957), p. 397.

1!" - - - - - e - - - . . o e . Ea R Y
=% K. 5. tiulliken, Tiys. Rev. 130, AJ0Z (1304,
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be autoionizing for small R, and in fact they are. Further, as R increases
they should cut chrough the Rydberg series of the same symmetry, which they
also do. However, both of these curves have been drawn in Ref. 14 so as to
avoid crossing the lowest state of the series (3Zg+ and 32u+) and so they
both turn up sharply above R = 23. somewhat in the fashion of Fig. l(a). It
is suggested here that if the definition of quasi-adiabatic state, implied
by the B Core definition, is applied consistently, then these states need

not avoid crossing even the “owest states in the series, but it is possible

that they wculd simply decrease monatonically with R as the ABr curve of

Fig. 1(b), and dissociate intc the lowest 3S and 3? state of lle respectively.

This last suggestion would tend to remove the dis:repancy which
presently exists between these cuives of Mulliken and subsequent results
of Robertson.15 The latter observed a state of the system which is auto-
ionizing at small R and which dissociates intc the lowest 3? state of He
in apparent disagreement with Mulliken's curves. But if the definition of
quasi-adiabatic B core states is adopted as is here suggested, then for
any given states of the dissociation products (and in particular for those
found by Robertson) there ought to be a corresponding molecular curve sacis-
fying the definition of a B core quasi-adiabatic state. This curve would
be expected to be purely repulsive, following the shape of the B core, and
at smaller R to cross the Rydberg series and become autoionizing. Thus,
the existence of a suitable potential curve, corresponding to Robinson's
data, should present no problem once the crtificial restraints imposed by
NCR arc removed by using quasi-adiabatic states. It is not clear at present
whether this particular state might be the 3£u curve of Mulliken, redrawn

. 3. 3. -
to join B Ly or perhaps a R, B core state, similarly redrawn.

In summary, a definition has been given of quasi-adiabatic states
which it is proposed should replace the conventional true adiabatic states
for all processes involving collisions or dissociations.8 In particular,
it was shown that such states have the advantage of not being burdened by
a non-crossing rule, so that they may reproduce the curves that are actually

followed in a phvsical collision or dissociation,

Fisvrt hor fhaowt da mar
Hp TESP ¢ of

15 w. W. Robertson, J. Chem. Phys. 42, 2064 (1965); C. B. Collins and
W. W. Robertson, J. Chem. Phys, 43, 4188 (1965).
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satisfy Massey's theorem, so that the Born-Oppenheimer approximation may

be retained. These states may be of most immediate usefuiness in connection
with the semi-empirical process of constructing potential curves to fit or
explain given experimental data. An improved thecry of heavy particle col-

lisions based on these states will be published elsewhere.

Finally, these states are not meant to replace the conventional true
adiabatic states in those areas where the latter are actually useful, namely
where such states are either very widely separated or parallel and where in
addition the discrete vibrational level of interest is sufficiently low so

that the Landau-Zener exponent § would be very large.

Thanks are due B. A. Lippmann and P. J. Redmond for stimulating dis-

cussions.
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THEORY OF RESONANT DISSOCIATIVE RECOMBINATION

by
Peter J. Redmond

The theory is developed with particular emphasis on
the interaction of the resonant state and the infi-
nite set of Rydberg states crossed by the resonant
state. It is shown that the interaction is large
only for a finite subset of the Rydberg states.

In this paper we consider the process e + AB+ + A + B where the
atoms in the final state will generally be excited. We shall show that
the total cross section corresponding to a sum over all possible exit
channels can be calculated in a fairly straightforward way. In principle
the theory also permits the calculation of branching ratlos although such

a calzculation would be much morz involved.

We assume that the veaction proceeds by the formation of a resonant
complex AB* so that e + AB+ e (AB)* + A+ B. It is well known that there
are an infinity of such resonant states lying below the first electronic-
ally excited state_of the AB+ system. It is also known that the widths of
the resonant states are small compared to the spacing of the resonant states
so that they are excited independently. However, when the atoms A and B
separate they move along a potential curve which mus:t cross (or "pseudo
cross") an infinite Rydberg series of states. These curve crossings may
lead to a coupling between the resonant states and will lead to a distri-
bution of the particles over a variety of exit channels. It is this latter
phenomena which makes the theory of dissociative recombination more compli-

cated than the theory of dissociative attachment. We shall show that only

Submitted for presentation at the Fifth International Conference on

[ M L1 TR G T A B S L. 1 A ] v 1w .
Ll A M yOALD Vi LACLLIVIIAL diild ALUVIHAL VUL LD AULID.
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a finite (and usually small) number of the resonant states can be coupled
in this fashion and that the coupling can le described by «n energy depend-

ent matrix for a reflection amplitude.

The wave function for the system may pe written in the form

$(R,0,k) = L, AC,R) 6(},Rs0)
A, n, o Y N\
+ B (R) x(+) (R,0,k)
0 n, 0 A, 2%

e ek I BULER) X)Lk R0 (1)
4" v A, N oY

3
where % {s the nuclear separation and ° represents the electronic coordi-

nates. The wave functions $() are the electronic wave functions for the

resonant states.1 The ) are the electronic scattering states and

it is assumed that they diagonalize the electronic part of the Hamiltonian

in the subspace of states orthogonal to the $(2). The x(+) satisfy incom-

ing boundary conditions and the x_ outgoing conditions and the vector %

represents the momentum of the incoming or outgoing electron. The terQ -
BO x(+) is+the incoming wave and BO is the nuclear wave function of the

initial AB state. The states $(1) and x are slowly varying functions of

the nuclear separation. This is possible only if the energy curves EA(R)

corresponding to the $(}) are allewed to cross.

The only non-diagonal matrix elements of the electronic Hamiltonian

are then

< ¢’(}"R)) Hel’ )\(+)(j’k"5) > o= Y:(X’j)k"R) (2)

and

< sCL,R), $(u,R) > = W(,u,R) . (3)

1 We use the term resonant state to include all those discrete states
of the neutral system which interact with the state initially excited.
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The vy and W are non-vanishing in separated regions of configuration

space. The matrix element W is appreciable only in the immediace vicinity
of a curve crossing whereas the Y's are non-vanishing only when the reson-

+
ant state curve lies above the ground state potential curve of AB .

Since the ¢ and X are slowly varying functions of R, the many state
Born-Oppenheimer (adiabatic) approximation is appropriate and (E-H) ¢ = 0

is equivalent to the set of coupled equations.
(E - E,(R) + ;__Vz) A(\,R) = v, (A.0,k,R) B (R)
)\ ZM ,’\: + * ,c\,’ o] "

+ [ dk' I, B(J,k',R) Y (A,3,k",R)
h| N

+ zu W(A,u,R) A(u,R) (4
and

)
k2,1 g2 'Ry - *
(E- B, - 5=+ 35 72) BULKLR) = I AGLR) YLOLEKNR)

(5)
where m and M are the electronic and reduced atomic masses respectively.

The solution of Eq. (5) which satisfies the proper boundary conditions
may be written asymptotically

1 %
B(j,k',R) = ) Z)\ A(A,R) Y+()\.j.5') . (5)
E—Ej -%‘-—+§—MV2+15

If the Green's function in Eq. (6) is expanded in terms of the eigenstates
of the nuclear Hamiltonian, the discrete states describe elastic scatter-
ing and vibrational and rotational excitation. The continuum states con-
tribute to dissociatioa although the main centribution to dissociation

comes irom the A(A,?) terms. For example, the elastic scattering comes

v

from the term
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B (R) ¢
B (J,k"',R) = ° 1o L. [/ dR' B (R') A (R") y*(A 0,k',k").
elastic ”'y *» l'(2 k'2 by 2 oA AR N A ’
5; " 2m " Le

(7)

(

+)
This term interferes with the outgoing wave part of BD(R) x' “(0,k,R) to
v

give a typical resonance pattern for the elastic scattering.

In « to determine the dissociative cross section we take the

divergence or the heavy particle flux. We find

g ZA(A*(?,R) 7 A(A,R) - A(A,R) ¥ A*(A,R))
N, S L n,
+ 5L dk" (B (3,k',R) T B(,k',R) - B(j,k',R) ¥ B (§,k',R)| =
j \, 4% 49 L " n, A% s A%
. * Ay *
= LUATOLR) Y 040.k,R) BU(R) = AGLR) 1,0L0,kR) BU(R)) . (®)

Since there is no incoming heavy particle flux the total cross section
for dissociation can be obtained by integrating the right-hand side of
Eq. (8) over all space. Because of the presence of the factor BO(R) on
the right-hand side of Eq. (8) (and in the integral occurring in Eq. (7)),

it is only necessary to determine the functions A(A,R) in the Franck-
v

Condon region.

In determining A(X,R) it is necessary to consider two different
possibilities. If the elthron energy is sufficiently high so that all
the attractive potential curves which are crossed by the resonant curve
involved correspond to exit channels which are open, then any outgoing

flux generated on the Franck-Condon region will remain outgoing. The

(5]

T. F. 0'Mallev, Phys. Rev. 150, 14, 1966.

J. N. Bardsley, A. Herzenberg, and F. Mandl, Atomic Collision
Processes, edited by M.R.C. McDowell (North Holland Publishing Co.,
Amsterdam 1Y64), p. 145.
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A(A,R) can then be determined in precisely the same way that O'Malley 2
and Mandl and Herzberg3 treated the dissociative attachment problem.
The only difference is that the final formula in the recombination case

corresponds to several exit channels instead of only one as in the attach-

ment problem.

1. some of the exit channels with attractive potential curves are
closed, some of the cutgoing flux generated in the Franck-Condon region
wili correspond to particles which are temporarily bound and return to
the Franck-Condon region., The finite number of resonant states coupled
to such exit channels will then be coupled to each other. These effects
can be described by a finite reiflection coefficient matrix which gives
the amplitude of the reflected wave in any resonant state produced ty an
outgoing wave in another coupled resorant state. Tu.. matrix can be
determined by using the Landau-Zener theury (or some variant of it) and

considering the possible histories of outgoing particles.

The system e + H; + Hl + H provides a comparatively simple iliustra-
tion of the various possibilities discussed above and the theory will be
applied to the system at the meeting.
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FORMULATION OF THE TWO~STATE PROBLEM o
IN TERMS OF ADIABATIC POTENTIAL CURVES

by
Peter J. Redmond

ABSTRACT

When two molecular adiabatic potential curves nearly
cross, the electronic wave function is a rapidly vary-
ing function of the internuclear separation. The one-
state Born-Oppenheimer approximnation is then not valid.
By introducing appropriats linear combinations of the
two adiabatic states involved a two-state Born-Oppen-
heimer approximation can be made. The resulting pair
of coupled equations for the nuclear wave function are
identical with those obtained in the conventional two-
state theories. ‘However, all the parameters can be
determined by an inspection of the adiabatic curves
and the validity of the approximation scheme can be
Justified.

I. INTRODUCTION

In the usual approach to molecular problems, or to collision problems,

one makes the adiabatic (Born-Oppenheimer)1 approximation. The Hamiltonian
is written as the sum of a nuclear kinetic energy term and an electronic
Hamiltonian

1 .2
H = ™ VR +He1 (R) (1)

and the eigenstates of He are calculated

1

Hel ¢CI. (R)E) = Ea (R) ¢a \R)E) D (2)

* Submitted to ARPA for publication clearance.

1 M. Born and J. R. Oppenheimer, Ann der Pkys 84, 457 (1927).
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The total wave function may be written as a linear combination of these
electronic states with coefficients which are functions of the internuclear

separation R ,
N

v o= Zu Fo (E) ¢y (R,E) . (3)
The equation for Fa (R) is then
a

(- L g2, E_(R) - E) F, ® =

M
1
7y

1 2
< 0, (R, VO (R) >+ TFL(R) + g5 < 0 (R), 7 ¢ (R > Fo(R),

<4 [

(4)

The Born-Oppenheimer approximation consists cf setting the right-hand side
of Eq. (4) equal to zero (although the diagonal terms may fruitfully be re-
tained).2 The equations for the various Fa then decouple. We shall - .r
to this situation as the one-state Born-Oppenheimber approximation. juse
of the largeness of the atomic to electronic mass ratio this is a good ap-
proximation unless the electronic wave functions ¢a exhibit an anomalously
rapid variation as the internuclear separation is changed. We shall show
that this is the case when two of the adiabatic curves with the same sym-

metry come very close to oae another (''mear crossing").

When there is a near crossing it is generally argued that the adia-
batic states ¢a no longer provide a suitable basis for an expansion of the
wavefunction. The problem is then reformulated either in a tim2 dependent

way3 using atomic wave functions or in a time independent wayA using simple

2 L. D. Landau and E. M. Lifshitz, Ouantum Mechanics (Pergamon Press,
London-Paris, 1958) p. 275.

C. Zener, Proc. Roy. Soc. (London), Al37, 696 (1932); L. Landau,
Phys. Z. Sowjet Union, 2, 46 (1932); D. R, Bates, H. C. Johnston
and I. Stewart, Proc. Phys. Soc. (London) 84, 517 (1964); C. A.
Coulson and K. Zalewski, Proc. Roy. Soc. (London) A268, 437 (1962);
D. R. Bates, Proc. Roy. Soc. (Loncon) A257, 22 (1960).

4 N. F. Mott and H.S.W. Massey, The Theory of Atomic Collisions, Third

Ediction (Oxford University Press, London, 1965) Ch.p. 13.
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molecular orbitala.b In both of these formulations the resulting potential

curves cross and a set of coupled equations are considered which involve

the two states that cross.

There are two disadvantag:s to this approach. Because of the crude
wave functions used tre electronic Hamiltonian will have large matrix
elements connecting ul.lerent states and it ir therefore difficult to
justify the use of only two electronic states in formulating the problem.
In addition there is the esthetic disadvantage that the basis of the theory
disappears if the wave functions are sufficiently improved so that the

curves no longer cross.

In this paper we reformulate the problem starting from the adiabatic
potential curves. The resulting equations for the nuclear wave functions
ave identical to those obtained in the conventional approach. However,
all the parameters for the theory can be obtained from an inspection of the
adiabatic curve. In additioﬂ, it is easy to justify the use of a two-state
approximation when such an approximation is applicahle.

II. THEORY

The general shape of the adiabatic energy curves for a near-crossing
is 1llustrated by the solid curves labeled Ea and EB in Fig. 1. The general
feature of such potential curves is that the second derivative of the energy
with respect to the iaternuclear separation (dzEa/dRz) is large in the
vicinity of the near crossing and that the ~urves asymptotically appreach

regions where the second derivative is much smaller. We shall show that in

this transition region the adiabatic electronic wave functions ¢ (R,E .),
a el

and ¢B(R,Ee1) are rapidly varying functions cf the parameter R with the two

> W. Lichten in_IVth International Conference on the Phvsics of Elec-
tronic and Atomic Collisions (Science Bookcrafters Inc., Hastings on
Hudson, 1965) p. 63; V. Fano and W. Lichten, Phys. Rev. Letters 14,
627 (1965). The molecular orbital approach has the great advantage
that it provides a large amount of qualitative information about the
general nature of the potential curves at thc cost of relatively
little effort.

—rooat
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Figure 1. Potential Curves and Interaction Energy at a Near Crossing
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wave functions essentially changing roles as the transition region 1is cros-
sed.

The difference of the slopes of the two energy curves changes sign

as the transition region is crossed. The slopes must therefore be equal
at some intermediate point R* given by

9E 9E
s _ _B . - RK
3R R A at R R a

(5)

In the transition regic: the electronic wave function ¢G(R,Ee1) can

be approxirately represented as a linear combination of the wave functions
. 6

+ (R¥* *

¢G(R 1€e1) and ¢B(R ’Eel) so that

$,(R) = Ap (R®) + Bo(RY) .

(6)
The secular equations have the form
(E,(R*) + Xp - E(R)) A+uo B =0
and up A + (EB(R*) + Ap - Ea(R)) B=0 (7
where p = R~ RX
and p o= < ¢ (R¥) |R * ﬁﬂl ¢, (R%)> (8)
a aR ]
It is a trivial matter to solve these equations and we find
Ea(R) = E + Ao + (LQ%LZ+ u2p2)1/2
Eg(R) = E + 2o -( 2 %2 )1/2 (9

6 In the following we shall generally omit the electronic coordinates §£.

z
£
H
H
H
i
3
2
=
=
]
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¢a(R) = gin 8 ¢G(R*) + cos 0 ¢B(R*)

¢B(R) = = cos @ ¢a(R*) + 3in 6 ¢B(R*) (10)
with

2E = E (R¥) + Eg(RY) , AE = E (RY) - Eg(RY)
and

cot § = - 173 (1)

The equations for ¢a(R) and ¢B(R) are readily inverted to give

n

¢G(R*) sin © ¢a(R) - cos 9 ¢B(R)

[}

¢ g (R%) cos 8 ¢ (R) + sin © 4g(R) - (12)
The linear combinations of ¢ (R) and ¢B(R) occurring on the right-hand side
of Eq. (12) are therefore slowly varying functions of R. The rapid changes
in ¢a(R) and ¢B(R) are compensated by the rapid variation of 6(d6/dR =

u/AE at R = R*) The particular linear combinations givern by Eq. (12) are
not the most convenient set since they do not asymptotically approach the
adiabatic states. The sum and the difference of the right-hand sides of
Eq. (12) provide more suitable combinations. We therefore define

¢1(R) cos ¥ ¢G(R) + sin x ¢B(R)
¢2(R) = - sin x ¢G(R) + cos ¢B(R) (13)
where X = 6 - 45°. To the left of the transition region x » 0 so that

¢a ¢1 and ¢B = ¢2. At R = R¥, x = 45°. To the right of the transition
region X > 90° so that ¢, > ¢, and ¢, * =6, Since ¢, and 4, do not change

@ UNCLASSIFIED
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appreciably the functions ¢a and ¢B have suffered large changes and have
essentially interchanged. The functions ¢1(R) and ¢2(R) provide a suitable

basis to be used when making the Born-Oppenheimer approximatiot.7 The wave

functions ¢l and ¢2 can be used to define new potential curves indicated

by the dotted line in Fig. 1. The diagonal elements of Hel determine E1
and E2 and the off diagonal element determines E

12 the interaction between
the two curves E. We find

2 2
El(R) cosx Eu(R) + s8in"y EB(R)
E,(R) = sinzx E (R) + coszx E. (R)
2 a B

E12(R) = + cos X 8in ¥ (EB(R) - Eu(R)) . (14)

We can now make the Born-Oppenheimer approximation with confidence
ani we get the coupled equations for the nuclear wave functions

1.3 .23 . (atl) "
(- PR R, + El(R)) F,(R) + E ,(R) F,(R) = EF,(R) ,

(_ 13,23 (WD
2

+ E,(R)} F.(R) + E._(R) F,(R) ~ EF,(R) .
MR2 AR oR ZMRZ 2 ) 2 12 1 2

(15)

These are the usual equations for the two-state problem, except that
in our case the potentials are determined from the adiabatic curves.

The
usual treatments of the two-state problem are therefore applicable. i

All of the parameters needed to determine the nuclear wave functions

can be obtained directly from the adiabatic potential curves except for

7

The electronic wave functions vary rapidly with internuclear separa-
tion in another circumstance - when there is an electronic resonance.
The Born-Oppenheimer approximation can then not be directly applied

and the appropriate treatment is quite analogous to ours with the

resonant state playing a role similar to ¢l and ¢2. See T.F. 0'Malley,
Phys. Rev. 150, 14 (1966).

gi
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the parameter which is defined by the matrix element in Eq. (8). However,
if the near curve crossing is sufficiently close so as to invalidate the
use of the one state Born-Oppenheimer approximation, u can be obtained to

sufficient accuracy by fitting the energy curves in the transition region

with the hyperbola

(E,® - B )% - € @) - B @)% = af ®-r0P L a6
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TREATMENT OF ANGULAR MOMENTUM IN MOMENTUM SPACE
by
Peter J. Redmond

ABSTRACT

Equations are derived, in a momentum space repre-
sentation, for the wave function of a many body
system with a definite angular mowentum. Invariance
of the Hamiltonian under time reversal, parity, and

exchange has simple consequences for a three-body
system.,

INTRODUCTION

The general form of the wave function of a system having a definite
angular momentum has been given by Wigner. He showed that the dependence
of the wave function on the orientation could be indicated explicitly so
that the dynamical problem involved a set of functions fK which depend

only on quantities which are invariant under rotationms.

Although the general form of the wave function is known, considerable

labor 1s necessrry before equations relating the fK's can be obtained.

All the treatments familiar to the author consider the problem in config-~
uration space. The kinetic energy is then r2presented by differential
operators and the central problem is to express these deviatiuns in terms
of derivatives with respect to angles and derivatives with respect to
rotational invariants. It is in the nature of this process of changing
variahles that a successful completicn of che program for a three-body

system is of little assistance if one is confronted by a four-body problem.

It is often coiivenient to consider a probler in momentum space rather

than configuration space (for example, in a scattering problem). 1t is the

* Submitted to ARPA for publication _lesrraunce.
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purpose of this paper tn derive tre equations describing a many body system
with a definite angular momentun in the center of mass frame. We believe
that the results are structurally much simpler than those obtalned in con-
¢ . zu-ation space. In particular, the equations have the same structure

for a four-or-more-body problem as they do for a thre2-body problem.

The paper is divided into four sections. Section 1 is the introduc-
tion which you have almost finished reading. In Section 2 a thumbnail
sketch of some aspects of the general theory of angular momentum is pre-
sented in order to establish 2 notation and a set of conventions. The
third section is devoted to a derivation oi our central result. In che

last section the effects of parity, exchange, and time reversal invariance

are discussed for a three-body system.

SOME ASPECT3 OF THE GENERAL THEORY OF ANGULAR MOMENTUM

The effects of rotations may be des:ribed from two different points
of view. Acccrd ng to the first point of view one considers the chaage
in description of a fixed geometrical configuration produced by a rotation
of the coordinate axes. According to the second point of view rotations
are used to describe the wnotion of a geometrical configuration relative to

a fixed set of coordinate axes. 7inroughout this paper we adopt the second
point of view.

We consider fur:tions ¢({p}) of the set of vectors Py» Pys == Py
(= {p}) which we dencte by an inner product

y({p}) = < {pHy > (1)

An iufinitesmal rotation about the rn axis through an angle 6¢ causes

a change in the vector P, by an amount 6pa given by
Sp, =8¢ mxp . (2)

This causes an infinitesmal change in the function ¢{ip:) which muy be

conputed by taking the first term in & favlor czpansion

L L . 3
8 W({p.-) = Zﬂ S¢n x pa . ﬁ; np({‘.}/ . (3)
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This may be rewritten as
8 w(lp}) = 18¢ < {p}| n - Ly > (4)

2
where we have useu 3p
glive

v(pIRG,0)) = < {p} | 198 L]y > (5)

which describes the effect of a finite rotation, R(ﬁ,@), through an angle

¢ about the axis n. We have given this derivation to emphasize the fact
that Eq. (5) is a symbolic operator characterization of a generalized
Taylor expansion and does not depend on the nature of the function Y

(except that we assume the expansion converges) .

If the rota~ion R corresponds to the rotation R1 (= R(ﬁl,ez) followed

by the rotation R2 = (R(az,ez)), then

' in,» L8, 1in,: L6
< {pIRjy > = < {p} e 1 1. 2 zlw > . (6)
Since we wish to use the symbols R both in abstract arguments and as
symbols for the operators em'Le we shall denote the product of two rota-

tions in such a way that the symbols are ordered from left to right,

R=RR, . ¢))

We shall make frequent use of the identity

Rl’l R(A,0) R, = R(AR,,6) (8)

which may be proven by simple geometric arguments or by manipulation of

the operator expressions using the commutation relations

LxL=i{L . 9)
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We shall make frequent use of the irreducible representations of the
; rotation group defined by

iy y (RGO = < L[ LU (10)
]

Since any rotation can be expregsed as a rotation about the z axis followed
by a rotation about the y axis followed finally by another rotation about

the z axis (Euler angle representatiou) it is only necessary to give a
formula for

- 1
dLM. 4B = < L e B M > (11)
»

If the usual phase conventions are adcpted for the matrix elements of L, g

then Eq. (11) leads to the formula given by 'igner.

DERIVATION OF CENTRAL RESULT

For a three-body system interacting through two body central forces
the time independent Schradlnger equation is )

p.2 0 pl

1 2 3

- - - < PysPosPal¥ >
M, T, T, 1°P2*P3

E

2
=/ dg V,(a7) <py+a Py - Qs PylY > F .l (12)

where the omitted terms involve V13 and V23. The total linear momentum

is a constant of the motion and we shall work in the frame where this
vanishes. The three momenta then form a triangle and the wave function

depends on the magnitude of the momenta and on the orientation of the
triangle.

We specify the orientation of the triangle by indicating the rotation

Rp which carries the momentum triangle from some specified reference orienta-

tion p to its actual pusition. We shall introduce three standard reference

orientations labeled by p = 1,2,3. These are defined by requiring that the i
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three momenta lie in the X~Y plane ana that the directed normal is in the

2 direction. For # = j = 1,2,3 the momentum pj i» in the y direction.
These standard reference orientations are illust.ated in Fig. 1. The wave
function at the point {pl is related to its value at the reference position

{“}p by tho operator equation

< {pHyp > =< {p}plnpluf > . (13)

The potential energy terms change both the magnitude of the particle
momenta and the orientation of the momentum triangle. These effects &~
illustrated i1 Fig. 2 for the term V12. The momentum triangle rotate:
about the Py axis by the angle ¢ and the magnitude of the momentum P, and
P, is changed to pl' and p2' .

Let Rp' be the rotation which takes the momentum triangle pl' pz'
Py from its reference posit?on 0 to its final position. It is necessary
to find a relationship between Rp' and Rp. The rotation Rp' can be per-
formed in three steps. First rotate the triangle pl'pz'p3 from its reference
position P to the position given in Fig.1l(c). We denote this rotation by
Rp:3 + This is then followed by the rotation R3 which takes P, into 1its
final position and the plane of the momentum triangle into the P{P,P, plane.

This is then followed »y a rotation through an angle ¢ about the Py axis.
Thus

t = 1 by
Rp 30,3 R3R(p3.¢) . (14)

By using Eq. (8) this can be rewritten

[ . ' e

Similar reasoning leads to an expression for Rp,

R, = R,3k (16)
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By eliminating R3 we obtain

| - ' 5
Rp Rp’3 R(y,4) R3’p Rp ’ (17)
where R = R-l

3,0 p,3 °

It is also necessary to change variable from q to p1', p2', and ¢.

The Jacobian of this transformation is most easily found in two steps.

We
introduce the symbol A for the area of the triangle, so that

164% = (p1+92+p3)(-p1+p2+p3)(pl-p2+p3)(pl+p2-p3) . (18)

Then ZA'/p3, p3-p1'/p3, and ¢ form a set of cylindrical coordinates. Thus

da = (4/p,) 8'd'd(p,"+p,) 4 . (19)

It is then relatively easy to make the additional transformation to obtain

dq = (1/|p;+p, 1) py" p," dp;' dp," do . (20)

An expression for q2 is also required.

After a 1ittle algebra one finds
2

0’ = (Wr) |@ep? + (arpp?

= [(4/p1+p2)2] [(A2+A'2 - 2AA" cos ¢) + (1/16)(p12+p2'2 p,'

187
(21)
Substituting this into Eq. (12) we obtain
Py 922 Eli .
E - iﬁ; - iﬁ; - 2M3 < {P}piRpl b > =

1 ' 't ' 2 q . -
(‘p1+p2|)'/bl dp, 'p, dp, d¢ Vis(a Y<{p }DIRD,3 R(y,¢)R3’pRp|¢> Lo
(22)
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We have not yet used the fact chat ¢ is an eigenstate or the angular

2
momentum operators L2 and Lz' 1f ¢ is an eigenfunction of L and Lz with
eigenvaluas L(L+1) and M it is possible *2 express the matrix elements of

L
the rotation operators in terms of the functions D".
The functions f defined by

depend only on the invariants ipll,lpzl and |p3i. They then satiafy the
equation -

p.2 p.2 pl
s S A R Y -
5 M T oM, T M £,k (P1P2ePy)

2
Ier (1/“’1"1’2“ x fpl' pzc dp, ' dp,' d¢ Vi,

L ' ~ P ' ' )
DK' ,K(RD,3 R(Y:¢) Ra,p) x fL’K’ (pl ’pz lpa) + sss (24-

The relationship petween the wave function at an arbitrary point {p}
and the £'s is given by

L=
< {pHuy > = < (BH IR lyy > = 8(Zp) Iy fi,K(pl.pz.p3)DK'M(Rp:.

(25)

It is a simple exercise, which we leave to the reader, to demonstrate that
Eqs. (24) and (25) imply that the wave function < {pl|¢y > is independent
of what choice is made for the reference orientation p although the functions

£° do, of course, depend on this choice.

If the reference orientation p is suck that the momentum triangle is

pe———

in the x-y plane then R j is a rotation about the z axis so that D occur-
P

ring in Eq. (24) is a simple phase factor times d defined in Eq. (11)--that

is, we have the usual Euler angle representation of the rotation group. In

particular R = R(z,m+y), R = R(Z,7%a), and R, .= R(Z,%+8).
12 2 31
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It should be noted that Eqs. (22), (23) ari (24) are true for any
number of particles if we add the nceded additional kinetic energy terums

on the left-hand sides and provide the additional scalar arguments for the
functions f. There are however two fairly serious geometrical complic

tions. The variatles PysPys +- py are no longer a complete set of scalars

and an additional 3N-9 scalars must be introduced. Some of these additional

scalars will change due to the action of V12 and will be complicated func-

tions of pl', p2',¢ and the initial set of scalars. In addition the de-
termination of the rotatiomns Rp

3 will involve rather difficult geometrical
]
considerations.

EFFECTS OF PARITY, EXCHANGE, AND TIME REVERSAL INVARIANCE

For a three-body system it is fairl easy to determine the cffects

of a parity or an exchange transformation of the functions f.

For a three-body system the parity traznsformation is equivalent to

a rotation through 180° about the normal, n, to the momentum triangle.

This is equivalent to first rotating the reference state by 180o about the

z axis provided the reference state lies in the x-y plane. For even (odd)
parity states we obtain

« < {pHy > =« < {p} IR |v >

= < {=p}{y > = < (p}le(i.W) Rpiw >

o (26)
This immediately leads to the relation
(PARITY)
I L
¢ fL,K (-1) fL,K . (27)

If particles 1 and 2 are indistinguishable it is desirable to know

the effect on the f's of their exchange. For this purpose it is convenient

to use the reference orientation illustrated in Fig. 1(c) where P, is along
the y axis. The effect of an exchange is illustrated in Fig. 3 and it is

seen that the directed normal to the plane points in *he -z direction

74
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instead of the z direction. This can be modified by performing a rotation

about the y axis of 180°. For states even (+) or odd (~) under exchanjye

we find
. £ (P1aPyspy) = Ly £ (P,sPysP,)« LK'|R(y,m) |LK > (28)
* TL,KYF1F20F3 K' "1 K'WarFyrPs '
Using
oL L-K
K' (R(y.“)) - 6 ,-K (-1) (29)
we find
3 L-K _3
t fL,K(pl.pz.p3) (-1) fL - (pz,pl,p3) . (30)

if all three particles are equivalent it is possible to use equations
analogous to Eq. (30) for the exchange of any pair.
bined with

These results com-

i gk
fL k=g f K'D (Rk v3

provides all the needed information -- unfortunately in a rather cumbersome
form. Attempts by the author to define a reference orientation which
treats all three particles symmetrically, and which leads to simpler ex-

pressions for the effects of exchange, have been unsuccessful.

The final symmetry transformation we consider is the behavior under
time reversal.

that

Following Wigner we note that solutions can be chosen such '

. * M
< {ephlyy y > = D7 < (pJ!wL’_M > (31)
If we apply E:. (26) and observe that

L * M-K L
Dgag (R = (<17 DLy (R) (32)
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we immediately obtain
TIME REVERSAL

Py* _ P .
(£) = £ \33)

Since we have used Eq. (26), the reference orientation p must be such that
the momentum triangle lies in the x-y plane. For bound state problems the
overall phase of the wave function can always be chosen so that Eq. (33)

is satisfied. For scattering problems it is also necessary that the inhcno-
geneous terms be chosen so as to satisfy Eq. (33). (This may always be
done. )
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ON THE SLOPE OF ENERGY CURVES
AS THEY ENTER THE CONTINUUM
by
Peter J. Redmond

ABSTRACT

Let the Hamiltonian H(A) have a bound state with
binding energy E(A) such that the E(1) > O as A » A%,
Ic is shown that dE(A)/dA = 0 at A = \* for s-state:
and that dF(A)/d\ 4 0 for higher angular momentum.

As an application of this theurem it is shown that
there is a low lying p-wave resonance in the scatteur-
ing of an electron by molecular aydrogen.

According to the best available calculation1 the lowest lying adia-
batic potencial curve for the system H + H intersects the ground state

H2 potential at a point to the right of the H2 tiinimym. It has been sug-

gested” that the two curves should be tangential at the point of intersec~-
tion whereas the numerical calculations indicate that this is not so.
Which of these two possibilities is realized is important in Aeciding
whether it is reasonable to consider extending the H + H curve beyond the

intersection point and interpreting it as a potential resonance. The same

question arises for any A + B system and iu many other molecular problems.

We shall show that the essential features of the problem are presen:

in a very much simpler situation. We consider the motion of a particle

governed by a Hamiltonian coiitaining a potential which depends on a pa-

rameter . It is assumed that the Hamiltonian !:25 a bound state with energy

E(A) over some range of values for A and that E(A) + C as A + A%, We

* Submitted to Phys. Rev.

1 H. s. Taylor and F. E. Harris, J. Chem. Phys. 39, 1012, 1963.

2 Private communication, B. F. Gray.
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shall show that dE(A)/dx = 0 at A = A* for s states and that, in general,
d(E(A)/dx # 0 for higher angular momentum.

Consider the Schrodinger equation (¥ = 1)

2
[_ L (d—) a2l V(r,x)] $(r,)) = EQ) ¢(r,A)

2mr dr omr

(1)

For simplicity we assume that V(r,\) = 0 for r > r, although this is not

essential to the argument. The slope of the energy curve is given by
T
o}
v A - ]
dEl) ’j ¢2(r.7\) 2= V(r,\) r? dr . (2)
dAr DY
o}

We now consider the behavior of the s-wsave solutions as E()) = 0.

At distances greater than T, the wave function is proportional to
e-Kr/r where ¢ is defined by E(A) = - K2/2m. Let the solution to Eq. (1)

for r < r, be denoted by x(r,\) where we normalize x(r,\) to unity,

T
o

f xz(r,k) r2 dir = 1 . (3)
o]

Then the wave function x(r,A) will approach a definite we.l defined limit
as E(A) » 0. (As a simple example: for a square well potential of range
r_ and variable depth x(r,}) - (2/1-0)1/2 sin (nr/ZrO)/r.) The normalized

wave function then is glven by

o(r,A) = N x(r,\) » T oer

—z(r—ro)

= N(ro/r) x(ro,A) e » T o>r . (4)

The normalization factor is readily obtained

80 JINCLASSIFIED
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N2 = (1+ r°2 x2 (ro,A)/ZK)-l (5)

and

N2+ 26/x2 (r»N) roz +0 as E() +0 .

The possib?.ity that the conclusion N2 + 0 could be incorrect because
X(ro,x) + 0 can be ruled out by noting that the logarithmic derivative of
the r times the wave function nust be continuou: at r = L This gives

1

I S - = -
r X(fo»x) ar T x(xr,A) 2k - 0 . (6)

r=r

so that dry/dr ~ 0 at r = r . 1f x(ro,k) also approached zero then 4(r,A)/N
would approach a function which was identically zero everywhere. This

contradicts the assumption that a bound state exists in the vicinity of
E =0,

In order to illustrate the argument for higher angular momentum we

consider a p-state. The wave function is then given by

Q(l’.x) = N X(rox) y Ir < l'o

-¢{(r-r )
= N(r /1) x(r»}) e @+ 1)/ + ke ) » x> .

M

An expression for the normalization factor is easily written and one
readily finds that as E(A) - 0 N2 + (1 + r°3 x‘ (rO,A*))-l. The argument

is readily extended to higher angular momentum and

sz > (1 + r°3 G (x »A*%) /(22 - 1)) ) >1 . (8)

Since the normaiization factor approaches a finite non-zero value the slope
dE/d\ given by Eq. (2) will generally be non-zero.
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The above simple treatment of a simple model can be described in
more gencral terms which indicate the wide applicability of the results.
Consider a many body Hamiltonian which depends on a varying parameter such
that the binding energy of the system approaches zero. As this limit is
approached one of the particles will tend to separate from the remaining
particles. At points where the separation distance, r, between these two
components 1is very large the wave function is a product of a bound state
function of the particles left behind multiplied by Y, (6 o) /x 2+1, J where
£ i{s the relative angular momentum of the two components. For £ = 0O the
asymptotic wave function is not ncrmalizable at zero binding energy so that
the probability that the separated particle is in the range of the forces
of the bound state left behind goes to zero. For higher angular moment m
the asymptotic wave function is normalized so that the separated particle

continues to interact with the remaining particles.

The result is a manifestation of the angular momentum potential bar-
rier. The non-vanishing of dE/d} for % # 0 suggests that the eneigy cuive

may be extrapolated into the continuum where it would be identified as a

resonance. ]

As an illustration of these ideas we consider the lowest potential
curves of the H2 molecule and HH system.a The general shape of these
curves is illustrated in Fig. 1 and the question to be decided is whether
or not the curves are tangential at the point of intersection. It is
easily seen that the arguments p.esented above applv “o the difference in
energy between the two curves. The H curve can be loosely described as
being made up of the molecular orb1tals (c ) 9y At the point of intor-

section the extra electron (cu) in the HH™ system is in a p-state relative

3 There are also terms with lower inverse powers of r but these are
multiplied by powers of K such that the prnducts do not contribute
to the normalization integral.

In application it is imporiant that the long range force experienced

by the odd particle is dominated by the centrifugal barrier. This
is satisfied for the e” - H system.
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to the Hz molecule so that the curves cross obliquely. This suggests that

there should be a low lving p-state resonance in the scattering of electrons

5
by Hz.
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H+H

H4H™
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Figure 1. Lowest Lying Potential Curves of H2 and HH ™

s

5 Experimentsl evidence for such a resonance, as well as referenres
to previous theoretical and experimental studies, is contained in
G. J. Schulz and R. K. Asundi, Phys. Rev. Letters 15, 946, (1965).
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