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ON OPTIMAL LINEAR SMOOTHING THEORY 

J. S. Meditch* 

ABSTRACT 

The algorithm for generating the smoothed estimate x(t/t + T) of the state 

x(t) of a continuous linear system, where t is continuous time, T is a positive 

real constant, and t + T is the time of the most recent measurement, is developed. 

A linear matrix differential equation whose solution gives the covariance matrix 

of the smoothing error x(t|t + T) » x(t) - x(t|t + T) is then derived. Computa- 

tional aspects involved in mechanizing the algorithm are discussed in terms of 

the algorithm's dependence on the solution of the prediction, filtering, and 

fixed-point smoothing problems. The results are then discussed in terms of the 

classical Wiener smoothing problem. 

Department of Electrical Engineering, Northwestern university, Evanston, Illi- 
nois 60201. This work was supported in part by the U. S. Army, Navy, and 
Air Force in a Joint Services Electronics Program under Office of Naval Research 
Contract Number N00014-66-C0020-A03. 
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1.0 Introduceion 

The continuous optimal linear smoothing problem consists in determining a 

minimum mean-square error estimate x(t|T), t * t * T, of a state vector x(t) 

based on measurements z(a) given over the entire interval t £ a £ T where 
o 

1. 

X - P(t) X + w(t) (1) 

*(t) i H(t) x(t) + v(t) (2) 

In Eqs. (1) and (2), x is an n-vector, the state; z is an m-vector, the measure- 

ment; w is an n-vector, the disturbance; v is an m-vector, the measurement error; 

F and H are continuous n x n and m x n matrices» respectively; t denotes time; and the 

dot denotes the time derivative. We assume that w(t) and v't) are independent 

Gaussian white noise processes with identically zero means and covariance matrices 

E[w(t) v»(a)]- Q(t) 6(t - a) 

E[ v(c) v»(a) ] - R(t) 6(t - a) 

for all t and a where E denotes the expected value, the prime denotes the trans- 

pose, 6 is the Dirac delta function, Q(t) is a symmetric n x n positive semidefinite 

matrix, and R(t) is a symmetric m x m  positive definite matrix. 

We assume further that the initial time t is fixed, and that x(t ) is a zero 
o v o' 

mean Gaussian random n-vector which is independent of u(t) and v(t) for all t and 

whose covariance matrix P(t ) * E [ x(t ) x'(t )] is a symmetric n x n positive semi- 

definite matrix. 

We define the smoothing error by the relation 

x(t|T) - x(t) - x(t|T) 

and the mean-square smoothing error by 

S - E[x'(t|r) x(t|r) ] 

where t * T. We call an estimate x(t|T) that minimizes S an optimal smoothed 

estimate. 

We note that there are basically three separate cases to be considered in the 



'. 

2. 

smoothing problem: 

1.  Fixed-Interval Smoothing.  In this case, the interval [t ,T ] over which the 

measurements are given is fixed, and we obtain an optimal smoothed estimate 

of x for all t e[t ,T]. This case has been treated by Bryson and Frazier^ ', 
0       (2} 

and Rauch, Tung, and Striebelv  . The results are of particular significance 

in post-experimental data analysis where one needs to obtain a "refined" 

estimate of the state vector of a physical system over the system's entire 

operating time. 

2. Fixed-Point Smoothing.  If an optimal smoothed estimate of x is desired at 

only one value of t e[t ,T], we call x(t|*r) a fixed-point smoothed estimate. 

Such an estimate can be obtained using fixed-interval smoothing, but the 
(3 4} 

procedure is computationally inefficient for this purposev * '. Moreover, 

if the terminal measurement time T is not specified a priori, as might be the 

case in an "on-line" smoothing problem, fixed-interval smoothing is not 

applicable here. The algorithm for optimal fixed-point smoothing for continu- 

ous linear systems which begins with the optimal filtered estimate*1 ' of x at 

the fixed time t and "updates" this estimate recursively as more measurement 

data become available has been developed by Meditchv  . The procedure is 

applicable to both post-experimental data analysis and "on-line" data pro- 

cessing problems where one requires a smoothed estimate of a physical system's 

state at some critical time during the system's operation. 

3. Fixed-Lag Smoothing. Now suppose that T is replaced by t + T where T * constant 

> 0 and t is variable with t * t . Then, we see that x(t[t + T) is a "running" 

smoothed estimate which "lags" behind the time of the most recent measurement 

by a fixed amount T. For obvious reasons, we call x(t|t + T) a fixed-lag 

smoothed estimate. Such estimates are primarily of interest in conxnunication 

and telemetry systems where one wishes an "on-line" smoothed estimate of the 

state of the message or data transmitted. The intuitive justification for the 

lag is that we would expect less mean-square error in the smoothed estimate 

than in the predicted or filtered estimates x(t|a), t > o  and t « ot  respec- 

tively. • 

In this paper, we shall develop the algorithm for optimal fixed-lag smoothing for 

continuous linear systems of the type described by Eqs. (1) and (2). We shall 
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also derive the matrix differential equation whose solution gives the covariance 

matrix of the fixed-lag smoothing error 

x(t|t + T) - x(t) - x(t|t + T) 

Our approach consists in considering the limiting case of the fixed-lag 

smoothing solution for discrete linear systems wherein the time between measure- 

ments is made arbitrarily small. The equations for discrete optimal fixed-lag 
(3) 

smoothing are well-knownv  , and will be used as the starting point in our work. 

The limiting process that we shall utilize is due to Kalmar.  . 

2.0 Optimal Fixed-Lag Discrete Linear Smoothing 

We begin by considering the discrete system analog of Eqs» (1) and (2) which 

can be expressed in the form 

x(k + 1) - *(k + l,k) x(k) + w(k) (3) 

z(k + 1) « H(k + 1) x(k + 1) + v(k + 1) (4) 

where v, w, x, z, and H are of the same dimensions as they were in Eqs. (1) and 

(2); $ is an nxn matrix, the state transition matrix; and k « 0,1,..., is the 

discrete time index. We assume that w and v are independent Gaussian white 

sequences with identically zero means and covariance matrices 

E[w(j) w'(k)] « Q(k) 6jk 

am! 

E[v(j) v»(k)] - R(k) 6jk 

for all j and k where 6  is the Kronecker delta, Q(k) is a symmetrix nxn positive 
jk 

semidefinite matrix, and R(k) is a symmetric m x m positive definite matrix. 

We further assume that the initial state x(0) is a zero mean Gaussian random 

n-vector which is independent of w(k) and v(k) for all k and whose covariance 

matrix P(0) ■ E [ x(0) x'(0)] is n x n symmetric, and positive semidefinite. 

We let N be some fixed positive integer and denote a fixed-lag smoothed esti- 

mate of x(k), given measurements up to and including the one at time k + N, by 
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x(k|k + N) where k ■ 0,1,... . We define the corresponding smoothing error and 

its mean-square value by the relations 

x(k|k + N) - x(k) - x(k|k + N) 

and 

S * E[5»(k|k + N) x(k|k + N)] 

respectively. We call an estimate x(k |k + N) that minimizes S the optimal fixed- 
(3) 

lag smoothed estimate.  It has been shownv ' that this estimate is given recur- 

sively by the system of n first-order difference equations 

x(k + 1 |k + 1 + N) = $(k + l,k) x(k|k + N) 

+ C(k + N,k + 1) K(k + 1 +N) 

.[z(k + 1 + N) - H(k + 1 + N) x(k + 1 + N|k + N)] 

+ Q(k) $»(k,k + 1) P"1(k) 

• [ x(k)k + N) - x(k)] (5) 

for k = 0,1,..., where 

C(k + N,k + 1) * 

k-W 

TT 
i-k+1 

J(i) (6) 

J(i) « P(i) $'(i + l,i) M-1(i + 1) (7) 

K(k + 1 + N) « P(k + 1 + N) H'(k + 1 + N) if *(k + 1 + N) 

-1 

(8) 

[ ]   denotes the matrix inverse, and x(k) and x(k + 1 + N|k + N) are the 

filtered and predicted estimates of x(k) and x(k + 1 + N), respectively.  In 

addition, the n x n matrices P and M are the covariance matrices of the filtering 

and prediction errors 



x(j + 1) - x(j + 1) - x(j + 1) 

and 

x(j + l|j) - x(j + 1) - x(j + l|j) 

respectively. 

The filtered and predicted estimates along with their corresponding error 

covariance matrices are governed by the set of relations^ * ' 

x(j + 1|J) - *(j + l,j) x(j) (9) 

x(j + 1) - x(j + l|j) +K(j + 1) [z(j -t 1) - H(J + 1) x(j + 1|J)]       (10) 

K(J + 1) * M(j + 1) H»(j + 1) [H(J + 1) M(j + 1) H'(j + 1) + R(j + I)]"1 (11) 

M(j + 1) « *(j + l,j) P(j) $'(j + l,j) + Q(j) (12) 

P(j + 1) * [I - K(j + 1) H(j + 1)] M(j + 1) (13) 

for j - 0,1 where x(0) « 0, P(0) = E[ x(0) x'(0) ], and I is the n x n identity 

matrix. 

The n x m matrix K which is given by either Eq.(8) or Eq.(ll) and which also 

appears in Eq. (5) is called the optimal filter gain. 

In order to initiate fixed-lag smoothing, we note that at k = 0, x(N + l|N), 

x(0), and x(0|N) must be input to Eq. (5), The first two of these follow directly 

from the results for prediction and filtering. However, x(0|N) must be obtained 

from the fixed-point smoothing filter by starting with x(0) - 0 and processing the 

measurements at k ■ 1,...,N. The equations necessary to do this are given else- 

wherev ' ' for the discrete case. They are of no consequence here since we are 

concerned with the continuous case. After wc have developed the algorithm for con- 

tinuous fixed-lag smoothing, we shall show in detail whst procedure must be followed 

to obtain the appropriate initial conditions. In any event, it is clear that 

tixed-lag smoothing depends upon inputs from both the predictor-filter and the 

fixed-point smoothing filter. 

The covariance matrix of the fixed-lag discrete optimal linear smoothing error 

which was defined earlier is given by the first-order n x n matrix difference equation 
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6. 

P(k+l|k+l4fl) = M(k+1) - C(k+N,k+1) K(k+1+N) H(k+1+N) M(k+1+N) Cf(k-rt*,k+l) 

- J~*(k)[ P(k) - P(k|k+N)] j'^Ck) (14) 

for k «* 0,1,..., where 

P(k|k + N) « E [x(k|k + N) x(k|k + N)] 

and all of the other terms were defined previously. 

The initial condition on Eq. (14) is P(0|N) which must be obtained from the 

covariance equation for fixed-point smoothing^ '  . We shall present the equation 

whose solution will give the initial condition for the continuous version of Eq. 

(14) in Section 4.0 

3.0 Optimal Fixed-Lag Continuous Linear Smoothing 

Let us assume that the system of Eqs. (3) and (4) has been developed by dis- 

cretizing the system of Eqs. (I) and (2). The corresponding fixed-lag smoothing 

filter is then defined by Eqs. (5) through (8). We now consider the limiting be- 

havior of this latter set of equations as the time between measurements is made 

arbitrarily small. 

We let the discrete time instants k and k + 1 be denoted by t and t + At, 

respectively, where At > 0. We let the time interval N be denoted by T ■ con- 

stant > 0, and, as a result, see that k + U  and k + 1 + N become t + T and 

t + At + T, respectively.  In considering the limiting case, the covariance matrices 

Q(k) and R(k) must be replaced by Q(t)/At and R(t)/At, respectively.  This is 

nece.sary in order to obtain a physically meaningful description of the Gaussian 

white noise as the limic of the Gaussian white sequence.  In addition, a factor of 

At arises in the disturbance term so that w(k) is replaced by w(t)At. As a result, 

Q(k) ic replaced by Q(t)At in all covariance relations involving Q(k). The de- 

tails of the justification for this procedure are given elsewhere^ '   , and will 

not be repeated here. 

Making these substitutions into Eqs. (5) and (8), we have 

x(t+At|t+At+T) - $(t+At,t) x(t| :+T) + C(t>" t+Af, K(t+At+T) 

• [ z(t+At+T) - H(t+At+T) x(t+At+T| t+T) ] 

+ Q(t) $'(t,t+At) P'X(t)[ x(t|t+T) - x(t)]At (15) 

i 

* 



- ■ 

7. 

and 

K(t+At+T) « P(t+At+T) H*(t+At+T) R'^t+At-fT) At (16) 

respectively. 

Since Che state transition matrix satisfies the relations 

*(t,T) « F(t) *(t,T)        and        *(T,T) - I     for all T, 

we see  that $(t + At,t) and $'(t,t, +At) can be expanded in the Taylor series' 

*(t + At,t) « I + F(t) At + 0(At2) (17) 

and 

*'(t,t +At) = I - F'(t) At + 0(At2) (18) 

2 2 
respectively, where 0(At ) denotes terms of order (At) . 

Substituting Eqs. (16), (17), and (18) into Eq. (15), and rearranging terms, 

we obtain 

x(t+At|t+At+T)   - x(t|t+T)  « F(t)  x(t(t+T)At + C(t+T,t+At)  P(t+At+T) 

•H(t+At+T) R"1(t+At+T)[ z(t+At+T)   - H(t+At+T)  x(t+At+T| t+T) ]At 

+ Q(t)  P-1(t)   [x(t|t+T)   - 2(t)]  At + 0(At2) 

Dividing through by  At and  taking lim At -* 0,  we then have  that 

x(t|tAf- T)  = F(t)  x(t|t + T)  + lim       ic(t + T,t + At)   P(t + At + T) 
At ■+ 0 L 

• Hf(t+At+T) R'^t+At+TJL z(t+At+T)  - H(t+At+T)  x(t+At+T! t+T) ]} 

+ Q(t)  P"1(t)[ x(t|t + T)   - x(t)] (19) 

where it remains for us to evaluate the second term on the right-hand side. 

From Eq. (6), it is seen that 
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. 

C(t + T,t) = J(t) C(t + T,t +£t) 

which can also be written 

C(t + T,t +At) - j"l(t) C(t + T,t) (20) 

From Eq. (7), 

j"1^) = M(t + AO *'(t,t + AO P"V) (21) 

Making the appropriate substitutions into Eq. (12), we obtain the result 

M(t +At) = $(t +At,t) P(t) $'(t +&t,t) + Q(t) At 

= [I + F(t)At + 0(At2)] P(t) [I + F(t)At + 0(At2)]' + Q(t)At 

« P(t) + [F(t) P(t) + P(t) F'(t) + Q(t)]At + 0(At2) 

= P(t) + 0(At) (22) 

where 0(At) denotes terms of order At. 

Substituting Eqs. (22) and (18) into Eq. (21) and simplifying the result, we 

see that 

Jfl<t) «[ P(t) + OCU)] [I - F'(t)At + 0fct2)]P"l(t) 

- I + 0(At) 

Hence, Eq. (20) can be written 

C(t + T,t + At) ■ C(t + T,t) + 0(At) 

from which it immediately follows that 

lim   C(t + T,t + At) = C(t + T,t) (23) 
At ■♦ 0 

From the nature of the matrices P, H, and k  , it also follows that 
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lim   P(t+£t+T) H'(t+At+T) R* (t+At+T) = P(t+T) H'(t+T) R'^t+T)        (24) 
AL *♦ 0 

From Eqs. (!?) and (7), we see that 

x(t + ^t + Tjt + T) «= $(t + At + T,t + T) x(t + T) 

- [I + F(t)At + 0(At )] x(t + T) 

« x(t + T) + 0(At) 

Hence, 

lim      [  z(t+At+T)  - H(t+At+T)  x(t+At+T|t+T)] = z(t+T)   - H(t+T)  x(t+T) (25) 
At ■• 0 

As a consequence of Eqs.(23,(24),and (25),the second term on the right-hand 

side of Eq. (19) can be evaluated as the product of the three limits in these equa- 

tions, and we are led to the result 

J , 
x(t|t+T) = F(t) x(t|t+T) + C(t+T,t) P(t+T) H'(t+T) R  (t+T) 

•[z(t+T) - H(t+T) x(t+T)] + Q(t) P"1(t) [x(t|t+T) - x(t)] (26) 

which specifies the optimal fixed-lag continuous linear smoothing filter. 

Since 

K(t + T) = P(t + T) H'(t + T) R (t + T) 

is the n x m gain matrix of the optimal continuous linear filter  '  ,we can also 

write Eq. (26) as 

x(t|t+T) = F(t) x(t|t+T) + C(t+T,t) K(t+T) [z(t+T) - H(t+T) x(t+T)] 

+ Q(t) P~V) [x(t|t+T) - x(t)] (27) 

where t a t . 
o 

We note that mechanization of Eq. (27) requires the following input data: 
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A. The system matrix F(t) and the system disturbance covariance matrix Q(t). 

B. Tne "gain times residual" term K(t + T) [z(t + T) - H(t + T) x(t + T)]. 
i { 

C. The time history of the n x n smoothing filter gain matrix C(t + T,t). 

D. The optimal filtered estimate x(t) and the inverse of its error covariance 

matrix, i.e., P* (t) 

E. The initial condition x(t |t + T) 
o' o 

Item A is generally given in the problem sDCcification.  Items B and D follow 

directly from the optimal filter results  ' which we repeat here for convenience: 

x - F(o) x + K(o) [ 2(a) - H(a) x ] (28) 

K (a) « P(a) Hf(a) Kl(o) (29) 

P * F(a) P + PF'(a) - PH'(a) Kl(a)  H(a) P + Q(a) (30) 

A 
where a ;> t , x(t )=0,P(t ) = E fx(t ) x'(t )"|, and the dot denotes the derivative 

O     0       0      L   o      o J 

with respect to a.  In this connection, we observe that the filter of Eq. (28) 

must process the measurements in the interval [t ,t + T ] before smoothing is 

initiated since the term K(t + T)] z(t + T) - H(t + T) x(t + T)]is required 

in Eq. (27) to begin smoothing. As a result, we have two time scales here: 

the filter time scale a and the smoothing filter time scale t where t; ■ a - T, 

i.e., the smoothing filter must, of necessity, "lag" the filter of Eq. (28) by 

T units of time in executing its data processing. 

Because of the relationship between the two time scales, we see that P (t) 

and x(t) which are required in Eq. (27) can be obtained directly from P(a) and 

xp) which must be computed first in order tq mechanize Eq (28) by introducing 

a time delay of T units into the latter two quantities. 

We summarize our discussion here in the form of the block diagram shown 

below in Fig. 1. 



■ 

11. 

QCt)F"l(t) 

a * t 

x(t) 

Fig.  1 

Smoothing filter block diagram. 

We turn now to consideration of items C and E.  In particular, the initial 

condition x(t Jt + T) can be obtained by utilizing optimal fixed-point continu- 

ous linear smoothing^ ' to process the measurements in the interval [t ,t + T]. 
(U) 

The required algorithm isv ' 
o' o 

£(to|o) - B(a,to) K (a) [z(a) - H(a) x(a) ] (31) 
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where a * t . x(t It )  = 0. and the n x n gain matrix satisfies the matrix differen- 
o' v o'  o'        * 

tial equation 

B(a,t ) « - B(a,t )[ F(a) + Q(a) p'^a) ] (32) 

~7 

where B(to,tQ) - I. 

The termK(a)[ z(a) - H(0") x(a) ] is obtained directly from the optimal filter 

defined by Eqs. (28) through (30), and the fixed-point smoothing filter can be 

operated on the same time scale, i.e., simultaneously, with the filter of Eq. (28) («) 

At O  * t + T, fixed-point smoothing is terminated, and the output x(t |t + T) 

of this smoothing procedure is input as the initial condition for fixed-lag smoothing 

(see Eq. (27) and Fig. 1). We note, of course, that the fixed-lag smoothing filter 

has been inoperative during the interval t ^ o £  t + T while "waiting" for the 

required initial condition. 

We conclude this section by developing the matrix differential equation whose 

solution is the fixed-lag smoothing filter gain C(t + T,t). From Eq. (6), we see 

that 

k+l4tf 

C(k + 1 + N,k + 1)  * J(i) 
I      i 

i-k+1 

ylw 
k-W 

TT 
i«k 

J(i) J(k + i + N) 

J-1(k)  C(k + N,k)  J(k + 1 + N) 

which we choose to express in the form 

C(k + 1 + N,k + 1) J-1(k + 1 + N) - J"1(k) C(k + N,k) (33) 

Replacing k by t, k + 1 by t + At, k + N by t + T, and k + 1 + N by t + ßt + T 

in Eq. (33), we obtain 
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C(t + At + T,t + At) j" (t + At + T) « j"X(t) C(t + T.t) (34) 
| 

From Eq. (21), we recall that 

J-1(t) - M(t + At) **(t,t + At) P'1(t) (21) 

From the first line In Eq, (22), and Eqs. (17) and (18), we see that 

M(t + At) *'(t,t + At) - *(t + At,t) P(t) + Q(t) *'(t,t + At) At 

« [i + F(t)At + 0(At2)] P(t) 

+ Q(t) [I - F'(t)At + 0(At2)]At 

- P(0 +[F(t)P(t)+Q(t)]At + 0(At2) 

Postmultiplying this result by P* (t), we obtain the result 

J-1(t) » I +[F(t) + Q(t) p"1(t)]At + 0(At2) (35) 

In an identical manner, we also have 

j"  (t+At+T)  » I + [F(t+At+T) + Q(t+At+T) P~*( t+At+T)] At + 0(At2) (36) 

Substituting Eqs.   (35)  and (36)   into Eq.   (34)  and rearranging the result 

gives us 

C( t+At+T, t+At)   - C(t+T,t)   *[F(t)-hQ(t)p"1(t) ]C(t+T,t)At 

- C(t+At+T,t+At) [F(t+At+T)+Q(t+At+T)P"1(t+At+T)] At 

+ 0(At2) 

Dividing through by At and taking lim At ~* 0, we then have 

C(t+T,t) «[F(t)-KKt)p"V)] C(t+T,t) - C(t+T,t) [F(t+T)+Q(t+T)P"1(t+T)]  (37) 

which is the desired result. The initial condition for Eq. (37) is C(t + T,t ) * 
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B(t + T,t } which is simply the solution of Eq. (32) evaluated at a ■ t + I,  In 

this case, we obse'rve that computation of C(t + T,t) where t * t cannot be initiat- 

ed until both Eqs. (30) and (37) have been solved over the interval t * o £ t + T 

to obtain P(t + T) and B(t + T,t ), respectively. We note, of course, that ?(p) 

is also required for a > t + T. Finally, although the gain matrix C(t + T,t) can 

be computed a priori, i.e., before fixed-lag smoothing is initiated, by solving Eqs. 

(30), (32), and (37), the fact remains that the smoothing filter of Eq. (27) cannot 

begin functioning until x(t |t + T) and the term K(t + T) [z(t + T) - H(t + T) 
O  O 0 0 0 

•x(t + T) ] are determined by fixed-point smoothing and filtering, respectively, 

over the interval t ^ o £ t 4- T. 
o      o 

4.0 Optimal Fixed-Lag Continuous Linear Smoothing Error Covariance 

Replacing k by t, k + 1 by t + At, k + N by t + T, and k + 1 + N by t + At + T 

in Eq. (14), and substituting into this result from Eq. (16), we have 

P(t+Atjt+At+T) * M(t+Ät) - C(t+T,t+Ät)P(t+At+T)Hl(t+At+T)R"1(t+At+T) 

H(t+At+T)M(t+At+T)C (t+T, t+At) At 
■ 

- j"V) [P(t) - P(t|t+T)] J"r(t) (38) 

For the present, we focus our attention on the first and third terms of Eq. 

(38). 

We recall from Eq. (22) that 

M(t + At) - P(t) + [F(t) P(t) + P(t) F'(t) + Q(t)]At + 0(At2)       (22) 

Utilizing the expression for j" (t) as given in Eq. (35), we observe that 

J-1(t) P(t) J-1'(t) » {i + [F(t)4^(t)p"1(t)]At+0(At2)} P(t) 

•{i + [F,(t)+p"1(t)Q(t)] At + 0(At2)} 

- { P(t) + [F(t)P(t)-KKt)] At + 0(At2)] 

'{i + [F,(t)+P"1(t)Q(t)] At + 0(At2)} 

- P(t) + [F(t)P(t)-K}(t)] At + [P(t)F'(t)-KKt)] At + 0(At2) 
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we obtain 

P(t|t+T)  B[F(t)-KJ(t)p"I(t)]   P(t|t+T)  + P(t|t+T) [F(t)+Q(t)p"1(t)] 

- C(t+T,t)P(t+T)H,(t+T)R"1(t+T)H(t+T)P(t+T)C'(t+T,t)   - Q(t) (42) 

• P(t) +[F(t)P(t)+P(t)F,(t)+2Q(t)]   At + 0(At2) (39) 

Similarly, we have that 

j"'l(t)P(t|t+T)j'1,(t)  -{  P(t|t+T)-f[F(t)4<J(t)p"1(t)]   P(t|t+T)At + 0(At2)] 

*{l +[F'(t)+p"1(t)Q(t)]   At + 0(At2)j 

« P(t|t+T)+[F(t)-K}(t)P    (t)]   P(t|t+T)   At 

+ P(t |t+T) [ F(t)-K^(t)p"1(t)] '   At + 0(At2) (40) 

Combining Eqs.   (22),   (39),  and (40), we see that 
I 

M(t+ t)-j"l(t)[P(t)-P(t|MT)]jfl'(t)  « P(t|t+T)+[F(t)-HJ(t)p"1(t)] P(t|t+T)At 

I -1 - 
+ P(t|t+T)  [F(t)-K^(t)P L(t)]  At-Q(t)At 

i 

+ 0(At2) (41) 

Substituting Eq. (41) into Eq. (38) and rearranging terms, we have 

P(t+At|t+At+T)-P(t|t+T) « [F(t)+Q(t)p"1(t)]P(t|t+T)At+P(t|t+T)[F(t)-HJ(t)p'"1(t)]lAt 

- C(t+T,t+At)P(t+At+T)Hl(t+At+T)R"1(t+At+T)H(t+At+T) 
i 
i 

•M(t+At+T)Cf(t«-T,t+At) At - Q(t) At + 0(At2) 
) 

Dividing through by At, taking lim At "» 0, utilizing the results in Eqs. (23) and 

(24), and noting from Eqc (22) that 

j 

lira   M(t + At + T) ■ P(t + T) 
At -• 0 
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which is the result sought. 

The n x n matrix C(t + T,t) in Eq.(42) is the solution of Eq.(37).  The 

covariance matrices p" (t) and P(t + T) are obtained from the solution of the 

filter error covariance relation, Eq. (30), as described previously. Finally, 

the initial condition for Eq. (42) is P(t |t + T) which can be obtained by solv- 

ing the fixed-point smoothing error covariance equation^ ' 

P(tQ|a) * - B(a,to)P(a)H
l(a)R"1(a)H(a)p(a)B»(a,to) (43) 

over the interval t £ a £ t + T where B(a,t ) is the solution of Eq. (32) and 

the initial condition for Eq. (43) is P(t ). 

Solution of Eq. (42) then gives the covariance matrix of the optimal fixed-lag 

continuous linear smoothing error x(t|t + T) = x(t) - x(t|t + T)and it follows that 

E[ x'(t |t + T) x(t ft + T) ]= trace P(t |t + T) 
»■ 

Finally, by noting the definition of the optimal filter gain matrix K, we see 

that Eq. (42) can also be written as 

P(t|t+T) =[ F(t)-H^(t)p"1(t) ]p(t|t+T) +P(t|t+T) [F(t)+Q(t)P"1(t)]' 

- C(t+T,t) K(t+T) H(t+T) P(t+T) C'(t+T,t) - Q(t) (43) 
I 
» 

5.0 Discussion of Results 

For convenience of reference in the discussion to follow, let us summarize the 

results for optimal fixed-lag continuous linear smoothing. The smoothing filter 

equation is 

x(t|t+T) = F(t) x(t|t+T) + C(t+T,t) K(t+T) [z(t+T) - H(t+T) x(t+T)] 

+ Q(t) P"X(t) [x(t/t+T) - x(t)] (27)      I 

where 

K(t+T) » P(t+T) H'(t+T) R"X(t+T) 

and C(t,t+T) is the solution of the n x n matrix differential equation 
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C(t+T,t) = F(t)+Q(t)p"1(t)  C(t+T,t) - C(t+T,t)  F(t+T)+Q(t+T)P"1(t+T)   (37) 
« 

In these three equations t * t , and the initial conditions x(t It + T) and 
^ o v o' o   ' 

C(t + T,t ) are obtained from the solution of the optimal fixed-lag continuous 

linear smoothing problem over the interval [ t ,t + Tl. The n x m matrix K(t + T) is 
o o   ■* 

the gain matrix for optimal continuous linear filtering. The matrix C(t + T,t) is 

termed the optimal smoothing filter gain. 

The fixed-lag smoothing error covariance matrix equation is 

P(t|t+T) -[F(t)4Q(t)p"l(t)]P(t|t+T) +P(t|t+T) [FW-KKOP^Ct)]' 

- C(t+T,t)K(t+l)H(t+T)P(t+T)C,(tfT,t) - Q(t) (43) 

for t * t where the initial condition ?(*■   It + T) is obtain from the optimal 
o o' o 

fixed-lag smoothing solution. 

Perhaps the most striking feature of the fixed-lag smoothing filter described 

by Eq. (27) is that it contains two "correction" terms in addition to the "homo- 

geneous" term F(t) x(t|t + T). This is in contrast to the familiar Kalman-Bucy 

filter of Eq. (28) which possesses a single "correction" term in addition to the 

homogeneous term. 

The first "correction" term in Eq. (27) is a weighting of the "gain times 

residual term" K(t + T) [ z(t + T) - H(t + T) x(t + T)] found in the Kalman-Bucy 

filter. The function of the smoothing filter gain C(t + T,t) is to weight the 

"information" in K(t + T) £z(t + T) - H(t + T) x(t + T)J and "reflect" it into 

x(t  + T).We recall here that the estimate lags the measurement by T units of time. 

The second "correction" term, on the other hand, involves a weighting of the 

difference between the fixed-lag smoothed estimate and the filtered estimate, both 

at time t. We can view this difference as a smoothing vs. filtering "error" signal. 

Now let us recall that Q(t) is the covariance matrix of the system disturbance 

w(t) in Eq. (1) and that P(t) is the covariance matrix of the filtering error x(t). 

We note immediately that if there is no system disturbance, then Q(t) » 0 for all 

t * t and the second "correction" term vanishes.  This is plausible for the follow- 
o r 

ing reason.  If Q(t) = 0 for all t * t , the uncertainty in x(t) is due entirely to 

the uncertainty in x(t ), the initial state.  This uncertainty can only be reduced 

by examining the measurements z(t) for t * t in which case the difference x(t|t + T) 

- x(t) contains no "new information" not already present in the residual z - H x. 

Now suppose Q(t) f  0 for t ^ t .  Then,if x(t) is an accurate estimate of x(t), 
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i.e„, trace P(t) is small, the. weighting factor Q(t)P (t) will tend to be "large". 

This, of course, emphasizes the importance of this second correction term as it 

should. Indeed, as P(t) "♦ 0, we have x(t) "♦ x(t), and we would expect the correc- 

tion term to dominate the filter's behavior in an effort to force x(t|t + T) into 

correspondence with x(t). 

Let us now relate the problem that we have solved here to the classical Wiener 

smoothing problem'   '♦ In the classical formulation, we consider the block dia- 

gram shown below in Fig. 2. The message and measurement models are described by 

Eqs. (1) and (2), respectively, along with the corresponding statistical information 

which was given in Section 1.0. The ideal smoothing filter is characterized 

by its n x n  system impulse response matrix which is 

A^t.T) 

t < T 

where I is the n x n identity matrix, 6 is the Dirac delta function, and T > 0. By 

the notation A.(t,T), we mean the response or state of the filter at time t for a vector 

unit impulse (Dirac delta function) input at time T, From the familiar convolution 

integral, 

Kt) -  J A^t,!) X(T) d T t * t + T 
t - ° 

j 
t 

X(T) 6(t - T - T) d T 

t 
o 

x(t - T) 

i.e., the ideal state l(t) is the actual state delayed by T units of time. 

Although the ideal smoothing filter is physically realizable by a pure delay 

T, the operation that it is to perform cannot be implemented since we do not have 

physical access to x(t). Hence, it is the "ideal" against which we compare the 

performance of the actual smoothing filter which operates on the measurements. We 

require that this latter filter be linear and that its n x m impulse response matrix 

* 

- •*"*+ ■'■■—! i »it-jstfeis«: t.«***äöäi 
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1 I 

A(t,T) = 0 for all t < T. 

Since the actual smoothing filter requires x(t |t + T) as its initial con- 

dition, it cannot begin its operation until measurements over the interval 

[t ,t + T]have been processed to obtain this initial condition. Hence, in 

smoothing, we require that t * t + T. 

Again, utilizing the convolution integral, we can write 

x(t - T|t) - j A(t - T,T) z(T) d T 

o 

where t ^ t + T, or equivalently, by a simple change of variable, we also have 
o 

Jt+T 
A(t,T) z(T) d T (44) 

t 
o 

I 

where now t ^ t . 
o 

The smoothing error is defined as 
i 

x(t - T|t) = x(t - T) - x(t - Tjt) 

for t ^ t + T, or, equivalently, 

x(t|t + T) = x(t) - x(t|t + T) 
i 

where t ^ t . 
o 

We then say that a filter of the form described in Eq. (44) that minimizes the 

mean-square smoothing error 

S « E[ x'(t|t + T) x(r|t + T)] 

■ 

for all t s t is an optimal fixed-lag smoothing filter. 

In the classical formulation, we see that the problem is that of specifying 

the filter impulse response matrix A(t,T). The results obtained in this paper ex 

press the differential equation for the filter rather than its impulse response 

matrix.  Hov;ever, the latter could be determined from Eqs. (27) and (28) if de- 

sired. 

In conclusion, we remark that the question of the stability of the optimal 

; 
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fixed-lag smoothing filter, Eq. (27), Its gain matrix, Eq. (37), and the error 

covarlance matrix, Eq. (43), remains as a problem area for future study. We con- 

jecture that If the message and measurement process of Eqs. (1) and (2) Is uniform- 

ly completely controllable and uniformly completely observable, then the smoothing 

filter Is uniformly asmyptotically stable and the gain and covarlance equations have 

equilibrium solutions for t ■ - aB. 
o 
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