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Abstract

The polarization features of light reflected by soil, desert sand, white

sand and water under different conditions of illumination with natural (unpolar-

ized) and polarized light have been investigated in three narrow spectral

t•.ls (band width - 150 A) centered on X.3975, 5000 and 6050 A. A simple

'rotating-analyzer' type photoelectric reflectometer was used in the measure-

ments. The data was acquired in computer compatible format to facilitate

Fourier analysis of the photosignal. The degree of polarization and relative

intensity variations have been determined from a knowledge of the Fourier

coefficients.

The polarization of light reflected by soil, desert sand and white

sand exhibits pronounced wavelength dependence. There is overall similarity

in the behavior of soil and desert sand. White sand shows a strong tendency to

behave like an ideal diffuser (Lambert surface). The hypothesis of scattering

of light by an 'optically rough, locally smooth' surface has to be invoked to

explain the reflection characteristics of an apparently smooth surface of water.
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CHAPTER I

INTRODUCTION

The investigation of the polarization and intensity of light reflected by

natural surfaces is of great practical importance for the solution of many different

problems in planetary physics and meteorology. The purpose of the present

invc~tigatlor. i: to determine in as much detail as possible the polarization

features of light reflected by some typical surfaces composed of sand, soil and

water. This information con then be used for further studies of radiative transfer

problems in planetary atmospheres;for the determination of the effects of surface

reflection in reconnaissance studies, and in the interpretation of radiation

measurements from meteorological satellites.
1

Fresnel , in 1832, derived the laws of reflection of light which now

bear his name from the elastic solid theory. He studied reflection of light at

the smooth interface of two dielectric media. The reflection process is essentially

specular and hence the terms 'specular reflector' and 'Fresnel reflector' are

now synonymous. Later Stokes2 put forth a statistical method to explain diffuse

reflection. He assumed the diffusely reflecting medium to have a layered

structure, the thickness of each layer being of the order of the mean dimensions

of the particles of which the diffusing medium was composed. The formulas

derived by Stokes provide a link between the observable reflection features and

the fundamental optical constants which characterize the diffusing medium.
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The first step in incorporating the reflection characteristics of a

planetary boundary in radiative transfer problems was taken by Chandrasekhar 3

in 1950 when he solved the problem of radiative transfer in a purely scattering

molecular atmosphere with the ground reflecting light according to Lambert's law.

The reflected radiation would be isotropic and unpolarized independent of the

state of polarization of the incident radiation and the angle of illumination. The

other extreme case of a planetary boundary governed by the Fresnel laws of

reflection has "i.i ;,,catigated by Sekero and Fraser4 and more recently by

Fraser 5. The theoretical conclusions have been borne out by results of measure-

ments of skylight polarization made over calm surfaces of water to which the

description of a Fresnel reflector fits best.

Both laboratory and field measurements of the reflection features of

various natural surfaces have been reported by various investigators. Extensive

6bibliographical references would be found in the recent publications of Coulson

The instruments employed are basically of two types--the 'Integrating sphere'

type and the 'Reflectometer' type. The Reflectometer type is of greater use in

the study of the polarization features of reflected light.

7 8 9Lyot , Dollfus and Caliens have conducted extensive measurements

on terrestrial materials in their efforts to reproduce the observed polarization

features of light reflected by the moon and more recently by Mars. Similar work

has been reported by Hapke and Van Horn . Coulson has made laboratory

measurements of the polarization of light reflected by selected natural surfacesI illuminated with unpolarized light.

['I
i



3

An experimental program to evaluate the reflection matrices character-

istic of these natural surfaces has recently been initiated at the Department of

Meteorology, UCIA. The first phase of the program consisted of the design of

an experimental arrangement to facilitate the measurement of the degree of

polarization and relative intensity variations of light reflected by some typical

natural formations under different conditions of illumination. This was originally

accomplished by Professor K. L. Coulson of the Depi. of Agricultural Engineering,

University of California, Davis while he was visiting the Dept. of Meteorology,

UCLA in the summer of 1965. However preliminary measurements with this

arrangement indicated the need for considerable improvements and modifications

in the design of the source of illumination, the auxiliary electronic circuitry and

the data acquisition system. These changes were effected and the measuremenis

reported in what follows have been obtained with the modified set-up.

After a resume of the theoretical background needed for the proper

interpretation of experimental results in Chapter 2, the design and operation of

a simple 'Reflectometer' are described in Chapter 3. The results of measure-

ments made with soil, desert sand, white sand and water as samples are presented

and discussed in Chapter 4.



CHAPTER 2

THEORETICAL BACKGROUND

2.1 General Considerations

All reflection processes by natural surfaces lead to changes in the state

of polarization of the incident radiation. It wcs Malus who first observed the

polarization of light by reflection when he looked at the image of the sun

reflected by a window pane through a calc-spar crystal. He noticed pronounced

variations in the intensities of the two images obtained by double refraction as

the crystal was rotated about the line of sight.

It has been the usual practice to assume the ground to be a Lambertian

surface in investigations of bhe radiative transfer problems in the earth's

atmosphere. Light reflected by a Lambertian surface would be unpolar--

ized and the luminance is isotropically distributed independent of the

angle of illumination and the state of polarization of the illuminating radiation.

It is apparent that this is an extreme description. The other extreme description

of a specular reflector which reflects light according to the celebrated Fresnel

laws is at best applicable to undisturbed water surfaces. It is very seldom that

a natural formation can be characterized by either of these two extreme

descriptions. It is the purpose of the present investigation to draw semi-quali-

tative conclusions in regard to the actual reflection characteristics of suck

natural formations in a phenomenological fashion based on experimental data.

4
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2.2 Representation of Polarized Light

Light is said to be polarized when the associated transverse electro-

nagnetic wave defined by the characteristic electric and magnetic vectors

exhibits dissymetry about the direction of propagation. In the most general case

of elliptical polarization, it is observed that the locus of the end point of the

electric vector is an ellipse in the transverse plane normal to the direction of

propagat;on. The components of the amplitude of the electric vector along any

two mutually orthogonal directions P and r in the transverse plane (see Fig. 1),

which together with the direction of propagation k form a right handed triad

will be time harmonic. The I and r directions are usually chosen to be

parallel and perpendicular to the plane of interest which, in the presunt context,

will be either the plane of incidence or the plane of reflection.

The conventional description of an elliptically polarized stream of

radiation would involve the determination of the instantaneous values of the

intensity components along tIt I and r directions, the ratio of the semi

minor and major axes of the vibrational ellipse and the angular displacement of

the major axis of te ellipse from the t direction. This description of polar-

ization presents considerable difficulties in experimental studies because of the

diriensional inhomogeneity of the quantities to be determined (intensities, a

ratio and an angle). StokesI1 reali7ed the advantages of formulating a set of

parameters all of which would have the dimensions of energy and would hence

be easily amenable to experimental determination. The four parameters are

I
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known as the Stokes polarization parameters. They can be thought of as the

elements of a four element column vector--the Stokes vector. Of the four

parameters pertinent to a quasimonochromatic beam, two are functions only of

the amplitude components along the t and r directions and the remaining two

aOt', i,• addition, dependent or ie phase difference between the amplitude

components along the I and r directions.

The Stokes polarization parameters of a quasi-monochromatic beam can

then be represented as

(a2) + (a0)
f. r

Q = (as) - (a2)
t r (2.1)

U = 2(a cos6)

V 2 (a a ar sin 6)

where oa and ar denote the instantaneous values of the amplitude components

along the ' and r directions respectively, 6 is the phase difference between

them and the brackets denote time averages. One noticeable feature of the

Stokes parameters is their additivity when a number of incoherent streams of

radiation which do not interact (interfere) are considered. This results in the

optical equivalence of a number of incoherent streams of radiation to a single

beam characterized by a set of Stokes parameters euch one of which is the sum

of the corresponding parameters characteristic of the individual streams.

The polarization features of the stream of radiation characterized by

the Stokes parameters I, Q, LI and V can be determined with the use of the
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formulas given below:

Degree of polarization P < [Q+1 (2.2)

where the equality sign denotes complete polarization,

"Tan 2X U (2.3)Q
where X gives the orientation of the planc. of polarization, i.e. the plane

containing the major axis of the ellipse, with respect to the t direction and

V
Sin 2P = [Q2+U2+ VP (2.4)

where P3, a measure of ellipticity is given by arc tan b/a, ,a and b being the

semi major and minor axis of the ellipse respectively.

In the case of linearly polarized light V-0

and P < I ' (2.5)

At present extensive use is made of the Mueller12 calculus, which is

a natural extension of the Stokes vector formalism, to describe the interaction

of radiation with matter. In this phenomenological theory, a physical process

or an optical instrument which affects radialion is charactevized by u 4 x 4 matrix

known as the Mueller matrix. Any phenomenon involving the interaction of a

stream of radiation with matter is then defined by the result of operating with

the Mueller matrix characteristic of the physical process upon the Stokes vector

of the stream of radiation.

Consider now a parallel beam of quosi-morochromatic radiation

incident on a reflecting surface in the direction (go, (,o) where ef and po
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defitie the zenith (incidence) and azimuth angles in a spherico-polar coordinate

system with the reflecting surface coinciding with the equatorial plane. The

reflected beam in the direction (e6,) is related to the incident beam through the

relation

RII =TR II (2.6)

where 11i and I1R are the four element (I, Q, U, V) column vectors represent-

ative of the incident and reflected beams respectively and TR is the 4 x 4

Mueller matrix characterizing the process of reflection by the surface. In general

the elements Rii (i,i = 1,2,3,4) of the reflection matrix are functions of e, 90,

0 and o with the dependence on the macroscopic optical constants of the

surface being rendered implicit. If the azimuth angle pis measured with

reference to the plane containing the direction of illumination (incidence) and

the normal to the reflecting surface, p =- 0 and any one of the sixteen elements

of the reflection matrix can be designed as Ri (g o,(,) (i,= 1,2,3,4). In

principle it should be possible to determine the Rij's henceforth the e, eo, 0

dependence will not be explicitly denoted) if the elements of column vectors

IIi and IIR are known, since from Eq. (2.6) it follows that
R iU

I =Rl IlII R12 Q+ R13 U+ R4 V

QR I' + Qi+ U+ V'
Q R2 1 1 + R22 + R2 3  + R24

uR i i u (2.7)
U R31I + R3 2 Q + R33 + R3 4 Vi

-R 4 1 1 + R4 2 Q + R4 3 U + R44V

iZ
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The form of the family of equations (2.7) suggests that the individual

elements of the reflection matrix can be determined if the elements of the column

vectors IIi and IIR are known. The elements of IIi can be prespecified, except

for a constant multiplication factor which involves the rather tedious absolute

energy measurements, by controlling the conditions of illumination. The elements

of IIR can be determined by the harmonic analysis of the photosignal issuing from

a suitably designed optical detector assembly with which the reflected light is

examined in the manner described below.

2.3 Harmonic Analysis of the Photosignal

Let the beam of quasi-monochromatic radiation reflected in the

direction (0,q() pass through an optical train consisting of a retardation plate

of retardance 6 either with its slow or fast axis along the t direction and an

analyzer with its transmission plane at an angle + from the L direction. It can

be shown, after some matrix algebra, that the intensity of the emergent beam

is given by

4 6)= lR + QRcos 2+ + (U cosb- V sin 6 ) sin 2+] (2.8)

When = 0, i.e. in the absence of a retardation plate in the optical train,

I(+,0) [I FR 4. QR cos2+ + UR sin2+] (2.9)

On the other hand, when 6=7t/2, i.e. when a quarter wave plate is introduced

in the optical train

I(tp,ir/2) = ýýEIR + OR cos2+ -VR sin2+] (2.10)
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Consider the emergent beam to be examined with a linear optical detector. Let

the response of the detector be Si corresponding to impressed signal 1(qi, 6).

Because of the inherent periodicity exhibited by 1(#, 6) in view of the fact that

the Glan-Thompson prism transmits the same amount of light when its transmission

plane in either at an angle # or ql+w from the I direction, it should be possible
13

to resolve 1(j, 6) into the elementary components given by the Fourier series

I(qV, 6) "- p + PI cosi + P 2 cos2 9 +....

+ q sintp+q. sin 21 .... (2.11)

provided n equidistant values of Si over the interval 04& 2n are known.

On comparing coefficients of similar terms in Equations (2.9), (2.10)

and (2.11) it is found that

R
I} = 2po0

QR = 2p2  (2.12)

UR =2%, when 6=

VR= 2%qwhen 6 =i/2

The method of determination of the p's and q's is briefly outlined below.

Let the n equidistant values of Si be denoted by So, S 1, S2 ... SnI

(with Sn=S 0 ) corresponding to values of i equal to 0,1 ,2,3..., n-i respectively.

For the case k.- n/2, it can be shown that

n-1

=- nSi

2 n-IPk -n 'S Si cos(ike)
i=O
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2 n-1-- Z• Si sin~kie)
"qk n i=0

with e=360°in. The amplitude of the kth harmonic is then given by

a = (p2 + q2 In the present investigation, n has been chosen to be 12,

thereby rendering e = 301 and the Fourier coefficients up to and including the

fourth harmonic have been determined. Because of the symmetry introduced by

the use of the Glan-Thompson prism, only the even harmonics will be dominant.

It is a matter of simple algebra to derive expressions for the degree of polar-

ization and other relevant polarization parameters in terms of the Fourier

coefficients from substitution of Eq. (2.12) in Eq. (2.2).



CHAPTER 3

EXPERIMENTAL STUDIES

3.1 General

The majority of instruments that have been employed in reflectance

studies so far belong to either of the two basic types illustrated in Fig. 2. In

the 'Integrating Sphere' type a sphere or hemisphere coated on the inside with

a highly reflecling substance is used to integrate the radiation reflected by the

sample. However, for the primary purpose of the investigation which is the

study of the polarization features of the reflected light, an instrument of the

'Reflection' type is better suited. Accordingly a simple photoelectric polari-

meter of the 'rotating analyzer' type was designed and used in the experimental

studies described in what follows.

3.2 Experimental Arrangement

3.2.1 The Experimental Geometry

The experimental geometry is shown in Fig. 3. The reflecting surface

of the sample defines the equatorial plane. go is the angle of illumination, 9

is the angle of observation. f is generally referred to as the nadir angle of

observation. The principal plane of the source S is defined by the direction of

illumination and the normal to the equatorial plane. It is the reference plane

for the determination of the azimuth A, of the plane of observation defined by

the direction of observation and the normal to the equatorial plane.

Because of prevalent symmetry, when -, assumes values from 0 to w/2

it is adequate to confine the measurements to planes of observation projections

13
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of which onto the equatorial plane are contained within the pair of opposite

quadrants AODA and COBC in Fig. 3. The nadir angle 6 assumes values between

0 and ir/2 on either side of the normal to the equatorial plane. When 0 = w/2,

9 need vary between 0 and w/2 on only one side of the normal. Further when

= -- 0, i.e. for normal illumination, measurements need be made only in the

principal plane of the source.

3.2.2 Source of Illumination

A G.E. Mazda airway beacon lamp, operating on 3OVd.c. and rated

at 1000 watts has been used as the primary source of illumination. It is housed

in an enclosure through which a continuous stream of coolant air flows. The

emergent beam is rendered almost parallel and uniformally bright over its cross-

section with the use of a suitable combination of a matt glass diffuser and short

focal length condenser lens. The angle of illumination, 8 , can be varied by

moving the lamp-housing over a length of rigid tubing ber t into the shape of an

arc of circle of radius 71/2 feet. The sample is located at the center of this

circle.

The illumination can be rendered plane polarized by introducing a sheet

of Type HN38 polaroid in front of the condenser lens. The circular polaroid sheet

can be rotated inside a graduated circle and thus the orientation of the plane of

polarization with respect to the principal plane of the source can be varied. The

degree of linear polarization of the emergent beam is slightly dispersive. On

examination with a simple photoelectric detector, it was found that the degree
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of linear polarization of the emergent beam had values of 95.8K, 99.8X and

99.86% at wavelengths of 3975, 5000 and 6050A respectively.

3.2.3 The Reflectometer

The reflectometer is schematically shown in Fig. I. It is of the

conventional rotating analyzer type with a photomultiplier tube as the detector.

Measurements of the degree of polarization can be made in three narrow spectral

interva(ý (bandwidth - 1 50A) centered on AA 3975, 5000 and 6050A.

The field of view of the instrument is limited to 3000' with the use of the

quartz achromat and the light limiting baffles. The d.c. motor which rotates the

Glan-Thompson prism at 4 rpm aoso actuates a programmed cam which operates a

micro-switch in such a fashion that the output of the photomultiplier tube

is sampled ut 30000' irntervals over one complete revolution of the analyzer.

Initial conditions are so arranged thot the transmission plane of the Glan-Thompson

prism is normal to the plane of observution at the beginning and end of a complete

revolution. It is also possible to monitor continuously the output of the photo-

multiplier tube.

A 14 stage Ascop Model 541 A photomultipl;er with, ,n endwindow is used

as the detector. The antimony-cesium photocathode exhibits S-11 response. The

spectral intervals of interest are isolated with multilayer, dielectric interference

filters character'ized by fairly steep pass bands. The transmission curves of the

filters are seen in Fig. 5. The dynamic range of the deftctor is confined to two

orders of magnitude with the use of neutral density filters that are introduced in
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the light path to attenuate the intensity of the beam entering the instrument,

Interference filters and companion quarter wave plates can be easily introduced

into the light path.

The output of the photomultiplier tube passes through an inverting, variable

gain amplifier and is then recorded. The output of the amplifier can be either

continuously monitored or discretely sampled through the microswitch operated

by the programmed cam.

The optical components and the photomultiplier tube are housed inside a

blackened cylindrical brass tube of diameter 1.5". The entire assembly measures

about 20" in length and weighs about 5 lbs. The reflectometer is mounted on a

manually operated altazimuth mount in order that the nadir angle of observation,

E, and the azimuth 6of the plane of observation can be varied easily. The

entrance aperture of the reflectometer moves along the arc of a circle of radius

18" with the sample at the center. With this arrangement, the extreme, apparent

geometrical apertures of the system corresponding to large values of 6 are contained

within the illuminated portion of the sample.

The sumples are contained in trays measuring approximately 18" x 12" x 3".

The tray is positioned on the central, stationary platform in such a fashion that

the axis of azimuthal rotation of the reflectometer passes through its center.

Figure 6 ;s a photograph showing details of the source, sample and the

reflectometer.
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3.2.4 Data Acquisition System

The photosignal developed across a precision signal resistor of 1 .0 megohm

passes through an inverting, variable gain operational amplifer. The output of

the amplifier is fed into a Varian Model G-10 strip chart recorder and a Wyle

Model 1504 A/D converter (binary conversion) which is connected in parallel

with the strip chart recorder. The digitized information in binary form is recorded

on magnetic tape with a Digidata Model 1450 7-channel digital recorder with a

stepping rate of 300 per second. There is provision to introduce auxiliary infor-

mation such as labelling voltages to identify samples, states of polarization of

illumination, scan mode etc. on the magnetic tape through the digitizer. The

record format on the tape is compatible with an IBM 7094 computer. This

facilitates data reduction and analysis.

The linearity of response of the reflectometer and the detection system is

shown in Fig. 7 . Figure 8 is a schematic representation of the principal stages

of the data acquisition system of which Fig. 9 is a photograph.

3.3 Description of the Experiments

Samples of desert sand, white sand (New Mexico), soil and water have

been studied in the present investigation. The samples have been illuminated

both with natural (unpolarized) light and with linearly polarized light. In the

latter case, three situations when the plane of polarization was parallel, normal

or inclined at 45o00 to the principal plane of the source have been examined.

In the initial stages of the work it was deemed necessary, when the illumination
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was polarized, to make duplicate sets of measurements with and without a quarter

wave plate in the path of the reflected beam in order to detect ellipticity, if

any, in the reflected beam. However this was soon discontinued because of

limitations imposed by the present experimental setup.

The nadir angle of observation has been varied in steps of 1000' in the

case of desert sand, white sand and soil. In the case of water, a cursory

examination of the reflected beam revealed the necessity to make these

observations at 2o000 intervals. These measurements have been made in three

planes of observation with d= 00(1860), 450(2250) and 900(2700). Conditions

of illumination have been varied by setting the angle of illumination 9 00,

53000' and 78030' . This choice of angle of illumination was governed by

considerations of possible comparison with computational and experimental work

done elsewhere.



CHAPTER 4

RESULTS, DISCUSSION AND CONCLUSION

4.1 General

The intensity and the degiee of polarization of the reflected light are

directly related to the constant a (= po) and the amplitude of the second harmonic,

012 f= (P2 +q22)- ', occurring in Eqs. (2.11) of Chapter 2. Hence it is worth-

while to examine how reliable the scheme adopted for the harmonic analysis of

the photosignal is before a discussion of the results is attempted. A typical set

of computed values of the constant a and the amplitudes of the harmonics up to

and including the fourth are shown in Table 1. These values correspond to

measurements made in the principal plane with desert sand, illuminated with

natural light, as the sample. This particular set was chosen since the values of

the degree of polarization p computed from the formula p = 100 2/a°0 could be

compared with the results of independent measurements by Coulson who used

the formula p = 100(VMax.- V min. )/(V Max. +Vmn.) where Vmax and V mn are

the photosignals corresponding to the maximum and minimum values of the

intensity of light transmitted by the rotating analyzer respectively. Such a

comparison has been made in Fig. 10 and the close agreement between the two

sets of values establishes the reliability of the particular scheme of harmonic

analysis that has been adopted. Examination of Table I also reveals that a2 is

considerably greater than a,, a3 or a4 over the greater part of the range of

measurements; it becomes comparable to or less than any of a, , a3 and a, only

27
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in the vicinity of a neutral point where the degree of polarization is of the

order of I or 2. Examples of such behavior are denoted with an asterick in

Table 1.

A word or two regarding the notation that has been adopted in the

diagrams to follow may not be out of place. The results of measurements made

under identical conditions of illumination and observation with the four samples

are shown '1ether to facilitate intercomparisons. The state of polarization of

the il'uminating radiation is indicated by an appropriately drawn arrow. Thus

a vertical arow indicates that the illumination was parallel to the plane of

incidence; a horizontal arrow indicates that the illumination was polarited

normal to the plane of incidence and an arrow drawn at 450 (approximately) to

the horizontal would indicate that the illumination was polarized at an angle

of 450 to the plane of incidence.

The normalized intensity shown in the diagramsis defined as the ratio

of the intensity of the light reflected in the direction (Ei,o) to the intensity of

the light reflected along the vertical (P,=0) in the two cases when the angle of

illh-mination (9) is either 530 or 7J°030'. However, when o t0 i.e. for
0

normal illumination the definition of normalized intensity has been changed

to imply the ratio of the intensity of the light reflected in the direction

(g,r = 0 or wr) to the intensity of the light reflected in the direction (150,

S0 or w).
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TABLE 1. Specimen Computations of tho, Amplitudes

of the Haemonics

Sample: Desert Sand, Illumination: Natural Light

9= 78030, k = 5000 A
t~o go

00 ' 0  a0 a1  2 03 a 4

180 90 0.992 0.02747 0.11268 0.02319 0.02411
180 75 4.0/0 0.06384 0.43155 0.00636 0.00729
180 70 3.100 0.01891 0.41902 0.01147 0.02314
180 60 2.520 0.01328 0.37920 0.00711 0.02032
180 50 I.U60 0.01323 0.32770 0.00573 0.01835
180 40 1.490 0.00775 0.25977 0.01006 0.01930
180 30 1.280 0.00855 0.21165 0.00159 0.01102
180 20 1.150 0.00219 0.17423 0.00656 0.01144
180 10 1.050 0.00339 0.14415 0.00356 0.01682

0 0 0.995 0.00798 0.10660 0.00356 0.01114
0 10 0.975 0.00843 0.06646 0.00318 0.00729
0 20 1.000 0.00514 0.05364 0.00318 0.00573
0 30 1.060 0.00627 0.03214 0.00159 0.00159
0 40 1.160 0.01499 0.02454 0.01309 0.00795
0 50 1.330 0.01222* 0.00694* 0.00318* 0.00477*
0 60 1.620 0.01090 0.02943 0.00599 0.00729
0 70 Shadow
0 75 Shadow
0 80 Shadow

*Neutral Point
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4.2 Discussion of the Results

A quick look at the results indicates the overall similarity in behavior

of soil and desert sand and hence these will be discussed together. The very

strong depolarization charao.teristics exhibited by white sand places it under a

different category. However, in all the three cases , because of the finite

grain size which is very large compared to the wavelength of illuminating

radiation, the results are to be interpreted, at least partially, in terms of the

laws of geometric optics. On the other hand, water, in this particular

experimental setup, exhibits some of the properties of an 'optically rough,

locally flat' surface and hence some of the results must be examined at least

in a qualitative fashion in the light of laws governing scattering of radiation

by rough surfaces. One of the possible reasons for such behavior on the part

of water is that the sample tray containing water was subjected to high frequency,

small amplitude vibrations in the building resulting in a system of ripples on

the surface. This was borne out by the observation that most oF the surface of

the water outside of the illuminated area was shimmering. These ripples on

reflection at the edges and corners of the sample tray presumably caused enough

departures of the actual surface from the mean surface.

In what follows, for the sake of bv'evity and to minimize redundancy,

the convention will be adopted that a reference to diagrams would imply most

of the diagrams from Fig. 11 through lig. 38. Specific reference to a

particular diagram will be made only when it is felt that a physically important
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aspect may go unnoticed otherwise.

4.2.1 Soil and Deseri Sand

It is obvious from the results that the polarization of the reflected

light has a very strong wavelength dependence. It decreases with increasing

wavelength and such behavior is uniformly noticed under all conditions of

illumination and observation. For normal illumination with natural light, the

degree of polarization shows a steep increase towards larger nadir angles in the

principal plane. However a steep decrease towards larger nadir angles in the

principal plane is observed for normal illumination with light polarized either

parallel to the plane of incidence or at an angle of 450 to the same (Fig. 25

and 32). When the illumination is polarized perpendicular to the plane of

incidence, minima in the polarization distribution curves are observed around

intermediate values of nadir angles. When the angle of illumination assumes

values of 530 or 78030' definite maxima in the polarization curves are observed

in all the three colors when observations are made in the principal plane with

natural illumination. These maxima are situated in a broad region about

70-1 20 removed from the dtrection of antisource point (Figure 12 and 15).

This trend is reversed and minima are observed when the incident light is polarized

either parallel to the plane of incidence or at 450 to it. This behavior can be

seen in Figs. 26, 29, 33 and 36. When the incident light is polarized

perpendicular to the plane of incidence, only a gradual increase in polarization

towards the limb on the antisource side is observed (Fig. 19 and 22).
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In the plane perpendicular to the plane of incidence, i.e. when

900 (270e) for q 0= 530 or 7830. , the degree of polarization of the

reflected light shows a gradual increase towards the limbs when the incident

light is either unpolarized or polarized parallel to the plane of incidence. The

reverse trend of decreasing polarization towards the limbs is observed when the

illumination is polarized either normal to the plane of incidence or at an angle

of 45? to it. In the latter case, a slight hump is observed at intermediate values

of the nadir angle (Figs. 35 and 38). The two samples continue to exhibit

overail similarity when observations are made in the plane 0 =450 (2250). The

polarization distribution is asymmetrical.

Neutral points, (i.e. points at which unpolarized light is detected)

are observed in the principal plane on either side of the antisource point when
90 = 000

or 530 and above the antisource point when go= 78 30' . No set

behavior either in their dispersion or in their angular distances from the anti-

source point is observed. An interesting feature is the occurrence of very

pronounced minima (-- ]")--especially at longer wavelengths-in the polarization

of the reflected light in the plane 4 = 225 when the samples are illuminated at an

angle of 53000' with light polarized parallel to the plane of incidence (Fig. 27).

For normal illumination, both samples exhibit darkening towards the

limbs the reasons for which are obvious. When 9 =53 or e =78°30' , in the

principal plane, the samples appear brighter at larger nadir angles in the plane

o = 1800. This brightening becomes very pronounced when 90 = 78o30.
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Brightening towards the limbs is also observed in planes of observation other than

the principal plane. Very often a slight decrease in brightness towards the very

edges of the samples is observed.

4.2.2 White sand

It has been deemed proper to consider this sample as different from either

desert sand or soil because of low values of the polarization of the reflected

light and because of the not so pronounced variation in the normalized intensity

values over the greater part of values assumed by the nadir angle on either side

of the local vertical. The wavelength dependence of the polarization of the

reflected light is also not so pronounced as in the case of desert sand or soil.

So far as the occurrence of the neutral points is concerned, this sample behaves

like the other two.

When 6 =530 or 78030' the polarization of the reflected light assumes

large values (40%) in the specular region, i.e. around @=90 in the plane

S= 0d (1809). The normalized intensity also increases rapidly in this region

especially when %= 78030'. This leads one to suspect that this granular sample,

which is a gypsum derivative, may exhibit specular characteristics when viewed

under grazing illumination like the majority of real materials.

The overall description of a strong depolarizer of the Lambert type

fits best this sample because of the low values of polarization of the reflected

light in the majority of the cases studied, the small dispersion that is associated

with the same and because of the fact that the normalized intensi', is around



35

0.95 up to values of 9 - 70a in the principal plane under conditions of normal

illumination (Fig. 1 lb, 18b, 25b and 32b).

4.2.3 Water

The choice of water as one of the samples for study was governed by

considerations of comparison between the behavior of samples which are

composed of opague or translucent particles and of one to which the description

of a specular reflector would fit best. However it was realized, after the work

was completed, that because of the particular experimental setup, not all of

the results could be explained in terms of specular (Fresnel) reflectivity. The

concept of scattering of light by an 'optically rough, locally flat' surface had

to be invoked as one of the possible reasons for observed discrepancies. No

attempt is made, however, to give any theoretical explanations for the same.

Observations had to be confined to the principal plane as it was

realized that outside of the principal plar~e the signal to noise ratio of the

system approached unity. This established the relatively feeble nature of

lateral scattering, if any, by the eater sample of depth about 2.5" contained in

a bkjk bottomed tray. This in turn led to the association of a "mean level"

with the sample. The 'mean level' would be governed by the Fresnel laws

and departures from the characteristic behavior of a Fresnel reflector may be

due to the presence of the system of ripples on the water surface.

Examination of the normalized intensity under non-normal illumination,

i.e. when 9 0 /0 reveals that the normalized intensity in the specular
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direction is a few orders of magnitude larger than the normalized intensity in

any other direction. This gives credence to the hypothesis of a mean level

which acts as a Fresnel reflector. However, the detection of appreciable

amounts of light in non-specular directions indicates 'longitudinal scattering'

(Beckman 14 ) i.e. scattering in the plane of incidence, by the water surface.

This could be possible only if the existence of elemental areas whose surface

normals may or may not lie in the plane of incidence and which may be so

randomly oriented that for any angle of illumination at least some of them would

be such that with respect to these and not with respect to the mean level, the

direction of observation would be the specular direction is postulated.

The dispersion of polarization is not very pronounced in the majority

of observations since the governing factor is the refractive index in both the

'mean level' and 'elemental mirror' pictures and it does not vary appreciably

over the wavelength region of interest. When the incident light is natural and

when e =530 which is very near the Brewster angle for all the three wavelengths,

the polarization of light reflected in the specular direction attains very high

values (> 80% ) (Fig. 12). However the departure from complete polarization

in the specular direction and the presence of polarized reflected light in other

directions does indicate the inadequacy cf the concept of a 'meci level'.

Similarly the 'mean level' concept can explain the presence of the sudden

discontinuity in the polarization distribution curve in the specular direction

when 90 = 530 and the incident light is polarized parallel to the plane of
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incidence (Fig. 2 6 a). But the presence of considerable residual polarization

points to the inadequacy of the same.

The reflected light shows a very high degree of polarization (_ 80%or

higher) when the incident light is completely plane polarized. (The departure

from complete polarization of the incident light assumes a small but finite value

of 3% for blue light because of the blue leak exhibited by the HN 38 polarized

sheet). The high degree of polarization of the reflected light may be explained

then in terms of the elemental surfaces whose dimensions are large compared

to the wavelength of light and whose normals are properly oriented to render the

direction of observation the specular direction. Under these circumstances the

state of polarization of the reflected light will be similar to the state of polar-

ization of the incident light. However the departure from complete polarization

of the reflected light may be due to the depolarizing effects of some of the

elemental surfaces whose normals may lie outside the plane of incidence defined

by the direction of illumination and the normal to the mean level.

It should be pointed out these arguments are purely speculative, drawn

in analogy with scattering of microwaves by rough surfaces. Perhaps better

theoretical explanations will be forthcoming.

4.3 Conclusion

The polarization of the reflected light shows definite wavelength

dependence in the case of all the samples thot have been studied under

different conditions of illumination. The extent of dispersion, however, varies
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samples to sample. It is very pronounced for desert sand and soil and not so

pronounced for white sand and water. The three samples composed of opaque

and translucent particulate matter, namely desert sand, white sand and soil,

exhibit depolarizing characteristics when the illumination is completely linearly

polarized. This may be attributed to the multiple reflections that occur in the

interstices in the particulate matter. White sand depolarizes to a greater extent

than either desert sand or soil. This may be because in addition to multiple

reflections in the interstitial spaces, part of the illumination penetrates the

individual particles which are translucent and suffers multiple reflections inside

the particles before emerging in the direction of observation. Examination of

the relative intensity variations indicates that white sand is nearer to an ideal

diffuser of the Lambert type than either of the remaining two. The asymmetry

of the distribution of the intensity of light reflected in the principal plane by

soil and white sand may bi attributed to the screening or shading effects of

individual grains, the dimensions of which are large compared to the wavelength

of the illuminating radiation.

The hypothesis of scattering of light by an 'optically rough, locally

smooth' surface has to be invoked to e>xlain the existence of certain anomalies

in the polarization features of light reflected by the water surface. The concept

of a 'mean level' governed by the Fresnel laws explains the very highly intense

reflected beam in the specular direction and also partly the sudden discontinuity

in the polarization of the reflected light in the speular direction woien the
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angle of incidence is very near the Brewster angle and the illumination is

polarized parallel to the plane of incidence. However the residual polarization

under these circumstances and the fact that over the entire plane of observation

the reflected light exhibits very high polarizatior (-80,14) when the illumination

is completely linearly polarized cannot be explained by the 'mean level' theory.

The existence of innumerable elemental surfaces with their surface normals so

oriented that at least for some of them the direction of observation is the specular

direction may explain Olis behavior. However conclusions cannot be drawn

until results of dafinitive, quantitative theoretical investigations are available.
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