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DATA REDUCTION FROM PHOTOGRAPHS OF BLASTS 

ABSTRACT 

This report gives a detailed description of a code for reduction 

of data from blast photographs. The code furnishes data about the 

orientation of the camera, computes scale factors of the frames, 

expresses the refractive distortion of the Sun's image in proper 

angles and determines the parameters of a function R0(f), which gives 

the radius of the blast bubble as a function of the frame number f 

(i.e.,time). The distortion data are corrected by the code for a 

constant movement of the camera and can be used for the calculation of 

the air density within the blast bubble by other codes already in use • 
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I. INTRODUCTION 

Observations of light refraction by a blast bubble can be used to 

compute the air density within the bubble. The theory of such 

calculations is given in Reference 1. The data for these calculations 

will usually be taken from photographs of the blast and consist of 

coordinates of a number of points measured on the photographs. 

Manual processing of such data from photographs was found to be 

very time consuming. Therefore, an automatization of the whole process 

was suggested by Mr. Ethridge. The standards and general lines 

of such automatic data processing were discussed and fixed on 

27 January I966 by Mr. Ethridge, Mr. Poetschke, and the 

writer. The present report is a description of a possible computer 

program for the processing of photographs of the Jun behind a blast 

bubble. 

The subject of the code described in this report is the 

transformation of coordinates, measured on the photographs, in 

position angles, which are necessary for the calculation of the 

refraction index within the bubble. Special emphasis is put onto a 

thorough handling of observation errors and the propagation of errors. 

The description of the program for the observation of the sun is 

sufficiently detailed for coding, though essentially machine independent. 

II. CONCLUSIONS 

The detailed elaboration of the program showed that a correct 

reduction of data from blast photographs require a quite complicated 

code. The estimated coding and testing time for such a routine may 

be about 1 programmer-year. These facts permit us to draw the following 

conclusions. 

1. Reduction of existing blast photographs can be done 

faster manually than by a computer. (Because the machine program is 

not coded at present time.) 

Superscript numbers denote references which may be found on page 71. 
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2. Manual reduction will furnish results inferior to those 

from machine reduction because the complicated mutual influence of 

data cannot be considered correctly during manual reduction. The 

significance of the machine program's superiority, however, cannot be 

estimated a priori. 

3. Because of its complexity, the machine code is 

inflexible. Change of the technique of the experiments may require a 

reprogramming of large parts of the code. 

III. RECOMMENDATIONS 

1. The routines described in this report should be coded only if 

new blast observations are planned. 

2. For the coding a programmer should be assigned who is familiar 

with the observation techniques. The same programmer should be charged 

with the caretaking and updating of the code. 

3. A minute description of any new versions of the code should 

be prepared. 

4. The standards of blast observations should be fixed well in 

advance of the experiments, so that corresponding changes of the code 

can be made and checked before the experiments. 

5. It should be requested, that every photograph contains 

images of fiducials fixed inside the camera as well as images of 

camera independent fiducials. 

IV. PROBLEM OUTLINE 

The refraction index within a blast bubble can be computed if the 

following position angles and distances are given for a number of 

objects (see Figure 1 and Re-.’, l): 

6 - position angle of an object observed through the bubble. 

10 



6' - position angle of the same object observed without the 
bubble. 

6q - angle corresponding to the apparent radius of the bubble. 

D - distance from observer to the shot point. 

A - distance from the observer to the object observed. 

Figure 1 

Figure 2 
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A photograph of the blast may look like Figure 2, where an 

observation of the Sun is shown as an example. (The code described in 

this report deals with such observations of the Sun only.) Obviously 

all data necessary can be extracted from such a photograph if we know 

the distance D between the camera and the shot point. The objects 

observed are, in this case,a number of points on the boundaries of the 

Sun's images. The processing of the photographs is as follows: 

1. The coordinates of a number of points corresponding to 

the curves (l), (2) and (3) of Figure 2 are read. The coordinate 

system used is arbitrary, but it must be fixed to the camera. This 

can be achieved by using fiducials fixed inside the camera. In 

absence of such fiducials the sprocket holes of the film can be used 

instead. 

2. The points of the curve (l) (i.e.,the images of camera 

independent fiducials) are us¿d to establish a conversion factor for 

converting lengths measured on the photograph into angles of sight. 

At the same time these points are used to fix the orientation of the 

camera. 

3. The points of the curve (2) (i.e.,of the blast bubble's 

boundary) are used to compute the coordinates of the shot point. In 

case the camera independent fiducial is the Sun, at this step also a 

possible rotation of the camera around the axis camera-Sun will be 

detected. This calculation step furnishes the value of &o (= angle 

corresponding to the apparent radius of the blast bubble; see 

Figure l) and, in some cases, the value of D. Also the radius Rq of 

the blast bubble is calculated by this step. 

k. The points of the curve (3) (i.e., of the refracted image) 

are used to compute the position angles 6 and 5' (Figure l). 6 is 

obtained by expressing the distance from a point P of curve (3) to the 

shot point's image in radians. To obtain 6', first the undisturbed 

position P' of P is computed. 6' is then obtained by expressing the 

distance from ?' to the shot point's image in radians. 

12 



V. BASIC ASSUMPTION AND VARIATIONS OF THE PROGRAM 

The basic assumption for the calculation processes described in 

this program is, that all objects observed (including the camera 

independent fiducials) are located within a spherical angle of about 

0.01 radians, if viewed from the camera. (The diameter of the Sun 

is 9.332.IO radians.) The consequences of this assumption is, that 

instead of dealing with angles of sight (&o, 6, Figure l) 

and spherical geometry, we can use a plane coordinate system fixed 

within the camera (i.e. »attached to the photograph) and transform the 

results into angles using a constant conversion factor. 

This simplification of the computations may not be possible if 

photographic cameras with wide-angle lenses are used in order to cover 

large phases of the explosion by the same camera. In such cases it 

is recommended: 

1. to have such fiducials fixed to the camera, which permit 

the computation of the location of the "center of the frame", 
i.e.»the image of the optical axis of the lens; 

2. to have the focal length of the lens system measured 

independently of the blast experiments. 

Instead of using plane corrdinates fixed in the camera, spherical 

coordinates with the origin in the lens system of the photographic camera 

should be used in these cases. The longitude cp may be counted from any 

camera-independent fiducial. The latitude 0 of a point observed on 

the film can then be computed by 

6 = arc tg I , (l) 

where 

and 

B is the distance from the point observed to the "center of 

the frame", measured on the film, 

F is the focal length of the camera's lens system. 

13 



Every point of the frame is then described by the polar coordi¬ 

nates 9 and cp, instead of being described by plane coordinates fixed 

to the frame. 

The formulae given in the Descriptions of the Algorithms must 

then be changed making use of spherical geometry. 

VI. DATA FLOW AND DATA STANDARDS 

A survey of data processing by the code is given by the Data Flow 

Chart. The general scheme of that chart may be the same even if the 

basic assumption about small angles of sight (Section V) cannot be 

made. The changes corresponding to wide-angle observations may affect 

some formulae of the Algorithms only. 

The standards of the input data can be fixed independently of any 

assumption about the experiment. Therefore, in this Section a 

complete description of the input data and their documentation is 

given. 

1. Photographs 

The original data consist of a number of photographic films. The 

order of the film number is 10, the number of frames on every film is 

about 30. On each frame, 4 till 6 different kinds of points (curves) 

are obtainable, as well as some camera-fixed fiducials. The Figure 1 

shows an example of such a photograph. The distinction between points 

of type (3) and type (4) is necessary for the present case where the 

Sun is observed. In case other objects are observed instead of the 

Sun, even more detailed distinctions might become necessary. 

Ti.i coordinates of these 7 different types of points will be read 

using the equipment of Ballistic Measurements Laboratory. Each reading 

creates a punched card containing the coordinates of the point as well 

as an identification of the point. The identification will contain the 

film number, the frame number, the type of the point and the number of 

the point. The frames will be numbered starting with 10 in order to 

avoid numerical difficulties in the Algorithm 2. 

14 
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(1) Undisturbed camera-independent fiducials (Sun). 

(2) Shock front (blast bubble's boundary). 

(3), (4) Image of the object, disturbed by refraction. This curve is 

subdivided in 2 parts, depending on the original location of the points. 

If a point belongs to that part of the Sun's disk, which is on the 

shot-point's side, it is labeled as "Type (3) point", otherwise it is 

of "Type (4)". (Note, that Figure 2 of Section IV demonstrates a case, 
where no points of "Type (4)" can be observed.) 

(5) Images of camera-fixed fiducials. 

(6) Approximate position of the Sun's center. (See Card C in 

Section VI.2.) 

(7) Approximate position of a point on the connection Sun-Shot 

point. (See Card D in Section VI.2). 

S&v*-- 
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2. BML Utility Programs 

Utility programs existing in the Ballistic Measurements Laboratories 

Ue used for the first adjustment of the readings. These programs 

adjust the data in such a way, that the camera-fixed fiducials (points 

of Type (5)) have the same coordinates on all frames of the same film. 

By this adjustment the effects of possible distortion of the films 

after their exposure are eliminated. The result is again a punched 

card for each point, containing the identification of the point and 

its adjusted coordinates. 

In view of the later processing of these cards, a label will be 

punched in every card (see Data Flow Chart). The following labels 

will be used: 

F - for all points of the types (l) through (4). These 

points are camera independent fiducials (type (l)), blast bubble's 

boundary (type (2)) and disturbed images (types (3) and (4)). The 

particular type is given by the identification of the point. There 

will be for each frame about 200 cards with the label F. 

C - for the approximate position of the Sun. There will be 

one card with label C for each frame. (Point type (6)). 

D - for the point of type (7), located approximately on the 

line connecting the image of the Sun with the image of the shot point. 

There will be one D-card for each frame. 

Since the total number of F - cards may be up to 6,000 for each 

film, it is advisable to sort these cards according to the film 

number and handle the data of each film separately. 

3« Geographic Coordinates 

As mentioned in Section IV, Problem Outline, some knowledge about 

locations of camera, shot point and objects observed is necessary 

in addition to the blast photograph. Particularly for each point 

observed, the corresponding values of D, A and 5’ are needed. (See 

Figure 1, Section IV.) If the objects observed are at finite 

17 



distances from the camera, these data can he obtained most easily by a 

topographic survey of the site of experiment. The values of D, A and 

6', computed from the results of tbj survey will in general be corre¬ 

lated. The corresponding cofactors will be furnished by the evaluation 

of the results of the survey. 

In the case considered here, the "objects" observed are not- 

identified points on the boundary of the Sun's image. The distance A 

is therefore constant for all objects. Since its value is by several 

orders bigger than the value of D, we can even assume, that A is 0 
infinite. (D is the order of 1 to 10 km, whereas A = 1.495*10 km.) 

The distance D can be obtained from a topographic survey of the site of 

experiment. The values of 6' cannot be obtained by a survey before the 

experiment because the points observed are not identified. However, 

the value of 6', corresponding to an observation 5 can be computed if 

the angle B (Figure 2) is known, sun 

Figure 2 

This will be done in Algorithm 3. The value of B can be computed 

with the aid of Solar Tables if the geographical coordinates of the 

camera and shot point and the time of the explosion are known. Under 

favorable circumstances B can also be computed from the blast sun 
photographs, if only D is given. (About particulars see the description 

of Algorithm 2). 

The computation of all these quantities is not the subject of 

this report. We assume here, that B and D are obtained somehow and r sun 

18 
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the results available in form of a punched card for each film, with the 

following contents: 

Flljn 

and m^ are the standard errors of 5^^ and D, 

respectively. A correlation between these values 

may exist, but will have no effect because of the 

assumption A = œ. "B” is the label of the card. 

In the general case, where A is finite, corresponding data for each 

object observed must be furnished. In this case the correlations 

between the quantities D, A and 6' must be considered. We need then 

the following information for every object observed: 

Film Nr Frame Nr Point Nr 6' Aim 
I ° 

"B" 

The Qik are the cofactors of the 3 quantities 6', 

D and A. m0 is "the standard error of unit weight, 

corresponding to the coiactors. "B" is the label 

of the list. 

It is obvious, that in this general case 2 punched cards for each 

object are needed for all the information necessary. 

If the objects observed are arranged by some pattern, it will be 

sufficient to furnish some parameters, which characterize the 

pattern, (in the present case these parameters are the values of 

6sun 811(1 ^ The Algorithms must be changed in such case accordingly. 

4. Computer Algorithms 

The processing of the data is subdivided into 3 Algorithms. (See 

Data Flow Chart.) The subdivision was chosen such, that each 

Algorithm is essentially independent of the others. Connections. - 

between the Algorithms are maintained by the data only. The programming 



standards grid formulae necessary for the coding of the Algorithms are 
> . 

given in the corresponding descriptions (Sections VII, VIII and IX.) 

Besides, of the 3 Algorithms indicated in the Data Flow Chart, 

also a general least squares subroutine is necessary. This subroutine, 

which must be able to handle correlated data, is described in the 

Appendix. 

The machine program will need the following tape units: 

Tape unit 1 - data tape for the least squares subroutine and 

output tape of Algorithm 3» 

Tape unit 2 - output tape of Algorithm 2. 

Tape unit 4 - tape for the storage of the cards F (see 

Section VI.2) in case of storage overflow. 

Tape unit 7 - temporary storage tape for the least squares 

subroutine. 

Tape unit 8 - "printer tape" to store output for a printer 

with 132 characters per line. 

All tape units, except tape unit 8 will be used in binary mode. 

For particulars see the descriptions of the Algorithms. 

VII. DESCRIPTION OF ALGORITHM 1 

1. Purpose of the Algorithm 

The purpose of the Algorithm 1 is twofold: 

a) To compute a scale factor for the conversion of 

distances on the film in angles of sight; 

b) To estimate the position and the orientation of the 

photographic camera. 

20 



2. Method Applied 

2.1 Assumption. 

a) We assume that the distance from the camera to the Sun is 

constant^during the observations (i.e., for one film), and equal to 

1.495.10 Km. Since the real value varies by about I.5# during a year, 

the proper distance for the day of observations should be used instead 
of this average when reducing real data. 

b) We assume that the only fiducial available is the Sun's 

image on some frames of the film under consideration. 

c) We assume that the orientation of the camera is a linear 
function at time. 

2.2 Method. On each frame the Sun's image is approximated by a 

circle using a least squares process. Because of the assumption a) the 

angle supported by the Sun's radius is constant and equal to 

arc sin ~||| IQ."3 = 4.666.lo"3[rad]. * (l) 

The results of the least squares approximation furnish therefore 

at the same time the scale factor required as well as the coordinates 

of the Sun's center on the frame. From these coordinates the 

orientation of the camera can be computed. 

The orientation of the camera might not be constant. In order to 

compute the orientation of the camera for such frames on which the Sun 

cannot be seen, the results of the least squares evaluations of single 

frames are used to establish the Sun's coordinates as functions of the 

number of the frame. These functions are linear because of the 
assumption c). 

Before these functions are used to compute the Sun's coordinates 

it is checked whether the coefficient of the linear term is 

significantly different from zero. If such is not the case, a constant 

orientation of the camera is assumed and a joint least squares 

approximation worked out for all frames containing the Sun's image. 

* As mentioned in 2.1 a) this angle varies during the year.and its 
áòtual value of the day of observations should be used. 
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3. Formulae for the Approximation of the Sun1 s Image 

We assume that the coordinates (Xj^Xjg) of r > 3 points on the 

boundary of the Sun's image are given. Call the coordinates of the 

center of the Sun's image (y-^Yg) and the radius of the image y y Then 

for correct observations the following relations hold (see Figure l) 

Ffcjiÿ) = F(xjiixj2;yl^y2,y3^ 
(2) 

\/(xjryi)2 + (Xi2_y?)2 - 0 (j*i,2,...,r) j2 J2 

The real observations, however, do not furnish the values x... and 

Xjg, but some approximations X^ and X^ due to observation errors. 

We assume that 

xjl = Xjl + ?jl 

(2,•••,r) (3) 

Xj2 Xj2 + Çj2 

where are the (negative) errors of the observations. The 

observation of X^ may have the weight p^. Then a least squares 

problem can be formulated as follows: 

(Xjl > *¿2 ) 

I! ^Pjl?jl + Pj2^j2^ = ^11 
J=1 

(k) 

and the r eq\iations (2) are satisfied. 
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The solution of this problem is handled in detail in the Appendix 

where also a subroutine for the solution is described. In order to 

apply that subroutine to the present problem we need the partial 

derivatives of F and some approximations Y2, Y^ of the unknown 

parameters y2, jy The partial derivatives are, in the notation 

of the Appendix, as follows: 

jl 
JL 

J2 
x.12 ~ Y2 

(j=l,2,...,r) (5) 

BJ1 = “ Ajl 

BJ2 = " Aj2 

BJ3 = " 1 

^Xjl"Yl^2 + ^Xj2"Y2^ 

(j=l>2,••.,r) 

( j=!l,2,... ,r) 

(j=l,2,•#.,r) 

(J=l,2,...,r) (6) 

(7) 

(8) 

(9) 

The function F of the Appendix is 
d 

FJ ='/(XJl'ïl)2 + * ï} (>l,2,...,r) (10) 

Formulae for the Trend Investigation 

Assume, that we have obtained from the approximations described 

in the Section 3 the results of K frames. The result is a list of the 

following type with K lines: 

Film 
number 

Frame 

number 

f 

The Qij are elements of the cofactor matrix of the y^ and m is 

the corresponding standard error of weight one, as determined by the 

adjustments. The values of mQ are equal to one if the accuracies of the 

data (Section 3) were estimated correctly and the number of data 

was sufficiently large. 
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The list mentioned above includes only such frames, on which the 

undisturbed image of the Sun can be seen. In order to have the Sun's 

coordinates y^ and y^ available also for other frames we compute linear 

time functions as approximations for y^ and y^. (See assumption c 

Section 2.1.) The radius of the Sun's image y, is fixed for all frames 

by computing a weighted average from the list. 

The time is represented in the present case by the number of the 

frame f. Hence the functions to be fixed are 

y1(f) = a + A.f 

y2(f) = b + B-f (11) 

y5(f) = c 

These functions depend on 5 parameters. Since the values of y^ y2 

an^- ßiven in the list, are correlated, also the corresponding 

functions (ll) will be correlated. Their cofactors will be computed 

here in two steps, computing first the cofactors of the 5 parameters 

a, A, b, B and c and then the cofactors of the 3 functions. 

First the following quantities are computed by summing over all K 

frames: 
_ _ o 

10 ■Z -rr ■ sn-l 
“oaU 

11 " ^ rr,2 Û ’ 
mo Q11 

12 “I 
mo Q11 

(12) 

>20 L 2 . ’ 

o Q22 

= 1 
21 Lm2 ù ' 

o Q22 

22 "I 
f 

mo Q22 

30 m Q„ 
o H33 

With these sums the determj.nants of the normal equations for the 5 

parameters are 

2^ 



(15) 

Di “ sio ' Sn 

D2 = S20 S22 ' S21 

D5 = 

Having the values (12) and (13) we compute for every frame the 

following expressions 

Sa 2-1 n <S12 - £1U-f) 

mo QU D1 

(sio-f - Sll) 

Sb = (s22 - S21.f) 
m0 422-D2 

(14) 

¾ = 2 . ^ w20 

mo Q22‘D2 

" ^p~i ) 

C m2 Q__*D, 
0 H33 3 

The 5 parameters of the 3 functions can then he obtained by 

computing the following sums over all K frames 

a = I Vyl J A = I SA,yl 
t=sIVy2iB“ISB,y2 
C =IS=,y5 

(15) 

At the same time the corresponding cofactors can be computed by 

summing the expressions given in (l6). Because of the symmetry of the 

cofactor matrix there are only 15 different cofactors: 
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Q = Y m2 Q,, S2 ; Q . = Y m2 Q,n S S. ; Q , = y m2 Q. 0 Sq S. 
^aa Là o ^11 a * aA Là o \L1 a A ab Zj o 12 a d 

Sa Sc 

®AA = Z m0 SA ’ 9Ab = Z “o ®12 SÀ ^ ’ 9AB = ¿ “o 912 SA ^ 

(16) 
QAc=Imo\5SASc 

^bb = Z mo Q22 Sb ; SjB = I! ^ Q22 ^ SB ; Sjc = Z mo Q23 ^ Sc 

Sb = Z mo Q22 SB J Sc = Z mo Q23 SSc 

Q = 1 cc 

(Qcc is equal to 1 and need not be computed.) 

Before (15) and (l6) are used to calculate the Sun's coordinates 

for all frames, it is checked whether the parameters A and B are 

significantly different from zero. In order to do this check, first 

the standard errors of weight one for the 3 functions (ll) must be 

computed. These quantities are computed by the formulae 

fri -a - ^ 

mo Q11 

(17) 

m. “vM (½ -b -Bf): 
m0 Q22 

(18) 

“b 
o ^33 

(19) 
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The sums in (IT), (l8) and (19) are extended over all k frames with 

the Sun's image. 

The formula (ll) for y1(f) can be used if 

M > 3 1¾ ^ (20) 

and the corresponding formula for y2(f) can be used if 

> 3 m2 1¾ • (21) 

If (20) is not satisfied, a new approximation of y (f) is computed, 

namely 

y^f) = a. (22) 

The formulae for computing a and the cofactors can still be used, 

except that the following values must be assumed throughout the 

formulae. 

A = 0; Sn = 0; S12 = 1; SA = 0. (23) 

The value of is in this case 1 and, therefo need not be computed. 

Instead of (17) we have then 

rru 

k 

I fri - a) 
mo 

(2M 

If (21) is not satisfied, we assume, that y2(f) is a constant, 

replacing (ll) by 

y2(f) = "b. (25) 

The corresponding changes of the formulae for b and the cofactors are 

achieved by assuming 

(26) 
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In this case the value of is 1 and instead of (l8) the 

following formula is used for the computation of the standard error of 

unit weight 

m 
2 I (y2 - 

mo «22 

(27) 

The cofactors of the 3 functions y-^f), y2(f) an*1 Y^) are 
finally given by the formulae 

m = 1 (28) 
0 

W = ^ («aa + + ^ 

W = V'S (®ab + («aB + «Ab)f + «ABf2) 

Srly3 = V1? ^Qac + QAcf') 

Qÿ2y2 = m2 ^S)b + 2S)Bf + %Bf ^ 

W = + Scf) 

" ”3 ^cc 

With these formulae and the corresponding expressions for y1(f), 

ygíf) ajad y^(f), these 3 functions and their cofactors can be computed 

for any f, i.e.,for every frame. 

In case both conditions, (20) and (2l) are not satisfied, we 

assume, that the Sun's coordinates are constant throughout the film. 

In this case it is simpler to repeat the least squares process of 

Section 3 using data from all frames of the film simultaneously 

instead of using the formulae of this Section. 
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5. Flow Chart of Algorithm 1 

In this Section the Flow Chart of Algorithm 1 is presented. The 

mathematical formulae necessary for the calculations were derived in 

Sections 5, and 4. 

The machine program for the Algorithm needs 2 tape units, namely 

tape unit 1 as data tape for the least squares program and 

tape unit 4 for the storage of the sorted cards F . 

Besides these tape units, also the tape unit J is used by the 
least squares routine for temporary storage. The tape unit 4 might 

not be necessary if the number of cards F is so small that all data 

from cards F can be stored in the memory of the computer. 

Comments to the Flow Chart. 

The sorted data may be stored on tape unit 4, if the 

number of cards F becomes too large. This might be the case if 

several films are processed in one run. In such case the cards are 

sorted according to the film number and stored in the same way on the 

tape. After the end of data of each film the sentinel (ENDbFIIMbb) is 

written on the tape. The end of the data is indicated by the 

sentinel (TOTALbENDb). The tape recording is done in binary mode 

using the Binary Tape Output routine BT.WT. 

and formats as 

This printout starts on a new page and has the headline 

given on the next page. 



DATE 12.12.:966, TIME 12 HRS. 12.12 MIN. 
Blank line 
LEAST SQUARES APPROXIMATIONS OF THE SUN'S IMAGE FOR SINGLE FRAMES. 

Blank line 
X AND Y ARE THE COORDINATES OF THE SUN'S IMAGE IN MILLIMETERS 
R IS THE RADIUS OF THE SUN'S IMAGE IN MILLIMETERS 
M IS THE STANDARD ERROR OF WEIGHT ONE 
Q ARE THE ELEMENTS OF THE COFACTOR MATRIX 

Blank line 

FIIM NR. FRAME NR. X Y R M QXX 

+I23 +I23 +I.I234+I2 +I.I234+I2 +I.I234+I2 +1.12+12 +1.12+12 

QXY QXR QYY QYR QRR 

+1.12+12 +1.12+12 +1.12+12 +1.12+12 +1.12+12 

The results of the approximations of Section 4 are 

printed with the following text: 

3 Blank lines 
THE QUANTITIES X, Y AND R OF THE ABOVE LIST CAN BE APPROXIMATED BY 
THE FOLLOWING LINEAR FUNCTIONS OF THE FRAME NUMBER F. 
Blank line 
X = (+1.1234+12) + (+1.1234+12 )*F 

Y = (+1.1234+12) + (+I.I234+12 )*F 
R = I.I234+I2 

Blank line 

THE CORRESPONDING STANDARD ERROR OF UNIT WEIGHT IS 1.1234+12 
Blank line 
THE COFACTQRS OF THESE FUNCTIONS ARE 

Blank line 
QXX = (+1.123+12) + (+1.123+12 )*F + (+1.123+12)*F**2 

QXY = (+1.123+12) + (+1.123+I2 )*F + (+1.123+12)*F**2 
QXR = (+1.123+12) + (+1.123+12)*F 
QYY = (+1.123+12) + (+1.123+12 )*F + (+1.123+12 )*F**2 

QYR = (+1.123+12) + (+1.123+I2 )*F 
QRR = +I.I23+I2 

c.) Depending on the corresponding branch, the following is 

printed after 3 blank lines-.either 

THESE FUNCTIONS WILL BE USED FOR RJRTHER CALCULATIONS. 



FLOW CHART OF ALGORITHM 1, PART 1 

( Start 

I 
Read cards F (at most 100000.) Sort them in order 

of films and frames. Print total number. 

Read cards c . Sort them in order of films. 

Print total number of cards. Print time. 

Establish the approximations Y± Y2 for one film: 

Y^ and are given on card C . 

+ where Xn and X0 are the 

coordinates of any Sun-point from the set F 

of the corresponding film. 

Select all Sun-points of one frame and arrange them 
on tape for the L.SQ. subroutine. 

ENTER(L.SQ.l)*I2)*I3)F)Al)A2)Bl)B2)B3)Yl)yi)m . )m )Q„ K 
Store the results in the list El : 1 yl o 11 

Film Nr IFrame Nr 

ENTER(L.SQ.2)*I0) 

yl|y2 y3 mo IQ111Q121Q131Q211Q221Q231 %! | Q321Q33 

(Was this the first frame of the film? 

No Yes I 
\ I 

Store initial approximations 
for next frame 

ïx = yi ; ï2 = y2 i ï3 = y3 

f < 

/Was this the last frame of thA 

/film with Sun-points? \ 

No Yes 

Print the list E, 
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FLOW CHART OF ALGORITHM 1, PART 2 
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THE LINEAR TERM FOR X OR Y IS NOT SIGNIFICANTLY DIFFERENT FROM 

ZERO. THEREFORE NEW LEAST SQUARES APPROXIMATIONS WILL BE CALCULATED. 

In this case the new e-oprozimations are printed with the same text as 

the first approximations. (See comment b.) 

© In case printing of these results is required the output 

starts on a new page with the following text and formats: 

FINAL APPROXIMATION OF THE SUN'S IMAGE FOR THE FIIM NR. +123. 
Blank line 

X AND Y ARE THE COORDINATES OF THE SUN'S IMAGE IN MILLIMETERS 

R IS THE RADIUS OF THE SUN'S IMAGE IN MILLIMETERS 

M IS THE STANDARD ERROR OF WEIGHT ONE 

Q ARE THE ELEMENTS OF THE COFAOTOR MATRIX 
Blank line 

FRAME NR. X Y R M QXX QXY 

+123 +I.I234+I2 +I.I234+I2 +I.I234+I2 +1.12+12 +1.12+12 +1.12+12 

QXR QYY QYR QRR 

+1.12+12 +1.12+12 +1.12+12 +1.12+12 

VIII. DESCRIPTION OF ALGORITHM 2 

1. Purpose of the Algorithm 

The purpose of the Algorithm 2 is as follows: 

a) To determine the coordinates of the shot point's image 

for each frame. 

b) To determine the radius of the blast bubble's image for 

each frame. 

For the evaluation of the observations all measurements must be 

expressed in a coordinate system with origin at the shot point's 

image. The tack a) will provide the information necessary for a 

corresponding coordinate transformation. 
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The task h) will furnish data for the calculation of the expansion 

rate of the blast bubble as well as the value of 6q necessary for the 

calculation of refraction coefficients. 

2. Method Applied 

2.1 Assumptions. 

a) We assume, that approximate values of the angle 6 and 
' sun 

the distance D (see Figure l) are furnished by the cards B for each 

film. 

b) We assume, that on some frames the image of the blast 

bubble's boundary can be detected. Points of this image will be 

referred to as "shock-points". 

c) We assume, that approximate coordinates of a point P on 

the image of the line Sun-shot point is provided for each film by the 

cards D . 

Sun's image 

Shock front 

(Blast bubble's image) 

Figure 2 

d) We assume, that Algorithm 1 has been completed and the 

corresponding results are in the storage together with the (sorted) 

data from cards F type, 
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e) We ar»sume, that the orientation of the camera is a 

linear function of the time. 

2.2 Method. On each frame we approximate the image of -i-he blast 

bubble by a circle using a least squares approximation. This process 

will furnish simultaneously the coordinates of the shot point's image 

as well as the apparent radius of the blast bubble. As in Algorithm 1 

a subsequent trend analysis will be carried out in order to detect 

constant movements of the camera. Some components of such movements 

were already determined by Algorithm 1 and their effects eliminated. 

The Algorithm 2 will determine a possible rotation of the camera 

around the axis camera-sun ^nd a translation in direction of that axis 

and correct for the effects of such movements. These movements and 

the position of the carriera are fully described by the 3 parameters 

which will be fixed by the Algorithm 2, namely the angle tsun> the 

angle &sun and the apparent radius rQ. The physical meanings of these 

quantities are shown in the Figures 1 and 3* The radius rgun and the 

I—__ . 

(not observed) 

Frame of the photograph. 

•' sun7 ^ sun 

furnished by Algorithm 1. 

Sun's image with radius Rq. 

(x , y )- Coordinates 
evm 7 u ann ' 

Shock points observed. 

Shock front (blast bubble's 

Figure 3 

radius r are related to the angles 5 and 6 by the formulae 
o sun o 

(1) 

1 See footnote on page 21. 
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(2) 6 
o 

r • 
o 

4.666.10 ^ 

R 
sun 

[rad]/ 

where Rsun is the radius of the Sun's image, determined by Algorithm 1, 

All 3 parameters, 6 , 6 and t can be determined simultane- 

ously by a least squares process for each frame. However, in many 

cases the shock points available might be unfavorably distributed (as 

in Figure 3) and the resulting r (i.e. ,6 ) might not have the 
sun sun7 ° 

accuracy desired. In such cases the determination of r is not 
sun 

included in the least squares process. Instead r is considered 
sun 

constant for the calculation of th» remaining 2 parameters. (An 

approximate value of r^^ is furnished by the cards B .) The 

Algorithm 2 compares the accuracy of obtained by the least squares 

evaluation of shock points with the accuracy of direct measurements 

(from cards B) and the more accurate value is then taken for the final 

evaluations. The remaining 2 parameters rQ and fsun are then computed 

accordingly for each frame with shock points. From these 2 parameters 

^sun a linear function of time (Section 2.1,e)), whereas rQ 

is a more complicated function. In order to make the computation 

process simpler, these functions of time are not determined 

simultaneously. Instead the linear function tsun is determined 

independently of any assumptions about the behavior of ro. 

After the linear time functions (or constant values) r and 
sun 

^sun are ^or i*r^es new least squares approximations are 

carried out to determine the value of r for each frame with shock o 
points. Since the value of rQ is needed for all other frames too, a 

corresponding time function representing ro is obtained by another 

least squares process, similar to that described in Ref. 1, Section 8.2. 

3. Formulae for the Approximation of the Coordinates of the Shot Point 

3*1 Introduction. For the evaluation of refraction observations 

all points observed on a photograph must be expressed in terms of a 

coordinate system with origin at the image of the shot point. The 

^ See footnote on page 21, 
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readings of points of the photograph are done in some other convenient 

coordinate system, in which also the results of Algorithm 1 are 

expressed. In order to have the data necessary for a transformation 

from one coordinate system to the other we compute the coordinates of 

the shot point's image in the coordinate system of Algorithm 1., As 

indicated in Figure 3, the computation will be based on the 

observations of "shock points", i.e.,points located on the blast 

bubble's boundary. 

Depending on the availability of other data, the computation may 

be arranged differently: 

a) It can be arranged so, that the angle 5 (i.e. r 

see Figures 1 and 3) is furnished by the shock point evaluations 

simultaneously with the 2 other parameters, ÿ and r . This case 
., , _ sun o 
is treated in the Section 3.2. 

If 6sun is rather accurate from direct measurements, 

the least squares approximations can be arranged so, that only the 2 

parameters tsun and ro are computed, whereas r is assumed fixed and 
. oun 
known. This case is treated in the Section 3.3, 

c) Finally, if both parameters if and r are known for 
sun sun 

all frames of a film, only one parameter rQ remains to be computed. 

This case is treated in the Section 3.4. 

^*2 -Parameter Case. In this case we approximate the blast 

bubble's boundary on the photograph by a circle, which is described by 

the } parameters v r3un and t8un (Figure 3). If (*„,* ) are the 

coordinates of a shock point, then obviously the following equation 

holds 

ro'+sun>r8un) = 

----(?) 
" V(3cjl-*sun*sun 008 'W + ^‘W^un sin *sun)2 ‘ ro = 0 
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The values of x and y are known from Algorithm 1. If we have 
sun sun 

more than 3 shock points on the frame, the corresponding equations (3) 

constitute an overdetermined equation system for the 3 unknown 

parameters. Problems of this type are handled in the Appendix and the 

subroutine L.SQ. described in the Appendix can be used for the solution 

of the present problem. In order to have the same notation as in the 

Appendix we rename the parameters replacing 

(V ^sun* rsun^ 

by (*0 

(y^ y2> y3)‘ 

The observed coordinates of the j-th shock point we denote by 

(XjpX.g), and their unknown corrections by * We tiave then 

the equations 

xjl = Xjl + ^1 

(5) 
Xj2 = (i3=^-í... ,r) • 

Initial approximations of the parameters y^ we denote by Y^. The 

constraint function and its partial derivatives required by L.SQ. are 

then defined by the following formulae (6) through (ll). In the 

Figure b geometrical interpretations of some of these quantities are 

given. 

Fj = °0S + sin Y2):i - '6) 

AJ1 “ 

X.--X +Y, cos Y0 
.11 sun 3_2_ = cos a 

^XJl-xsun+ï5 =06 + ( V3W+ï3 sln Y2): 

J 

(T) 

= sin a (8) 
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1 

Bjl = " 1 (9) 

Bj2 = Y3 sin (10) 

BJ3 = cos (11) 

Figure 4 

The initial approximation is obtained from the card B . With 

(1) we have 

Y, = B 
5 sun 

sun 

4.666.10"3 ’ 
(12) 

where Rsun is furnished by the Algorithm 1 and 6 by the card B . 
^ _-z sun 

The factor 4.666«10 is correct, if 5 is expressed in radians. The 
DUll 

dimension of Y, is the same as that of R . The standard error of Y 
•s sun ^ 

is 

rID6sun\ . /^sunv 

+(^ 
(13) 

sun sun 

See footnote on page 21, 
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The value of the standard error nu is furnished by the card B 
osun 

and the value of by the Algorithm 1 for all frames. 

The initial approximation Y2 is furnished by data from the card D . 

This card contains the coordinates (x ,y ) of the point P of Figure 2 
Jr Jr 

(Section 2.1, c)). With these coordinates we obtain 

$2 = arc sin 
y sun 

f( y -y )2 + 
^sun Jp 

(x -X )‘ 
v sun p' 

(14) 

Y0 = (l-sgn(x - x )) sgn(x 
2 v e v sun p v sun - Xp) ($2 + I tt) + $o 

This approximation may be used for the first frame of the film only. 

For subsequent frames a better approximation for is the result 

of the previous frame's calculations. 

The approximation Y^ may be obtained by solving the equation (6) 

for Y^. Thereby we substitute for Yg and Y^ the approximations 

discussed above and for X.., and X p any shock point coordinates of the 
J— J£- 

particular frame, and set F^ = 0. 

3.3 Two-Parameter Case. In case r obtained by the least 
.. -— sun 

squares approximation of Section 3*2 is less accurate than the value 

furnished by card B with (12), the latter value is used for further 

calculations. In this case the least squares approximations of the 

blast bubble's image by a circle is repeated in a new fashion, 

considering only the 2 parameters r and f (i.en y, and yp) as 

unknown. The formulae of the Section 3*2 remain unchanged. The least 

squares subroutine L.SQ. must now be called with m = 2 (m is the 

number of unknown parameters). Consequently the function B^ (see (ll)) 

is not needed for that subroutine. 

3.4 One-Parameter Case. After fixing the 2 parameters t_..„ and 
■ sun 

r which determine the center of the blast bubtle's image, the 
sun 

computation of the radius of the image is repeated for all frames with 
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shock points. (See flow chartl) We have in this case only one free 

parameter, y1 (or rQ), in the constraint function (3). Hence the 

least squares subroutine L.SQ. (Appendix) must be entered with m = 1. 

Except for this change, the evaluation process and the formulae of 

Section 3.2 remain the same ((10) and (ll) are not needed.) 

b. Trend Investigations 

Assume, that the approximations described in Section 3.2 have been 

completed for K frames. The result is a list of the following type 

consisting of K lines: 

Frame Nr. 

f y3 *0 M' l12 q13 Q, 21 Q 22 Q 23 Q31Q32 M 
According to Section 3*2 (4), the 3 parameters y^, y^ and y^ are the 

quantities r , t , and r , respectively. Their values as well as 
O LUI o LUI 

the standard error of unit weight m and the cofactors Q, . are 
o ii 

furnished by the least squares subroutine L.SQ. With 2.1.e. we 

assume, that y^ and y^ may be linear functions of time. The 

determination of these functions is the subject of this Section. 

Time is represented in our case by the frame number f. Hence we 

have to determine the k parameters b, B, c and C of the 2 functions 

y2(f) = b + B-f 

y5(f) = c + C-f 
(15) 

Since the values of y^ and y^ given in the list are correlated, also 

the functions (15) will be correlated. Their cofactors will be 

computed here by computing first the cofactors of the 4 parameters and 

then those of the 2 functions. The whole process is with little 

modifications the same as used for similar investigations in the 

Algorithm 1. It is a least squares approximation of the 2 linear 

functions (I5), whereby the accuracies and cofactors of the data axe 
properly used. First the following quantities are computed by 

summing over all K frames: 
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20 l-r—> s2i=I 
mo «22 

21 L2 ’ 
mo «22 

22 = 1 
mo «22 

50 = I-2T-J S31=I m Q„ 
o ^33 

51 ” ^ n,2 Û ' m 0,-,., 
0 33 

^2=14- 
m Q,, 
o ^33 

With these sums the determinants of the normal equations for the 

parameters t>, B, c and C are 

D2 “ S20 S22 " S21 

(16) 

(IT) 

D3 “ S30 S32 " S31 

With the values of (l6) and (l7) we compute for every frame in the list 

the following quantities 

(So-> “ S0,f) 
^ = 2 - ., '"22 "21* 

mo «22 B2 

= O 

mo«22D2 
(S20*f “ 321^ (18) 

S° ’ m0 Sí S 
(s32 “ s3i*f) 

= 
C 2 

m_ 
S3 D3 

(Sjo*f - s51) 

The 4 parameters of the 2 functions (15) are then obtained by 

computing the following sums over the K frames 

= I Vy2 5 

= IVy3 

B 

C 

= 1 SB-y; 

=Zv 

(19) 

C y3 
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Simultaneously with these sums, also corresponding sums representing 

the cofactors can be computed. Because of the symmetry of the cofactor 

matrix there are only 10 different cofactors in the present case, 

which are given by the sums (over the same K frames as (19)) 

Sb = I “o «22 ^ i ^,8=1^22¾¾ 

=Imo «23 Sb S= = «bC =Imo «23 'S, SC 

SB = I mo «22 ^ 5 «Be =1 “o «23 ¾ Sc (2°) 

JQCC 

«CO = I mo «33 SC SC ; QCC = I mo «33 Sc 

In order to compute the accuracies and cofactors of the functions 

and y^(f) we compute first the corresponding errors of unit 

weight: 

K 

m2 = icbl ^2 (21) 
"o «22 

K 

= ïcbl (y3 - = - c-f)2 -T— (22) 
mo Q33 

The cofactors of the functions y2(f) and y^f) are then given by 

rao = 1 (23) 

W = 4 Kb + V + «BBf2) (2M 

W = '«bo + '«be + + W2) (25) 
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(26) «yjyî - 4 (QC= + ^cf + 'c/') 
The standard errors of the functions are 

my2(f) = m0 ,jQy2y2 

my3^ = mo (28) 

According to Section 2.2 (see also the Flow Chart, box i) we will 

check whether the accuracy of the function y^(f) is better than that 

of direct observations. The standard error of the latter is given by 

(13). We check the usefulness of the function y^(f) by computing its 

standard error with (28) for all frames of the corresponding film 

(including frames without shock points) and compare these errors with 

the value given by (13). If any of the values (28) is larger than 

(13) we reject the 3-parameter approximations of Section 3*2 and 

proceed to the 2-parameter approximations of Section 3»3> as indicated 

by the Flow Chart. 

In case the accuracy of y^(f) is sufficient (i.e.,if the errors 

computed by (28) are all smaller than the error computed by (13)); a 

check is made about the significances of the parameters B and C in 

(15). It is assumed, that B significantly differs from zero if 

> 3,m2 7¾ • (29) 
Also, C is assumed non-zero if 

If (29) or (30), or both are not satisfied, the corresponding 

parameter is assumed to be zero. In these cases the constant terms 

in (15) are recalculated correspondingly. For this purpose the 

formulae (l6) through (20) are used again, after substitution of the 

following values: 
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If B = 0, then 

S21 = 0; S22 = 1í SB = 0 

and 

If C = 0, then 

and 

1 

S51 = 0; SJ2 = 15 SC = ° 

K 

Anàíl^ - c)‘ 
o 35 

(32) 

(33) 

(5*0 

The formulae (23) through (28) for the computation of the standard 

errors and cofactors can he used without alteration in these cases. 

If the 2-parameter approximation of Section 3»3 is carried out 

for the K frames with shock points, the result will he the following 

list with K lines: 

Frame Nr. 

f 

m Q. 11 Q. 12 ‘21 Q 22 

Here y1 stands for the radius ro of the huhhle's image and y2 stands 

for the angle ill . (See Figures 3 and 4.) The standard errors of 
sun 

unit weight m and the cofactors Q. are furnished hy the least 
o js 

squares program L. SQ. 

With Section 2.1.e. we assume that y2 may he a linear function of 

the frame number f. Hence we have to determine the 2 parameters, h 

and B, of the function 

y2(f) = b + Bf (55) 



The formulae for the computation of these parameters and their 

standard errors are special cases of the formulae for the two functions 

y2 and given above. The computation of b and B is done by computing 

first the 3 values and with (l6) and the corresponding 

value of Dg with (IT). With these values we compute by summing over 

the K frames with shock points 

K 

b “ u ü (S22 “ S21 y2 2 . 
mo Q22 

K 

B = D,, Z ^S20*f ' S21^ y; 21' J2 2 A 
mo Q22 

The cofactors of the parameters b and B are 

1_ V (s22 ~ 521 
%b = n2 ¿ 2 

D2 mo Q22 

K 

1 V (S22 

d2Zj 
v2 

S21 f " S21^ 

moQ22 

_ 1 V ^S20 f ~ S21^ 

’ D2 mo Q22 

(36) 

(37) 

(38) 

(39) 

Using the values of b and B from (36) and (37) we compute with 

(21). The significance of B is checked by (29). 

If (29) is satisfied, the formula (15) is used to compute the 

value of y2 (i.e. »tg^) for all frames (including those with no shock 

points). The cofactor Qy2y2 mo are ^iven by (24) and (23). The 

other cofactors are 

(ia) 
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Sr3y3 “ my3 * 
(^2) 

where is given by (13). 

In case the inequality (29) is not satisfied, we assume, that 

B = 0. The value of b is then computed by 

K 

b = 
Z ^2^0 Q22^ 
K 
n 2 

(^3) 

L (l/mo ^22) 

The cofactors are 

Sb-1 

SdB = = 0 

The value of is computed with (32). The cofactors of the two 

functions y2(i‘) and y^(f) are in this case given by (4l), (42), 

mo = 1 ' 
and (4¾) 

W° “S • 

5. Distance to Shot Point 

After the value of has been fixed, either assuming a 

constant value or a linear time function, the distance D between the 

camera and the shot point can be computed accordingly. (See 

Sections 3.I and 3.2 and Flow Chart, Box j and p.) This distance and 

its standard error are computed differently, depending on the process 

by which rgun (ie., 6gun, see Figures 1 and 3) is computed. The 

following cases are possible: 

a) The value of 6 furnished by the card B is more 
sun 

accurate than the value obtained by the process of Section 3.2. 



In this case D together with its standard error are also taken from 

the card B. (See Flow Chart, Box j.) 

t>) The value of 5 is assumed to he constant, hut 
' sun 

different from that given hy the card B. 

In this case (Flow Chart, Box p) proceed as in Case a. 

c) It is found, that (i*e'>rsun) is a linear function 

of time. 

From Figure 1 we deduce the equation 

D* sin 5 = const. (^5) 
sun 

Hence, if 5 is not constant, also D must he a function of time, 
smxi 

Since the values of D are needed for the computation of the blast 

huhhle's (real) radius, the variation of D must he taken into account. 

The function 5 (f) vas essentially determined in Section 4. 
sun 

Equation (15) with (l) yields 

6 _ 4.666.10 + c#f^ * (46) 

sun R 

(The frame number f is used here as a substitute for the time.) This 

equation furnishes together with (Ht) 

4.666.10-5 (c + C f^ 

D(f) = 

D^’sin ( 
R 
sun 

. /4.666.10“5 (c + Cf)\ 
sin (-^-*-L) 

sun 

(47) 

where is the value of D furnished hy the card B and f1 is the 

number of the first frame of the film. With (4t) the value of D can 

he computed for all frames. 

The standard error of D(f) can he computed from the standard 

errors of the quantities D^, Rsun> c an(^ C* Of these quantities c and 

C are correlated and their cofactors given hy (20). The standard 
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error ^(f) ofD(f) is with these values given by 

In this formula 

= standard error of D1 furnished by the card B 

“Rsun = standard error of the radius of the Sun's image R . 
« sim; 
furnished by Algorithm 1. 

= standard error given by (22) 

The partial derivatives in (48) may be computed using the program of 

Ref. 2 and, therefore, need not be given explicitly. 

The correlation between Rgun and the constants c and C is not 

considered here nor in further error formulae, in order to avoid too 

complicated error formulae. Such a correlation exists, because r 

was computed using the values and y^ from Algorithm 1 (see^ 

Section 3*2), and the latter values are correlated with R 
sun* 

6. Radius of Blast Bubble 

The last quantity which is computed by the Algorithm 2 is the 

radius rQ of the blast bubble's image. (See Plow Chart, Part 3.) This 

radius is known with the calculations of Section 3 for all frames with 

shock points. Since rQ is needed for other frames too, we will 

determine a function rQ(f) which permits to calculate the value of r 

for any frame number f. This function will be established essentially 

by the process described in Reference 1, Section 8.2. Particularly, 

the real radius Rq of the blast bubble will be approximated by the 

following function of the frame number f; 

Ro(f) = ^1 + y2 f + y5 ^ f + y4 ¿ . 
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Data available for the determination of the 4 parameters y1 

through in (49) are a list of the K frames with shock points and 

some parameters. Of these parameters we will use the following 

./rame Nr 

f 
sun “R sun 

m 
ro 

D 

The values of R_ with their standard errors m^_are furnished by 
sun «sun 

Algorithm 1. The values of ro and m Q are computed by the process 

described in Section 3.4 (see Flow Chart, Box r). The values of D and 

Dp are computed by the process described in Section 5 (see Flow Chart, 

Box j and p). We complete the list by adding a column with the values 

of &o, computed with (2) and a second column with the standard errors 

of 6o, computed with 

(50) 

With these values we can compute for each of the K frames the corre¬ 

sponding value of Rq by 

R = D'sin 6 (51) 
0 0 

(see Figure l). The approximation of Rq by the function (49) is 

established using the least squares program L.SQ. of Appendix 1. As 

independent observations we consider for this purpose the triplets 

(f, 6q, D). In order to have the same symbols here as in Appendix 1, 

we rename these quantities, replacing 

by 

(f, V D) 
(52) 

The standard errors and e^ of Xg and x^, necessary for the least 

squares program are those of &q and D, respectively. The coordinate 
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Xp that is f, should he considered as exact. We assign therefore to 

the numbers f an "error" of 10“^. Since the values of f are 3 digit 

numbers, this assumption makes the relative errors of x^ by some 

orders smaller than those of x2 and x^. As a consequence, the 

corrections of f, computed by the least squares program will be 

negligibly small. 

The constraint function for the least squares program is 

FJ = XJ3 sln Xj2 - Y1 - Vjl - M 

and the partial derivatives are 

A = - Yp - Y, + Y, -r- 

J1 2 5X^ 4xji 

Aj2 = Xj3 C0S Xj2 

AJ3 = Sln Xj2 

BJ1 = - 1 

= " Xjl 

Bj3 = " in Xjl 

= - • 

ji 

Similarly as in the processes of Section 4, also here only such 

parameters y^ will be used finally, which are significantly different 

from zero. Therefore, first the parameters y^, and y^ only are 

computed (assuming y^ = 0 in (49)). If the resulting y^ does not 

satisfy the condition 

(55) y3l > 3-myJ 

(m^ is the standard error of y^, furnished by the least squares 

program), we assume, that y^ = 0. In this case a new, 2-parameter 
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approximation is computed, using the parameters y1 and y2 only. 

If (55) is satisfied, it is checked whether y^ ^ 0. This is done 

by computing a ^-parameter approximation and checking the significance 

of yu. if 

|yi,l > 3-mylt , (56) 

the 4-parameter approximation is considered as final. Otherwise the 

3-parameter approximation, which was computed first, is considered as 
the final approximation. 

After the parameters y1 through y^ are fixed, the values of 6 
are computed with 

R (f) 
80(f) = arc sin (57) 

for all frames. In order to obtain a smooth function 6 (f) we use in 
o 

(57) for D(f) the original values from Section 5. (For the K frames 

with shock points we are furnished with corrected D-values by the least 

squares routine. These values will not be used for further calcula¬ 

tions.) Accordingly the standard error of 60(f) is given by 

The partial derivatives in (58) can be computed by the program of 

Reference 2 and need not be given explicitely here, is furnished 

for all frames by the calculations of 

formula 

4o = “o («11 + + 

+ Q22 f2 + 

+ 

Section 5» is given by the 

2«15 inf + ^ ¿ 

2Q23 tiní + SQSÍ (59) 

«33 (inf)2 + SQj!, ^ 
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where mo and the are furnished by the least squares program for 

fixing the parameters y^ through y^ in (U9). 

7. Flow Chart of Algorithm 2 

In this Section the flow chart of Algorithm 2 is presented. The 

mathematical formulae necessary for the computations were derived in 

Sections 2 through 6. The following comments to the flow chart will 

indicate the particular Sections. 

The machine program for the Algorithm needs 2 tape units, namely 

tape unit 1 as data tape for the least squares program and 

tape unit 2 to store the results computed by the Algorithm 2. 

Besides these tape units, also the tape unit 7 is used for temporary 

storage by the least squares routine. 

Comments to the Flow Chart. 

© The tape unit 1 is rewound in order to use it for 

storage of input data for the least squares subroutine L.SQ. However, 

(if other data are on the tape) rewinding is not necessary if 

provisions are taken to place the tape at the correct position when 

L.SQ. is entered. (See Comment b.) 

The contents of the cards B and D are explained in 

the general Data Flow Chart. There will be one card B and one card 

D for each film. No special sequence of these cards is assumed. 

Instead data /ill be read, until for each film of the List F (in 

storage), one B card and one D card are read. If there are not 

sufficient cards or more than one card for some films, print the 

message. 

Blank line. 

FOR FIIMS WITH THE FOLLOWING IDENTIFICATIONS EITHER TOO MANY OR NO 
B- OR D-CARDS ARE AVAILABLE 

(Film number +123) 

The List F and the List El (result of Algorithm l) is then reduced by 

dropping all data corresponding to these films. In case no film has 

correct data from these cards, print 
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I 

i i 

Blank line 

EXIT TO NEXT PROGRAM FROM ALGORITHM 2 BECAUSE NONE OF THE FIIMS HAS 

CORRECT DATA FROM B- AND D-CARDS. 

Blank line 

DATE I2.I2.I966 TIME 12 HRS 12.12 MIN. 

© & The backspacing of tape unit 1 covers all data collected 

for the last film. Backspacing by K files means, therefore, backspacing 

by Si + S2 +•••+ Sjç + K blocks = number of shock points on the i-th 

frame). Rewind if tape 1 was rewound by a. 

© =•) The approximations of rgun and \|rsun are given by (12) 

and (15) of Section 3*1» 

© The values to be stored are the shock point coordinates, 

their errors and identifications. About the format of the tape, seethe 

Appendix , Section 11. K is the number of frames with shock points 

for the film in work. S is the number of shock points on the 

particular frame. (Hence S is the number of data sets for the L.SQ. 

program.) 

Print: © 
Blank line 

FIIM WITH THE IDENTIFICATION (+123) CANNOT BE PROCESSED BECAUSE THERE 

ARE LESS THAN 5 FRAMES WITH SHOCK POINTS ON THE FIIM. 

Reduce the List E by destroying all data from the corresponding 

film. Reduce correspondingly the lists established by reading the 

cards B and D • 

© The initial approximations of the parameters are for 
the first file (frame) computed by (12) and (lU), Section 3*1» For 

subsequent files of the film in work take the results of the 

previous file as initial values. Iterate 5 times for each file by 

backspacing tape unit 1 after returning from L.SQ.l accordingly and 

replacing the initial parameter values by the results. After L.SQ.l 

has been entered 5 times, enter L.SQ.2 and do not backspace tape 

unit 1. Then proceed in the same manner using now data from next file. 
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The result will be the following Working List , W , 
consisting of K > 5 lines. 

Frame Nr 

f 
sun sun 

R 
sun o * sun sun 

m Q-] 1 » • 33 

Established by 

Algorithm 1, 

Taken from List first established by 

El the loop f, 

For the storing of the List W it can be assumed, that K < 40. The 

values established by this loop will be checked and possibly changed 

by later parts of Algorithm 2. 

© g.) Computation of the linear functions for \|f and r is 
Tsun sun 

discussed in Section 4, For the computation, the Working List W will 

be used. The result of the computation is 

b B c C 
•** pcc|m; 
_ > 

hi 
error of r 

sun 

♦error of f 

+• 16 cofactors 

parameters of r, 

^parameters of \|r . 
sun 

sun 

sun 

These results will be checked and might be changed by later parts of 

Algorithm 2. 

Print: 

Blank line 

EXIT FROM ALGORITHM 2 TO NEXT PROGRAM BECAUSE NO FIIM HAS MORE THAN 5 

FRAMES WITH SHOCK POINTS. SUCH FLUÍS CANNOT BE PROCESSED. 
Blank line 

DATE 12.12.1966 TIME 12 HRS 12.12 MIN. 

In case of exit to Algorithm 3, write on the tape unit 2 (which by now 

contains the final list E ) the sentinel END LIST E by 

ENTER fBT.WR)2)ELE)# 

GO TO (Algorithm 3) 

ELE ALFNENDbLISTbE . 
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The standard error of the linear function 

rsun(f) “ c + Cf 18 

m 
rsun 

(f) - mj ^ ce + «‘ce f + W - 

where Qcc, QcC and Qcc are furnished hy Box g. This standard 

error is compared for each frame (i.e.,for each f-value present in the 

List E of the film in work) with the standard error of r , 
sun7 

computed with (13). 

© In this case the value of is computed with (12) and 

that of mrsun with (13)» For D and m^ the constant values from card 

B are stored. The results of Box g are modified hy setting m^ = n-rsun> 

Q = 1 and of the other cofactors all such cofactors equal to zero, 

which have an index c or C. 

From the List E, the first part El is furnished by 

Algorithm 1. This part contains the following data: 

Film Nr Frame Nr lx 
sun sun 

R m Q ... 
sun 0 XX SrI 

By Algorithm 2 this list will be completed by adding the following 

quantities to the list 

^sun rsun|mo|^\|r|^r\(r|^'r|&o|in&|D|niD| 

At the present step only the following constants are 

added to the List E. 

r - computed with (12) 
sun 

m = 1 0 

Qrr = mrsun " comPuted (1^) 

Q . * 0 
r* 

D and m^ - from card B 
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© This is the approximation of Section 3.3. The parameters 

are computed by the iteration process described in comment f. The 

subroutines for the functions F , A,,, B.. must be modified in such 
J JK j" 

manner, that they can be called with 2 x-arguments and 2 y-arguments. 

(The third y-argument is the constant given by (12).) The result is 

a modified Working List W. The changes against the first values (see 

Comment f) are as follows: 

rsun = (computed with (12)) 

m = 1 
0 

Ql3 = Q23 = Q3l = Q32 = 0 

2 
Q33 = mrsun (computed with (13)) 

The least squares program L.SQ. furnishes now with the values of the 

2 parameters r and j , also a value of the standard error of weight 

one Mq and the cofactors q12; q^: q^. In the Working List W 

the following cofactors are stored with r and il; : 
0 Ysun 

«U = ^ «il 

= M2 
Q12 = Q21 = ^ qi2 

Q22 = ^ q22 

© This computation is described in the Section 4. Data 

for the computation of the parameters b and B is the Working List W. 

(y? of Section 4 corresponds to ÿ in the List W.) The result are 
^ sun 

the following 6 quantities: 

This is a further modification of the results of Box g, 

results were first modified by Box j.) 

(These 

© The trend of ÿ is established by checking whether B 
__ s Lin 

is significantly different from zero, according to Section 4, (29). 
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© This hranch is entered if (29) is not satisfied. The 

new value of h is computed with (Uj), taking the values of y2, mo and 

Q22 from the Working List W. (y2 = t|rsun)» The results of Box g are 

now modified further by setting 

b - computed with (43) 

B = 0 

“BB 

© 
m2 - computed with (32). 

o. J The trend investigation follows the lines of Section h, 

where the corresponding recalculations of some of the parameters are 

described. The result is either a modification of the results of 

Box g or a confirmation of those results. 

p. ) The results obtained so far (Box g and 0) permit the © 
calculation of r by 

sun 

r = c + Cf 
sun 

for all values of f. The values of mQ and the cofactors are with 

Section 4 

mo = 1 (23) 

% = W ^ (2U) 
S = <W5 ^ (25) 
‘W = Sw ^(26)- 

The cofactors through Qcc (see (24), (25), (26)) are computed in 

Box g and possibly modified in 0. The computation of the distance D 

is described in the Section 5» About the List E see Comment j. 



© The function \1( is computed by è = b + Bf. In 
sun ¿i sun 

case this box is entered from the branch j, also the quantity is 

computed at this point with (24). 

© r*} The computation of rQ is described in Section 3.4. The 

least squares subroutine L.SQ. is now entered with m = 1 (i.e., one 

parameter). The other parameters y0 = Ÿ and y, = r _ are fixed 
sun sun 

for each frame by previous calculations 

done applying the iteration described in Comment f. The results. 

The computation of rQ is 

namely the values of rQ and their standard errors are stored in a list 

Wp consisting of K lines (K is the number of frames with shock points 

for the film processed; 4 < K < 40): 

Frame Nr 

f 

m 
ro 

( 

The values of D and can be obtained from the List E, where these 

values are stored by Box j or p. 

0 The computation and storage of 6o and the other data are 
described in Section 6. The least squares process is in this case 

not iterated. Immediately after entering L.SQ.l, the routine L.SQ.2 is 

entered and the data tape on tape unit 1 backspaced for the calculations 

u and V. The results of L.SQ.l (parameters and cofactors) are saved 

for possible use in x. 

0 t.) The significance of y^ is checked by (55)» 

© See Section 6. In this case y^ = yj, = 0, and also the 

cofactors with index 3 or 4 are assumed zero for later calculations. 

assumed to be 

Box s. 

See Section 6. 

The significance of y^ is tested by (56). 

In this case y^ and the corresponding cofactors are 

zero. For further calculations use the results of 

59 



Select a frame with S > J shock points. Store 

all shock points of the frame on tape unit 1 for 

processing by L.SQ. subroutine. Write END FILE 

sentinel at the end of the data. 

Count K and store corresponding S. 

t Other frames with more than 3 shock points? \ 
Yes No 

Rewind tape unitl (Backspace K files) 

/ K < 5? \ 
Print 

K ? 5 K < 5 message 

Count Z (number of films) 

Compute approximations of r , V , r 
o ¿j mi sun 

Compute by L.SQ. subroutine the value 

of r , , r 
o sun sun 

/ More films \ 

1 in the List F ? \ 

No Yes 

' ' 

/Was there any \ 

/film with K > 

Yes No (Z=C) 

jlAorc files or i tape unit 1?\ 

Yes No 

( Algorithm 3 © © 
©• 

Compute the linear functions 

i(i = b + Bf and r = c + Cf 
sun sun 

using tht results of the K 

frames with shock points. 

P 

me 

Pint 

ssage 

\ ' 

Exit ^ 
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FLOW CHART OF ALGORITHM 2. PART 3 
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© Compute Rq, 6q and their standard errors with (lv9)> (57), 

(58) and (59). These values complete the List E (see Comment j). 

Store the List E on tape unit 2 in binary form using the Binary Tape 

Output Routine (ENTER(BT.WR)2)...)• Do not rewind or backspace tape 

unit 2 at this point, because data of other films may be stored on the 

same tape. The final parameters of the approximation RQ are printed 

with the following text: 

New page. _ 
THE RADIUS R OF THE BLAST BUBBLE CAN BE APPROXIMATED BY THE FOLLOWING 

FUNCTION OF THE FRAME NUMBER F 

Blank line. 
R a Y1 + Y2*F + Y3*L0G(F) + Y4/F 

Blank line _ 
THE PARAMETERS Y HAVE THE FOLLOWING VALUES IN METERS 

Blank line 
(+1.12345+12) (+1.12345+12) ... 
Blank line 
THE STANDARD ERROR OF WEIGHT ONE IS (+1.12345+12) 

lin6 
THE COFACTOR MATRIX OF THE PARAMETERS IS 

(^11.) * * * (^lb) 

(Q41) ••• 

The parameter values given in this printout are obtained from the 

results of the least squares routine L.SQ. by correcting the dimension 

of these results. (AJ.1 computations in Algorithm 2 are done in mm and 

radians.) The values of the parameters and the value of the 

standard error of unit weight mQ are divided by 1000 before printing. 

The values of the cofactors are divided by 10 before printing. 

In case of exit to Algorithm 3 place the END LIST E 

sentinel on tape unit 2. (See Comment h.) 

IX. DESCRIPTION OF ALGORITHM 3 

1. Purpose of the Algorithm 

The purpose of Algorithm 3 is to prepare from adjusted 

photographic data a tape, which can be used as input tape for the 
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computation of the refraction index. (Such computation can he done, 

for instance, by a program of the type described in Ref. 1, Section 8.3*) 

Particularly Algorithm 3 furnishes for every point observed through the 

blast bubble the angles 6, 6' and 6q (see Figure 1.) In case of a 

finite distance to the object, also the values of D and A (Fig. l) will 

be furnished. Hence in the general case Algorithm 3 processes the 

adjusted photographic data, which are the results of Algorithm 1 and 2, 

the case considered here, the object (Sun) is assumed at infinite 

distance from the photographic camera. 

2. Method Applied 

2.1 Assumptions. 

a) We assume, that Algorithm 2 has been completed and the 

results are available either on tape unit 2 or in storage in form of 

the List E. This list contains the following data for each frame: 

Film Nr. Frame Nr 

f 

X y R m Q 
sun r sun I sun ol xx 

|*sun|rsun|mol!enlV|4rr|6oKo|DKI 



r 
b) We assume, that coordinates of the "disturbed points" of 

the List F are available either in storage or on tape unit k or in 

punched cards. (These points are of the type "3" or "4", see 

Section VI.l). This list contains for each point the following data: 

Film Nr 
Frame Nr 

f 
Point 

Nr and type 
ïl m m 

T1 
It-ntt HJ, 

(The last column is the label of the list.) 

c) In case of objects at finite distances we assume, that 

the List B is available in storage (or on cards). This list contains 

for each film the following data 

Pil“ 

(The last column is the label of the list.) 

2.2 Method. For each point {l,T\) of the type "3" or "4" of the 

List F, the corresponding undisturbed position is determined by 

computing the intersection of a straight line through the shot point's 

image with the Sun's Image. From there the corresponding position 

angles 6 and 5' and their errors and cofactors are computed numerically. 

The method requires the evaluation of some functions and their 

partial derivatives and matrix multiplication. 

3. Formulae 

The position angle 6 corresponding to the point (§,T|) observed is 

a function of 7 arguments (see Figure 2): 

& = F(§, 'll, xs>jn, ygun, ^sun> rsun) = 

4.666.10 ^ 

(1) 

R 
sun 

1 ■■ o .2 

■X + r cos \li )+ (Tl-y + r sin ^ .„) • 
sun sun ^sun' v Jsun sun Tsin' 

Some of these arguments may be correlated. The groups of possibly 

correlated arguments are separated in (l) by semicolons. 

1 See footnote on page 21. 
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The corresponding undisturbed position angle 6' is a function of the 

same 7 arguments: 

5' =* Cr(§> xsun> ^sun* ^sun* ^sun' rsun^ 

(2) 

4.666.10 -3 

sun 
(r cos ß ± 
' sun 

2 - r2 sin2 ß ) 4 
sun sun 

with 

r + (C-x ) cos * + Cn-y ) sin i 
sun sun/ Tsun Vl ^sun7 Tsun 

cos p = ■ 

+ rsun cos *sun)2 + (^ysun + r8m sln 

(5) 

and 

See footnote on page 21. 

% 
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sin ß 

- (Ç-x ) sin ÿ + (H-y ) cos * 
sun7_7 sun ^sun' Tsun 

A/(Ç-x + r cos t + (T)-y + r sin if )‘ 
V'* sun sun Tsun/ ' ^sun sun Tsun/ 

(h) 

The sign in (2) is positive for observations of type "U” and negative 

for observations of type "3". 

The correlation between 6 and 5' will be computed considering also 

the correlations between the arguments. To this end we compute first 

the cofactor matrix Q of the 7 arguments. With the data from the List 

E (see Section 2.1, a) we define for each frame the matrix 

1 0 0 0 0 0 0 

0 1 0 0 0 0 0 

0 

0 

0 

0 

0 

0 Qxx Qxy Q*R ° 

° V V V ° 
0 ^ V ^ ° 

0 0 Q, 

0 

0 

0 

0 

0 

0 

0 
V 

Sr 

Sr 

(5) 

and a diagonal matrix M with the elements 

/-.-.2 2 2 2 ex (1, 1, m,m,m.m^,mn) ' > > o’ o’ o’ ol* ol' (6) 

We obtain then a matrix by the multiplication 

Q2 = (7) 

The matrix is symmetric and has in the first 2 rows only in the 

diagonal non-zero elements, namely ones. The cofactor matrix Q of the 

arguments for a given point (§,7]) is obtained from Q2 by replacing 

these first two diagonal elements by the squares of the standard errors 

of § and T|, respectively. 
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In order to obtain the cofactors of 6 and 6' we compute first the 

partial derivatives of the functions (l) and (2) with respect to all 7 

arguments. We denote these derivatives by attaching Indices 1 through 

7 to the function names F and G and define the vectors F and G with 

the partial derivatives as components: 

F' » (Fp F2, ..., F?) (8) 

G’ * (Gp G2, ..., G?) (9) 

The cofactors and the standard error of unit weight of the 

functions 5 and 6' are then 

Qgg = F' 4 F (10) 

%B, = 0' 4 F (n) 

4^,=0-4 0 (12) 

m = 1 (13) o 

Routines for the computation of the partial derivatives of F and 

G can be obtained using the machine program of Ref. 2. Therefore, 

explicit formulae for these derivatives are not needed. 

h. Flow Chart of Algorithm 3 

The computer program of Algorithm 3 uses the following tape units: 

tape unit 1 - to store the results of the Algorithm 3« 

tape unit 2 - input tape with the List E, prepared by 

Algorithm 2. 

tape unit ^ - input tape with the List F, prepared by 

Algorithm 1 (if the whole List F is not 

kept in the storage). 

Comments to the Flow Chart. 

© In some cases the computation of an intersection may not 

be possible due to observation errors. (The radicand in (2) is then 

negative.) In these cases print 



DELTA-PRIME OF THE OBSERVATION 

Fim = 123, FRAME = 123, POINT « 1234 

CANNOT BE COMPUTED 

and proceed to next point. 

Storage on the tape is done using the Binary Tape Output 

Routine and a format consistent with the requirements of the least 

squares subroutine COLS for correlated observations (Appendix ). 

format required is 

7 zeros l(s mo) 10 zeros K&Kb' 
The 

|8 «rosily, l^.lTT seros 1J idg I • 

(In case of objects at finite distances, the contents of the tape must 

be supplemented accordingly.) The identification, consisting of 20 

characters, cives the numbers of film, frame and point in the form 

FI = 123bFR 

— id,—» 

123bP = 12>4 

*—id_—♦ 

© This is the standard sentinel for the subroutine COLS 

(Appendix ), 

Instead of unloading the tapes and proceeding to the next 

program, at this point the computation of the refraction index can 

start. This computation may follow the lines of Ref. 1, Section 8.3, 
with the exception, that the more general least squares routine COLS, 

capable of handling correlated data, should be used, instead, of L.SQ. 

(Appendix ). 
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APPENDIX 

1. Problem 

GENERAL LEAST SQUARES PROBLEM 

Suppose we are given a functional relationship 

p(x1( x2, ... xn ; yi, y2, ... ym) =0 (l) 

between n + m variables. Assume that the first n variables can be 

determined by observations. The problem is to determine the values of the 

remaining m variables y^. If F satisfies certain conditions, the m 

unknowns y^ can be computed if m sets {x^} are known. We assume that 

we know from observations r sets of {x^} and r > m. Then the r corresponding 

equations (l) constitute an overdetermined equation system for {y^} and we 

will apply the least squares method to the observations. 

2. Linearization of the Problem 

We denote 

- vv V ixji} + 'y 
with 

<3 = l>2,...,r 

i ™ 1,2,.*.,n 

(2) 

Here X. are the r measured sets and | their (unknown) corrections. The 
J J 

x^ are the correct values. The weights of the measurements may be given by 

(3) 

i = 1,2,...,n 

Pj = {P^} with j = 1,2,...,r 

The unknowns {y^} we denote by 

{yj = y = ï + T1 = {Yi} + {T1Ä} With £ = 1,2,..., m (k) 

In (4) Y denotes an approximation to the unknown correct value y and T] 

is the (unknown) correction of Y. As stated in Section 1, we assume that 

r > m (5) 
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In order to linearize the problem we assume that F can be replaced with 

sufficient accuracy by the linear terms of its Taylor expansion in the 

vicinity of the r places defined by the sets • With the notations 

= 1,2,..,r (6) 

s (7) 

s 1,2,...,n 

3 = 1,2,...,r 

t, = 1,2,...,m 

we can write then instead of F = 0 the linear equations 

n m 

Vi Vji+ I V/“0 (J = 1’2’-”r) (9) 
i=l i=l 

These are r equations for the r»n + m unknowns and 7]^. 

J. Introduction of Correlates 

In accordance with the least squares principle we will determine the 

corrections such that 

r n 

^ ’ I 1 Vji = (10) 

3*1 i=l 

Instead of minimizing (lO) we minimize the following function W, which we 

obtain from (lO) by adding the r expressions (9), multiplied with some 

factors -2k.. 
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n m 

w = [5 f2] - a1 (F1 + ^ All5ll + l Bul\t) - 

i=l i=l 

n m 

- 2k2 (F2 + E A2i^2i + I - • • • 
i=l ¿=1 

n m 

. . . - 2k 
<Fr + I Ari^ri + l BrA*) = ^ 

i=l .«=1 

The quantities (j = 1,2,...,r) are called correlates. 

4. Normal Equations 

Setting the n*r derivatives of W with respect to the § equal to zero 

we obtain the following equations 

Vji - Vji =0 j = 1,2, • • • ,r 

1 s 1,2,...,11 

(12) 

or 

ç =k -Ü 
J1 J ÏJ1 

(13) 

or 

f = k {-J4 
i i 1-PjiJ 

(1U) 

J 1PJ1 PJ2 V 
Substituting these values into the r eqviations (9) we obtain the equations 

(15) 

n ^2 m 

F, + k, Y + Y B. .T1. = 0 
j j ZLi p . L 

i=l J £=1 
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We define by the equation 

M 
“ A2 

i=l 

and have then 

m 

1=1 

(j = 1>2,...,r) (16) 

ií+IVí + pj=0 (J = (IT) 

The derivatives of W with respect to the m unknown 11. furnish the equations 

I kJBJf “ ° ^ = 2»•••.">) (18) 
J-l 

If ve substitute the expressions (17) for k 

following normal equations for the unknowns 
J 

T) 

into (18) we obtain the 

i* 

m r r 

I ) + I «/As = 0 (s « 1,2,...,m) (19) 

ial j=l j=l 

5. Observation Errors 

The standard error of a measurement of weight one is given by the 

formula 
« 

where & a is given 
computed in many ways 

by (lO). The numerator of the radicand can be 

using the following formulae: 

•* r% 
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r n r n 

I =I Ipjikj -jr 
j i J i ji 

(with (13)) 

l = >kj ^ 
J J 

r m 

IV-Fj - I 
J I 

r m r 

l Vi ^ 
J I j 

(with (l6)) 

(with (IT)) 

Îk-F J J 
(with (18)) 

r m 

I g/j +1 Z, gjF(jBji,rii 

m r 

j ^ J 

(with (IT)) 

Note that the factors of 7]^ in the last expression are the negative right 

sides of the normal Equation (19)* 

The most important of these relations are 

í £ = 
3 i 

n in r 

-XkjvIgjFH(X8JFjV^ 
3 3 I 3 

¡L (21) 

TT 

mm** 



With the quantity m we can express the standard errors of the observations 

ol XJt by 

m 

“x 
J1 

( •••^r 
i»ly 2y • • • ,n) 

(22) 

These errors should be of the same order as the observation errors 

estimated from the properties of the observation apparatus. (See Section 

10 for controls of this type.) 

For the present problem another set of observation errors is of equal 

importance. We consider the observations of the X.. as independent of 

each other and have assumed that every observation X enters in only one 
U 

of the r equations F = 0 (equation (9))* With this assumption we can 

consider the values Fj = F(Xj,Ÿ) as direct and independent observations 

with a standard error which follows from the standard errors of X. by the 
J 

law of error propagation, namely 

“Vj 

With (22) and (l6) we obtain from (25) 

(23) 

m 

= (2,•••,r) (24) 

6. Errors of the Unknown Parameters 

In many applications we are interested mainly in the unknown 

parameters y or in some functions of the y. In these cases we need the 

standard errors of ÿ and of functions of ÿ. 

The standard errors of the parameters ÿ are the same as those of 

T| (see (4)). The latter can be computed by the following consideration. 

We assign to the observation set j (consisting of the n observations X^) 

the error 

n 

- y a ç =. L Aji5ji g 
(25) 

i=l j 
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and the weight g. (see equation (l6)). The equations (17) have then the 

« i 
form 

m 

vj “ I • ‘ j 

£=1 

+ F, (j=l,2,...;r) (26) 

We consider these equations as error equations for the observations F. and 
g- J 

determine T]. such that [gv ] assumes a minimum. This requirement is 

equivalent to the requirement [p§ ] = min (equation (lO)) because with (I?) 

and (16) we have the relation 

, 2 n 

- i V *2 

gjvj = g. ° A pji5ji 

0 i=l 

(j=l,2,...,r). (27) 

The normal equations corresponding to this problem are identical to the 

equations (19). We will write them here in matrix form and define therefore 

first the following matrices 

B = 

G 

B.1 ... B 
11 Im 

B 1 • •. B 
^ rl rm 

^g 0 ... 

0 g2 ... 0 

0 0 ... 
gr, 

(28) 

(29) 

^F1N 

F = 

F V r / 

, Tí = 
Tlo 

The normal equations (I9) take with these notations the form 

(30) 

B G B T] = - B' GF (31) 
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Let the inverse matrix to the matrix of the normal equations (19) or (31) 

he 

Q = (B' G B)“1 (32) 

^ is called the matrix of cofactors of the TL 

The solution T[ of the normal equations is then 

Tf = - Q B' G F = H F, (33) 

where H represents the product - Q B' G. The components F^ of F are 

independent "observations" with the standard errors m^ from equation 

(24^. The standard errors of the components T]^ of T] therefore can be 

obtained from the errors by applying the law of error propagation on 

the equation (33). If h , are the elements of the matrix H, then the 
1* w 

standard error m^ of T]^ is given by 

,2 2 2 
2 f&l ^ ^ nir\ 
0 8l S2 g/ (54) 

The expression in parenthesis in (3U) is the i-th diagonal term of the 

matrix 

H G"1 îï' = (Q B' G) G"1 (G B Q ) = 

(35) 
= Q (B* G B) Q = Q 

Hence the standard error m . of T]e (or ye) can be expressed by 
y£ 

% m • 0 (36) 

where is the i-th diagonal element in the matrix Q inverse to the 

matrix of the normal equations (19) and mQ is the error of a unit weight 

observation, given by (20). 

J. Functions of the Parameters 

Assume that we use the parameters y^ to compute some other function. 

say 

T = T(y1,y2,...,ym) (37) 
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The standard error of T depends on the accuracies of the arguments y.. 

It can be computed by applying the law of error propagation on (37)« 

However, since the y^ are not independent of each other we must first 

express T in terms of the independent "observations" F.. Thereby we can 

confine ourselves to the expression of the differential dT of T in terms 

of the differentials dF. of F. 
d J 

partial derivatives of T by 

First we introduce the vector T of the 
y 

T 
y2 

V Tym ^ 

f òT/òy1 

öT/dy0 

< òT/òv 

(38) 

m 

With (38) the differential dT of T is 

^ = Ty (dTi), (39) 

where the components of the vector (dT]) are the differentials d7]^ of 7]^. 

(According to (U) these differentials are equal to those of y^.) The 

are with (33) linear functions of the F.. The differentials dT], are 
d * 

therefore the same linear functions (33) of the differentials dFj. 

Substituting (33) into (39) we obtain 

dT = - T' Q B' G (df) = - T' H (dF). (4o) 
y y 

or 

dT = R1cLF1 + R2dF2 +...+ R^, (Ul) 

where R^ is a component of the vector 

R = - H' T . (42) 

The standard error of T follows from (4l) and (24) by applying the law 

of error propagation: 
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2 
«2 «2 r2 

2 A . ^2 . + JL) 
o Vg1 g2 8r 

p _ _i - 
= m R' G R = 

o 

mSo (Ty H) 0 1 (H' Ty) 

2 ? (h G*1 f ) T = 
O j J 

: m2 T’ Q T . 
o y y 

(for the last equation see (35)») Hence 

m_ = m • ß' Q T (45) 
o V y y 

where Q is the inverse matrix to the matrix of the normal equations (19) 

and m is given by (20). Expressing the i 
0 

of the elements of the matrices we obtain 

wuere *4 ad u*«. -- 

and m is given by (20). Expressing the matrix product in (45) in terms 
0 

m m 

“T = mo\ / X X 5is Tyi Tys • 

(44) 

£-s1 

8. Tiyyrvrg nf the Adjusted Observations 

The standard errors of the adjusted observations xJt = + are 

seldom needed. The corresponding formulae will be noted here for sehe of 

completeness. 

First we note that with (13) the standard error of x^ depends on the 

standard error of the correlate kj by the formula 

(j=l,2,...,r^ 

i=lj 2j.•,n; 

(45) 

Hence ve may first compute the standard errors of the correlates ly We 

denote the vector of the correlates by 
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k = 

Ur 

and express the equations (IT) in the form 

k = -GF-GBT]. (U7) 

using the symbols (28), (29) and (30). Substituting (33) into (U7) and 

defining KbyK = G- GBQB' G we obtain 

ks-GF + GBQB1 G F = 

S - (G - G B Q B* G) F » - K F. 

Application of the law of error propagation on (1+8) yields the following 

formula for the standard error m, J of the correlate k 
“kJ J 

2 
K2 K2 K2 

g-. g. g. 
(^9) 

where are the elements of the matrix K, defined by (48). The 

expression in parenthesis in (49) is the j-th diagonal element of the 

matrix 

K G-1 K ' = (G - G B Q B’ G) G-1 (G - G B Q B' G) = 

= (Î - G B Q B’ ) (G - G B Q B' G) = 

oG-2GBQB' G + GBQB' GBQB' G = 

= G - G B Q B' G = 

= (I - G B Q B’) G (50) 

Hence the standard 

square root rf the 

in by the elements 

error m^ of the correlate k^ is equal to mo times the 

j-th diagonal element of the matrix (50). Expressing m^ 

of the matrices G, B and Q we obtain 
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\j = “o • 
(51) 

With (45) we obtain from (51) 

m .. = m 
xji 0 

'ji 

m m 

1 ' gj Z l «/t Bji Bjt (52) 

i=l t=l 

The observations had the standard errors defined by (22). In 

order to compare the error mxj^ of the adjusted observations with the 

we note the following form of (52): 

The first factor in (53) Is the standard error of the original observation 

X^. The second factor which is obviously less than 1 represents the 

improvement of the accuracy. 

9* Functions of the Parameters and of the Adjusted Observations 

In some cases we might be interested in a function U(xn....x : y,,...y ) 

at the observation points. After the computations of Section 4 we will 

naturally use for the arguments of U the adjusted observations 

Xj s Xj + rather tha the original Xj, and the final parameter values 

y ss Y + T|. Since the x^ as well as the J are known only approximately, we 
may ask foi the accuracy of the corresponding values of U. 

An example of such a function U is the constraint function F. After 

calculating the and y we may test the calculations by checking whether 

F(xj>y) = 0 for all j=l,2,...,r. For the purpose of the check we need to 

know how accurately these r equations must be satisfied. 
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In order to find an expression for the standard error of U we will 

proceed in the same manner as in Section J, First we will express the 

U in terms of differentials of the independent "observations” 

Fj and then apply the law of error propagation on the differentials. 

For convenience we consider the values of U at all observation points 

simultaneously and use matrix algebra. We denote 

U 
xji 

Uj = U(xJ^ (j=l,2,...,r) 

■© 
(J=li2,•••^r 

_ 1=1,2,..., n) 
X = X 

j 

U 
yj¿ 

/SU 1 (j=l,2,...,r 

'à?/- _ ¿=1,2,...,m) 

The differential of U at x. is 
<J 

n m 

dU, = Y U ,. dx + Y U . „ dy. 
j L xji ji L yji yJi 

i=l i=l 

6U, + ÔU, ; 
jx jy 

(55) 

(56) 

(57) 

with obvious meaning of 6U and ÔU . With (ij) and (57) we have 
<jx jy 

n 

6U 
jx = I Uxji ' V 

1=1 ^1 

(58) 

We introduce the symbol w by 
J 

n 

y u 
w L xji p 
J i=1 Ji 

(59) 

and the matrices 
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w 

^ 0 • • • 0 ^ 

0 Wg . . . 0 

0 0 . . . w. 

(60) 

BU 

^°ixN 

&Urx y 

, BU = 
' y 

( BUn ^ 
ly 

BU 
^ ry y 

(61) 

and 

dU = BU + BU . 
X y 

With these symbols we can express BU from (58), (^6) and (48) by 

(62) 

6Ü = W"1 k = 
X 

(65) 

- (-w“1 G + w’1 G B Q 5' G) dP. 

The value of BÛ can be found by applying the general formula (40) of 

Section 7. With the matrix 

/ 

U = 
y 

u 
yii 

. . . u 
ylm 

U , 
V yrl 

u 

(64) 

yrm y 

and (40) we obtain 

BU = - U Q B' G d F. 
y y 

(65) 

The sum of (63) and (65) furnishes the differential dU in terms of dF: 

rr-1 - . -"1 “ “ ~ ~ _ ñ õ p' r.} av.. (66) 
dU = ( -W"1 G + W"1 G B Q B' G - Û Q B' G) dF, 

V 

We denote by the elements of the matrix in parenthesis in (66), and have 

with (24) the following formula for the standard error m^ of Uj 
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m 
o (67) 

Explicitely we obtain for the element the expression 

--^8js+ÿ I I «it B1/Bst «S - 

m m 

Js 
J ° j t=l i=l 

m m 

’’ Z Z ^£t Uyj£ Bst S'J 

t=l £=1 

or 

m m 

V = 
^&js + es I ï ^tBst 

t=l £=1 

(68) 

where & is the Kronecker symbol 
<JS 

1 if j = s 

0 if j ^ s. 

A special case of (67) and (68) is the above mentioned one where the 

function U is the constraint function F. If moreover F is linear in 

X and ÿ (or, as assumed in Section 2, linear within sufficient accuracy), 

then we have the equations 

and 

The equation (68) turns out to be simply 

and, consequently, 

(69) 

(TO) 

(Tl) 

(T2) 
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This means that in all practical cases the accuracy of the constraint 

function F computed at the adjusted observation places Xj is the same as 

the accuracy of the function F computed at the not adjusted observation 

places Xj. Note that these accuracy considerations do not involve the 

systematic errors of F(X,, Ÿ) caused by the choice of the approximation Y 
J 

for the parameters. 

10. Controls of the Computation 

The results of the computations must be controlled with respect to 

the following features: 

a. Accuracy of the results computed. 

b. Validity of the linearization (cf. Section 2). 

c. Validity of the assumed relationship F(x, y) = 0. 

d. Accuracy of input data. 

a. Accuracy of the results computed. 

This control should show whether the calculations are carried out 

with a sufficient number of digits. A control for the solution of the normal 

equations (19) is provided by the matrix Q (see Section 6). The solution 

of (19) or (31) may be compared with the values obtained by the matrix 

multiplication (33)» Both results should agree. 

At the end of the calculations the last equation in (2l) furnishes 

a thor igh control of the computation of T|. 

b. Linearization. 

The linearization of the function F(x, y) with respect to the 

variables y is justified if the following equations hold within the accuracy 

required: 

m 

F(X , Ÿ + T\) = F(Xj, Ÿ) + £ ^ (J=l,2,...,r) 

i=l 

or 
m 

F(Xj, y) = Fj + £ Bji (j=l,2,...,r) (73) 

£=1 
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This quantity was denoted in Section 6 by v. and the relation 
u 

r r n 

2 
- L Lj "ji ^i 

j=l J=1 i=l 
I gj v? = I ï s: tp ?2] (T4) 

proved. Hence one possibility to check the validity of (73) is to compute 

the sum 

r 

£ Ej P2 (Xj, ÿ) (75) 

J=1 

and check whether it is equal to the other expressions for [p f2] in 

the equation (2l). The values of those expressions are computed when doing 

the final accuracy check according to the previous Section a. 

The linearization of the function F(x, y) with respect to the 

variables x can be checked most rigorously by computing the adjusted 

observations x^ = X^ + and checking whether 

F(xj, ÿ) = 0 (j=l,2,...,r) (76) 

within the accuracy of the particular observation set. (See Section 9 for 

the accuracy of F(x., ÿ).) 
J 

c. Validity of F(x, y) = 0. 

A possible check of the validity of the assumed relationship 

F(x, y) = 0 between the variables x and ÿ is given by consideration of 

standard errors. If a correct relationship is assumed (within the accuracy 

of the measurements), then the standard errors from (22) must be of 

the same order as the standard observation errors, which may be estimated 

from the properties of the observation apparatus. If this condition is 

not satisfied, an erroneous relationship F was assumed or erroneous 

assumptions about the accuracies of the observations must have been made. 

In general the components of x will have different dimensions 

and consequently the weights will be defined differently for each component. 

As a convenient standard we assume for the following considerations that the 
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measurements X.. are furnished together with their standard errors e.. (i.e. 
ji J1- 

mean square errors). We can then assign the weight = 

observation X .. With these weights the quantity mQ (see (20) or (2l)) is 

dimensionless and should be of the order one. This requirement constitutes 

a first check of the validity of P(x, y) = 0. 

The standard error of the function F due to the observation 

errors is equal to m^ (see (24)). If we assume that the standard errors 

e^ are correct, then m^ is the standard deviation of F(xj, y) from zero 

(see (72)). Hence the comparison of these values of F with the corresponding 

m^j provides another check for the validity of the assumed relationship 

F(*> F) = An investigation of the distribution of these values will help 

to detect systematic errors in the relationship assumed. Such errors will 

usually manifest in systematic deviations of F(xj, y) from zero rather than 

the random deviations expected. 

d. Accuracy of input data. 

As stated in the previous Section c, a general check of the 

correctness of the standard errors e^ is provided at the same time when 

the validity of the relationship F(X, ÿ) = 0 is checked. If either the 

relationship is not valid or the accuracy is in general not correctly given, 

the quantity mQ (see (20)) will be different from one. Single blunders will 

be discovered by comparison of ^(5:^, ÿ) with its standard error m^ (see 

(72) and (24)). Thus erroneous sets can be detected, for instance by 

listing all such sets for which 

|F(xj, y)| > Snipj (j=l,2,...,r) (77) 

If the number of observation sets, r, is large and the observation errors 

are distributed normally, then 0.3# of the sets should satisfy (77). 

The same kind of checking can be applied to single components 

of X. First the (dimensionless) quantities 

m . = 
xi 

l »2 / 2 
Veji 
r - m 

(i=lj 2,...,n) (78) 
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should be of the order of one. These quantities are the standard 

errors of an observation of unit weight of the i-th component of x. If 

mxi is not of the order of one, then most probably not adequate observation 

errors e for the i-th component were given. (We assume now that the 

relationship F(x, ÿ) = 0 describes correctly the physical properties of the 

phenomenon observed.) 

A more detailed check, which corresponds to (77), is to compare 

the single with the corresponding standard error from (20). 

Since the f,, are supposed to he the observation errors, they should be 
J 

distributed normally for any fixed i. Hence we may detect blunders by 

listing all such measurements for which 

m 

V > 5 VV 
(.,r 

i=l,2,•••,n) 
(79) 

In (79) we bave used mo instead of mxi (from (78)) because mQ will usually 

be less affected by blunders. 

In the special cases where observations of a component of 

x are of the same accuracy for all observation sets ( = e^., 

for a fixed i and j, k = l,2,...,r), we can compute the standard error of 

one observation of that component. With (78) it is equal to 
n 

14 
= e(j)i mxi ï/ Jr - m 

(i=l,2,•••,n) (80) 

(By writing the index j of e^ in parenthesis we indicate, that the errors 

e^ are independent of the index j.) The error m^ has the same dimension 

as the i-th component of x and it has the correct value if m^ is of the 

order of one. Using the square root in (80) we can compute m^ also in 

cases where different sets j have different accuracies these cases, 

however, has no physical meaning. 
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Il* First Machine Program for Solving General Least Squares Problems. 

The program described in this Section is designed for such cases where 

the arguments of the function Fix^y^) (see (l)) are independent of each 

other. If they are correlated, a modified version of the program should be 

used. (The x^ may be correlated for instance in cases where they are not 

observed directly but are results of other adjustments.) The theory of such 

modifications and a corresponding machine program are described in 

Sections 12 through 18. 

The least squares method will generally be used as a part of more 

extensive calculations, which check the validity of the observed data, compute 

initial values, fix the degree of approximation etc. Therefore, the least 

squares machine program described in this section is written in the form of a 

subroutine. This subroutine calculates the unknown values of the parameters and 

returns the control to the calling program before the final controls of 

Section 10 are carried out. Depending on the properties of the problem and the 

results of the calculations, the process can then be repeated with other initial 

values or the final controls of Section 10 carried out. Therefore the 

subroutine has two entries. Entering the first part a number of arguments are 

necessary. Entering the second part (for final controls) only an indicator 

may be used to specify the amount of printed output. 

Entering the Program. 

The least squares subroutine can be entered by the following FORAST 

statements : 

1st part 

ENTER (L«SQ-l) (N)(M)(F) ... (M0)(Qll)# 

2nd part 

ENTER (L.SQ.2) (PR)# 
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When entering the second part, the indicator (here denoted by PR) 

should be zero for reduced output and non-zero for full output. For 

particulars see the flow chart and the section "Printed Results." 

When entering the first part (L*SQ*l), the addresses of the 

following arguments should be transmitted: 

/ n = address of the number of x-variables, i.e.»"observations . 

(n ^ 10 and integer). 

m = address of the number of y-variables, i.e.»"parameters . 

(m ^ 10 and integer). 

Addresses 

of 

arguments 

F = address to enter the subroutine F. 

A1,...,AN addresses to enter the n subroutines Ai 

B1,...,BM and the m subroatines B^. 

= address of Y^. It is assumed that the other initial 

approximations ...,Ym of the parameters are 

stored in cells subsequent to that of Y^. 

Addresses 

for storing 

the results 

y^ = address of y^. Other ywill be stored in 

subsequent cells. 

m , = address of the standard error of y.. Other 
yi -1 

standard errors m . will be stored in 
yi 

subsequent cells. 

m = address of the standard error of measurements 
o 

with weight one. 

= address of the first element of the matrix Q (inverse 

to the normal equations matrix). The elements of 

Q will be stored in the sequence . 

«12>«22> • • '«aa’V •••V’" ’V Por sake of 
simplicity the complete matrix is stored and storage 

2 
space of m words required. 

The total number of arguments in the ENTER (L*SQ*l) - statement is 

hence 8 + m + n. These 8 + ci + n addresses may be given in the same order as 

they are listed here. 
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About the subroutines F, and it is assumed that they can be 

called by statements of the form 

ENTER (NAME) (RESULT) (INDIC) (ARGN) (ARGM)$ 

where the symbols in the statement stand for the following addresses: 

NAME - address to enter the subroutine. 

RESULT - address to store the result. 

INDIC - address of an indicator. Its value is set zero if 

the result can be computed. If the arguments are 

such that no result can be computed, the indicator 

is non-zero. 

ARGN - address of the argument x^. It is assumed that 

x2,...,xn are stored in cells subsequent to x^. 

ARGM - address of the argument y^. The arguments 

y_....,y are assumed to be stored in cells 
¿2’ 

subsequent to y^. 

These subroutines may be programmed as shown by the following example for the 

subroutine named "NAME": 

NAME SET(7 = SELF + l) G0T0(l,l) 

SETEA (RET = l,l)RES = ,2)lNLIC = ,3)XIND = ,4)YIND = ,5)$ 

Now the address of x^^ is in the index register KIND and 

the address of y^ in the index register YIND. - After 

the calculations, the result may be stored and the control 

returned to the calling program by the following sequence 

of statements: 

,RES = computed result $6 This stores the result at the proper 

place. 

,INDIC = Qfjoio This clears the indicator. 

G0T0(,REI)^ This returns control to the calling program. 

In case of not valid arguments when a proper result cannot 

be computed, the control may be returned to the calling 

program by the statements 

,INDIC = 2tfo This indicates invalid arguments. 

GOTO(,RETThis returns control to the calling program. 



Tape Units 

The least squares program requires 3 tape units which are used as 

I’ollovs : 

Tape unit 1 - Storage of input data 

Tape unit 7 - Temporary storage 

Tape unit 8 - Output tape. This tape is prepared for the printer with 

132 characters per line. 

Input Data 

It is assumed that the input data are stored by the calling program 

on a magnetic tape on tape unit 1, using the Binary Tape-Output Routine. 

These data consist of r sets of observations, each containing 10 values 

10 corresponding observation errors e^ and an identification of the set. 

The identification should consist of 20 characters stored in 2 computer words. 

It should be different for different sets because otherwise the error detecting 

part of the least squares program will not indicate the right sets. 

The sequence of data on the tape within each set should be as follows 

W***’XJ10' ejl'ej2'***'e,il0; idl'id2* 

(The last 2 words, id^ and id^, are the identification of the set. The 

quantities through eare floating point numbers.) 

The end of the data file should be indicated on the tape by an END FILE 

sentinel, consisting of one machine word with the alphanumerical contents 

(ENDbFILEbb). 

The least squares subroutine will read these data from the 

tape on tape unit 1 starting at the position where the tape is at the instant 

of calling. It will stop the reading of data either after collecting 2000 

valid sets or after sensing the END FIIE sentinel. The tape will not be 

backspaced or rewound by the least squares subroutine. Thus, several data 
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files can be prepared and stored on the tape for subsequent processing, 

separating them by the END FILE sentinel. 

Example for preparing the input tape. 

The END FILE sentinel may be defined by the statement 

EOF ALFNENDbFILE 

The data may be written on the tape by the statements 

ENTER(BT.WR)1)10)N0S.AT(X1)10)N0S.AT(E1)ID1)ID2)$ 

The END FILE sentinel may be written on the tape by the statement 

ENTER (BT.WR)1)E0F)$ 

Results 

The results of the least squares program are partly stored at places 

indicated by the calling program (cf. the Section "Entering the Program") and 

partly stored on tape unit 8 for printing. In the following, storage on tape 

unit 8 is referred to as "printing". The results are computed and pre. anted in 

two portions: 

1) Entered through the first entrance (L*SQ*l) the least 

squares routine computes and stores the values of the parameters y^ with their 

corresponding standard errors m 0, the standard error m of a measurement of 
y* 0 

weight one and the matrix Q (inverse to the normal equation matrix). At the 

same time all these results will be printed. (See the Section "Printed Results".) 

Tne control of the program is then returned to the calling program. 

2) Entered through the second entrance (L-SQ^) the least 

squares program carries out the controls which are described in Section 10 

and prints the results of these controls. (Particulars about the controls see 

in the Section "Printed Results" and in the Flow Chart.) After that the control 

of the program is returned to the calling program. 
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Printed Results 

The program prints (i.e.,stores on tape unit 8 for printing) in normal 

cases the results in the form as given in this section. In case of trouble 

additional comments and error messages are produced (See the corresponding 

Sections.) 

1. First part of the program. 

Blank Line. 

OUTPUT FROM THE SUBROUTINE (L*SQ*l) 

Blank line. 

THE TOTAL NUMBER OF SETS PROCESSED IS (r) 
Blank line. 

THE STANDARD ERROR OF AN OBSERVATION SET WITH THE WEIGHT ONE IS (mn). 

New line: THIS QUANTITY IS DIMENSIONLESS AND SHOULD BE APPROXIMATELY EQUAL TO 

ONE. DEVIATIONS FROM ONE INDICATE EITHER INCORRECT ESTIMATES OF OBSERVATION 

ERRORS OR NOT ADEQUATE DESCRIPTION OF THE PHENOMENON OBSERVED BY THE 
EQUATION F(X,Y) = 0. 

2 blank lines 

THE FINAL VAHJES Y+ETA OF THE PARAMETERS Y ARE AS FOLLOWS 
Blank line. 

PARAMETER STANDARD INITIAL CORRECTION DIFFERENCE OF 

Y + ETA ERROR VALUE Y ETA CORRECTIONS 
Blank line. 

(y) (my) (Y) (Tl) (7]-7|*) 

In case of redundant parameters, only Y and y are printed in the corresponding 

line, the other values are then zero and at the end of the line the word 
REDUNDANT is printed. 

2 blank lines. 

THE INVERSE TO THE MATRIX OF NORMAL EQUATIONS (l.E. THE MATRIX OF COFACTORS) IS 
Blank line. 

(Qn) (Q12) • • • (Q-lJ 

(Qi2) (^22^ • • • (Q2m) 

(QIm) 
Blank line. 

In case of redundant parameters, the rows and columns of the matrix Q, which 

correspond to such parameters, contain zeros only. In such case the following 
comment is printed 

THE SUBROUTINE AT THE SEXADECIMAL ADDRESS . (DECIMAL « .) 

FURNISHES ZERO RESULTS FOR ALL INPUT SETS. THE CORRESPONDING PARAMETER 

Y...(here the number of the component follows) IS REDUNDANT AND THE 

CALCULATIONS WERE CARRIED OUT WITH THE REMAINING PARAMETERS ONLY. 
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2. Second part of the program. 

In case of full output complete information about every observation and 

observation set is printed. This printout can become rather large (n + 2 

lines per observation set). Therefore the reduced output should be used 

normally. This output provides informations about error distributions and 

lists such sets and observations where systematic observation errors or 

blunders are suspected. 

In case of full output the following is printed? 

Skip to a new page. . 
OUTPUT FROM THE SUBROUTINE (L*SQ*2) 

Blank line 
SEE ' OBSERVATIONS STANDARD 

IDENTIFICATION X ERROR OF X 

Blank line. 

(20 characters) ^ji 

Blank line at the end of the set. 

CORRECTIONS ADJUSTED OBSERV. 

KSI X + KSI 

The values of F and their standard error as well as the identification of 

the set are printed on the first line for each set only. The last column 

contains a comment about the value of F(x,y). If this value is within the 

range (-5 m^, + 3 coinment "NORMAL F" is printed. If F(x,y) is 

outside that range, the comment "F LARGER THAN 3*M" is printed. If the 

arguments (x ,y) are such that F cannot be computed, then in the column 
J 

F(X + KSI, Y + ETA) the word "FAILURE" is printed instead of the corresponding 

vaiue. In this case no further comment in the last column is printed. 

The headline is repeated on the top of every new page. 

After completion of this list the following output is printed (this 

output is the "reduced output of (L*SQ*2))î 
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Skip to a new page. 

DISTRIBUTION OF THE VALUES OF F(X + KSI, Y + ETA) 

Blank line. 

LIMITS NUMBER OF 

SETS 
Blank .line. 

BELOW -3M (+1234) 

# OF NUMBER OF 

SETS WEIGHT UNITS UNITS 

# OF 

PERCENTAGES 

NORMAL 

(-3M,-2M) 

(-2M,- M) 

(- M, 0) 

( 0, M) 

( M, 2M) 

( 2M, 3M) 

OVER 3M 

(+123.1) (S g.) (+123.1) 0.1 
2.2 

16.6 
34.1 

34.1 

16.6 
2.2 
0.1 

Blank line. 

TOTAL (...) 100.0 (...) 100.0 10' 
2 blank lines. 

The following List A is not printed if it is empty. 

THE FOLLOWING SETS ARE OUTSIDE THE 3M-LIMITS. 

Blank line. 

SET WEIGHT F(X+KSI,Y+ETA) STANDARD ARGUMENTS X + KSI 
IDENTIFICATION UNITS ERROR 

Blank line. 

2 blank lines at the end of the List A. 

The following list is printed in any case. 

Start new page if less than 20 lines are left on the previous page. 

STANDARD OBSERVATION ERRORS OF SINGLE COMPONENTS OF THE ARGUMENTS X. 

Blank line. 

THE STANDARD ERRORS OF A UNIT WEIGHT OBSERVATION ARE DIMENSIONIESS AND OF THE 

ORDER ONE IF THE OBSERVATION ERRORS ARE GIVEN CORRECTLY BY THE INPUT AND THE 

RELATION F(X,Y) = 0 IS CORRECT. THE AVERAGES IN BOTH LAST COLUMNS REPRESENT 

STANDARD ERRORS OF OBSERVATIONS ONLY IN CASE ALL OBSERVATIONS OF A FIXED 

COMPONENT HAVE THE SAME ACCURACY. 
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COMPONENT OF X STANDARD ERROR OF AVERAGE STANDARD AVERAGE STANDARD ERROR 

UNIT WEIGHT OBSERV. ERROR FROM INPUT FROM ADJUSTMENTS 

(i) (m . ) (cf. (78)) (se& flow chart) (^.(cf. (80)) 
A» J» 

4 blank lines at the end of the list. 

The following List B is not printed if it is empty. 

Start new page if less than 20 lines are left on the previous page. 

THE FOLLOWING SETTS CONTAIN OBSERVATIONS WITH LARGE ADJUSTMENTS. 

Blank line. 

ASTERISKS INDICATE COMPONENTS WITH KSI LARGER THAN 5 TIMES THE STANDARD 

ERROR OF THE OBSERVATION (EQUATION (22)). 

Blank line. 

SETT IDENTIFICATION OLD ARGUMENTS X 

(20 characters) NEW ARGUMENTS X+KSI 

Blank line. 

(xiiï (X,2) » (Xix) •••• 
(X«) .... 

Next set, etc. 

4 blank lines at the end of the List. B 

The following text is printed in any case. 

THE WEIGHTED SUM OF CORRECTION SQUARES IS 

COMPUTED FROM NORMAL EQUATIONS (LAST EXIRESSION IN (2l)) ([p|]1) 

COMPUTED USING CORRELATES (SECOND EXPRESSION IN (2lj) ([pÇlg) 

COMPUTED USING ORIGINAL RELATIONSHIP (EQUATION (75)) (ÜP?^) 

Blank line. 

THE FIRST TWO VALUES ARE EQUAL IF THE CALCULATIONS WERE CARRIED OUT WITH A 

SUFFICIENT NUMBER OF DIGITS. THE THIRD VALUE IS NOT EQUAL TO THE FIRST TWO IF 

LINEARIZATION WITH RESPECT TO THE PARAMETERS Y IS NOT PERMISSIBLE. 

Blank line. 
The output is now complete and the following comments and List C are ommitted if 

the List C is empty. 

DEVIATIONS OF THE THIRD VALUE ARE POSSIBLY CAUSED BY FAILURES OF THE X-VALUES. 

(SEE THE FOLLOWING LIST.) 

2 blank lines 



LIST OF SETS FOR WHICH F(X+KSI, Y+ETA) OR F(X,Y+ETA) CAMOT BE COMPUTED BECAUSE 

THE ARGUMENTS ARE NOT VALID. 

Blank line. 

SET IDENTIFICATION WEIGHT UNITS OLD ARGUMENTS X (X^) ... 

(20 characters) (g^) NEW ARGUMENTS X+KSI ••• 

Blank line. 

Next set etc. 

^ blank lines at the end of the list. 

THE TOTAL NUMBER OF SETS WITH NOT VALID ARGUMENTS IS 

(+I25U) SETS OR (+123.1)# OF THE VALID SETS CORRESPONDING TO 

(...) WEIGHT UNITS OR (+123.1)# OF THE TOTAL WEIGHT OF VALID SETS. 

Printed Comments 

The following comments are printed in case of troubles with input 

data. The data sets which caused the troubles are not used for the 

calculations (see the flow chart). 

Comment 1. 

Blank line. 

SET WITH THE IDENTIFICATION (20 characters) IS NOT USED BECAUSE IT CONTAINS 

OBSERVATIONS WITH ZERO ERROR. 

Comment 2. 

Blank line. 

SET WITH THE IDENTIFICATION (20 characters) IS NOT USED BECAUSE THE CORRESPONDING 

FUNCTION F(X,Y) OR ITS DERIVATIVES CANNOT BE COMPUTED. 

Comment 3* 

SET WITH THE IDENTIFICATION (20 characters) IS NOT USED BECAUSE ALL 

CORRESPONDING DERIVATIVES AI OF F(X,Y) WITH RESPECT TO X ARE ZERO. 
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Error Messages. 

In cases where the computation of the parameters is not possible, the 

least squares program prints a message which should help to detect the error 

in the calling program. After printing the message the computation is interrupted, 

and the control returned to the monitor for processing the next program (by 

GOTO(N.FROB)). 

In the Flow Chart 3 such error exits are indicated. The corresponding 

error messages are given on the following pages. They differ only by their 

first sentences, the other information being the same for all messages. 

The first sentences are: 

Error message 1 

EXIT FROM (L.SQ.l) BECAUSE A NUMBER OF VARIABLES EXCEEDS 10. 

Error message 2 

EXIT FROM (L.SQ.l) BECAUSE THE NUMBER OF OBSERVED SETS IS NOT BIGGER THAN 

THE NUMBER OF PARAMETERS TO BE COMPUTED 

Error message 3 

EXIT FROM (L.SQ.l) BECAUSE ALL PARTIAL DERIVATIVES BI OF THE FUNCTION F(X,Y) 

WITH RESPECT TO THE PARAMETERS Y VANISH FOR ALL OBSERVATION SETS. 

Blank line. 

The part which is common to all error messages is as follows: 

THE PROGRAM WAS ENTERED FROM THE LOCATION (sexadecimal address) 

(DECIMAL = (decimal address)) WITH THE FOLLOWING ARGUMENT VALUES 

Blank line. 

NUMBER OF X-VARIABLES N = (integer n) 

NUMBER OF PARAMETERS Y M = (integer m) 

ADDRESS OF THE FUNCTION F(X,Y) (sexadecimal address) (DECIMAL = (dec.addr.))) 

ADDRESSES OF THE FUNCTIONS AI SEXADECIMAL DECIMAL 

(sexadec. addr.) (decimal, addr.) 
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There will be printed n addresses if n < 10 and 10 addresses if n > 10. 

ADDRESSES OF THE FUNCTIONS BI SEXADECIMAL DECIMAL 

( sexadec. addr. ) (decimal addr.) 

There will be printed m addresses if m < 0 and 10 addresses if m > 10. 

INITIAL VALUES OF THE PARAMETERS Y (...) (...) ... 

There will be printed m floating point numbers starting with if 

m < 10 and 10 numbers if m > 10. 

Blank line. 

TIME OF INTERRUPTION (12) HRS. (12.12) MIN. 
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Flow chart of L.Sft.l. Part 1. 
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1 

diagonal elements of normal 
/ equation matrix vanish? 

Error 
message ^ No Yes .*(777t) 

Check whether any diagonal elements of the normal equation matrix 
vanish. If so, reduce the matrix accordingly and solve for the re¬ 

maining parameters. The components of {11.} which corresponds to 
zero diagonal elements set equal to zero/ 

Normal equations {n^} {y = {r^} [Solution: m values] 

Compute the inverse matrix to {N^}. Store the m2 elements 

of the inverse places specified by the calling program. 

Set rows and columns corresponding to redundant parameters zero. 

Compute [yj = + {1)^} [ra values] 

Store these values at places specified by the calling program. 

Compute [p§2]1 = [gF2] - {r^} {^} [l value] 

m0 = 7 [p?2]1/(r-m) 
[l value] 

Store [m .} yiJ 
Compute 

^myi^ [m values] 

sjrá m0 places specified by the calling program, 

{lip = ÍQgg} {^p [m values] 

I 

Floy chart of L.SQ.l. Part 2. 
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Flow chart of L.SQ.2. Part 1. 
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Flow chart of L.Sft.2. Part 2. 
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12. Least flanares Problem with CPirsiateOatfl* 

Suppose we are given, as in Section 1, a functional relationship 

yi--V-o (81) 
between n + m variables. We assume that we know the values of r > m sets of the 

variables each set consisting of a vector = (x^,... ,x^n). The problem 

is to determine the corresponding values of the remaining m var-iables 

(parameters) y^. This problem was solved in Sections 1 through 11 under 

the assumption that each component x has been observed independently of 

the other components within the set. In the following we will generalize 

the problem assuming some correlation between the components of each 

observation set. A correlation between separate sets will not be assumed. 

IJ. Co-factors. 

We assume that the correlation between the components x of the vector 
J 

x is expressed by a matrix of co-factors R ,. In addition to this matrix, J ———————————— j 

also a corresponding "standard error of an observation of weight one" may 

be given for each set. 

The co-factor matrix R. as well as m . are known if the vector x, is the 
J oj j 

result of previous adjustments of other observations, (in Section 6 the 

co-factor matrix Q of the parameters was determined and (20) furnished the 

corresponding value of mQ. The values of Q and mQ are both furnished by the 

machine program described in Section 11.) If the vector x is computed from 
J 

some observations directly, then the co-factors and m . can be computed 

from these observations and their standard errors as will be shown below. 

The co-factors are determined in such manner that a formula of the same 

type as (U3) can be used to compute the standard errors of a function F of the 

x .. We consider here the function (8l) and compute the standard error of F 
J 
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in terms of the standard observation errors of the . Using the symbols 

for the partial derivatives of F (see Section 2), the differential dF^ of 

F can be expressed by 
J 

n 

dF, 
= ï (82) 

i=l 

(Since we are interested in the error propagation through the x.., we consider 
J 

the parameters y^ as constants for the present purpose.) 

For convenience we introduce the vectors 

/'A \ 
Ajl 

k jn ; 
dx V. jn > 

(83) 

and write (8l) in the form 

(84) 

In order to express the differentials dx^ in terms of the differentials of 

the observations we need the partial derivatives of the x . with respect to 

the variables • We denote the matrix of these derivatives (taken at the 

places u^ ) by 
J 

= 
u 

kaxJn/duíJ)’-"'âxjn/aUsJ) ^ 

(85) 

With this expression 

,(J) 

dF, = A’, x(j)(du(J)). J j u v ' 
(86) 

Since the u^J are independent observations, the law of error propagation can 

be applied to (86). We denote by 
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'E(J> 
s 

\ 
0 

0 . • 0 

Eg . . . 0 

0 E (J) 

M) 

(87) 

the matrix of the standard errors of the observations uVJ . Then the standard 

error nu,, of F. is 

m_, =Jk\ E^¿ A, 
Tj V j u u j 

(88) 

Comparing (88) with (43) we see that the co-factor matrix can be defined by 

,2 
tT _ x(j) x^)’ 
j " U u 

(89) 

The (dimensionless) standard error of weight one moj is in this case equal to 1. 

Summarizing the results we note that the standard error of the function 

F (see (6)) is given by 
J 

"Vj =moj /^Kj aj R. A, (90) 

where R. is the matrix of co-factors of the variables x. and m . is the 
j J 

corresponding standard error of weight one. The co-factor matrix R^ is 

either obtained from (89) in which case = 1, or from (32) in which case 

m is given by (20). R is in any case a symmetric and positive definite 
O J J 

matrix. 

A different notation of the formula (90) is 

= m Rjik Aji V ' 
(91) 

i=l k=l 

where Rare the elements of the matrix R.. 
jik J 
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As an example for the computation of co-factors by (89) consider the 

transformation of cylindrical to Cartesian coordinates. Assume that the 

distances u|^, angles u^^ and elevations u^^ have been measured directly. 

The standard errors of the observations may be . If we use the corresponding 

Cartesian coordinates x.. for the calculations of the function values F., we 
J1 j 

need co-factor matrices R in order to compute the standard errors of F.. In 
J J 

this case we have the following relationships between the x. and u^: 
J 

X= Up) COS Up) 

JCj2 = up Sin up) 
x =u(j) 
XJ3 U3 

The matrix of the partial derivatives is 

X = 
u 

f cos Ug, sin u^, 0 ^ 

-^sin u2, ^cos u2, 0 

. 0 , 0 , 1 ; 

The co-factor matrix R for the Cartesian coordinates x can then be 
J j 

obtained from the following formula by substituting the; corresponding values 

4; of u£^ and 

22 222 222 
f E^cos u2 + EgU^sin u2, (E1-E2u1) sin u2 cos u2, 0 

R = 
,2 „2 2 CL CL ^ ^ 2 

^El"E2Ul^ Sin U2 C0S Vl2> Eisin u2 + E2u]_cos u2> 0 

\ - V ; 

In case we use the direct observations u^ for the computation of F 

. y 
the corresponding co-factor matrix of the u^ is 
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V o 

V 

o 

2 

O 

O 

o 

,(J)‘ 

This is the special case considered in Sections 1 through 11. It can be 

easily verified that with this matrix the general formula (91) is 

identical with (23), which was used in those Sections. 

14. Normal Equations in Case of Correlated Data. 

The normal equations for the unknown parameters y£ can be established In 

this case in the same manner as In Section 6 where Independent observations 

were assumed. In the next Section 15 we will then show that the parameters 

determined by these normal equations Indeed minimize the weighted sum of 

correction squares of the original observations . 

As in Section 6 we consider the values Fj as independent observations 

and assign to F a weight Inversely proportional to the square of Its standard 

J 

error, namely (with (9®) 8^^ (91)) 

. 

St = 

moj ÏÏù 

m oj 

n n 

I l 
i=l k=l 

Rjik AJi V 

(92) 

We define v^ by 
n 

rj = - I Aji5ji 
i=l 

(93) 

and write the constraints (8l) (see (9)) in the form of error equations for the 

V 
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m 

'j+IVi = ïj- (J=1’2’-’r) 
¿«1 

r 

(9*0 

We determine then the 7]^ such that the sum y Sjvj = This requirement 

j=l 

furnishes in the usual way the normal equations (3l) of Section 6, namely 
B' G B T¡ = - B' G F 

or, in the notation of Section 4, (19) 

m r 

I <X WP V X g/jV= 0 
£=1 >1 j=l 

The only difference between the present process and that for independently 

observed x.. is the more general definition of the weights g. by (92). 
ji J 

Consequently the (dimensionless) error of unit weight mQ can be computed using 

the last expression in (21), namely 

m r 

m - 
o fà < X + X < X 

j=l 6=1 J=1 

(95) 

The standard error of Fj is then 

m 
n n 

X X “rj = c- “ V mo}\l L L RjikAjiAjk • 
Vgj i=l k=l 

The standard errors of the parameters y^ are furnished by (36), namely 

myi i= mo^^¾î (i=l,2,...,m) 

(96) 

(97) 

where Q = (B1 G B)"1, and the standard errors of functions of the y^ by (44) 

(Section 7). 
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15. The Principal Property of the Method of teast Squares. 

We will show in this Section that the parameters > obtained from 

the normal equations of the previous Section 14, minimize the weighted sum of 

correction squares of the original observations This property of the 

adjustment problem treated here is a special case of the following Principal 

Property as formulated by Tienstra (Ref. l) 

Every problem of adjustment may be divided into a number of 

phases, provided that in each following phase the cofactors 

resulting from preceding phase(s) are used. 

With the notations of Sections 15 and 1^ we formulate the least squares 

problem as follows: 

Suppose we are given the constraints 

F(x1,...,xn; y1,...,ym) = 0 (98) 

which have to be satisfied by the unknown parameters y^ at r points x^ in the 

n-dimensional x-space. Further, each of these points x^ has to satisfy the 

constraints 

Tj(ui^, * * * ,unj) '* xjli,,,,Xjn) = ° 
(99) 

at r points u(<3) in a n -dimensional u^j) space. The components u^ ^ 

J 0 (j) 
may be observed independently of each other and the standard errors egk of 

u^ may be known. We assume as before that r > m and r . > n ( j=l,2,... ,r), 
sic 

so that the equation system is overdetermined with respect to the r*n unknown 

values of X , and the m unknown values of y^. We will satisfy the r equations 

(98) and r + r2 + ... + rr equations (99) by introducing corrections to the 

observations u^ as additional unknowns. (This adds r^ + r2n2 +...+ r^ 

more unknowns to the problem.) These corrections and the and y¿ will then 

be determined such that the weighted sum of the correction squares assumes a 



minimum and (98) as well as (99) 81,6 satisfied. 

We will linearize the constraint functions and introduce for this purpose 

approximations of the solutions. In case of the u^ the approximations are 

the uncorrected observations . The approximations we denote by capital 

letters, the corrections by greek letters and the final values by small letters. 

Thus we have 

ÿ = Y + T] 

(y is a m-dimensional vector), 

X = X + X + I 

(100) 

(101) 

(x is a (n*r)-dimensional vector), 

u = U + iu + £ (102) 

(the dimension of the vector u is r «n, + r0n0 + ... + r n ). 
i. j. £. ¿ r r 

The standard errors of the components of u may be given in form of a matrix 

° 1 
e = . (103) 

red) 
11 

\ 
•eM 

r n j 
r r / 

If we linearize the constraints (98) by retaining the linear terms of 

Taylor series only, we obtain instead of (98) the constraints (see (9)») 

F + Ä (X+I) + B Tf = 0. (104) 

F is a r-dimensional vector and F, B and T] are defined by (28), (30), (6) and 

(8). The matrix A has in the present case the form 
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A - 

0 . . . o 

Ag • . « O 

N 

o • • • A 

(105) 

V 

where A. are the n-dimensional vectors defined by (85) and (7). 
d 

In the same manner we may linearize the constraints (99) and obtain 

T + C (ü+ç) + D(x+!) = 0. (106) 

The vector T has ^ + r2 + ••• + rr components. The matrix C has in the present 

case a structure similar to A, namely 

' c, 0 . . . 0 's 

c = 
0 Cg . . . 0 

0 
\ 

..-¾ 

(107) 

y 

where the matrix c', ( J=l,2,... ,r) is composed by r vectors of the dimension 
0 J 

n as Ã is composed by r vectors with n components each. The matrix D has the 
j 

form 

'd! 

0 
D = 

. . . 0 

Dg . . . 0 

0 

\ 

. . . D 
r y 

(108) 

—! 
where D. (j=l,2,...,r) are matrices with n columns and r rows. 

J J 

As in Section 5 we introduce as many correlates as there are constraint 

functions by defining the correlate vectors 
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(109) 

and 

c s: (c^í*»*íc^)» 

(The vector c has the same dimension as T, namely rn + + ... + r . ) 
id r 

(109a) 

Using these correlates we minimize the expression 

W = (ÜHÇ)' e"2 (i+Ç) - 2c" (T + C(ÜH-C) + 5(X+§)) - 2k'(F + A(x+§) + B T]). 

(no) 

Setting the derivatives of W with respect to the corrections ÜH-Ç of the original 

observations U equal to zero, we obtain the equations 

(S) + C) ë 2 - c-'C = 0 

or 

Õ5 + £ = s-2 c'c. 

Substitution of (ill) into the constraints (l06) yields 

T + C 52 Õ'õ + D(x + I) = 0. 
We define the matrix 

S ■= (Õ i2 c' ) '1. 

(Ill) 

(112) 

(113) 

Because of the structure of the matrix C and ë, the matrix S is a diagonal 

matrix with r^ + r0 + ... + r rows: 
j. ¿ r 

(114) 
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With (113) the equation (112) hecomes 

S"1 7 + D(x+I) + T = 0 (115) 

or 

c + S D(X+I) + S T = 0. (116) 

We now set the derivatives of W with respect to the corrections X+Ç of X equal 

to zero and obtain the equation 

c'D + FÃ = 0 

or 

D'c + A'k = 0 

With (117) we Gan eliminate c from (ll6) obtaining the equation 

-A'k + D'S D(x+f) + D'S T = 0. 

(117) 

(11B) 

We define now a matrix 

R = (D'S D)“1. (119) 

R has the structure 

R, 

0 

R ^ 

V 
o 

0 . . . o 

Rg ' • • 0 

r y 

(120) 

where the R are positive definite symmetric matrices with n columns. 
J 

With (119) the equation (lió) becomes 

X+Î = - R D'S T + R A'k. 

Substituting (121) in the constraint equations (10^) we obtain 

(121) 

F - ÃRD'ST + ARA'k + Bíl = 0. (122) 

118 



We define 

g = (ã R ã‘ y1, 

which is again a diagonal matrix with the diagonal elements 

and write (122) in the form 

(j=i, 

(123) 

r) 

G"1 k + BTl + F- ARD' STsO (12ll) 

or 

k + GBT) + GF - GÃRD'ST = 0. (125) 

Finally we compute the derivatives of W with respect to the corrections T] 

of the parameters Y. Setting these derivatives equal to zero yields 

k'B = 0 

or 

B k'= 0. (126) 

With (126) we can eliminate the correlates from (125). The result is the 

following equation for the unknown parameters T] 

B'G B Tj + B'G F - B'G A R D'S T = 0 

or 

B'G B T) + B'G(F - Ã Ë D'S T) = 0. (12?) 

We now assume that a first adjustment has been done at the r points X. in 
J 

the x-space. This means that at each of these points the constraints (99) 

(or (106)) have been satisfied and the corresponding sum of weighted 

correction squares minimized. Assume that the corrections of the observations 

U due to this adjustment are Su, and the corresponding corrections of the 

approximations X are X. The adjustment problem at each of the r points X is 
J 

of the type handled in the Sections 1 through 11. From Section 4 or 6 we know 

the corresponding normal equations for the parameters X ., namely 
J 
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(128) 
Ei 5J 5J x'j+ 5i T"j =0 (J=1>2 

Using the complete matrices D and S (128) can be written in the form 

D'SDX + I''ST=0 (129) 

and, with (119) 

X = - R D S T. » (130) 

Substitution of (IJO) in (127) furnishes 

B'G B 7] + B'G(F + A x) = 0. (131) 

By the definition of A we have the relation 

(132) 

i.e.,the expressions in the parenthesis in (131) are values of the function F 

phase. The weights G are defined by (123) and R^ are the cofactor matrices 

corresponding to the first adjustment phases. (They are the inverse matrices 

of the normal equation matrices (128).) 

Hence the equations (127) for the unknown parameters T] which are 

obtained by minimizing the correction squares are identical with the normal 

equations for T] of Section 14. Starting a new adjustment phase it is, therefore, 

not necessary to know the original constraints T^ = 0. The knowledge of the 

cofactor matrices R^ (and the corresponding m^) is sufficient to compute the 

new adjustments. It is evident that the same is true if further adjustments 

are applied to the T]. Such adjustments will be correct if the corresponding 

cofactor matrix of the Tf, namely Q = (B'G B)’1, will be taken into account. 
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A formula for the standard error of unit weight mQ was given by (95), 

Section Ik. A comparison with the formula (2l), Section 5, for independent 

observations shows that (95) corresponds to the last expression in (2l). 

For controls of the calculations, other expressions for mQ, corresponding to 

the first two expressions in (2l) and the equation (75) of Section 10 are 

desirable. In order to obtain these formulas we denote the numerator in (95) 

by and write it using the notations of this Section as follows: 

W2 = G F^2^ + F^2^ G B TÏ (133) 

From (131) we obtain the zero expression 

1]’ B' G B T] + TÏ' B’ G F^ = 0 

and add it to (133)• This completes the square and we obtain 

W2 = (p(2) + B if)’ G (F^2^ + B ÏÏ). 

The equation (125) together with (I30) yield 

k + G (B T| + F^2^ ) = 0 

and therefore 

Wg = - It’ (F^ + B 1Í) 

(Wit) 

(135) 

(136) 

(137) 

or, with (126) 

Wg - - k’ (138) 

The last equation corresponds to the second expression in (2l). A formula 

corresponding to the first expression in (2l) can be obtained from (137)» First 

we note that the constraints of the second adjustment phase yield 

-Ã f = F^2) + B Tf (139) 

(see (104) and (132)). From (II8) and (129) we obtain 

Ã’ k = 5’s 51 = r1 f. (11.0) 
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If we now substitute in (137) first the expression (139) and subsequently (l4o) 

we obtain 

W2 = ?' H 1 Ç. (141) 

The expressions (135)> (158) and (l4l) can be used for calculation controls, 

5(2) 
By the definition of F' ' and B we have the relation 

+ B Tf = F(X + X, Ÿ + Tl) = 

= f(x + x, y). 
(142) 

Substituting (142) In (135) ue obtain another formula for calculation controls. 

W. = F' (X + X, jF) G P (X + X, y) = 

* £ Fj (X + X, y) g 

(143) 

J=1 
J 

The latest formula corresponds to (75) of Section 10 in case of independent 

observations. Note that the arguments X + X of F in (143) are those x-values 

which are used as "observations" for the second adjustment phase. The arguments 

ÿ are the final values of the parameters. 

16. Corrections and Standard Errors of Data. 

The formulae of Section 14 permit the computation of the unknown parameters 

I] and their standard errors. The corresponding adjustments § of the data can 

be most easily computed using the correlates E. Solving (l40) for the 

corrections Ç we obtain 

f = R Ä'k. (144) 

Comparing (l44) with the corresponding equation (l4) for not correlated 

observations, we see that (l4) is a special case of (l44), namely the case 

where the cofactor matrix is a diagonal matrix with the elements l/p.,. From 
J-*- 

(144) we find for each element of § the formula 
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n 

5Ji X moj,kj' I Aj/jW (1^5) 
£=1 

(In the notation of (1½) the factor m2, is included in the R .... In case 
oj jii 

of correct adjustment and error assumptions this factor is equal to 1.) The 

standard errors of the corrected can he computed in the same manner as in 

Section 8 from the errors of the correlates. With g defined by (92) we 
J 

obtain for the standard errors of the correlates kj (see (51)) 

m m 

I I 
£=1 t=l 

Q it Bji Bjt (146) 

where Q^. are elements of the cofactor matrix Q of the parameters y. The 

standard error m^ of the corrected component x^ is with (l45) and (l46) 

mxji = mo2j \j (147) 

Again the corresponding formula (52) for indeperdent data is a special case 

of (147). 

-(2) - 
The standard errors of the input data Xv ' = X + x before the adjustment 

of the second phase follow from (91)» Considering X^ as a special 

function of X^ we find 

(148) 

17* Corrections of the Original Observations. 

The considerations of Section 15 permit us to compute the corrections Ç 

of the original observations Ü which are caused by the adjustment f of the 
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X-values. These corrections can be computed most easily using the corresponding 

correlates c. First we obtain from (116) 

c = -S (T + D X + D f). (1^9) 

The X are the results of the first adjustment phase. The corresponding 

values of the correlates are 

c .., = -S (T + D x) (1-50) 
old 

(see for instance the analogous formula (136) for the correlates k). Hence 

the corrections of the correlates c due to the new adjustments is 

c = -S D 
corr 

(151) 

The corrections of the original observations is with (ill) 

æ + £ = e2 C’ c 

Here we have denoted by OJ the corrections by the first adjustment phase, 

corresponding to the correlates Hence the additional corrections £ are 

c = S2 C'c 
corr 

(152) 

lg. Machine Program for Least Squares Problems with Correlated Data. 

The machine program described in this Section has essentially the same 

structure as the program described in Section 11. However, there is a significant 

difference between the applicability of the two programs. The program described 

in this Section handles correctly input data with finite correlations between 

them, including the special case of zero correlation. The program of 

Section 11 is designed for cases with zero correlation only. Consequently, 

more input is needed for the present problem, namely the cofactor matrices of 

the observations in addition to the values observed. 



The least squares problem Is formulated in Section 12. The user of the 

least squares program should read also Sections 1, 2 and 1J, where some 

symbols are defined which will be used in the following program description. 

The least squares method will generally be used as a part of more 

extensive calculations, which check the validity of the observed data, 

compute initial values, fix the degree of approximation etc. Therefore, the 

least squares machine program described in this section is written in the 

form of a subroutine. This subroutine calculates the unknown values of the 

parameters and returns the control to the calling program before the final 

controls of Section 10 are carried out. Depending on the properties of the 

problem and the results of the calculations, the process can then be repeated 

with other initial values or the final controls of Section 10 carried out. 

Therefore the subroutine has two entries. Entering the first part a number 

of arguments are necessary. Entering the second part (for final controls) 

only an indicator may be used to specify the amount of printed output. 

Entering the Program. 

The least squares subroutine can be entered by the following FORAST 

statements: 

1st part 

ENTER (COLS l) (N)(M)(F) ... (MOHO!!)# 

2nd part 

ENTER (COLS 2) (ARG)# 
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When entering the second part, the indicator (here denoted by ARC) 

should be zero for reduced output and non-zero for full output. For 

particulars see the flow chart and the section "Printed Results." 

When entering the first part (COLS l), the addresses of the » 

following arguments should be transmitted: 

n = address of.the number of x-variables, i.e./’observations", 

(n ^ 10 and integer). 

Addresses 
of 

arguments 

m = address of the number of y-variables, i.e./’parameters", 

(m £ 10 and integer). 

F = address to enter the subroutine F. 

A1,...,AN addresses to enter the n subroutines A^ 

B1,...,BM and the m subroutines B^. 

= address of Y^. It is assumed that the other initial 

approximations Y2,...,Ym of the parameters are 

stored in cells subsequent to that of Y^. 

y^ = address of y1* Other will be stored in 

subsequent cells. 

Addresses 
for storing ' 
the results 

m o 

address of the standard error of y^. Other 

standard errors m . will be stored in 
yi 

subsequent cells. 

address of the standard error of measurements 

with weight one. 

Q.^ = address of the first element of the matrix Q (inverse 

to the normal equations matrix). The elements of 

Q will be stored in the sequence * *‘^Im* 

Q12,Q22'• * ,Q2m'Qiy *’Sm'* *‘Snm* For sake 0f 
simplicity the complete matrix is stored and storage 

space of m words required. 

The total number of arguments in the ENTER (COLS l) - statement is 

hence 8 + m + n. These 8 + m + n addresses may be given in the same order as 

they are listed here. 

♦ 
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About the subroutines F, and Bi it is assumed that they can be 

called by statements of the form 

ENTER (NAME)(RESULT) (INDIC) (ARON) (ARGM)$ 

where the symbols in the statement stand for the following addresses: 

NAME - address to enter the subroutine. 

RESULT - address to store the result. 

INDIC - address of an indicator. Its value is set zero if 

the result can be computed. If the arguments are 

such that no result can be computed, the indicator 

is non-zero. 

ARGN - address of the argument It is assumed that 

ARGM 

x2>•••>xn are stored in cells subsequent to x^. 

- address of the argument y . The arguments 

y2'* * * ,ym are assumed t0 be stored in cells 
subsequent to y^. 

These subroutines may be programmed as shown by the following example for the 

subroutine named "NAME": 

NAME SET(7 = SELF + 1) G0T0(l,l) 

SETEA (RET = l,l)RES = ,2)INDIC = ,3)XIND = ,4)yIND = ,5)$ 

Now the address of x± is in the index register XIND and 

the address of y1 in the index register YIND. - After 

the calculations, the result may be stored and the control 

returned to the calling program by the following sequence 

of statements: 

,RES = computed result This stores the result at the proper 

place. 

,INDIC = Ofifi This clears the indicator. 

G0TO(,RET)$$i This returns control to the calling program. 

In case of not valid arguments when a proper result cannot 

be computed, the control may be returned to the calling 

program by the statements 

,INDIC = This indicates invalid arguments. 

GOTO(,RET)^ This returns control to the calling program. 
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Tape Units 

The least squares program requires 5 tape units which are used as 

follows : 
i 

Tape unit 1 - Storage of input data 

Tape unit 7 - Temporary storage 

Tape unit 8 - Output tape. This tape is prepared for the printer with 

132 characters per line. 

Input Data 

It is assumed that the input data are stored by the calling program 

on a magnetic tape on tape unit 1, using the Binary Tape-Output Routine. These 

data consist of r sets of observations, each containing 10 values X^, the 

corresponding standard error of weight one, the cofactor matrix Rjig and an 

identification of the set. The identification should consist of 20 characters 

stored in 2 computer words. It should be different for different sets because 

otherwise the error detecting part of the least squares program will nob indicate 

the right sets. 

The sequence of data on the tape within each set should be as follows 

XJl,XJ2,“*,XJ10i V Rjll,,,,,Rj,10,10; idl' id2 

(The last 2 words, id1 and id2, are the identification of the set. The quantities 

X through R ,n ,n are floating point numbers.) In order to simplify the 

standards this sequence of 113 computer words for each set is used also if there 

are less than 10 values X^. 

The end of the data file should be indicated on the tape by an END FILE 

sentinel, consisting of one machine word with the alphanumerical contents 

(ENDbFILEbb). 

The least squares subroutine will read these data from the tape on 

tape unit 1 starting at the position where the tape is at the instant of calling. 
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It will stop the reading of data either aftei collecting 2000 valid sets or 

after sensing the END FILE sentinel whichever comes first. The tape will not 

be backspaced or rewound by the least squares subroutine. Thus, several data 

files can be prepared and stored on the tape for subsequent processing, 

separating them by the END FILE sentinel. 

Exemple for preparing the input tape. 

The END FILE sentinel may be defined by the statement 

EOF ALFNENDbFILE 

The data may be written on the tape by the statements 

ENTER(BT.WR)l)lO)NOS.AT(Xl)MO)lOO)NOS.AT(Rll)lDl)lD2)^ 

The END FILE sentinel may be written on the tape by the statement 

ENTER(BT.WR)l)EOF)# 

Results 

The results of the least squares program are partly stored at places 

indicated by the calling program (cf. the Section "Entering the Program") and 

partly stored on tape unit 8 for printing. In the following, storage on tape 

unit 8 is referred to as "printing". The results are computed and presented in 

two portions: 

1) Entered through the first entrance (COLS l) the least 

squares routine computes and stores the values of the parameters y^ with their 

corresponding standard errors m^, the standard error mQ of a measurement of 

weight one and the matrix Q (inverse to the normal equation matrix). At the 

same time all these results will be printed. (See the Section "Printed Results".) 

The control of the program is then returned to the calling program. 

2) Entered through the second entrance (COLS 2) the least 

squares program carries out the controls of the type described in Section 10 

and prints the results of these controls. (Particulars about the controls see 

in the Section "Printed Results" and in the Flow Chart.) After that the control 

of the program is returned to the calling program. 
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I 

Printed Results 

The program prints (i.e ..stores on tape unit 8 for printing) in normal 

cases the results in the form as given in this section. In case of trouble 

additional comments and error messages are produced. (See the corresponding 

Sections.) 

1. First part of the program. 

Blank Line. 
OUTPUT FROM THE SUBROUTINE (COLS l) FOR CORRELATED DATA 
Blank Line. 
THE TOTAL NUMBER OF SETS PROCESSED IS (r) 
Blank Line. 
THE STANDARD ERROR OF AN OBSERVATION SET WITH THE WEIGHT ONE IS (m0). 
Nev Line: TH] QUANTm IS DIMENSIONLESS AND SHOULD BE APPROXIMATELY EQUAL TO 
ONE, DEVIATIONS FROM ONE INDICATE EITHER INCORRECT ESTIMATES OF OBSERVATION 
ERRORS OR NOT ADEQUATE DESCRIPTION OF THE PHENOMENON OBSERVED BY THE 
EQUATION F(X,Y) = 0. 
2 Blank Lines 
THE FINAL VALUES Y+ETA OF THE PARAMETERS Y ARE AS FOLLOWS 
Blank Line. 
PARAMETER STANDARD INITIAL CORRECTION DIFFERENCE OF 
Y + ETA ERROR VALUE Y ETA CORRECTIONS 
Blank Line. 

(y) (m.) (ï) (T)) (W) 

In case of redundant parameters, only Y and y are printed in the corresponding 
line, the other values are then zero and at the end of the line the word 
REDUNDANT is printed. 

2 Blank Lines. 
THE INVERSE TO THE MATRIX OF NORMAL EQUATIONS (l.E., THE MATRIX OF COFACTORS) IS 
Blank Line. 

(^ll) ^12^ *** ^lm^ 

(Q12) (Q22^ ••• 

(QlJ ^ •" (SnJ 
Blank Line. 

In case of redundant parameters, the rows and columns of the matrix Q, which 
correspond to such parameters, contain zeros only. In such case the following 
comment is printed 
THE SUBROUTINE AT THE SEXADECIMAL ADDRESS. (DECIMAL =.) 
FURNISHES ZERO RESULTS FOR ALL INPUT SETS. THE CORRESPONDING PARAMETER 
Y...(here the number of the component follows) IS REDUNDANT AND THE 
CALCULATIONS WERE CARRIED OUT WITH THE REMAINING PARAMETERS ONLY. 
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2. Second part of the program. 

In case of full output complete information about every observation and 

observation set is printed. This printout can become rather large (n + 2 

lines per observation set). Therefore the reduced output should be used 

normally. This output provides information about error distributions and 

lists such sets and observations where systematic observation errors or 

blunders are suspected. 

In case of full output the following is printed 
Skip to a new page. 

OUTPUT FROM THE SUBROUTINE (COLS 2) 
Blank Line 

The values of F and their standard error as well as the identification of 

the set are printed on the first line for each set only. The last column 

contains a comment about the value of F(x,y). If this value is within the 

range (-3 + 3 

outside that range, the comment "F LARGER THAN 3*M" is printed. If the 

arguments (xj,y) are such that F cannot be computed, then in the column 

F(X + KSI, Y + ETA) the word "FAILURE” is printed instead of the corresponding 

value. In this case no further comment in the last column is printed. 

The headline is repeated on the top of every new page. 

After completion of this list the following output is printed (this 

output is the "reduced output" of (COLS 2)): 

nipj), the comment "NORMAL F" is printed. If F(x,y) is 
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Skip to a new page# 

DISTRIBUTION OF THE VALUES OF F(X + KSI, Y + ETA). 

Blank Line. 

LIMITS NUMBER OF 
SETS 

Blank Line. 

1° OF NUMBER OF 
SETS WEIGHT UNITS 

BELOW -3M (+1234) (+123.1) (£ g ) 
(-3M,-2M) ' i 
(-2M,- M) 
(- M, 0) 
( 0, M) 
( M, SM) 
( 2M> 3M) 
OVER 3M 
Blank Line. 
t°TAL (...) 100.O (...) 
2 blank lines. 

The following List A is not printed if it is empty. 

THE FOLLOWING SETS ARE OUTSIDE THE 3M-LIMITS. 

Blank Line. 

1o OF NORMAL 
UNITS PERCENTAGES 

(+123.1) 0.1 
2.2 

I6.6 
34.1 
34.1 
I6.6 
2.2 
0.1 

100.0 100.0 

SET 
IDENTIFICATION 

WEIGHT F(X+KSI,Y+ETA) STANDARD ARGUMENTS X + KSI 
UNITS ERROR 

Blank Line. 

(20 characters) (g ) (F(x.,y)) (m //gT) 
j j 0 j 

2 blank lines at the end of the List A. 

The following list is printed in any case. 

Start new page if less than 20 lines are left on the previous page. 

STANDARD OBSERVATION ERRORS OF SINGLE COMPONENTS OF THE ARGUMENTS X. 

Blank line. 

THE STANDARD ERRORS OF A UNIT WEIGHT OBSERVATION ARE DIMENSIONLESS AND OF THE 

ORDER ONE IF THE OBSERVATION ERRORS ARE GIVEN CORRECTLY BY THE INPUT AND THE 

RELATION F(X,Y) = 0 IS CORRECT. THE AVERAGES IN BOTH LAST COLUMNS REPRESENT 

STANDARD ERRORS OF OBSERVATIONS ONLY IN CASE ALL OBSERVATIONS OF A FIXED 

COMPONENT HAVE THE SAME ACCURACY. 
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COMPONENT OF X STANDARD ERROR OF AVERAGE STANDARD AVERAGE STANDARD ERROR 

UNIT WEIGHT OBSERV. ERROR FROM INPUT FROM ADJUSTMENTS 

(see flow chart) (see flow chart) (see flow chart) 

4 blank lines at the end of the list. 

The following List B is not printed if it is empty. 

Start new page if less than 20 lines are left on the previous page. 

THE FOLLOWING SETS CONTAIN OBSERVATIONS WITH LARGE ADJUSTMENTS. 

Blank Line. 

ASTERISKS INDICATE COMPONENTS WITH KSI LARGER THAN 5 TIMES THE STANDARD 

ERROR OF THE OBSERVATION (EQUATION (22)). 

Blank Line. 

SET IDENTIFICATION OLD ARGUMENTS X 
(20 characters) NEW ARGUMENTS X+KSI 

Blank Line. 

(X,,) 
(xJ1) 

(X ) * (x.J .... 
(xjj) (xj5) .... 

Next set, etc. 

4 blank lines at the end of the List. B 

The following text is printed in any case. 

THE WEIGHTED SUM OF CORRECTION SQUARES IS 

COMPUTED FROM NORMAL EQUATIONS (EQUATION (95)) ([pP] V 

COMPUTED USING CORRELATES (EQUATION (I38)) ([p?]1) 

COMPUTED USING ORIGINAL RELATIONSHIP (EQUATION (l43)) ([p§]|) 

Blank Line. 

THE FIRST TWO VAIDES ARE EQUAL IF THE CALCULATIONS WERE CARRIED OUT WITH A 

SUFFICIENT NUMBER OF DIGITS. THE THIRD VALUE IS NOT EQUAL TO THE FIRST TWO IF 

LINEARIZATION WITH RESPECT TO THE PARAMETERS Y IS NOT PERMISSIBLE. 

Blank Line. 

The output is now complete and the following text and List C are ommitted if 
the List C is empty. 

DEVIATIONS OF THE THIRD VAIDE ARE POSSIBLY CAUSED BY FAILURES OF THE X-VALUES. 

(SEE THE FOLLOWING LIST.) 

2 blank lines 
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Liar OF SETS FOR WHICH F(X+KSI, Y+ETA) OR F(X,Y+ETA) CANNOT BE COMPUTED BECAUSE 

THE ARGUMENTS ARE NOT VALID. 

Blank Line. 

SET IDENTIFICATION WEIGHT UNITS OLD ARGUMENTS X (X ,) ... 
(20 characters) (gj) NEW ARGUMENTS X+KSI (X^) ... 

Blank Line. 

Next set etc. 

b blank lines at the end of the list. 

THE TOTAL NUMBER OF SETS WITH NOT VALID ARGUMENTS IS 

(+I23IO SETS OR {+123.1)$ OF THE VALID SETS CORRESPONDING TO 

(...) WEIGHT UNITS OR (+123.1)$ OF THE TOTAL WEIGHT OF VALID SETS. 
>• 

Printed Comments 

The following comments are printed in case of troubles with input 

data. The data sets which caused the troubles are not used for the 

calculations (see the flow chart). 

Comment 1. 

Blank Line. 

SET WITH THE IDENTIFICATION (20 characters) IS NOT USED BECAUSE TT CONTAINS 

OBSERVATIONS WITH ZERO ERROR. 

Comment 2. 

Blank Line. 

SET WITH THE IDENTIFICATION (20 characters) IS NOT USED BECAUSE THE CORRESPONDING 

FUNCTION F(X,Y) OR ITS DERIVATIVES CANNOT BE COMPUTED. 

Comment 3» 

SET WITH THE IDENTIFICATION (20 characters) IS NOT USED BECAUSE ALL 

CORRESPONDING DERIVATIVES AI OF F(X,Y) WITH RESPECT TO X ARE ZERO. 

Comment b. 

SET WITH THE IDENTIFICATION (20 characters) IS NOT USED BECAUSE ITS WEIGHT 

COMPUTED WITH (92) IS EITHER NEGATIVE OR CAUSES OVERFLOW. 

I3U 



Error Messages. 

In cases where the computation of the parameters is not possible, the 

» 

least squares program prints a message which should help to detect the error 

in the calling program. After printing the message the computation is interrupted, 

and the control returned to the monitor for processing the next program (by 

goto(n.prob) ). 

In the Flow Chart 3 such error exists are indicated. The corresponding 

error messages are given on the following pages. They differ only by their 

first sentences, the other information being the same for all messages. 

The first sentences are: 

Error message 1 

EXIT FROM (COLS l) BECAUSE A NUMBER OF VARIABLES EXCEEDS 10. 

Error message 2 

EXIT FROM (COLS l) BECAUSE THE NUMBER OF OBSERVED SETS IS NOT BIGGER THAN 

THE NUMBER OF PARAMETERS TO BE COMPUTED 

Error message 3 

EXIT FROM (COLS l) BECAUSE ALL PARTIAL DERIVATIVES BI OF THE FUNCTION Fix,!) 

WITH RESPECT TO THE PARAMETERS Y VANISH FOR ALL OBSERVATION SETS. 

Blank Line. 

The part which is common to all error messages is as follows: 

THE PROGRAM WAS ENTERED FROM THE LOCATION (sexadecimal address) 

(DECIMAL = (decimal address)) WITH THE FOLLOWING ARGUMENT VALUES 

Blank Line. 

NUMBER OF X-VARIABLES N = (integer n) 

NUMBER OF PARAMETERS Y M = (integer m) 

ADDRESS OF THE FUNCTION F(X,Y) (sexadecimal address) (DECIMAL = (dec.addr.))) 

ADDRESSES OF THE FUNCTIONS AI SEXADECIMAL DECIMAL 

(sexadec, addr.) (decimal addr.) 
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There will he printed n addresses if n 5 10 and 10 addresses if n > 10. 

DECIMAL 

(decimal addr.) 
SEXADECIMAL 

(sexadec. addr.) 
ADDRESSES OF THE FUNCTIONS BI 

There will be printed m addresses if m 5 0 and 10 addresses if m > 10. 

INITIAL VALUES OF THE PARAMETERS 

There will be printed m floating point numbers starting with Y1 if 

m 5 10 and 10 numbers if m > 10. 

Blank Line. 

TIME OF INTERRUPTION (12) HRS. (12.12) MIN. 
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Flow Chart of COLS 1 Part 1. 
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1 

All diagonal elements of normal’ 

equation matrix vanish? 

No Yes 

Error 
message 

I 
Check whether any diagonal elements of the normal equation matrix 

vanish. If so, reduce the matrix accordingly and solve for the re 
maining parameters. The components of which corresponds to 

zero diagonal elements set equal to zero. 

Normal equations . {N^} {T^} = {P^} [Solution: m values] 

2 
Compute the inverse matrix to {N^}. Store the m elements 

of the inverse [Q. } at places specified by the calling program. 

Set rows and columns corresponding to redundant parameters zero. 

Compute {y^} = [Y^} + {T^} [m values] 

Store these values at places specified by the calling program. 

Compute [p§2]1 = CgF2] - {PgHV C1 value] 

r-m) [l value] 

[m values] 

Store [m J and m at places specified by the calling program, 
yü o 

Compute [m values] [m values] 

ï 
Print r (total number of sets used) and mo. 

Print the results 

I y I m I Y I Tl I TM| [m lines] 
y 

Print the matrix [Q. ] [ni elements in m lines] 

ï 
¡Any redundant parameters? 

Yes No 

Print comment 

I 
4 TURN 

Flow chart of COLS 1. Part 2. 
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(enter (COLS 2) ARG 

Rewind temporary storage tape (tape unit 7). Print headline. 

I 
Read from tape unit 7 one set consisting of ^ 

ÍX}, m, {R}, {A}, F, g, {B} [n + l + n^ + n + 2 + m values] 

Compute 

k = - (F + {B].{Tl}).g 

n 

h =ra2*k- 1 R2iA¿ 
¿=1 

xi = xi + 5, 

a¥ 
= {yi} ) 

"V = m0/Sz 

[l value] 

[n values] 

[n values] 

[l value] 

[l value] 

Compute the distribution of F* by adding g ana. 1 in the corresponding 
subtotals. Store the identification of the set if |f*| > J.rn 
(List A) or if F* cannot be computed (List C). R 

I 
/Argument of the ENTER statement\ 

= 0 

Compute m^ ,. with equation (147) and print the 

identification of the set, F, F*, m^, and the 

vectors {X , {?}, {x}, 

ZZTI 
Store the Identification of the set and the number of the component if 

I > 3mo- mJ° ’ JÜ Add the current values to the 3«n sums 

S11 ■ I 5®! - I »JV1 S1 * Í 5 
J=1 j=l 

2 

Ji 
,1=1 

Compute 

F = FitX^, {y^} ) 

and store the identification number of the set if F cannot be computed 
(List C). Add the current values to the sums 

CpÇ2]2 = -£kF =1 -2 F «g 

I 
All sets read? \ 

No Yes 

Flow Chart of COLS 2 Part 1. 
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