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ON OPTIMAL LINEAR SMOOTHING THEORY

*
J. S. Meditch

ABSTRACT

The algorithm for generating the smoothed estimate §(t/t + T) of the state
x(t) of a continuous linear system, where t is continuous time, T is a pcsitive

real constant, and t + T is the time of the most recent measurement, is developed.

A linear matrix differential equation whose solution gives the covariance matrix
of the smoothing error §(t|t + 1) = x(t) - ﬁ(tlt + T) is then derived. Computa-
tional aspects involved in mechanizing the algorithm are discussed in terms of
the algorithm's dependence on the solution of the prediction, filtering, and
fixed-point smoothing problems. The results are then discussed in terms of the

classical Wiener smoothing problem.

*
Department of Electrical Engineering, Northwestern University, Evanston, Illi-

nois 60201. This work was supported in part by the U. S. Army, Navy, and
Air Force in a Joint ServicesElectronics Program under Office of Naval Research
Contract Number N00014-66-C0020-A03,
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1.
1.0 1Introduction
The continuous optimal linear smoothing problem consists in cetermining a
minimum mean-square error estimate Q(CIT), to S t<T, of a state vector x(t)
based on measurements z(0) given over the entire interval to < 0 < T where
x = F(t) x + w(t) 1)
z(t) = H(t) x(t) + v(t) : (2)

In Eqs, (1) and (2), < is an n-vector, the state; z is an m-vector, the measure-

ment; w is an n-vector, the disturbance; v is an m-vector, the measurement error;

F and H are continuous n x n and m x n matrices, respectively; t denctes time; and the

dot denotes the time derivative, We assume that w(t) and v/t) are independent

Gaussian white noise processes with identically zero means and covariance matrices
ELw(t) w'(9) ] = q(t) 8(t - 9)
E[ v(t) v'(9) ] = R(t) 8(t - 0)

for all t and 0 where E denotes the expected value, the prime denotes the trans-
pose, & is the Dirac delta function, Q(t) is a symmetric n x n positive semidefinite
matrix, and R(t) is a symmetric m X m positive definite matrix.

We assume further that the initial time to is fixed, and that x(to) is a zero
mean Gaussian random n-vector which is independent of u(t) and v(t) for all t and
whose covariance matrix P(to) =E[ x(to) x'(to)] is a symmetric n x n positive semi-
definite matrix.

We define the smcothing error by the relation

X(E|T) = x(t) - x(t|7)
and the mean-sruare smoothing error by
s =E[ x'(t]r) %(t|r) ]
where t £ T, We call an estimate i(t[T) that minimizes S an optimal smoothed

estimate,

We note that there are basically three separate cases to be considered in the
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smoothing problem:

1.

Fixed-Interval Smoothing. In this case, the interval [to,T] over which the

measurements are given is fixed, and we obtain an optimal smoothed estimate

\
of x for all t e[to,T]. This case has been treated by Bryson and Frazier(l’,

e

in post-experimental data analysis where one needs to obtain a "refined"

and Rauch, Tung, and Striebe . The results are of particular significance

estimate of the state vector of a physical system over the system's entire

operating time.

Fixed-Point Smoothing. If an optimal smoothed estimate of x is desired at

only one value of t €[t°,T], we call ﬁ(tIT) a fixed-point smoothed estimate.
Such an estiwmate can be obtained using fixed-interval smoothing, but the
procedure is computationally inefficient for this purpose(3’4). Moreover,

if the terminal measurement time T is not specified a priori, as might be the
case in an "on-line'" smoothing problem, fixed-interval smoothing is not
applicable here. The algorithm for optimal fixed-point smoothing fg; continu-

the fixed time t and "updates" this estimate recursively as more measurement

ous linear systems which begins with the optimal filtered estimate of x at
data become available has been developed by Meditch(a). The procedure is
aﬁplicable to both post-experimental data analysis and '"on-line'" data pro-
cessing problems where one requires a smoothed estimate of a physical system's

state at some critical time during the system's operation.

Fixed-Lag Smoothing. Now Supﬁose that T is replaced by t + T where T = constant

> 0 and t is variable with t 2 to. Then, we see that ﬁ(t{t + T) is a "running"
smoothed 2stimate which "lags'" behind the time of the most recent measurement
by a fixed amount T. For obvious reasons, we call §(t|t + T) a fixed-lag
smoothed estimate. Such estimates are primarily of interest in communication
and telemetry systems where one wishes an "on-line" smoothed estimazte of the
state of the message or data transmitted, The intuitive justification for the
lag is that we would expect less mean-square error in the smoothed estimate
than in the predicted or filtered estimates ﬁ(tlo), t> 0 and t = O, respec-

tively. .

In this paper, we shall develop the algorithm for optimal fixed-lag smoothing for

continuous linear systems of the type described by Eqs. (1) and (2). We shall
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2lso derive the matrix differential equation whose solution gives the covariance

matrix of the fixed-lag smoothing error
x(t|t + T) = x(t) - x(t]t + T)

Our approach consists in considering the limiting case of the tixed-lag
smoothing soiution for discrete linear systems wherein the time between measure-
ments is made arbitrarily small., The equations for discrete optimal fixed-lag
smoothing are well-known(a), and will be used as the starting point in our work,

The limiting process that we shall utilize is due to Kalman(6).

2.0 Optimal Fixed-Lag Discrete Linear Smoothing
We begin by considering the discrete system analog of Eqs. (1) and (2) which

can be expressed in the form
x(k + 1) = §(k + 1,k) x(k) + w(k) (3)
z(k + 1) = H(k + 1) x(k + 1) + v(k + 1) (%)

where v, w, x, z, and H are of the same dimensions as they were in Eqs. (1) and
(2); ¢ is an nxn matrix, the state transition matrix; and k = 0,1,..., is the
discrete time index. We assume that w and v are independent Gaussian white

sequences with identically zero means and covariance matrices

ELw()) w' (9] = QU &,

and

ELv() vi(] = R(k) 8,

for all j and k where &, is the Xronecker delta, Q(k) is a symmetrix n x n positive

semidefinite matrix, angkR(k) is a symmetric m x m positive definite matrix.

We further assume that the initial state x(0) is a zero mean Gaussian random
n-vector which is independent of w(k) and v(k) for all k and whose covariance
matrix P(0) = E [ x(0) x'(0)] is n x n symmetric, and positive semidefinite.

We let N be some fixed positive integer and denote a fixed-lag smoothed esti-

mate of x(k), given measurements up to and including the one at time k + N, by
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ﬁ(k]k + N) where k = 0,1,... . We define the corresponding smoothing error and

its mean-square value by the relations

X(k|k + N) = x(k) - X(k|k + N)
and

S = E[X'(k|k + N) X(k|k + N)]

respectively. We call an estimate ﬁ(klk + N) that minimizes S the optimal fixed-
lag smoothed estimate. It has been shown(3) that this estimate is given recur-

sively by the system of n first-order difference equations

X(k + 1]k + 1 +N) = #(k + 1,k) x(klk + N)
+C(k + N,k +1) K(k + 1 4)
o[2(k + 1 +N) - H(k + 1 + N) X(k + 1 + Kk + N)]

+ Q) 2'(kk + 1) P Lk

o [ X(k|k + N) - X(k)] (5)
for k = 0,1,..., where
k4N
C(k + N,k + 1) = I I J(1) (6)
1=k+1
J(i) = P(1) ¢'(1 + 1,1) M‘l(i +1) (7
K(k+1+N) =P(k+1+N) H(k+1+N) n'l(k +14+0N) (8)

(1] oL denotes the matrix inverse, and X(k) and X(k + 1 + N[k + N) are the

filtered and predicted estimates of x(k) and x(k + 1 + N), respectively., 1In
addition, the n x n matrices P and M are the covariance matrices of the filtering

and prediction errors

s ,M
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5.
X(J+1) =x(3 +1) - x(j +1)
and
X3+ = x(3+1) - X3 + 1))
respectively,
The filtered and predicted estimates along with their corresponding error
covariance matrices are governed by the set of reiations(6’7)
X(3 + 1]3) = 83 +1,1) %(J) (9
X(J+ 1) =%+ 1)) +KG +1) [2(J+1) - B + 1) X(J + 1]3)] (10)
K(3+1) =M+ R (J+1)[HG+1) MF+1) B (§+1) +R(j + 1)]‘1 (11)
M3+ D) =85+ 1,9) P(I) 8'(4 + 1,5) + Q) (12)
P(J+1) =[I-KUE+1D HG+ DI MG+ 1) (13)

for j = 0,1,..., where X(0) = 0, P(0) = E[ x(0) x'(0) ], and I is the n x n identity
matrix,

The n x m matrix K which is given by either Eq.(8) or Eq.(11) and which also
appears in Eq. (5) is called the optimal filter gain.

In order to initiate fixed-lag smoothing, we note that at k = 0, §(N + 1]N),
x(0), and §(0]N) must be input to Eq. (5). Thc first two of these follow directly
from the results for prediction and filtering. However, §(0lN) must be obtained
from the fixed-point smoothing filter by starting with §(0) = 0 and processing the
measurements at k = 1,,,.,N. The equations necessary to do this are given else-
where(3’8) for the discrete case. They are of no consequence here since we are
concerned with the continuous case. After we have developed the algorithm for con-
tinuous fixed-lag smoothing, we shall show in detail whet procedure must be followed
to obtain the appropriate initial conditions. 1In any event, it is clear that
tixed-lag smoothing depends upon inputs from both the predictor-filter and the
fixed-point smoothing filter.

The covariance matrix of the fixed-lag discrete optimal linear smoothing error

which was defined carlier is given by the first-order n x n matrix difference equation

AN S i ML 550 U233,
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P(k+l|K+1HN) = M(k+1) - C(k#N,k+1) K(k+14N) H(K+LHN) M(k+14N) C'(k+N,k+1)

- It [ ey - P(k|kHY) ] 7V (14)
for k = 0,1,..., where
P(k|k + N) = E [f(k|k + N) X(k|k + N) ]

and all of the other terms were defined previously.

The initial condition on Eq. (14) is P(O|N) which must be obtained from the
covariance equation for fixed-point smoothing(3’8). We shall present the equation
whose solution will give the initial condition for the continuous version of Eq.

(14) in Section 4.0

3.0 Optimal Fixed-Lag Continuous Linear Smoothing

Let us assume that the system of Eqs. (3) and (4) has been developed by dis-
cretizing the system of Eqs. (1) and (2). The corresponding fixed-lag smoothing
filter is then defined by Eqs. (5) through (8). We now consider the limiting be-
havior of this latter set of equations as the time betwecen measurements is made
arbitrarily small. |

We let the discrete time instants k and k + 1 be denoted by t and t +At,
respectively, where At > 0, We let the time interval N be denoted by T = con-
stant > 0, and, as a result, see that k + W and k + 1 + N become t + T and

t +At + T, respectively., In considering the limiting case, the covariance matrices

Q(k) and R(k) must be replaced by Q(t)/At and R(t)/At, respectively. This is
nece.sary in order to obtain a physically meaningful description of the Gaussian
white noisc as the limit of the Gaussian white sequence., In addition, a factor of
At arises in the disturbance term so that w{k) is replaced by w(t)At. As a result,
Q(k) i= replaced by Q(t)At in all covariance relations involving Q(k). The de-
tails of the justification for this procedure are given elsewhere(2’6’9), and will
not be repeated here,

Making these substitutions into Eqs. (5) and (8), we have
X(t+At| t+AL4T) = 3 (t+At,t) X(t| :4T) + C(t -~ t+ht, K(t+1t+T)
o [ 2(t43t4T) - H(t+Lt+T) X(LHAC+T| 4T)

+Q(t) &' (t,e4dt) P [ R(eledT) - R(r)] Lt (15)

o)
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and
I(t+At4T) = P(t+At+T) H'(t+0t+T) R'l(t+Ac+T)z;: (16)

respectively.

Since the state transition matrix satisfies the relations

$(t,T) = F(t) ¥(t,T) ard §(r,1) = 1 for all T,

we see that §(t + At,t) and 3'(t,t, +At) can be expanded in the Taylor series'

#(t +0¢t,t) =1 + F(t) Dt + O(Atz) (17)
and
¢r(t,t +At) =1 - F'(t) At + O(Atz) “(18)
2 2
respectively, where O(At”) denotes terms of order (At)".
Substituting Eqs. (16), (17), and (18) into Eq. (15), and rearranging terms,

we obtain

X(L+AL| t+AE4T) - R(E|t+T) = F(t) X(t|t+T)At + C(t+T,t+4t) P(t+At+T)
* H(t+At+T) R'l(t+At+T)[ z(t+A0t+T) - H(t+At+T) X(t+At+T]t+T) JAt
+ Q(t) P'l(t) [x(t]t+T) - x(t)] Ot + O(Atz)

Dividing through by At and taking lim At 2 0, we then have that

X(t|ts+ T) = F(t) X(t|t + T) + lim {C(t + T,t + At) P(t + At + T)
At 2 0

o H' (t+AL4T) R'l(t+At+T){ 2(t+Lt4T) - H(t+At+T) X(t+At+T)t+4T) ]}
+Q(t) PTR(O)[ Xt + T) - %(t)] (19)

where it remains for us to evaluate the second term on the right-hand side,

From Eq. (6), it is seen that

oty 0 M LSRN
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C(t + T,t) = J(t) C(t + T,t +4¢)
which can also be written
C(t + T,t +4t) = J'l(t) C(t + T,t) (20)
From Eq. (7),
J'l(t) = M(t +4¢t) &'(t,t +At1) p'l(r_) (21)

Making the appropriate substitutions into Eq. (12), we obtain the result

&t +at,t) P(t) ¥'(t +at,t) + Q) At

M(t +At)

[1 + F(t)at + O(Atz)] P(t) [I + F(t)at + O(Atz) ]' + Q(t)at

P(t) + [F(t) P(t) + P(t) F'(t) + Q(t)Jat + O(Atz)

= P(t) + 0(At) (22)

where 0(At) denotes terms of order At.
Substituting Eqs. (22) and (18) into Eq. (21) and simplifying the result, we

see that
J'l(t) =[ P(t) +0Q2t)) [ I - F'(t)at + O(Ar.?') ]P’l(t)
=1 + 0(At)
Hence, Eq. (20) can be written
C(t + T,t + pt) = C(t + T,t) + O(it)
from which it immediately follows that

lim C(t + T,t + At) = C(t + T,t) (23)
At 2 0

From the nature of the matrices P, H, and k-l, it also follows that

T RPN :,Sg

oy

oy
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unf+ . PLHAEAT) B (E+AEHT) R D(EHLHT) = P(E+T) H'(4T) R™1(L4T) (24)
At
From Eqs. (%) and (7), we see that
X(t + At + Tt + T) = 8(t + At + T,t + T) x(t + T)
= [I + F(t)at + 0(at2)] %(t + 1)
= x(t + T) + 0(At)
Hence,
219* 0[ 2(t+At+T) - H(t+At+T) X(t+At+T|t4T) ] = z(t+T) - H(t+T) X(t+T) (25)
t

As a consequence of Eqs.(23,(24),and (25),the second term on the right-hand
side of Eq. (19) can be evaluated as the product of the three limits in these equa-

tions, and we are led to the result

1

§(tlt+T) = F(t) §(t|t+1‘) 4+ C(t+4T,t) P(t+T) H'(t+T) R'l(t+T)
[2(t+T) - H(t+T) X(t+T) ] + Q(t) P'l(t) [X(t|t4T) - x(t)] (26)

which specifies the optimal fixed-lag continuous linear smoothing filter.

Since

K(t +T) = P(t + T) H'(t + T) R'l(t +7T)

(5,6)

is the n x m gain matrix of the optimal continuous linear filter ,we can also

write Eq. (26) as

X(t] t4T) = F(t) x(t|t4T) + C(t+T,t) K(t+T) [z(t+T) - H(t+T) X(t4T)]

+ () P h(e) [R(e)EHT) - ()] (27)

where t = t .,
o

We note that mechanization of Eq. (27) requires the following input data:

AL . A i o - o b L A
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A. The system matrix F(t) and the system disturbance covariance matrix Q(t).

B. Tne '"gain times residual" term K(t + T) [z(t + T) - H(t + T) %(t + T)].

C. The time history of the n x n smoothing filter gain matrix C(t + T,t).

D. The optimal filtered estimate £(t) and the inverse of its error covariance
matcix, i.e., P-l(t)

A
E. The initial condition x(t |t + T)

Item A is generally given in the problem specification. Items B and D follow

directly from the optimal filter results(s’G)which we repeat here for convenience:
A A A
x = FO) x + K@) [ z(0) - H(O) x ] (28)
K (9) = PO) H'(@} R\ () (29)
P = F(o) P+ PF'(0) - PH'(s) R (o) H(o) P + Qo) (30)

where 0 > to, ;(to)=o’P(to) = E [x(to) x'(to)], and the dot denotes the derivative
with respect to 0. In this connection, we observe that the filter of Eq. (28)
must process the measurements in the interval [to,to+ T ]Abefore smoothing 1is
initiated since the term K(t0 + 1)) z(t°+ T) - H(to + T) x(to + T)]is required
in Eq. (27) to begin smoothing. As a result, we have two time scales here:
the filter time scale O and the smoothing filter time scale t where t =¢ - T,
i.e., the smoothing filter must, of necessity, "lag" the filter of Eq. (28) by
T units of time in executing its data processing. ’

Because of the relationship between the two time scales, we see that P-I(t)
and ;(t) which are required in Eq. {27) can be obtained directly from P(0) and
x@©) which must be computed first in order tq mechanize Eq (28) by introducing
a time delay of T units into the latter two quantities.

We summarize our discussion here in the form of the block diagram shown

below in Fig. 1.

?’



o) ¢

11.

Qt)e"(e) fee

t=0 -T
t=2 to lx(tolto +T)
. $ * Reeje+ ) +
1 C(t+T,t) | f
+ -
x(t)
o=t +T
)tig F(t) Delay
T
‘ :?(to) =0
z(9) + +
PQ Y o K(9) —Q —p [ -t
- + x(0)
ozt
FOO) |ja——o
H(O) [<
Fig. 1

Smoothing filter block diagram.

We turn now to consideration of items C and E. In particular, the initial

condition i(tolto + T) can be obtained by utilizing optimal fixed-point continu-
ous linear smoothing(a) to process the measurements in the interval [t +T].

(4

o’%o
The required algorithm is

%(t_|9) = B(O,t ) K (@) [2(9) - H(®) X(%)] (31)
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where 0 2 t , §(: ft ) = 0, and the n x n gain matrix satisfies the matrix differen-
o o' o

tial equation
BE,t ) = - BEO,t )[ F©) + Q@) P71©) ] 32)

where B(to,to) = I.

The term K(0)[ z(9) - H(9) x(0) ] is obtained directly from the optimal filter
defined by Eqs. (28) through (30), and the fixed-point smoothing filter can be
operated on the same time scale, i.,e., simultaneously, with the filter of Eq. (28)(4).

At 0 = to + T, fixed-point smoothing is terminated, and the output §(t°lto + T)
of this smoothing procedure is input as the initial condition for fixed-lag smoothing
(see Eq. (27) and Fig. 1). We note, of course, that the fixed-lag smoothing filter
has been inoperative during the interval to £0s< to + T while '"waiting" for the
required initial condition.

We conclude this section by developing the matrix differential equation whose

solution is the fixed-lag smoothing filter gain C(t + T,t). From Eq. (6), we sce

that
KA1
C(k + 1 + N,k +1) = | l (1)

| i
fekl

KN

a 37w I I 3(1) Ik +1+N)
: {=k

- J’l(k) C(k + N,k) J(k + 1 + N)
which we choose to express in the form
Ck+1+N,k+1) I hk+1+N) =Lk clk + N,k (33)

Replacing k by t, k + 1 by t + At, k + N by t+7T, and k + 1 + Nby t + At + T
in Eq. (33), we obtain
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13,
C(t + At + T,t + At) J'l(: + 0t +T) = J’l(c) C(t + T.t) (34)
From Eq. (21), we recall that
J'l(t) = M(t + Ot) &'(t,t + At) P-I(t) (21)
From the first line in Eq. (22), and Eqs. (17) and (18), we see that
M(t + Ot) &'(t,t + At) = &(t + At,t) P(t) + Q(t) ¥'(t,t + At) At
= [I + F(t)At + O(Atz)] P(t)
+Qe) [T - Fr(e)ae + ode)jat
= P(t) +[F(t) p(t)+ Q(t)]at + O(Atz)
Postmultiplying this result by P-l(t), we obtain the result
J'l(t) = I +[F(t) + Q(t) P-l(t)]At + O(Atz) (35)
In ﬁn identical manner, we also have
J’l(t+At+T) = T +[ F(t+At4T) + Q(t+At+T) P'l(c+At+T)] ot + O(Atz) (36)

Substituting Eqs. (35) and (36) into Eq. (34) and rearranging the result

gives us

C(t+At4T, t+4t) - C(t+4T,t) =[F(t)+Q(t)P'1(c) Jc(t+4T,t) At

- C(t+At+T,t+At) [F(c+At+T)+Q(t+Ac+T)P'1(t+Ac+'r)] At

+ O(Atz)
Dividing through by At and taking lim At ® 0, we then have
c':(c+T,c) -[r(c)m(:)p‘l(c)] C(t+T,t) - C(t+T,t) [F(t+T)+Q(t+T)P-1(t+T)] (37)

which is the desired result, The initial condition for Eq. (37) is C(t.o + T,to) =
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A 4

B(to + T,to) which is simply the solution of Eq. (32) evaluated at 0 = to +T. TIn
this case, we observe that computation of C(t + T,t) where t 2 to cannot be initiat-
ed until both Eqs. (30) and (37) have been solved over the interval t, fsos t, + T
to obtain P(t° + T) and B(to + T,to), respectively. We note, of course, that P(7)
is also required for © >'t° + T. Finally, although the gain matrix C(t + T,t) can
be computed a priori, i.e., before fixed-lag smoothing is initiated, by solving Eqs.
(30), (32), and (37), the fact remains that the smoothing filter of Eq. (27) canrot
begin functioning until i(tolto + T) and the term K(t° + T) [z(to +T) - H(t° + T)
.§(t° + T)] are determined by fixed-point smoothing and filtering, respectively,

over the interval to sos to + T.

4,0 Optimal Fixed-lLag Continuous Linear Smoothing Error Covariance
Replacing k by t, k + 1 by t + At, k + Nby t + T, and k + 1 + Nby t + At + T
in Eq. (14), and substituting into this result from Eq. (16), we have

P(t+At| t+At+T) = M(t+At) - C(c+T,:+At)P(c+Ac+T)H'(c+Ac+T)R'1(t+A:+T)
H(t+At+T)M(t+At+T)C' (4T, t+At) At

-3l ey - peejeamy 1 57 () (38)

For the present, we focus our attention on the first and third terms of Eq.
(38).
We recall from Eq. (22) that

M(t + at) = B(t) + [F(t) B(t) + B(t) E'(£) + Q(t) 1ot + 0(at)) (22)
Utilizing the expression for J l(t) as given in Eq. (35), we observe that
ey peey 37 (e) - {1+ [FHmP() ]At+0(At2)] B(t)

.{1 + [F'(t)+P-1(t)Q(t)] ot + 0(,3:2)}.
- { P(t) + [F(t)P(t)+Q(t)] At + O(Atz)}
. f1+ [F'(ey+"Leeya(e) ] Bt + O(Atz)}

= B(t) + [F(t)P(t)4Q(t) ] At + [P(E)F' (£)+Q(t) ] At + 0(at’)
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= P(t) +[ F(t)P(t)+P(t)F'(t)+2Q(t)] At + O(Atz) (39)
Similarly, we have that

3 Horce|ema Tt @ = § pejem[ R e o] peeom e + o))
{1 +[F 0+ ()] ot + o)) |
- P(t|t+m)+-[F(t)+Q(c)P'1(c)] P(t|t4T) At

+ P(eje+m) [F(O)H(0P (1)) ot + o)) . (40)
Combining Eqs. (22), (39), and (40), we see that
M(t+ t)-J'l(c)[P(t)-P(t|t+T)]J'1'(t) = p(t|t+T)+[F(t)+Q(:)P'1(:)] P(t|t+T) At
+ P(t]|t+T) [F(t)-iQ(t)P-l(t)]'At-Q(t) ot
+ O(Atz) (41)
Substituting Eq. (41) into Eq. (38) and rearranging terms, we have
P(t+a¢ |t+A64T) -B(E [€41) = [F(E)4QUEIE™L(E)JB(E 164T) A4P(E |4 F(E)4QUR™N(D)] ot

- C(t+T,t+A¢)P(t+A£+T)H'(t+At+T)R-1(t+A¢+T)H(t+A£+T)

o M(t+At+T)C' (t4T,t+At) At - Q(t) At + O(sz)

Dividing through by At, taking lim At ® O, utilizing the results in Eqs. (23) and
(24), and noting from Eq. (22) that

lim M(t + At +T) =P(t +7T)
AL 20

we obtain
Bt e4T) = [F(e)4Q(e)P (E)] P(t|e4T) + B(t [e4T) [ F(E)+Q(E)P™ ()]

- C(t+T,t)P(t+T)H'(t+T)R'1(t+T)H(t+T)P(t+T)c'(t+T,t) - Q(t) (42)
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which is the result sought,
The n x n matfix C(t + T,t) in Eq.(42) is the solution of Eq.(37). The

covariance matrices P-l(t) and P(t + T) are obtained from the solution of the
filter error covariance relation, Eq. (30), as described previously. Finally,

the initial condition for Eq. (42) is P(tolto + T) which can te obtained by solv-

ing the fixed-point smoothing error covarfance equation(a)
B(t |0) = - B(9,t JP(O)H' OIR™ (O)H(OIP(9)B' (9, ) )

over the interval t, o= t, +T vwhere B(U,to) is the solution of Eq. (32) and
the initial condition for Eq. (43) is P(to).

Solution of Eq. (42) then gives the covariance matrix of the optimal fixed-lag
continuous linear smoothing error X(t|t +T) = x(t) - ﬁ(tlt 4+ T)and it follows that

CE[%'(t)e + T) X(tlt + T) )= trace P(t]t + T)

Finally, by noting the definition of the optimal filter gain matrix K, we see
that Eq. (42) can also be written as

I.’(t |e+T) =[ F(c)+Q(c)p'_1(c)]p(c|t+T) + P(t|t+T) [F(t)-l-Q(t)P-l(t)]'

- C(t+T,t) K(t+T) H(t+T) P(t+T) C'(t+T,t) - Q(t) (43)

5,0 Discussion of Results

For convenience of reference in the discussion to follow, let us summarize the
results for optimal fixed-lag continuous linear smoothing. The smoothing filter

equation is

ﬁ(t|:+r) = F(t) ﬁ(c|c+w) + C(t+T,t) K(t+T) [2(t+T) - H(t+T) X(t+T))
+Q(e) 27H() [R(e/t4T) - R(6)) (27)
vhere
K(t+T) = P(t+T) H'(t4T) R™D(t4T)

and C(t,t+T) is the solution of the n x n matrix differential equation
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* - -

C(t+T,t) = F(t)4+Q(t)P 1(c) C(t+T,t) - C(t+T,t) F(t+T)-HQ(t+T)P 1(c+'r) (37)
In these three equations t 2 ty and the initial conditions :?(to]t° + T) and
C(to + T,to) are obtained from the solution of the optimal fixed-lag continuous f
linear smoothing problem over the interval[ toty + T]. The n x m matrix K(t +7T) is

! A
the gain matrix for optimal continuous linear filtering. The matrix C(t + T,t) is
termed the optimal smoothing filter gain. !
The fixed-lag smoothing error covariance matrix equation is i

5(t|t+T) =[F(t)+Q(c)P'1(t)] P(t| t+T) + P(t] t+T) [F(t)+Q(t)P'1(t)]'

= C(t+T,t)K(t+1)H(t+T)P(t+T)C' (t+T,t) - Q(t) (43)

b1
4
i

for t 2 to where the initial condition P("olto + T) is obtain from the optimal
fixed-lag smoothing solution.

Perhaps the most striking feature of the fixed-lag smoothing filter described 3
by Eq. (27) is that it contains two "correction" terms in addition to the "homo-

geneous" term F(t) §(t[t + T). This is irn contrast to the familiar Kalman-Bucy

B

filter of Eq. (28) which possesses a single "correction'" term in addition to the
homogeneous term,

The first "correction" term in Eq. (27) is a weighting of the "gain times
residual term" K(t + T) [ z(t + T) - H(t + T) ﬁ(t + T)] found in the Kalman-Bucy
filter, The function of the smoothing filter gain C(t + T,t) is to weight the !
"information" in K(t + T) {z(t + T) - M(t + T) x(t + T)] and "reflect" it into
i(t + T).We recall here that the estimate lags the measurement by T units of time, '

The second "correction'" term, on the other hand, involves a weighting of the
difference between the fixed-lag smoothed estimate and the filter:d estimate, both

at time t, We can view this difference as a smoothing vs., filtering "error" signal,

S et

Now let us recall that Q(t) is the covariance matrix of the cystem disturbance
w(t) in Eq. (1) and that P(t) is the covariance matrix of the filtering error x(t).
’ We note immediately that if there is no system disturbance, then Q(t) = 0 for all

i S € P I S

i t2 to and the second "correction" term vanishes. This is plausible for the follow- 3
3 ing reason., If Q(t) = 0 for all t 2 to’ the uncertainty in x(t) is due entirely to i
% { the uncertainty in x(to), the initial state, This uncertainty can only be reduced f
i by examinirig the mecasurements z(t) for t 2 ts in which case the difference §(tlt + T)

¥ - ;(t) contains no "ncw information" not already present in the residual z - H X. :
i Now suppose Q(t) # 0 for t 2 to. Then,if §(t) is an accurate estimate of x(t), i
%

H

3
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i.e., trace P(t) is small, the weighting factor Q(t)P-l(t) will tend to be "large".
This, of course, emphasizes the importance of this second correction term as it
should. 1Indeed, as P(t) * 0, we have i(t) * x(t), and we would expect the correc-
tion term to dominate the filter's behavior in an effort to force ﬁ(clt + T) into
correspbndence with ﬁ(t).

Lft us now relate the problem that we have solved here to the classical Wiener
smoothﬁng problem(lo-la). In the classical formulation, we consider the block dia-

gram Jhown below in Fig. 2. The message and measurement models are described by

Eqs. (1) and (2), respectively, along with the corresponding statistical information

which was given in Section 1.0. The ideal smoothing filter i3 characterized
by its n x n system impulse response matrix which is

I8(t-T -7 t2"T
Ai(taT)'
0 t<rT

where I is the n x n i{dentity matrix, & is the Dirac delta function, and T> 0, By

the notation Ai(t,T), we mean the response or state of the filter at time t for a vector

unit impulse (Dirac delta function) input at time T, From the familiar convolution
integral,

t

ey = [ aem xm ar t2 e 4T
t
o

t
= I X(T) (¢t =T -T) dT
t
- o

= x(t - T)

i.e., the ideal state i(t) is the actual state delayed by T units of time.
Although the ideal smoothing filter is physically realizable by a pure delay
T, the operation that it is to perform cannot be implemented since we do not have
physical access to x(t). Hence, it is the "ideal" against which we compare the
performance of the actual smoothing filter which operates on the measurements, We

require that this latter filter be linear and that its n x m impulse response matrix
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A(t,T) = 0 for all t <7,

Since the actual smoothing filter requires i(tolto + T) as its initial con-
dition, it cannot begin its operation until measurements over the interval
[to,to + T ] have been processed to obtain this initial condition. Hence, in
smoothing, we require that t 2 t, +T.

Again, utilizing the convolution integral, we can write

t
x(t - T|t) = f At - T,7) z(1) d T
t

(o]

where t 2 t, + T, or equivalently, by a simple change of variable, we also have

4T
x(t|t + 1) = S A(t,T) 2z(T) d 7 (44)
t

o

where now t 2 to‘

The smoothing error is defined as
X(t - Tjt) = x(t - T) - x(t - TIt)
for t 2 to + T, or, equivalently,
X(t]t +T) = x(t) - x(t]t + T)

where t 2 to
We then say that a filter of the form described in Eq. (44) that minimizes the

mean-square smoothing error
S =E[X'(t]t +T) X(t|t +T))

for all t 2 to is an optimal fixed-lag smoothing filter,

In the classical formulation, we see that the problem is that of specifying
the filter impulse response matrix A(t,T). The results obtained in this paper ex-
press the differential equation-for the filter rather than its impulse response
matrix, However, the latter could be determined from Eqs. (27) and (28) if de-
sired,

In conclusion, we remark that the question of the stability of the optimal

R b
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fixed-lag smoothing filter, Eq. (27), its gain matrix, Eq. (37), and the error
covariance matrix, Eq. (43), remains as a problem area for future study. We con-
jecture that if the message and measurement process of Eqs. (1) and (2) is uniform-
ly completely controllable and uniformly completely observable, then the smoothing
filter is uniformly asmyptotically stable and the gain and covariance equations have

equilibrium solutions for to = . ®,
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