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ABSTRACT 

Intermolecular potential functions and certain means by which they can 
be obtained from experiment have been studied as the first step in the 
evaluation and development of a high density equation of state. The second 
virial coefficient has been found to be a poor method for redviced temperatures 
(on the (I2j^) sc?le) greater than 2.0 while transport coefficients were found 
to be poor in the range 1.5 < T*  (12,6)< 5.0. 

Experimental second virial coefficient data have been fitted to 40 inter- 
molecular potential functions for each of 15 substances. That such data taken 
in the range T* (12,6) ^2.0 cannot serve as a means for determining the 
potential function is clearly demonstrated. Also indicated, is the result that 
such data in the range T* (12,6) ^ 2.0 cannot be used for determining more 
than three potential parameters. 

The Percus-Yevick theory has been investigated and appears to be as 
applicable to air as it is to argon. The theory has been found to be sensitive 
to the choice of the intermolecular potential function. 

The effect improving the potential functions has on the KBS tables of 
equilibrium properties of gases at high temperatures has been investigated and 
found to bs generally small although changes of approximately 2% were obtained 
at the highest densities. 

in 
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I. INTRODUCTION 

The main purpose of the work under this contract has been a 
theoretical investigation of certain high density statistical mechanical 
theories with an aim to their application to systems of aerodynamic: 
interest. These theories assume prior knowledge of the pair potential 
function. It was necessary, therefore, to start this work with an investi- 
gation of the ways in which one obtains a knowledge of this function for any 
given system. This investigation of potential functions, originally en- 
visioned as a small part of this contract, had to be expanded considerably 
as new paths of investigation developed. The study of the pair potential 
function, in fact, became a major part of the work carried out under this 
contract» Thia has resulted in an increased understanding of intermolecular 
potential functions and of the means available for their determination. 
This understanding has a usefulness far beyond the needs of this contract 
since the calculation of all thermodynamic and transport properties of 
fluids on the basis of fundamental statistical mechanical theory always 
depends on prior knowledge of the intermolecular pair potential function. 
In fact, the results of such calculations can be modified drastically when 
changes are made in the potential functions used. 

We have attempted in this work to pursue several avenues of research 
simultaneoiisly. Considerable emphasis has been placed on theoretical studies 
of the usefulness of certain thermodynamic properties as probes of potential 
functions. A study of the second virial, Joule-Thomson, viscosity and dif- 
fusion coefficients and their first derivatives was completed and has al- 
ready appeared as a formal publication-*- (included as an appendix)« That 
work has been extended considerably to include the study of the sensitivity 
of the simultaneous fit of equilibrium and transport data to the potential 
function. The simultaneous fit of the viscosity and second virial coeffi- 
cient has been studied in some detail. The following are other propertj- 
pairs for which we have less detailed results at this time: 

a. the second virial and diffusion coefficients 
b, the Joule-Thomson and diffusion coefficients 
c. The joule-Thomson and viscosity coefficients 
d, the viscosity and diffusion coefficients 

For years, the literature has been filled with conjectures on the sub- 
ject of the sensitivity of the simultaneous fit of equilibrium and transport 
properties to the potential function. All such work has been based on results 
of fits to experimental data. As a result, all necessarily suffer from a lack 
of clarity due to the effects of experimental uncertainties, and what is more 
important, inconsistencies between the two kinds of experiments« This has, in 
fact, resulted in total disagreement among a number of workers. Some have 
felt this to be a sensitive probe of the potential while others have taken the 
opposite view. Our approach, as before, has been to deal with this question 
on a strictly theoretical basis, VJe determine what is, in principle, the 
sensitivity to the potential function of this simultaneous fit to these two 
kinds of data. The results are presented in accompanying graphs and will be 
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discussed below. These resttlts, being entirely independent of experimental 
precision, will contimie to hold as experimental techniques are refined and 
precision improved. Our results can be used for fundamental predictions in 
that we can make definite statements on the temperatures at which the 
properties are very insensitive to the potential. It follows, then, that 
at such temperaturesj more refined experimental techniques cannot yield 
further knowledge of the potential function. 

Another part of our research effort has been applied to the study of 
actual fits of experimental second virial coefficient data to a large number 
of potential functions. These are specific illustrations of the application 
of our theoretical results to real data. In addition, some very interesting 
new insights into the entire problem of potential functions resulted from 
these fits. These will be discussed below. In the particular case of the 
constituents of air, these fits have an additional purpose in that they 
also serve to define the best potential functions for use both in the high 
temperature tables and in the correlation of data in the experimental range. 
These latter functions were also used, as described below, in an assessment 
of certain high density theories and in a determination of the sensitivity 
of an equilibrium calculation to the potential function. The results of all 
of the fits are presented in the accompanying tables and graphs. 

We have also done a study of the applicability of the Percus-Yevick 
theory2 to gases made up of non-spherical molecules. There appear to be 
three main reasons why such a theory might be less applicable to non- 
spherical systems. First, the present form of the Percus-Yevick theory 
requires the use of a spherically symmetric potential function. It is 
possible that this may not be a serious problem since one expects an averag- 
ing of the actual potential over all interparticle orientations to be a 
reasonable procedure. In other words, one expects there to be an effective 
spherical potential to associate with the molecules for use in the theory. 
A second reason is that the theory is based on an assumption of pair-wise 
potential additivity. Deviations from additivity might be larger for the 
non-spherical molecules. Again, there might be an effective spherical 
potential which averages this effect for the pxirposes of the theory. The 
third reason is more basic, and while important for both Bpherical and non- 
spherical molecules, might conceivably be of a different magnitude for one 
kind of molecule as compared to the other kind. This objection is that the 
theory, though based on a summation of a certain infinity of terms in the 
full density series, neglects another infinity of terms. The effect of this 
neglect, and hence the success or failure of the application of such a theory 
to particular systems (e.g., air) can be judged only by the results of com- 
parisons with experiment. Since such theories depend on prior knowledge of 
the potential function, we have first sought an understanding of how such 
functions can be obtained. This accounts for the strong emphasis placed 
by us on the potential function aspect of this contract. 

Despite all of these possible objections, theories such as the Percus- 
Yevick are far superior to any other means available for the extrapolation 
required at the temperatures of interest in aerodynamic application at mod- 
erate to high densities. Work on such theories is complicated by the 
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problems involved in the solution of the appropriate non-linear integral 
equations by numerical means. This has the result of reducing the rate 
of progress significantly. 

As indicated above, the ultimate purpose of the investigation of 
potential functions is to provide the best possible input data for aero- 
dynamic calculations and to attempt to provide a sound theoretical under- 
standing of both these data and the methods used to obtain them« In the 
interest of maintaining the connection between our work and the NBS effort 
in calculating tables of the properties of air and its constituents} we 
have investigated the effect on the equilibrium properties of nitrogen of 
changing the N2-Ng intermolecular potential function. Our results are 

discussed below% 
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II. PRELIMINARY RESULTS FROM THE STUDY OF THE SENSITIVITY OF THE 
SIMULTANEOUS FIT OF THE SECOND VIRIAL COEFFICIENT AND VISCOSITY 
DATA TO DIFFERENCES IN THE INTERMOLEKULAR POTENTIAL FUNCTION + 

In our previous work , we have shown that equating the value of 
certain thermodynamic properties for a given potential function to their 
values for a second potential results, for each property, in a single 
equation in two unknowns. The unknowns are the ratios of the potential 
parameters e/k Qnd a    which guarantee equality of the property for the 
two potentials. Given a similar equation for a second function of each 
property, one would have a pair of eqtiations in the two unknowns, the 
solution of which would lead to their complete determination. Previously, 
we took for this second function of the thermodynamic property its deriva- 
tive with respect to the temperature. Thus, for example, we equated the 
second virial coefficient and its first derivative for a pair of potentials. 
For reasons previously outlinedl, we always took the (12,6) function as 
one of the two potential functions and used it as a reference potential. 
We solved the pair of equations in the parameter ratios as a function of 
the (12,6) reduced temperature. The results obtained have been discussed 
in considerable detail in the published work^-. In that work we formed pairs 
of equations by equating, for the two potentials, the following pairs of 
functions: 

1. the second virial coefficient plus its first derivative 
2« the Joule-Thomson coefficient and its first derivative 
3. the viscosity and its first derivative 
4.« the diffusion coefficient and its first derivative 

Instead of basing the calculation on the equality of a property and 
its first derivative, one can base it on the equality of two properties. 
We have done this recently for the following pairs of properties: 

1, the second virial coefficient and the viscosity 
2. the second virial and diffusion coefficients 
3* the Joule-Thomson coefficient and the viscosity 
4* the Joule-Thomson and diffusion coefficients 
5* the viscosity and the diffusion coefficient 

In this section of this report we discuss some preliminary results 
obtained from the simultaneous equality of the second virial coefficient 
and the viscosity. Results which have been obtained for the other pairs 
in the above list have not been studied sufficiently for reporting at this 
time. 

If B(T) represents the experimental second virial coefficient at the 
temperature T and if B*(T*) represents the reduced second virial coeffi- 
cient for some potential function 0(P.)j then 

B(T) = b B*(T») 

where T* = T / eA and bQ = ^Nd
3, eA and d being the potential 

+ In collaboration with Dr. H, Hanley of the Boulder Laboratories of NBS 
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parameters and N Avogadro's number» If, in the spirit of our earlier 
work, ve equate the second virial coefficient for two potential functions 
then 

This represents a single equation for the two unknowns e^A-i and ö?/ö,. 

If, now, T\(T) represents the experimental viscosity, then 

11(15 = Ä^VJ 
where A is a quantity which will not concern us, a    is a potential 

parameter, and 0 '   (T*J are the collision integrals associated with 
the viscosity for a particular potential function 0(R). If, now? we equate 
the viscosity for two potential functions, then 

vvwv) = fe )2 »2
(2,2)*(V V«*> <2) 

again a single equation in the same pair of ratios e2/
el and" ^2^1' 

Requiring that the second virial coefficients and viscosities be equal 
simultaneoil sly is equivalent to requiring equations (l) and (2) to be 
satisfied simultaneously» Elimination of the ratio d^/ö., between the two 
equations results in the single equation 

, V<Ti*>        V<T
:LV«2> .^ 

Note that for each potential function, one needs to compute the quantity 

Given two tables of this quantity, one for each of two potential functions, 
one can solve (3) in the manner described by us, in the appendix, for the 
solution of equation (3) there. 

or 



AEDC-TR-67-67 

The quantity Q*(T*) is shown in Figure 1 for several potential func- 
tions. For each potential, this quantity changes sign at the Boyle tem- 
perature. One has, therefore, to exercise the same caution as was previously 
required (see appendix). As before, this sign change creates no problem. 

Results obtained for the solution of (3) for the (l2,6) potential 
and each of the exp-6 functions appear in Figures 2a and 3» Results for 
the Xihara potential appear in Figure 2b, These figures also contain the 

results for the properties B, Trr as reported earlier1 (see Figures 6 and 

7 of appendix). These results illustrate very clearly the difficulty involved 
in determining the proper potential functions to use in aerodynamic calcula- 
tions. According to Figure 2a, one can barely distinguish between the  (12,6) 
potential and any of the exp-6 functions studied if the data is entirely in 
the range 1.5 ^ T*? ,  ^ 10,0» Distinctions can certainly not be made if the 

range of temperatures is further restricted to 1.5 s T* -. ^ 5»0, This is 

dB 
even true for the simultaneous fit to the properties B, T|, T-^r« Almost all 

experimental data lies within the second (narrower) range. For nitrogen, 
for example, these temperature ranges correspond to 150°K £ T ^ 1000°K and 
150°K ^ T s 500°K. Clearly, one can have considerable difficulty in choosing 
between potential functions based on available experimental data. 

Figure 2 can be considered to illustrate the information available« 
Figure 3, on the other hand, illustrates the information needed. This covers 
the much more extensive range 0 ^ T* ,  Ä 50, the upper limit now corres- 

ponding to 5000°K for nitrogen, not a high temperature for aerodynamic 
applications. According to the curves of Figure 3, it is exceedingly easy 
to distinguish between the potential functions at the higher temperatures» 
What this means is that calculations based on the use of each of these 
potentials will yield quite different results at such temperatures. Clearly, 
the intermolecular potential functions associated with a given substance must 
be very carefully chosen if the application is to a calculation at aerody- 
namic temperatures. 

We have already shown!- that the simultaneous fit of the viscosity and 
its first derivative can be a sensitive probe of the potential function. In 
particular, it appeared that the fit of such data simultaneously below 
T* = 1.5 and above T* =5.0 might serve to define the potential function. 
It was felt at the time that this sensitivity might have been due to the 
requirement on the sisrjiltaneous equality of both the viscosity and its first 
derivative. The results presented here are entirely compatible with the 
resxilts of the appendix and show that the sensitivity is inherent in the 
viscosity itself. According to Figures 2 and 3, a potential function with 
more than three parameters appears to be needed. With such a potential 
function, one might be able to find parameters which fit the data simul- 
taneously at T* < 1.5 and T* > 5.0. This question is of the utmost 
importance and is the subject of continuing research. 
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It is possible, however, that this requirement is more stringent than 
necessary for aerodynamic applications. Thus, it is clear from Figures 2 
and 3 that the value oi at  15*5 will simultaneously reproduce the second 
virial and viscosity data for the (12,6) function over the whole tem- 
perature range 1.5 ^ T* , £ 50 and possibly to still higher temperatures» 

The fact that the lower temperature data (i.e., T* , <  1.5) is not repro- 

duced may not be of any consequence in such applications. Before drawing 
any conclusions along these lines, one needs to do these calculations for 
other families of functions of which the (l2,6) is not a member. If this 
conclusion is supported} then, clearly, the fit of viscosity data at tem- 
peratures TIL ,>  5.0 would be enough to determine the potential functions 

needed in aerodynamic calculations» Any conclusions of this kind would need 
to be followed by actual fits to such data as exist« 'Where data do not exist, 
one could point to the need for further experimental work. 

In summary and to illustrate our results, suppose that the system of 
aerodynamic interest were stich that its intermolecular potential function 
were bhe (12,6) function and that there were available to us only the exp-6 
family of functions. This is analogous to the actual situation since the 
"actual" potential of a given substance is unknown to us but there are avail- 
able only a limited number of reasonable functions to try. At ordinary tem- 
peratures, any one cf the exp-6 functions might properly describe the 
properties of the hypothetical system of interest. At high temperatures, 
however, these properties would be only poorly described unless one happened 
to use the potential corresponding to a = 15.5. There is clearly not enough 
information available at the lower temperatures on which to base the choice 
a = 15.5. This difficulty is compounded further if one includes the fact 
that at low temperatures one needs to use the value a = 13.5 for describing 
the properties involved. 

One aspect of the problem has yet to be investigated. That is, the 
effect of basing the comparisons on spherically symmetric potentials when 
many of the actual potentials of interest are not spherically symmetric« 
An initial investigation of this will involve the fitting of actual data 
to potentials in a manner to be determined after further study» 
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III. THE DETERMINATION OF POTENTIAL FUNCTIONS FROM THE FIT OF 
EXPERIMENTAL SECOND VIRIAL COEFFICIENT DATA 

We have fitted experimental second virial coefficient data to those 
calculated for various potential functions both in order to illxistrate how 
some of our earlier restxlts^ apply to actual experimental data and to de- 
termine potential functions and their parameters for our study of high 
density theories. We present here results for fifteen substances, chosen 
In order to cover a variety of molecular shapes. The data for each sub- 
stance was fitted to over Jß    different potential functions. Such a for- 
midable task clearly called for an axitomatic procedure; hence a computer 
program was developed. The numerical procedure adopted will be outlined 
but will not be discussed in detail. 

The potential functions can be written in redviced form by dividing 
lengths by a characteristic length and energies by a characteristic energy3. 
This enables one to calculate the second virial coefficient also in reduced 
form. This, in turn, leads to a universal second virial coefficient table 
for each potential. The theoretical second virial coefficient for any given 
substance and a particular potential function is obtained by inserting into 
such a table the characteristic length and energy appropriate to that sub- 
stance for that potential function. In this way one can calculate a set of 
theoretical second virial coefficients to match a given set of experimental 
data. Thus, for each experimental point, one will have a corresponding 
theoretical point and a deviation) A, of theory from experiment* Because 
of experimental error and since one does not know the precise potential 
function to use, it is always impossible to match exactly a set of experi- 
mental data with A = 0 for each point. Clearly, at each experimental 
point, the magnitude of A is a measure of the goodness of fit to that 
point. It is general practice to use a quantity such as 

1/2 
A = i M 

where the summation is over all of the experimental points, as a measure of 
the overall goodness of fit. 

Now, for a given potential and a given set of experimental data, A will 
depend on the choice of the parameters used (i.e., the characteristic length 
and energy). A will be least, by definition, for the best values for this 
pair of parameters« We have found stich a best pair of values for over Iß 
potentials for each of fifteen substances. Our method was based on the 
following: 

If the characteristic length is designated a    and the characteristic 
energy e/k, then S = Ä (e/k, a") described a surface in a space for which 
e/k and a    are (e.g.) the X and Y axes and A" the Z axis. A given 
set of experimental data will have a A surface associated with each poten- 
tial function which one chooses to use. The best fit to the data for any 
potential ftmction will be obtained with that pair of parameters e/k Jö 
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which are the coordinates of the minimum of the A surface. It ia this 
pair of parameters which we seek. Our computer program was designed to 
perform a surface minimization of A with respect to e/k,d. The details 
of the method will not be described» The results obtained with the computer 
program appear in Table 1« 

As mentioned earlier, we shall first use these fits to illustrate the 
meaning of our earlier theoretical results.! According to our theoretical 
resultsj the second virial coefficient is very insensitive to the potential 
function for reduced temperatures above Ty_2 c) ~  2.0. Furthermore, we 

see that, although the second virial coefficient can be expected to be a 
sensitive probe of the potential at higher temperatures, this sensitivity 
certainly does not manifest itself below T¥_ ? ,^  = 10.0. On the other hand, 

we have shown that below T^? ,*  = 2.0, the second virial can be sensitive 

to differences in the potential function. Eow. for argon, the characteristic 
energy in temperature units is, for the (l2,6; function, e/k = 120°K. 
Thus, we see that for 24.0°K £ T £ 1200°K, the second virial coefficient 
cannot be used as a probe of the potential function while for T^ < 240°K, 
it is at least potentially sensitive (subject to the size of the experimental 
errors). 

We shall use the fits of three sets of experimental data for argon as 
illustrations. These are the 1958 data of Michels et al which cover the 
range 133.15°K £ T £ 273.15°K, the 1949 data of Michels et al which cover 
273.15°K s: T * 423,15°K, and the 1953 data of Whalley et al in the range 
273.15°K £ T £  873.15°K. In terms of reduced units, these cover the ranges 
1.11 * TJ2 6 £ 2,28, 2.2S <■ T*, 6 £ 3.53, and 2.28 s TJ2 6 

s 7.29. Thus, 

the first of these is in a range for which the second virial coefficient is 
potentially sensitive while the others lie entirely in an insensitive tem- 
perature range. 

Table 2 serves as the basis for our discussion. The differences in the 
sensitivity of each set of data are read across Table 2 for each potential. 
It is clear that the lowest temperature data is more sensitive than the high 
temperature data« The variations within each column have to do with the 
extent to which the potential has been varied. This will be discussed from 
another point of view below. 

Our point here with respect to the differences in sensitivity below and 
above T^2 M 

= 2.0 is more strongly illustrated in Tables la-lc by the 

absence of a clear minimum for the higher temperature data. In other words, 
the moderately large values of the ratios in the second column of Table 2 
are not taken as ratios to a value of A at a meaningful minimum but to a 
value which happens to be smallest. For the (m,6) data in the second 
column, the indications are that a minimum, if any, will appear at a value 
of m close to the physically meaningless value m = 6 (for which the 
potential vanishes). 
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Clearly, it is absolutely impossible to assign a potential function 
and its parameters to argon based entirely on the high, temperature data. 
Unfortunatelyj even to this day, the (12,6) function and its parameters, 
as obtained from the high temperature data reported by Michels et al prior 
to 1958, are taken to give a correct representation of the intermolecular 
potential function for argon* Such a representation sviffers horribly on 
two accounts. First of all, the data is entirely in the temperature range 
for which one cannot distinguish among the functions. Secondly, an analysis 
of the low temperature data, where distinctions can be made, shows the 
(12,6) to be incorrect. 

A more subtle conclusion of our theoretical work was that, given a 
potential function, together with a family of functions of which the given 
function is not a member, one can find a member of this family which would 
reproduce the second virial coefficient for the given function over a range 
of temperature which starts from very low temperatures and goes to very 
high temperatures. We specifically showed this to be true for the (l2,6) 
potential as the given function. This conclusion would seem to say that the 
second virial coefficient is a three-parameter object as far as the potential 
function is concerned. 

In order to examine this aspect of our conclusion more closely, we have 
plotted the s/k and bg values obtained for each potential function for a 
representative number of substances. These are presented in Figure 4. for 
the various siibstances. It seems clear that, in almost every case, if one 
were able to remove experimental error, the data for all potentials, with 
the exception of the physically unreasonable square well, would fall on one 
curve. Furthermore, the point which represents the (12,6) function corres- 
ponds, in families of potentials for which the  (12,6) is not a member, to 
that fvinction which was found in our earlier work to reproduce the second 
virial coefficient of the (12,6) over a large temperature range. In order 
to make certain that we are talking about the same fits, we have also plotted 
e/k versus Ä for the various potentials. These are presented in Figures 5a 
et seq. for the same substances. Here again, all points, except for those 
for the square well, tend to lie on one curve. This is particularly true in 
the vicinity of the minimum value of X which, after all, is the most 
physically meaningful part of these curves. Such differences as there are, 
appear to be, in almost every case, smaller than the vincertainties which one 
might assign on reasonably based estimates of experimental precision. It 
would thus appear that by fitting experimental second virial coefficient data 
to theoretical values for any "reasonable" three-parameter family of poten- 
tials one obtains the same information about the potential function of the 
experimental system. A corollary of this is that the same best fit will be 
found within every such family, and in fact, for the sane parameters. 

ecu appears to be an exception to this, although one cannot be certain 

since the minima in the 3 versus e/k    curves have not been reached, A 
reasonable extrapolation of the curves leads to relatively large differences 
among some of the curves at the place where the minimum is indicated, how- 
ever. It should be noted that even for CCL the curves for the exp-o and 
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(m,6) families essentially coincide, it being only the Kihara and (12,n) 
families which produce separated curves» Now these latter two families have 
in common the same repulsive exponent (m. = 12). This may mean that a value 
m = 12 for the repulsive exponent is sufficiently unrealistic so that, in 
each case, the other parameter (y for the Kihara, and n for the 12,n), 
is unable to compensate for it« On the other hand, it is possible that the 
separation of the curves is an indication of a need for a fourth parameter. 
This is not unreasonable for a highly non-spherical molecule like CCU. In 

any event, further investigations are called for. 

It shoxild be noted again that the 5 versus e/k curves for the other 
substances for the (l2,n) function differ only slightly from the equivalent 
curves associated with the other families. We mention again that this is 
particularly true at the minimum» This greatly restricts one's ability to 
determine the proper value of n and then to use the remaining deviations 
to determine an additional parameter (e.g., the repulsive exponent m). 
The A versus eA curves for the different families are, in fact, so close 
together that we are inclined to think that it is not possible to determine 
the additional parameter m, after having determined n.  This would rein- 
force the statement in our earlier work to the effect that the second virial 
coefficient was a three-parameter object (e/k, ö and one other). 

Nevertheless, the results for the (l2,n) family of functions are still 
very interesting. There seems to<be the vague indication of a relationship 
between the fit of the second virial coefficient data and the proper attrac- 
tive exponent, n. Thus, the best fit for the rare gases is obtained for 
n = 7. This could, indicate either the need for an attraction made up of the 
combination of an inverse 6th power and an inverse 8th power or it could 
indicate that n = 6 is the best choice, the difference in S between 
n = 6 and n = 7 being statistically insignificant. The data for systens 
with more non-spherical molecules are generally best fit by still larger 
values of n. This one could ascribe to the need for higher moments, i.e., 
the addition of an inverse 10th power attraction. 

Exceptions to this general behavior are seen for nitrogen (and hence 
air) and for ethane, the data for both of these being best fit by the virials 
for n = 7. 

This general behavior is probably fortuitously associated with the use 
of the repulsive exponent m = 12. In our previously reported workl, we 
found the second virial coefficient to be quite insensitive to the attractive 
exponent for T* > 2.0. The sensitivity indicated below T* = 2.0 could net 
be properly evaluated in that work since all comparisons were with respect to 
the (12,6) function which i3 a member of the (l2,n) family. Further 
research is in progress to determine the sensitivity, if any, of the low 
temperature second virial coefficient data to the attractive exponent. 

Mention has been made of the variations within a given column of Table 
2 and its relation to the extent of variation of the potential function. 
This relationship can be seen in Figures 4* Thus, for example, the variation 

11 
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of Y ^or ^e Klhara potential between y ~  0.1 and 0.6 traces out 
the entire parabola. The variation of the parameter a    from a  = 16 to 
or = 19 for the exp-6 function, on the other hand, traces out a much 
smaller part of the parabola. The sane is true for each of the other 
families of potentials, a different part of the common parabolas of Figure 
4. being traced out in each case. Since the same parabola applies in each 
case, it follows that 'the minimum £ is the same for each family of func- 
tions.. The maximum (and hence the value in each column) ia different in 
each case, depending on how far up the common parabola a given family goes. 
Thus, of = 12 represents a lower starting point than does m -  9; hence, 
the (m,6) ratio is larger than is the exp-6. 

12 
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IV. A STUDY OF THE APPLICABILITY OF THE PERCUS-YEVICK THEORY TO SYSTEM? 
OF DIATOMIC MDL3CTXES 

We have solved the non-linear integral equation associated with the 
Percus-Yevick theory numerically for three potential functions along with 
equivalent isotherms in order to study the sensitivity of that theory to 
reasonable changes in the Internolecular potential function. The potential 
functions used were all of the Lennard-Jones (m,6) type. We have chosen 
the particular values m = 12, 18, and 24, The choice of the values 
m - 18 and 24. was dictated by our interest in a comparison with experi- 
mental data for argon and air. According to our fits of the second vlrial 
coefficient data, m = 18 is a proper choice for argon while m = 24 is 
a proper choice for air« The  (12,6) function was also included since 
that function was used for almost all of the interactions in the NBS air 
and argon calculations'*} 5, o. 

Let us first consider the results for the (12,6) potential function. 
We have solved the Percus-Yevick integral equation for that potential func- 
tion at a reduced temperature of T* = 2.74.« This can be taken as corres- 
ponding to T = 328.15°K for argon (based on the old value of sA = H9.8°K) 
and to T = 273.15°K for air. Our discussion will be based on Figure 6. 
There are seven equations of state in that diagram. Two of these are ex- 
perimental, one for argon and one for air. Of the remaining five, three are 
associated with the first few terms of the virial series. Now, the ideal 

PV 
gas equation of state is just ^=  = 1, hence that appears as a horizontal 

straight line for unit ordinate. The addition of the second virial coeffi- 
cient, which Is the first correction for non-ideality, converts the equation 

PV of state to 77^ = 1 + Sb, still a straight line but no longer horizontal. 

Now, for the (12,6) function, the Boyle temperature, i.e., that tempera- 
ture which B = 0, is above T* = 2.74., hence, for T* = 2.74., B < 0. 
Therefore, except for very low densities (p*<.l), including the second 
virial coefficient results in an equation of state which is far inferior 
to the ideal gas equation of state. 

It night bs worth mentioning that the early 51BS air calculation*1* was 
an ideal gas one. The equation of state was not simply a straight line due 
to the change in the number of moles as a result of chemical reactions. In 

PV 
other words, the equation of state was z^r = n where n = n (T,p) is the 

total number of moles» In later calculations5, we have included the second 
virial coefficients of the constituents. The limit of the validity of an 
approximation which includes only the second virial correction is seen in 
Figure 6 to bs approximately log p/p0 

ä 2.0. For this reason, our tables 

have been cut off near log p/p = 2.0, 

13 
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Figure 6 can be misleading if one uses it literally for a description 
of the situation at the temperatures of our air claculation. Since the 
temperatures included in those reports are above the Boyle temperature, 

FV B > 0, the straight line equation of state — = 1 + Ep  is everywhere 

greater than unity. Thus, at such high temperatures, the second virial 
equation of state represents an improvement over the ideal gas at all 
densities, although a small one at high densities. 

The addition of the third virial coefficient results in the equation 

PV 2 
of state pTr _ 1 + Bp+ Cp  containing two density corrections. Such an 

equation of state has some curvature. According to Figure 6, this results 
in a considerable improvement over both the ideal and second virial equations 
of state. Deviations from experiment are still quite large, however. At our 
reduced temperature of Tw = 2.74, the range of validity of an approximation 
containing the third virial coefficient would be, roughly, p* £ .3 which, 
for argon, is near 220 times normal density (log p/p0 = 2.3). 

This demonstrates the extreme difficulty which one rapidly encounters 
in attempting to extend our calculations as presently performed beyond the 
density log p/po=2.0. The third virial coefficient describes interactions 

involving three particles at a time. Thus, for example, undissociated air 
considered to consist of molecular nitrogen, molecular oxygen, and argon 
would require the specification of six interactions as a function of tem- 
perature. This would increase to fifteen on the dissociation of the mole- 
cules and would increase still further on ioniaation. On the expenditure of 
this extraordinary amount of effort, one would find that one could increase 
the range of the calculation from log p/p0 = 2.0 only to log p/p = 2.3« 

Experience with the known hard sphere virial coefficients indicates 
that the higher virial coefficients will have still narrower density ranges. 
That is, as one increases the density one will find that one needs the fifth 
virial coefficient much sooner (in terms of the density increment) after the 
fourth virial coefficient than one needed the fourth after introducing the 
third« This gets progressively worse as one increases the density, 

A further complication is introduced by the progressively larger number 
of particles required in the calculation of the higher virial coefficients. 
This makes the calculation become considerably more difficult very rapidly 
as the order of the virial coefficient increases. This difficulty is 
demonstrated by the paucity of published results» Third virial coefficients 
have been calculated for only a very small number of functions, the fourth 
for only the (12,6) (aside from the unrealistic hard sphere and square 
well) and the fifth for only the hard sphere. 

In short, the extension beyond log p/p0 = 2.0 of the approach used 

by us in the calculation of tables of thermodynamic properties of air, 
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nitrogen, and argon is practically impossible. This serves to emphasize 
the importance of seeking approximations like that of the Percus-Yevick 
theory. 

The remaining two equations of state of Figure 6 are associated with 
the Percus-Yevick theory. The fact that there are two equations of state 
results from an inconsistency between two representations of the pressure. 
This, in turn, comes from the neglect of diagrams mentioned earlier. This 
inconsistency appears only in terms beyond the third virial coefficient♦ 
It is our present view that the equation of state labeled Z shotild be used 

p 

since the calculation of thermodynamics functions consistent with it appears 
to be relatively straightforward. 

The agreement of the Percus-Yevick equations of state with experiment 
for argon is exceedingly good. Even at a reduced density p* = .65 
(approximately 450 times normal), the deviation of Z  from the argon 

experimental value is only 5%*    The situation for air is less satisfactory, 
however. In that case, the deviation at p# = .65 is roughly 30$. This 
is lesa than half the discrepancy from the ideal gas (75$) but rotighly 
equal to that for the equation of state containing the third virial coeffi- 
cient. An obvious source for this increased deviation in the case of air 
might be the use of an unsuitable potential function. According to Table 1 
the (12,6) is a poor choice of potential for almost all experimental 
systems» In particular, for argon one should use the (l8,6) potential 
while for air the (24,6) potential is most appropriate. The better fit 
of the argon data as compared with the air data in Figure 6 could easily be 
attributable to the fact that the (l8,6) potential is more nearly like the 
(12,6) than is the (2,4,6) function» 

Clearly, the next step in our study was to obtain the solutions to the 
Percus-Yevick integral equation for both the (l8,6) for argon and (24,6) 
for air. Our results for the (18,6) potential function are contained in 
Figure 7. The calculation was carried out for isotherm T5/.« ,> -  2.0^67 

in reduced units. This temperature was selected as equivalent to TJL« ,\ = 

2.74 on the basis of the ratio e-,/e2 corresponding to the simultaneous 

fit, for the two potentials^ for the pair of properties a*    and T* 
dB* 
dT** 

This is clearly in agreement with our fits (see Table l) of the second 
virial coefficient data to the second virial associated with the (18,6) 
potential. 

It is clear from Figure 7, that the change from the (12,6) potential 
to the more reasonable (18,6) results in a considerable deterioration of 
the agreement between theory and experiment for argon at the higher densities■ 
On the other hand, the agreement between theory and experiment for air is 
considerably enhanced in going from the (12,6) function to the (l8,6). 
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Carrying the air comparison one step further to the more reasonable (for 
air) (24,6) function again results in a -worsening of the agreement between 
theory and experiment at high densities (see Figure 8), It should be noted 
that at low densities (p* £ .1), at which the second virial coefficient is 
the major contributor, essentially the same agreement is obtained for all of 
the functions. This is in keeping with the results of our earlier work-'- in 
which we sho-wed the second virial coefficient to be very insensitive to the 
potential function for T*/-.2 •% < 2.0, 

One might argue that it would be proper to use the (l2}6) function 
for argon and the (18,6) function for air since these result in quite 
good fits even at high density. This might be a reasonable procedure if 
one were only interested in fitting the experimental data at temperatures 
in the neighborhood of the isotherms used* Clearly one cannot use those 
potentials at low temperatures since one would certainly not get a good fit 
at low densities (and possibly at high densities as well). What the choice 
of the  (l8,6) for air and (12,6) for argon would do for the relationship 
between the calculated properties and the "actual" properties at aerodynamic 
temperatures would be impossible to say at this time due to the lack of 
experimental data at such temperatures» In short, the assignment of these 
potentials baaed on the behavior along the isotherms examined here would 
reduce the statistical mechanical theory to a completely empirical one which 
could not be extrapolated. The importance of extrapolation to high tempera- 
tures forces us to choose a potential function based on fundamental considera- 
tions and to insert that function into the best available theory» 

We have begun an examination of a more consistent Fercus-Yevick theory 
starting with an examination of the theory for hard spheres« The results 
obtained are in too preliminary a form to be reported at this time» Progress 
in this area has been hampered by a lack of time resulting from the need for 
continued intensive effort in the examination of intermolecular potential 
functions. 
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V.  THE EFFECT ON THE CALCULATED EQUILIBRIUM PROPERTIES OF NITROGEN OF 
CHANGING TO AM IMPROVED POTENTIAL FUNCTION 

We have, in recent years, produced a number of sets of tables of 
equilibrium properties of high temperature gases. The most recent of 
these go beyond the ideal gas approximation to the extent of including 
zhe  effect of the second virial coefficient» The second virial coefficient 
accounts for the effect of interactions between pairs of molecules, depend- 
ing explicitly, therefore, on the potential function assumed to describe 
the interaction between a given pair of molecules. 

In the calculations on which our tables have beer, based, we have, 
almost exclusively, taken the Lennard-Jones (12,6) potential function for 
this description» According to the fits to second virial coefficient deta 
reported herein, the (12,6) function is clearly a poor choice. While we 
cannot state a unique best choice on the basis of fits to such data, we can« 
nevertheless, determine the best member of a given family of functions. This 
is equivalent to assigning the best value to the third parameter which 
characterises the family. Thus, according to Table 1, the best member of the 
(m.6) family to use for nitrogen would be that characterized by the value 
m = 24, which is considerably different fron the m = 12 previoi;sly 
employed by us. 

We have calculated a new set of second virial coefficients for the 
ilp-Ep interaction based on the (2,4,6) potential function and have intro- 

duced these virial coefficients into the calculation of the equilibrium 
properties of nitrogen. It should be noted that the 1\T-N and N-K^ 
interactions have not been modified. 

A comparison of the results of this calculation with the earlier work 
is presented in Figure 9 and in Table 3 for the density log p/p0 = 2.0. 

According to Table 3« a very large change in the density correction results 
from changing the potential function in this way. The effect on the proper- 
ties themselves is much less since these contain, in addition to the density 
correction, an ideal gas contribution which is independent of the potential 
function and hence unaffected by changes in it» It should be noted that the 
first density correction being examined is linear in the density. Therefore, 
the density corrections in Table 3 double on doubling the density to 
p/p = 200 (i.e.«. log p/p0 

= 2.14). The percent deviation associated with 

the total properties at 1C,000°K actually more than double under these 
circumstances since the degree of dissociation decreases as does the ideal 
gas contribution. 7r.e first density correction then represents a larger 
part of the total property. On the other hand, the corrections decrease 
linearly with decrease in density (except for the effect of dissociation). 
Thus, the density corrections are reduced by a factor of 100 in going to 
normal density (log p/p0 = 0.) making their effect on the total properties 
essentially negligible at that density. 
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In this section of this report we have examined only the change which 
takes place in the first density correction to the ideal gas properties 
when a reasonable modification is made in the intermolecular potential 
function» At higher densities one would have to examine the effect on the 
higher virial coefficients associated with the higher order density cor- 
rections. This, we have, in effect« undertaken in our examination of the 
sensitivity of the Percus-Yevick equation to these same changes in the 
potential function« It should "be remembered that the Percus-Yevick 
equation contains approximations to each of the virial coefficients. 
Results of this examination appear elsewhere in this report. 

Our investigation has involved the modification of the N2~
K2 inter- 

action exclusively. It should he noted that estimates of the K-N„ inter- 

action are based on prior assumptions as to how to characterize the N^-No 

interactions. The N-N^ interaction contributes significantly only in a 

narrow band in a temperature-density plot. This band is characterized by 
a dissociation sufficiently far advanced to produce a non-negligible mole 
fraction of N atoms but not sufficiently far advanced to reduce the number 
of molecules to too low a level. 

From the resttlts listed in Table 3> one can conclude that the equation 
of state of nitrogen previously published by us is good to better than a 
fraction of a percent with respect to improvement in the N?-N? inter- 

molecular potential function at densities below normal (log p/p0 = 0), to 

approximately 1%   at 10 times normal density (log p/p0 = 1*0) and to 

2%    at 100 times normal density (log p/p0 
= 2,0), Those properties whose 

density corrections depend on the derivatives of the second virial coeffi- 
cient are considerably more accurate with respect to these improvements in 
the potential functions* 

According to Table 1} the 0o~^2 potential function should also be 

changed to the (24,6) function while the (18,6) potential should be used 
for argon. The effect of improving the functions used in the air calculation 
should, therefore, be no worse than that found for nitrogen. 
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VI. SUMMAEY AND CONCLUSIONS 

The study of high density statistical mechanical equations of state 
of a fluid has necessitated the prior investigation of intermoleeular 
potential functions and of the means for the determination of such func- 
tions from experimental data« 'While this study of potential functions is 
far from complete, we have, nevertheless, come to a number of important 
conclusions. We have found second virial coefficient data at reduced 
temperatures above 2.0 on the (12,6) scale to yield no information on 
the potential function» The same is true of viscosity and diffusion coeffi- 
cient data for reduced temperatures between 1.5 and 5.0 on the (12,6) 
scale. 

Second virial coefficient data for reduced temperatures below 2.0 on 
this scale can certainly be used to determine three parameters in a potential 
function« There are vagtte indications that one might, in some instances, be 
able to determine an additional parameter. 

The fit of viscosity and diffusion coefficient data might serve as a 
sensitive probe of the potential function provided such data is available 
both below T* = 1,5 and above T* = 5.0 on the (12,6) scale. We have 
shown the simultaneous fit of these properties and their first derivatives 
in these temperature ranges to be possibly quite sensitive. We have also 
found this to be true of the simultaneous fit of second virial coefficient 
and viscosity data* The extent of this sensitivity and whether or not it is 
a property of the individual physical properties is the subject of investi- 
gation at the present time. This investigation involves the actual fit of 
experimental data as well as the extension of our theoretical investigation 
to additional families of potential functions. 

Our investigation of high density theories has thus far been limited 
to the Percus-Yevick theory. We have found that theory to be as applicable 
to a fluid of diatomic molecules like air as it is to a fluid of spherical 
molecules like argon. The effect on the theory of changing potential func- 
tions in a manner dictated by fits to the second virial coefficient is under 
investigation. We have already shown that improving the potential function 
has a strong effect on the equation of state» We have not determined, as 
yet, whether or not there are differences, at high densities, for potentials 
which produce equivalent second virial coefficients over a large temperature 
range, Our investigations in this area combined with our continuing work on 
the potential function should produce a balanced view of what one can accom- 
plish with the combination of such high density theories and the tools avail- 
able for the determination of potential functions required by them. 

We have examined the effect improving the potential functions has on 
some of our tables of the rma dynamic properties of gases. We have found that, 
while the virial corrections can be drastically altered by changing potential 
functions, the properties themselves are only slightly changed. The equation 
of state itself is affected in a non-negligible way only at the highest 
densities indicating that the tables will probably need to be redone only at 
a small number of the highest densities» Final results in this area must 
necessarily wait for final decisions as to the potential functions. 
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TABLE   la.    ARGON*    B = 12.09 

Potential eA 

9 90.15 
12 120.00 
15 142.48 
16 148.82 
17 154-69 
18 160.15 
21 174.49 
24 186.43 
27 196.54 
30 205.26 
40 227.38 

0.1 142.38 
0.15 153.53 
0.2 I64.64 
0.25 175.67 
0.3 186.66 
0.4 208.33 
0.45 219.01 
0.5 229.61 
0.55 240.02 
0.6 250.46 
C.70 270.86 

12 104.90 
13 115.31 
14 124.36 
15 132.50 
17 H6.49 
19 158.33 
30 201.57 
40 224.86 
50 240.96 

A 41.41 
5 83.52 
6 120.00 
7 151.27 
a 178.33 
9 202.06 

10 233.05 

1.2 358.80 
1.4 186.00 
1.6 114.27 
1.8 76.57 
1.9 64.07 
2.0 54-26 
2.2 40.02 

D 
O 

(m,6) m= 9 90.15 58.12 .376 
"  "" 50.85 .379 

47.05 .382 
46.16 .383 
45.38 .383 
44.71 .384 
43.12 .386 
41.97 .387 
41.10 .389 
40.42 .389 
38.91 .392 

Kihara Y = 0.1 142.38 35.83 -381 
30.54 .381 
26.25 .382 
22.74 .383 
19.83 .383 
15.35 .384 
13.62 .384 
12.13 .385 
10.86 .385 
9.76 .385 
7.96 .386 

exo-6      <x = 12      104.90      86.04 .375 
79.20 .376 
74.21 .377 
70.44 -378 
64.89 .330 
61.02 .382 
50.65 .388 
46.69 .391 
44-40 .393 

(12,11) n = 4 41.41 66.91 .376 
55.97 .378 
50.85 .379 
47.67 .380 
45.45 .381 
43.80 .382 

42.51 .383 

Square well      R = 1.2 358.30 31.06 .409 
33.71 .393 
34.98 .402 
35-68 .411 
35.90 .415 
36.10 .417 
36.38 .422 

*E. Whalley, Y. I/upien, and W. G.  Schneider 
Can.  J. Chem. ^1, 722  (1953) 
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(m,6) 31 = 

Kihara Y = 

exp-6 a = 

(12,n) 

Square well  R = 

TABLE lb. ARGON* B = 8.7557 

Potential eA b 
0 

A 

9 69-711 56.15 .0370 
12 119.58 49.41 .0382 
15 142.10 45.83 .0409 
16 148.46 44.95 .0419 
17 154-34 44-20 .0428 
18 159.82 43.55 .0439 
21 174.20 41.99 .0471 
24 166.16 40.84 .0500 
27 196.32 39.97 .0527 
30 205.06 39.27 .0552 
40 227.28 37.73 .0618 

.1 141.93 34-66 .0432 

.15 153.06 29.43 .0473 

.2 164.15 25.19 .0523 

.25 175.16 21.71 .0582 

.3 186.10 18.84 .0648 

.4 207.69 14.41 .0797 
•45 218.32 12.701 .0878 
.5 228.87 11.24 .0962 
.55 239.23 9.993 .IO48 
.6 249.59 8.91 .1138 

12 104.25 8I.42 .0427 
13 114.67 75.44 .0424 
14 123.80 71.05 .0426 
15 131.95 67.63 .0431 
17 146.02 62.57 .0445 
19 157.88 58.96 .0460 
30 201.30 49.08 .0553 
40 224.69 45.21 .0617 
50 240.86 42.94 .O664 

4 41.18 67.03 .0518 
5 83.27 55.42 .0399 
6 119.58 49.41 .0382 
7 150.69 45.45 .0524 
8 177.60 42.56 .0719 
9 201.15 40.33 .0918 

10 222.01 38.53 .111 

1.2 356.25 22.75 0.3761 
1.4 185.705 30.63 0.1391 
1.6 114.45 34.74 .0500 
1.8 76.84 37.14 .0419 
1.85 70.21 37.58 .047 
1.9 64.35 37.98 .0524 
1.95 59.15 38.33 .0579 
2.0 54.51 38.65 .0631 
2» 2 40.25 39.65 .0802 

*A. Michels, H. Wijker. and H. Wijker 
Physica 15, 627 (1949) 
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TABLE lc. ARGON* B = 72.016 

m = 

Potential eA b 
0 

A 

(m,6) 9 34.16 66.36 .392 
12 115.06 54.76 .223 
15 140.10 47.76 .110 
16 147.50 45.96 .103 
17 154.53 44.34 .118 
18 161.22 42.87 .145 
21 179.57 39.19 .252 
24 195.79 36.28 .363 
27 210.25 33.93 .471 
30 223.14 32.04 .576 
40 254.82 28.35 .895 

Kihara Y = .1 140.76 35.57 .102 
.15 154.72 28.79 .142 
.2 169.67 23.31 .245 
.25 185.82 18.83 .377 
.3 203.31 15.18 .539 
• 4 238.05 10.18 .985 
• 45 251.48 8.72 1.273 
.5 262.36 7.65 1.589 
.55 271.60 6.82 1.916 
.6 279.96 6.13 2.252 

exp-6 a = 12 99.90 90.93 .271 
13 110.71 82.73 .220 
14 120.44 76.45 .173 
15 129.35 71.40 .134 
17 H5.33 63.63 .102 
19 159.46 57.32 .144 
30 217.87 40.57 .535 

(I2,n) n = 4 36.84 90.03 .723 
5 76.71 68.83 .499 
6 115.06 54-76 .223 
7 153.58 43.50 .166 
8 195.16 33.75 .539 

Square well R = 1.2 324.5 18.40 8.871 
1.4 210.27 19.75 2.842 
1.6 122.62 29.49 .422 
1.8 73-68 a.78 .196 
1.85 66.39 43.85 .272 
1.9 60.17 45.65 .339 
1.95 54.78 47.26 .399 
2.0 50.08 48.69 .452 
2.2 36.15 53.06 .610 

*A. Michels, J. M. H. Leveltj and W, deGraaf 
Physioa 24, 659 (1958) 
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TABLE  Id.    KRYPTON    B = 173.50 

U,6) m. = 

Kihara Y = 

exD-6 a 

(I2,n) n = 

Square well      R = 

Potential e/k b 
0 

A 

9 118.24 91.85 7.82 
12 165.15 78.05 4.90 
15 200.56 58.97 2.494 
16 209.55 56.86 1.903 
17 217.36 55.28 1.50 
18 224.16 54.08 1.38 
21 240.31 51.83 2.22 
24 252.36 50.62 3.38 
27 261.8 49.93 4.40 
30 269.80 49.388 5.274 
40 288.82 48.52 7.377 

.1 200.29 44.17 2,246 

.15 215.09 36.44 1.43 

.2 227.69 30.81 2,00 

.25 238.59 26.51 3.27 

.3 248.33 23.11 4.663 

.4 265.44 18.01 7.415 
• 45 273.14 16.04 8.732 
.5 280.50 14.36 10.005 
.55 
.6 294.04 11.66 12.41 
.7 306.56 9.593 14.645 
12 140.87 121.95 6.00 
13 157.47 107.76 5.05 
14 172.2 97.29 4.16 
15 185.15 89.46 3.33 
17 2O6.O4 79.16 1.99 
19 221.57 73.12 1.40 
30 
40 
50 

4 51-02 135.78 12.792 
5 108.02 96.81 9.309 
6 165.15 78.05 4.90 
7 211.46 55.82 I.48 
8 
9 

10 

238.34 51.51 4-48 

1.2 319.52 33.80 30.47 
1.4 219.0 37.68 13.59 
1.6 158.09 41-21 3.086 
1.8 107.04 51.85 4-51 
1.85 96.70 55.19 5.653 
1.9 87.64 58.34 6.66 
1.95 79.76 61.21 7.545 
2.0 72.84 63.90 8.32 
2.2 52.43 72.26 10.66 
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(m,6) m 

Kihara Y = 

exp-6 a  = 

(I2,n) n = 

Square well  R 

AEDC-TR-67-67 

TABLE le. XEKOM B = 49.56 

Potential 

167.57 

b 
0 

Ä 

9 99.37 1.28 
12 224,11 85.71 .89 
15 267.01 78.15 .60 
16 279.15 76.32 .53 
17 290,41 74.71 .49 
18 300,91 73.29 .46 
21 328,53 69.87 .47 
24 351.57 67.32 .57 
27 371,15 65.34 .70 
30 388.04 63.76 .822 
40 431.02 60.20 1.169 

,1 266.80 58.88 .55 
.15 288.18 49.44 .47 
.2 309.57 41.80 .52 
.25 330,90 35.58 .68 
,3 352.17 30.45 .91 
-4 394-37 22.67 1.45 
.45 415.24 19.69 1.736 
.5 435.99 17.18 2.04 
.55 456.41 15.05 2.343 
.6 476.86 13.23 2.66 
.70 516.76 10.34 3.302 

12 195.15 141.51 .94 
13 214.88 130.43 .84 
14 232.22 122.19 .74 
15 247.71 115.72 .66 
17 274.56 106.07 .53 
19 297.25 99.11 .47 
30 380.80 78.84 .786 
40 426.03 72.24 1.136 
50 457.35 67.79 1.393 

4 76.45 124.33 2.33 
5 155.26 99.78 1.65 
6 224.ll 85.71 .89 
7 283.87 75.90 • 49 
8 336.17 68.52 .99 
Q 382.37 62.74 1.653 

10 423.50 58.11 2.290 

1.2 665.90 26.19 IO.48 
1.4 356.39 43.67 3.4O 
1.6 216.47 56.74 .68 
1.8 144.22 64.72 .98 
1.85 131.60 66.21 1.209 
1*9 120.50 67.52 I.42 
1.95 110.65 68.72 I.609 
2.0 101.90 69.78 1.78 
2.2 75.05 73.13 2.30 
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TABLE If.     SECOND VIRIAL COEFFICIENT OF NITROGEN    B = 47.88 

Potential «A b 
0 

h 

(m,6)                 m 9 70.74 81.28 2.99 
12 94-77 69.46 2.21 
15 112.98 62.92 1.58 
16 118.12 61.34 1.39 
17 122.88 59.95 1.22 
18 127.31 58.74 1.07 
21 138.94 55.82 .69 
24 148.59 53.66 .49 
27 156.74 52.01 .53 
30 163.75 50.70 .702 
40 181.38 47.80 1.335 

Kihara                Y =           .1 112.80 47.43 1.44 
.15 121.78 39.72 1.03 
.2 130.70 33.51 .65 
.25 139.54 28.47 .44 
,3 148.27 24.35 .67 
.4 165.29 18.13 1.59 
-45 173.50 15.77 2.109 
.5 181.50 13.80 2.64 
.55 189.21 12.142 4-817 
.6 196.74 10.73 3.72 

exp-6                 ö 12 82.24. 115.65 2.35 
13 90.66 106.17 2.13 
14 98.04 99.14 1.92 
15 IO4.64 93.63 1.72 
17 116.04 85*45 1.35 
19 125.66 79.58 1.04 
30 160.69 63.55 .628 
40 179.30 57.41 1.263 
50 192.01 53.86 1.757 

(I2,n)                n h 32.33 102.61 4.76 
5 65.70 81.61 3.60 
6 94-77 69.46 2.21 
7 119.79 61.08 .88 
8 141.31 54-95 .72 
9 159.83 50.35 I.85O 

10 175.70 46.92 2.958 

Square well      R 1.2 244,-58 26.44 15.04 
1.4 145.97 35.71 4.70 
1.6 91*54 45.10 • 51 
1.8 61.44 51-69 2.38 
1.85 56.12 52.94 2.783 
1.9 51.42 54-07 3.14 
1.95 47.24 55.10 3-448 
2.0 43.54 56.00 3.73 
2.2 32.12 58.87 4.57 
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TABLE lg. METHANE 3 = 63.00 

m = 

Potential eA 

1C5.49 

b 
0 

Ä 

□ 103.00 7.91 
12 143.25 84-15 6.02 
15 172.Si 73.17 4.43 
16 181.26 70.49 3.96 
17 189.17 68.0Q 3.53 
18 196.53 66.00 3.12 
21 215.82 61.05 2.07 
24 231.64 57.54 1.33 
27 244.71 54-98 1.10 
30 255.63 53.07 1.384 
40 281.66 49.37 2.928 

Kihara Y = .1 172.91 54-76 4.19 
.15 188.02 44-. 66 3.20 
.2 203.14 36.69 2.21 
.25 218.02 30.40 1.36 
• 3 232.34 25.43 1.22 
.4 258.31 I8.42 3.12 
• 45 269.76 15.94 4.286 
.5 280.30 13.93 5.47 
.55 290.97 12.28 6.634 
.6 299.05 10.89 7.79 
.7 315.51 8.709 9.999 

exp-6 a = 12 123.91 141.83 6.62 
13 137.16 128.37 6.03 
14 148.92 118.23 5.47 
15 159.55 110.19 4.94 
17 178.20 98.06 3.99 
19 194.06 89.37 3.15 
30 251.0 66.70 1.232 
4-0 
50 

(I2tn) n = 4 47.10 140.09 11.52 
5 97.17 106.11 9.03 
6 143.25 84.15 6.02 
7 185.28 68.22 2.98 
8 221.87 57.23 1.23 
9 

1C 
250.47 50.64. 3.445 

Square well R = 1.2 343.32 26.29 25.60 
1.4 223.12 35.12 9.10 
1.6 142.54 48.46 I.42 
1.8 92.51 62.91 5.82 
1.S5 83.99 65.70 6.632 
1.9 76.57 68.27 7.35 
1.95 70.06 70.51 7.975 
2.0 64.31 72.61 8.53 
2,2 
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TABLE lh .   co2  ] 

Potential eA 

9 138.38 
12 186.15 
15 223.05 
16 233.60 
17 243.45 
18 252.66 
21 277.12 
24 297.80 
27 315.59 
30 33ni.O? 
4.0 371.26 

0.1 223.36 
C.15 242.41 
0.2 261.78 
0.25 281.48 
0.3 301.57 
0.4 343.14 
0.45 364.72 
0.5 387.11 
0.55 410.18 
0.6 434.68 
0.7 

12 I62.36 
13 178.99 
14 193.70 
15 206.93 
17 230.07 
19 249.8c 
30 324.63 
40 366.68 
50 396.55 

4 62.09 
5 127.29 
6 186.15 
7 239.52 
8 288.76 
9 335.18 

10 380.03 

1.2 649.43 
1.4 339.67 
1.6 184.14 
1.8 118.93 
1.85 108.04 
1.9 98.54 
1.95 90.20 
2.0 82.83 
2.2 60.50 

B = 94.51 

b 
 0 

(m,6) m= 9 138.38 138.01 1.102 
118.18 0.995 
106.90 0.905 
i04.ll 0.879 
101.65 0.855 
99.47 0.832 
94-14 0.771 
90.09 0.719 
86.89 0.674 
84.29 0.636 
78.27 0.538 

Klhara y = 0.1 223.36 80.22 0.887 
66.84 0.827 
56.03 0.765 
47.20 0.700 
39.94 0.633 
28.87 0.492 
24.63 O.423 
21.03 0.357 
17.97 0.303 
15.33 0.273 

exp-6 a = 12 162.36 194.19 1.0173 
178.80 0.986 
167.23 0.956 
158.08 0.928 
144.27 0.876 
134-21 0.829 
105.69 0.649 
94.04 O.54S 
87.06 O.48O 

(I2,n) n = 4 62.09 176.85 1.337 
140.22 1.132 
118.18 0.995 
102.04 0.805 

89.28 0.623 
78.69 0.456 
69.54 0.322 

Square well      R = 1,2 649-43 26.97 6.707 
45.84 0.363 
75.37 0.669 
90.64 0.992 
93.37 I.047 
95.80 1.094 
97.97 1.136 
99.91 1.174 

105.95 1.286 
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TABLE  11.    ETHANE    B = 142.62 

Potential eA b o 

9 152.18 
12 206.65 
15 249.89 
16 262.48 
17 274.35 
18 285.56 
21 315.90 
24 342.29 
27 365.62 
30 386.58 
40 444.04 

0.1 250.75 
0.15 274.09 
0.2 298.59 
0.25 324.36 
0.3 352.06 
0.4 415.76 
0.45 453.64 
0.5 492.83 
0.55 523.32 
0.6 545.1 
0.7 577.86 

12 179.84 
13 198.85 
14 215.83 
15 231.26 
17 258.63 
19 282.47 
30 377.93 
40 437.27 
50 483.O3 

4 67.21 
5 139.14 
6 206.65 
7 271.61 
8 337.68 
9 411.28 

10 488.79 

1.2 638.O 
1.4 412.00 
1.6 213.29 
1.8 132.09 
1.85 119.41 
1.9 108.47 
1.95 98.96 
2.0 90.62 
2.2 65.71 

(m,6)                 m =             9                 152.18               171.03 0.950 
143.36 0.770 
127.00 0.6T7 
122.87 0.6C3 
119.17 0.574 
115.85 0.550 
1C7.54 0.5C5 
101.01 C.4Q8 
95.69 0.518 
91.21 0.556 
80.20 0.737 

Kihara                "i -           0.1                250.75                  94*87 0.616 
77.77 0.551 
63.?2 0.509 
52.62 0.505 
43.23 0.553 
28.73 0.824 
23.09 1.060 
18.66 I.407 
15.79 1.891 
13.91 2.490 
11.33 3.799 

exp-6                   <* =            12                  179.84                236.78 0.819 
216.56 0.765 
201.18 0.717 
188.89 0.674 
170.12 0.602 
156.22 0.550 
115.12 .540 
97.01 .712 
85-58 .906 

(I2,n)                n =              4                   67.21                227.16 1.340 
176.12 1.074 
143.36 0.770 
117.96 0.536 
96.28 O.56O 
76.11 0.913 
60.16 1.637 

Square veil      R =            1.2                638.0                     42.57 16.77 
44.36 3.69 
S3.05 0.521 

109.80 0.742 
114.39 C.824 
118.43 0.899 
122.02 0.966 
125,22 1.027 
135.07 1.215 
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TABLE 13.    CF4 

Potential eA 

9 113.95 
12 151.90 
15 180.49 
16 188.55 
17 196.02 
18 202.96 
21 221.20 
24. 236.37 
27 249.24 
30 260.33 
40 288.44 

0.1 180.22 
0.15 194.30 
0.2 208.32 
0.25 222.22 
0.3 236.02 
0.4 263.22 
0.45 276.58 
0.5 289.83 
0.55 302.83 
0.6 315.82 
0.7 

12 132.29 
13 145.55 
M 157.15 
15 167.50 
17 185.39 
19 200.45 
30 255.52 
40 285.16 
50 305.62 

4 52.40 
5 105.89 
6 151.90 
7 191.20 
8 225.11 
9 254.71 

10 

1.2 444-73 
1.4 234.75 
1.6 145.39 
1.8 97.86 
1.9 82.03 
2.0 69.54 
2.2 51.39 

B = 4O.64 

b 
 o 

(m,6)                 m =             9                 113-95               153.32 1.192 
134.4.9 1.091 
124.36 1.003 
121.94 0.978 
119.85 0.955 
118.00 0.934 
113.59 0.879 
110.35 0.835 
107.87 0.801 
105.87 0.733 
101.50 0.713 

Kihara               y =            0.1                180.22                  94.07 0.965 
79.77 0.901 
68.17 0.839 
58.67 0.782 
50.82 0.735 
38.76 O.684 
34.10 0.686 
30.13 0.709 
26.74 0.750 
23.81 0.809 

exp-6                 a =            12                 132.29                221.94 1-037 
205.43 1.025 
193.28 1.007 
183.82 0.987 
169.80 O.948 
159.80 9.912 
132.39 0.777 
121.64 0.717 
115.35 0.684 

{12,n)                jn =              4                    52.4c                184.10 1.624 
151.33 1-376 
134.49 1.091 
123.13 0.855 
114.82 0.719 
108.40 0.705 

Square veil  R =    1.2      444-73       58-45 3.760 
81.37 1.023 
93.60 0.807 
100.80 1.308 
103.31 1.503 
105.33 1.661 
108.36 1.896 
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(m,6) ra - 

Kihara Y = 

exp-6 a 

(12,n) r. = 

Sqtiare well      R = 

TABLE Ik.    SF6   B = 160.15 

Potential e/k 

9 141.46 
12 189.81 
15 226.90 
16 237.47 
17 247.31 
18 256.50 
21 280.84 
24 301.28 
27 318.78 
30 333-99 
40 373.09 

0.1 227.04 
0,15 245.95 
0.2 265.06 
0.25 284.36 
0.3 303.90 
0.4 343.53 
0.45 363.73 
0.5 384.29 
0.55 405.04 
0.6 426.51 
0.70 470.61 

12 165.54 
13 182.37 
14 197.23 
15 210.57 
17 233.81 
19 253.59 
30 327.60 
40 368.63 
50 397.45 

U 63.83 
5 130.45 
6 189.81 
7 242.76 
8 290.65 
9 334-61 

10 375.61 

1.2 670.5 
1.4 325.75 
1.6 185.89 
1.8 121.43 
1.85 110.53 
1.9 100.96 
1.95 92.51 
2,0 85.02 
2.2 62.30 

b A 
0 

289.37 7.155 
248.88 6.768 
226.08 6.456 
220.45 6.366 
215.52 6.283 
211.16 6.206 
200.50 6.002 
192.47 5.833 
186.22 5.692 
181,11 5.572 
169.45 5.278 

169.91 6.387 
142.06 6.184 
119.54 5.975 
101.16 5.763 
86.01 5.552 
63.00 5.129 
54.19 4-928 
46.73 4. • SJ 
4O.4O 4.558 
34.95 4-397 
26.29 4-156 

409.20 6.832 
377.17 6.725 
353.18 6.622 
334.20 6.525 
305.74 6.348 
285.06 6.193 
226.91 5.613 
203.44 5.307 
189.51 5.106 

367.28 8.072 
292.64 7.468 
248.88 6.768 
217.32 6.102 
192.75 5.513 
172.80 5.016 
156.04 4.620 

52.29 15.918 
110.13 4.173 
161.72 5.673 
190.30 6.794 
195.34 6.998 
199-82 7.181 
204.05 7.343 
207.82 7.487 
219.16 7.937 
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(m,6) m = 

Kihara      V - 

exp-6 a = 

(I2,n) n = 

Square well  R = 

TÜBLE   11. PROPME B = 249.36 

Potential eA 

154.39 

b 
0 

& 

9 307.06 2.167 
12 209.01 259.30 1.947 
15 251.93 231.46 1.763 
16 264.35 224.48 1.708 
17 276.01 218.25 1.656 
18 287.00 212.65 1.607 
21 316.52 198.81 1.473 
24 341.89 188.09 1.356 
27 364.07 179.44 1.254 
30 383.80 172.21 1.162 
40 436.81 154.64 .916 

0.1 252.63 173:16 1.726 
0.15 275.47 142.77 1.601 
0.2 299.13 118.20 1.467 
0.25 323.82 98.10 1.323 
0.3 349.72 81.52 1.167 
0.4 407.12 55.97 .813 
0.45 440.34 45.91 .609 
0.5 47Q.42 37.01 .340 
0.55 529.58 28.79 .296 
0.6 580.71 22.67 .818 
0.7 619.24 18.22 2.613 

12 182.08 427.25 2.00 
13 201.10 391.79 1.935 
H 218.05 364.84 1.87 
15 233-39 343.40 1.813 
17 26O.46 310.81 1.703 
19 283.90 286*76 1.604 
30 375.67 216.74 1.195 
40 430.63 186.57 .943 
50 472.04 167.55 .753 

4 68.51 403.20 2.614 
5 141.40 314.93 2.316 
6 309.01 259.30 1.947 
7 272.72 217.01 1.557 
8 335.24 181.78 1.152 
9 400.99 149-75 .721 

10 48I.O5 116.51 »291 

1.2 677. 70.51 19.91 
1.4 441.48 71.33 2.48I 
1.6 212.47 155.59 1.254 
1.8 133.52 198.90 1.927 
1.85 120.89 206.42 2.034 
1.9 109.96 213.06 2.128 
1.95 IOO.4I 219.01 2.209 
2.0 92.03 224.28 2.281 
2.2 66.88 240.57 2.497 
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TABLE Im. AIR  B = 48.29 

(m,6)      m 

Kihara 

exo-6      a = 

(12,n)      n = 

Square well  R = 

Potential «A 

9 74.03 
12 99.35 
15 118.75 
16 124.27 
17 129.41 
18 134.20 
21 146.88 
24 157.51 
27 166.59 
30 174.46 
40 194.58 

0.1 118.78 
0.15 128.62 
0.2 138.54 
0.25 148.52 
0.3 158.57 
0.4 178.78 
0.45 188.96 
0.5 199.14 
0.55 2C9-23 
0.6 219.38 
0.7 239.24 

12 86.55 
13 95.38 
14 103.16 
15 110.15 
17 122.30 
19 132.64 
30 171.13 
40 192,27 
50 207.03 

4 33.47 
5 68.33 
6 99.35 
7 126.88 
8 151.56 
9 173.91 

10 194.19 

1.2 302.88 
1.4 165.71 
1.6 97.13 
1.8 63.74 
1.85 58.03 
1.9 53.02 
1.95 48.62 
2.0 44-70 
2.2 32.78 

b 
0 

A 

75.58 1.086 
64.69 0.769 
58.58 0.507 
57.C7 0.431 
55.76 0.360 
54-58 0.294 
51.75 0.133 
49.62 0.110 
47.95 0.215 
46.62 0.324 
43.58 0.615 

44.03 O.449 
36.75 0.276 
30.89 0.115 
26.11 0.151 
22.19 0.339 
16.25 0.768 
13.99 0.995 
12.09 1.23 
10.49 1.474 
9.133 1.723 
7.01 2.253 

106.69 0.823 
98.18 0.734 
91.78 0.647 
86.75 0.565 
79.21 0.415 
73-74 0.283 
58.43 0.286 
52.33 ^.585 
48.74 0.797 

96.36 1.806 
76.48 1.335 
64-69 0.769 
56.25 0.209 
49.77 0.374 
44-63 C895 
40.50 1.392 

13.09 8.420 
29.32 2.278 
41.67 0.204 
49.18 0.801 
5C56 0.968 
51.79 1.114 
52.87 I.243 
53.89 1.357 
57.00 1.704 
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TABLE 2. THE RATIO OF THE LARGEST A TO THE 

SMALLEST Ä FOR THE ARGOH DATA 

Potential 
Family 

^igh T bHigh T °Low T 

U,6) 1.04 1-7 8.7 

Kihara 1.01 2.6 22.0 

exp-6 I.04. 1.3 5.2 

(I2,n) 1.02 1.8 4.5 

square well 1.07 9-2 45.3 

"Vialley et al 2.28 £ T*2  £ 7,29 

bMichela et al (1949) 2.28 £ T* , £ 3.53 

CMichels et al (1958) 1.11 £ T* 6 * 2.28 
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TABLE 3.     TEE EFFECT OF VARYING THE ^2"l]2 ^'^MOLECUIAR POTENTIAL 

FUNCTION OK THE EQUILIBRIUM PROPERTIES OF NITROGEN AT 

THE DENSITY log p/p    =2.0 

AfZ)              A(E/kT)            ACS/R)               Z EXEC S/R 

Eased on the  (24,6) Function 

2,000            .1604           -.0163              -.1768        I.I6O4 2.8810 23.528 

5,000             .1642            -.OO489            -.1593        I.I646 3.2574 26.725 

10,000             .1673            -.01606            -.1512        1.2702 4-744-5 30.774 

Based on the  (12,6) Function 

-.00624            -.I4I8        1.1460 2.8911 23.551 

-.0151              -.1271        1.1426 3.2785 26.766 

-.0234             -.1204       I.2443 4-7387 30.785 

Percent Deviation of the  (24?6) Results 
 from the  (12,6) Results  

2,000          8.4                73.9                -24.7              1.1 -0.3 -0.1 

5,000        15.4              -61.0                -25.3              1.9 -0.6 -0.2 

10,000        16.3                31.2                -25.6              2.1 0.1 -0.0 

2,000 .I48O 

5, COG .1423 

10,000 .1438 
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APPENDIX 

THE DETERMINATION OF INTERMDLECULAR POTENTIAL FUNCTIONS 
FROM MACROSCOPIC MEASUREMENTS*+ 

Max Klein 

National Bureau of Standards 
Washington, D.C. 20234- 

ABSTRACT 

The second virial, adiabatic Joule-Thomson, viscosity, and diffusion 
coefficients predicted for a number of potentials are compared with those 
predicted for the (l2,6) potential« A quantitative picture, as a function 
of temperature, is obtained of the ability of each property to act as a 
probe of the potential function. The transport properties are found to be 
the most sensitive probes, the Joule-Thomson coefficient next, and the 
second virial coefficient least, the last property being essentially useless 
in the range 2.0 < T* < 8.0 on the (12,6) reduced temperature scale. 

*Supported, in part, by the Air Force Systems Command, Arnold Engineering 
Development Center, Tullahoma, Tennessee, Delivery Order Number (40-600) 
66-22 Program Element 61445014-, AF Project 8951 

"^This appendix has been published in the Journal of Research of the 
National Bureau of Standards, Vol. 70A No. 3, May-June 1966, pp. 259-269, 
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INTRODUCTION 

Statistical mechanics provides a molecular foundation for thermody- 
namics. This resiilts in the expression of thermodynamic properties as 
functionals of the intermolecular potential functions of the constituent 
molecules. In principle, given the potential function appropriate to a 
given system one can calculate all of the thernodynamic properties of that 
system merely by t\irning the computational crank. In practice, matters 
are not so simple both because the relationships to be evaluated are 
enourmously complicated and because the potential functions are not known 
with sufficient accuracy. 

The nost accurate of the statistical mechanical expressions contain 

23 
H-Dody potential functions (N ~ 10 ) which are impossibly difficult to 
calculate. Simplifying assumptions can be made which often, as in the 
virial expansion, result in a power series in some parameter (e.g., the 
density) whose coefficients depend on lower order N-body potentials 
(K = 2,3}...)« Since even the three-body potential is exceedingly difficult 
to calculate, the assumption of pairwise potential additivity must generally 
be included. With this assumption, the thermodynamic properties, in the 
statistical mechanical expressions, can be made to depend on only the pair 
potential function. Most theories for the further simplification of the 
complicated expressions proceed from this point on the assumption that the 
pair potential function is known. These theories result in simpler, but 
generally still complicated, relationships between the thermodynamic 
properties and the potential function. The eval\aatlon of such theories can 
be a formidable task. All too often their final evaluation is obscured [l] 
considerably by the fact that pair potential functions are, in practice, 
only imperfectly known. 

The intermolecular potential function together with a sufficiently 
accurate theory can be used to extrapolate far beyond the bounds of avail- 
able experimental data [2] something which is not possible using completely 
empirical methods. Such extrapolations are very strongly dependent on the 
potential function and can be considerabljj in error when the wrong potential 
function is used. 

Clearly the determination of accurate ir.termolecular potential functions 
Is of some importance. In this work we have sought to understand some of the 
methods generally used to determine such functions, particularly with respect 
to the question of the uniqueness of the potentials obtained. A lack of 
uniqueness exists when a set of experimental data for a given property can be 
correlated equally well using the appropriate theory and any of two or more 
potential functions. When a lack of uniqueness exists, it becomes necessary 
to attempt to determine if there is a lack of sensitivity inherent in the 
theoretical quantity itself or if it is lack of experimental precision which 
makes it possible to fit the data equally well with two or more theoretical 
curves. These are equivalent to the following two questions. First, how 
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well can the property of interest, in principle, distinguish among potential 
functions and, second, how veil can it distinguish among such functions at 
the present time, given present day experimental precision« The answer to 
the first question is a permanent one while the answer to the second one 
changes as experimental technique is refined, approaching the first answer 
in the limit of zero experimental error. We have restricted ourselves to 
the first question and discuss the second one only in passing mainly to 
place our results in a practical light. The answer to the first question 
is of considerable practical importance since it points out where refined 
experimental techniques will not produce more information about the potential 
function. 

In principle the pair potential functions can be calculated in an a 
priori fashion using quantum mechanics by calculating the potential energy 
of two molecules as a function of nuclear separation. Since one needs to 
consider all the electrons in each molecule, this is also an intractable 
N-body problem, N now being the total number of electrons involved* This 
leavea one no alternative but to turn the problem around and determine the 
potential, in some manner, from, experiment. Ir. practice, the procedure is 
reduced to a semi-empirical one. A functional form is assumed for the 
potential whose choice is based, in part, on theoretical arguments. In 
this form are included parameters whose values (and hence the detailed 
potential) are to be determined from experiment» The parameter determination 
is made by substituting the potential into statistical mechanical expressions 
for some macroscopic property and comparing the result with experiment [32» 
Best results are to be expected when the theory is one whose dependence on 
the pair potential is strongly based as is the case, for example, in the 
lew density limit of certain theories« 

In this paper we shall discuss the use of the zero-density viscosity, 
diffusion, and adiabatic Joule-Thomson coefficients and the second virial 
coefficient as ways of obtaining the potential parameters. For each of 
these, the pair potential appears in the integrand of an expression for the 
macroscopic property» This suggests that, given enough experimental data 
of sufficient accuracy, one might be able to invert the theoretical 
expressions and determine the potential as a unique functional of the 
experimental data. For the second virial coefficient, however, Le Fevre 
and Keller and Zumino [4.] have shown that the potential is not determined 
uniquely by the data, even in principle. In this work we demonstrate this 
lack of uniqueness quantitatively for particular potentials. We show there 
to be a lack of uniqueness for each of the macroscopic properties considered, 
although it is somewhat less pronounced for the transport properties than 
for the equilibrium properties. For each property, the lack of uniqueness 
is found to be more pronounced in one temperature range than in another. 
Strong positive statements can then be made about the temperatures at which 
experiments designed largely to determine potential functions should not be 
performed for particular substances. We are also able to show the simul- 
taneous fit of certain of these properties to be sensitive to differences 
in the potential function« 
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THE COMPUTATIONAL M3TH0D 

Because of its relative simplicity, we shall use the second virial 
coefficient to illustrate the details of the computation» The other 
properties are handled in essentially the same manner. We shall restrict 
the discussion to two parameter potentials. This is no real restriction 
since a three-parameter potential can be treated as a family of two 
parameter potentials, one for each value of the third parameter. 

The second virial coefficient is related to the potential function, 
cp, by the relation [3]       a 

B(T) = bQ B»(T«) = boJ [exp C- **j^ ) -Ü r*2 ^*      CO 

where b =  "  , T* = kT/e, tp"::" = cp/e, and r* = r/ö. Here, as usual, d is 

a characteristic length related to cp and e  is the depth of the potential 
well. K is Avogadro's number. Tor a given potential} a given T, and in 
the left-hand side, a given experimental value of B at that T,  (l) 
contains only the two unknowns ö and e. In this work, in place of e:q?eri- 
mental B(T) values, we supply to the left-hand member of (l) the second 
virial coefficient for a potential function other than the one appearing in 
the right-hand side. Thus, if the subscripts 1 and 2 refer to the two 
potentials,  (l) becomes 

B(T) = (bo)1 BJ(IJ) = (bo)2 B*{T*) 

CO- ?2 (**K      1    ' 2 
r* dr* 

where B*(T*) is a functional of <p?(r*). Wow T* = kT/«1 and T| = lC/e2 

hence, for a given T, Tp = ^ T* BO that 

W = Tb^ 4 lexp Tiei      } -1} r to      (2) 

e
2 

This is an equation containing two unknowns, namely, the ratios — and 
el 

(b )p/(b )_. These ratios are completely determined, given another 

equation connecting some other functional of the potential for the two 
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potentials. We have taken, for this second functional, the firat derivative 
of B with respect to the logarithm of T [5]. We thus determine, at each 
temperature? that pair of ratios, s^/e-i and ^°  ^^^o^l ^ich results in 

the equality, for the two potentals, of both the second virial coefficient 
and its first derivative with respect to the logarithm of the temperature. 
Ordinarily, the ratios are different at different temperatures, hence we 
shall actually determine their temperature dependence. By dividing the 
equation which represents the requirement of equality of the first derivatives 
by that representing the equality of the second virial coefficients them- 
selves, one obtains a single equation for the equality of the logarithmic 
derivatives. The working equation becomes 

d In B£(TJ)  d In B*(T|) 
d In T^     d In T| ^ 

This is a single implicit equation in the ratio e2/e-p "the dependence on 

(b )2/(b )-] being removed in the process of differentiating the logarithm* 

On the substitution of the set of values B*(T*) in the left-hand 

member, (2) becomes a family of curves for the ratio e^/e.., as a function 

of the ratio (b )? (b )_ , one curve for each value of T* [7], These can 

also be used for obtaining information about the potential function [Ö], 
althmigh the results so obtained cannot be easily presented in a manner 
suitable for our purposes. We have therefore used a different approach. 

We have computed, for each of a number of potentials, B  and B5^ = 

T* ($$*)    and ?Tom these 

T* dB*  B'* _ d In B* 
b  g* ^T*  gT"  d In T** 

These are used to solve (3) in the following way. Each value of T^ has 

associated with it a value S?. Using inverse interpolation, the value of 

T* is found for which S^ = S2. The ratios ^2^zl    and ^b ^2^b ^1 are 

then computed simply from 

— = ^75"   and e. --T*   ***  ^7_^y 
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This procedure can be illustrated graphically with the help of Figures 1 
end 2. These contain plots of S for the second virial coefficient [9j 
versus the logarithm of the reduced temperature for several representative 
potential functions. Temperatures below the Boyle temperature appear in 
Figure 1, those above that temperature in Figure 2. Note that the S values 
for each potential are plotted against the logarithm of the reduced tempera- 
ture for that potential. Equation (3) is solved graphically at each T* , 

measuring the horizontal distance between the ordinate associated with T* 

on curve 1 and the same ordinate on curve 2. This distance is then just 

log T* - log T* = log(TjAJ) = log(ei/e2). 

It should be noted that where there are values of S? greater than the 

maximum S.. value, solution of (3) is impossible« This occurs (see 

Figure l) for the (9j6) potential compared to the (12,6). 

Note that both the value and slope of 3* are fit by B* at T*.    It 

follows, therefore, that B^ will actually produce a relatively good fit to 

B* in a small neighborhood around T* for the parameter ratio obtained by 

solving  (3) at T*. Furthermore, when this ratio is found to be independent 

1 over a range of values of T*, B* provides an excellent fit to B* 

over that range. 

In this calculation, the Boyle temperature serves as a natural dividing 
point between two temperature ranges. Since B is zero at that temperature, 
the derivatives in (3) are not defined. Furthermore, since B changes 

dB 
sign while -™ does not, S also changes sign« Hence, values of S taken 

from temperatures above the Boyle temperature for one potential cannot 
possibly be made to fit those taken from below it for the other potential. 
Therefore, we have treated these two ranges separately coming as close to 
the Boyle temperature as desired from either side» 

As mentioned in the introduction, the zero density adiabatic Jottle- 
Thomson, viscosity, and diffusion coefficients are also considered here. 
These are alEo treated as outlined above» The equation (3) for each of 
these is replaced in turn by the requirement that the quantities 

d In [nC (°']  „  .,   ,. . ,. , n _,.       „». . .  A fin Tvr*"1/2)  ~_p     for the adiabatic Joule-Thomson coefficient, -7^—rj?  
d in T*   ' dlnT 
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—3/2 
for the viscosity, and d a j*^*T»   

£oT  the diffusion coefficient by- 

equal for the two potentials. Now [3] n*Cp^ = T* |p - B* = B'* - B* 

so that the connection between this quantity and the potential function is 
essentially the same as between the second virial coefficient and the 

potential. From this last, T*^? [U-C^] = B1'*  and 

d lH ^Cp° ] =  Bn*   where  B"* = T*2 Ö£ . Here, aa with the second 
d In T*   . B'*-B* dT* 

virial coefficient, there is a temperature which divides the calculation 
into two parts. Now, however, the aero density inversion temperature 

(defined by B1* = B*) plays the role previously played by the Boyle 
temperature• 

The connection between the viscosity and diffusion coefficients and 
the intermolecular potential function is contained in the so-called collision 
integrals [3] 

(. +1),T     4 

OS 

Q(*)*(g*) = —?—T r (i _ cos-6 x) b* db* 
i i l+(-lr Jo 

with the intermolecular potential function being contained in the equation 
for the scattering angle 

where 

X (g ,b*) = TT -2b* 

CO 

dr*/r 

K    A - b^/r*2 - 0(r*)/g*2 ' 
rn   being the distance between a pair of molecules at the time of closest 

approach. 

In terms of these, the zero density viscosity and diffusion 
coefficients can be written [3] 

C -2- Cb 
nqi# ~X/<-  _      , ,    a TYP'*    — —_^_~—_._ 

where 0  and C,  are constants whose precise values are of no particular 
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interest here. It can be easily shown that 

' d\g T«    =  ^+2> ^1^ "  (^ + 2^ 

From this it follows that, for the viscosity, equation (3) is replaced by 

Q(2,3)* 
the requirement that 4. /■ ryg - 4  be equal for the two potentials. For 

Q 

the diffusion coefficient 
„(1,2)« 

j on the other hand, the qtiantity 3 —7:—r-yg- -3 

must be eqital for the potentials. Since T| and D are each non-zero, 
there is no dividing temperature analogous to the Boyle temperature for 
these properties. The S values corresponding to these properties are 
plotted in Figs. 3 and 4« 

The macroscopic properties of most experimental systems have been 
correlated using the (l2,6) potential function [10], As a result e/k 
values for that potential can be found in the literature for just about all 
possible systems of interest. Furthermore, it has been shown that, for very 
many substances, a very simple relationship exists between the s/k value 
for the (12,6) potential and the temperatures for the critical and normal 
boiling points for that substance [3,10,11]. As a result, good first 
guesses for the e/k values for the (l2,6) potential can be made for any 
system for which either the critical temperature or normal boiling point is 
known. For these reasons we have chosen to compare each potential with the 
(l2,6) function using the reduced temperature for the latter as the reference 
temperature Tl*. The conversion to real experimental temperatures for any 

system merely requires multiplication by the (generally available) e/k 
value of the (l2,6) potential for that system« 
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RESULTS 

The Second Virial Coefficient 

Our results for the second virial coefficient are given in Figs. 5-8 
as plots of the ratios «o^l versiiS "the Lennard-Jones (12,6) reduced 

temperature. Figure 11 contains plots of the ratio (b )o/(b ),. The 

potential functions considered are the following: 

Vm        m    y 

where r* = r/d,d    is that value of    r    for vhich   cp* = 0. 

(2) The Kihara:   0*(r*) - », r* £ Y* 

0*(r«) = 4 P=7j   " ( r^) , r*>v* 

2a 
where r* = T^JT and y* = 'g ' > a being "the core radius 

\6 

(3) The Exp-6:  0*(r*) = - J-^ 
| exp (*(l-r*)) "(P) 

where r* = r/r , r  being that value of r for which cp* = -1 

(4.) The Square Well: 

sp»(r*) = c», r» si 

«P1 E(r*) = -1, 1 * r* s R* 

cp*(r*) = 0, r* £ R* 

where r* = r/d. 

Figure 5 contains results for the (m,6) and square well potentials, 
while results for the exp-6 and Kihara potentials are contained in Figs. 
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6 and 7« Results for the (l2}n) appear in. Figure 8, Each curve represents 
the comparison between a potential and the (12}6) potential, the subscript 
2 always referring to the former potential. For each curve there is a smooth 
transition through the Boyle temperature indicating that the singularity in S 
at that temperature presents no problem, There exists, for each potential, a 
temperature range around the Boyle point such that ir. that range eo/^n is 

essentially independent of Ttf. This means that, for temperatures in that 
range, the (12,6) and the potential with which it is compared are equivalent 
[l2j. In fact, each curve is flat to such an extent in this range that a 
choice cannot be made between the (12,6) potential and the one with which it 
is compared based on experimental second virial coefficient data taken entirely 
within the range, even when these data are obtained with an impossibly high 
precision. What is particularly striking is that there is a single temperature 
range in which all the curves are flat. This range becomes exceedingly large 
if one does not include the square well potential in the comparisons. 
Obviously, there is a reduced temperature regime in which the second virial 
coefficient is particularly useless as a probe of the potential function. 
Vlhat these results show specifically is that the second virial coefficient 
cannot be used in this range to distinguish among any of the members of the 
(m,6), exp-6, Kihara,  (l2,n), and square well families of potentials. The 
list would presumably have been broadened had we considered other classes of 
functions. 

Of considerable interest are the results obtained when the  (l2,n) 
potentials are compared with the (12,6). The curves obtained for these are 
essentially the same as those for the (m,6) emphasizing the fact that the 
second virial coefficient cannot be used to determine the exponent of the 
attractive part of the potential. The requirement that the attractive 
exponent be 6 is, rather, a restriction placed on the potential based on a 
priori information, at least for the second virial coefficient» Thus, we see 
that the second virial coefficient is determined by the general shape of the 
potential and not necessarily by its details. This has previously been 
demonstrated formally by Le Fevre [4-] and by Keller and Zumino [4]« They 
showed that all potentials for which the sum of a certain pair of integrals, 
one over the repulsive part and one over the attractive part, were equal 
yielded the same second virial coefficient, A special case of their result 
is that all potentials with the same repiflsive part and whose attractive 
parts have the same width as a function of depth (i.e., but whose bowls are 
possible displaced laterally) yield the same second virial coefficient. 

At temperatures outside the flat portion, the ratio e2/e -i is no longer 

constant. Below T* = 2.0 a particularly rapid variation is indicated. The 
origin of this rapid variation can be seen in Fig. 1 to be due to large 
differences in the slopes of the corresponding S curves for equal values 
of the ordinate. According to Fig. 1, there are also potentials for which 
there is a temperature range in which there are S values larger than the 
maximum S value of the (12,6) potential« The (9}6) function is an 
example. In such cases, solution of (3) is impossible. In other words, no 
ratio eo/e->  exists by means of which one can obtain simultaneous equality 

dB 
of both 3 and T — for the two potentials. 
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The existence of a rapid variation of &o/c\    with Ts at low tem- 

peratures would seem to indicate a very strong sensitivity, at such tem- 
peratures, to differences in the potential functions. Inability to solve 
(3) indicates an even stronger sensitivity to such differences. However, 
the sensitivity indicated applies strictly to exact data and the exact 

dB 
simultaneous fit of B and T —, As the requirement on the exactness of 

the fit is relaxed, the sharpness of the variation of eo^e~\    ^^ ^  ^-s 

reduced* The introduction of these uncertainties in effect replaces each S 
curve of Fig. 1 by an area bounded by two S curves« One has then to compare 
two broadly defined S areas rather than two sharply defined S curves. 
This can make an overlap of ordinates possible near the maximum of the (12,6) 
curve and hence make solution of (3) possible where it previously was not« 
Furthermore, in comparing the two S areas one has the possibility of 
choosing the two S curves, one within each area, whose slopes are most 
nearly alike. This could result in a reduction in the rapid variation of 
SoA-i with T* at low temperatures. For application to inherently imprecise 

experimental data, the low temperature region therefore becomes a much less 
sensitive probe of the potential than is indicated in Fig. 5» That is, an 
approximate fit to an accuracy compatible with experimental error might be 
possible where an exact fit, as indicated by Figs. 1 and 5j is impossible or, 
at best, difficult. 

There is another, more fundamental reason why the rapid variation of 
Eg/e-, with T* at low temperatures does not necessarily mean a sensitivity 

to differences in the potential functions. In this calculation, we have 
required the equality of both the second virial coefficient and its slope for 
the two potentials. This applies a much more stringent condition on the 
functions than is required in the correlation of experimental data. In the 
latter case, it is asked only that the theoretical values of B(T) come as 
close as possible to the experimental ones. Nothing is asked of the slope 
of the second virial coefficient. Clearly two functions may each fit the 
data within experimental precision, yet their slopes may disagree by con- 
siderably more than the precision of the present calculation. 

On the other hand, the fact that we place such strong conditions on the 
potential enables us to make strong statements where the second virials and 
their first derivatives for the potentials are essentially indistinguishable 
from each other» Obviously where our calculations cannot distinguish between 
potentials, a correlation which makes use of experimental data will be able 
to distinguish between them to a much lesser extent. Clearly, therefore, 
experiments designed to measure the second virial coefficient for purposes of 
learning something about the potential function should never be carried out 
above T* = 2.0 on the (l2,6) scale. In fact, existing data in that range 
should not be included in a determination on potential parameters since such 
data will supply experimental error without supplying any discrimination and 
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so will reduce, for example, the ratios of the standard deviations obtained 
from fits of different potentials. This reduced temperature is easily con- 
verted to real temperatures for a particular substance given the e/k value 
for the (I2j6) potential for that substance. For example, for argon, the 
data must have been taken at T < 2/fi°K while for xenon, the corresponding 
requirement is T < 4.50°K. 

It is clear from Figures 5 and 6 that in each class (i.e., square well, 
exp-6, etc.) there exists a potential for which the ratio eoA-i  is 

essentially independent of T  even at low temperatures. For the exp-6 
this occurs for a    slightly larger than 13« For the square well, it occurs 
for F.* approximately equal to 1.82, One expects this also to be true for 
other classes of three parameter potential classes of which the (12,6) is 
not a member. That is, there will exist a member of each such class which is 
equivalent zo  the (12,6) in predicting the second virial coefficient over a 
large temperature range including low temperatures. Since the  (12,6) 
potential function was chosen as the reference potential in an entirely 
arbitrary fashion, there is no need to restrict this result to it. Thus, one 
can actually state that given any potential function, it is possible to find 
in every three parameter family of functions of which it is not a. member, a 
potential function with which one can obtain a classical second virial 
coefficient whose value and slope differ from those calculated with the given 
potential by an amount much less than the best available experimental precision 
over a temperature range starting at extremely low temperatures and extending 
to temperatures will above experimental conditions for almost all substances. 
In short, the second virial coefficient is seen to be at best a three 
parameter quantity with regard to the potential function and any attempt to 
use functions with more parameters necessarily leads to redundancies. This 
is presumably what ia behind the inability to obtain unique parameters in 
recent attempts to determine the potential function froin second virial 
coefficient data using many parameter potential functions. 

As expected, deviations from this can occur at high temperatures. That 
is, where the repulsive parts of the potentials differ sufficiently in 
character, the high temperature region can be used to choose among different 
classes. Thus a choice can be made between the extremely different (12,6) 
and square -well potentials if the data covers a range above T* = 7.0 on 
the  (12,6) temperature scale» A choice between the somewhat less different 
exp-6 and (12,6) potentials, on the other hand, requires data at 
T'1* > 10.0 on the same scale. These are very high temperatures for most 
substances. For argon this latter requirement is T > 1200°K while for 
xenon it is T > 2250°X. 

The ratio (a )0/(b )_.  for the second virial coefficient behaves in v o'2'  o 1 

essentially the same way as does e^/e,. There is, therefore, no need to 

discuss its behavior separately. 

Attempts to select, from several functions, a potential function for a 
particular system have sometimes been based on fits to second virial 
coefficient data which lie almost entirely within the flat portions of 
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Figs. 5-8. Examples are the correlations of Whalley and Schneider [13] 
and of Mason and Rice [l^J. In Table I we have reproduced the standard 
deviations obtained by Whalley and Schneider for several potential functions. 
Note that only in the case of xenon, where half of the points lie outside the 
flat portions of Figs. 5-8, is there a strong discrimination among the 
potential functions. For the krypton data, one certainly has no basis for 
the selection of one potential over another while for argon the choice is, at 
best, a marginal one. 

From our results one can also see the futility of basing the choice of 
a potential function on the basis of the best fit of experimental data to a 
single two parameter function. To demonstrate thisj let us take as an 
experimental system that system whose intemolecular potential function is 
exactly the (12,6) function. Figure 6 then represents an attempt to fit 
the "experimental" second virial coefficients to those predicted for the 
exp-6 potential. The best fit is obtained for that potential which gives 
the most nearly flat curve in Fig. 6. According to that figure, this best 
fit occurs for a value of a    slightly greater than 13» The potential function 
defined by that value of a    and the pair of parameters which give this best 
fit can then be associated with our "experimental" system and possibly used as 
such in other theories. Suppose now that instead of doing fits for a series 
of values of a we had just done the fit for a single value of a, Clearly} 
for every value of a, a pair of parameters exists which gives the best fit 
to the "experimental" data for that value of a. However, the potential 
represented by that value of a    and this pair of parameters could not in 
general be associated with the experimental system unless the application 
is to a theory only weakly dependent on the potential, since the second virial 
coefficient associated with that function does not properly represent the low 
temperature second virial coefficient data. It is clear from Fig. 6, there- 
fore, that one raust take the best fit of experimental data to a series of two 
parameter potentials (here the family of functions generated by varying the 
third parameter, or) before assigning a particular potential to the experi- 
mental system« Unfortunately, the literature is full of fits of data to 
single potential functions, particularly to the (12,6) potential. Quite 
often the resulting potential has been used as the intermolecular potential 
functions for particular systems in evaluations of theories [15]* According 
to our results one must be suspicious of conclusions as to the  relation 
between the particular theory and experiment, based on such work, unless the 
theory is known to depend only weakly on the potential function. 
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THE ZERO DENSITY ADIABATIC JOULE-THOMSON COEFFICIENT 

This quantity is obtained directly as the zero density limit of 
experimental free expansion data. To obtain the second virial coefficient, 
on the other hand, one must first, in some manner, differentiate the ex- 
perimental P-V-T data with respect to the density and then take the zero 
density limit. As a result, given the same experimental precision, one 
obtains the latter with much less precision than the former. This is not 
a real advantage for the free expansion data at the present time, however, 
since such data can be obtained only with a precision orders of magnitude 
below that possible in P-Y-T work, particularly at low densities. 

The adiabatic Jotile-Thomson coefficient depends both on the second 
virial coefficient and its first derivative* Clearly, where two second 
virial coefficients, one for each cf two potentials, are indistinguishable 
over an extended temperature range, their first derivatives are also indis- 
tinguishable, at least for temperatures near the center of this range. 
Furthermore, this will be true for exactly the same parameter ratios. 
Differences which occur for the second virial coefficients near the edge 
of this temperature range necessarily appear as larger differences in their 
derivatives. Thus, one expects the range of equivalence for two potentials 
to be smaller for the aero density Joule-Thomson coefficient than it is for 
the second virial coefficient. Results of this quantity are contained in 
Figs. 7 and 8« As expected, the range of equivalence of the potentials is 
shorter. It should be remembered that, since o\ir method involves equating a 
property and its first derivative, equivalence here includes the second 
derivative of the second virial coefficient« 

57 



AEDC-TR-67-67 

THE ZERO DENSITY VISCOSITY AND DIFFUSION COEFFICIENTS 

The fipAn ratios for the zero density viscosity and diffusion coef- 

ficients are contained in Figs. 6, 7, 9, and 10, The ratios fa i«/^ )., 

for several potentials are presented in Fig, 11. In Fig, 7, for the Kihara 
potential, there is no curve for either of these properties which approaches 
that of the second virial coefficient in flatness. The ratio 62/6-1) can 

be called independent of T* only in a very narrow temperature region about 
the maximum of the curve. Figure 9 (which is drawn to a different scale) 
does indicate an increasing degree of flatness with increasing Y» This 
occurs for relatively high temperature, T > Tg, however. This demonstrates 
the strong role played by the bowl of the potential function in determining 
the transport properties. For any given potential function, there is a tem- 
perature above which the transport properties are entirely dependent on the 
repulsive part of the potential function. Now, for the Kihara potential 
function, the position of the hard sphere cut-off moves to larger values of 
r aB Y increases. Therefore, the temperature at which the properties for 
the Kihara potential become those for a hard sphere should decrease with 
increasing y»    According to Fig, 9, this is compensated for by the changes 
produced by the modification of the bowl with increasing y* The net result 
ia a set of properties (e.g., for y =  0.6) more nearly like those for the 
Y = 0 (i.e., (12,6) ) potential at the.highest temperaturees of Fig. 9- 
Further proof of the strong effect produced by the bowl can be seen in the 
behavior at low temperatures. At such temperatures, the repulsive part has 
a very minor effect on the properties. Therefore, the rapid variation in 
the dependence of e^/e-j, with 1* as a function of Y 

a"t low temperatures 

is an indication of the marked effect of the bowl on these properties« 

The curves in Fig, 10 are most flat for T* approximately equal to 2.0, 
It is interesting to note that there is a value of a for which the curve is 
quite flat at low temperatures as well. This occurs for a    slightly larger 
than 13 for both properties» It should be noted that the corresponding 
ratio is very close to unity* Furthermore, for essentially the same value 
of a, a flat curve with essentially the same ordinate obtained down to low 
temperatures for the second virial coefficient. Note that, unlike the case 
of the second virial coefficient, for these properties the curve for that 
value of a is not flat to very high temperatures. For these properties, a 
significant departure from unity occurs at T* = 5*0, not an impossibly 
high temperature for many systems. There is a tendency for the curves to 
flatten out at high temperatures for a value of a    larger than 15 under 
which conditions the curves show a marked deviation from flatness at quite 
low temperatures. This behavior shows that it may be possible to distinguish 
between the (12,6) potential and all members of the family of exp-6 
functions given expeii mental transport data of sufficient accuracy which 
includes both temperature ranges T* < 2.0 and T* >  5,0 on the (12,6) 
scale. For argon this requires that there be data for T < 240°K and 
T > 600°K while for xenon T < -450°K and T >  1225°K. These conditions 
are met for argon but not for xenon, at the present time. 
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It is clear from, these results that the diffusion and viscosity- 
coefficients are potentially more sensitive probes of the potential function 
than either the second virial or Joule-Thomson coefficients given experi- 
mental data covering a sufficiently large temperature range. One might not 
have expected this since the latter properties are more simply related to 
the potential function than are the former. One might have expected a 
quantity like the second virial coefficient which is related to the potential 
function through a single integration to be much mere sensitive to differences 
in that funation than one like the transport properties which are connected by 
three integrations, particularly when the functional dependence in the 
integrand is also more indirect for the latter than it is for the former. 

It must be remembered that the requirement here has been that both the 
value and slope of the properties be equal for the two potentials. It is 
possible that some of the apparent sensitivity found for the transport 
properties comes from the requirement on the slope. Whether or not this 
disappears when one asks only for a match to the property, as is done in a 
correlation, bears further study» Again one can state that a lack of 
uniqueness found in this calculation will not disappear on the application 
to experimental data» Therefore, one must have data present in the tem- 
perature ranges mentioned if one is even to have a chance to discriminate 
between potential functions» 

The slope of the e?/e1 versus T* curve, for a given potential, is 

essentially the same for both the viscosity and diffusion coefficients. On 
this basis, the two quantities are equally effective when used individually. 
As we shall see in the next section, however, there is a difference between 
them in sensitivity to changes in the potential function. That difference 
makes the simultaneous fit of the two properties potentially a sensitive 
tool for finding the potential function, 

69 



AEDC-TR-67-67 

THE SIMULTANEOUS FIT TO MOHE THAN ONE PROPERTY 

Figures 6, 7, 9, and 10 contain plots of the ratio e„/e- for more 

than one property» With the help of these one can examine the effect the 
requirement of a simultaneous fit to two or more properties and their first 
derivatives has on the lack of uniqueness in the potential function. Figure 
9 is particularly informative in this regard. Note that in that diagram, 
the curves for both the viscosity and diffusion coefficients for y =  0 
would be straight lines parallel to the abscissa at s?/e, — 1.0. As y 

deviates from zero, however, each curve begins to deviate from a straight 
line, particularly at low temperatures. Furthermore, the curves for the 
diffusion coefficient separate from those for the visoosity until, by 
Y = 0.6, the curves are quite widely separated. The lack of uniqueness 
associated with the flatness of the curves for the separate properties 
would be extended to the simultaneous fit to the pair of properties and 
their derivatives were the two curves essentially flat at the same value of 
the ordinate. However, the increase in the separation of the curves with 
Y (i»e., with increased deviation from the (12,6) reference potential) 
demonstrates a strong sensitivity of the simultaneous fit to changes in the 
potential function. This sensitivity is much stronger than that of the 
individual properties in the range T* > 4*0. Whether or not it is more 
sensitive than the behavior for T* < 4,0 would require an examination of 
detailed fits to data» 

Figure 10 contains the same kind of information for the exp-6 function» 
Here the changes that occur at low and intermediate temperatures are much 
smaller while those at high temperatures are much more pronounced« There 
appears to be a value of a    for which the curves both have a flat range 
and are essentially superimposed at high temperatures. However, for that 
value of a, the low temperature data still serves as a discriminant. In 
this case the simultaneous use of both properties and their derivatives does 
not appear to add any discrimination beyond that available with either 
property of itself. Note that the curves for the two properties exchange 
relative positions when one goes from a -  12 to a =  17» Increasing a 
beyond 17 would presumably result in further separation. 

Figure 7 contains plots for all of the properties for the Kihara 
potential. These curves necessarily each form a straight line parallel to 
the abscissa with ordinate 1.0 for y ~ 0.    Increasing y    causes them to 
separate as in Figure 9 for the two transport properties. It is interesting 
to note that the change in separation between the curves for diffusion and 
second virial coefficients at intermediate temperatures is not uniform. 
Thus, for T* s: 3.0, the diffusion curve for y = 0.1 lies above that for 
the second virial coefficient, for Y 

= 0.3 they are superimposed in a small 
region around T* = 3.0, while for y =  0.4 the diffusion curve lies below» 
Thus, as Y is increased from 0. to 0,1, the second virial curve "moves" 
more rapidly while for Y 

> °»1 ^e reverse is true. 
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That we havej in this section} examined the simultaneous fit of four 
properties cannot be emphasized too strongly« Thus, for example, the 
simultaneous equality of the second virial coefficient and its first 
derivative is equivalent to the simultaneous equality of the second virial 
coefficient and the aero density Joule-Thomson coefficient. We have here 
considered situations in -whichj in addition to this, we have asked that 
(e.g.) the viscosity and its first derivative also be equal at the same 
temperature and for the same tiro potentials. Again it is possible that 
the ability to discriminate among potentials discussed here for this kind 
of simultaneous fit may disappear when the requirement is that only a pair 
of properties be equal. 
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CONCLUSIONS 

We have investigated the use of the second virial coefficient as veil 
as the zero density Joule-Thomson, viscosity, and diffusion coefficients 
as probes for the intermolecular potential function. Ve have found the 
second virial coefficient to be particularly poor in this regard in the 
temperature range 2*0 < T* < 7.0 on the Lennard-Jones (12,6) reduced 
temperature scale. The Joule-Thomson coefficient has been found to be 
somewhat better particularly in the lower part of this range. Considerably 
better were the transport coefficients, i.e., the viscosity and diffusion 
coefficients. It is clear from our results that these last coefficients can 
be sensitive probes of the potential function given experimental data covering 
a sufficiently large temperature range. 

Further comparisons of this kind between the transport coefficients for 
the (12,6) potential function and those for other potential functions are 
clearly called for, particularly for classes of potentials of which the 
(12,6) is not a member. In particular, one would like to find such classes 
of functions as exist which contain a member whose transport properties can 
be fit to those of the (12,6) over an extensive temperature range. This' 
will require the calculation of collision integrals for these various 
functions. In some cases tables do exist [16,17] which, unfortunately, 
contain too few points in the temperature region of interest» It is hoped 
that these will be extended shortly. 

These calculations will be extended to include the thermal diffusion 
ratio and, possible, the quantum corrections to certain of these properties. 

As regards the relationship between our results and experiment with 
present day precision, the fact that our results apply precisely to experiment 
only in the limit of very high precision actually strengthens our conclusions 
in regard to lack of uniqueness while conclusions regarding uniqueness are 
weakened. That is, where we did not find it possible to use a macroscopic 
property to distinguish between potential functions under our conditions, 
it certainly would not be possible to use this property for this purpose 
under less precise experimental conditions. On the other hand, our ability 
in other circumstances to distinguish among potentials (e.g., using second 
virial coefficient data for T* (12,6) < 2.0) may be due in part to the fact 
that we have required a precise fit, something not possible with experimental 
data. It may likewise be due to the inclusion here of a requirement that the 
first derivative of the property be equal for the two potentials. More 
precise statements in this latter case await the result of fits to actual 
data. 
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Figure 3   S for the Viscosity Coefficient of Several Potentials 
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Figure 4   S for the Diffusion Coefficient of Several Potentials 
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PARAMETER RATIO FOR THE SECOND VIRIAL COEFFICIENT 

T*{I2,6) 

Figure 5 The Parameter Ratios «,-'f i f°r *ne Second Virial Coefficients of the (m,6) and Square 

Well Potentials with Respect to the (12,6) Potential. Note Particularly the Flatness of 

the Curves for the (m,6) Potentials 
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Figure 6   The Parameter Ratios c,A     for both the Second Virial and Viscosny Coefficients of 

the exp-6 Potential with Respect to the (12,6) Potential. Note that the Former are Flat 

while the Latter are not Flat 
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Figure 7   The Parameter Ratios fj/e* for all Four properties for the Kihara Potential with Respect to 

the (12,6) Potential. Note the Absence of any Single Ratio far which both the Equilibrium and 

Transport Properties are Flat 
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Making it Impossible to Select a Value of n at such Temperatures VI 
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