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ABSTRACT

Intermolecular potential functions and certain means by which they can
be cbtained from experiment have been studied as the first step in the
eveluation and cdevelopment of a high density equation of state. The second
virial coefficiert has beer found to be a poor method for reduced temperatures
{or. the (12,6) scale) grea*er than 2.0 while transport coefficients were found
to be poor in the rarge 1.54 T¥% (12,6) & 5.0.

Experimental second virlal coefficlent data have been fitted to 40 inter-
molecular potential functions for each of 15 substances. That such data taken
in the range T#* (12,6) > 2.0 cannot serve as a means for determining the
potential function is cleerly demonstraved. Alsc indicated Is the result that
such data ir the rarge T# (12,6) < 2.0 cannot be used for dstermirinz more
tharn tares potertisl paranmeters.

The Percus-Yevick theory has been investigated and appears to be as
applicable to air as it 1s to argon. The theory has been found toc be gengitive
to the choice of the intermolecular potential function.

Tre effect improving the potential functions has on the ¥NBS tables of
equilibrium propsrtiss of gasss at high temreratures has been Investigated and
fornd to be gererally sma’l althouzh changes of avproximately 2% were obtaired
a% the hnighest dsnsi%ies.
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curves for the (my6) potentials.

The parameter ratios € /€ for bota the secord virial
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I. INTRODUCTION

The main purpose of the work under this contract has been a
theoretical investigation of ceriain high density statisticel mechaniecal
theories with an aim to their application to systems of aerodymamic
_interest, These theorles assure prior knowledge of the pair potential
functicn. It waes necessary, therefore, tc start this work with an investi-
gatior of the ways in which one obteins a krowledse of this furnction for any
givep system. Jhis irvestigation of poteniial functions, originally en-
visicned as a small part of this contract, had to be expanded considerably
as new patks of investigatior developed. Tre study of the pair potential
funetiony in fact, became a major part of the work ecarriled out under this
coriract. This has resulled in an ircreased understanding of Intermoleculsr
potential functions and of the meang available for their determination.,

Thig undergtanding has a usefulress far oeyord the needs of this contract
gince the calculation of all thermodynamic and transport properties of
fluids on the basis of fundamental statistical mechanical theory always
depends on prior knowledge of the intermoclecular pair potential funetion.
In fact, the results of such caleculations can be modified drastically when
charges are made in the potential functiorns used.

We have stiempied in tais work to pursue several avenues of research
simultaneously. Considerable emphasis has been placed on theoretical studies
of the usefulness of certain taermodyramic properties as probes of potertlal
frnetions. A study of the second virial, Joule-Thomson, viscoslty and dif-
fusior ccefflcients and their first derivatives was completed ard has al-
ready appeared as a formal publicationl (included as an appendix). That
work has been extended considerably to include the study of the sersitivity
of the simulteneous flt of equilivrivm and transport data to the potential
function, The simultaneous fit of the viscosity and second virial coeffi-
cien’ has veen studied In some detail. The following are othsr property
palrs for which we have less detailed results zt this time:

a, the second virlal and diffusion coefficients
b, ‘the Jounle~Thomson and &iffusion coefficlients
¢, Tne joule-~Theomson and viscosity coefflcients
de the viscoslity and diffusion coefficients

For years, the literature has beern filled with conjectures on the sub-
jeet of the sengitivity of the similtaneous fit of equilibrium and transport
properties to the potential function. A1l such work has been based on results
of fits to experimental data. As a result, all necessarily sufier from a lack
of clerity due to the effects of experimental uncertainties, and what is more
important, inconslatencles betwsen the two kilnds of experiments, This hzs, in
fact, resulted in total disagreement ameng a number of workers. Some have
felt tkis to be a sensitive probe of the potential while others have taken the
opposite view, Our approach, as before, has been to deal with this guestion
cn a strictly theoretical basis. We determine what is, in principle, the
sensitivity to the pctential function of this simtltansous £it to these two
kinds of data, The results are presented in accompanying graphs and will be
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discussed below. These results, being entirely independent of experimental
precision, will continue to hold as experimental techniques are refined and
precigion improved. Our results can be used for fundamental predictions in
that we can make definite statements on the temperatures at which the
properties are very insensitive to the potential. It follows, then, that
at such temperatures, more refined experimental techniques ¢annct yleld
further knowledge of ths potential function.

Another part of our resesarch effort has been applied to the study of
actual fits of experimental second virial coefficient data to a large number
of potential functions. These are specific illustraticons of the application
of our theoretical results to real data. In addition, some very interesting
new ingsights into the entire vroblem of potential functions resulted from
these fits. These will be discussed below. In the particular case of the
constituents of air, these fits have an additional purpose in that they
also serve to define the best potential functicns for use toth in the high
temperature tables and in the correlation of data in the experimental range.
These latter functiona were also used, as described below, in an assessment
of certain high density theories and in a determination of the sensitivity
of an equilibrium calculation to the potential funetion. The results of all
of the fits are presented in the accompanying tables and graphs.

We have alsgo done a study of the applicability of the Perecus-Yevick
theo to gases made up of non-spherical molecules. There appear to be
three main reasons why such a theory might be less applicable to non-
spherical systems. First, the present form of the Percus-Yevick theory
requires the wse of a spherically symmetric potential function. It 1s
possible that this may not be a serious problem since one expects an averag-
ing of the actual potential over all interparticls crientations %o te a
reasonable procedures In other words, one expects there to be an effective
spherical potentigl to assoclate with the molecules for use in the theory.

4 second reason is that the theory is based on an assumption of pair-wise
potential additivity. Deviations from additivity might be larger for the
non-spherical molecules., Again, there might be an effective spherical
potential which averages this effect for the purposes of the theory. The
third reason is more bvasicy and whnile importent for both spherical and non-
gspherical molecules, might conceivably be of a different magnitude for one
kind of molecule as compared to the other kind. This objection is that the
theory, though based on a summation of a certain infinity of terms in the
full density series, neglects another infinity of terms. The effect of this
neglect, and hence the success or failure of the application of such a theory
to particular systems (e.g., air) can be judged cnly by the results of com~
parisons with experiment. Since such theories depend on prior knowledge of
the potential function, we have first sought an understanding of how such
functions can be obtained. This accounts for the strong emphasis placed

by us on the potential function aspect of this contract.

Despite all of these possible objections, theories such as the Percus-
Yevick are far superior to any other means available for the extrapolation
required at the temperatures of interest in aerodynamic application at wod-
erate to high densities. Werk on such theories is complicated by the
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provlems involved in the solution of the approprlate nor-linear integral
equations by numerical means. This has the result of reducing the rate
of progress slgnificantly.

As indicated above, the ultimate purpose of the investigation of
potential functions 1s to provide the beat possible input data for aero~
dyramic celculations and to attempt to provide a sound theoretical urder-
standing of both these data and the methods used to obtain them. In the
Interest of maintaining the connection between our work and the NBS effort
in calculating tables of the properties of air and its constituents, we
have investligated the effect on the equilibrium properties of nitrogen of
changing the H2-H2 intermclecular poteuntial function. Our results ere

discussed below.
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II., PRELIMINARY RESULTS FROM THE STUDY OF THE SENSITIVITY OF THE
SIMULTANBOUS FIT QOF THE SECOND VIRIAL COEFFICTIENT AND VISCOSITY
DATA TO DIFFERENCES IN THE INTERMOLECULAR POTENTTAL FUNCTION +

In our previous workl, we have shown that equating the value of
certain thermodymamic propervies for a given potential function teo thelr
values for a second potential results, for each property, in e single
equation in two unknowns. The unknowns are the ratios of the potential
parameters ¢/k and ¢ wnich guarantee equality of tne property for the
two potentials. Given a similar equation for a second funciion of each
property, one would have a pair of equations in the two unknowns, the
solution of which would lead to their complets determinetion. Previously,
we took for this second function of the thermodynamic property its derive-
tive with respect to the temperature. Thus, for example, we equated the
second virial coeffielent and its first derivative for a pair of potentials,
For reasons previously outlinedl, we always took the (12,6) function as
one of the two potential functions arnd used it as a reference potentlal.

We solved the pair of equations in the parameter ratics as a function of

the (12,6) reduced temperature. The results obtained have been discussed
in considerable detail in the published workl. In that work we formed pairs
of equations by equating, for the two potentials, the following pairs of
functions:

1. the second virial coefficient plus its first derivative
2+ the Joule-Thomson coefficient and its first derivative
3. the viscosity and its first derivative

4« The diffusion coefficient and its first derivative

Instead of basing the calculation on the equality of a property and
its first derivative, one can base it on the equality of two properties.
We have done this recently for the following pairs of propertiles:

1., the second virial ccefficient and the viscosity
2, the second virial and diffusion cocefficients
3. the Joule~-Thomson ccefficlent and the viscosity
4Le The Joule-Thomson and diffusion cocefficients
5. 1the visceosity and the diffusion coefficient

In this section of this report we discuss some preliminary resulis
obtained from the similtaneous equality of the second virial coefficient
ard the viscosity., Results which have been cbtained for the other pairs
in the above 1list have not been studied sufficiently for reporting at this
time.

If B(T) represents the experimental second virial coefficient at the
temperature T and if B*(T*) represents the reduced second virial coeffi-
clent for some potential function @(R), then

B(T) = boB*(T*)
where T* =T /e¢/k and b0 =

- eam wm Em Em e Em e e Em S M ke SR e e em Em ER Em Em e e B ER ER e SR PR WE W = e e D Em e

+ In collaboration with Dr. H. Hanley of the Boulder Leboratories of NBS

4
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parameters and N Avogadrols mumber. If, in the spirit of our sarlier
work, we equate the second virial coefficient for two potential Tunetions
tnen

) 3 = {p ) #* )
(by)q By (1y%) = {ogip Bp* (Tp%)
it #) =] — * I ——
or By¥ (19%) =[5 ] By [ Ig% ¢ (1)
1 2
This represents a single equation for the two unknowns ez/él and 62/61.

Ify now, N(T) represents the experimental vigcosity, then

A
5% (212 )% (rny

nT) =

where A is a guantiiy which will net concern usy ¢ 1s a potential

s
parameter, and 0(2’2) (7#) are the collision irtegrals associated withk
the viscosity for a particular potential function @(R). If, now, we equate

the viscosity for two potential functions, then

o, %0, BBV (@ 0y = o, R (22" (2 x)

11
¢ 2
m _ 2 242 % .
or 01(2,2)*(;1*) = EI‘) 02( 12) (T1* el/éz) (2)

again a gingle equation in the game pair of ratios ez/el and 62/01.
Requiring thet the sesond virlal coefficiernts and viscosities be equal
similtanecusly is equivalent to requiring equations (1) and (2) to be
satisfied simrltanecusly. Elimination of the ratio 02/01 between the two
equatiors results in ths single equation +
#{T 3 Bo#(T_*
B (1 *) By* (T e /ep)

[91(2,2)*@1%):' 32 [02(2,2)»@1*81/82)] 3/2

Note that for each potential function, one needs to compute the quantity

(3)

B#(T#)

[0(2,2_)’*@*)]3/2

Qr(T*) =

Given two tables of this quantity, one for each of two potential functlons,
one can solve (3) in the menner described by us, in the appendix, for the
solution of equation (3) there.
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The quantity Q¥(T¥*) is shown in Figure 1 for several potential func-
tions. For each potential, this gquantity changes sign at the Boyle tem-
perature. One has, therefore, to exercise the same caution as was previously
required (see appendix). As before, this sign change creates no problem.

Results obtained for the solution of (3) for the (12,6) potential
and each of the exp~6 functions appear in Figures 2a and 3. Results for
the Xihara potential appear in Figure 2b., These figures also contein the

results for the properties B, Tg% as reported earliert (see Figures 6 and

7 of appendix). These results illustrate very clearly the difficulty involved
in determining the proper potential functicns to use in aerodynamic calecula-
tions. According to Figure 2a, one can barely distinguish between the (12,6)
potential and any of the exp-6 functions studied if the data is entirely in
the Tange 1,5 =< sz 6 S 10.0. Distinctions can certainly nol be made if the

’
range of temperatures 1s further restricted to 1.5 < Tiz 6 < 5.0, This 1s

s

even true for the simultaneous fit to the properties B, T, T%g. Almoat all

experimental data lies within the second (narrower) range., For nitrogen,

for example, these temperature ranges correspond to 150°K < T < 1000°K and
150°K = T = 500°K, Clearly, cne can have considerable difficulty in choosing
between potential functions based on availlable experimental data.

Figure 2 can be considered to illustrate the information available.
Figure 3, on the other hand, illusirates the information needed. This covers
the much more extensive range O = sz,é S 50, the upper limit now corres-
ponding to 5000°K for nitrogen, not a high temperature for aerodynamic
applicaticns. According to the curves of Figure 3, it is exceedingly easy
to distinguish between the potential functions at the higher temperatures.
What this means is that calcuwlations based on the use of each of these
potentials will yield quite different results at such temperatures. Clearly,
the intermolecular potential functions associated with a given substance must
be very carefully chosen if the application is to a calculation at aerody-
namic temperatures.

We have already shownl that the simultaneous fit of the viscosity and
its first derivative can be a sensitive probe of the potential function. In
particular, it appeared that the fit of such data simultareously below
T*=1,5 and above T* = 5,0 mnight serve to define the potential function.
It was felt at the time that this sensitivity might have been due to the
requirement on the similianeous equality of both the viscosity and its first
derivative. The results presented here are entirely compatible with the
results of the appendix and show that the sensitivity is inherent in the
viscosity itself. According to Figures 2 and 3, a potential function with
more than three parameters appears to be needed, With such a potential
function, one might be able to find parameters which fit the data simml-
taneously at T# < 1,5 and T¥% > 5,0. This question is of the utmost
importance and is the subject c¢f continuing research.
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it is possible, Lowever, that thls requirement is more strirgent than
necessery for serodynamic applications. Thus, it is clear from Figures 2
end 3 that tae velue a = 15,5 will simdtaneovely revroduce the second
virigl and viscosity data for the (12,6) function over the whole tem~
peraturs range 1l.5 < sz,é s 50 end possibly to still higher temperatures,

The fact that the lower temperature data (i.e., Tiz 6 < 1.5) is not repro-
’

duced mey not kte of any consequence in such zpplications. 3efore drawing
any conclusions along these lines, one needs to do these calculations for
other femilies of functiors of which the (12,6) is rot a memder. If this
conclusion is supported, then, clearly, the fit of viscosity data at tem~
peratures T§2,6 > 5,0 would be enough to determine the potential functions

needed in aerodynamic calculations, 4ny conclusions of this kind would need
to be followed by actual fits to such data as sxist. Where data do not exist,
one could poirt to the need for further experimental work.

In sumery and to illustrate our resulfts, suppose thai the sysiem of
aerodynamic interest were such tnat 1ts intermolecular potential function
were thse (12,6) function and that there were available to us only the exp-6
family of functions. This ig analogous to thae actaal situation sinee the
"actual™ potential of a glven substance is unknown to us but there are avail-
able only a limlited mumter of reasonadle functions to try. At ordirary tem-
peratures, any one of the exp~6 functions might properly describe the
properties of the hypothetlcal system of interest. At high temperatures,
however, these properties would be only peorly described unless ore happened
to vse the potential corresponding to o = 15.5. There is clearly not enough
information available at the lower temperatures on which to base the choice
g = 15,5+ This difficulty is compounded further if one includes the fact
that at low temperatures one needs to use the value « = 13,5 for describing
the properties Involved.

One aspect of the problem has yel to be investigated. That is, the
effect of basing the comparisons on spherically symmetric potentials when
many of the actual potentials of interest are not spherically symmetric.
An iritial investigation of this will involve the fitiing of actual data
to potentials in & marner Uo be determined after further study.

=1
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III, THE DETERMINATION OF POTENTIAL ¥UNCTIONS FROM THE FIT OF
EXPERIMZINTAL SECOND VIRIAL COEFFICIENT DATA

We have fitted experimental second virial coefficient data to those
calculated for various potential functions both in order to illustrate how
some of our earlier resultsl apply to actual experimental data ard to de-
termire potential functions and their parameters for our study of high
density theories. We present here results for fifteen substances, c¢hosen
in order to cover a variety of molecular shapes. The data for each sub-
stance was fitted to over A0 different potential functionss, Such a for-
midable task clearly called for an aultomatic procedure; hence a computer
program was developeds The mumerical procedure adopted will be outlined
but will not be discussed in detail.

The potential functions can be written in reduced form by dividing
lengths by a characteristlc length and energies by & characteristic energyl.,
This enables one to calculate the second virisl coefficisnt also in reduced
form. This, in turn, leads to a universal sccond virial coefficient table
for eech potential. The thecretical second virial ccefficient for any given
substance and a particular potential function is obtained by inserting into
such a table the characteristic length and energy appropriate to that sub-
stance for that potential function. In this way one can calculate a set of
theoretical second virial coefflcients to match a given set of experimental
data. Thus, for each experimental point, one will have a corresponding
theoretical point and a deviation, &4, of theory from experiment. Because
of experimental error and since one does not know the precise potential
function to use, it 1s always Impossible to maetich exactly a set of experi-
mental data with A4 = 0 for each point. Clearly, at each experimental
point, the magnitude of A is a measure of the goodness of fit to that
point. It is general practice to use a quantity such as

S.1 [262] 1/2

n i

where the summation is over all of the expsrimental points, as a measure of
the overall goodness of fit.

Now, for a given potential and a given set of experimental data, A will
depend on the choice of the parameters used (i.e., the characteristic length
and energyl). B will be least, by definition, for the vest values for this
pair of parameters. We have found such a best pair of values for over 4O
potentials for each of fifteen substancegs. Our method was tased on the
following:

If the characteristic length is designated ¢ and the characteristic
energy e/k, then B =10 (¢/k,0} described a surface in a space for which
e/k and o are (e.g.) the X and Y axes and & the Z axis, A given
set of experimental data will have a & surface associated with each poten—
tial function which one chooses to use. The best fit to the data for any
potential function will be obtained with that pair of parameters e/k,o
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which are the coordinates of the minimum of the & surface, It is this
palr of parameters which we seek. Our computer program was designed to
perform a surface minimization of A with respect to e/k,d, The details
of the method will not be described. The results obtained with the computer
program appsar ir Table 1.

As mentioned earlier, we shall first use these fits to illustrate the
caning of our earlier theoretical resvlts.l According o our tneoretical
resulisy the second virial coefficiert is very insensitive to the potentizl
function for reduced temperatures above T?lZ,G) = 2.0 PFurthermore, we

see that, although the second virial coefZicient can be expected to be s
sensitive probe of the potential at higher temperatures, this sensitivity

*

certainly does not manifest 1tself below T(12 6) = 10.0. Cn the otker hard,
’
we have shown that below T?lz 6) = 2.0, the second virial can be sensitive
L

te differences in the potential function. Now, for argon, the characieristic
energy in temperature units is, for the (12,65 function, e/k = 120°K.
Thus, we see that for 2/40°K = T = 12009K, the second virial ccefficlent
cannot be used as a prooe of tne potential function walle for T# < 2/0°K,

it is ?t least potentially sensitive (subject to the size of the experimental
errors).

We shall use the fits of three sets of experimental data for argon as
illustrations, These are the 1958 data of Michels et &1 which cover the
range 133,15%K s T < 273.15°K, the 1949 data of Michels et al which cover
273.15°%K = T = 423,159K, and the 1953 data of Whalley et al in the range
273.,15°K < T s 873,15°K, In.t;rms ol recduced units, thesz cover the ranges

11 < T s 2
1.11 T12,6 2,28, 2.28 < T12,6 = 3.53, and 2.28 = T12,6 S 7,29+ Thus,
the first of these is in a rangs for which the secord virial coelficient is
potentially sensitive while the others lie entirely in an insensitive tem-
perature range.

Table 2 serves as the basis for our discussion. The differences in the
gensitividy of each set of data are read across Table 2 for each potential.
It is clear that the lowest temperature dalz is =more sensitive thar the high
temperature data. The varlations within each column have to do with the
extent to which the poiential has been varied. This will be discussed from
another point cf view below.

Qur point here with respect to the differences ir sersitivity below and
above T?12 6) = 2.0 1is more strongly illustrated in Tables la-lc by the
s

absence of a clear winimum for the higher temperature data. 1In other words,
thke moderztely large values of the ratios in the second column of Table 2
are not teken as ratios to & value of & at a meaningful minimun but to a
value which hzpoens to be smallest. For the (m,6) data in the secord
column, the indications are that a minimuk, if ery, will appear at a value
of m elose to the physically meaningless value m= 6 (for which the
poteatial vanishes).
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Clearly, it 1s absolutely impossible to assign a potential funection
and its parameters to argon based entirely on the high temperature data.
Unfortunately, even to this day, the (12,6) function and its parameters,
as obtained from the high temperature data reported by Michels et al prior
to 1958, are taken to give a correct representation of the intermolecular
potential function for argon. Such a representation suffers herribly on
two accounts. FPirst of all, the data is entirely in the temperature range
for which one carmot distinguish among the functions, Secondly, an analysis
of the low temperature data, where distinctions can be made, shows the
(12,6) to be incorrect.

A more subtle conclusion of our theoretical work was that, given a
potential function, together with a family of functions of which the given
function i1s not a member, one car find a member of this family which would
reproduce the second virial coefficient for the given function over a range
of temperature which starts from very low temperatures and goes to very
high temperatures. We specifically showed this to be true for the (12,6)
potential as the given function. This conclusion would seem to say that the
second virial coeffilcient is a three-parameter object as far as the potential
function 1s concerned.

In order to examine this aspect of our conclusion more closely, we have
plotted the e/k ard by values obtained for each potential function for e
representative number of substances. These are presented in Figure 4 for
the various gubstances. It seems clear that, in almest every case, if one
were abvle to remove experimental error, the data for all pctentials, with
the exception of the physically unreasonable sguare well, would fall on one
curve. Furthermore, the point which represents the (12,6) function corres-
ponds, in families of potentlals for which the (12,6) is net a member, to
that function which was found in our earlier work to reprcduce the second
virial coefficient of the (12,6) over a large temperature range. In order
to make certaln that we are talking about the same fits, we have also plottied
¢/ versus B for the various potentials. These are presented in Figures 5a
et seq. for the same substances. Here eagain, all points, except for those
for the square well, tend to lie on one curve. This is particularly true in
the vieinity of the minimum value of X which, after all, is the most
physically meaningful part of these curves. Such differences as there are,
appear to bs, in almost every case, smaller than the uncertainties which one
might aseign on reasonably based estimates of experimental precision. It
would thus appear that by fitting experimental second virial coefficient data
to theoretical values for any "reascnable" three-parameter family of poten-
tials one obtains the same information about the potential function of the
experimental system. A corollary of this is that the same best fit will be
found within every such family, and in fact, for the same parameters.

GO2 appears to be an exceptlon to thls, although one cannot be certain
since the minima in the & versus e/k curves have not been reached, A
reasonable extrapolation of the curves leads to relatively large differences

among scme of the curves at the place where the minlmum is indicated, how-
ever., It should be noted that even for 002 the curves for the exp~6 and

10
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(my6) families essentially coincide, it being only the Kihara and (12,n)
families vhich produce separated curves., Now these latter two families have
in common the same repulsive exponent (m = 12), This may mean that a value
m = 12 for the repulsive exponernt 1s sufficiertly unrealisiic so that, in
each case, the other parameter (y for the Kihara, and n for tne 12,n),
is unable to compensate for it. On the other hand, it is possible that the
separation of the curves is an indication of = reed for a fourth perareter,
This is not unreasonable for a highly non-spnerical molecule like 602. In

any event, further irvestigations are called for.

4 should be noted again that the A& versus e/k curves for the other
substances for the (12,n furction differ onliy slightly from the equivalent
curves associated with the other families. We mention again that this is
particuierly true at the minimum, This greetly restricts ore's ability to
determine the proper value of n and then to use the remaining deviations
to determine an addiiional parameter (e.g., the repulsive exponent m).

The B versus e/k curves for the differert families are, in fact, so close
together that we are inclined to think that it is not possible to determine
the additional paramster m, after havirg dstermined n. Tkis would rein-
force the statement in our earlier work tc the effect that the second virial
coefficient was a three-parameter object (e/k, ¢ ard one other),

Nevertheless, the results for the (12,n) family of funectlons are still
very irteresting. Thnere seems to.be the vague indication of a relatiorship
betweer the £it of the second virlal coefficient data and the preper attrac-—
tive exponent, n. Thus, the best fit for the rare gases is obtained for
n = 7. This cowld indicate either the need for an atiraction made up of ths
combination of an inverse 6&th power and an inverse 8tk power or it could
indicate that n =6 is the best choice, the difference in A between
n=6 and n=7 being statistically insignificant. The data fer systens
with more non-spherical molecules are generally best fit by still larger
values of n, This one could aseribe to the need for Ligher momerts, i.e.,
the addition of an lnverse 10thn power attraction.

Excepiicns to this gersral behavior are seen for nitrogen (and hence
air) and for etnane, the data for both of these being best fit by the virials
for n= 7.

This general behevior is probably fortuitously associated with the use
of the repulsive exponent mn = 12. In our previously reported workl, we
found the second virial coefficient to ke quite insensitive to the altractive
exponent for T* > 2,0, The sensitivity indicated below T¥* = 2,0 could not
be properly evaluated in that work since all comperisors were with respect %o
the (12,6) function which is a member of the (12,n) family. Further
research l1g in progress to determine the sensitivity, if any, of the low
vemperatare geconéd virial coefficisnt data %o the attractive exponent.

Mention nes been made of the varietions within a given colvmn of Table

2 and its relatlon to the extent of wvariation of the potentlal function.
This relationship can be seen in Figures 4. Thus, for example, the variation

11
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of v for the Kihara potential between y = 0,1 and 0,6 traces out

the entire parabola. The variation of the parameter o from o =16 to
@ =19 for the exp-6 function, on the other hand, traces out a much
smaller part of the parabola., The same is true for each of the other
families of potentials, a different part of the common parabolas of Figure
4 being traced out in each case., Since the same parabola applies 1n each
casey 1t follows that ‘the minimum A is the same for each famlly of func-—
tions. The maximum (and hence the value in each column) is different in
each case, depending on how far up the commen parabola a given family goes.
Thus, o = 12 represents a lower starting point than does m = 9} hence,
the (m,6) ratio is larger than is the exp-6.

12
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IV, A STUDY OF THE APPLICABILITY OF THE PERCUS-YEVICK THEORY TO SYSTEMS
OF DIATOMIC MOLSCULES

We have solved the ror-linear Iirtegral equation associated with the
Percus-Yevick theory numerically for three potentlal functions aglong with
equivalert isotherms in order to study the sensitivity of that theory to
reasonadle changes in the intermolecular poteniial function. The potential
functions usged were all of the Lennard-Jones (m,6) type. We have chosen
the particwlar values m = 12, 18, and 24. The cholce of thse values
m =18 and 24 was dictated by our interest in a comparison with experi~
mental data for argon and air. According to our fite of the sscond virial
coefficient da®a, m = 18 1is a proper choice for argon while m = 2/ is
a proper choice for air, The (12,6) function was also Included since
that function was used for almecst all of the interactions in the NBS air
and argon caleulationsés5,0,

Let ug first consider the results for the (12,6) potential function.
We nave solved the Percus-Yevick integral equation for that potentiael fune-
tion at a reduced temperature of T#* = 2,74. This can be taken as corres-
ponding to T = 328.159K for argon (based on the old valus of e/k = 119.8°K)
and to T = 273,159%K for air. OCur discussion will be based on Figure 6.
There are seven equations of state in that diagram. Two of these are ex—
perimentel, one for argen and one for air. Uf the remsining Iive, three are
assoclated with the first few terms of thne virial serles. Now, the 1deal

gas equatlon of state is just %% = 1y hence thal appears as a horizontal

straieht line for urlt ordinate. The addition of the second virial eoeffi-
cient, which 1s the first correction for non-ideality, converts the equation

of state to %% =1+ 3, still e straight line but no longer herizontal.
Now, for the (12,6) function, the Boyle temperature, i.e., that tempera-
ture waich B = 0, Is above T* = 2.74, hence, for T* = 2,74, B < O.
Therefore, except for very low densities (p*<,l}, including the second
virial coefficient results in an eguation of state which 1s far inferior
to the 1deal gas equation of state.

It nmight bs worth mentioning that the early NBS air caleulationt was
an ideal gas cre. The eguation of state was no% simply a siraight lirne Zdue
to the change in the number of moles as a result of chemical reactions. In

7 .
other words, the equation of stalte was %% =n wvhers n = 1 (T,p) is the
total numker of moles, In later calculations5, we have ireluded the seconrd
virial coefficients of the constituents. The 1limit of the validity of an
approximation which includes only the second virial correction is seen in
Figure 6 to be approximately log p/'pO £ 2,0, For this reason, our teblss

Lave been cut off near log p/p = 2.0.

13
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Figure 6 can be misleading if one uses it literally for a description
of the situstion at the temperatures of our alr claculation. Sincs the
tenperatures included in those reports are above the Boyle tempersture,

B > 0, the straight line equation of state %% =1+ B 1is everywhere
greater than unity. Thus, at such hlgh temperatures, the second virlal
egquation of state represents an improvemsnt over the ideal gas at gll
densities, although a small one at high densitles.

The addition of the third virial coefficient results in the equation

of state %% ~ 1+ B+ Cp2 containlng two density correctiong. Such an
equation of state has some curvature. According to Figure &, this results

in a considerable improvement over toth the ideal and second virial equations
of state. Deviations from experiment are still quite large, however. At our
reduced temperature of T# = 2,74, the range of validity of an approximation
contalnirg the third virial coefficient would be, roughly, p* < .3 which,
for argon, is near 220 times normal density (log p/py = 2.3).

Thig demonstrates the extreme difflculty which one rapidly encounters
in attempting to extend our calculations as presently performed beyond the
density log p/po =2.0. The third virial coefficient describes interactions

imvolving three particles at a time. Thus, for example, undissocciated air
considered to consist of molecular nitrogen, molecular oxygen, and argon
would reguire the specification of six Interactions as a function of tenm-
perature, This would increase to fifteen on the dissociation of the mole-
cules and would increase still further on ionization. On the expenditure of
this extraordinary amount of effort, ocne would find that one cculd increase
the range of the caleculation from log p/po = 2.0 only to log p/p = 2.3.

Experlence with the known hard sphere virial coefficients indicates
that the higher wvirial coefflicients will have atill narrower density ranges.
That is, as one increases the density one will find that one needs the fifth
virial ccefficient much sooner (in terms of the density increment) after the
fourth virial coefficient than orne needed the fourth after introducing the
thirds This gets progressively worse as cne increases the density.

A further complicatlion is introduced by the progressively larger number
of particles required in the calculation of the higher virial coefficients,
This makes the calculation become considerably more difficulit very rapidly
as the order of the virial coefficient increases. This difficulty 1s
demonstrated by the paucity of published resultsg. Third virial coefficients
have been calculated for only a very small number of functlons, the fourth
for only the (12,6) (aside from the unrealistic hard sphere and squars
well) and the fifth for only the hard sphere.

In short, the extension beyond log p/'po = 2,0 of the approach used

by us in the calculation of tables of thermecdynamic properties of air,

14
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nitrogen, and argon is practically impossible. This serves to emphasize
the importance of seekirg approximstions like that of the Percus-Yevick
theory.

The remaining two equations of state of Figure 6 are assoclated wita
the Percus-Yevlck theory. The fact that there are two equations of state
results from an irconsistency between two representations of the pressure,
Thisy in turn, comes from the neglect of diagrams mentioned earlier. This
inconsistency appears only in terms beyond the third wvirial coefficient.

It is our »resent view thal the equation of state labeled Zp grould bs uvsed

since the calculation of thermodymamics functions consistent with it appears
to oe relatively straightforward.

The agrezement of the Percus-Yevick equations of state with experiment
for argon is exceedingly good. Even at a reduced density p¥* = .65
(approximately 450 times normal), the deviation of Zp from the argon

experimental value is only 5%. The situation for air 1ls less satisfactory,
howevers In that case, the deviation at p¥ = .65 is roughly 30%. This
is less than half the discrepancy from the ideal gas (75%) dut roughly
equal to that for the equation of state containing the tnird virial coeffi-
cient. An obvious source for this increassd deviation in the case of air
might, be the use of an ursuitable poterntial furction. Accorcéing to Table -
the (12,6) 1is a poor choice of potential for almost all experimental
systemse In particular, for argon one should use the (18,6 potential
while for air the (24,%) potentiiel is most appropriate. The bebter fit
of the argon data as compared with the air data in Figure 6 could easily be
attridutsble to the fact that the (18,6) poteriial is more nearly like the
(12,6) than is the (24,6) functione

Clearly, the next step in our study was Lo obtain the solutions to the
Percus-Yevick integral equation for both the (18,6) for argon and (2446)
for air. Our results for the (18,6) potertial function are contained in
Figure 7. Tne celcalation was carried outl for isotherm T?18,6) = 2.0467

in reduced units. This temperature was selected as equivalent to T?lz 6) =
g |

2.74 on the bagis of the ratio el/é2 corresponding to the simultansous

*
fit, for the two potentialsl for the pair of properties B* and T* 2%3‘

This is clearly in agreement with our fits (see Teble 1) of the second
virial coefficlent data to the second virial associated with the (18,6)
potential.

It is clear from Figure 7, that the change from the (12,6) potential
to the more reasoneble (18,6) results in a considereble deterioration of
the agreement between theory and experiment for argon al the higher densgities.
Cn the other hand, the egreement tetween thecry and experiment for alr is
considersbly erhanced in going from the {12,6) function to the (18,6).
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Carrying the air comparison one step further to the more reasonable (for
air) (24,6) function again resulis in a worsening of the agreement between
thecry and experiment at high densities (see Figure 8). It should be noted
that at low densities (p* < ,1), at which the second virial coefficient 1s
the major contributor, essentially the same agreement is obtalined for all of
the furctions. This is in keeping with the results of our earlier workl in
which we showed the second virial cocefficient to be very insensitive teo the
potential function for T*(12,6) < 2.0,

One might argue that it would be proper to use the (12,6) function
for argon and the (18,6) function for alr since thess result in quite
good fits even at high density. This might be a reasonable procedure if
one were only interested in fitting the experimental data at temperatures
in the neilghberhood of the isotherms uged. Clearly one cannot use those
potentials at low temperatures since one would certainly not get a good fit
at low densities (and possibly at high densities as well). What the choice
of the (18,6) for air and (12,6) for argon would do for the relationship
between the calculated properties and the Mactual" properties at serodynamic
temperatures would be impossible to sey at this time due to the lack of
experimental data at such temperatures. In short, the assignment of these
potentials based on the behavior along the isotherms examined here would
reduce the statistical mechanieal theory to a completely empiricel ore which
could not be extrapolated. The imporitance of extrapclation to high tempera-
tures forces us to choose a potential function based on fundamental considera-
tiors and to insert that function into the best avallable theory.

We have begun an examination of a more consistent Percus-Yevick thsory
starting with an examination of the theory for hard spheres. The results
obtained are in too preliminary a form to be reported at this time. Progress
in this area has been hampered by a lack of time resulting from the need for
continued intensive effort in the examination of intermolecular potential
functions,
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V. THE EFFECT ON THE CALCULATED EQUILIBRIUM PROPERTIES OF NITROGEN OF
CHANGING TO AN TMPROVID POTENTIAL TFURCTION

VYie have, in recent years, prcduced a number of sets of tables of
equilibrium properties of high temperature gases. The most recent of
these go beyond the ideal gas approximaiion to the exiernt of irecluding
The effect of the second virizl coefficient. The second virial coefflcient
accounts for the effect of interactions between pairs of molecules, depend-
inz explicitly, “herelore, on the potential function assumed to describe
tne interaction between a given pair of molecules.

“n the calculetions or which our Sables have beer based, we have,
slmost exclusively, taken the Lenrard-Jones (12,6) potential function for
this deseriptions. According to the fits to second virial coefficient data
revorted nerein, the (12,6) Zunction is clearly a poor choics, Whille we
cannot state a unique best choice on the basis of fits to such data, we can,
nevertheless, determine the beat member of & glven family of funetions. This
s equiivelent %o assigring the best value to the third parameter which
characterizes the family. Thus, according to Table 1, the best member of the
(my6) family to use for nitrogen wowld be that charscterized by the value
m = 244 which is considerably different from the m = 12 previously
employed by usa

We have calculated a new set of second virial coefficients for the
N,-N, dinteraction based on the (2446) potential function and have intro-
duced these virial coefficients into the calculation of the equilibrium
vroperties of nitrogen. It shkould be roted that the F-N and N—N2
interactionrs have not oeen modified.

A comparison of the resulis of this calculation wita the sarlier work
1a presented in Figure 9 and in Table 3 for tae density log p/p, = R+0.

hecording to Table 3, & very large chenge in the densily correction results
from changing the potential function in this way. The effect on the proper-
tles themselves is much less since these contain, ir addition to the density
correction, an ideal gas contribution which 1s irdependen’ of the potential
function and hence unaffected by changes in ite It should be noted that the
first density correctior veing examined is linear in the density. Therefore,
the density corrections in Table 3 double on doubling the deasity to

p/py = 200 (i.e., log p/p, = 2.14). The percent deviation agsociated with

the tolal properties at 1C,000°K actually more than double under these
circumstances since the degree of dissociation decreases as does the ideal
gas coniriovatior. Trke first density correctior then represents a larger
part of the total property. On the other hand, the corrections decrease
linearly with decrease in density (except for the effect of dissociation).
Thus, tke denaity corrections are reduced by a factor of 100 in goirg to
normel density (log p/p, = 0.) making their effect on the total properties
esgentially reglicgible a% that density.
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In this section of this report we have examined only the change which
takes place in the first density correction to the ideal gas properties
wvhen a reascnatle modification is made in the intermolecular potential
function. At higher dengities one would have to examine the effect on the
higher virial coefficisnts assoclated with ths higher order density cor-
rections. This, we have, in effect, undertaken in cur examination of the
gensitivity of the Percus-Yevick equation to these same changes in the
potential function, It should be remembered that the Percus-Yevick
equatiorn contains approximations to each of the virial coefficients,
Results of this examination appear elsewhere in this report,

Our investigation has involved the modification of the N2-N2 inter-
action exclugively. It should be noted that egtimates of the N-N2 inter-
action are based on prior assumptions as to how to characterize the NZ_NZ
interactions, The N—N2 interaction contributes significantly only in a
narrow band ir a temperature-density plot. This band is characterized by
a dissociation sufficiently far advanced to produce a non-negligible mole
fraction of N atoms but rot sufficiently far advanced to reduce the mumber
of molecules to too low a level.

From the results listed in Table 3, one can conclude that the eguation
of state of nitrogen previously published by us is good to better than a
fraction of a percent with respect to improvement in the Ny-N, inter-
molecular potential function at densities below normal (log p/p, = 0), to
approximately 1% at 10 times normal density (log p/p, = 1+,0) and to
2% at 100 times normal density (log p/p, = 2.0}. Those properties whose
density corrections depend on the derivatives of the second virial coeffi-
cient are considerably more accurate with respect to these impreovements in
the potential funetions.

According to Table 1, the 02—02 rotential function should alsoc be
charged to the (24,6) function while the (18,6) potential should be used

for argons The effect of improving the functions used in the air calculation
should, therefore, be no worse than that found for nitrogen.
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VI, SUMMARY AND CORCLUSIONS

The study of high density statisticsl mechanical equations of state
of a fiuid has necesaitated the prlor investigation of intermolecular
potential functions and of the means for the determination of such funec-
tions from experimental data. While this study of potentlal functions iwm
far from complete, we have, nevertheless, come to a rumber of important
conclusions, We have found second virisl coefficient data at reduced
temperatures above 2.0 on the (12,6) scale to yield no information on
the potential functions The same is true of viscosity and diffusion coeffi-~
cient data for reduced temperatures between 1.5 and 5.0 on the (12,6)
scale.

Second virial coefficlent data for reduced temperatures below 2.0 on
this scale can certainly be used to determine three perameters in a2 potential
furctions There are vague indications that one might, in some instances, be
aole to determine an additioral parameter,

The fit of viscosity and diffusion coefficient data might serve as a
sensitive prote of the potentiel function provided such data iz available
both below T* = 1,5 and above T#* = 5,0 on the (12,6) scale. We have
shown the similtaneous fit of thease properties arnd their first derivatives
in these tempsrature ranges to be poseibly quite sensitive., We have also
found this to oe true of the simulteaneous fit of second virial coefficient
and viscoslty datae The extent of this sensitivity and whether or not it is
a property of the individual physical properties is the subject of investi~
gation at the presert time. This investigation involvss the ectual fit of
experimenta]l data as well as the extension of our theorstical investigation
to additional families of potential functions.

Our investigation of high density theories has thus far been limited
to the Percus-Yevick thecry. We have found that theory to be as applicable
to a fluld of diatomic molecules like air es it is to & fluid of sphericel
molecules like argons The effect on the theory of changing potential func-
tions in a mamner dicuated by fits to Tthe second wirial coefflcient ls under
investigation. We have already shown that improving the potential fumction
has a strong effect on the equation of state, We have not determined, as
vet, whetner or not there are dlfferences, at high dengities, for potentials
which producs eguivalent second virilsl coefficients over a large temperature
range. Our irvestizations in thls arsa comblned with our continulng work on
the potential function should produce a balanced view of what one can accom-
plish with the combination of such high density theories and the tools avall-
able for the determination of potenkial functions required by them.

We have examined the eZfect improvinz the potential functicns has on
some of our tables of thermocdynanic properties of gases., We have found that,
while the virial corrections can be drastically altered by changing potential
functions, the properties thnemselves esre only slighily changed. The eguation
of state itself is affected in a non-negligible way only at the highest
densities indicating that the tebles will probebly need to te redone only at
a small rumber of the highest densitiess Final results in this area must
necessarily wait for final decisions as to the potentlal finctionse
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TABLE la. ARGON¥

Potential s/k

(my6) m = 9 90,15
12 120,00

15 142.48

16 148.82

17 154.69

18 160.15

21 174.49

24 186.43
27 196.54

30 205.26

40 227,38

Kikara Y= 0.1 142.38
0.15 153.53
0.2 164.64

0.25 175.67

0.3 186.66

0.4 208.33

0.45 219.01
0.5 229.61
.55 R4C.02

0.6 250.456

0.70 270.86
exp~6 a = 12 104.50
13 115.21

14 124.36

15 132.50

19 158.33

30 201.57

40 224,.86

50 240.96

(lZ,n) n= A 41 .41
5 83.52

6 120.00

7 151.27

8 178.33

9 202,06

10 232.05

Square well R = 1.2 358.80
1.4 186.00

1.6 114.27

1.8 76.57

1.9 64..07

2.0 5426
2.2 40.02

*E. Whalley, Y. Lupien, and W. G. Schneider

Can. J. Chem. 31, 722 (1952)
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B = 12.09

58.12
50.85
47.05
46.16
45.38
44,71
43.12
41.97
41.10
40.42
38.91

35.83
30.54
26.25
22,74
19.83
15.35
13.62
12.13
10.86

9.76

7.96

86.04
79.20
74. 21
70.44,
64.89
61.02
50.65
46.69
4dye 40
66.91
55.97
50.85
47.67
45445
43.80
42.51

31.06
33.71
34--98
35.68
35.90
36.10
36.38

AEDC-TR-67-67

376
379
.382
.383
.383
384
.386
.387
.389
.389
.392
.381
+381

2375
.376
377
.378
»280
.382
. 388
<391
2393

376
278
379
.380
381
.382
.383

-393
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TABLE 1b. ARGON* B = 8,7557

Potential e/k b, A

(my6) m = 9 89.711 56.15 0370
12 119.58 49.41 .0382

15 142.10 45.81 .0409

16 1/8.46 44,.95 .0419

17 154.34 44 20 L0428

18 159.82 43.55 0439

21 174.20 /1.99 L0471

24 186.16 40.84 <0500

27 196.32 39.97 .0527
30 205.06 39.27 0552

40 227.28 37.73 .0618

Kihara Y= 1 11.93 34.66 L0432
.15 153.06 29.43 L0473

.2 164.15 25.19 .0523

.25 175.16 21.71 .0582

.3 186,10 18.84 L0648

ol 207.69 14.41 L0797

45 218.32 12,701 .0878

.5 228.87 11.24 .0962
.55 239.23 9.993 1048

b 249.59 8.91 .1138

exp—6 a = 12 104.25 81.42 0427
13 114.67 75.44 L0424

14 123.80 71.05 0426
15 131.95 67.63 0431

17 146.02 62,57 L0445
19 157.88 58,96 L0460

30 201.30 49.08 .0553

40 224.69 45.21 L0617
50 240.86 42.94 L0664

{(124n) n = 4 41.18 67.03 .0518
5 83.27 55.42 .0399
é 119.58 49.41 .0382
7 150.69 4545 .0524
8 177.60 42.56 0719

9 201.15 0.33 .0918

10 222.01 38.53 111

Square well R = 1.2 356.25 22,75 0.3761
1.4 185.705 30.63 0.1391

1.6 11445 3474 .0500

1.8 76.84 37.14 .0419

1.85 70.21 37.58 047
1.9 64,435 37.98 L0524

1.95 59.15 38.33 .0579

2.0 5451 38.65 L0631

2.2 40.25 39.65 .0802

*A. Michels, H. Wijker, and H. Wijker
Physica 15, 627 (19495
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ARGON* B = 72.016

TABLE lc.
Potential e/
(my6) m= 9 84.16
12 115.06
15 140.10
16 147.50
17 154.53
18 161.22
21 179.57
24, 195.79
27 21C.25
30 223,14
L0 254.82
Kihara Y = .1 140.76
.15 154,72
2 169.67
.25 185.82
+3 203,31
o4 238.05
45 251. 48
.5 262.36
.55 271.60
6 279.96
exp~5 Q= 12 99.90
13 110.71
14 120.44
15 129,35
17 145.23
19 159.46
30 217.87
(12,n) n= 4 36.84
5 76.71
6 115.06
7 153.58
8 195.16
Square well R = 1.2 324.5
1.4 210.27
1.6 122.62
1.8 73.68
1.85 66€.39
1.9 60.17
1.95 54,78
2.0 50.08
2.2 36.15

*A. Michels, J. M. H. Levelt, and W, deGraaf

Physiea 24, 659 {1958)

23

66,36
54416
47,76
45.96
bdra 34
42.87
39.1¢
36.28
33.93
32.04
28.35

35.57
28.79
23.31
18.83
15.18
10.18
8.72
7.65
6.82
6.13

90.93
82.73
76.45
71.40
63.63
57.82
40.57

90.03
68.83
5476
43.50
33.75

18. 40
19.75
29.49
.78
43.85
45.65
47.26
48,69
53.06

AEDC-TR-67-67

=1

+392
.223
.110
.103
.118
<145
2252
363
WATSN
<576
.895

.102
142
<245
3T
«539
. 985
1.273
1.589
1.916
2.252

271
-R20
173
»134
+102
'144
535
723
<499
223
.166
<539

8.871
2.842
<422
.196
272
339
<399
452
.610
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il

(my6) m =
Kihara Y
exp-6 o
(12yn) n

Square well R

TABLE 1d.

Potential

9
12
15
16
17
18
21
24
27
30
40

.1

.15
.2

.25
o3

A
45
o5

.55
.6
.7
12
13
14
15
17
19
30
40
50

OO 00 -3 O

}_.l

DO PR
L ] . L 2 - L 4 L] L] »
N OO0 BB OSSN

A%, } \t

*

KRYPTOK B = 173.50

e/k

118.2/
165,15
200.56
209.55
217.36
224.16
R40.31
252.36
261.8

269.80
288.82

200.29
215.09
227.69
238.59
R48.33
265,44
273.14
280,50

294,04
306.26

140.87
15747
172.2

185.15
206.04
R221.57

51.02
108.02
165.15
211.46
238.34

319.52
219.0
158.09
107.04
96,70
87.6/
79.76
72.84
52.43

24

b
o

91.85
78.05
58.97
56.86
55.28
54.08
51.83
50.62
49.93
49.388
48.52

44,17
36. 44,
30.81
26.51
23.11
18.01
16.04
14.36

11.66
9.593

121.95
107.76
97.29
89.46
79.16
73.12

135.78
96.81
78.05
55.82
51.51

33.80
37.68
4.21
51.85
55.19
58.34
61.21
63.90
72.26

10.005

12.0
14.645

6.0C
5005
4.16
3.33
1.99
1.40

12.792
9.309
4.90
1.48
448

30.47

13.59
3.086
451
5.653
6.66
T.545
8.32

10.66
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TABLE le, XENON B = 49.56
Potential a/k bO A
(m,6) m = 9 167,57 99,37 1.28
12 224411 85.71 .89
15 267,01 78.15 60
16 279.15 76432 »53
17 200441 The71 49
18 300,91 73,29 46
21 328,53 69,87 47
24, 351.57 67432 «57
27 371.15 65434 <70
30 388.04 63.76 «822
40 431,02 60.20 14169
Kihara Y = »1 266,80 58.88 55
215 288,18 49444, A7
2 309.57 41 .80 52
+25 330,90 35.58 .68
3 352,17 30445 91
oy 394437 22,67 145
45 15,24 19.69 1.736
o3 435499 17.18 2,04
«55 456641 15.05 24343
o5 476 .86 13,23 2,66
70 51676 10.34 32302
exp-6 o = 12 195415 141.51 94
13 214.88 130.43 84
14 232,22 122.19 74
15 247,71 115,72 266
17 27 /456 106,07 53
19 297425 29.11 o 47
30 380,80 78.84 .786
40 426,03 72.2/, 1.136
50 457.35 67.7% 1.393
(124n) n = A T6.45 124.33 2.33
5 155426 99,78 1.65
6 224.11 85.71 .89
7 283.87 75.90 49
8 336417 68.52 .99
9 382,37 62,74 1.653
10 423450 58,11 2.290
Square well R = 1.2 665.90 26,19 10.48
1.4 356.39 4£3.67 3.40
1.6 216447 5674 68
1.8 14422 64.72 .98
1.85 131.60 66.21 1.209
1.9 120,50 67,52 1.42
1.95 110.65 68,72 1.609
2.0 101.90 69,78 1.78
2.2 75.05 73.13 2,30
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TABLE 1f. SECOND VIRIAL COEFFICIENT OF NITROGEN B = 47.88

Potential s /% o )

(m,6) m= 9 70.74 81.28 2.99
12 9477 69. 46 2.21

15 112.98 62.92 1.58

16 118.12 61.34 1.39

17 122.88 59.95 1.22

18 127.31 58.74, 1.07

21 138.94 55.82 .69

24 148.59 53.66 49

27 156.74 52.01 <53
30 163.75 50.70 .702

40 181.38 47.80 1.335

Kihara Y = .1 112.80 47443 1.44
.15 121.78 39.72 1.03

.2 130.70 33.51 .65

.25 139.54 28,47 oA

o3 148.27 2/,435 .67

o4 165.29 18.13 1.59
<45 173.50 15.77 2.109

.5 181.50 13.80 2.64

258 189.21 12,142 4.817

6 196,74, 10.73 3.72

exp-6 ¢ = 12 82.24 115.65 2.35
13 90.66 106.17 R.13

14 98.04 99.14 1.92

15 104,64 93.63 1.72

17 116.04 85.45 1.35

19 125.66 79.58 1.04

30 160.69 63.55 .628

40 179.30 57.41 1.263

50 192.01 53.88 1.757

(12,n) n = 4 32.33 102.61 s 76
5 65.70 81.61 3.60

6 94.77 69.46 2.21

7 119.79 61.08 .88

g 1/1.31 54495 .72
9 159.83 50.35 1.850

10 175.70 46.92 2,958

Square well R = 1.2 244,.58 26,44 15,0/
1.4 145.97 35.71 470

1.6 91.54 45.10 .51

1.8 61,44, 51.6% 2.38

1.85 56.12 52.94 2.783

1.9 51442 54.07 3.14

1.95 47,24 55.10 3448

2.0 L3.54 56,00 3.73

2.2 32.12 58.87 4o D7
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DABLE 1g. METHARE 3 = 63.00
Potential e/k b, A
{m,%) m = Q 185.49 103.00 7.91
12 143.25 84.15 6.02
15 172.81 73,17 Lel3
14 181.26 70,49 3.96
17 189.17 68.09 3.53
18 196.53 66,00 3,12
21 215.82 61.C5 2,07
24 231.64 57.54 1.33
27 24471 54.28 2.10
30 255.63 53.07 1.384
40 281.66 49.37 2.928
Kinara Y = .1 172.91 54.7€ 419
.15 188.02 L.66 3.20
.2 202.14 36.69 2.21
<25 218.02 30,40 1.36
.3 232, 3/, 25,43 1.22
o4 238.321 18.42 3,12
Vs 269.76 15.94 4+ 286
.5 280.320 12.93 5.7
«55 290,97 12,28 6.634
.6 299.05 16.89 7.79
.7 315.51 8.709 2.999
exp-6 ¥ = 12 123.91 141.853 6.62
13 137.16 128.37 6.03
14 148.92 118.23 5.47
15 159.55 110.219 494
17 178,20 08.06 3.99
1g 194.06 89.37 3.15
30 251.0 66.70 1.232
20
50
(12,n) n= 4 47.10 140.09 11.52
5 97.17 106.11 9.03
6 1/3.25 84.15 6.02
7 185,28 68.22 2.98
g 221.87 57.23 1.23
9 250,47 50.64 30445
.0
Square well R = 1.2 343.32 26.29 25.60
l.4 R23,12 35.12 .10
1.6 142,54, 8. 46 1.42
1.8 92.51 6$2.91 5.82
1.85 82.99 65.70 6.632
1.9 76.57 68.27 7435
1.95 70.06 70.51 7.975
2.0 64.31 72,61 8.53
2.2
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(m,6>

Kihara

(124n)

Square well

m=

R

TABLE 1h. €0, B = 94.51

Potential ¢/k
9 138,28
12 186.15
15 223,05
17 R43.45
18 252 .66
21 277.12
24 297.80
27 315.59
30 331.09
40 371.26
0.1 223.36
C.15 242,40
0.2 261.78
0.25 281..8
0.3 301.57
0.4 343.14
0.45 364.72
0.5 387.11
0.55 410.18
0.6 434,.68
0.7
12 162.36
13 178.99
14 193.70
15 206.93
17 230.07
19 249.86
30 324.63
40 366.68
50 396.55
/8 62.09
5 127.29
7 239.52
8 288.76
9 335.18
10 380.03
1.2 649.43
1.4 339.67
1.6 184.14
1.8 118.93
1.85 108.0/
1.9 98.5/,
1.95 90.20
2.0 82.83
2.2 60.50

28

138,01
118.18
106,90
104,11
101.65
99.47
94.14
90.09
86.89
84.29
78.27

80.22
66.84
56.03
47.20
39094
28.87
24.63
21.03
17.97
15.33

194.19
178.80
167.23
158.08
144.27
134.21
105.69

94.04

87.0é

176.85
140.22
118.18
102.04,
89.28
78.69
£9.54

26.97
45.84
75(37
90.64
93.57
95.80
97.97
99.91
105.95

-3

1.102
0.995
0.905
0.879
0.855
0.832
0.771
0.719
0.674
0.636
0.538

0.887
0.827
0.765
0.700
0.633
0.492
0.423
0.357
0.203
0.273

1.0173
0.986
0.956
0.928
0.876
0.829
0.649
0.548
0.480

1.337
1.182
0.995
0.805
0.623
0.456
0.322

6.707
0.263
0.669
0.992
1.047
1.094
1.136
1.174
1.286



(mgé)

Kihara

(124n)

Square well

nm-=

R =

TABLE 11, ETHANE B = 142.62

Potential

e/k

9
12
15
16
17
18
21

» * & & % @
N A%, IR ]

.

OOOOO.C)OOOOO
N e NS SRR L S

\

*

.
T SRS

R
0 -3

A3 )

\n
5B

OO0 00 ~2 O\np-

)

NN
OO ®mON N
Vi W

¢

152,18
206.65
249.89
262.48
27435
285.56
315.590
342.29
365.62
386.58
b4bilraO4
250.75
274.09
298.59
324436
352.06
415.76
453,64
492,83
523,32
545.1

577.86

179.84,
198.85
215.83
231426
258.63
282,47
377.93
L3727
483.03

€7.2%
139.14
206.65
337.68
411.28
488.79

638.0
412,00
213.29
132.09
119.41
108,47
98.96
90.62
65.71

29

b
O
171.03
143.36
127.00
122,87
119.17
115.85
107.54,
101.01
95.69
91.21
80.20

94.87
77.T7
63,92
52.62
43423
28.73
22.09
18066
15.79
13.91
11.23

236.78
216.56
201.18
170.12
156,22
115.12

97.01

£5.58

227416
176.12
143.36
117.96
96.28
76.11
£0.16

42.57
44,436
83.05
109.80
114.39
118,42
122.02
125,22
135.07

AEDC-TR-57-67

e

0.950
0.770
0.637
C.603
C.574
0,550
0.5C5
0.498
0.518
0.556
0.737

0.61¢6
0.551
0.509
0.505
0.553
0.824
1.060
14407
1.891
2.490
3.799

0.819
0.765
0.717
0.674
0.602
0.550
540
712
- 906

1.340
1.074
0.770
0.536
0.560
0.913
1.637

16.77
3-69
C.521
0.742
0.824
0.899
0.966
1.027
1.215
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(myé)

Kihara

exp~6&

{12,n)

Square well

m =

R

TABLE 1j. CF,
Potential e/k
9 113.95
12 151.90
15 180.49
16 188.55
17 196.02
18 202.96
21 221.20
24 226,37
27 2.9.24
30 260.332
40 288. 44
0.1 180.22
0.15 194.30
0.2 208.32
0.25 222.22
0.3 236.02
0.4 263,22
0.45 276,58
0.5 289.83
0.55 302.83
0.6 315.82
0.7
12 132.29
13 145.55
14 157.15
15 167.50
17 185,329
16 200.45
30 255.52
40 285.16
50 305.62
4 52.40
5 105.89
6 151.90
T 191.20
8 225.11
9 254.71
10
1.2 Adta 13
1.4 234.75
1.6 145.39
1.8 97.86
1.9 82.03
2.0 69.54
2.2 51.39

30

B

= 40.64

153.22
134.49
124.36
121.94
119.85
118.00
113.59
116.35
107.87
105.87
101.50

94.07
79.77
68.17
£8.67
£0.82
38.76
34.10
30.13
20.74
23.81

221.9/
205.43
193.28
183.82
169.80
159.80
132.39
121.64
115.35

184.10
151.33
134.45
123.13
114.82
108.40

58.45
81.37
93.60
100.80
103.31
105.33
168.36




Kikarg

exp—6

(12,n)

Square well

R

I

TABLE 1k.
Potential e/k

9 141.46
12 189.81
15 226.90
16 237.47
17 247.31
18 256,50
21 280,84,
2/, 301,28
27 318,78
30 333.99
40 373.09
0.1 227.04
0.15 245,95
0.2 265.06
0.25 284.36
C.3 302.90
0.4 343453
0.45 363.73
0.5 28L.29
0.55 £05.04
0.6 426,51
0.70 470.61
12 165.54,
13 182.37
14 197.23
15 210.57
17 233,81
19 253.59
30 327 .60
40 368.63
50 397 .45
4 €3.83
5 130.45
[3) 189.81
7 2/2.76
8 290.65
9 334.61
10 375.61
1.2 670.5
1.4 325.75
1.6 185.89
1.8 121.43
1.85 110.53
1.9 100.96
1.95 92.51
2.0 85.02
2.2 62,30

31

SF6 B = 160.15

b
o]
289,37
248,88
22¢€.08
220.45
215.52
211.16
200.50
192. 47
186.22
181.11
169.45

169.91
142,06
119.54
101.16
86,01
63-00
54419
4573
40.40
34.95
26.29

409.20
377.17
352,18
334.20
305.74
285,06
226.91
203,44
189.51

367.28
202.64
2/8.88
217.22
192.75
172.80
156.04

52.29
110.13
161.72
190.30
185.34
199,82
204.05
207.82
216.18

AEDC-TR-§7-67

-]

7.155
6.768
6.456
6.366
6.283
6.206
6.002
5.833
5.692
5.572
5.278

6.387
6.184
5.975
5.763
5.552
5.129
4.928
Le725
4558
4397
4156

6.832
6.725
6.622
6.525
6.348
6.193
5.613
5.307
5,106

8,072
7468
6.768
6.102
5.513
5,016
4,620

15,918
£.173
5,673
6.794
6.998
7.181
7.343
7,487
7.937
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(m,6)

Kihara

(l2,n)

Square well

m=

R

|

TABLE 14. PROPENE B = 249.36

Potential

9
12
15
16
17
18
2]
24
27
30
40
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H OO0 0000Q00CO
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OO 00 ~7 v~
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\h

e/k

154.29
209,01
251.93
264435
276,01
287.00
316.52
341.89
264,07
383.80
A36.81

252,63
275,47
299.13
323.82
349.72
407.12
L4034,
479042
529,58
580.71
619.2/,

182,08
201.10
218,05
233.39
260. 46
283.90
375.67
430.63
472,04

68.51
141.40
309.01
272.72
335424
400.99
481.05

677.
44l 48
212.47
133.52
120.89
109.96
100.41
92.03
66.88

32

b
o

307.06
259,30
23146
224,48
218.25
212,65
198.81
188.09
17944,
172.21
154.64

173:16
142.77
118.20
98.10
8l.52
55.97
45.91
37.01
28.79
22.67
18.22

4R7.25
391.79
364.84,
34340
310.81
286.76
216,74
186,57
167,55

403.20
314.93
259.30
217.01
181,78
149.75
116.51

70.51

71.33
155.59
198.90
206,42
213.06
219.01
224,28
240.57

&1

2.167
1.947
1.763
1.708
1.656
1.607
1.473
1.3%6
1.254
1.162

.916

1.726
1.601
1.467
1.323
1.167
.813
609
«340
- 296
.818
2.613

2.00
1.935
1.87
1.813
1.703
1.604
1.195
<943
v 753

2.614
2.316
1.947
1.557
l. 152

.721

»29),

19.91
2.481
1.254
1.927
2.034
2.128
2,209
2,281
2. 497
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TABLE 1m. AIR B = 48.29

Potential ¢/k bO A

(my6) m = 9 43 75.58 1.08%
12 99.35 64.69 0.769

15 118.75 58.58 0.507
16 124.27 57,07 0.431
17 129.41 55.76 0.360
18 134.20 558 0.294

21 146.88 51.75 0.133
24 157.51 49.62 0.110
27 166.59 47.95 0.215
30 174446 46.62 0.324

40 194.58 43.58 0.615
Kihara Y = 0al 118.78 44,03 0.449
0.15 128.62 36.75 0.276

0.2 138.54 30.89 0.115
0.25 148.52 26.11 0.151
0.3 158.57 22.19 0.339
0.4 178.78 16.25 0,768

0.45 188.96 12.99 0.995

0.5 199.14 12.09 1.23
0.55 209.23 10.49 1.474

0.6 219.38 9.133 1,728

0.7 232,24 7.01 2.253
exo-6 a = 12 86.55 106.69 0.823
13 95,38 98.18 0.724

14 102.16 91.78 0.647
15 110.15 86.75 0.565
17 122,30 79,22 0415

19 132.64 73.74 0.282
30 171.13 58.43 0.286

40 152,27 52.33 0.585

50 207.03 4874 0,797
(12,n) n = 4 33.47 96.36 1.806
5 68.33 76.48 1.33%
6 99.35 64,69 0.769

7 126.88 56,25 0.209
8 151,56 49.77 0.374

9 173.91 44063 C.895
10 194.19 40,50 1.392
Square well R = 1.2 202,88 18.09 8.420
1.4 165.7° 29,32 2,278
1.6 97.13 AN Y 0.20/,
1.8 63.74 49.18 0.801

1.85 58,03 C.56 0.268
1.2 53.02 51.79 1.124
1.95 48,62 52,87 1.243
2.0 4470 53.89 1.357
2.2 32,78 57.00 1.7C4
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TABLE 2. THE RATIO OF THE LARGEST A TO THE

SMALLES™ & FOR THE ARGON 2ATA

P;Z;z;;al ®High T Phign T
(m,6) 1.04 1.7
Kihara 1.01 2.6
exp-6 1.04 1.3
(12,n) 1.02 1.8
sguare well 1.07 9.2

a, 3
Wwhalley et al 2.28 < T12,6 s 7.29

Piichels et al (1949) 2.28 < T*. , < 3,53
12,6

®Michels et al (1958) 1.11 < T%_ , =< 2.28

34

®Low T

8.7
22.0
542
be5
5.3



AEDC-TR-67-47

TABLE 3. TEE ZFFECT OF VARYING THE Nz—l\l2 INTERMOLECULAR POTENTTAL

FUNCTION ON THE EQUILIBRIUM PROPERTIES OF NITROGEN AT
THE DENSITY log p/po = 2.0

Z°K A(7) A(E/RT) A(S/R) Z I/RZ S/R
Based or the (24.6) Function

2,000 L1604 -.0163 -.1768 1.1604 2.8810 23.528
5,000 1642 -.00/8%9 ~.1593 1.1646 3.2574 26.725
16,000 .1673 -.01606 ~.1512 1.2702 Leldl5 30.774

Jased ¢on tne {12.6) Function

2,000 1480 -.0062/ -.1/18 1.1480 2.8911 23.551
10,000 .1438 -.023/ -.1204 1.2443 47387 30.785

Percent Deviation of the (24,6) Results
from the (12,6) Results

2,000 8.4 72.9 =247 1.1 ~0.3 ~J.1
5,000 15.4 -61.0 ~25.3 1.9 0.6 -0.2
10,G00 26.3 31.2 ~25.,6 2.1 0.l -0.0
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Figure 5d The Minimum Deviotion A versus the Corresponding Volue of ¢/k for Ethane
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APPENDIX

THE DETERMINATION OF INTERMOLECULAR POTENTIAL FUNCTIONS
FROM MACROSCOPIC MEASUREMENTS#**t

Max Klein

National Bureau of Standards
Washington, D.C. 20234

ABSTRACT

The second virliel, adiabatic Joule-Thomson, vigcosity, and diffusion
coefficients predicted for a number of potentlials sre compared with those
predicted for the (12,6) potential. A quantitative picture, as a function
of temperature, is obtained of the abillity of each property to act as a
crobe of the potential function. The transport properties are found to be
the most sensitive probes, the Joule-~Thomson coefficient next, and the
second virial coefficient least, the last property being essentially wseless
in the range 2.0< T# < 8,0 on the (12,6} reduced temperature scale.

*Supported, in part, by the Air Force Systems Command, Arnold Engineerin
Development Center, Tullahoma, Tennessee, Delivery Order Number (40-600
€6-22 Program Element 61445014, AF Project 8951

+This appendix has been published in the Journal of Research of the
National Bureau of Standards, Vol. 704 No. 3, May-June 1966, pp. 259-269,
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INTRCDUCTION

Statistical mechanlcs provides a moleculer foundation for thermody-
namics., This results in the expression of thermodynamic properiles as
functionals of the intermolecular potential functions of the constituent
molecules., In principle, given the potential function appropriate to a
given gsystem one can calculate 81l of the thermodymamic proverties of that
gystem merely by turning the computational e¢rank. In practice, matters
are not so simple both becaunse the relationships to be evaluated are
enourmously complicated and because the potential functiors are not known
with sufficient accureacy.

Tke moat accurate of the staltistical mechanical expressiors contain

N-body potential functions (N ~ 1023) which are impossibly difficult to
caleculate. Simplifying assumpiions can be mede which often, as in lhe
virial expansion, result in a power serlies in some parameter (e.g., the
density) whose coefficients depend on lowsr order N-body potentials

(= 243y04s)+ Sirce even the three-body potentizl is exceedingly difficult
to calculate, the assumption of pairwlse potential additivity must generally
be ircluded, With this assumption, the thermodynamic properties, in the
gtatistica mechanical expressions, can be made to deperd or orly the pair
potential function. Most theories for the further simplification of the
complicated expressions proceed from this point on the assumption that the
pair cvotertial furction 1s krown., These theories result in simpler, bud
generally still complicated, relationships between the thermodynamic
properties and the potential function. The evaluation of such theories can
be a formidazle task. A3l too often their fnal evalaa®ion is obscured [1]
considerably by the fact that pair potential functions are, in practice,
only imperfectly known.

The intermolecular potential function together with a sufficiently
accurate theory can be used to extrapolate far beyond the bounds of aveil-
able experimental date [2] somethinz which is not possivle using complstely
empirical methods. Such extrapolations are very strongly depencdent on the
votertial function and can be eonsiderably in error when the wrong poterntial
function iIs used.

Clearly the deltermination of accurete intermolecular pobentigl functions
is of some importance. In this work we have sought to urdersiand some of the
methods generally used to determine such functions, particularly with respect
to the question of the uniqueness of the potertials obtaired. Jack of
uniqueness exists when a set of experimentzl data for a given property can be
correlated equally well using the appropriate theory and any of two or more
potential functiors. Wker & lack of unlgueness exista, it becomes necessary
to atltempt to determire if there is a lack of sensitivity inherent in the
theoretical quantity iitself or if it is lack of experimental prscisicn which
makes 1t posgible to fit the data egually well with two or more theoretical
curves. Tnese are equivalent to the following two questions. First, how
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well can the property of interest, in principle, distinguish among potential
functions and, second, how well can it distinguish among such functlons at
the present time, given present day experimental precision. The answer to
the first question is a permanent one while the answer to the second one
changes as experimental technique is refined, approaching the first answer
in the limit of zero experimental error. We have restricted ourselves to
the first question end dlscuss the second one only in paasing meinly to
place our results in a practical light. The answer to the first question

is of considerable practical importance since it points out where refined
experimental techniques will not produce more information about the potential
functione

In principle the pair potential functions can be calculatsd in an a
priori fashion using quantum mechanics by calculating the potential energy
of two molecules as a function of nuclear separation. Since one needs to
consider all the electrons in each molecule, this 1s also an intractable
N-body problem, N now being the total number of electrona involveds This
leaves one nc alternative but to turn the problem arocund and determine the
potential, in some manner, from experiment. Ir practice, the procedure is
reduced to a semi-empirical one. A functional form is assumed for the
potential whose choice is based, in part, on theoretical arguments. In
this form are included parsmeters whose values (and hence the detailed
potential) are to be determined from experiment, The parameter determination
is made by substituting the potential into statistical mechanical expressions
for some macroscopic property and comparing the result with experiment [3].
Best resulis are to be expected when the theory is one whose dependence on
the pair potential is strongly based as is the case, for example, in the
Jow density limit of certain theoriess

In this paper we shell discuss the use of the zero-density viscosity,
diffusion, and adiasbatic Joule-Thomson coefficients and the second virial
coefficient as ways of obtaining the potential parameters. For each of
these, the pair potential appears in the integrand of an expression for the
macroscoplc propertys. This suggests that, given enough experimentzl data
of sufficient accuracy, one might be able to invert the theoretical
expressions and determine the potential as & unique functional of the
expsrimental data. TFor the second virial coefficient, however, Le Fevre
and Keller and Zumino [4] have shown that the potential is not determined
uniquely by the data, even in principle. In this work we demonstrate this
lack of unlqueness quantitatively for particular potentials. We show there
to be a lack of uniqueness for each of the macroscopic properties considered,
although it is somewhat less pronounced for the transport properties than
for the equilibrium properties. For each property, the lack of uniqueness
is found to be more pronounced in one temperature range than in another.
Strong positive statements can then be made about the temperatures at vhich
experiments designed largely toc determine potential funetions should not be
performed for particular substances. We are also able to show the simul-
taneous fit of certain of these vroperties to be sensitive to diffsrences
in the potential functions
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THE COMPUTATIONAL MITHOD

Because of its relative simplicity, we shall use the second virial
cocefficient Yo illustrate the details of the computation, The other
properties are handled in essentially the same mamner, We shall restrict
the discussion to two parameter potentials. This is no real restriction
since a three-parameter potential can be treated as a family of two
parameter potentlals, one for sach value of *he third parameter.

The seccond virial coefficient is related to the potential function,
@, by the relation [3]

co
[d % 3
B(T) = b B#(T%) = bof lexp (- 25Dy 1] 1#? s (1)
0
QnNdB " w
where b, = =3 T* = KT/e, 0 = 9/s, and r* = r/g, Here, as usual, o 1s

a characteristic length related to ¢ and e dis the depth of the potential
well, X is Avogadro's numder. or a given potential, a given 7, ard In
the left-hand side, a given experimental value of B at that T, (1)
contains only the two unimowns o and €. In this work, in place of expsri-
mental B(T) values, we supply to the left-hand member of (1) the second
virial ccefficient for a potertiial function otaer than the one appearing in
the right-hand side. Thus, if the subscripts 1 and 2 refer to the two
potentials, (1) becomes

= Voon#(THY = 3
B(T) = (b}, BE(LY) = (v ), BA(TE)

0’1 71
(o) & o (%)
#rmit 0’2 ] _ T2 _al il e
or Bl(T ) =To ). Le%D ( -—-Eyv—) 1y r*° dr
1 o'l 2
ikl . . [ a3t - F =
where Bl(_l) ig a furcticnal of 9 (T ). TNow T1 kT/%l and T, kT/%z
0]
hence, for a given T, TS5 =— T* go that
’ r ta ep 1
(b ), ¢ (oz (r™)e
%oy _ 0’2 . 2 2y } %2 o ¥
Bl(Tl)"mLie‘P(""—T’“’a_"_) iy ¥ ar (2)
o’l 171
€
This is an equation containing two unknowns, namely, the ratios ;2 and
1

(bo)z/(bo)l. These ratios are completely determired, given anotier

equation connecting some other functional of the potential for the two
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potentialse We have taken, for this second functional, the first derivative
of B with respect to the logarithm of T [5]. We thus determine, at each
temperature, that pair of ratios, ez/kl and (bo)z/(bo)l which results in

the equality, for the two potentals, of both the secornd virial coefficient
and its first derivative with respect to the logarithm of the temperature.
Ordinarily, the ratios are different at different temperatures, hence we

shall actually determine their temperature dependence. By dividing the
equation which represents the requirement of eduality of the first derivatives
by that representing the equality of the second virial ccefflcients them-
selves, one obtains a single equation for the equallty of the logarithmiec
derivatives. The working equation becomes

d 1n B;_*('.q) d 1n B;_(Tg)

T = Pz
d 1n T dlnT2

(3)

This is a single implicit eguation in the ratio 32/%1, the dependence on

(bo)2/(bo)1 being remcved in the process of differentiating the logerithma

On the substitution of the set of values Bi(T?) in the left-hand
menber, (2) becomes a family of curves for the ratio ez/él, as a furction
of the ratio (b»o)2 (bo)l’ one curve for each value of Ti [7]« These can
also be used for obtaining information about the potential function [8],
although the results 8o obtained cannot be easily presented in a manner
suitable for our purposes. We have therefore used a different approach.

We have computed, for each of & rumber of potentials, B¥ and B'* =
¥
* (g%;) and from these

g~ T 88 _B"_dinB*
~B*ar*  BY  d1in T*"

These are used to solve (3) in the following way. Each value of TZ has

aggociated with it a value SZ‘ Using inverse interpolatlon, the value of
# . . _ .

T; is found for which & = 8,. The ratios sz/él and (bo)z/(bo)l are

then computed simply from

ey 1 s (b)), EZ(T3)
- = =5 an T““T‘ = B (TF)
€1 T2 bo 1 Bl Tl
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This procedure can be illustrated graphicelly with the help of Figures 1_
end 2, These contain plots of S for the second wirial coefficient [9]
versus the logarithm of the reduced temperature for several representative
potential functicns., Temperatures bglow the Boyle temperature appsar in
Figure 1, those above that temperature in Figure 2, Note that the 8 values
for each potential are plotted against the logaritm of the reduced tempera-
ture for that potential. Equation {3) is solved graphically at each Ty by

measuring the horizortal disvarce beitween the ordinate gssociated wita T{
on curve 1 and the sams ordinate on curve 2, This distance is then Just

log TZ - log T; = 1og(T;/T§) = 1og(el/éz).

It should be noted that where there are values of 32 greater than the

maximm S. value, solution of (3) is impossible. This occurs (see

1
Figure 1) for the (9,6) potential compared to tae (12,6},

Yote that both the value and slope of 3] ere fit by B at Tj. It

3*

follows, therefore, that B2 will actually produce a relatively good fit to

B¥ in a small neighborhood around Ti for the parameter ratio obtained by

1
solving (3) at Ti. Furthermore, when this ratio is found to be independent

i * 13
o1 Tl over a range of values of Ti, B; provides an excellent fit to Bi

over that range.

In tkis caleculation, the Boyle temperature serves as a natural dividing
point between two temperature ranges. Since B is zero at that temperature,
the derivatives in (3) are not defired. Farthermore, since B changes

sign while %% does not, S also changes sign. Hence, values of S taken

from temperaturss above the Boyle temperature for one potential cannot
pessibly be made to £it those taken from below it for the other potential.
Therefore, we nave treated these two ranges separstely coming as close to
the Boyle temperature es desired from either side.

As mentioned 1n the introduction, the zero density adiabatic Joule-
Tromson, viscosity, arnd diffusion coefficierts are also congidered here.
These are also treated as outlired above. The equation (3) for each of
these isg replaced in turn by the requirement that the guantities

(¢ w1/2
d 1n’[ucp . for the adiabatic Joule-Thomson coefficient, g(in gg )
d1n T n
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-3/2
3#
for the viscosity, end & 13££§ ——  for the diffusion coefficient by

#*
equal for the two potentials., Now [3] p*CP(O) = 7% §¥¥ ~ B# = B'¥* _ B#

so that the connection between this quantity and the potential function is
esgentlally the same as betwsen the second virisl coefficient and the
potential, From this last, T*Zi [pcé°)1 = B"™  and

4

o
d 1In [Pcé )] = gh# where B™ = T*2 dzB*

5 « Here, as with the second
d In T . B!'*-B¥ ar*

virial coefficient, there is a temperature which divides the calculation
into two parts. Now, however, the zero density inversion temperature

(defined by B'¥ = B¥) plays the role previously played by the Boyle
temperature.

The connection between the viscosity and diffusion coefficients and
the intermolecular potential function is contained in the so-called collision
integrals (3]

* I 2 4n
Q({,,s) (T*) = 2 *(3_'_2) J‘e -g¥* /‘I‘ g*(2s+2)Q(L)*(g*) ag*
(S + 1) 1T o]
where Q(L)*(g*) = —--ji-—"ja j‘ (1 - cos?” X Y p¥ au¥
G L =1 o}
2 1+&

with the iIntermolecular potential function being contained in the equation
for the scattering angle

X (g%, b*) = 1 —2p* L dr/r* —
3¢ "/ 2 }2 2
m V1 - AR - g(ot) ¥

*
n

approach.

r,, belng the distance between a pair of molecules at the time of closast

In terms of these, the zero density viscosity and diffusion
coefficients can be written [3]

2 C
HT* -1/2 _ Ca pr* 2 _ b

- 0(2,2 i*(T*) : i Q(l,l)* (T*)

where Gy and Gb are constants whose precise values are of no particular
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interest here, It can be easily shown that

= i + : - i+ 2).
3 1o T (3 +2) RO (3 +2)
From tnis 1t follows that, for the viscesity, equation {3) is replaced by

(2,3)%
0 $
the requirement that A.Q ) ¥ — 4 be equal for the two pote?tiaiz. For
1,2
. : . Q' \—* -
the diffusion coeffliclent, on the other hand, the quantit 3 -3
’ ’ 4 4 o (Ls1)*

must be equel for the potentials. Sirce T and D are each nor-zero,
there is no dividing temperature analogous to the Boyle temperature for
these provertiess The S values corresponding tc these proveriies are
plotted in Figs, 3 and 4.

The macroscoplc properties of most experimental systems have been
correlated using the ({12,6) potential function [10]. As a result e¢/k
values for that potential can be found 1n the literature for just about all
possible systems of Intersst. Furthermore, i1 has been shown thet, for very
many substances, a very simple relatlonship exists between the s/k value
for the (12,6) potential and the temperatures for the critical and rormal
boilirg poirts for that substance [3,10,11]. As & result, good first
guesees for the e/k values for the (12,6) potential can be made for any
system for which either the critical temperature or normal boiling point is
known. For these reasons we have choger to compare each potential with the
(12,6) function using the reduced temperature for the latter as the reference
temperature Tf. The conversion to real experimental temperatures for any
system merely requires multiplication by the (generally available) e/k
value of the (12,6) potentlisl for that system.
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RESULTS

The Second Virial Coefficient

Qur results for the second virlal coefficient are given in Figs. 5-8
as plots of the ratios ez/él versus the Lennard-Jones (12,6) reduced

temperature. Figure 11 contains plots of the ratio (bo)2/(bo)l' The

potential functions considered are the following:

wony - Bx) _ Ly -)
(1) The (myn): g*(r*) =5 = ‘ﬁg'ﬁi ok [(FT (?‘)]

a
™

Bl=

where r* = r/s,6 is that value of r for waich ¥ = O,

{2) The Xihara: FF (%) = oy r* < y¥
3# 1 12 (' 28 6 #* *
g*(x¥) = 4 (;*"Y*) - r*_Y¥ y T2 Y
where T* = o:;a and ¥ = ogga » a being the core radius.

6 i\ - L% ’
1 = oxo (e(1-r X) (r
(3) The Exp-6: F(x*) = T 6/

where r¥* = r/fm, r_ being that value of r for which o* = -1

(4) The Square Well:
o*(r*)

cp*(rﬁ) = 0, T# 2 R*

il

-1, 1S r* < R¥

where r* = r/0.

Figure 5 containg results for the

(my6) &and square well potentials,
while results for the exp-6

and Kihara potentials are contained in Figs,
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6 and 7. Results for the (lz,n) appear in Figure B, Each curve represents
the comparison between a potential and the (1246) potential, the subscript

2 always referring to the former potential, For eack curve there is & smooth
transition through the Boyle temperature indicating that the singuwlarity in S
at that temperaturec presents no problem. There exists, for each potentlal, a
temperature range around the Boyle peint such that ir that range 82/%1 is
essentially Zndeperdert of T¥. This means that, for temperatures in that
range, the (12,6) and the potential with which it is compared are equivalent
[12]. In fact, each curve is flat to such an extent in this range that a
choice cannot bs made between the (12,6) potertial and the one with which 1t
is compared based on experimental second virial coefficient data taken entirely
withir the range, even when these data are obtained with an imposalbly high
precision. What is particularly striking ls that there is a aingle temperature
range in which all the curves are flat. This range becomes exceedingly large
i~ ome does not include the square well potential In the cemparisors.
Obviously, there is a reduced temperature regime in which the second virial
coefficient is particularly useless as a probe of the potential functione.
What these results shkow specifically is that thae second virial coefficient
cannot be used in this range to distlnguish among any of the members of the
(my6), exp—6, Kihaera, (12,n), end square well families of potentials. The
list would presumasbly have beer. broadened had we cornsidersid other classes of
functions.

Of considerable interest are the results obtained wnen the (12,n)
potentials are compared with the (12,6). The curves obtained for these are
essentially the same as those for the (m,6) emphasizing the fact that the
gsecond virial coefficient cannot be used to determine the exponent of the
atiractive part of the potertial. The requirement that the attraclive
exporent be 6 1is, rather, a restrictlon placed on the potential based on a
priori information, at least for the second virial coefficients. Thus, we see
that the sscond virial coefficient is determined by the genersl shape of the
potential and not necessarily by its details. This has previcusly bsen
demonstrated formally by Le Fevre [4] and by Keller and Zumino [4]« They
sktowed that sll potentials for waick the sum of a certain pair of inlegrals,
one over the repulsive part and one over the attractive part, were equal
yielded the same second virial coefficient. A speclal case of thelr result
is tnat all poctentials with the same repuvlsive part and whcse attractive
perts have the same width as a function of depth (i.e., but whose bowls are
possible displaced laterelly) vield the szme second virial coefficlent.

At temperatures outside the flat portion, the ratio sz/el_is no longer

constant, Below T¥ = 2,0 a particularly rapid variation is indicated. The
origin of this rapid variaticn can be seen In Fig, 1 to be due to large
differences in tne slopes of the correspcording S curves for egual values

of the ordinate. According to Fig. 1, there are also potentials for which
there is a tempsrature range in whicx there ers S values larger thar the
maximum S valuve of the (12,6) potentials The (9,6) function is an
example. In such cases, solution of (3) 1is impossible. In other words, 1o
ratio ez/él exists by meers of waich one can obtain simwltzneous equality

of both B ard TE for tae two potentials.
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The existence of a rapid variation of ez/el with T% at low tem—

peratures would seem to indicate a very strong sensitivity, at such tem-
peratures, to differences in the potential functions. TInability to solve
(3) indicates an even stronger sensitivity to such differences, However,
the sensitivity indicated epplies strictly tc exact data and the exact

simultaneous fit of B and T g%. As the requirement on the exactness of

the fit is relaxed, the sharpness of the variation of ez/él with T is

reduced., The introduction of these uncertainties in effect replaces each 5
curve of Fig, 1 by an area bounded by two S curves, One has then to compare
two broadly defined S =areas rather than two sharply defined S curves,
Tpis can make an overlap of ordinates possible near the maximum of the (12,6)
curve and hence meke solution of (3) possible where it previously was not.
Furthermore, in comparing the two S areas one has the possibllity of
choosing the two S curves, one within each area, whose slopes are most
nearly alike, This could result in a reduction in the rapid variation of
ez/él with T* at low temperatures. For applicatlon to inherently lmprecise

experimental data, the low temperature region therefore becomes a much less
sensitive probe of the potential than is indicated in Fig. 5. That is, an
approximate fit to an accuracy compatible with experimental error might be
pesaible where an exact fit, as indicated by Figs. 1 end 5, is impossible or,
at best, difficult.

There is another, more fundamental reason why the rapid variation of
ez/él with T%* at low temperatures does not necessarlly mean a sensitivity

to differences in the potential functions. Tn this calculation, we have
required the equality of both the second virial coefficient and its slope for
the two potentimls. This applies a much more stringent condition on the
functions than is required in the correlation of experimental data. In the
latter case, it is asked only that the theoretical values of B{(T) come as
close as possible to the experimental ones. Nothing is asked of the slope

of the second virlal coefficient. Clearly two functions may each fit the
data within experimental precision, yet their slopes may disagree by con-
slderably more than the precilsion of the present calculation,

On the other hand, the fact that we place such strong conditions on the
potential enables ua to make strong statements where the second virials and
their first derivatives for the potentials are essentially indlistinguishable
from each others Obvliously where our cgleculations cannot distinguish between
potentials, a correlation which makes use of experimental data will be able
to distinguish between them to a much lesser extent. Clearly, therefore,
experiments designed to measure the second virial coefficient for purposes of
learning something about the potentierl function should never be carried out
above T* = 2,0 on the (12,6} scale. In fact, existing data in that range
should not be included in a determination on potential parameters since such
data will supply experimental error without supplying any discrimination and
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so will reduce, for example, the ratlos of the standard deviations obtained
from fits of different potentials. This reduced temperature is easily con-
verted to real temperatures for a particuler substance given the e/k value
for the (12,6) potentiael for that substance. For example, for argon, the
data must heve been taeken at T < 240°X yhile for xznon, the corresponding
requirement is T < 450°K,

It ig clear from Figures 5 ard & that ir each class (i.e., square well,
exp~6, etc.) there exists a potential for which the ratio e,/e; 1s

essertislly independent of T* even at low temperatures, For the exp-b
this occurs for « slightly larger than 13. For the square well, it occurs
for R¥ approximately equal to 21.82, One expects this also to be true for
other clesses of three parameter potential classes of which the (12,6) is
not a member, That is, there will exist a member of each such class which is
equivalent o the (12,6) in predicting the second virial coefficlent over a
large temperature range including low tempsratures., Since the (12,6)
potential functlon was chosen as the reference potential in an entirely
arbitrary fashion, there is no need to restrict tkis result to it., Thus, one
can actually state that glven any potential funetion, 4t is possible to find
in every three parameter Zamily of functions of which it is nct =z member, 2
potential function with which one can obtain a classical second virial
coefficient whose value and slope differ from those calculated with the given
potential by an amount much less thar “he test available experimenta” precisicn
over a temperature range starting at extremely low temperatures and extending
to temperaturss will acovs experimental conditions for almost all substances.
Ir short, the second virial coefflciert is seen o be at best a three
parameter quantity with regard to the potential function and any attempt to
ise functiors with more parameters necessarily leads to redundancies, Thkis
is presumably what is behind the inabiliiy to obtzin unique parameters in
recent attempts to determine the potential function from second virial
coefficlent datz using many parsmester potentiel functions.

As expected, deviations from this can occur at high temperatures. That
is, where the repulsive parts of the potertials differ sufficiently in
character, the high temperature region can be used to choose among different
classes. Thua a choice can be made tetween the extremely different (12,6)
and square well potentials if the data covers a rarge above ™ = 7.0 on
the ?12,6) temperature scale, A choice between the somewhat less different
exp-6 and (2246) potentiels, on the olher hand, requires data at
T* > 10,0 on the same scale. These are very high temperatures for most
substances, For argon this latter requirement is T > 120C°K while for
xenon it is T > 22509%,

The ratio (‘:,0)2/(%)l for the secord virial coefficient behaves in
essentially the same way as does ez/él. There is, therefore, no neeld to
discuss its behavior separately.

Attempla to select, from severzl functions, a potential function for a

particular system have sometimes been based on fits to second virlal
coefficiert data which lie almost entirely within the flat portiors of
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Figs, 5-8, Examples are the correlations of Whalley and Schneider [13]

end of Mason and Rice [14), 1In Table I we have reproduced the standard
deviations obtained by Whelley and Schneider for several potentizl functiona.
Note that only in the case of xenon, where half of the points lie outside the
flat portions of Figs. 5-8, is there a strong discrimination among the
potential functions., TFor the krypton data, one certainly has no basis for
the selection of one potential over another while for argon the cholce is, at
best, a marginal one.

From our results one tan also see the futility of basing the choice of
a potential function on the basig of the best fit of experimental data to a
single two parameter functicn. To demonstrale this, let us take as an
experimental system that gystem whose intermolecular potential function is
exactly the (12,6) function. Figure 6 then represents an attempt to fit
the "experimental' second virial coefficlents to those predicted for the
exp-6 potential, The best fit is obtained for that potential which gives
the most nearly flat curve in Fig. 6., According to that figure, this best
fit occurs for a value of « sglightly greater then 13. The potential function
defined by that value of @ and the pair of parameters which give this test
fit can then be associated with our "experimental® system and possibly used as
such in other theories. OSuppose now that instead of doing fits for a series
of values of o« we had just done the fit for a single value of «, Clearly,
for every value of @, a pair of parameters exists which gives the best fit
to the Y"experimental™ data for that value of o, However, the potential
represented by that value of o and this pair of parameters could not in
general be assoclated with the experimental system unless the application
is to a theory only weakly dependent on the potential, since the second virial
coefficient associated with that function does not properly represent the low
temperature sccond virial coefficient data, It is clear from Fig. 6, there-
fore, that one must take the best fit of experimental data to a series of two
parameter potentials (hers the family of functions generated by wvarying the
third parameter, @) before assigning a particular potential to the experi-
nmental system, Unfortunately, the literature is full of fits of data to
single potential functions, particularly to the (12,6) potential. Quite
often the resulting potential has been used as the intermolecular potential
functions for particular aystems in evaluations of theories [15]. According
to our results one must be suspicious of conclusions as to ths relation
between the particular theory and experiment, based on such work, unless the
theory is known to depend only weakly on the potential function.
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THE ZFRO DENSITY ADIABATIC JOULE-THOMSON COEFFICIENT

This quantity is obtaired directly as the gzero dersity 1imit of
experimental free expension data. Tc obtain the second virial coefficient,
on the other hand, one must first, ir some nmanner, differentiate the ex-
perimental P-V-T data with respect to <he density and then take tae zero
density limit. Ase a result, given the seme experimental preclision, one
obtains the latter with much less precisior than the former, This is not
a real advantage for the free expansion data at the present time, however,
since such data can be obtalined only with a precision orders of magnitude
below that possible in P-V-T work, particularly at low densities.

The adisbatic Joule-Thomson coefficlent depends both on the second
virlal coefficient and its first derivative. Clearly, where two second
virial coefficients, one for each of two potentimls, are indistinguishable
over ar sxtended temperature range, their Ilirst derivatives are also indis-
tinguishable, at least for temperatures near the center of this range.
Furthermors, this will be true for exactly the same parameter ratios.
Differerces which occur for “ne second virial coeificients near the edge
of this temperature range necessarily appear as larger differences in thelr
derivatives. Thus, one expects the range of equivalence for two potentlals
to be smaller for the zero density Joule-Thomson coefficient than it is for
the second virial coefficient, Results of this gquantity are contained in
Figs. 7 and 8, As expected, the range of egquivalence of the polentiels is
shorter. It should be remembered that, since our method involves equating &
oroperty and its first derivative, equivalence here ircludes the secord
derivative of the second viriel coefficient.
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THE ZERO DENSITY VISCOSITY AND DIFFUSION COEFFICIENTS

The ez/%l ratios for the zero density viscosaity and diffusion coef-
ficients are contained in Figs. 64 7y 9, and 10, The ratios (bo)Z/(bo>1

for several potentials are presented in Fige. 11. In Fig, 7, for the Kihara
potential, there is no curve for either of these propertles which approaches
that of the second virisl coefficient in flatness., The ratio 32/%1, can

be called independent of T* only in a very narrow temperature region about
the maximum of the curve. Figure 9 (which is drawn to & different scale)
does indicate an increasing degree of flatness with increasing +. This
occurs for relatively high temperature, T > Iz, however. Thils demonstrates
the strong role played by the bowl of the potential function in determining
the transport properties. For any given potential function, there is a tem~
perature above which the transport properties are entlrely dependent on the
repulsive part of the potential function. Now, for the Kihara potential
function, the position of the hard sphere cut~off moves to larger values of
r as ¥ increases, Therefore, the tempersture at which the properties for
the Kihara potential become those for a hard sphere should decrease with
inereasing vy. According to Fig. 9, this is compensated for by the changes
produced by the modification of the bowl with increasing +y. The net result
is a set of properties (e.gey for y = 0.6) more nearly like those for the
vy=0 (i.e., (12,6) ) potential at the highest temperaturees of Fig. 9.
Further proof of the strong effect produced by the bowl can be sesn in the
behavior at low temperatures. At such temperatures, the repulsive part has

a very minor effect on the properties. Therefore, the rapid variation in
the dependence of ez/él, with TI¥ as a function of ¥y at low temperatures

is an indication of the marked effect of the bowl on these properties.

The curves in Fig. 10 are most flat for T¥® approximately equal to 2.0.
It is interesting to note that there is a value of « for whick the curve is
quite flat at low temperatures as well., This occurs for @ slightly larger
than 13 for both properties. It should be noted that the corresponding
ratio 1s very close to unitys. Furthermore, for essentially the same value
of «, a flat curve with essentially the same ordinate obtained dcwn to low
temperatures for the second virial coefficient. Note that, unlike the case
of the second virial coefficient, for these properties the curve for that
value of « is not flat to very high temperatures, For these properties, a
significant departure from unity occurs at T* = 5,0, rot an impossibly
high temperature for many systems, There is a tendency for the curves to
flatten out at high temperatures for a value of « larger than 15 under
which conditions +the curves show a marked deviation from flatness at quite
low temperaturess This behavior shows that it may be possible to distinguish
between the (12,6) potential and all members of the family of exp~6
functions given exper mental transport data of sufficient accuracy which
includes both temperature ranges T* < 2,0 and T* > 5,0 on the (12,6)
gcale, For argon this requires that there be data for T < 240°K and
T > 600°K while for xenon T < 450°K and T > 1225°K., These conditions
are met for argon but not for xenon, at the present time,
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It is clear from these results that tke diffusion and viscosity
coefficients are potentially more sensitive probes of the potential function
than either the second virial or Joule-Thomson coefficieris given experi-
mental data covering a sufficiently large temperaturs range. One might not
have expected this since the latter prcperties are more simply related to
the potential funotion than ars the former, One might have expected a
guantity like the second virial cocefficient which ls related to the potential
function through a single integration to be much more sensitive feo differences
in that funotion than one like the transport properties which are connected by
three integrations, particularly when the functional dependence in the
integrerd is also more irdirect for tne latter than it is for the former,

It must be remembered that the requirement here has been that both tie
value and slope of the properties be equal for the two polentials. It is
possible that some of the apparent sensitivity found for the transport
croperties comes from the requirement on the slope. Whether or not this
disappears when one asks only for a match to the property, as is done in a
correlation, bears further study. Again ore can sta*e that a lack of
uniquensss found ir this caleculation will not disappear on the application
to experimental data. Therefore, one must have data present in the tem-
perature ranges mentioned if ore is even tc have a chance to discriminate
between potential functions.

The slove of the 32/%1 versus T curve, for a given potential, is

esgertially the same for both the viscosity and diffusion coefficients. On
this basis, the two quantities are equally effective when used individually.
As we shall see in the next seetion, howsver, there is a difference between
them in sensitivity to changes in the potential functior. That difference
makes the simultaneous fit of the two properties potentially a sensitive
tool for Iinding the potentiel function,
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ThE SIMULTANEOUS FIZ? TO MORE THAN ONE PROPERTY

Figures 6, 7, 9, and 10 contain plots of the ratio ez/'e1 for more

than one property. With the help of these one can examins the effect the
requirement of & simltaneous fit to two or more properties and their first
derivatives has on the lack of uniqueness in the potential function. Figure
G is particularly informative 1n this regard. Note that in that diagram,
the curves for both the viscosity and diffusion coefficients for ¥y =10
would bs straight lines parallel to the abscissa at ez/él = 1.0, As ¥

deviates from zero, however, each curve begins to deviate from a straight
line, particularly at low temperatures. Furthermore, the curves for the
diffusion coefficient separate from those for the viscosity until, by

v = 0.6, the curves are quite widely separated, The lack of uniguensss
associated with the flatness of the curves for the separate properties
would be extended to the simultaneous fit to the pair of properties and
thelr derivatives were the two curves essentially flat at the game value of
the ordinate. However, the increase in the separation of the curves with
y (L.ee, with increased deviation from the (12,6) reference peientisl)
demonstrates a strong sensitivity of the simultaneous fit to changes in the
potential function, This sensitivity is much stronger than that of the
individual properiies in the range T" > 4.0. Whether or not it is more
gensitive than the behavior for T¥* < 4,0 would require an examination of
detailed fits to datae

Figure 10 contains the same kind of informastion for the exp-~6 function,
Here the changes that occur at low and intermediate temperatures are much
smaller while those at high temperatures are much more pronounced. There
appears tc be a value of « for which the curves both have a flat range
and are esgentially superimposed at high temperatures. However, for that
value of «, +the low temperature data still serves as a discriminant. In
this case the simultaneous use of both properties and their derivatives deoes
not appear to add any discrimination beyond that available with either
property of itself. Note that the curves for the two properties exchange
relative positions when one goes from @ = 12 to o = 17, Increasing o
beyond 17 would presumably result in further separation.

Figure 7 contains plots for all of the properties for the Kihara
potential. These curves necessarily each form a straight line parallel to
the abscissa with ordinate 1.0 for y = 0. Increasing Yy causes them to
separate as in Figure 9 for the two transport properties. It is interesting
to note that the change in separation between the curves for diffusion and
second virial coefficients at intermediate temperatures is not uniform,

Thus, for T* = 3.0, the diffusion curve for y = 0.1 lies above that for
the second virial coefficienty for v = 0.3 they are superimposed in a amall
region around T¥* = 3,0, while for v = 0.4 the diffusion curve lies below,
Thusy as vy 1is increased from O, to 0,1, the second virial curve "moves"
more rapidly while for v > 0,1 the reverss is true.
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That we nave, in this section, examined the simwltaneous fit of four
properties cannot be emphasized too strongly, Thus, for example, the
simultaneous equality of the second virial coefficient and its first
derivative 1s eguivalent to the simultanecus equality of the second viriel
coefficient and the zero density Joule-Thomson coefficient. We have here
consldered situations in which, in addition to this, we have asked that
(eeg.) the viscosiiy and i%s first derivative also te equal at the same
temperature and for the same two potentials. Again it is possible that
the abllity to discriminatse among potentials discussed here for this kird
of simultaneous fit may disappear when the requirement is that only a pair
of properties be squal.
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CONCLUSIONS

We have investigated the use of the second virial coefficlent as well
as the zero density Joule-Thomson, viscosity, and diffuslon coefficients
as probes for the intermolecular potential function. We have found the
second virial coefficlent So ve particularly poor in thls regard in the
temperature range 2.0 < T¥ < 7,0 on the Lennard-Jones (12,6) rTeduced
temperature scals. The Joule-Thomson coefficient has been found to be
somewhat better particularly in the lower part of this range., OConsiderably
better were the transport coefficients, 1l.e., the viscosity and diffusion
coeffiecients, It is clear from our results that these last cosfflcients can
be sensitive probes of the potential function given experimental data covering
a gufficiently large temperature range.

Further compariscns of this kind between the transport ccefficients for
the (12 6) potential function and those for other potential funciions are
clearly callad for, particularly for classes of potentials of which the
(12 6) is not a member. In particular, one would like teo find such classes
of functlons as exist which contain a member whose transport properties can
be fit to those of the (12,6) over an extensive temperature range. This’
will rsquire the calculation of collision integrals for these various
functions. In some cases tables do exist [16,17] which, unfortunately,
contain too few points in the temperature reglon of interest., It is hoped
thet these will be extended shortly.

These calculations will be extended to include the thermal diffusion
ratio and, poasible, the quantum corrections to certain of these propertiea.

As regards the relationship between our resulis and experiment with
present day precision, the fact that our results apply precisely to experiment
only in the limit of very high precision actually strengthens our conclusions
in regard to lack of uniqueness while conclusions regarding unilqueness are
weakened, That is, where we did not find it possible to use a macroscoplec
property to distinguish between potential functions under our conditions,
it certainly would not be possible tc use this property for this purpose
under less precise experimental conditions., On the otber hand, our ability
in other circumstances to distinguish among potentials (e.g., using second
virial coefficlent data for T* (12,6) < 2 Og may be due in part to the fact
that we have requirsd a precise fit, somsthing not possible with experimental
data., It may likewise be due to the inclusion here of a reguirement that the
first derivative of the property be equal for the two potentials. More
precise statements in this latter case await the result of fits to actual
data .
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Figure 1 § for the Second Visial Caefficient of Several Potentials, T* less than the Boyle Temperature
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Figure 3 § for the Viscosity Coefficient of Several Potentials
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PARAMETER RATIO FOR THE SECOND VIRIAL GOEFFICIENT
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Figure 5 The Parameter Ratios ¢,/¢; far the Second Virial Coefficients of the (m,6) and Square
Well Potentials with Respect to the (12,6) Potential. Note Particularly the Flatness of
the Curves far the {m,4) Potentials
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Figure § The Parameter Ratios EZ/F.I for both the Secand Yirial and Viscosity Coefficients of
the exp-§ Potential with Respect to the {12,4) Potential. Note that the Former are Flat

while the Latter are not Flat
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KIHARA POTENTIAL FUNCTION
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Figure 7 The Parameter Raties eo/€q for oll Four Properties for the Kihara Potential with Respect to
the (12,6) Potential. Mote the Absence of any Single Ratio for which both the Equilibrium and
Transport Properties are Flat
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Figure 8 The Parameter Ratios ¢o/¢y for both the Second Virial and Joule Thomson Coefficients for the (12,n) Potenticl
with Respect to the (12,6) Potential. Nate that for Temperatures above the Boyle Paint oll Curves are Flat

Maoking it Impossible to Select a Value of n at such Temperntures
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KIHARA POTENTIAL FUNCTION
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Figure 9 The Porameter Ratios ¢,/¢; for the Diffusion and Viscosity Coefficients for the Kihara Patential Function
with Respect to the {12,5}). Notice the Inereosing Flatness with Increasing y for T* Lorge
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EXP-6 POTENTIAL FUNCTION
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Figure 10 The Parameter Ratios ¢, /¢, for the Diffusion and Viscosity Coefficients for the exp-§ Potential with Respect
to the (12,6} Potential
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Figure 11 The Parameter Ratios (bg) 3 /(b.) | for the Kihara and exp-§ Potentials with Respect to the {12,6)

£9-L9-41-DQ3V



UNCLASSIFIED
Security Classification

DOCUMENT CONTROL DATA - R&D

(Secunty clagsitication of title, body of abatract and indexing annctation mus! be entersd when the averall roport 15 clasaified)

1 ORIGINATING ACTIVITY (Corporate author? 28. REPORT SECURITY € LASSIFICATION

National Bureau of Standards UNCLASSIFIED

Institute for Basic Standards, Heat Division
Washington, D. C.

2b GROUP

3 REPORT TITLE

A CONTRIBUTION TO THE UNDERSTANDING OF THE EQUATION OF STATE
OF GASES AT HIGH TEMPERATURE AND DENSITIES

4 DESCRIPTIVE NOTES (Type of report and incluaiva dataa)

N/A

S5 AUTHOR(S) (Lesi name. lirst name, [nftial)
Klein, Max, National Bureau of Standards

6 REPORT DATE 7a TOTAL NO, OF PAGES 75. NO OF REFS
March 1967 95 23

Ba CONTRACT OR GRANT NO, 9a. ORIGINATOR'S REPORT NUMBER(S)

AF 40(600)-1200

5. PROJECT NoO. AEDC-TR-67-67

8951
c Program Element 61440514 b, S:"I;H‘E‘:nfjponf NO(S) (Any other numbera §1al may bo assigned
d. N/A

10- AVAIL ABILITY/LIMITATION NOTICES Ny ot ihution of this report is unlimited.

11 SUPPLEMENTARY NOTES Avgilable in DDC. |12- SPCHSORING MILITARY ACTIVITY

Arnold Engineering Development Center
Air Force Systems Command

Arnold Air Force Station, Tennessee

13 ABSTRACT

Intermolecular potential functions and certain means by which they can
be obtained from experiment have been studied as the first step in the
evaluation and development of a high density equation of state, The second
virial coefficient has been found to be a poor method for reduced temperatures
(on the (12, 6) scale) greater than 2.0 while transport coefficients were found
to be poor in the range 1.5 T* (12,6) < 5.0. Experimental second virial
coefficient data have been fitted to 40 intermolecular potential functions for
each of 15 substances. That such data taken in the range T* (12,6) > 2.0
cannot serve as a means for determining the potential function is clearly
demonstrated. Also indicated is the result that such data in the range T*
(12, 6) < 2. 0 cannot be used for determining more than three potential
parameters. The Percus-Yevick theory has been investigated and appears
to be as applicable to air as it is to argon. The theory has been found to be
sensitive to the choice of the intermolecular potential function. The effect
improving the potential functions has on the NBS tables of equilibrium
properties of gases at high temperatures has been investigated and found to
be generally small although changes of approximately 2% were obtained at
the highest densities.

DD .5, 1473 UNC LASSIFIED

Security Classification



UNCLASSIFIED

Security Classification

14 g LINK A LINK B LINK C
T "F\Y IROE ROLE WT ROLE wT ROLE | WT
jequation of state/

‘gases

i
5 e : “%”M f

; (K

high temperatures 5 //
high density —
témy —

INSTRUCTIONS
1. ORIGINATING ACTIVITY: Enter the name and sddress imposgsed by security classification, using standard statements
of the contractor, subcontractor, grantee, Department of De- such as:
fense activaty or other organization (corporate author) issuing (1) "*Qualified requesters may obtain copies of this
the report. report from DDC."’
2a. REPORT-SECURITY CLASSIFICATION: Enter the over (2) **Foreign ennouncement and dissemination of this

alt security classification of the report. Indicate whether : ]
'‘Restricted Data’ is included Marking is to be in accord- repost by DDC 15 not euthorized.
ance with appropriate security regulations, (3) *'U. 5. Government agencies may obtain copies of

2b. GROUP: Automatic downgrading is specified in DoD Di- :xr:esr;eggzltldrlésgsyt ?;:,'UDEC' Other qualified DDC
rective 5200.10 and Armed Forces Industrial Manual, Enter &
the group number. Also, when applicable, show that optional .

markings have been used for Group 3 and Group 4 as suthor- (4) ¢U, S. nulitary agencies may obtain coples of this

1zed report directly from DDC. Other qualified users

3, REPORT TITLE: Enter the complete report title 1n all shall request through

cepital letters. Titles in all cases should be unclassified. KL

If a meaningful title cannot be selected without clagsifice- - -

tion, show title classification in all cepitals in parenthesis (5) *'All distribution of this report is controlled Qual-

immediately following the title. 1fled DDC users shall request through

4, DESCRIPTIVE NOTES: If appropriate, enter the type of WM

teport, €.g., interim, progress, summary, annual, or final, 1f the report has been furnished to the Office of Technical

Give the inclusive dates when a specific reporting period is Services, Department of Commerce, for sale to the public, indi-

covered. cate this fact and enter the price, if known

S. AUTHOR(S): Enter the name(s) of author(s) as shown on 11, SUPPLEMENTARY NOTES: Use for additional explana-

or 1n the reporl. Enter last name, first name, middle initial. tory notes.

If military, show rank and branch of service. The name of

the principal aothor is an absclute minimum requrement. llhz dSPONmiil'I:G MILITAJIY AC'{‘I&T}': Enter the nar?e of
- e departmentat project offize or laboratory sponsoring (pay-

6. REPORT DATZ: Enter the date of the report as day, ing for) the research and development. Include address.

month, year, or month, year, If more than one dete eppears .

on the report, use date of publication. 13. ABST?S‘C‘I; Enter an :bstract g;vmg a brief and fsctual

. summary o e document indicative of the report, even though

7a. TOTAL NUMBER OF PAGES: The total page couni‘ 1t inay also appesr elsewhere 1n the body of the technical re-

should follow normal pag_xna':lon pmc_edures, ice., enter the port. If additional space is required, & continuation sheet shall

number of pages containing informetion be attached.

7b. NUMBER OF REFERENCES Enter the total number of It is highly desirable that the abstract of classified reports

references cited in the report. be unclassified. Each paragraph of the abstract shall end with

8a. CONTRACT OR GRANT NUMBER: If eppropriate, enter an indgcauon of the military security classification of the in-

the applicable number of the contract or grant under which formation in the paragraph, represented as (TS). (S). (C), or (U)

the report was written. There is no limitation on the length of the abstract. How-

88, &, & 8d. PROJECT NUMBER: Enter the appropriate ever, the auggested length is from 150 to 225 words.

military department identiflcation, such as project number,

subproject number, system numbers, task number, etc. 14, XEY WORDS: Key words are technically meaningful terms

or short phrases that characterize a report and may be used as

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the P_fﬁ’ index entries for cataloging the report.- Key words must he

cial report number by which the document witl be identified selected so that no secunty classificetion is required. Identi-
and contrclled by the originating activity. This number must fiers, such as equipment mode!l designation, trade name, mlitary
be unique to this report. project code name, geographic locatlon, may be used as key

05. OTHER REPORT NUMBER(S): If the report has been words but will be followed by an indication of technical con-

ass'gned any other report numbers (erther by the originator text. The assignment of links, rules, and wesghts 15 optional.

or by the spenser), also enter this number{s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any lim-
itations on further dissemination of the report, other than those,

UNCLASSIFIED

Security Classification



