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ABSTRACT 

In this report we investigate the accuracy with which the 

position of a receiver can be determined by use of a high-altitude 

satellite navigation system. The navigation system is modelled 

as a problem of nonlinear estimation in the presence of random 

disturbances. Equations are derived for describing positioning 

errors by using linearization and the Kalman-Bucy filtering 

equations. 
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NAVIGATION WITH HIGH-ALTITUDE SATELLITES: 

A STUDY OF ERRORS IN POSITION DETERMINATION 

1.   INTRODUCTION 

A possible scheme using high-altitude satellites for very accurate 

position determination and navigation on the earth's surface has been des- 

cribed by Goblick.        With this  scheme,    several  satellites independently trans- 

mit timing signals generated from free-running clocks.     Control stations 

monitor the transmission of timing signals from the satellites and compare 

the observed timing signals to an accurate master clock.     Satellite clock 

timing errors are then transmitted to users by the control  stations via the 

navigation satellites themselves and in the form of digital data superimposed 

on the navigation signals.     The satellite clocks are thereby effectively syn- 

chronized by the control stations.     Moreover,   the control stations monitor 

the satellite positions and also relay this information to users as digital data. 

A user with a  synchronized clock could determine his position by knowing: 

(a) his distance from the earth's center;  (b) the satellite positions; and (c) the 

arrival time of the timing signals from two satellites.     If the user does not 

have a synchronized clock,   three satellites are required and differences 

between the arrival times of timing signals from two pairs of satellites are 

used. 

The scheme has the advantage of requiring only passive operations by 

the user.     In addition,   position fixes can be accomplished in a relatively 

short period of time compared to systems employing a low-altitude satellite. 



In this report we shall investigate the accuracy with which a user's 

position can be determined in the presence of uncertainties which inevitably 

exist; the uncertainties arise both because of observation noise which,   for 

example,   results in imprecise time or range measurements and because of 

inaccurate knowledge of the satellite positions,   user's height,   and timing. 

We consider two cases.    In the first,   we assume the satellites and user are 

motionless and that only one observation is made. *   For the second case,   we 

account for simple satellite and user motion as well as multiple observations. 

In addition to studying positioning errors,   we also indicate the structure of 

processors for realizing the position fix. 

The theory we shall present incorporates a linearized version of the 

navigation problem so that it is convenient to divide the discussion into three 

steps.     In the first step,   we consider the general linear estimation problem 

formulated in a way that results in the discrete filtering equations of Kalman 

2-3 and Bucy       .     The derivation of these equations has been given by several 

?   fi 
authors        ,   so for brevity we present only the broad points leaving certain 

of the mathematical subtleties to the cited references.    In the second step, 

we consider the general nonlinear estimation problem by a technique employ- 

ing linearization and the application of Kalman and Bucy's equations.     This 

7 
technique appears to have first been used by Smith et al. More recent 

9 10 
discussions are given by Ohap       and Cox     .     Finally,   in the third  step,   we 

show how the navigation problem fits into the model of the general nonlinear 

estimation problem and then simply apply the previously derived results. 

*    This portion of the study is based on unpublished studies performed at MIT 
Lincoln Laboratory.     See the acknowledgment on page  35. 



2.     LINEAR ESTIMATION THEORY 

We now postulate a model for a general linear estimation problem.     The 

interpretation of the model is left to Section 4 where the navigation problem 

is presented.     For the present,   we simply mention that the model is a state- 

variable representation which can describe a wide class of discrete linear 

systems and their observed responses to Gaussian input sequences. 

2. 1    The Linear Estimation Model 

Let  x(i)   and  r(i)  for  i s 1,2 m  be vector sequences of Gaussian 

random variables defined by: 

x(i)   =  0(i, i-l)x(i-l) + G(i)w(i) (1) 

*°)    '   *o 
and 

r(i)   =   H(i)x(i) + n(i) (2) 

where,   for   i = 1,2,..., m: 

(a) x(i)   is an k-dimensional column vector.     The initial value for the 

sequence is a random variable denoted by x   .     We assume that the a priori 

knowledge about x     consists of a mean,   E[x~] « x(0),    and covariance matrix, 

E[x0-x(0)] [xQ-x(0)]    4   V(0); 

(b) ${i, i- 1)  is a known transition matrix relating  x(i)  to x(i- 1): 

(c) w(i)   is an Jl-dimensional uncorrelated vector-Gaussian sequence 

with zero mean and known covariance matrix: 

E[w(i)w'(j)] =   W(i)6.. (3) 

where   W(i)  is a symmetric non-negative definite   IX I  matrix and   6..   is 

unity when  i=j   and zero otherwise.     Deterministic and correlated input 



sequences can be accommodated by making  w(i)  have a non-zero mean and 

by increasing the dimension of x(i),   respectively; 

(d) G_(i)   is a known  k X i   matrix; 

(e) £(i)   is an observed p-dimensional vector Gaussian sequence.     We 

shall denote the collection of observed vectors,   r(l), r(2), . . . , r(m),   by 

— 1, m 

(f) H(i)   is a known  p Xk   matrix; 

(g) n(i)   is a p-dimensional vector Gaussian sequence with zero mean 

and known covariance matrix: 

E[n(i)n'(j)]     =   N(i)6.. (4) 

where   N(i)   is a symmetric positive definite  pXp   matrix; n(i)   represents 

noise interferring with the observation of  H(i)x(i).     By assuming  N(i)  to be 

positive definite,   we are implying that no disturbance-free observations can 

be made. 

2. 2    The Linear Estimation Problem 

The problem we wish to consider is that of estimating  x(m),   the state 

of the linear system at the m      point in the  sequence, * given a specified 

criterion which the estimate is to satisfy and the  m  observations 

[r(i):  1 < i < m] • r.       .     We shall use a maximum a posteriori probability 

criterion--the estimate is that value of x  maximizing  p(x|£i       )•     However, 

because of the linearity and Gaussian assumptions,   our estimate is identical 

to that resulting from other criteria such as minimum mean square error. 

*   As new data is observed,   m  increases in real time. 



Before proceeding,   it is convenient to give some indication of the 

approach to be taken by first considering the following two special cases of 

the general problem of interest. 

Case I:    For the first problem,   we remove all time dependence and let 

r   =   Hx + n (5) 

where  x   and   n  are uncorrelated zero-mean Gaussian random variables with 

positive definite covariance matrices   W  and  N  respectively.     The probability 

densities of x  and   n  are then given by 

p(x)    = 
1 

V (2TT)m det(W) 

exp[— TX' W      x] (6) 

and 

p(n)    = 

J(2n)P det(N) 

exp[- y n' N      n] (7) 

Case II:    For the second problem,   we keep  x  fixed and reintroduce 

multiple time-dependent observations by letting 

r(i)    =   H(i)x + n(i) i =  1, 2, . . . , m (8) 

where  x  and  n(i),   i = 1, 2, . . . , m,   are uncorrelated zero-mean Gaussian 

Random variables with positive definite covariance matrices   W  and   N(i), 

i =  1,2,..., m.     The joint probability density of the vectors   {n(i) : 1, 2, . . . , mj  = 

n. is given by: 
-l, m & y 

p(n.       )    = r —l, m 
/?    J(2n)Pdet[N(i)] 
i = l    ' — 

exp 
]_ 
2 

n'(i)N_1(i)n(i) 
i = l 

(9) 



The first problem is illustrative of the approach and is also of interest 

because of its close relation to Schweppe's    error analysis.     The results 

from this problem will eventually be applied to the navigation problem when 

both the satellites and user are fixed and only one observation is used to 

determine the user's position.     The second problem is presented so that the 

notions and advantages of recursive estimation procedures can be seen. 

2. 2. 1    Special Case I:     Time-Independent Observations 

We take as the optimum estimate that value of x   maximizing the 

a posteriori probability,   p(x|r),   or equivalently its logarithm,   In p(x|r). 

Using Baye's rule,   we have 

In p(x|r)    =   In p(r|x) + In p(x) + c 

where   c     is a normalization constant independent of x.     From Eqs.   6 and 7, o — 

we then have 

lnp(x|r)    =   -^[£- Hx] • N"1   [r-  Hx]  - | x' W" ] x + c1 (10) 

We now expand the right side of Eq.   10 and then complete the square,   the 

result being 

In p(xlr)    =   -4 [-x1 H'N"1 r + x' fW"1  + H' N"1 H} x -  r'N"1 Hxl +c   " —'— L        — — —     —     —     — — —     —    —      — —  o 

=   - j [x -  V H' N" * r] ' V" 1 [x -  V H' N~ * r]   + c "       (Id ) 

where we have set 

V    =   {W_1 + H'N"1 H}"1 (12) 

assuming the inverse exists. 



Inspection of Eq.    11  reveals that the a posteriori density of x   is normal 

and maximized by the conditional mean,   VH'N      r.     Consequently,   the estimate 

we seek is given by 

x   =   V H' N"1 r (13) 

Furthermore,   the error covariance matrix,   defined as the conditional expecta- 

tion of   [x —  x] [x — x] ',   is just the conditional covariance,   V. 

It is observed from Eq.   12 that the evaluation of  V   requires the inversion 

of three matrices.     An alternative expression requiring only one inversion 

can be given by applying the matrix relation proved in Appendix  1.     The result 

is 

V    =    W-WH'[HWH' +N]_1HW (H) 

Since   V   does not depend on   r,   it can be determined before making an 

observation.     Consequently,   the error performance can be studied without 

actually carrying out experiments.     Furthermore,   we see from Eq.    13 that, 

if  V  is determined beforehand,   the computation of x  involves only a matrix 

multiplication of the observed data. 

Collecting all results,   we have 

Model:                  r   =   Hx + n 

Estimation Equations: 

x   =   VH'N_1r 

V    =    [W1 + H' N"1 H] _1 

=   W -  WH' [HWH1 + N] -1 HW 



Let 

e    =   x — x 

be the error vector associated with  x.     Then the mean-square values of the 

2 
components of  e  are the diagonal elements of  V; that is,    E[e.   ]   = v...    The 

error vector   e  is a zero-mean vector Gaussian random variable with multi- 

dimensional ellipsoids as constant probability contours--the "error" ellip- 

soids are defined by 

e'Ve    =   constant. 

The squared lengths of the semiaxes of the particular ellipsoid, 

e'Ve    =    1, 

are equal to the eigenvalues of  V  and provide a convenient coordinate-free 

measure of the accuracy in estimating  x.     In some instances,   the overall 

shape and orientation of the error ellipsoid is of interest and can be examined 

by determining all the eigenvalues and eigenvectors of   V,   respectively.     On 

the other hand,   simpler measures of the error are often sufficient.     One such 

measure is the squared length of the semimajor axis which equals the maxi- 

mum eigenvalue of  V; this measure upper bounds    Max [v..] .     Another simple 
i n 

measure is the sum of the squared lengths of the semiaxes and equals the trace 
m 

of   V,        Y.   v... 
—        .t-i.     n 

1 = 1 

2. Z. Z    Special Case II:     Time-Dependent Observations 

We again take as optimum that value of x  maximizing the a posteriori 

probability,   p(x|r,        ),   or equivalently its logarithm,   In p(x|i\        ).     Using 

Baye's rule and Eqs.   6 and 9,   we have 



m 1 1 11 
lnP^lll,m)   = ~ J     E    [r(i) -  H(i)x]'N_1 (i)[r(i) -  H(i)xl  -^x'W_ix + co 

i = l 

(15) 

where   c     is a normalization constant independent of x.    Proceeding once 

again through the steps leading from Eq.   10 to Eqs.   11 and  12,   we obtain 

from Eq.   15 

m 
x(m)    =    V(m)      £     H' (i) N"1 (i)r(i) (16) 

i=l 
where 

• rn . . 
V(m)    =    [W_I +     2J     H'(i)N'1 (i)H(i)]"1 (17) 

i = l 

It can be easily shown that  x  is an unbiased estimate of x.    V(m)   is the 

associated error covariance matrix; that is,   V(m)  is the conditional expecta- 

tion of   [x — x(m)] [x — x(m)] '. 

Equations 16 and 17 are the estimation equations.     Note that all the 

observations   (r(i): 1 < i < m}   are required to compute  x(m).     Data-storage 

requirements,   therefore,   increase in direct proportion to the number of observa- 

tions taken.     Recursive equations for  2(m)   can be obtained from Eqs.    16 and 

17 by simple matrix manipulation.     These equations provide an updating 

procedure by which only the most current observation is used in conjunction 

with the preceding estimate,   x(m-l),   and covariance matrix,   V(m-l),   to 

determine  x(m)   and   V(m).     They have the advantage that storage require- 

ments do not increase with each new observation.     We shall derive the recursive 

equation for   V(m)  first.     From Eq.   17, 



V(m)    =    [W_1 +      I     H;(i)N_1(i)H(i) + HMmJN'^mJHfm)] _1 

i = l 

=    [V_1(m-1) + H'(m)N"1(m)H(m)] _1 (18) 

Equation 18 is the desired relation.    An alternative form can be obtained by- 

use of the lemma of Appendix 1,   the result being 

V(m)   =   V(m-l) -  V(m-l)H'(m) [H(m) V(m-1) H'(m) + N(m)] "   H(m)V(m-l) 

(19) 

The recursive equation for  x(m)  is derived starting with Eq.   16 from 

which we obtain 

x(m)    =   V(m)  !    £    H1 (i) N" l(i) r(i) + H'(m) N" *(m) r(m) 

Li=1 

=   V(m)V_1(m-l)x(m-l) + V(m)H,(mm"1(m)r(m)        (20) 

From Eq.   18 it can be verified that 

V(m)V_1(m-l)    =   I -  V(m)H,(m)N"1(m)H(m) (21) 

Therefore, 

x(m)    =   x(m-l) + V(m)H:(m)N"1(m)tr(m) -   H(m)x(m-1)]      (22) 

which is the desired result. 

Collecting all results,   we have 

Model:         r(i) = H(i)x + n(i)   i = 1, 2 m 

Estimation Equations: 

x(m) = xlm-ll + VMH'ImlN^Htijml-HlmlxIm-l)] 

V(m) =  [V"1(m-l) + H'(m)N"1(m)H(m)] _1 

= V(m-l)- V(m-l)H'(m)[H(m) V(m-1) H'(m) + N(m)] _1 H(m)V(m-l 

10 



2. 2. 3   General Case:      Time-Dependent Observations and Parameters 

We now return to the original problem and derive the discrete Kalman 

and Bucy equations.    In the following procedure,   we shall derive the recursive 

equations directly.     We begin by observing that 

p[r(m), x(m), r^  m_j] 
p[x(m)|r1       ]    =   — = ZllJlL 

p[r(m)lx(m), r^ m_ J p[x(m) | r^ m_j] 

p[r(m)|rUm  j] 

The first factor in the numerator can be simplified when it is noted that  r(m) 

is only a function of  n(m)  when x(m)  is specified.     Then,   because of the 

independence of n(m),  x(i),   and  n(i)  for  i < m,   it follows that  r(m)  is inde- 

pendent of   r, 1   when x(m)   is specified.     Consequently, 

p[r(m)|x(m), r^  m_j]    =   p[r(m)|x(m)] 

and 

p[r(m)|x(m)] pf^m)!^ }] 
p[x(m)|r,       1    =    , -— (21) 

~ ~l'm p[r(m)|r1>ml] 
(li) 

We,   therefore,   have the result 

lnp[x(m)|r1       ]    =   lnp [ r(m) lx(m)] + lnp[x(m) I r. ,]+c (24) ^—        '—1, mJ ^l_y        _x ri_v        —l,m-lJ        o 

where   c     is a normalization constant.     The first term on the right is given by: 

lnp[r(m)|x(m)]    =  - i- [ r(m) - H(m) x(m)] ' N" l (m) [ r(m) - H(m) x(m)] +c ' 

(25) 

11 



where again  c '   is a normalization constant.     We now need to investigate the 

second term on the right of Eq.   24.     We observe first that  x(m)   conditioned 

on  r, ,   is normal with mean —1, m- 1 

E[x(m)|r1>ml]    -   x(m|m-l) (26a) 

=   E[0(m,m-l)x(m-l) + G(m) y^rn) | r^ m_ }] 

=   0(m, m-l)x(m-l |m-l) (26b) 

where  x(m|m-l)  and x(m-l|m-l)   denote the maximum a posteriori estimates 

of x(m)  and x(m-l),   respectively,   based on the m-1 observations,   r. .. 

In deriving Eq.   26,   we have used the independence of w(m)   and  r, ,   and 

the identity of the conditional mean and maximum a posteriori estimate.     The 

conditional covariance matrix associated with  x(m)  is given by 

F(m)    =   E[x(m)-x(m|m-l)] [x(m) - x(m | m-1)] ' 

=   E{£(m,m-l)[x(m-l)-x(m-l|m-l)] +G(m)w(m)} 

X   W(m, m-l)[x(m-l)- x(m-l |m-l)] +G(m)w(m)}' 

= l_[m, m-1) V(m-l) 0'(m, m-1) + G(m) W(m) G'(m) (27) 

where   V(m-l)  is the error covariance matrix defined by 

V(j)    =   E[x(j)- x(j|j)][x(j) - x(j|j)]' (28) 

for j = m-1. 

Using these results (Eqs.   25,   26,   and 27),   we can express   lnp[x(m)|r1       ], 

defined by Eq.   24,   as 

12 



lnpfxtm)!^      ]     =   -I [r(m) -  H(m)x(m)]' N_1(m)[r(m)- H(m)x(m)] 

- y [x(m)-x(m|m-l)]'P_1(m)[x(m)-x(m|m-l)] +c  " c — o 

(29) 

To obtain an expression for  x(m|m),   we expand Eq.   29 keeping only terms 

which depend on x(m)  and then we complete the square.     The details are 

straightforward and result in the following recursive expressions for  x(m|m) 

and   V(m): 

x(m|m)    =    V(m)[H,(m)N"1(m)r(m) + P"1 (m) x(m | m-1)] (30) 

and 

V(m)    =    [H,(m)N"1(m)H(m) + P_1(m)] _1 (31) 

where   P(m)   is defined by Eq.   27. 

By simple matrix manipulations,   Eqs.   30 and 31 can be placed in a 

form having some computational advantages which are mentioned below. 

Observe from Eq.   30 that 

x(m|m)    =   ^(mJtH^mJN'^mJ^m) + {H'(m)N"1(m)H(m) + P"1}x(m|m-l) 

- H'(m)N"1(m)H(m)x(m|m-l)]      (32) 

=   x(m|m-l)+V(m)H'(m)N"1(m)[r(m)- H(m) x(m | m-1)] (33) 

Equation 33 is the desired expression for  x(m|m).     By using the lemma of 

Appendix 1,   we obtain the desired expression for   V(m)   from Eq.   31 

V(m)    =   P(m)- Pjm)H'(m)[H;m)P(m)H!(m)+N(m)] _1H(m)P(m)       (34) 

where 

P(m)    =   0(m,m-l) V(m-l)0'(m, m-1) + G(m) W(m)G'(m) (35) 

13 



The most evident computational advantage in determining  V(m)  by Eq.   34 

rather than Eq.   31 is that Eq.   34 requires the inversion of a single  p Xp 

matrix; whereas,   Eq.   31  requires the inversion of three matrices,   one of 

order  p Xp  and two of order   m X m.     A less evident advantage exists because 

the number of observables is very often less than the order of the state vector. 

In this instance,   p < m  and Eq.   34 requires the inversion of a smaller matrix 

than Eq.   31.     The advantage of the alternative expression for  x(m|m),   Eq.  33 

rather than Eq.   30,   is that the inverse of  P(m)   is not required. 

Just as in the previous examples,   V(m)   does not depend on the observed 

data and can,   therefore,   be precomputed.     Then because only simple matrix 

additions and multiplications are required,   x(m|m)   can be rapidly computed 

as new data becomes available.     Furthermore,   the error performance can be 

investigated without carrying out a complete simulation. 

Collecting all results,   we have 

Model: x(i)   =   0(i, i-1) x(i-l) + G(i) w(i) 

r(i)    =   H(i)x(i) +n(i) 
for   i =  1, Z, . . . , m 

Estimation Equations: 

(1) x(m|m)    •   x(m|m-l)+V(m)H'(m)N"1(m)[r(m)- H(m)x(m|m-l)l 

where 

x(m|m-l)    =   0(m, m- 1) x(m- 1 |m-l) 

(2) V(m)    =    [H'(m)N"1(m)H(m) + P"1(m)] _1 

=   P(m)- P(m)H'(m)[H(m)P(m)H,(m) + N(m)] _1H(m)P(m) 

where 

P(m)    =   0(m, m-1) V(m-l)0'(m, m-l) + G(m) W(m)G'(m) 

14 



Equations 33 and  34 are difference equations for the optimum estimate and 

2   3 were first derived by Kalman and Bucy in  1961   '    .     The associated initial 

conditions,   x(0 | 0)   and   V(0),   are determined from the a priori knowledge of 

x   ,   the initial state.     The known a priori mean is   x(0|0),    Efx   ]   = x(0):  and 

the a priori covariance matrix is   V(0),    E[x   — x   ] [x   - x(0)] '  = V(0). 

This brief derivation of the discrete Kalman-Bucy equations ignores 

several important issues which range from questions of the existence of 

inverse matrices to the uniqueness,   stability,   and asymptotic behavior of 

x(m|m)   and   V(m).     These issues are discussed in detail in the cited references. 

15 



3.     NONLINEAR ESTIMATION THEORY 

3. 1    The Nonlinear Estimation Model 

The nonlinear estimation model differs from the linear estimation model 

only to the extent of including a possibly nonlinear transformation of the state 

vector in the observations.     The new model is described by the relations: 

x(i)    =   0(i,i-l)x(i-l) + G(i)w(i) (36) 

and 

r(i)    =   h[i:x(i)]   +n(i) (37) 

for  i = 1, Z m.     We assume  h[i : x(i)]   is suitably restricted so that,   for 

instance,   it has a Taylor series expansion 

m 
h(i:x)   =   h(i:z) +     T"   (x   - z   )  -1-   h(i: x) 

k       k       k    Sxk 
+ higher order terms 

x = z 

ah 
=   h(i : z) +   (^—)      (x — z) + higher order terms (38) 

ox —   z 

oh 
where   (^—)       is a matrix of partial derivatives of  h(i: x)   evaluated at the 

ox —      — 

~ - s2l 
point  x = z; the k-row,   X-column element of the matrix,   •5—,   is  -^—  h, (i : x). 

—        — OX OX *        K — 
— X 

This matrix is commonly referred to as the Jacobian matrix. 

3. Z    The Nonlinear Estimation Problem 

Just as in the linear case,   we seek to estimate  x(m),   the state at the 

(moving) endpoint of the observation interval,   based on all the accumulated 

observations,   r,       .     The procedure we shall take is the following. —1, m r s 
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We assume first that the trajectory traced out by the sequence of points 

x(l),   x(2), . . . , x(m)   does not differ greatly from  some trajectory described, 

for instance,   by   z(]),   z(Z), ...,z(m).     Then,   for each   i,   we expand   h [i : x(i)] 

in a Taylor expansion about  z(i)  and retain only the first two terms.     The 

observations are thereby linearized about the trajectory   z(l), z(Z) z(m), 

and the results of the preceding section (i. e. ,   the Kalman-Bucy equations) can 

be used to estimate the state at the end point of the observation interval,   x(m). 

The choice of the trajectory about which the linearization is performed 

depends on the particular application.     We can describe the sequence   z(l), 

z(Z), . . . , z(m)   as being prespecified or not depending upon whether or not it 

is known before data is received.     The technique of linearizing about a pre- 

specified trajectory and then applying the Kalman-Bucy equations to estimate 

the true; trajectory has been used with success in a variety of space applications 

in which a vehicle was controlled  so as to follow a prescribed path,   such as a 

path to the moon. *    The technique is also applicable to the high-altitude satel- 

lite navigation system discussed below when the user's vehicle is controlled so 

as to follow a prescribed course.     Such a situation arises,   for example,   with 

the point-to-point travel of commercial aircraft through prescribed air corridors. 

Very often,   on the other hand,   no prespecified trajectory is available 

and  z(i),   for each  i,   must be generated as data is received.    An example of 

this situation arises in the navigation context when the user does not follow a 

prescribed course as in a tactical or evasive maneuver.     If the actual and 

estimated trajectories do not differ greatly,   then it is natural to consider a 

*   The notion was introduced in this context by Smith et al.    [7]   and McLean 
et al.   [8] . 
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linearization about the estimated trajectory itself.     That is,   for each  i,   we can 

let 

z(i)    =   x(i | i) i = 1, 2, . . . , m (39a) 

where  x(i | i)   is the estimate of x(i)   based on all the data available at time  i, 

We shall see below that this choice for   z(i),   Eq.   39a,   leads to nonlinear 

equations for the estimate and that these equations must be solved simultaneously. 

Since solving simultaneous,   nonlinear equations is generally difficult,   even with 

the aid of a computer,   we shall propose an alternative choice for   z(i)   that 

obviates this particular problem.     The alternative choice will work nearly as 

well as that of (39a) under most circumstances,   certainly most circumstances 

where a linearization procedure will work at all.     Let 

z(i)    =   x(i| i-1) (39b) 

where  x(i | i-1)   is the extrapolated or predicted value of x(i)   based on  r.   . 

which includes all of the data available prior to time  i.     The advantage of this 

choice is that while we are still led to nonlinear equations,   they can be solved 

sequentially in a straightforward manner. 

The sequence   z(l),   z(2) z(m)   can also be viewed as the mean or 

the conditional mean (i. e., estimated mean of the stochastic sequence x( 1), x(2)  

x(m).     From this viewpoint,   a "prespecified"  sequence   z(i)   corresponds to the 

case of a known mean from which it is assumed  x(i),   i = 1,2,..., m,   does not 

differ greatly.    A non-prespecified sequence  z(i)  then corresponds to the case 

of an unknown mean that must be estimated as data is accumulated. 



Let us now illustrate these procedures by considering the nonlinear 

estimation problem.     First we shall examine a special case paralleling the 

linear estimation problem of Section Z. Z. 1; that is,   we  shall remove all time 

dependence and employ only one observation.     Then we shall reintroduce time 

dependence and treat the general nonlinear problem. 

3. Z. 1    Special Case:      Time-Independent Observations 

Let 

r   =   h(x) + n (40) 

where  x  and   n  are Gaussian random variables with known means,   x~ and   0, 

and covariance matrices,   W  and   N,   respectively.     Our reason for choosing 

this special case is that it models the high-altitude satellite navigation system 

discussed in Section IV when only one observation is taken so that changes in 

the relative position of the user and satellites need not be considered.     We 

assume that x  does not deviate significantly from its mean,   x   ,  and then 

expand  h(x)   about this point.     To L: rl^^p aDDi-^nioaoi",   we then have 

ah 
I~^o)   =   fe) (*~*o)+- (41) 

— x 
—o 

We now want to apply the results of the linear estimation problem of 

Section Z. Z. 1.     To this end,   we note that   r —  h(x   )   may be taken as the 
dh -      - -o 

observed signal,   (^—)       as the matrix   H = H(x   ),   and  x — x     as a zero mean 
° 3xx — o —      —o 

 o 
Gaussian random variable.     It then follows from Eq.    13 that 

9h 
x*    =   V*(x   ) (-r-)        N"1   [r   - h(x   )] (4Z) 
— —    —o      ox — —        — —o 

— X 
—o 

19 



where the asterisk on x*  indicates that the estimate is an approximation to 

the optimum estimate,   x; we shall refer to  x*   as being "quasi-optimum. " 

The matrix,   V*(x   ),   is given from Eq.    1Z by 

.ah Sh 
V.(xo)    =    rw-1^)'     N-1 (^)      l"1 (43) 

— x — x 
—o —o 

An alternative expression for   V*(x   )   can be obtained by using Eq.    14. 

The error covariance matrix   V,   defined by 

V =   E[x - x*] [x - x*] ' (44) 

equals,   or   nearly equals,    V*(x   )   when the error,   x — x*,   is small.       More 

generally,   the Cramer-Rao bound       can be used to demonstrate that   V   satisfies 

the inequality 

V >  V*(x  ) (45) —       —    —o 

whatever the size of the error.     This inequality implies that the error ellip- 

soids associated with   V, 

[x - x*] ' V [x - x*]     =   constant, (46) 

never lie within those associated with   V*(x  ) 
—    —o 

[x-  x*]1 V* (x   )[x- x*]     =   constant (47) 

for the same constant.     It follows that  V*(x   )   can be used to study the best 

attainable performance of x*  as an estimate of x.     For this purpose,   various 

norms of  V*(x   )   can be used.     Two possible norms,   which were mentioned in 

We say  x — x*  is small if some related norm is small.     A typical norm 
which can be used is  tr[x - x*] [x -  x*] '. 
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the linear case of Section 2. 2. 1,   are the largest eigenvalue and trace of 

V*(xo). 

3. 2. 2    General Case:      Time-Dependent Observations 

For this case,   we have the observed sequence given by Eq.   37 as 

r(i)    =   h[i: x(i)]   + n(i) (37) 

for   i =  1, 2, . . . , m.     We now expand   h[i : x(i)]    about   z(i),   for each   i,   and 

then use the small error assumption.    At this point,   z^(i)   can be either pre- 

specified or not.     We shall consider the  separate cases below.     To a close 

approximation,   the result is 

ch oh 
p(i)    =   r(i) - h[i:z(i)]   + (r-) z(i)    =    (^-) x(i) + n(i)       (48) 
— — —       —   • ox     ...   - ox,..— — 

-z(i) -z(i) 

for   i = 1, 2 m.     The results of the general linear estimation problem can 

be applied when we identify  p(i)   as the observed signal and   (Sh/dx)   ,..   as the 
— —     — z^i) 

matrix,   H(i).     From Eq.   33 we then obtain 

oh, , oh 
x*(m|m)   =  x*(m|m-l)+V*(m)(-) N~  (m) {p(m) - (-=—) x*(m|m-l)) 

ox u-  z(m) z(m) 

=  x*(m|m-l) 

5h, dh 
+   V*(m)(—) N"t(m){r(m)-h[m:z(m)] - (,-) 

~~ d*   z(m)~ -z(m) 

X    [x*(m|m-l) -  z(m)] } 

where   V*(m)   is a matrix specified from Eq.   31 by 

V*(m)    = 
5h . 3h 

P"L(m) + (,-)' N_1(m)U-) 
d*   z(m)~ d-  z(m) 

(51) 

(49) 

!50) 
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and where 

P(m)   =   0(m, m-l)V*{m-l)0'(m, m-1) + G(m) W(m)G'(m). 

An alternative expression for   V*(m)   can be given by using Eq.   34.     A further 

simplification of Eq.   50 is possible if it is assumed that  z(m)   does not differ 

greatly from the extrapolated state,   x*(m | m-1): 

z(m)   «   x*(m| m-1) (52) 

Then 

3h 
h[m: x*(m |m-l)]    *j   h[m:z(m)]   + (^—) [x*(m|m-l)-  z(m)] 

- z(m) 

and the expression for  x*(m|m)   becomes 

9h . 
x*(m|m) = x*(m|m-l) + V*(m) U) N    (m){r(m)-h[m:x*(m|m-l)]J       (53) 
— — OX       /       \ - z(m) 

Equations 51 through 53,   along with the initial conditions, 

x*(0|0)    =   E[x(0)]     =   XQ (54) 

and 

V*(0)    =   E[x(0) - g] tx(0) - §.]'    &   V(0) (55) 

specify the quasi-optimum estimate of the state at the endpoint of the observa- 

tion interval.     It can be observed now that the trajectory followed by  z(i),   for 

each  i,   enters into the estimate through the Jacobian matrix,   (dh/dx) ., 
—     - z(m) 

which occurs both in Eqs.   51 and 53. 

In the case of prespecified trajectories,   z(i),   for each  i,   is known in 

advance so that  (dh/dx)   .    .   and,   therefore,   V*(m)   can be precomputed.     We 
—     — z (m) 

then observe that 
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(1)   x#(m I m)   can be determined rapidly  and   simply as new  data 

becomes available.     This is because the "gain" matrix,    V*(m)(dh/dx)   ,     . N_1(m), 
z \m) — 

can be precalculated so that the only "on-line" matrix operations required in 

Eq.   53 are additions and multiplications and not inversions. 

(Z)    The error performance can be investigated using  V*(m)   without 

making any observations or involved computer simulations. 

On the other hand,   V*(m)   cannot be precomputed -when there is no pre- 

specified trajectory;  that is,   when   z(i)   must be generated as data is received. 

If   z(i)   is defined by (39a): 

z(i)    =   x*(i | i) i =  1, 2, . . . , m (Eq.    39a,   repeated) 

then (51) and (53) are coupled and must be solved simultaneously      Alterna- 

tively,   if   z(i)   is defined by (39b), 

z(i)    =   x*(i I i-1) i = l,2,...,m (Eq     39b,   repeated) 

then (51) and (53) are coupled but they can be  solved  sequentially.     The error 

performance cannot be investigated in either of these cases without an involved 

computer simulation.     Note also that if  x*(m | m)   does differ from   x*(m I m-1) 

enough so that   (ob/Sx)   ..     i      >   is appreciably different from   (dh/dx)   .,.,    I       ,*. 
—     — x 'r* \ rn    m) x ',s \ m | m — i) 

then solving Eqs. (51) and (53) sequentially is not sufficient. The linearization 

of h about the final estimate must agree with the linearization used in the solu- 

tion of these equations. 
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4.     APPLICATION OF NONLINEAR ESTIMATION THEORY TO THE PROBLEM 

OF NAVIGATING WITH HIGH-ALTITUDE SATELLITES 

We now want to apply the results derived in the preceding sections to 

simplified versions of the high-altitude satellite navigation system described 

in the introduction.     We shall study the problem in two setps.     First,   we 

examine the simplest case where only one observation is taken so that user 

and satellite position changes need not be considered.     Then,   second,   we shall 

introduce multiple observations and include simple user motion. 

4. 1    Special Case I:    Fixed-Position and Single Observation 

The geometry associated with the navigation system for the case of 

three fixed satellites,   one fixed control station,   and one fixed user is shown 

in Fig.   1.     We shall use an earth-centered rectangular coordinate system. 

The position vectors associated with the satellites,   control station,   and user 

are defined in Table I. 

Position 

Satellites 

j= 1,2,3 *J 

Control Station Pc 

User Eu 

Table I 

Let  h  be the user's height measured from the earth's center: 

II r    . ,1/2 h = IEJ  • teW 

his nominally equal to the radius of the earth. 

(56) 
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NAVIGATION    SATELLITES 

Figure 1.      Geometry of the high-altitude satellite navigation system 
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The user-to-satellite and control-station-to-satellite distances indi- 

cated in Fig.    1 are given by 

1/2 s.    =    I p. — p t   {(p. —p  )'(p. — p   )} 
j ' —J       —u ' L   —J       —U      —J       — u 

and 

ij = IPJ-£CI = nPj-P^MPj-P^j 1/2 

(57) 

(58) 

for   j =  1,2, 3,   respectively. 

.th Let   T.   be the time difference between the clock of the i      satellite and 
J   J 

a master clock.     The vector 

T     = (59) 

r3 

is then a time-error vector associated with the three satellite clocks.     Simi- 

larly,   let   T     be the time error associated with the user's clock (again rela- 

tive to the master clock).     We assume that   T.,   for i = 0, 1, 2,   and 3,   is 

measured in distance units   [see footnote (*) on next page] . 

The unknown parameter (or state) vector describing the navigation 

system is given in terms of the defined quantities as: 

"p    1 i  —u 

£c 

£1 

P-2 
i 

: H3 

T 

T 
O 

(19 components) (60) 
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The user attempts to determine his position by observing the control 

station monitoring signals,   the  satellite timing signals (relative to his clock), 

and his height.     We  shall  simplify the problem at this point by assuming that 

the control station can make very accurate--in fact,   perfect--measurements 

of the satellite positions and satellite clock errors.     In this instance,   the 

control station positions,   p  ,   and satellite clock errors,   T,   are eliminated 

from the problem and the user's observable may be taken as 

r    =   h(x) + n (61) 

where 

h(x)   = 

— — 

hjW S.    +   T 
1             O IPI-PJ +    T 

o 

h2(x) S,    +   T 
Z             O IEZ-EJ +   T 

o 

h3(x) S-   +   T 
3         o Ifi3-Eul +   T 

O 

h4(x) h 
IPU

1 

and   n  is the observation noise with an assumed covariance 

E[nn']     = 

Here   o      is the ranging-error variance that results,   for example,   from 

2 
receiver noise,   propagation effects,   and short-term clock instabilities;  a, 

is the height error variance. 

The vector  x,   defined by: 

*    (from previous page)   Just as radar echo delays are converted to distances 
by using the speed of light. 
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X 

Hu 

El 

Ez 

E3 

(13 components) 

is assumed to have a mean  E(x) = x~  which accounts for the nominal posi- 

tions of the satellite and user and also the nominal value of the user's clock 

error.     The a priori error covariance matrix is defined by 

W   =   E(x - x0)(x-x0)' (dimension 13 X 13) 

The diagonal components of  W  are the a priori variances associated with the 

satellite and user positions and with the user's clock. 

Define the Jacobian matrix by 

9h 

ax- 

Sh 
1 

ah ah 

ax, 

ah. 
c 

ax~ 

a^ 

ax, 

ax. 

ah. 
ax: 

a^ 

ax. 

55T 13 

ah. 
ax 13 

3h, 

ax 13 

(62) 

Then,   from (43),   V*(x   ),   the error covariance matrix associated with esti- 

mating  x  when  E[x]   = x  ,   is given by 

V*(x0)    = 

X 

f»l    -1 r- + k I    S     ax" 

ah /ah 
w     

ax 1     —  ox 
/^o       '     '-0 

+ N (63) 
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Equation (63) is being used in a computer study of the navigation problem 

for the special case described.     Various user positions,   x   ,   and a priori 

statistics,   W,   are being examined.     The results will appear in a companion 

report. 

4. 2    Special Case II:    Simple Motion and Multiple Observations 

In this example,   we shall make the following assumptions: 

(i)    The control station can make very accurate measurements of 

the  satellite positions and clock errors; this removes   p     and   T   from the 
—c — 

problem. 

(ii)    There are three fixed satellites. 

(iii)    The user undergoes motion along some nominal prescribed 

trajectory;  that is,   his mean trajectory is known.     His "state, " 

s   (i)    = —u 

P   (i) —u 

Xu
(i) 

i =  1, 2, . . . , m (64) 

consisting of his position and velocity,   satisfies 

s   (i)    =   §   (i,i-l)s   (i-1) + G  (i)w  (i)       i = 1,2,. . . , m   (65) 
—u —u —u —u      —u 

where   $   (i,i-l),   G  (i),   and w  (i)  are the same as defined by Eq.   (1) of 

Section 2. 1 except that here we allow w  (i) to have a nonzero mean.     The non- 

zero mean of w (i) is such that   s   (i),   i = 1, 2, .... m,   follows the prescribed 
—u —u 

trajectory on the average; that is,   we are assuming that the (known) mean of 

the stochastic  sequence   s   (i),   i = 1, 2, . . . , m,   is the prescribed trajectory about 

which the linearization is carried out. 

(iv)    The user's clock is stable but has a fixed offset,   T   ,   from *     ' o 

true time (as indicated on a master clock). 
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(v)   Multiple observations are taken. 

The state vector  x(i),   i = 1, 2, . . . , m,   associated with the estimation 

problem is defined by 

P^i) 

x(i)    = 

E2(i) 

P3(i) (16 components) 

where,   because of the above assumptions, 

x(i)    = 

I 0 0 0 0 

0 I 0 0 0 

0 0 I 0 0 x(i-l)   + 

0 0 0 i —u (i,i- -1) 0 

0 0 0 0 1 

0 

0 

0 

G  (i) —u 

0 
^,                   wm 

(66) 

w  (i) —u 

=     0(i,i-l)x(i-l) + G(i)w  (i) for i = 1, 2, . . . , m (67) —u 

The observed sequence satisfies 

r(i)   =   h[x(i)]  + n(i) i = 1.2, m (68) 

where 

h[x(i)]     = 

El - Bu
(i) I + To 

B2 ~ Eu(i) I + To 

P3-£u(i)| + TQ 

I PU(D I 

(69) 

30 



and   n(i)   is the observation noise with an assumed covariance 

2 

E[n(i)n'(j)]     = 

0 
r        2 0 

0 r 
6.. (70) 

We have assumed for this  simple model that the additive observation noise is 

an uncorrelated sequence.     In practice,   correlated  sequences would also be 

encountered and these would be treated by expanding the dimension of  x(i). 

Define the Jacobian matrix by 

£h[x(i)]     = 

Sh 9h Bh 

9h. 

Sh, 

hx 
1 

9x. 

ah. 

ah, 
axT 

ax 13 

ah. 

ax 
13 

ah, 
ax 

13 

(71) 

x(i) 

Then,   from (51),   the error covariance matrix associated with estimating  x(m) 

when   E[x(m)]   = z(m),   is given by 

-l 

''-/z(m) 
V*(m)    = 

-    z(m) 
(72) 

where 

P(m)    =   $(m, m-1) V*(m-l)$'(m, m-1) + G(m) W(m)G'(m) 

and   W(m)   is the a priori covariance matrix defined by 
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W(m)    =    E[w(m) — Ew(m)] [w(m) — Ew(m)] ' 

Note that   V*(m)   is determined from the difference equation (72) by starting 

with the initial condition  V*(0) = V~,   the a priori error covariance matrix,   and 

serially calculating  V*(l),   V*(2) V*(m). 

Equation (72) is being used in a computer study of the navigation prob- 

lem for the special case described.     Various simple user trajectories and 

a priori statistics,   w(m),   are being examined.     The results will appear in a 

companion report. 

Preliminary Conclusions 

We have indicated with two simple examples how the nonlinear estima- 

tion procedure of section 3 can be used for the problem of navigating with 

high-altitude satellites.     Several questions that must be addressed before the 

technique can be applied successfully to the more general navigation problem 

are: 

(1) Models must be developed for describing the motion of satel- 

lites placed in a near-synchronous orbit and for characterizing the errors 

made in determining their coordinates; 

(2) Models must be developed for statistically describing the 

effects of timing errors due to atmospheric effects,   such as refraction.     These 

effects generally depend on the relative user-to-satellite position.     Conse- 

quently,   the associated covariance matrices will depend on the state   (x); 

(3) An investigation of the sensitivity of the navigation model to 

changes in assumptions or parameters (such as the a priori error covariance 

matrix)  should be made. 

32 



Appendix 

We wish to establish the lemma: 

If 

S"1    =   T"1 + M'U"1 M (Al) 

where   S     ,   T     ,   and U       are symmetric positive-definite matrices; then 

S   =   T -  TM'[MTM' + U] _1 MT (AZ) 

Proof: 

The existence of the inverse matrices required for Eq.   AZ follows from 

the positive-definiteness of  S     ,   T     ,   and U     .     We establish the Lemma by- 

direct substitution. 

SS"1    =    [T -  TM'(MTM' + U)"1 MT] [T_1  + M'U"1 M] 

=   I_-  TM'[(MTM' + U)"1 M -   U"1 M + (MTM' + U)"1MTM'U"1M] 

=   I_-  TM'[(MTM' + U)"1 U - J_+ (MTM'   [(U)"lMTM'j U-1M 

= J_-  TM1 [ (MTM1 + U)"1 (MTM1 + U) -  1] U" l M 

=   I 
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