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ABSTRACT

Two distinet types of signals have been identified from studies of
T-phave spectra an. source locations. One, with ite source at a shoal-
ing slcpe of the ocean bottom and with dominant frequencies near 4 cps,
is the previously recognized and described classtc T phase. The other,
with its source in deep water and with dominant frequemcies near 30 cps,
is newly identified and is here termed the abyssally gemerated, or abyseal,
T phase. Scattering from the sea surface is proposed as a mechaniem
for producing raye which propagate through the ocean with an apparent
velocity equal to sofar velocity. The sea surface roughness te hypoth-
esized as shaping the spectrum of the abyseal T phase. A synthests of
the pover-level record is derived which relates the degree of sharpnese
of the abyssal T-phase peak with focal depth.




INTRODUCTION

The classic T phase is believed to be refracted into the ocean at a
sloping bottom and to enter the ocean sound channel after undergoing
downslope propagation. It 18 characterized by frequencies peaking at
about 4 cycles per second. Recent evidence indicates that an additional
mechanism cperates which favors higher frequencies and is not restricted
to a sloping bottom. The resulting signal, characteristic of earthquakes
which occur under the deep ocean bottom, is here termed abyssally
generated, in distinction to the classic slope-generated T phase.

BACKGROUND

Tolstoy and Ewing [1950] discussed conditions at the source which
are favorable to the production of a T phase. They pointed out that
where an earthquake occurs under a flat ocean bottom, the sound energy
can enter the ocean sound channel only by diffraction or some closely
analogous process. The location of an epicenter on a slope was recognized
as a more favurable source condition. Milne [1959] specified downslope
propagation as the mechanism for projecting acoustic rays from a nuclear
explosion, occurring in a land-locked area, into the sound channel.
Johnson et al. [1Y63] compared the intensities of T phases from-the
Andreanof Islands for a variety of source situations. It was observed
that T phases from earthquakes with 'epicenters at the lower end, and to
seaward, of the continental slope are typically weak or not received'.
This pattern was considered to support downsiope propagation as the mechanism
for projecting acoustic energy into the ocean sound channel.

The development and operation of a program for routine location of
T-phase sources [Johnson, 1966] allowed the sites of T-phatc generation
to be computed from arrival times at a hydrophone network. A study of
the aftershock sequence of the Rat Islands earthquake of February 1965
[Johnson and Norris, 1966] showed that, although the preponderance of T
phases were generated at distinct radiators along the Aleutian Ridge, a
significant number of them had sources in abyssal regions. The corres-
ponding earthquake epicenters, as reported by the U. S. Coast and Geodetic
Survey, (C&GS), nearly coincided with the computed T-phase sources. The
strength of these abyssally generated T p.ases was found to be about 10
decibels lower than that for T phases generated at the ridge by an earth-
quake of the same magnitude.

NEW EVIDENCE

On 29 July 1965 an earthquake of magnitude 6.4 occurred under the
Aleutian Trench off Amukta Pass. The C&GS repor*ed the origin at 51.2N,
171.3W, 23 km, 08h 29m 22.1s. The resulting T phase, recorded at Cali-
fornia, Oahu, Midway, Wake, and Eniwetok, was of exceptionally long
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duration with two peaks in the power level (See Figure 1).

Magnetic tape recordings of this T phase were also available from the
stations at Enivetok, Wake, Midway, and Oahu. A distinct difference in
the spectral composition of the two peaks was noted on aural examination
of these recordings. While the later peak sounded practically the siue
as all other T phases which we had encountered, the fre-uencies for the
earlier peak were noticeably higher.

The T-phase scurces were computed for both peaks using sofar velocities
and arrival times read from the magnetic tapes. The California station
as not used in the computations however, since, lacking a magnetic tape
vecording, the high- and low-frequency peaks could not be identified. For
the high-frequency peak, computaticas showed a source at 51.1N, 171,6w,
08h 29m 26s, and for the low-frequency peak, a source at 52.1IN, 172.4W,
08h 29m 40s. As plotted in Figure 2, the source location for the high-
frequency peak was in the Aleutian Trench, about 24 km from the epicenter;
that for the low-frequency peak was on the Aleutian Ridge, about 126 km
from the epicenter.

The Oshu magnetic tap: record was processed by a Northrop Nortronics
ST-701 Spectral Contour Plotter. The result, shown in Figure 3, illustratcs
the separation in time and frequency of the two peaks. Uuiie earlier peak
is centered at about 30 cps while the later peak is centered at about 10
cps. No correction was made to this figure for the response of the hydro-
phone systen. Such a correction would shift the peak power to lower fre-
quencies.

The spectral contour plot of a clasgic T phase, with its source at the
Aleutian slope, 1s shown in Figure 4. The C&GS listed this event as
originating at 52.1N, 173.1E, O5h 43m 31s, 33 km, 1 November 1966. Note
that the spectrum of this signal is quite similar to that of the later
phase in Figure 3.

We conclude that the low-frequency peak shown in Figure 3 is the classic
T phase, projected into the sound channel by downslope propagation, whereas
the high-frequency peak is a T phase generated at the epicenter by an as
yet unexplained mechanism. Figure 5 illustrates the spatial relationships
of this model. 1In a vertical section typical of the Aleutian Ridge, rays
are directed from an earthquake focus into alternate paths leading to long-
distance propagation though the ocean.

It should be noted that the use of sofar velocity in the source cal-
culation for the abyssal T phase gave an origin time which agreed closely
with that of the earthquake. Also, the standard deviation of residuals was
about one second. This agreement restricts the possible modes of propagation
of the abyssal T phase to modes whose apparent velocity 1s very nearly equal
to sofar velocity.

Although we have discussed in some detail only one double-peaked event,
we have recognized numerous similar events in the hydrophone records. A
partial list of these is given in Table 1. They were obtained by scanning
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the C&GS epicenter cards for abyssal epicenters. Events listed are those
for which the hydrophone record shows a doable-peaked T phase with a
gradual increase in the rate of onset extending over several minutes
before the first peak of puwer level. (By contrast, s‘ope-generated T
phases rise somewhat abruptly out of the background.) For many low-
magnitude earthquakes both peaks could not be detected, presumably due

to _oor coupling at the slope {Johnson et al., 1963]). Figure 6 shows
four of the double-peaked events listed in Table 1.

TIME BETWEEN PEAKS

In support of our findings which specify the regions of generation
of the high- and low-frequency T phases, the observed time between peaks
varies directly with the reported distarnce offshore (more correctly
offslope) of the epicenter. In Figure 7 these measurements are plotted
for the 10 events listed in Table 1. (The solid circles ind :ate the
events for which magnetic tapes were obtained and the characteristic
high and low frequencies were observed.)

In interpreting Figure 7, we spproximae the time betwe:n peaks, At,
as the travel time for P waves from the focus to the 50-fathom contour
plus the travel time for T waves from the 30)-fathom contour back to the
epicenter. We assume a shallow focus and take the mean horizontal
component of velocity to be 6 km/sec in the earth and 1.5 km/sec in the
water. We then have

se=s(2+ly =25

where s is the distance between the epicenter and the SO-fathom contour.
This line is plotted in Figure 7 and is a reasonably good fit to the data.
A computation in which travel time is more carefully accounted for does
not yleld significantly different results.

A portion of the scatter of the data in Figure 7 should be ascribed
to the uncertainty of epicenter location by the seismograph network. For
example, the epirenter corputed for the Longshot nuclear explosion was
25 km to the northwest of its location on Amchitka Island [Herrin and
Taggart, 1966]. Praliminary results suggest that the abyssal I-phase
source computations locate the epicenter more accurately than do compu-
tations from P-wave arrivals.

Although P-wave velocity was used in the foregoing diseussiom, there
is no reason to exclude S waves as contributing to the energy of c.he
slope-generated T phase. At the distances under consideration, the S-P
interval is about 10 seconds. Our interpretation is that the contribution
of the S phase is contained in that portion of the T phase which follows
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the peak, along with reverberation and arivivals from parts of the ridge
more distant from the focus.

SHANISM

Any hypothesis for the mechanism of generation and propagatiocn of
abyssal T phases must be consistent with the higher frequency content of
this phase, the lack of a ray path between the P waves and the sofar
channel, and an apparcat velocity which is very nearly equal to sofar
velocity.

Let us first consider a mechanism employing scattering, which, in
the ocean, may be categorized as surface scattering, volume scattering,
or bottom scattering. Volume scatter could produce sofar i1.vs directly; how-
ever such scattering would require the existence of velocity inhomogeneities
with dimensions on the order of the wavelengths involved (i.e., 35 to 75
meters). Although Piip [1964] demonstrated tuat such large-scale inhomo-
geneities existed in the water column near Bermuda, the velocity contrasts
do not seem sufficiently great to sustain significant volume scattering.

On the other hand, scattering from gravity waves at the sea surface,
offers stronger possibilities. Rayleigh [1945] treated reflection from a
corrvgated surface for the case of normal incidence. He showed that
corrugations have no effect or sound with wavelenjth greater than
the wavelength of the corrugated surface. Diffracted spectra exist,
however, for shorter wavelengths.

An indication of the scale of roughness of the sea surface is given
by Moskowitz [1964] who presents power spectra of gravity waves at various
wind speeds. For fully developed seas under 20- and 25-knot winds, spectral
peaks occur at about 7 and 10 seconds, respectively; the corresponding
wavelengths would be about 80 to 160 meters. To the wave langths which
predominate in the slope-generated T phase, such surfaces would appear smooth.
The shorter wavelengths observed in the abyssal T phase may be just thore
which are scattered into nearly horizontal directions by the ocean surface.
As illustrated in Figure 5, the requisite scattering may be accumulated
during multiple reflections from the ocean surface and floor.

Such a generation mechanism would require that the signai be initially
channelled by paths reflecting at the surface and that the signal be either
reflected at the bottom or refracted clear of the bottom by the velocity
gradient. These paths contain the range of apparent velocity spanned by
the sofar rays. For sources in high latitudes, a portion of the initially
surface-reflected rays become sofar ravs as the sound channel “ecomes
deeper toward the equator. However the ray which would arrive ai the
same time as the sofar axis ray would still be one which had been reflected
at both the surface and the bottom.

Another mechanism was suggested by Biot 1952}, i.e., the coupling
of energy between Stoneley waves and the sofar channel. Such a mechanism,
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Teble 1. Source Data for Earthquakes Which Generated Abyssal T Phases

"y

Date Time (UT) Latitude Longicude Place Mag. Depth

h m s (km)

07 29 65 08 29 22.1 51.2N 171.3W Andreanof Is. 6.4 23 R
10 01 65 08 52 05.8 50.1N 178.3E Rat Is. 6.3 32
11 18 65 22 08 45.7 53.1N 161.9W S. of Alaska 5.3 !
01 05 66 17 21 27 | 51.2N 171.2W Andreanof Is. 4.5 33
01 17 66 18 56 16.6 52.0N 171.2W Andreanof Is. 4.8 46

01 28 66 22 38 12.2 51.6N 157.0E Kamchatka 5.6 107 R

04 15 66 04 58 06 51.1N 174.3E Near Is. 4,7 33 R

04 29 66 01 46 43 53.8N 157.8W Alaska 5.2 33 R
05 11 66 21 39 35.3 48.8N 156.3E Kuril Is. 5.7 28

06 02 66 03 27 53.3 51.1N 176.0E Rat Is. 6.0 41 R

v
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however, does not account for the absence of low frequencies from the
abyssal T-phase spectrum. Also, as shown in the next section, the power-
level variation of the abyssal T-phase record is appropriate to a diffuse
source such as a scattering horizon; one would expect a signal of much
shorter duration from a velocity-coupled mechanism.

SYNTHESIS OF POWER-LEVEL VARIATION

A conspicuous feature of abyssal T phases is the previously described
gradually increasing onset rate. We will now draw a theoretical interpre-
tation of this featu-'e and show how it is related to focal depth.

In Figure 8, a conventional cartesian coordinate system has its
origin at the epicenter for a point source at depth z = h. The positive
x-axls passes through a receiver dS at distance A. Under the assumption
of spherical spreading in the crust, the intensity of P-wave radiation,
incident at the level ocean floor, is described as

3
I¢h(x2+y2+h2) 5

We assume that, to some layer in the ocean, the insonification of
rthe ocean floor imparts a diffuse energy density which is proportional to
1. This assumption does not take account of the variation with the angle
of incidence of energ; transmitted through the ocean floor. However,
this error is partially compensated by neglecting the contribution of S
waves at higher angles of incidence [Erginm, 1952].

We wish to obtair an expression for the sound power level at surface
elements dS. Let dE' he the energy transmitted to dS from volume element
dV which transects the excited layer. For large A, dk' {is practically a
constant fraction of the total cnergy radiation from dV.

W

dE' = T dV d§ « h(x® + y2 + b%) 2 4V dS

All volume elements from which dS receives energy during the same
inter 1 dt form a hyperbolic strip which is symmetrical about the x-axis.
Such  strip is indicated by AA' in Figure 8. The major contribution to
the integral of dE' along this strip is from the portion near the epicenter
(near the x-axis). In order to facilitate integration we will approximate
the hyperbola by the straight line tangent to it at the x-axis, i.e.,

x independent of y. For dV = dx dy



y-w
.3
dE = [dE'« hx? + y2 + h?2) 2 ds dx dy
y=uJ
y-O
dE « h dS dx Y : -%di-‘l’zi
2 +hrd) X +yiend) 2 x" +h
y=0

Since this energy arrives during the interval dt = dx/y, where y is T-wave

velocity, the intensity at the receiver is

The power level with arbitrary reference is

L-lOlog—zl]——z' '

x“ +h

The travel time from the epicenter to the receiver is

P

o aienh?t Ao x

a Y

where a is P-wave velocity.

Expressed independently of 4

P

2, .2, 2
tag ~Qaflxth) " x
Y a Y

(1)

(2)
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Geometry for synthesizing abyssal T-phase power level.
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From parametric equations (1) and (2) abyssal T-phase records can be
synthesized.

Synthetic T phases, where ~ « 6 and vy = 1.5 km/sec, are shown in
Figure 9 for three fr-al depths. The arbitrary reference level for each
synthesized curve has been adjusted so that they have a common asymptote.
Two actual T-phase records are also shown for comparison. Despite the
extensive simplifications in the foregoing derivation, the characteristic
features of the abyssal T phase have been retained, as shown by comparison
with the actual recorded events. The degree of sharpnese of the abysual
T-phase peak appears to be a valid indicator o€ focal depth. This
indicator appears more sensitive for shallower depth earthquakes.

DIRECTIONS FOR FURTHER STUDY

Abyssal T phases, as here d2scribed, have becn positively identified
sply from sources in that sector of the Pacific rim which lies between
Japan and Aiaska. Throughout this region the sound channel is quite
near the surface with the result that refracted surface-reflected (RSR)
rays hecome sofar rays {n the lower latitudes of the hydrophones. Is
this transformation from RSR to sofar rays a necessary condition for
observing abyssal T phases? Other regions where earthquakes occur under
a deep ocean floor are off northern California and Oregon and the East
Pacific Ridge. However, T phases observed from these regions have the
© classic low-frequency spectrum. Although the ocean flour in these regions
may not be smooth it does not intersect the sound channel axis as is
required by the downslope propagation mechanism for producing sofar rays.
This anomalous situation must be resolved before our current models of
T-phase generation can be completely acceptable.

Further study of the mode of propagation of abyssal T piases may be
made by comparing the signal recorded from a sound~channel hydrophone with
that from a hydrophone on the deep ocean floor. Such instruments have
been installed by the Pacific Missile Range Facility at Wake Island and
recording is pow in progress.

Under the model proposed there it would be possible to demonstrate a2
continuously varying superposition of abyssal and slope-generated T phases
as the epicenter is moved toward the slope; however, we have not as yet
found intervals of less than 65 seconds between high- and low-frequency
peaks. Although strong earthquakes with epicenters in non-abyssal regions
often generate classic T phases with low-level forerunners, the forerunners
appear to be of low frequency. An excepticn to this is the Kamchatka event.
shown in Figure 6.

Interest in sound scattering in the ocean has been practically con-
fined to much higher frequencies and to the cases of back-scattering and
forward-scattering [Chapman and Scott, 1964). Some laboratory studies have
been conducted with more variable geometry [Moore and Parkins, 1966], but
the case of normal incidence was not included and the relation of laboratory
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surfaces to the ocean surface is uncertain, More appropriate experimental
work is nzeded to determine the energy reradiated at low grazing angles
for normally incident sound at frequencies of less than 100 cps.
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