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ABSTRACT

This work is concerned with the development and application of an
analytical model for "impulsive" phenomena. Specifically, a new model
is developed for atmospheric noise, which is radio noise that originates
in lightning discharges. This model is applied to the detection of known
signals in additive atmospheric noise.

The modeling approach used here is based on the observation that a
gaussian model is inappropriate for received atmospheric noise, primarily
because gaussian noise does not have the large dynamic range exhibited
by the received noise power. The generalized "t" model resulting from
the approach used in this work is in good agreement with measured data,

and describes the received atmospheric noise y(t) as
y(t) = a(t) n(t)

where n(t) is a narrowband gaussian process and a(t) is a slowly
varying process, independent of n(t), that modulates n(t).

The detection of known signals in additive generalized "t" noise--
i.e., in the presence of additive noise described by the generalized "t
model, is considered, and the receiver that minimizes the probability of
error is found to be a "logarithmic-correlator" receiver that implements
the rule:

Decide that the known signal is present iff

T T
J In||x(t)] 2 4 dt > J In |x(t - p(t)l 2] dt ,
0 0

where m(t) is the known signal, x(t) 4s the received signal, |[x(t)]

is the envelope of x(t), and |x(t) - p(t)| is the envelope of
[(x(t) - m(t)]. An "exponentially correct" estimate of the probability of

error achieved by this receiver is given by

P ~K exp[_ ué_a]
e YO
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where E 1is the energy of the known signal, Yo = 2y /B is proportional
-1/2
to the average noise energy, and K is a polynomial in (2TB) 1/ .
The performance of the log-corrclator receiver is compared with that v
achieved by other receiver forms in the presence of additive generalized
"g" noise. Analytical results indicate that the log-correlator receiver
performs significantly better than any linear receiver in the presence of
additive atmospheric noise. Available experimental data support this
conclusion.
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I. INTRODUCTION

A. PURPOSE

The purpose of this work is two-fold: 1) to develop an analytical
model for "impulsive" phenomena, i.e., phenomena having impulse charac-
teristics, and 2) to apply this model to the study of communication
channels having additive impulse noise. In particular, this work focuses
on a specific impulsive phenomenon, atmospheric radio noise. Atmospheric
radio noisc is selected as a case of special interest because: 1) there
is a reasonable amount of experimental data available against which pro-
posed models can be checked, and 2) additive-atmospheric-noise channels
are important both for communication purposes and as a source of infor-
mation on naturally occurring signals of scientific interest. (An example

of such signals is the whistler-mode signal discussed in Chapter IV.)

B, BACKGROUND

Atmospheric noise, which is described in more detail in Chapter II,
is radio noise that originates in lightning discharges. At a represen-
tative receiving site, lightning discharges are typically observed to
occur at a rate of the order of 10 discharges per second, although it is
emphasized that this typical rate can vary from about one per second to
nearly 100 per second dependent on several factors menticred in Ci pter
I1., Since the principal noise pulse produced by each discharge has a
duration of about 100 .sec, it follows that the obs.rved noise has a dis-
tinctive impulsive character. Various analytical models have been pro-
posed for received atmospheric noise, and these usually are derived from
one of two points of view, which will be discussed in more detail in
Chapter I1., Briefly, the most interesting approach from a physical point
of view takes the received noise to be the weighted sum of contribuiions
from individual lightning discharges. Although this approach 1s we'!
motivated physically, it has the disadvantage that the resulting models
are not analytically tractable. The alternative approach is an empirical
method that yields analytical models chosen to fit the measurcd statistics

of the noise, However, in addition to the lack of direct physical support
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for this procedure, the existing empirical models suffer from the fact
that they consider only the first-order statistics of the noise, while
neglecting the higher-order statistics.

Although several models for received atmospheric noise have becn
proposed in the literature, very few analytical results are available on
problems of signal detection or estimation in the presence of additive
atmospheric noise, The published results, which are discussed in detail
in Chapter 1I1, fall into two categories:

1., A signal-to-noise ratio (SNR) criterion has been used to compare
specific receiving techniques.

2. Several workers have employed empirical models to calculate the
probability of error resulting from the use of linear receivers
in the presence of additive atmospheric noise.

C. CONTRIBUTIONS OF THIS WORK

Using an approach which differs from both of those mentioned above,

a new analytical model for received atmospheric noise is developed in

Chapter II. This model, called the generalized "t" model, is attractive

from an analytical point of view and also provides a good fit to the mea-

sured statistics of received atmospheric noise, including statistics of
higher-order as well as those of first-order. This model is applied in
Chapter III to the detection of known signals in additive atmospheric

noise. A receiver called the "logarithmic-correlator™ receiver is found

to minimize the probability of error in the presence of additive general-
ized "t" noise. The probability of error achievable using this receiver

is calculated and provides the only theoretical estimate known to the au-

thor of the error performance achievable in the presence of additive at-
mospheric noise, In Chapter IV, the performance of the log-correlator
receiver is compared with that of receivers commonly used in practice in

the presence of additive atmospheric noise.
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I1. THE GENERALIZED "t" MODEL

A, INTRODUCTION

The purpose of the work described in this chapter is to obtain a
class of nongaussian random processes that can serve as a model for cer-
tain impulsive phenomena observed in nature, Specifically, it is desired
to develop a model for certain impulsive noises observed in communications
engineering, with particular emphasis on the additive impulse noise, com-~
monly termed atmospheric noise, observed or radio circuits operating at
frequencies below approximately 100 Mc. The work in this chapter is con-
cerned with the formulation of a model for impulsive phenomena, and the
verification of the applicability of this model, when appropriately spe-

cialized, as a model for received atmospheric noise.

1. Physical Description of Atmospheric Noise

Before proceeding with the modeling problem, a brief physical
description of atmospheric noise is presented as follows: Atmospheric
noise is taken h.re to be radio noise that has its source in lightning
discharges. A descriptive discussion of both this noise and its lightning
sources is presented by Watt and Maxwell (Ref. 1], who point out that the
lightning discharge consists essentially of a slowly developing leader
stroke (predischarge) of about one msec duration followed by a return
stroke (main discharge) of about 100 usec duration. Although the details
of the discharge are complicated, the observed noise can be explained by
noting that the leader stroke is actually made up of a -eries of discrete
leaders occurring at a rate of one every 25 to 100 .sec. FEach of these
leaders travels over a successive 30 ft to 200 ft portion of the cloud-to-
ground path, producing a current pulse of about one ,sec duration with an
intensity of the order of 300 amp. The result of this recurrent process
is that the energy radiated by the predischarge has a 3~db bandwidth of
the order of 40 kc centered at a frequency of approximately 30 kc. Foui~
lowing this predischarge, the single return stroke takes place, producing
a current pulse of about 100 .sec duration having an average peak intensity
of 20 kiloamperes. The energy radiated by this return siroke, which ac-

counts for about 95 percent of the total energy radiated by the lightning
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discharge, has a 3-db bandwidth of the order of 10 k¢ centered at a fre-
quency of approximately 10 kc. This behavior of the lightning discharge
as a function of time and frequency is illustrated in Fig. 1 (taken from .
Watt and Maxwell) winich shows both the waveform and the spectrum of the
radiated field (see also Refs. 2 and 3). The total enurgy radiated by a
single lightning discharge is of the order of 200,000 joules (Ref. 4];
therefore it is not surprising that the resulting atmospheric noise is

the predominant radio noise at vlif and 1f. However, because the spectrum
of the lightning discharge is approximately proportional to l/f at fre-
quencies above the upper "3-db-down point," as indicated in Fig., 1, it

is often true that atmospheric noise is the predominant radio noise even
at hf. It should be noted, however, that hf atmospheric noise differs
from vlf atmospheric noise in that the former is primarily the result of
the predischarge with its discrete fine structure, whereas thke latter is
predominantly the result of the return stroke. With the above description
of the individual lightning discharge in mind, and noting that the average
number of lightning discharges observed per unit time at a receiving site
typically lies in the range from one per second to 100 per second, it is
clear, in agreement with experience, that the received atmospheric noise
will be impuli.ive in nature. It is pointed out that the large range ex-
hibited by the average rate of “served lightning discharges is the result
of several factors detailed in the next section. Of particular importance
among these factors is the geographical rosition of the receiver, For
example, the average rate can vary from about one distinguishable dis-
charge per second at temperate latitudes to nearly 100 per second in the

tropics.

2. Summary of Existing Models for Atmospheric Noise

Turning attention now to the prcblem of developing 2 model for
received atmospheric noise, it is seen that this noise is always observed
through the passband of some receiver filter. Thus the noise observed at
any instant of time is the resultant of several lightning discharges spaced
in time and location of occurrence, with the observed number and intensity
of the lightning discharges depe¢ndent upon a number of factors, Notable

among these factors are receiver bandwidth and band center frequency,
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receiver location, thunderstorm activity, and propagation conditions,
These factors must be taken into consideration in the model.
To provide motivation for the development of a new model for at- .
mospheric noise, a brief summary of available models is now presented.
It is reasonable to categorize thc available models for observed atmo-
spheric noise into two groups, to be called here the filtered-impulse

models and the empirica! models, respectively.
a, The Filtered-Impulse Models

The filtered-impulse models [Refs, 5 6, 7, 8] are well mc-

tivated physically and are similar to one another in that they all take

the received noise n(t) to have essentially the form

N
n(t) = > a ple-t) (2.1)
i=1

where the a, are independent, identically distributed random variables
whose distribution is deduced primarily from lightning discharge statis-
tics as affected by receiver location and propagation considerations; p(t)
gives the form of the noise pulse resulting from an individual lightning
stroke as shaped by an assumed filter in the front end of the receiver;
and the ti are the occurrence times of the N individual lightning
strokes., With this formulation for the received noise, and with the as-
sumption that the contributions to the received noise by the individual
lightning strokes are statistically independent, various results (Refs. 6,
7, 8] have been obtained on the first-order statistics of the received
noise using the method of characteristic functions. In particular, the
workers referenced above have focused on the problem of determining the

probability distribution of the envelope of the received noise, since

this distribution has buen measured quite extensively (Refs. 6, 9, 10, 11,

12]. Although the analytical results vary in their agreement with <he
measured data as a function of both the choice of p(t) and the choice

of the statistics of N, of the t and of the a the folloving con-

i’ 1’ >
clusions on the filtered-impulse models appear to be warranted in general:

The strong point of the filtered impulse approach is of course that the
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model is well motivated physically. Thus it is possible to specify the
model and to determine the degree to which the received noise is expected
to be nongaussian in terms of physically meaningful parameters. On the
other hand, there are several disadvantages that arise as a consequence

of the filtered-impulse approach. These car be summarized as follows:

1. The resulting probability distribntions are quite complicated, and
one 1is not able to put them in closed form except in certain limiting
situations, As a result of the complexity of these distributions,
they are not of much use in the consideratinn o. the statistical de-
tection problem at the receiver. The available results [Ref. 7] are
achieved by resorting to a signal-~to-noise r:itio SNR argument as a
criterion for comparing specific receiving techniques; it is well
known that SNR is not necessarily a good measure of the ability of
a receiver to process digital information.

(S

The assumption that the contributions of the individual lightning
strokes tco the received noise are statistically independent of one
another, which is crucial to the solution for the first-order sta-
tistics of n(t), does not appear to be true, at leact for vilf at-
mospheric noise. This conclusion follows from the experimental
results obtained by Watt and Maxwell [Ref. 9] on the distribution

of the time interval between crossings of a fixed level b, the en-
velope of v1f atmospheric noise in which it has been found that re-
ceived noise pulses are usually statistically dependent on preceding
nulses,

The second disadvantage is particularly disturbing, becauce
the strongest argument in support of the filtered-impulse models has been
the closeness of their approximation to the physics of the noise. In this
regard it is noted that the filtered-impulse models in the litezature have
typically been based on the assumption, either that the number of noise
pulses influencing the received noise is known .Ref, 8', or that the noise
pulses occur in a Poisson fashion [Refs. 5, 6, 7). The latter assumption,
which enables one to think of the received noise as ~ filtered Poisson
process, seems Quite reasonable, but does not admit the particular type of
statistical dependence between adjacent noise pulses that is usually ob-
served in practice,

One approach that may be useful in introducing this dependence
into the filtered-impulse model is that taken by Furutsu and Ishida :kef.
6}, who have considered the case of Poisson-Poisson noise. In this case
the noise is assumed to consist of clusters of noise pulses, where the

pulses within the cluster occur in a Poisson fashion with mean rate v,
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while the clusters themselves occur in a Poisson fashion with mean rate

v', where v' < v, It is to be noted that Furutsu and Ishida were pri-

marily studying hf atmospheric noise, and introduced the Poisson-Poisson
noise model as a means of representing the fine structure of the leader
stroke. It has not yet been demonstrated that the Poisson-Poisson model
vields the distribution of inter-level-crossing intervals observed by

wWatt ard Maxwell at v1f; but it seems reasonables as a model which imitates

the tendency of received atmospheric noise to consist of clusters of noise

pulses.

Finally, it should be mentioned as noted by Galejs (Ref. 8]
that the filtered-impulse models may be most useful as a method for study-
ing the problem (the inverse of that being studied here) of using the rela-
tively large amount of data on received atmospheric noise to determine the

statistics of the lightning source itself.
b, The Empirical Models

The empirical models differ fundamentally in their concept
from the filtered-impulse models in that they result from an attempt to
construct a mathematical expression that fits the observed data without
regard for the physics of the noise source, 1In every case, these empir-
irzal models consist of mathematical expressions constructed in an attempt
to fit the me-~sured data on the first-order statistics of the envelope of
the received noise. A recent summary of the various empirical models that
have been proposea .. presented by Ibukun (Ref. 12]. Despite the diver-
sity of these models, the following conclusions appear to be warranted in
general: The principal advantage that accrues from use of the empirical
modeling procedure is that the resulting model for the first-order statis-
tics of the receivrd noi:te is much simpler than that obtained from any of
the filiered-impulse models., Hopefully, this simplicity will make the
empirical model useful in the consideration of the signal-detection prob-
lem at the receiver. On the other hand, disadvantages that result from
use of the empirical modeling procedure are:

1, It may not be possible to justify the empirical model on physical
grounds,

n

By the nature of their construction, the empirical models consider
only the first-order statistics of the noise., In order to extlend
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these models to the point that one has a model for the random pro-
cess, it is necessary to make further assumptions concerning the
higner-order statistics of the noise. Because of the distinctly
nongaussian nature of the noise, it appears that the assumptions
required to produce an analytically tractable model must include

the assumption that the contributions of individual lightning
strokes to the received noise are statistically independent, As
discussed earlier, this assumption is not in agreement with measured
results,

Although (1) above is a fundamental disadvantage of the empir-
ical approach, it is noted that several workers [Refs, 13, 14, 15] have had
some success in finding physical justification for empirical models. Per-
haps the most interesting of these, because of its simplicity and its
closeness of fit to measured data, is the model that takes the envelope
of the received atmospheric noise to be Rayleigh-distributed at low values
of the envelope and log-normally distributed at high values. Beckinann
[Ref. 14] has given a physical argument which supports this model, pa~tic-
ularly in the situation wlere there is little local thunderstorm activity.
It is noted that several workers [Refs. 12, 14, 15, 16 have proposed mod-
els similar to that considered by Beckmann, although they differ in regard
to how the two distributions should be combined to give the best resultant
model,

With this brief summary of available models in mind, the de-

velopment of a new model called the generalized "t" model will proceed

in the next section from a point of view different than those leading to

either the filtered-impulse models or the empirical models discussed above.

It is noted at this point, however, that the generalized "t"
model will be seen to give some physical support to perhaps the simplest
of the empirical models. This empirical model is the one [Refs. 12, 17])
ithat. takes the probability PO(V) that the noise envelope exceeds the

value V to be

Po(V) = |1+ (%V-)r - (2.2)

where V is the average value of the envelope and & and r are two

parameters to be chosen. This empirical model is also essentially identical
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to the model studied in detail by Mertz {Refs, 18, 19}, 1In addition to
the fact that the first-order statistics of the generalized "t" model
agree closely with this class of empirical models, it will be shown that
the generalized "t" model has the advantage over the empirical models

in general that it can be specified to also give a good fit to the higher-
order statistics of the noise.

Before proceeding with the development of a new model for impul-
sive phenomena, it is acknowledged that the conceptual motivation for this
development derives from the work of Mandelbrot [Ref. 20) on the applica-
bility of a class of '"self-similar" random processes as a model for cer-
tain intermittent phenomena. Mandelbrot introduces the concept of a random
process that is controlled by one '"regime" for the duration of observation,
where this regime is itself a random variable. Although the class of
tself-similar" random processes considered by Mandelbrot is not of inter-
est as a model for atmospl.eric noise, the regime concept will be ucseful

in suggesting a model of the form of the generalized "t" model.

B. DEVELOPMENT OF THE NEW MODEL

Before mathematicaliy formulating a new model for impulsive phenomena,
a physical discussion focusing on the particular case of received atmo-
spheric noise is presented in order to lend physical significance to the
mathematical formulation, Although this discussion is based on experience
with received atmospheric noise, it is seen that similar models may be
applicable to other impulsive phenomena, e.g., to the impulse noise ob-
served on telephone lines,

As mentioned in Section A2, the atmospheric noise observed at an in-
stant in time through the passband of a linear receiver is dependent on a
nurber of factors; notably receiver bandwidth and band center frequency,
receiver location, thunderstorm activity, and propagation conditions. Now,
if the receiver is sufficiently narrowband, it is reasonable to assume that
the noise at the receiver output is modeled well as a gaussian process. .
This follows because of the fact that the filtered noise is the sum of con-
tributions from a large number of independent lightning discharges, none
of which is dominant at the filter output, However, experimental data i

[Ref. 9] indicate that the bandwidth required to achieve this condition at
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vlf is substantially less than one cps, so that a gaussian assumption is
not physically viable at vlf. The goal of the model development here is

. the formulation of an analytical model that is both an accurate descrip-
tion of the received noise and suitable for application to the statistical
detection problem at the receiver., As far as the detection problem is
concerned, it appears necessary to model the atmospheric noise prior to
the performance of any receiver operations, so that a gaussian assumption
is certainly not justified,

Although the gaussian assumption cannot be justified, the modeling

problem can neverthecless be simplified by noting that in practice atten-

R

tion can be restricted to receiver bandwidths substantial.v smaller than

TR AR

the band center frequency. This result, which enables the received at-

mospheric noise to be thought of as a narrowband random process, follows

ORI PR

from the fact of limited spectrum availability at the frequencies where
atmospheric noise is predominant. This limited spectrum availability means
that the receiver bandwidth must be sufficiently restricted to validate
the assumption that interference from strong adjacent channel signals is
negligible. Further, it is noted that this '"narrowband" assumption is pre- y
cisely what is needed to enable verification of the accuracy of the analyt-
ical model, since almost all avai.able experimental data [Refs. 6, 9, 10, % !

11, 12] have been obtained in narrowband situations.

1. Specification of the Generalized "t" Model

With the above general features of the atmospheric noise in mind,

the formulation of the generalized "t" model proceeds as follows: Al-

-

though the gaussian assumption is not justified for the atmospheric noise
of interest, it is conjectured, following loosely the intuitive notion of
regime suggested by Mandelbrot [Refs. 20, 21], that this may be closely
related to the fact that the regime of sources controlling the received
noise varies with time over a large dynamic range, That is, the gaussian

model may be inappropriate principally because the received noise at an

instant in time is controlled by a few lightning discharges that vary in
intensity and location as a function of time. Continuing with this line
of reasoning, it is proposed that a model for received atmospheric noise
worth consideration is one that takes the received noise to be a narrow-

band gaussian noise multiplied by a weighting factor that varies with time
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in accordance with the regime of sources in control of the noise, Thus
it is proposed that the narrowband received atmospheric noise y(t) be

considered to have the form

y(t) = a(t) n(t) , (2.3)

where n(t) is a zero-mean narrowband gaussian process with covariance
function Rn(T); and a(t), the "regime" process, is a stationary ran-
dom process, independent of n(t), whose statistics are to be chosen so
that the product a(t) n(t) is an accurate description of the received
atmospheric noise. It is noted that the above discussion leading to this
model formulation suggests that a(t) will be a slowly varying random
process as compared to the narrowband process n(t). It will be shown
below that this is indeed the case in the sense that for a good fit to
measured data the power spectrum of the lowpass function a(t) needs to
have negligible overlap with the power spectrum of the band-centered gaus-
sian process n(t).
Before attempting to specify the statistics of the regime process

a(t), an alternate argument suggesting the existence of such a regime
process is presented in support of the model proposed in Eq. (2.3). Set-~
ting aside the regime notion and observing the narrowband atmospheric noise
that it is desired tn model, it is interesting to note that a gaussian
model is inappropriate primarily for the following two reasons [Refs. 9,
17]:

1. The atmospheric noise process does not tend to deliver energy at a

constant rate as would a gaussian process.
2. The contribution of a single source component may not be small com-
pared tn the total received energy.

Further, it is known [Ref. 17] that in almost every case where the received
noise satisfies requirement 1, so that excursions far above the rms value
are extremely unlikely, the process can be well approximated as a gaussian
process despite the fact that it may exhibit a preferred waveform in vio-
lation of requirement 2. This is particularly true in narrowband situa-
tions where the signal shape is essentially a sinusoid at the band center
frequency, and in fact an example of this result is that in most calcula~

tions a sinusoid is well approximated by a narrowband gaussian process.
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Thus it is concluded that it is primarily the large dynamic range of at-
mospheric noise that makes a gaussian model inappropriate, Now, noting
that it is desirable from an analytical point of view to model the re-
ceived atmospheric noise in terms of gaussian processes, it seems natu.:l
to ask how we can operate on a gaussian model to introduce the large dy-
namic range observed in atmospheric noise, One possibility, which in fact
appears to be the simplest feasible possibility, is to multiply (modulate)
the narrowband gaussian process by a process having the desired dynamic
range. Noting that this modulating process is expected to vary as the
envelope of the narrowband atmospheric noise, we are again led to a model
of the form given by Eq. (2.3), where a(t) is now thought of as a slowly
varying modulating function.

The above discussion based on the physical characteristics of re-
ceived atmospheric noise has been presented to give physical support to
the model proposed in Eq. (2.3) and to indicate the existence of the mod-
ulating process a(t). It remains to specify the statistics of a(t),
and this crucial step will now be considered from an empirical point of
view.

Recalling that a(t) is expected to be a slowly varying random
process, whereas n(t) is a narrowband gaussian process, it is assumed
that the envelope V(t) of the received atmospheric noise y(t) 1is given
by

v(t) = |a(t)]| E(t) , (2.4)

where E(t) 1is the envelope of n(t). It is now observed that the first-
order statistics of the product |a(t)| E(t) have the following "repro-
ducing" property: If the probability density function of |a| has ihe
form

1 Yo &S
lim p, ,(x) o« = '2.5)
la| ) "B

X—*®

where B > 1, then the probability density function of V = |a] E has
the form

1
lim pv(x) cc—B (2.6)
X—*x® x

- 13 - SEL-66-052

e ————

TREAFIASING #ROMGSs0

P P — —— ————

SR ——y

[

s oo

SRR




R T T T S

Now, it is seen that the hyperbolic distribution specifie¢ t+- Eq. (2.6)
is asymptotically identical in form to perhaps the simples »>f the empir-~
ical models [Refs, 12, 17, 18, 19] proposed from observation of measured
data on the envelope of received atmospheric noise [see Eq. (2.2)]. Thus
it is concluded that Eq. (2.5) gives a reasonable specification of the
asymptotic behavior of the first-order statistics of a(t).

It is next observed that if a random variable b 1is defined to

be distributed according to the "tw« 'sided" chi distribution

m/2

(2)

- m-1 __m_ 2
pb(b) = -;r_-1;i | b| exp[ 5 D ] , -0 < b < oo (2.7)
o T(3) 20

-'.
designated as xz(m,o), then the random variable a = 1/b is distrib-

uted according to

m/2

(g) 1 xp [_ m_ 1

——], ~ < a<ow.(2,8)

p,(a) = + pb(l) =

= e
a a om F(%) IaIm+1 2 2

20 a

Thus it is seen that pa(a) given by Eq. (2.8) has precisely the asymp-
totic behavior specified by Eq. (2.5). Now it is certainly true that
other distributions could be formulated having this same asymptotic be-
havior, but that given by Eq. (2.8) is preferred in the model development
here rfor the following reasons:
1. a(t) distributed according to Eq. (2.8) provides a distribution
for a(t) n(t) that agrees very well with available measured

data on the first-order statistics of received atmospheric noise.
This is demonstrated in detail in Section Cl.

2, The model development to this point has considered only the first-
order statistics of the noise. However, the fact that x2(1,o)
is identical to N(O,oz) means that b(t) = l/a(t) is a gaussian
process in this special case., Thus the model ktecomes the quotient

-r
This designation follows from the fact that |b| is distributed according

tc the well-known chi distribution [Ref., 22].
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of two gaussian processes, and it is anticipated that this fact will
be useful in fitting the model to the observed higher-order statis-
tics of the noise,
Now, with the above specification of the first-order statistics of
a(t) [or equivalently b(t)}, a direct solution can be obtained for the
first-order statistics of y(t) = a(t) n(t) as follows: Since n(t) and
b(t) are assumed to be statistically independent, it follows that [Ref. 22]:

[0
py(y) = f dx | x| pn'b(yx.x).
-0
o0
= f ax |x| p (yx) p(x), -w<y<ow, (2.9)
-0
where
A 2
p,(n) = N[o,R (0)], R (0) =q) ,
so that

exp |- 2= -0 < n <o (2.10)

1
p (n) 2|
" \/21:01 20'1

and pb(b) is given by Eq. (2.7). Thus, using Dwight [Ref. 23], item
860.17, this gives

- 2 1
py(y) = — 72 )7z m> 0, (2.11)
r(-) x 2
2 01
y +m—5
o2
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which is conveniently written as

1
~0 <y < o (2.12)
N 12T, 2]975 '

np

where v ml/2 ql/q and 6 e m+l > 1. Now, noting that in the special

case g, = o, py(y) given by Eq. (2,11) is Student's "t" distribution

{Ref. 22, p. 180] with parameter m, it will henceforth be said that the
first-order statistics of y(t) are given by the generalized "t" dis-

tribution defined by Eq, (2.12) wit’y parameters 6 and v,

Before proceeding to check the valildity of the generalized "t"
model as a model for atmospheric noise by comparing it with measured sta-
tistical data, there are several points of interest to note concerning the
model. In conjunction with the modulating function b(t) whose first-
order statistics are given by the X distribution specified in Eq. (2.7),

2

it is interesting to note [Ref. 22] that if x_, x xn are indepen-

1’ %o oo
dent gaussian variables, each distributed as N(O,cz), then

1 2
Y=|% z X, (2.13)

is distributed as x(n,g). Thus it is seen that |b(t)| has a relation-
ship to a combination of gaussian variables that may be useful in later

calculations, It will be shown below that @ in the range 2 <9< 4 1is
appropriate to fit measured data on atmospheric .oise, with 6 = 3 being

appropriate to fit a large body of data at vlf and 1f. Now

2
1
p.(y) = == , < y<o, (2.14)
y 6|3 2 [ 2 2]372
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so that E[y]eLs = 0 and var(y)eJ__3 = o, Thus it is seen that =3
results in an infinite variance, so that this is not a model for a phys-
ical noise, although it will be found to fit the data very closely. This
problem of infinite variance will be considered in detail in Section C,
and it will be shown that there are two possible solutions to the diffi-
culty:

1. The measured data actually requires 9 > 3 for an optimum fit at
large values of y, so that var(y) is bounded; or

2, T7The generalized "t" model as formulated in this development re-
quires modification in that the measured data depart from the model
for cumulative envelope probabilities greater than about one minus
1075, It will be shown that the messured data in this region of
envelope probabilities, which is somewhat suspect because of the
tremendous dynamic range required for its observation, can be fitted
well by truncating pa(a) given by Eq. (2.8) at some point. This
truncation will have negligible effect on py(y) as determined
above in Eq. (2.12) for cumulative probabilities smaller than about
1-10"5, so that the truncation is not of practical significance in
most problems of interest.

It should be mentioned that the above discussion, which indicates
that the atmospheric noise has very large average power, agrees in princi-

ple with the results of Mandelbrot [Ref. 21] in which he notes that inter-

mittent phenomena often appear to have barely convergent, or even divergent,

second moments dependent strongly on sample size, Mandelbrot [Ref. 21 )
also gives an excellent discussion of how the mathematical result of in-
finite variance is to be interpreted in a physical application.

Finally, it is noted that py(y) as given by Eq. (2.12) is a
function only of the two parameters © and 5. This result is in agree-
ment with measured data [Refs. 9, 10, 11} on the first-order statistics
of atmospheric noise, in which it is found that these statistics are ade~
quately described by the rms value of the noise together with the ratio

of this rms value to the average value of the noise envelope.

C. VERIFICATION OF APPLICABILITY OF THE GENERALIZED '"t" MODEL

Although a heuristic argument indicating the plausibility of choosing

a model of the type of the generalized "t" model accompanied the develop-

ment of this model, it remains to be shown that a specific form of the model

is in fact of any practical use uas a model for received atmospheric noise.
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Since we are attempting to develop a model for a random process, the mea-
surements required to check the validity of the model fall into two cate-
gories, as follows:

The first of these categories, and the one for which the greatest
amount of experimental data are available, is concerned with the first-
order statistics of the random process. The particular measurements in
this category that have been reported in the literature are measurements
of the probability distribution of the envelope of the received noise
[Refs, 6, 9, 10, 11, 12}, and measurements of the average number of level
crossings per unit time of a fixed level by the envelope of the received
noise [Refs. 9, 10]. Relatively extiasive measurements have been made of
the probability distributicon function of the envelope, and these measure-
ments huve been used exclusively in the verification of the empirical mod-
els discussed in Section A2, Thus, as the first step in the verification
of the applicability of the generalized "t" model, the probability dis-
tribution function of the envelope will be calculated, Particular interest
will center on the fit of the model as a function of band center frequency
and receiver bandwidth. Because of the fact that we are interested in
modeling the atmospheric noise in as wide a bandwidth as possible subject
to the interfering signal constraint discussed in the model development,
the model will be checked using the widest bandwidth data available, It
is noted, however, that all reported data have been obtained in bandwidths
Justifying a narrowband assumption for the received noise. In this narrow-
band case, the envelope V(t) and phase ¢(t) of the received noise
waveform have an unambiguous and physical (operationally meaningful) signif-
icance, Further, the available data on the first-oxder statistics of V(t),
plus the intuitive notion that ¢{(t) must be uniformly distributed in the
interval [0,2x], provide the opportunity to check conclusively the appli-
cability of the generalized "t" model as far as the first-order statis-
tics are concerned.

As a further check on the first-order statistics of the model, the
average number of level crossings by the envelope per unit time will be
calculated. This calculation is of interest, because it bears out the
experimental fact that the average number of level crossings per unit time

for the case of atmospheric noise is not given by the product of the
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probability density function of the envelope with a suitable bandwidth
factor, as it would be if the noise were a gaussian process {Ref. 24].
It is noted that this calculation has not been carried out for any of the
empirical models ciscussed in Section A2, although Nakai (Ref. 25] has
obtainced numerical results in agreement with the experimental data of Watt
and Maxwell for a filtereu-impulse model in which the noise pulses occur
in a Poisson fashion,

The sccond category of measured data, and the one where much less data
are available, is concerned with the second- and higher-order statistics
or the random process. The particular measurements that have been reported
in this category are measurements of the probability distribution of the
time interval between crossings of a specified l2vel by the envelopc of
the noise [Ref. 9]. While availaple experimental data are spa se, being
restiricted to a few measurements at vlf, it is also true that the analyt-
ical derivatlion of these statistices is complicated, requiriag machine com-
putation in the general case, Nevertheless, this derivation will be
considered in detail in Section C2 and limiting cases will be presented to
demonstrate that the higher-order statistics of the generalized "t" model
can be selected to fit the measured data. It is noted that the interpre-
tation that the generalized "t" model is made up of a narrowband gaussian
noise modulated by a slowly varying random process will be useful in the

specification of these higher-order statistics.

1. First-Order Distributions of Envelope and Phase

As discussed above, the significance of the representation

y(t) = v(t) coslwyr + o(t)] (2.15)

for narrowband received noise is clear. In order to check the applicabil-
ity of the generalized "t" model as far as the first-order statistics

are concerned, it is sufficient to calculate the joint probability density
pv’?(v,@) of envelope and phase which can be accomplished as follows: It

is well known that [Ref. 26]
4 .
V,o) =V ~(V cos o, \ sin 2.16
Py, o '®) Py 5 9 w) { )
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where V = (y2 + ;2)1/2, P = tan-l(;/y), and ;(t) is the quadrature

component corresponding to y(t) which can be found by taking the Hilbert

transformT of v(t). Perhaps the easiest way of finding y(t) here 1s

to pass y(t) through a Hilbert transforming filter as shown in Fig. 2.

Now, recalling that

y(t) = a(t) n(t) ,

(2.3)

where n(t) 1is a zero-mean stationary narrowband gaussian pro.:css and

a(t) is assumed to be a slowly varying stationary random process, it is

useful to make the specific assumption, depicted in Fig. 3,

|
NS N

that in fact

y(t) -
H{t)= -i1sgn f

FIG. 2. HILBERT TRANSFORMING FILTER.

N(f)

T~
) S ——

/

- Y1)

]
- o 0 fo

FIG. 3. TYPICAL FOURIER TRANSFORMS, A(f) AND N(f), OF
n(t)., (Magnitude only)

See "Conventions," p. xi.
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the Fourier transformT A(f) of a(t) has, with high probability, neg-
ligible overlap in the frequency domain with the Fourier transform N(f)
of n(t).

Define Y(f) as the Fourier transform of y(t); then with the
above assumption, it follows directly that ?(f), the Fourier transform

of y(t), is given by

Y(£) = (-1 sgn £) Y(£)
0 o0
~ i f N(a) A(f-a) do - i f N{a) A(f=a) da
=00 0
~ A(f) * N(£) , i=,~1, (2.17)

where * signifies the convolution of A(f) with §(f).T Thus it is
found that, with the assumption of negligible overlap of A(f) and N(f)

(which is intuitively reasonable for the noise of interest),
y(t) =~ a(t) n(t) . (2.18)

Now, n(t) being a gaussian process implies that ;(t) is a gaussian
process where it is easily shown that n(t) and ;(t) at the same time
instant t are independent and identically d;stributed random variables.

Thus it follows that

P, 5(ny) = o ~(y.5)

(o2}
-0
oo

N""‘
'sz

T
% ke
® e
S

(2.19)

1]
b
ro""
’U
??
O
X <
S
=3
" kel
~——”

iréee "Conventions," p. xi.
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2 x

p,(x) = px(x) = (21:01‘) exp{- = ],
201

and where pa(x) is given by Eq. (2.8). Making a change of variable and
using Dwight, item 860,17, this yields

b, ~(y,3) = Lez2) Al : ,
y,y ' 2n [ 2 w2 2](6+1)/2
y +¥y +7

(2.20)

where y and § are defined in Eq. (2.12), Now, substituting &q. (2.20)
into Eq. (2.16):

-1) 39'1 v
pV.q?(v'q)) - {2 12:( o g1le+l)/2 ?
[V + 9 ]

py (V) pw(@) 0<V<w, 0<p< 2. (2.21)

Thus, finally:

pv(V) = (-1) 79-1 0<V<w (2.22)

and

1
pw(@) =3 0< @< 2n. (2.23)
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a. Discussion of Calculated Results

The results calculated above lead to the following comments

and conclusions:

1,

2,

As anticipated, @(t) is found to be uniformly distribufed in the
interval [0,2x] in accord with intuition.

It is noted that the results on pv(V) and p,(p) straightforwardly
calculated above could have been deduced direc?ly using the formula-
tion assumed in Eq, (2.4) along with the reasonable assumption that
the phase is uniformly distributed in [0,2n].

Finally, it is important to note, in support of the generalized "t"
model as a model for received atmospheric noise, the following as-
ymptotic forms of pV(V):

-1 1
1im p (V) = (8-1) »° < (2.24)
v v v2
lim pv(V) = (6-1) 5 = lim — exp|{- —3 }, (2.25)
v=+ 0 ¥ V-0 Ty 20‘2

where
2
2
(o7 B .
2 8-1

Taus it is seen that for large V/7 the generalized "t" model has
precisely the desired behavior specified by Eq. (2.6), while for
small V/y the envelope of the generalized "t" model behaves as

if it were Rayleigh-distributed. This is of course in agreement with
both experimental results and intuition, since the noise at low lev-
els is expected to be the result of contributions from a large num-
ber of independent noise sources.

Now, to proceed with the comparison of the distribution of the

envelope given by the generalized "t" model with available measured data,

it is necessary to compute the complement of the envelope probability dis-

tribution function, i.e., go find PO(V), where

PSP -
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po(v) =1-pP(V) = Jr Pv(x) dx , (2.26)
v

in which pv(x) is given by Eq. (2.22). Evaluation of this integral

gives

9"1 ( )
2 2 (9 1) 2 ! ’
( ) - /

PO(V) calculated as above is plotted in Figs 4 through 13
along with measured data from Watt and Maxwell [Ref. 9] (Figs. 4-9) and
Clarke et al [Ref. 10] (Figs. 10-13). (Note that in the figures,
log| log PO(V)| is plotted vs 1log V. This choice of scales has the

1]

P,y (v)

interesting property that the Rayleigh-distributed envelope plots as a
straight line.) In addition, Fig. 14 using data from Furutsu and Ishida
[Ref. 6] is presented to demonstrate the variation observed in the sta-
tistics of the received noise at hf where the choice of an appropriate
noise model is strongly a function of local thunderstorm activity,

In order to produce these plots, it was necessary to specify
values to be taken on by the two parameters of the model » and 6. The
plots in these figures were produced by letting © take on integer values
as labeled, while v was chosen in the following manner: For the case
8 = 3, y was chosen to make E[V] = vavg’ where E[V] 1is the expected
value of the envelope as given by the model, and Vavg is the time aver-f
age of the envelope of the received noise obtained by direct measurement.

Now

v

E(V) = vV p,, (V) av , 2.28
1 of () | av (2.28)

TFor Figs, 10 and 11, vav§ was obtained by using the ratio V
i

A
presented by Clarke, et a Tms’ ave

n their Section 3.1.
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Figures 4 through 14

appear on the following pages.
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FIG., 10. COMPOSITE PROBABILITY DISTRIBUTION FUNCTION OF THE ENVELOPE

OF RECEIVED VLF ATMOSPHERIC NOISE:

DATA MEASURED AT SLOUGE, ENGLAND AND AT SINGAPORE,

Po(v)

= Probability that envelope intensity V

exceeds abscissa value,

(Note: Vertical scale is 1log|log PO(V)I.]

LEGEND:

Measured data, Slough, England

Band center frequency, fo =

Receiver power bandwidth

(Clarke, ct al, [Ref. 10])

Measured data, Singapore

(Same conditions as above)

Generalized "tY model
9 = 3

0.636 V, v e

b4

Modified generalized "t" mod-l

8 =3
y = 0.636 V
6
8%5% = 2.5 x 10

Rayleigh-distributed envelope

2

2
E[V7] = vrms

-39 -

24 kc
425 cps

COMPARISON OF MODEL RESULTS WITH

E[v] = 13 db below v
ms
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FIG. 11. COMPOSITE PROBABILITY DISTRIBUTION FUNCTION OF THE ENVELOPE
OF RECEIVED LF ATMOSPHERIC NOISE: COMPARISON OF MODEL RESU..S WITH

DATA MEASURED AT SLOUGH, ENGLAND AND AT SINGAPORE,

PO(V) = Probability that envelope intensity V
exceeds abscissa value,

(Note: Vertical scale is 1log|log PO(V)].}

LEGEND:
—_— Measured data, Slough, England
Band center frequency, fo = 135 kc
Receiver power bandwidth = 425 cps
(Clarke, et al, (Ref. 10])
2
— Measured data, Singapore
Band center frequency, fo = 145 k¢
Receiver power bandwidth = 425 cps

(Clarke, et al, [Ref. 10])

3
o= = === Generalized "t'" model
g =3
- = A
y = 0,636 V, V = E[V] ~ 6 db below V
rms
4
— s e Generalized "t" model
9 =2
y = 33 db below V
rms
5
s ¢emm= + Rayleigh-distributed envelope
E[v?] = v ]

SRR A

4

H

rms
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FIG., 12. COMPOSITE PROBABILITY DISTRIBUTION FUNCTION OF THE ENVELOPE
OF RECEIVED HF ATMOSPHERIC NOISE: COMPARISON OF MODEL RESULTS WITH
DATA MEASURED AT SLOUGH, ENGLAND AND AT SINGAPORE.

P (v)
otV

= Probability that envelope intensity V

exceeds abscissa value,

[Note: Vertical scale is log|log PO(V)|.}

LEGEND:

-y ¢ CSe— ¢

Measured data, Slough, England

Band center frequency, fo = 11 Mc
Receiver power bandwidth = 425 cps

(Clarke, et al, [Ref. 10})
Measured data, Singapore

(Same conditions as above)
Generalized "t" model

e =4

~ ~r A 2
y = 0,707 V__, = E[V®] ~ 10 db above v2
rms X.is rms

(see footnote, page 48)

Raylei: u- listributed envelope
2 ~2
E[V'] = v

rms
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FIG, 13, COMPOSITE PROBABILITY DISTRIBUTION FUNCTION OF THE ENVELOPE
OF RECEIVED HF ATMOSPHERIC NOISE: COMPARISON OF MODEL RESULTS WITH
DATA MEASURED AT SLOUGH, ENGLAND AND AT SINGAPORE,

e
po(v) = Probability that envelope intensity V
. exceeds abscissa value,
- [Note: Vertical scale is logllog PO(V)I.] §
i
R LEGEND: i
i £
1 |
8 Measured data, Slough, England E.
3 £
- Band center frequency, fo = 20 Mc H
Receiver power bandwidth = 425 cps =
TF (Clarke, et al, [Ref. 10]) é
& &
\ :
\ e—memeees  Measured data, Singapore .
C 9 (Same conditions as above) ¥
SR
3
- o= e ==  Generalized "t" model é*
3 o = 4 §
~ ~ 2 s g
¢ y =0,07V_, V2 L E[WV®) ~ 10 db below V2 g
‘ rms rms rms 3
3 (see footnote, page 48) §
.- 4 £
L e==—=cse==m . Rayleigh-distributed envelope s
. 2 ~2 3
E[V'] =V ]
rms 3
N :
§ 1
[ 4
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FIG, 14, PROBABILITY DISTRIBUTION FUNCTION OF THE ENVELOPE OF RECEIVED
HF ATMOSPHERIC NOISE: DEMONSTRATION OF EFFECT OF A PREDOMINANT LOCAL
NOISE SOURCE,

PO(V) = Probability that envelope intensity V
exceeds abscissa value

{Note: Vertical scale is log|log PO(V)I.]

LEGEND:

Measured data (Furutsu and Ishida [Ref. 6])
Ohira, Japan, 0218, Feb. 19, 1957
(Predominant local noise source)

Band center frequency, fo = 3,5 Mc
Receiver bandwidth = 1.2 ke

@ = 5 db below ¢ ({see [Ref. 6], Fig. 8(a)}

— Measured data (Furutsu and Ishida [Ref, 6])
Ohira, Japan, 0605, Feb. 19, 1957
(gg predominant local noise source)
Band center frequency, fo = 3,5 Mc
Receiver bandwidth = 1.2 ke

O = 10 db above a, {see [Ref. 6], Fig. 9(a))

3
e se—s+ Rayleigh-distributed envelope

=V
rms
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where

i V
p (V) | = 22—
\' 6=3 2

(V2 + 72)

follows from Eq. (2.22). Thus it is found that z':[vjel_3 =% ; so that,

Ior the case 8 =3, y was che } to satisfy

2
= == V . .
7= Ve (2.29)
For the case ¢ = 4, because of the fact that V and not V was
ms avg
presented in the measured data where 0 = 4 was appropriate, oy was

2
chosen to make (E[Vz])l/ = vrms’T (It is noted that, if available,

avg is preferred to vrms for culibration, since it is less dependent
on large values of V, at which values the measured data are least reli-~
able because of the tremendous dynamic range and loag observation time

required to obtain valid results.) Now

o]

fvz py(V) | av

0 o=4

Elv?) |
0=4

o0}
, 3
2
J 3,3 — v 2)5 s dv = 20 (2.30)

0 (V¥ +y

so that, for the case 0 = 4, y was chosen to satisfy

2y (2.31)

y = 2
’ rms

TFor Figs., 12 and 13, ?rms ¥ Veoms Was chosen to give the best fit, since
values of V... presented by Clarke, et al in their Fig. 6, for the cases
at 11 Mc and 20 Mc, are not compatible with cach other.
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Finally, for the case { = 2, y was chosen empirically to give the Lest
fit to the measured data, since none of the moments of the envelope of
the generalized "t" model are finite in this case. (The nonexistence

of thes= moments is discussed further in the next section.)
b. Discussion »f Plotted Results

The plotted results are reasonably self-explanatory, but sev-
eral comments and conclusions of interest are warranted. Because of the
extremely impulsive nature of the received atmospheric noise at vlf, it
is anticipated that the generalized "t" model for the received noise
will be most useful in this portion of the spectrum. Thus the plotted
results emphasize the vlf region, the applicable figures being Figs. 4 to
10. Further, because of the fact mentioned in the introductien that the
spectral shape of the received noise is determined by the receiver in all
cases of available mecasured data, and since it is desired to model the

noise as little affected by the receiver as possible, the plotted data in

Figs. 4 to 9 make use of the widest-band measured data known to the author,

It is noted, however, that a closely similar form is obtained for the dis-
tribution of the envelope for bandwidths in the range from about 100 cps
up to at least 2 ke, which is the largest bandwidth for which any experi-

mental results have been reported., Verification of this statement is con-

tained in the experimental resuits of Watt and Maxwell [Ref. 9} and Harwood

{Ref. 27], and it is supported by Fig., 10, where the data were obtained in
a 425-cps bandwidth rather than in the 1000-to 1300-cps bandwidths used to
obtain Figs, 4 to 9., With this explanation of the choice of v1f experi-
mental data, the conclusions to note are:
1. At vlf the generalized "t" model is obviously a much better fit to
the received noise than 1s a gaussian model (Raylcigh disiributed

enveiope). Quantitatively, it is seen that in most cases the gen-
eralized "t model gives a gond fit for cumulative envelope prob-

abilities smaller than about 1--10"5 or more, while the gaussian model
’ g

gives a good fit only for cumulative envelope probabilities smaller
than about 1-10"1,

2. It is seen that a good fit tc the measured vl1f data is attained by
the generalized "t" model when the parameter & 1is assigned an
appropriate value in the range 2 < § < 4, and the parameter 7y
is chosen according to an appropriate moment of the envelope given
8 as discussed above. It is interesting to note that the choice of

2 is dependent on the location, number, ana intensity of noise

~

sources, since in general, the smaller values of & are recquired to
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fit the Canal Zone data (Figs, 8 and 9) characterized by strong local
thunderstorm activity, while the lorger values of @ are appro-

priate for the Alaskan data (Figs. 4 and 5) characterized by much
less local thunderstorm activity,

In addition to the fit of the generalized "t" model at vlf, it 1s of
interest to consider the applicability of the model as the band center

frequency fO is increasced. This subject is considered in Figs, 10 to 14

and leads to the following conclusions:

1. Although the improvement shown by the generalized "t" model us
"ompared with a gaussian model is most dramatic at vif (Fig. 10)
and at 1f (Fig. 11) it is seen that the generalized "t" moael
may have application at frequencies up to and including the hf band
(Figs. 12 and 13). The fact that the importance of individual noise
source components decreases with increasing band center frequency
is evident in the plotted data however, and Fig. 14 is presented to
emphasize that the choice between the gaussian model and the gener-
alized "t" model is not as clear at hf as it is at vlf, 1.e.,
Fig. 14 shows that the statistics of hf atmospheric noise are
strongly a function of local thunderstorm acti "ity.

2. Tt is seen, consistent with the fact that the dynamic range of the
received noise decreases with increasing band center frequency, that
the value of 8 required to fit the measured data increases with
band center frequency with § > 4 being appropriate at hf (Figs. 12
and 13).

In summary of the above discussion, it is connluded that the first-order
statistics of the generalized "t" model are in good agreement with a
usefully wide range of measured data on received atmospheric noise. The
fit of the generalized "t model is seen to be esperially good at vif
and 1f in those situations characterized by low-to-moderate local thunder-
storm activity,

With this result in mind, it is of interest to consider modifi-
cations to the generalized "t" model that will improve its fit when either
the measured data is characterized by strong lecal thunderstorm activity
or the band center frequency of interest is increased to hf, The plotted
results discussed above are useful in suggesting the appropriate modifica-
tions when the following observations are made:

1. It is noted above that the generalized "¢" model produces a prob-
ability distribution for the envelope that diverges from some experi-
mental results for cumulative probabilities above about 1-107° (see,
for exampie, Figs. 10 to 13). It is emphasized that this diverge .:e

is somewhat questionable at v1if because of the tremendous d+:gaic
range required for the receiver to observe these probabilii-rs without
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distortion, so that it may be receiver nonlinearity that causes i
this apparent divergence. 1In fact, it is seen that the relatively :
wideband data in Figs., 4 to 9 adapted from Watt and Maxwell do not
exhibit this divergence, whereas i¢ is evident in the relatively

W 3

R ' narrowband data in Fig., 10 adaptea from Clarke, £t al as well as in

. .E' relatively narrowband data prescented by Watt anu Maxwell (Ref. 9].

,f"?‘ Thus, despite the questionable existeance of the divergence between i
5. measured and generalized "t" model curves for bandwidths greater 1
L than about 10006 cps at vlf, the fact that such a divergence is seen :

in narrowerrbandwidths for cumulative probabilities greater than

about 1-1079, plus the fact that the divergence may become more ev-

ident as the band center frequency of interest is increased (see

PO Fig. 14" 1indicate the desirability of modifying the generalized
k- model tu uccommodate this hehavior.

Iltli

2. It is pointed out above that the fit of the generalized "t" model
to measured v1f data is optimized if 6 is chosen arwvropriately in

o the range 2 < § < 4, Now, as meniioncd in Section Bl, 2 in the
R - range 2 < 9 < 3 means that E[y2] = =, so that the generalized
"t" model with g9 1in this range does not correspond Lo a physical
a noise. This is not disturbing, since it is expected {Refs. 18 and

3 21] that models for "impulsive" phenomena will be characterized by
¢ barely convergent or divergent second moments bhecause of the large
dynamic range which these models must pessess. Despite this argu-
ment, it is desirable to consider modifications to the generalized
"t" model which satisfy the condition that every physical noise has
finite average power.

P SRR SN ot 2
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c. Development of the Modified Generalized "t" Model

With the above observations in mind, the modification proposcd
here is merely that the ensemble of values that the modulating process

a(t) can assume be truncated as follows:

m+1 2
[ a] . 2¢ a

t pﬂ(a) - exp(— —'ﬂg i—) , B<a<B, (2.32)
. 2

where k 1is chosen to satis{y

-8

The physical justification for this modification is simply that since eca.h

:-» lighining stroke must emit finite energy the measured data must diverge at
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some level from the generaulized "t" model with 6 < 3. The above trun-
cation of the range of a(t) is perhaps the simplest way to introduce
into the generalized "t" model a change in trend that will follow the

;; ) change in trend of the measured data for cumulative probabilities above
about 1-107% (see Figs. 10 to 14). Furthermore, 1t is clear in agreement
with the measured data that this trend change will occur at lower noise
levels if either the receiver bandwidth is reduced or the band center fre-
quency is increased, since either procedure results in reducing the impor-

tance of any single lightning stroke to the received noise. Now, applying

ot @

T e Lt I

F : the same proccdure used in conjunction with the generalized "t" model
in order to calculate the distribution of the envelope for the modified ;

generalized "t" model, it is found that

(¥ 2
kV m \
pv(V) = f -—2- exp|- '—-2 + == 1 T] dT . (2-33)

2
2 © 20 20) |

This integral is easily evaluated in closed form for m even, and we will
proceed by considering m = 2, which corresponds to the important case

- 9 = 3. (See Appendix A for evaluaticn of Eq. (2.33) with m odd.) Thus, .
taking m = 2 and substitutaing the proper value for the normalizing con-

stant k, it is found using Dwight, item 567.9, that

7, i // 2\ ‘2
L p, (V) ! = 2V expl- L +
v ) - 22,2 2
6-3 \253@1 (1) Bel ey

Nl

where

ne
—
S
N
[
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Now, calculating the complement of the probability distribu-

tion function for comparison with the measured data,

2
T NV S |
po(v) b= 5 OXp >

0=3

This result is plotted in Fig.

2

(2.35)

2

B oy

10, where it is seen that the mod.:ication

has the desired effect of improving the fit of the model to mcasured data

-6
at cumulative probabilities above about 1-10 without significantly

altering the fit at lower cumulative probabilities.

that the modified generalized

by the generalized "t" model.

Thus it is concluded

model has flexibility not possessed

This flexibility may be of practical

significance wher the dynamic range of the received noise becomes suffi-

ciently limited because of either increasing band center frequency or

decreasing receiver bandwidth,

Finally, it is conjectured that the model can be further

improved with regard to its ability to fit measured data characterized

by strong local thunderstorm activity by taking the first-order statis-

tics of a{t) to be given by

( k
m +]
la] !
p_(a) = {
k
2
Ia'm2+1
~

m 1 N
2 2 lal <8,
20"0 a
(2.3s5)
. o1 <} <B
exp(~ —5 3| 81 ial < B,
20‘2 a

This second modification will not be further considered here, because it

does not fundamentally change the form of the model although it substan-

tially complicates the calculations of interest.

2, Average Intensity of Envelope Level Crossings

As discussed earlier,

it is of interest to calcul-te the average

number of crossings vf a fixed level by the envelope of the noise per unit
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time, both as a further check on the first-order statistics of the gen-

craiized "t" mode) and as a demonstration of the analytical usefulness
of this mudel. Lelting vavoi denote tho average number of crossings '
of the level VO by the envelope per second, it is well known (Ref. 24

that for an ergodic random process V(t)
o0
N, (Vo) - Jf IVl oy yVV) | av (2.37)
V=V

. A .
where V{t) = d/dt v(t). Now, it was shown in Section Cl that with the
assumption of negligible spectral overlap of a(t) and n(t),

v(t) = [a(t)] E(t) , (2.4)

where E(t) is the envelope of the narrowband gaussian process n(t).

Thus
»
v(t) =~ fa(t)] E(t) + Ja(t)] E(t) . (2.38)
L 4
However, noting that the available experimental measurements of szV05,
which are presented in Fig. 15, were obtained in a bandwidth of 1100 cps,
it is interesting to consider .he assumption that the modulating function
a(t) ts sufficiently slowly varying so that with high probability i
la{t)IE(t) >> |a(t)] E(t) . (2.39)
This assumption is of interest since it means that with high probability i
¥
v(r) = la()l E(1) , (2.40) %
T

so that one can write
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0<x<w
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| a (x) = — exp(- 535
20 X

m m
o I‘(;) [ x

follows from Eq. (2.8) and wher< pE é(v/x, V/x) is calculated as fol-
L

lows: Since E(t) is the envelope of a stationary gaussian process n(t)

with covariance function Rn(T), it can be shown [Ref. 26], making the

reasonable assumption that n(t) has finite second moment, that

pE,E(E’é) = E -— 7 if
1,0 [2x(,0 - £ty £
S n i
f
. exp{- = 5 + E ]
2|r (0) (-'R'n(o) - R—1(67 Eﬁ(o)>J g
. P
= p,(E) pi(E) , (2.42)

where Rn(o) = c? in che previous notation, and ﬁn(T) is the Hilbert

transform of Rn(T). Now, it is interesting to note that if

Rn(T) = RC(T) cos wyT (2.43)
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FIG. 15. AVERAGE RATE OF ENVELOPE LEVEL CROSSINGS: COMPARISON OF MGDEL
RESULTS WITH MEASURED VLF DATA,
)

3 LEGEND: i
14 Measured data: A° rage rate of envelope level 23
ds crossings. (Watt and Maxwell [Ref. 9]) §
8 Point Barrow, Alaska, 1450 A.S.T., Sept. 27, 1956

D Band center frequency, YO =27 .. ;%

Receiver 6-db bandwidth = 1100 cps g

H 6' antenna, N.E.~S.W. plane §

'-;— ’?{
2 15
¢ Measured data: Envelope probability density function. §

4 (Watt and Maxweli [Ref. 9:‘) :

} (Same conditions as above)

o

T . 3

H — et s Generalized "t" model: Average rate of envelope
i% level crossings.

‘ a =2

s ' y = 1.5 X 10°°

- g rms bandwidth, Bc = 500 cps

g 4

b — —— — Generalized "t" model: Envelope probability density
'é function,

; (same conditions as above) -
N

w B
l
g -
U
5
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where Sc(f). the Fourier transform of RC(T}, is zero for |f| > £,

(which ts in fact the case of interest in this development), then
R (0) - —1<—-5 %2(0) = -k _(0) . (2.44)
n Rn 0) n c -
Also, it is easily shown that in this situation
—ﬁc(o) = (2n)2 Rc(o) Bi = (2q)2 Rn(O) Bi , (2.45)
where

f

C
Bc = wdf

is defined to be the rms bandwidth of n(t). Thus, substituting these
results into Eq. (2.42):

2 -2

. E 1 E
p ‘(E,E) = expl{- —= |E + ——————— . (2.46)
2 3 2 2 2
E,B (2n)3/ B, o, 20, (2x) B,

Now, substituting this result into Eq. (2.41), making a change of variable,
and using Dwight, item 86C.17, it is found that

r 313) g-1
2 ¥

. 7Y = i,
p\,'v(vyvl a- 3/§ T6+2)/2 ’ g>1.
T
2 c 2 V 2
Vv + + 7y
L (2n)? 8
c
(2.47)
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Finally, substituting Eq. (2.47) into Eq. (2.37), there is obtained the

desired result

F('e_;?') 8“1/278-1 Be Yo

WO TEL) s e e Pttt
? (v + )

(2.48)

Now, the measured data presented by Watt and Maxwell [Ref. 9] and repro-
duced in Fig, 15 are for crossings of the level V0 in the positive
direction only, and are seen to correspond to the case § = 2, for which

formula (2.48) becomes

v
Né(vo) | =2 B, Py (2.49)
9=2 VO + oy

a, Discussion of Plotted Results

Although the basic agreement of the results derived using the
generalized "t" model with the measured level-crossing results is clear
from inspection of Fig. 15, the following comments and conclusions are in
order: Recalling the result due to Rice [Ref. 24] that if the noise were
gaussian the average number of level crossings by the envelope per second
would be equal to an appropriate bandwidth factor multiplied by the enve-
lope probability density function, it is once again clear that the gen-
eralized "t" model is far more appropriate than a gaussian model for v1f
atmospheric noise. 1In fact, it is seen that the generalized "t" model

gives the asymptotic result

8-1
lim  p (V) = (8-1) L0, e>1, (2.50)
VYo )
v o v
0 0
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whereas

" e st s o

F(ﬁig B _9-1 )
lim N = s/2 2 ) =7 . (2.51)

v''o 9-1\ © (6-1
Voo r(52) © v

In addition to being in good agreement with the experimental data from

Watt and Maxwell {Ref., 9], the asymptotic result given by Eq. (2.51) is

also in good agreement with the vlf level-crossing rate mecasurements

[
i
.- l made by Clarke, et zl (Ref. 10}, who find for thresholds in excess of the
i % average value of the noise envelope that Nv(VOS is given by

, -C
N ) =~ (VO/A) , (2.52)

vVo

i‘ where A and C  are consiants such that

2

) A~V +30db , 1.3<C< 2
' avg - -

- Taking now a closer look at the results plotted in Fig. 15, it .

"

is noted that, although the measured data correspond well with the general-

ized "t" model with @ = 2, the experimental determination of pV(VO)

contains no data points for envelope values larger than that corresponding

to 2.4 crossings per second. Now, consistent with the arguments presented !
earlier in the discussion of the distribution of the envelope, it is seen

that the slope of pv(vo) must change at high values of V since the

0)
noise has finite average power. Thus it is conjectured, although it will
not be considered further here, that the fit of the generalized "t

model to the measured level-crossing data can be further improved by em-

ploying the modified generalized "t" model proposed in subsection lc,

i In support of this conjecture, it is noted that the measured dats presented ¢
by Clarke, et al also shows a departure from the power law (VO/A)-C at
% - crossing rates below 1 per second, with this departure becoming less ap-
parent as the value of € 1increases. This behavior is consistent with ¢

the result found from cnvelope distribution considerations--namely that
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the generalized "t" model nrovides a better fit to the received noise
at vlf as the required value of @ increases corresponding to the situa-
tion of low~to-moderate local thunderstorm activity.

Finally, in summary, it is concluded that the data plotted
from Watt and Maxwell in Fig. 15, as well as comparisons with the experi-
mental results of Clarke, et al indicate good agreement between the aver-
age number of level crossings of the envelope given by the generalized
“t" model and by the measured vlf data, The significance of this agree-
ment is, of course, that it is further verification c¢f the applicability
nf the generalized "t" model as far as the first-order statistics of the
noise are concerned. From a physical point of view, this agreement in-
creases confidence in the generalized "t" model, since it indicates that
on the average the envelope of the model varies with time at the same rate
(at least at vlf) as the envelope of the received noise. To complete
verification of the applicability of the generalized "t" model as a model
for v1f atmospheric noise, it remains to investigate the manner in which
these variations with time occur., This is, of course, a function of the
second- and higher~order statistics of the noise, which will be the next
topic of discussion, Before leaving the present discussion of the average
level~crossing rate, however, it is noted that the fit of the model to the
measured data in Fig. 15 was achieved by taking the rms bandwidth Bc to
be 500 cps. On the other hand, the measured data were tsken in a 6-db
bandwidth of 1100 cps, which corresponds to an rms bandwidth of the order
of 400 cps. This discrepancy is not large, but may be a result of the as-
sumption that the term |a(t)|E(t) is negligible in Eq. (2.38). Thus it
is conjectured that the fit of the calculated level-crossing rate to the
experimental results may be improved by relaxing the above assumption,
which is equivalent to the assumption that the modulating process a(t)
has a much smaller bandwidth than the envelope E(t) of the narrowband
gaussian process n(t). Finally, it is pointed out that the bandwidth
factor is absorbed into the constant A in the work of Clarke, et al where
all of the measurements of level-crossing rate were made in a fixed power

bandwidth of 425 cps.
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3. The Distribution of Envelope Level Crossings

Having demonstrated that the first-order statistics of the gener-
alized

"t" model are in good agreement with measured data un received

atmospheric noise over an interesting range of receiver bandwidth and band
center frequency, completion of the verification of the applicability of

the model to received atmospheric noise requires investigation into the

higher-order statistics of the noise. Physically, this means that although
the consideration of the average rate of level crossings shows that the en-
velope of the generalized "t" model fluctuates at the same average rate
as the envelope of observed atmospheric noise, it remains to investigate
That is,

the fashion in which these fluctuations occur. it remains %o

verify that the higher-order statistics of the generalized "t" model can
be chosen so that the relationship between the process at various distinct
instants in time, as predicted by the model, is consistent with measured
results on this relationship. As mentioned earlier, the available experi-
mental data [Ref. 9] dependent on che Zigher-order statistics of the noise
consist of measurements of the probabil.ty distribution function of the
interval between successive crossings of 2 fixed level by the envelope of
the noise. Inspection of these data indicates tl .t at vlf the noise pulses
do not in general occur in a Poisson fashion, but rather that received
noise pulses are usually statistically dependent on preceding ones, Now,
the calculation of the probability distribution of the inter-level-crossing
interval is difficult, requiring numerical techniques to obtain even an
approximate solution [Refs. 24, 28, 29}. This is true even for the special
cas¢ of gaussian processes, which is the only case that has been treated

in any detail in the literature [Refs. 28, 29). Thus we will not attempt
to find an exact solution for the nongaussian situation of interest here,
but will resort to simplifying assumptions, based on an understanding of
g n in order to obtain an approximate solution,

the generalized model,

Noting, as discussed in the introduction, that the received atmospheric

noise of interest can be considered to be a narrowband random process, it

follows that its envelope can at ieast be 2ssumed to be bandlimited., Thus

it 1is proposed that a useful representation of the envelope in an interval
of observation -At <

t <T 1is given by
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where qi(t), i=0,..., N, 1is defined in Fig. 16 and where the value of
N required to make thic representation reasonable depends upon the band-

width through which the signal of duration T + At 1is observed.

q;{t)

fh
T R R L A e L e
Y

O / f| \ t Zs
: 0 t +Ar
2

t =L
2

, FIG. 16. DEFINITION ¢F q (t), 1 =0,..., N, WHERE t é@ '%) at.

Now, recalling that with the reasonable assumption of negli-

gible spectral overlap of a{t) and n(t) that

Lt e e

v(t) =~ |a(t)] E(t) , (2.4)

where E(t) is the envelope of the narrowband gaussian process n(t),

the representation in Eq. (2.53) becomes

N
1/2
. v(e) = S fa(e)] B(e,) (802 g, (¢) . (2.54)
ad 1 1 i i
i=0
. Let T now be cefined as the interval betwcen a down-crossing of the level

V0 by the envelcpe of the received noise, and the next up-crossing of the

o b S S
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same level, (This is the quantity whose statistics have been measured by
Watt and Maxwell [Ref. 9].) Applving the representation of V(t) pro-
posed in Eq. (2.53), it is seen that the probability distribution actually

measured by Watt and Maxwell is given by

PO(TO) e Probuability that T excceds T0

8 Pri{T > 'ro}

= Pr {no up~crossings of VO in [t, t+To] [ down-crossing of V0 at t}

Pr{no up-crossings of V in [O,To], down-crossing of V at t = 0}

= 0 0
- Pr {down-crossing of Vo &t t= o}
( Vi, ... 3
Pr {V\to) >V V(tl) < Vo , V(tNO) <V, (2.55)

= privit,) > Vo V(tl) 3N

where N = smallest integer 2 To/At.

With this simplified formulation of the solution for PO(TO), one
can now proceed to investigate the possibility of specifying the higher-
order statistics of a(t) and n(t) in such a way as to reproduce the
distribution of the inter-level~crossing interval observed experimentally.

Two special cases will be considered, as follows.
a, Case of Independent Samples

In this special case, which is the simplest case of interest,
it is assumed that the values taken on by the envelope at the (N0+1)
sampling instants are statistically independent. It is obvious that thic
assumption of independence greatly simplifies the evaluation of PO(TO)
given by Eq. (2.55); but it remains to verify that the representation of
V(t) given by Eq. (2.53) is ressonable in the light of the independence
assumption. Assuming that the observed atmospheric noise is bandlimited
by the receiver to an rf bandwidth 2B, it follows that the envelope of the
received noise is bandlimited to a frequency band of width 2B centered

about zcro frequency [Ref. 30]. Thus it can be shown [Ref. 31} that this
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R R




bandlimited envelope V(t) ig approximately described in the time inter-
val [O,TOJ by its samples at NO equidistant instants, where NO = ZTOB
is required if the samples are to be reasonably assumed both independent
and sufficient in number to yield a good approximation. Such a represen-

tation is given by:

LN S

2
TOB

qu=z v(e,) 5 (1), (2.56)
i=1

where the ti are defined as in Fig. 16 and where the best approximation
to V(t) comes from taking the ?i(t) to be the prolate spheroidal wave
functions [Ref. 31]. However, because the spectral shape of the received
atmospheric noise is determined by the filter through which it is observed
in the situations of practical interest, it is pror~sed that the represen-

tation in Eq. (2.53) in terms of the pulse "basis" .  tions qi(t),

RO B8 T SNG4 5 R SR .

i=0, ..., ZTOB, is in fact a reasonable approximation to the envelope of

this filtered "white" noise,

Now, making use of the assumption that the (2ToB+1) samples

in Eq. (2.55) are statistically independent, it is found directly that

(2TOB-1)
PO(TO) = [prgv(t) < VO}J , (2.57)
where, from Bq. (2.27),
19‘1
Priv(t) < vo; =1 - = ) CEVAR (2.58)
Wo+7)
® Thus, for the case of independent samples,
&
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Po(Ty) = {1 - , 510/ . (2.59)

Special cases of this result corresponding to 6 = 2 and 9§ =3 are
plotted in Fig. 17 along with data taken from Watt and Maxwell [Ref. 9],
and the special case corresponding to 6 = 2 is also plotted in Fig. 18
along with data taken from Watt and Maxwell and along with data from the
constant a(t) case considered below. It is seen that the assumption of
independent samples, like the assumption that noise pulses occur in a
Poisson fashion (exponentiaily distributed intervals, Fig. 17), neglects
certain dependencies between adjacent level crossings.f In fact, it is

seen that for the high levels of most interest, i.e., for V0 >> 7y,

9-1
; = - 2
lim PO(TO) = exp 28<v> Tol (2.60)
A 0
0
———— =P OO
V4

s> that the assumption of independent samples produces exponentially dis-

tributed inter-level-crossing intervals at high levels. It is noted that
the value of PO(TO) given by Eq. (2.59) and plotted in Figs. 17 and 18
is actually consistent with Eq. (2.55) only for those values of To such
that 2TOB is an integer. A smooth curve is fitted through these points
in preference to the step function specified by Eq. (2.55) because the
probability distribution function of the interval is of course continuous
in nature. In any case, the discrepancy between the smooth curve and the
associated step function is negligible at large values of ZTOB, the sit-

uation of most interest. Now, the goal of the calculation of the probabil-

ity distribution of the inter-level-crossing interval here is to investigate

It is noted that the discrepancy between the calculated and measured re-
sults at low values of Tg is due in part to the breakdown of the assump-
tion that No = 2708 is sufficient at low values of the TOB product.
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our ability to specify the higher-order statistics of the generalized

"t" model in order to reproduce the distribution of inter-level-crossing
intervals observed experizientally. The assumption of independent samples
is seen to give a distribution which agrees with some experimental data
but which, in general, neglects some observed dependence between adjacent
level crossings. A second specisal case will now be considered in an

attempt to introduce this observed dependence into the calculated results.
b. Constant alt) Case

In this special case the slowly varying modulating function
a(t) is in fact assumed to be constant for the duration of observation,

so that V(t) as represented by Eq., (2.54) takes the form

N

- 1/2
v(e) =~ Y el B(1,) (ae) 0 (1) (2.61)
i=0
In order to complete the specification of V(t) in the interval [ﬂAt,TOJ,

which is the interval of interest in Eq. (2.55), it is assumed that the
(NO+1) samples of E(t) are statistically independent [recalling that
E(t) is the envelope of the narrowband gaussian process n(t)]. Thus it
follows from the development of the independent-samples case that

N =~ 2T B 1is required, so that the represcntation of V(t) in the inter-

0 0
val [-At, To] takes in this case the form

2T B
v(t) ~ |a zz E(t,) (Ati)l/z q,(t) . (2.62)

i=0

Now, turning to the calculation of PO(TO) as given by Eq. (2.55), it is
seen that the solution requires evaluation of the joint probability dis-~

tribution

A a
— 4
Pr{V(tO) > Vo V(tl) <Vgr voe V(tN) < vo} = pN(\O) . (2.63)
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Now, in this constant a(t) case

- Vo Vo
pN(vo) = f av, f av, ... J’ vy p!(g) , (2.64)
v, 0 0
where
pv(g)épv v. Wgr coos V) =p 1 g g Vgr woen V)
v o vV O | a} IRERY | al N !
in which
V(ti) R v,
= y 1=0, ..., N,
E(ti) E,
Thus
(o o]
1 v
py(V) =} ax <5 Pl (x) ppls) (2.65)
y : X E
where
A N |E, r:f
p£(§)=pE, o B (Bpr e By) = M= exp|- —5
- 0 N i=0 oy 201

follows from Eq. (2.10), since E(t) 1is the envelope of n(t), and where
P a’(x) is given by Eq. (2.41). Evaluating Eq, (2.65) by making a change
of variable so that Dwight, item 860.17, is appropriate:

SEL-66-052 - 72 -

R |




S R S

N
r(” +m 4 2) n (v,)
N+1 2 m 1=0
vy . ” . .
py_(-’-’ F(_nl) . {(2N+m+2)/2 (2.66)
2 4
2 2
(vi) Ty
i=0
Substituting this result into Eq. (2.64),
2N + m +
r( =)
a N 2 _!''m
pN(vo) 2 I‘(-"l> y
2
w Yo Vo
1
v 4 k .
f o Yo f 1 4 j N Wy N (2N+m+2)/2
v 0 0
0 z ( 2) 2
V1 +

(2.67)

Now, Eq. (2.67) can be ~valuated by recursively applying Dwight, item
201.9, which gives the result

ﬁ(v)_2N+lr(-2_§_t%—t—2— m 1
N - F(%) 7 TeN +m){(2N +m -2) ... (m)
N (_ )k N
: z - (“>m/2 . (2.68)

2
k=0 [(k+1)v0 +y

where (z) is the binomial coefficient.
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Finally, substituting Eq. (2.68) with the appropriate value
for N into the numerater and denominator respectively of Eq. (2.55)

gives the desired result

2N +m + 2
N ~1 =l .
p (1) = 2‘0 2 (m + 2)(m)
oo’ ~ ‘m + 4) (2N +m)(2N_ +m-2) ... (m)
rfF5=) o 0
N (N
0 (_.1 )K( 0
S s
b | qm/2
k=0 [(ks1)V2 + 52
: ’ (2.69)
. k
{-1) -
r Nm/2
k=0 (k+1)V§ * 72

where No = 2TOB. In the interesting special case 6 = 3 (m = 2), this

gives

2T B 2T B
0 (-l)k ( k0 >
A 2

k=0 k+1 +

(2.70;

-

P(T )| =—
00’ Ly 1 K

zi "‘L:ll“jg
k=0 k+1 + (2;)

Yo

This result is plotted in Fig. 18 for various values of 7/V s along with
results from the independent-samples case and experimental dgta taken from
Watt and Maxwell. These plotted results indicate that the constant a(t)
case is characterized by the fact that very shortT and very long inter-

level-crossing intervals occur with a higher probability at high levels

-+
This conclusion follows when we neglect TO corresponding to 2TyB <1,
where the Ng = 2TOB assumption breaks down.
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3 than is actually observed experimentally, This means that the constant

% a{t) case predicts more "clustering" of noise pulses than is consistent
<, with measured data, as contrasted tc the indevendent-samaples case, which

predicts less "clustering® than is actually observed. The usefulness of

this result is that it indlcates thke versatility cf the generalized "tV

model, and it is conjectured that the observed distribution of inter-level-

crossing intervals can be obtaineua with the generalized "t" model with
the proper specification of the higher-~order statistics of the modulating

process a(t). Although it will not be further considered here, it is

suggested that a reasonable approach to this problem follows {rom con-

sidering cthe special case 0 = 2 for which the generalized '"t" model

phiimdors LAy

4 takes the form

y(¢) =W1T7"('”) , (2.71)

Ln LTt

.(
T A T e

where n(t) is a zero-mean narrowbsnd gaussian process with covariance
' funcxion Rn(T), and b(t) is 5 zero-mean, slowly varying gaussian pro- ;
cess, independent of n(t), with covariance function Rb(T). Thus ia

this case the higher-order statistics of the modulating process are com-

. pletely specified by the covariance function Rb(T), so that investiga-
tion of the proper choice of these statistics appears to be analytically

feasible.

D. SUMMARY AND CONCLUSIONS

The work in this chapter has been concerned with the development of

A,

an analytical model for "impulsive" phenomenu and with verification of the

applicability of this model as a description of received atmospheric noise.

R The generaliz~d "t" model proposed here takes the received atmospheric

noise y(t) to be given by
y(t) = a(t) n(t) , (2.3)

where n(t) is a zero-mean, narrowband gaussian process with covariance

function Rn(T), and a(t) is a stationary slowly varying random process,
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independent of n(t), which modulates n(L). This modulating process

1s further described as
1
a(L) =‘m ) (2.72)

where the first-order statistics of b(t) are specified by the "two-sided"
chi distribution with parameters m and ¢ given by Eq. (2.8).

The applicability of the generalized "t" model as a model for re-
ceived atmospheric noise has been investigated in some detail in this
chapter, and the pertinent results can be summarized as follows: The
first~order statistics of the generalized "t" model are in good agree-
ment with experimental results, with this agreement be.ng particularly
good at v1f and 1lf in those situations characterized by low-to-moderate
local thunderstorm activity. This conclusion follows from results ob-
tained in Section Cl1 and C2, where it is shown that:

1. The probability distribution of the envelope of the generalized "t"
model is in good zgreement with a large amount of measured datn on
received atmospheric noise. This is demonstrated in Figs., 4 to 13.
it is noted that the agreement with measured data achieved by the
generalized "t" model compares favorably with that achievable by

either the filtered impulse or the empirical models discussed in
Secticn A2,

2. The phase of the generalized ™"t" model is distributed uniformly
in the interval [0, 2x] in agreement with intuition.

3. The average rate of crossings of a fixed level by the envelope of
the generalized "t" model is in good agreement with the available
measured data. This is demonstrated in Fig. 15, and means physi-
cally that the envelope of the generalized "t" model fluctuates
at the same average rate as does the envelope of received atmospheric
noise. It is noted that no calculation of this average rate of level
crossings has bee: reported for any of the empirical models, although
Nakai [Ref. 25] has obtained numerical results in agreement with the
measured data, using a filtered-impulse model.

The higher-order statistics of the generaiized "t" model can be specified
to give good agreement with experimental results, This conclusion follows
from the calculation in Section C3 of the probability distribution of the
interval between successive crossings of a fixed level by the envelope of

the model. This is demonstrated in Fig. 18, where the plotted data indi-

cate that the higher-order statistics of the modulating process a(t)
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[it is to be noted that these statistics are not yet specified in Eq., (2.72)
above] can be specified to produce the observed devendence between adjacent
level crossings, Physically this means that the generalized "t" model

can be specified to imitate the tendency of received atmospheric noise to
consist of clusters of noise pulses. This is an advantage of the gener-

alized "t" model over any of the empirical models or any of the filtered-

impulse models which assume the noise pulses to occur *n a Poisson fashion, H
S

Finally, it is concluded that the generalized "t" model is an appro- 5
priate model for received atmospheric noise that may be useful in the study %
of signal detection and estimation proktlems in the presenc:: of additive %
4

atmospheric noise. This will be demonstrated in Chapter II1I, where the g
detection problem is examined in detail. %
£

&

%;

:

§
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I11. APPLICATION OF THE GENERALIZED "t" MODEL

A. INTRODUCTION

In Chapter [I a new model for impulsive phenomena was develobed and
was demonstrated to be applicable to the representation of received atmo-
spheric noive. The work in this chapter is concerned with the application
cf this model to the signal detection problem in the presence of additive
atmospheric noise, Thur, the conmunication channel to be considered here
is the additive~-noise channel shown in Fig, 19, where m(t) is the trans-
mitted signsl, y(t) is the additive atmosph:ric noise, and x(t) is the
received sum of signal plus noise. Now, the goal of the analysis is che
determination of the receiver form which detects the transmitted signal
in the presence of additive atmospheric noise in an optimal manner with
respect to a performance criterion to be specified. Thus, while the addi-
tive neoise y(t) is given by the generalized "t" model, completion of
the statement of the statistical detection problem requires specification
of both the character of the transmitted signal and the performance cri~

terion to be used.

1. Summary of Known Results

Before proceeding w* .h this specification, however, a brief summary

of known results on the detection problem in the presence of additive atmo-~

spheric noice is presented, To the author's knowledge, no analytical re-

sult specifying an optimal receiver form for use in the presence of additive

+
m (1) /;?\ -~ x{t)

4

FiG. 19. DESCRIPIION OF ADDITIVE-ATMOSPHERIC-NOISE !
COMMUNICATION CHANNEL.
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atmospheric noise is available in the literature. Rather, the receiving
techniques that have been proposed stem from observation of the distinc-
] tive impulsive nature of the noise and can be conveniently classified in

two categories:

1. Linear receivers., At least two linear receiving techniques have
been proposed {[Refs. 17, 32) for use in the presence of atmospheric
noise. One of these is the "smear-~desmear'! technique proposed by
several workers and discussed by Lerner [Ref. 17]. This technique
consists of linearly smearing the received noise pulses in time, so
that the smeared noise can be modeled as a gaussian process. Having
done this, the optimal receiver in the presence of the smeared noise
1s just the well-known matched-filter receiver which must, of course,
be matched to the smeared signal. It is clear that this technique
ic suboptimal in the presence of atmospheric noise., This can be seen
quantitatively by comparing the error curve resulting from its use
with the cptimal error curve, if known. In fact, for the known sig-
nal situation considered in this chapter, it will be seen that use
of the smear-desmear technique corresponds to a loss of 12-15 db in
input SNR.

2. Nonlinear receivers. Most proposed techniques (Refs. 17, 33, 34],
and in fact the techniques generally used in practice, employ non-
linear processing of the received signal. The purpose of this non-
linear processing is to reduce the effects of noise pulses on the

] receiver decision by amplifying the received .:ignal nonlinearly prior

to the performance of any linear filtering. (This of course ref.:s
to mutched filtering, and not to the bandpass filtering discussed in

- Section IIB, which is required in practice in the front end of the

receiver to suppress adjacent channel interforence.) It will be

shown that this precedure is supported by the "logarithmic-correlator"
receiver shown to be optimum in the known signal situation analyzed

in this chapter. It is noted that the log-correlator receiver is

1 compared in detail with specific nonlinear receivers used in practice

in Chapter 1IV.

Although no analytical determination of optimal receiver forms is available
in the literature, there are several analytical results of interest on the
performance of specific receiving techniques. Several workers [Refs. 35,

36, 37, 38] have computed the probability of error resulting from the use

of a matched filter recewver in the presence of additive atmospheric noise.

Bello [Ref. 37] and Conda [Ref. 38] have, in addition, included the effects

....,. i
PR AT e AT NS
’

of fading on these error curves, It will be seen in Section D4 below that
the results obtained by these investigators in the absence of fading, using
various models for the atmospheric noise, are in good agrecment with the

results obtained using the generalized "t" model. These results lead to

the conclusion that the matched filter is a poor receiver choice ir the
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presence of additive atmospheric noise. Finally, we note the work of
Bowen [Ref, 7] who uses an SNR criterion to investigate the use cf hard
limiting in the presence of atmospheric noise, He shows that the use of

a hard limiter followed by a zonal filter produces a much greater improve-
ment in the ratio of output SNR to input SNR when the additive noise is
impulsive, than is obtained when the additive noise is a gaussian process,
This result supports the use of nonlinear processing of the received sig-
nal as menticned above,

With this brief summary of available results in mind, the specifi-

cation of the detection problem to be considered here will now be completed.

Therz are, of course, several possible specifications of the transmitted
signal of practical importance, Consideration will be focused here on the
simple hypothesis~-testing situation, wherein the transmitted signal is one
or the other of two a priori equally probable known signals, This sit-
uation is described in Fig. 20, where m(l)(t) and m(2)(t) are known
signals described bv

m(l)(t) = m(t) , 0<t<T,
m(z)(t) =0, (3.1)
with
T
I mz(t) dt = E
0

and where y(t) is the additive atmospheric noise described by the gener-
alized "t" model. The performance criterion to be used here is the
probability-of-error criterion, so that the statistical detection problem
at the receiver becomes that of choosing between the a priori equally
probable hypotheses

R f(0) = m(t) + y(t) T (3.2)
1} 0<t<« 3.
n(2), x(t) = y(t) o |
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FIG. 20, DESCRIPTIQON OF "KNOWN"-SIGNALS DETECTION PROBLEM.
m 1)(t) and m'‘Z (t) are equally probable, a priori. 1
with the smallest probability of error. Now, it is well known ([Refs. 5, {
39, 40, 41] that the decision rule which minimizes the probability of :
¢ error in this situation is the Bayes ruie given by -
]
]
Choose h(l) iff |
!
L0 E i
A w[xft}ih(l)‘ p
L[X(t)} = W‘Z 1, (3.3) %‘
W[x(t)lh ] :
(1) |
where w[x(t)'h J, i=1, 2, 1is the probakbility density of x(t), . :
0<t<T, under hypothesis (i), and where L[x(t)] is the likelihood L |

ratio, Thus the solution of che detection problem requires the calculation
of wfx(t)|h(i)], i=1, 2, which will be done here by expressing x(t),
0<t<T, in vector notation with respect to a suitable set of ortho-
normal basis functions. 1In order to express x(t) ir this manner, how-

- ever, it 1s necessary to specify the temporal behavior of the additive

atmospheric noise; i.e., it is necessary to specify the higher~order sta-
tistics of the generalized "t" model.

» It is recalled that the generalized "t" model takes the received

atmospheric noise to be given hy
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y(t) = a(t) n(t) , (2.3)

where n(t) is a zero-mean narrowband gaussian process with covariance

Rn(T), and a(t) 4s a stationary slowly varying random process, indepen-

dent of n(t), whose first-order statistics are given by Eq. (2.72).
Thus, as in Section IIC3, it is convenient to distinguish two cases, de-

pending on the temporal behavior of the modulating process a(t).

B. CASE 1: SHORT-DURATION SIGNALS, a(t) =a, 0<t<T

2
:
i
%
é

This case is similar to the constant a(t) case considered in Section
IIC3, in that it assumes the slowly varying modulating process a(t) to
remain constant for the signal duration T. Physically, this corresponds
% to the situation in which the signal duration is sufficiently short that,
% with high probability, the modulating process a(t) can be assumed con-
¢ stant in the signaling interval. (The practical applicability of this
assumption will be discussed further in Section B5.) 1In this case the

{ decision problem reduces to choosing between the two hypotheses

é; h(l): x(t) m(t) + a n(t)
| y 0<t<T. (3.4)

: h(z): x{t) = a n(t)

8

An often-used procedure for developing the desired vector formulation,

L 3 which is applicable to this problem, is to expand the gaussian process

n(t) 1in terms of a Karhunen-Loéve expansion. Assuming that Rn(T) is

continuous in T, it i¢ possible to write [Refs. 30, 41)

T T AT YT

N
.i,z. 2oy @i(t) , 0<t<T, (3.5)

o —

where 1l.,i.m, denctez %limit in the mean,"

T

n = fn(t) 9, (1) at , (3.6)

i
0

e add i i o

b s e 8
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» i
and the ¢i(t) are the eigenfunctions of Rn(t,s), i.e., they are the :
solutions to :
v !
T
= § < < . .7
) f R (t,8) 9,(s) as = A, o, (t), 0<tgT (3.7)
o i
This expansion has the desirable properties:
1. The @i(t) are orthogonal, i.e., they can be normalized to satisfy i
T :
£
=8 .8
f 9,(t) o (t) at =8, ., (3.8) '
0 :
where 513 is the Kronecker delta, §§
2, The n, are uncorrelated, i.e., !
{
. Z
= 6 . v
E[ni DJ] }\i ij (3 9) i
i
“ T
1f Rn(t,s) is strictly positive definite, the mi(t), i=1, ..., w,
will span L2(T) the (Hilbert) space of square integrable functions on
[0,T]. Then the signal m(t) can be expressed in terms of the pi(t) %
r as i
m(t) = 1.i.m. Z m o (t), 0<t<T, (3.10)
i1 - =
N~ 40

o RN

TIf Rn(t,s) is not strictly positive definite, it suffices to assume

that m(t) lies in the space spanned by the eigenfunctions of R,(t,s).
If this is not true, error-~free detection can obviously be obtained.
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where

T

m, = f n(t) p,(t) at . (3.11)

0

Having expressed n(t) and m(t) in terms of the orthonormal functions
Qi(t), i=1, ..., N, 1in Egs. (3.5) and (3.10), the problem can now be

formulated in vector notation as follows:

h(l): X=m+an,
(3.12)
2
h( ): Xx=an,
AN
+
where, for example, ﬂt =Dy oeees Dy is an element of Euclidean N-space

—_ N

EV' It is noted that this formulation is written in terms of N dimen-
&
sions, so that N - o« will be taken at the conclusion of the problem.

For a rigorous justification of this procedure, see Grenander [Ref. 42].

1. Calculation of the Likelihood Ratio

One can write
oo

w(5|h(1)) = f w(5|h(1), b) p,(b) db , (3.13)

-0

where pb(b) is given by Eq. (2.7), and where Eq. (3.12) plus the fact
that af(t) 2 1/b(t) gives

wlx 0, b) = b)Y p_lo(x - m)] (3.14)

?2‘ denotes the transpose of the column vector n.
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where
1 1 -1
p (n) = exp{- =n A n] , (3.15)
-— 2— -
n (zﬂ)N/Z IA|17§ t
with :
={A B
A {Ai ij}
Therefore

N
b 2 -
w(ilh(l), b) = N&ZI 173 exp[- % b” (x - m)t ATl (x - ﬂ)] :
(2x) |4
(3.16)
so that, substituting into Eq. (3.13),
o m m/2 m+N=-1
w(xlh(l)) = f <2) kil
= - N/2 m /m 1/2
2 (2« P(E) |Al
. exp[- i (llx - m!!2 + —'-"-) bz] db , (3.17)
2 \IX-mi )+ 73
A o
where [|x-m|| 1 2 (i-m)t NG (x-m). This integral can be evaluated using

Dwight, item 860.17, which gives

m m/z
m + N —
W(xlh(l)) = I-\(, 2 ) (02) 1 m>o0 .
= P(g) N/2 1/2 0 n (m+N)/2 ?
|4 [llz =nf" ¢ 2]
A o
(3.18)
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Similarly,

m m/2
+ N -
w(X|h(2)) = P(m 2 ) (02) ¥ L i)/ m>0
- B m N/2 1/2 m+N)/2 ? )
r) A2 1) [;g5|12_1+£‘§] "
A o
(3.19)

Now, substituting Eqs. (3.18) and (3.19) into the vector formulation of
Eq. (3.3), there results

9 m (m+N)/2
el + 5
A g
L(x) = i Tz (3.20)
[Hrmll L 2]
o
Thus, the optimal decision rule is given by:
Choose h(l) iff
i + B2 leml®, + 5 (3.21)
A o A c

which reduces to the familiar rule for the detection of known signals in

additive gaussian noise:

Choose h(l) iff
1 2
<x,m>_, 25 Iml"_,, (3.22)
A A
where
<x,1n_>_193c_t1\.'1_
A
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Now, letting N - o, it is seen that in terms of the time functions

available to the receiver, rule Eq. (3.22) goes over into

(1)
w Choose h iff

T

)f x(t) e(t)

0

Nll—'

T
f m(t) e(t) dt , (3.23) !
0

2,

=

v
)
ey

where c(t) is the solution to the Fredholm integral equation

)

T
Jﬁ Rn(t,s) c(s) ds = m{1) , 0K tLT. (3.24)
0

2. Discussion of the Optimal Receiver Rule

PO v

It is seen from Eq. (3.23) that the receiver that minimizes the
probability of error for the additive generalized "t" noise channel in
the case where a(t) = a 1s constant for the duration of the signal is

the well-knowu correlator or matched-filter receiver. Before proceeding

© e

to the <calculation of the probability of error resulting from the use of
this optimal receiver, there are several points of interest to note. First,
the decision rule is independent of the parameters m and ¢ of the gen-

eralized "t" model; i.e., the same receiver is applicable in the presence

of additive generalized "t" noise regardless of the value of the param-
eter 8> 1. (It will be shown in Section B3 that similar statements are
also true for additive modified generalized "t" noise.) Also, it is
worthwhile to note that the receiver rule Eq. (3.23) could have been de-
duced directly by inspection cof p'(x), the probability density of the ;
additive noise vector. This deduc%ion proceeds as follows: Noting that

w(iih(z)) given by Eq. (3.19) is just px(ﬁ), there results

n m/2
p (y) = P<m 2 N) (;§> 1
. ¥ 1‘(%) N2 4] 1/2 [

+

i) /2 m>0 (3.25) :
i, + —2-]
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where Xt = yl, ceey yN . However, assuming Rn(t,s) to be strictly
U S F
positive definite, there exisis a nonsingular "whitening" transformation

¥ such that

Hirtoa it R AT g 1itS
4

PGE—-—-

2
oF) A (12, +l“-](m+N)/ i

n m/2
Yy (3) 1

) (3.26)

(1) =
Py L

2
o

VRt ot o

where X, = Wy. In fact, in this case it is easily seen that

W= {(Ai)°1/2 513} . (3.27)

Now, in terms of the whitened noise vector Xw’ the detection problem

becomes that of choosing between the a priori equally probable hypotheses

ni oy em vy,

(3.28)

n(2),

.

3-
»

X
X
It can easily be shown that the correlator receiver given by Eq. (3.23)

is indeed the optimal receiver in this case, and in fact this result can

be generalized as specified in the following well~known proposition:

Proposition 3.1. Given an additive noise channel where the two hypotheses

can be written in the form of Eq, (3.28), and given th.:i the probabil-
ity density function of the additive noise can be written as a monotHni-
cally decreasing function of the norm of the noise vector, then the
receiver that minimizes the probability of error is a correlator re-

ceiver.
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Proof of Proposition 3.1.

The proof of this proposition is so short that it will be given here,.

The likelihood ratio is given by

wix [0y Py By T m) ey )

L(x ) = = = — (3.29)
“w (2) p, (x ) £ ) ’
w(§wgh ) Y, W “w
where 1({x{{) 1is a monotonically decreasing function of [x||. Theretore,
from Eq. (3.3), the optimal decision rule is given by:
Choose h(l) iff
(I =m ) > i ’.
£llx, - m i) > £(x 1) 5 (-.30)
< = > Choose h(l) iff
ng - Ew” < Ix i, {(3.31)
since f{xi|) is ¢ monotonically decreasing function of |x|.
< = > Choose h(l) iff
1 2
<Xxm > ZE:IEWH (3.32)

This completes the Proof of Proposition 3.1.

3. Case I;: Modified Generalized "t" Noise

As an application of Proposition 3.1, the results of Case I will
now be extended to the case of additive modified generalized "i" noise.

In this situation the additive noise is given in the vector notation of

Eq. (3.12) by

y=an, (3.33)
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where pn(n) is given by Eq. (3.15) and pa(a) is given by Eq. (2,32).
Thus

I
—

I B B R

2 [¢2
1/8
(3.34)
where it is recalled that K 1is a cconstant chosen to satisfy
B
f p,(a) da=1. (2.32)
-B

For m+N-2 > 0 and even, the integral in Eq. (3.34) can be evaluated
using Dwight, item 860,17, which gives

. K 1 2
b \y) = exp|- L (g )

\

m+ N -2
2 4 2
f

P to— ~ S + e
A A/

)
o (mN-2)/2 (m + r; -2), (mN)/2 (n + rzq - 2),

* { 22 ¢t m+N
sz{f(ssxui_l)]‘ Nee [f(sizui-l)]( R
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where

(i) 2 (e, - 5) . (3.36)

For miN-2 > 0 and odd, Eq. (3.34) is evaluated in Appendix A, where it

is shown that

= K exof~ ~L 2\
P - (20V/2 |a) /2 [xp( 28° f(ltz”A'l )]

4

~ = + ..
llH"N 2 (" ” -1) BRH'N 4 fz("lllz_l)
A

pw-0)/2 (ma ¥ -2) (ne N -a) (o)

+
3[, fy a2 7(m+5-3)/2
] |
) 2(m+N-1)/2 (m + g -2) (m+ g -4) ... (—;)(1)

(]

PN lell }
R e (— iz- f(||l;|i_l>> . ;@ft; e
(3.37)

Now:, assuming that Rn(t,s) is strictly positive definite, the whitening
transformation W given by Eq. (3.27) can be appllied to the modified gen-

eralized "t" noise vector y to produce the whitened noise vector
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Y, = Wy. Furthermore, inspection of px(x) given by Eq. (3.35) or Eq.
(3.37) shows that the probability density p (Xw) of the whitened noise

vector will be a monotonically decreasing function of "xw"' Thus, ap-

b B, - R

plying Proposition 3.1, the receiver that minimizes the probability of

,

error in the presence of Case Im modified generalized "t" noise is a

correlator receiver, In fact, inspection of the prcoof of Proposition 3.1
shows that this optimal receiver is the same correlator receiver, speci-
fied by Eg. (3.23), that is optimal in the presence of Case I generalized

"t" noise.

4., Calculation of the Probability of Error for Case 1 and Case Im

LV TP S

Lo

As given by Eq. (3.22), the receiver that minimizes the probability
of error in Case I (and also in Case Im) is the one that implements the

rule

Choose h(l) iff

: : <x,m> -1

> ml® . (3.22)
A A

Since the hypotheses are a priori equally probable, the probability of

v

error Pe is given by

; i 42
P =Pri<x, m> > =il h(z) is true
e = =" -1-2 -1
] A
2
! = Prd< gy, m> > Lo (3.28)
-7, =1 = 2"=" =1
A A
However, this expression is identical te
1 2
= m >>=|m| .39
% P, Pr{< Yoo m, > 23l | } , (3.39)

where xw = Wy and m = Wm, since as mentioned above, the nonsingular

transformation W 1is known to exist when Rn(t,s) is strictly positive
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definite, and in fact is given by Eq. (3.27). Now, it is seen from Egs.

(3.36), (3.35), ana (3.37) that Py, (z“) far both generalized "t" noise
w

and modified generalized "t" noise is a function only of the length of

the noise vector; i.e.,
2 N
7y @) = (i) (2.40)

Thus, because of the spherical symmetry of this probability distribution,

it follows, as shown geometrically in Fig, 21, that the calculation of

Pe reduces to the one-dimensional calculation independent of direction:

P = Pr{me > Ln ;i}. (3.41)

T AP b L R AT AP RSP SRNELIS NN SRS 10

That is, the spherical symmetry of px (z ) means that the probability
w
that the component of the noise vector in the direction of m is greater '

than or equal to <1/2)”Ew” is independent of the direction of m .

CONTOURS OF
P (y,) = CONST
w  —

Y

\

FIG, 21, GEOMETRICAL PICTURE OF SPHERICAL SYMMETRY OF THE
PROBABILITY DISTRIBUTION OF THE CASE 1 ADDITIVE-NOISE
VECTOR,
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5, Generalized "t" Noise

Applying the above results to the case of generalized "t'" noise,

it is found by setting N =1 in pxw(zw) given by Eq. (3.26) that

(x) = F(%) 73-1 1
pyw *E F(Q%l) “1/2 [x2 2]675 ’

+7w

~» < x<w, (3,42)

np

A 1/2
where §=m+ 1> 1 and YTy =M l/c. Thus, using this probability

density to evaluate Eq, (3.41), there results:

o 8 9-1
P = F(2> Ty L ax . (3.43)
e g-1\ 1/2 070/2
——— "
li 2 X + v
‘Jm !
2~y

Now, it is necessary to specify 8 1in order to evaluate this integral in
closed form. Initially, consider the important case 8 = 3 (see Section
I1IC1) which gives

-1/2
p i = % 1 - [1 . 4(7w/ﬂgwﬂ)2] ) (3.44)

In order to evaluate the significance of this result, it is convenient to
consider two subcases of interest, corresponding to high and low average
SNR:

a. aigh SNR; i.e., ﬂmw” >y,

In this case there is found the asymptotic result

o

,7 r4
w
lim P_| = = I (3.45)
Im I ©e=a [’k‘a |
-+
7“’
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b. Low SNR; i.e., [m [l <<y,

In this case there is found the asymptotic result

i
lim P ] 1 - 3
e 3 Tw

. t
— lim, I
lim  erfel (3 . (3.46)
la, 2

l
-0

(SIS

Tw

Discussion of these results for the generalized "t" model wiil be post-
poned until the associated results for the modified generalized "t
model have been determined., Plots of P, vs ”Ew”/yw are presented in
Fig. 22 for both the generalized "t" and modified generzlized "t"
models. These error curves are presented to show the effects of wvarious
types of noise on the optimal performance achievable using "short duration"
signals, For purposes of comparison, the gaussian noise curve is alsc
presentect for a noise whose average power is equal to that typically mea-
sured in atmospheric noise situation® where the generalized "t" model

~ith parameters ¢ = 3 and Y is appropriate.

erfc(x) = 2?'Z5;§T7§ exp(l %;) d7 ;

denotes the area under the tail of the normal probability density with
zero mean and unity variance,

"This normalizstion is accomplished by using the fact that for the gen~-
eralized "t" model

E[V] (2.28)

| =27,
6=3

together with the empirical result at temperate latitudes that, typically
at vif and 1f, vrm/vavg ~ 3 [Rets. 9, 10],
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FIG. 22, “SHORT-DURATION'" SIGNAL (CASE 1) PERFORMANCE: COMPARISON OF
ERROR CURVES ACHILVABLE BY OPTIMAL MATCHED FILTER RECEIVER IN PRESENCE
OF VARIQUS ADDITIVE NOISES,

[Note: Vertical scale is 1log|log Pel.]
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6. Modified Generalized "t" Noise

Turning attention to modified generalized "t noise and taking
@ = 2, since this is the cimplest case of interest, it is found by sel-

ting N =1 in px(x) given by Eq. (3.35) that

K 2 1 ,2 2
Py (x) | = 1/2 2 2 e""[’ =5 "+ 7w)] ’ < x <2,
wm =2 (2x) X + 28

(3.47)

where 7 2 1/¢ and

B 2 -1
1 1l ‘w
K = f 3 exp |- 3 g da . (3.48)

-p

Thus, evaluating Eq. (3.41) in this case,

1/2
2 K 1 2 2
- p[ L n,)] ax . (3.49)
X + 7w 28

=~
®
1
[\
1
]
——
2|
g g

Now, this integral cannot be evaluated in closed form as it stands; but
it can be approximated in two subcases of interest, corresponding to high
and low SNR:

a, High SNR; i.e., i:_nlw;f >> Ve

In this case is found the approximate result

2
o
1 Tw_ 2
2)/2_1(___1_exp,._Ly ay
P | = = " 2 262
Colo . y
= lig
b4
7“’
0 12 .
1/2 m i -l fim
= (%) K “: - exp|~ -“2 - ?f erfc ;g / . (3.50)
' = 88 J
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In order to complete this evaluation, K must be determined from Eg.

(3.48), which gives

4
K = LA . (3.51)
2(2n)1/2erfc<§¥>

However, this expression can be simplified by using the fact that B >> Tw
is satisfied in the application of the modified generalized "t" model

to atmospheric noise.T Now

7 ’
H lim K = ¥
B
7w P
£ -——-—-7— . 3.52
(2‘{)1 2 \ )

Therefore, substituting this result into Eq. (3.50),

r J
. 2
y fim, 1 1/2 fim
P | ~=2 -:,—z—l-exp- —— - (Z“g erfc 2“‘; . (3.53)
e6:2 n E‘W" 88

TThis follows from the results of Section IICl., From their definitions

1‘1=.z_._m1/2=_!..
] 018 T ooh Be !

since m = 1 here. However, in the application of the modified general-
ized "t" model in Fig. 10 it is seen that fg= 5 X 102 is required to
fit the measured data. Thus, for this case, which is typical of results
at vlf and 1f,
7w -
2} =2 X160« 1.
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In order more easily to compare the form of this high SNR result with
that given by Eq. (3.45) for the generalized "t" model, it is illumi-
nating to consider two further sibcases as follows:

(1) iﬂ_gi << 1

In this case there resuits

ﬂ;—ﬂ . (3.54)

llm,.

(2) —; >> 1:

In this case there results

WELTTARTIRAN Ay T o e s o piapin, AR T e, 1
by ]
[t+]
144
Al
s
€
[

2 2 ;
H , g P 7y ”mw“ 2 1/2 48 Tw 'h%“ -
. P | == expl - = lim C—) erfc . (3.35) l
o2 " I’ 8’ | fmd Y m, ) 2
3 - —w —w —w' w
i 4 -+ o0
H B .
£
b. Low SNR; i.e., Im il <<y
; —w W
; Rewriting P ! given by Eq. (3.49) in the form *
" €4e2
! 4y
1 =w'
2 4 .
5 1 N 7\2\' 2
Pl =5- f (— —Z——exp-——é-(y + 1) dy , (3..8)
9=2 o T y +1 2B

it is seen, using the fact 7w/6 << 1 in conjunction with the low SNR

ti im << that
condition Imw /7w 1,

e 1l -
1 Jm|
2 7w
1 1 1 -
I-‘e | ~ 5" f ;7——dy . (5.57) .
a=2 0 y +1
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Thus, for the low SNR case:

"o
©
T
2
™o f—
'
2 e
[ad
o
i3
1
—
T
g
~——

=2

i
1 p
~5 41 - =
14 7W
|
ﬂm i
= lim erfc<<2n)1/2—:—w— ) (3.58)
m il Tw
- -0
7,W

7. Discussion of Probability-of-Error Results

Before proceeding to the discussion of the Pe results calcu.ated
above, 1t is recalled that these Case I results apply to the situation
where the additive atmospheric noise is given by y(t) = a n(t), 0t T
i.e., they apply when the transmitted signal duration T 1is short enough
that a(t) = a can be assumed constant for the duration of the signal.
With this in mind, the Pe results for Case I lead to the following con-

clusions:
a, Generalized "t" Noise

The description of the lightning discharge presented in Section
IIA indicates that the Pe results for Case I apply at vlf when the dura-
tion of the transmitted signal is less than about 0,1 msec, In addition,
inspection of the plotted results in Chapter Il indicates that these results
apply vractically to any situation at vlf or 1f where the duration cf the
transmitted signal is less than or equal to the inverse of the receiver

bandwidthT for bandwidths greater than a few hundred cycles per second.

TThis follows as an engineering approximation from the fact that the rise
time of a signal passed through a bandpass filter of bandwidth 2B is
about 1/28 seconds; i.e., 2TB <1 1in these situations. This is consis-
tent with the short-duration signal idea, since receiver bandwidth i:= re-
stricted in practice at both v1f and 1f because of the lack of spectrum
availability (see Section IIA),
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To the author's knowledge, there are no vlf communication systems ln oper-
ation with either of these characteristics, There is good reason for this
(in addition to the difficulty of c¢btaining transmitting antenna bandwidths
of this size at v1f), as indicated by the Pe results, In particular,

the high SNR result given by Eq. (3.45) indicates that, even when using

the optimal receiver, “‘he .murcvement in Pe with increased signal energy
at low error rates is v :ry small compared to the improvement achieved in
the case of additive goussian noise (see Fig, 22). This indicates that
short-duration signals are not an optimal choice for use in the presence

of vlf or 1f atmospheric noise if 1t is desired to achieve economically a
low probability of error; this is physically reasonable because of the dis-

tinctly impulsive nature of atm.-pheric noise.
b. Modified Generalized "t" Noise

Inspection of the plotted results in Chapter II indicates that
the Pe results for Case I. apply practically in two situations: those
situations at mf or hf in which the duration of the transmitted signal is
less than or equal to the inverse of the receiver bandwidth, and those
situations at vlf or 1f in which the duration of the transmitted signal is
less than or equal to the inverse of the receiver bandwidth for bandwidths
less than a few hundred cycles per second. Once again, the most interesting
results are those pertaining te the high SNR case, given by Eqs. (3.54) and
(3.55). These results are demonstrated in Fig. 22, where it is seen that
the improvement in P_ with increising ngn is greatly enhanced when the
inequality umw”/s >> 1 is satisfied.

in regard to th~ practical applicabllity of these results for
the modified generalized "t" model, the plotted data in Chapter Il ini?*-
cate that, for a fixed receiver bandwidth, the value of ﬁ/yw decreases
as the ope ating frequency is increased. Taus the use ¢f short-duration

signals 15 more attractive at hf than at lower operating frequ ncies.

C. CASE Il. LONG~-DURATION SIGNALS; THE GENERAL CASE

The probability-of-error results obtained in Case I indicate that shori-
duration signals are not an optimal choice in the presence of additive at-

mospheric noise, This follows from the fact that, particularly at v1f and
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1f where the generalized "t" model is appropriate, the Pe resulting
from the use of short-duration signals behaves in a much less desirable
fashion than would the Pe if the additive noise were gaussian. Thus
it is desirable to investigate the use of long-duration signals, where
"long duration" means that the Case I assumption that a(t) = a is con-
~tant for the duration of the signal mus: now be relaxed. This consider~
ation of long-duration signals 1s well motivated physically, since we
would like to be able to disregard the received signal when it i largely
the result of a pulse of noise, and base our decision on the relatively
noise free signal received between t“ese noise pulses. This, in f.=t, is
the procedure typically employed in practice, where long-duration signals
ar~ used in conjunction with nonlinear receiving techniaues.

In this case, the decision problem at the rescziver becomes that of

cloosing between the two a priori equally probable hypotheses

(1)

7 x(t)

m(t) + a(t) n(t)

A

» 0<t<T, (3.59)

h(z): x(t)

a(t) n(t)

The desired vector formulation in this case is developed as follows: De-

»
fining qi(t), i=1, ..., N, as =%0wn in Fig. 16, and assuming the additive
noise y(t) = a(t) n(t) to have a continuous covariance function, it is
possible to write [Ref. 41)
N
- 3
y(t) = Lim. S y(t) (@)% q (1), o<t<T. (3.60)
N+
i=1
Since it is also possible to write
. N
1/2
m(t) = 1l.i.m. m(t,) (&t )" q, (1), 0<t<T (3.61)
N=>0w |
i=1
’
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for all sguure-integrable signals m(t), it is seen that the vector for-
mulation of the decision problem can be written as follows with respect
to the orthonormal basis functions qi(t), 1=1, ..., Nt (As in Case I,
N will be taken to infinity at the conclusion of the problem.)

h(l): X=m+y,
(3.62)
n(2), x=y,
where, e.g Y. = Vi eees ¥y with y. = y(t, ) (At )1/2-
R TG SR . I i i i
1. Calculation of the Likelihood Ration
Now
1
W(glh( )) = pl(z,- m) , (3.63)

where the probability density function p (x) of the additive-noise vector
is specified as follows: Recalling that a(t) is now allcwed to vary

"slowly" on the interval [0,T) one can write

g, = ¥(t) (0e )2 < a(e,) n(r)) (ae)/?
(3.64)
= a, h, i=1,...,N,

A .
where n, 2 n(ti) (Ati)l/2 and a, = a(ti). (1t is noted that this is

consistent with the interpretation in Chapter II of a(t) as a dimension-
less weighting factor.) Since, as in Case 7, n(t) 1is a zero-mean gaus-

sian process with covariance function Rn(t,s), the distribution pn(g)

of the vector n,k = nl, ey nN is given by
LR Ve S .|
(n) = 1 -1 -1
= (22)7"" IR ]
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where

=
l}

{Rn(ti, rj) (Ati Atj)l/z} . (3.66)

In order to complete the specification of the problem, the distribution

of the vector a of coefficients must be specified. However, recalling
that a(t) 2 1/b(t), the distribution pb(E) of the vector b, =

bl' ey bl can be equivalently specifiéﬁ. Now, the first-order statis~-
tics of b(t) are given by the two-sided chi distribution xz(m,c). How-
ever, in the special case 6 =2 (m = 1) this reduces to ihe normal
distribution N(O,oz), so that b(t) is a gaussian process in this spe-

cial case. Thus, initially considering the case ¢ = 2,

p,(b) = o N/; i ,1/2 exp[ % R b] : (3.67)

where

R = {Rb(ti, aj)} , (3.68)

. . S 2
in which it is noted that Rb<ti’ tj) =qa in the noiation previously

used. Now
p (y) = J. gx(xlé) p, (b) db , (3.69)
-0

where setting Yy = ni/bi’ i=1, ..., N, gives

A
p,(x|2) = A bl! Pany = by v 1=, W)
N
1 1 -1
={n |b|> exp( = b y.R b y]), (3.70)
<;=1 (2 )N/z IR '1/2 NS S TR TR B |
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in which b,y = b, ¥,y ..., b ¥ .T Thus, substituting into Eq., (3.69),
i l1 1 N NJ
2] o0
1 N
p (y) = db., ..., do (1 |b
b2 N 1/2 1/2 .I 1 N IRy
(2’1) IRDI IRb! -00 -0 i=1
1 -1 -1
'exp[' 2 (?i vy By Py yi] thy Ry 9)] ) (3.71)

In order to evaluate this N-fold integral, it seems reasonable to diag-
onalize simultaneously the two quadratic forms ‘n the exponeunt. This can
be done [Ref. 43], but requires the use of linea: transformations depen-
dent in an unknown way on the vector y. As a result, it does not appear
feasible to pursue this general formulation without specification of one
or the other (or both) of Rn(t,s) and Rb(t,s). Actually, it is easily
shown that both Rn(t,s) and Rb(t,s) must be specified if pl(x) is
to be evaluated as a known function of y; hence we will proceed to con-
sider special cases of interest as follows:

The special case that first comes to mind is a '"white'" noise case:

[}

Rn(t,s) No/2 5(t-s) , (3.72a)

(3.72p)

[H

Rb(t,s) Bo/2 &5(t-s) ,

k.t this case will not be further considered here since it is not appli-
cable to the communication channels of interest. Tlis follows frem the
results of Chapter Il, where it is shown that the generalized t" model
is in practice an appropricte model for received atmospheric noise when
n(t) is a narrowband random process and a(t) = l/b(t) is a slowly-
varying random process. While these results dizcourage the "whiteness"
assumption, they do suggest alternate ways of specifying the higher-order

statistics of a(t) and n(t). One such specification which is of

.’.
"Note that b, vy is the transpose of the column vector b, y. {.
w4, i7i
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particular interest, since it provides a formulation retaining much of

the simplicity of the white noise case, is considered below as Case Ila.

D. CASE lla: COMPLEX ENVELOPE REPRESENTATION

Recalling from the discussiorn in Section 1IB thai in practice atten-

tion can be restrici2d to the situation in which the receiver bandwidth

is substantially less than the band center frequency, the Case IlI hypothe-
ses can be further described by noting that x(t), m(t), and y(t) = a(t)
n(t) can be considered to be narrowband functions of time. Thus it fol-
lows that the Case II decision problem can be written directly in terms

of the slowly varying complex envelopes [Ref. 40] of x(t), m(t), and
y(t). In terms of these complex envelopes, the decision problem becomes

that of choosing between the hypotheses

=
o~
Pt
~r
bad
Camnn
[ad
S~
"

p(t) + n(e)

, D<t<T, (3.73)

=
—
[\M)
~
b
—
[ d
~
H

n(t)

where, e.g.,

>
—
[ad
~

1]

xc(t) cos 2nf .t - xs(t) sin 2xf gt

o

(3.74)

i2¢f t}

Re{x(t) e 0

and x(t) = xc(t) + ixs(t) is the slowly varying complex envelope of

x(t). Proceeding as in the Case II developmentt, one can write

N
x(t) = %.i.m. ES X(ti) (Ati)l/z qi(t), 0<t<T. (3.75)

N = o

i=1
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Furthermore, it is proposed that a practically useful model results from

assuming that the slowly varying complex envelope is given by
N
1/2 '
x(t) = > x(t,) (8t )" q(t), o0gtgrT, (3.76)

i=1

where the value of N required will be discussed further below and is

dependent on the bandwidth in which the signal of duration T 1is observed.

Proceeding again us in Case II, the vector formulation of this problem
with respect to the orthonormal basis functions qi(t), i=1, ..., N,

can be written as

h(l): X=p +7
(3.77)
n®) xey
where, e.g 1, =1 n, with 7. =n(t ) (At )1/2
AR AR T SRR . i i i )
1, Calculation of the Likelihood Ratio for Case Ila
Now
1
w(zslh( )) =pn(_>g-g) ) (3.78)

where the probability density function pﬂxl) of the complex additive
noise vector is specified as follows: Recalling that a(t) is itself a

slowly varying random process, one can write

a, = ne,) e M2 < a(e ) vie) @)Y < v (3.79)

where a, a a(ti) and v, & v(ti) (Ati)l/z, in which v(t) 1is the com-

plex envelope of n(t). Since v(t) is the complex envelope of a gaus-
sian process, it follows that it is a complex gaussian process. Thus the
probabiiity density function pv(l) of the vector Vv_= V., ..., V can

v L | N,
be written (assuming the power spectral density of the narrcwband process
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n(t) to be symmetric about the band center frequency) [Refs. 40, 41] in

the form:
p (v) = —L expl- v % v] , (3.80)
n v
where
¥*
o, =Ely v, (3.81)
with
*y *r,0 1/2
Elv, vj] = E[V(Li) v (~j/} (Ati Atj) . (3.82)

Motivated Uy the difficulties encountered in the Case 1l calculations, it
is proposed that an interesting case for initial consideration is given
by

Elv(t,) v*(tj)] =N i,j=1, +... N, (3.83)

)
0 ij’

Substituting this specification into Eq. (3.80),

¥4 PUTAIT COR I ANCIHH AR ARORKRRI RSN NI o (RIS 0 1P 1 it ARSI MR LN A1 ORI

1 1 *
b (v) =————exp[-———x 1] . (3.84)

where t' e fact that Ati = At for all i=1, ..., N has been used,

It now remains to specify the probability density function of the

/ector a‘L = a0y el Ay of coefficients, Following Case Il above, the
2 N,

equivalent specification of pb(g) will again be made where 3 = 2 |is
. assumed so that b(t) is a ga:ssian process. Thus pb(E) is given by
Eq. (3.67). However, again motivated by the Case II fzsults, it is pro-

posed that a case of interest follows from the assumption

B
E[b(ti) b(tj)} = 7? 5 , i, =3, vou, N . (3.85)

A R L A O SRR PR B
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Although the representation for the received signal given by Eq. (3.76)

is particularly convenient in the detection problem being considered here,
it remains to verify the vallidity of this representation in the light of
tle assumption on ¢ and R, made in Eqs. (3.. ) and (3.85), respec-
tively. 1In order to do this, it will be recalled that the received signal

x(t) has one of the forms

h(l): x(t)

m(t) + y(t)

0<t<T, (3.59)

y(t)

x(t)

where y(t) = [1/b(t)] n(t). Then the following observations can be made:

1. As far as the observed noise y(t) is concerned, the representation
proposed by Eq. (3.76) with ¢, and Ry given by Eqs. (3.83) and
(3.85) is identical in form to the representation considered in the
case of independent samples in Section IIC3. It follows, from the
results shown there, that this representation is a reasonable first
approximation tc the complex envelope q(t) when N = 2TB, where
2B is the rf bandwidth in which the received signal of duration T
is observed,

2. As far as the known signal m(t) 1is concerned, it will be found
that in practice this signal of duration T has a bandwidth signifi-
cantly less than the receiver bandwidth 2B. Thus the representation
proposed by Eq. (3.76) with N =~ 2TB gives a good approximation to
the complex envelope u(t).

Therefore, combining observations (1) and (2), it is concluded that the
representation given by Eq. (3.76) with N = 21B 1is a ressonable repre-
sentation for the received signals of interest in Case IIa when Qv and
R are given by Eqs. (3.83) and (3.85). Now, substituting Eq. (3.85)

b
into Eq. (3.67),

0

Now
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where use has been made of the fact that in terms of real variables

P, (Vi) =Py n (nic’ n1s) =Py (nic) Ph (nis) ! (3.8,
i ic, is ic is

so that the Jacobiun of the transformation is

J(vi - ﬂi) = bi . (3.89)
Therefore,
(ﬂ'b)—(?} b2> Lo ex -—1—-5: llb2|l |2) (3.90)
Pz’ = oy A ﬂN(NOAt)N P N/t < i1 ' :
so that
1 ¢ 9 N2
pll(-‘) a2 (NOAt)N Br;[z _g! dbyy v _z!: de(illl b1>

) <N0At>N/2 N )
z —— | —— 1 . (3.91)
(2N \ Bo i 3/2
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Now, using Eq. (3.78) and the similar expression for h(z), the likeli-
hood ratio can be written directly as follows:
,  NoOt 3/2
wognty n Pl B,
L(x) = = Il . (3.92)
wxn ) a1 [ \ NOAt]3/2
X, = 4 ’ +
1Ky BOJ
Thus the Bayes rule in this case is given by:
Choose h(l) iff
N [ N At N N At
n |Xi|2+ g > ﬁxi-p12+—g——] . (3.93)
i=1 G i=1 o
However, this is equivalent to the rule !
Choose n(1) iff a
N N
. 2 Nq - 2 Yo
Inflx(e )" + =1 > In |x(t ) - u(t.)| + =1 . (3.94)
i BO - i i Bo .
i=1 i=1 ’
Therefore, noting that it has been sssumed !
x(t) = x(ti) Vteot , (3.95a)
plt) = p(ti) Viteat , (3.95b)

it follows that, in terms of the time functions available to the receiver,

the Bayes rule is given by

Choose h(l) iff

T y T
J' 3“[|>~(‘)|2 + _o_:! at > I ln[lx(t) O ~9] dt. (3.96) .
0 o 0 0

SEL.~f 6-0&2 - 12 -

e rrvo——— =




LR

P,

Noting that [x(t)l 1s the envelope of x(t), and (X(t) - ()] s
the envelope of x(t) - m{t), 1t is scen that one rcceiver structure

which implements this rufe 1s that shown in Fig. 23,

CEnveLort | [ square LOG ‘ fT
DETECTOR I ] LAW AMPLIFIER o
H
N
—_ No gias

x{t) . Bo A
' ‘

I

+ {
\/’: ENVELOPE SQUARE LOG ' T
m(t) {2 DETECTOR [ LAW AMPLIFIER l fo

r

BIT THRESHOLD
SYNC b ———— A LOGIC — DECISION
A

FIG. 23, BLOCK DIAGRAM OF OPTIMAL LUGARITHMIC-CORRELATOR RECEIVER,

2. Discussion of Optimal Receiver fLule (Case Ila_

In this casf, which is proposed as perhaps the implest formulatior
of the long-duraticyn signal problem of practical interest, several comments
are warranted, First, 1t is interesting to compare the receiver rule given
by Eq. (3.96), and its implementati .r shown in Fig., 23, with intuitive no-
tions concerning receiver operation in the presence cf additive atmospheric
noise, It is seen from Eq. (3.96) that this nonlinear receiver, which will
be called here the "logarithmic-correiator™ rec iver, does indeed agree
with intuition, since it suppr«sses consideration of the received signal
at those times when the quantities [x(t)]2 and lx(t) - p(t)!z are both
large, i.e., those times when the received signal is predominantly due to
a pulse of noisc, ard bases its decision strongly on the received signal

at those times wher one of the quantities {x(t)(z or !X(t) - p(t)!z is
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small. Thus, heuristically, the log-correlator receiver ignores the re-
ceived signal when it is largely the result of a pulse of noise and bises
its decision on the relatively quiet periods between the occurrence of
these noise pulses, Furthermore, it is noted that the receiver becomes
increastngly nonlinear as the average SNR increases, which (again in agree-
ment with intuition) means that the receiver has increasing confidence in
the received signal at those times when either §X(t)§2 or |x(t) - p(t)l2
is small as the average SNR increases.

Although the calculation of the receciver rule Eq. (3.96) was
carried out for the special case 8 = 2, it is scen that the Case Ila
calculations could have equally easily been carried out Qithout specifi-
cation of 9, by making the assumption that the received nroise is statis-
tically independent at the instants ti and tj for all i,3 =1, ..., N,
When the calculation of the likelihood ratio is carried out with this as-

sumption, it is seen that the decision rule becomes:

Choose h(l) iff

- T

T

2 N0
f fa||x(1)]2 + m -B—J at
0 0

2 No
J. in {x(t) ~p()]T +m 5 dt , (3.97)
0 0

v

where it is recalled that & =m + 1 > 1, Thus it is seen that the form
of the optimal decision ru:e is not changed as m is varied, the only
effect on the realization shown in Fig. 23 being a change of the bias on
the logarithmic amplifier. It is noted that such a modification is rea-
sonable, since the average noise power is proportional to m(NO/BO). with
m=1 leading to Eq. (3.96).

It is clear that the realization of the optimal receiver rule given
in Fig. 23 is nct the only realization possible. It is desirable to find
realizations that are simpler in the sense that the number of zero-memory
nonlinear operations required is reduced. Specialization to the high SNR
case does not appear to lead to any such simplificaticus, but specializa-

tion to the low SNR case does as follows:
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Low SNR case, i,e.,

where

In this case it is easily shown that the optimal decision rule is

given approximately by

Choose h(l) iff

[T T %l“<t)|2

Re f x(e) u(e) o > f = dt . (3.98)
] o |1x(+)% + = 52)]

o [[x(e)|? « "<N-§9> °
0

Thus it is ceen that the low SNR assumption gives an interesting

rule which is in fact the correlator receiver nodified by the weighting

of each instantanceous contribution by a factor dependent on the value of
the envelope of the received signal at that instant., However, closer
examination of the derivation of Eq. (3.98) shows that the low SNR assump-
tion cean actually be reiaxed, since the condition required to produce

Eq. (3.98) is precisely that I pilz << §2 Yyi=1, ..., N. Now, this con~
dition does not necessarily imply the low SNR case, and in fact may be
compatible with the high SNR case, i.e, ~ith ﬂaﬂz >> €2, so that the re-
ceiver rule given by Eq. (3.98) may be of practical interest. This possi-
bility will be examined further in Section E and is of importance because
Eq. (3.98) has a realization similar to the matched-filter realization of
the correlator-receiver rule.

Finally, it is interesting to apply the Case (Ia assumptions tvo

the situation where the additive ncise is given by the modified generalized

" model, rather than by the generolized "t" model considered above.
The calculation of the Bayes rule appropriate to this situation can be

carried out in the same manner as that demonstrated above for additive
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generalized "t" noise, The decision rule for the special case @§ = 3

§ is found to be:
4 Choose 1Y) is
x| - 9 N
3 2
B 2 N
i T |x(e)]" + 2 ==
¥ B 2 *
g f «3,, 5 — = |+ 5 Re(x(t) p (t)])dt
F Ix(t)l + NO(B + -5-—) Noﬁ
0
. >
- . N
2 NO :
[x(t) = u(e)]® + 25

dt. (3.99)

I

Erar ey
v
—,

£n| & . fn(t) 2
UX(t) -u(e))? + NO(BZ + 52-0-) N B |

\\ J
This result 1s interesting, since it allows a quantitative check as to

whether or not the log-correlator receiver is appropriate in a given situa-
tion., 1t s clear that the rule given by Eq. (3.99) raduces to the log-
] correlator receiver rule as Bz -+ o; and inspection of the experimental

data presented in Section IIC1 shows that, in fact, the log-correlator

T

receiver is the receiver of practical interest at vlif and 1f frejyuencies

Yororeaile AL

Ly SRl e ettt

of operation, On the other hand, no such statement can be made when the
operating frequency is increased to hf, 1In this case, Eq. (3.99) must be
examined for each particular situation. This follows from the fact noted
in Section IIC1 that the nature of the received noise at hf is strongly a

function of local thunderstorm activity,

3. Calculation of the Probability of Error (Case Ila)

L The receiver that minimizes the probability of error in Case 1la
Ig
’ is the one that implements the rule given by Eq. (3.93). Thus the prob-

, ability of error resulting from the use of the optimal receiver is given

by
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Pe=Pr{L(_§)2 llh(z) is true} ’
N -
[ % |2 rm=2 At 3
N i 3 (2)
= Prd{ Il v > 1|h is true
i=1 2 0
!xi-pi! +m'§-At
o
;
3
N ;
2 0
N ll’]il +m-B';At
= Pry Il = > 1) . (3.100) i
i=1 2 0 g
iqi - “il +myg At
0
However, (3,100) is equivalent to the more manageable formulation §
N {
2 0 |
N [n,]% +m g At N i
P:.-PrZﬁn T >0 =Prz Inz >0y, i
= - 2 2 -
=1 lni pil +m Bo At i=1 i
(3.101) -
where f
N P
|ni|2 +m Eg Ot ! %
z, & — 0 . (3.102)
i 2 No ;
|Y]i -p.il +m§—At
0

Since the z, are statistically independent, it follows that the central
limit theorem can be invoked to obtain a va.id estimate of the probability
of error at high values of Pe, where the range of validity of this esti-
mate is dependent upon the size of N [Ref. 44], Therefore, the calcu-
lations of initial interest are those of E[/n ziJ and var(fn zi).

However, the difficulties involved in making even these calculations are
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clear, so that it is reasonable to consider bounds on the probability of

error obtainable in closed form,
tightens with increasing Pe

given as follows: Noting that

1

21

with equality iff =z,6K = 1,

i it follows that

N
P >Pr :E: (} - -l) >0
e = z, ) =
i=1

One such bound of interest, since it
(1.e., tightens as the SNR decreases), is

(3.103)

. (3.104)

Invoking the central 1imit theorem as discussed above in order to evaluate

this lower bound on Pe, it is found that

¢ < 2 +2 - in|?
e an an mEn ZlicMie ¥ s Mis 14
z, |~ ic is 2x (m+4)/2 !
. A [ 2 2 2]
-00 -C0 N

jc TNy * E

where use has been made of

m

mé 1 .
p, (n,) = =~ . =p
nyd 2n 2 2 (m+2)/2 Tie*Nis
|ng|™ + ¢
in which ﬁi = nic

AN By = Byt Ry, and
is noted that Eq. (3.106) is obtained by setting
is given by Eq. (3.91) for the special case m =

cial case 6 = 3,

(3.105)

(o Ny o (3.106)

2
" = m N /B, A, [1t

N=1 in pn(B), which
1.] Taking now the spe-

since it is the case of most interest,

1 2 © © IP |2
AP S i
E[l - ziJ - n f e f s

-00

2 2
et [nic * T]is +
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Thus
N N lF ! 2
EZ 1 - =-1Y(—1) : (3.108)
z1 2 Z, 3
i=1 i=1
Similarly,
2 4
2 [y | I
[ ~_1.(_1_) Ry x
E[} 2 =3\ s 3 \% , (3.109)
so that
2 4
1 1 l”i') 1 (|“1|
var(l - zi) = 3< ; + 15 \"% . (3.110)
Therefore, since the z1 are statistically independent,
: A TAY
1 1 i i
var z (1 zi) =13 z [4( i ) +( 3 ) . {3.111)
i=1 i=1

Now, knowing that

becomes normslly distributed as N = c, an estimate of the lower bound

given by Eq. (3.104) can be obtained as follows:

© ) 2

|2 [—m b vl (3.112)
P 2 exp|- dx , 3.112
ee=3 2 1/2 20:

0 (Z“C’z)
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where u_ is given by q. (3.108) and °§ is given by Eq, (3.111), Thus
. 2
1 |14 ]
2 2 (%
P, | Z erte =1 . {(3.113)
=3 N

AT

Since this bound was obtczined by applying the central limit theorem to the
sum of N independent random variables, it is well knrown thit the result-
ing error is small if attention is restricted to those situations where P
is sufficiently large--i.e,, greater than about C/Nl/z, where C is a
proportionality constant {Rezx. 44). Thus for the finite N of interest,
there is negligible error in the result given by Eq. (3.113) when thi. re-
sult is specialized to the low SNK case; i.e., there is negligible error

when

N

2 2
25 %Mil < £

i=1

and there is obtained the asymptotic result

e ]

lim P

I—IL-‘—I-I-‘
E

(3.114)
ee=3

where use has been made of the fact that

2
N 1/
2
h=|> 103
i=1
SEL-66-052 - 120 -




AT .-

- - s i e

However, in addition to the fact that the accuracy of the result obtained
using the central limit theorem improves as miﬂ/g + 0 for fixed N, it
is also true that the lower bound on fn z, used to ok:ain Eq, (3.113)

i
tightens as |p1|/§ -+ 0, so that, asymptotically, we have tiie low SNR

result

lin P | =erfc[(§)1/2 M] (3.115)

i =2 :
"0

It is interesting to note that, as expected, this low SNR result is depen-
dent only upon a ratio of signal energy to noise energy and is not depen-
dent on signal shape.

Now, if the low SNR condition ”g“ << & 15 not satisfied, Eq.
(3.115) does not hold and attention must be returned to the bound given
by Eq. (3.113). However, us mentioned above, Eq. (3.113) is not a useful
bound on the probability of error at low values of Pe with the finite
N of interest here. Therefore, it is necessary to find a hetter estimate
of Pe for the high SNR, low : situation., One method for accomplishing
this is to apply the technique known as distribution "tilting" [Ref. 45].
Noting that the results found for low Pe using the central limit theorem
are poor because of the fact that it is the tail of the probability dis-
tributed that must be evaluated, the tilting procedure will be applied
here with the purpose of moving the mean of the tilted distribution to the
point at which the cumulative probability is to be calculated. Having
accomplished this, the desired cumulative probability can be determined
accurately using the central 1imit theorem; and, in fact, an exponentially
correct bound on this probability is given by the appropriate Chernoff
bound [Ref. 41]. Now, Eq. (3.101) states that

N
P =pr z in 2z >0}, {3.101)
i=1
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where

(3.102)

Also, there is the Chernoff bound given by

N

Pr z £n z, 20} < exp[pN(s) -8 p.&(s)] | .(3.116)
i=1 s=s0

AR £

it

i where

np

uy(s) = 4n gy(s) (3.117)

and

et < ot e ————
v
Rl AW BRI L L

N

gy(s) = n g,(s) , (3.118)

N

+ i SEp

3 in which the gi(s), i=1, ..., N, are the moment-generating functions
g

f of the independent random variables In zZy, i=1, ..., N, respectively.
3 Furthermore, the point 0 at which the right hand side of Eq. (3.116)

e

is to be evaluated specifies the amount of tilt employed, It is given

g oam

Criasd T v Ty
P—w———_—— AR AR L R -

t

here by the value of s > 0 which satisfies p&(s) = 0, where

O

i

up(s) 2 39; ny(s) - (3.119)

Lt 4 dng

Thus for the case of interest here, there is obtained the bound

e e O

PR

N N
Pr z fnz, >04< 0 gi(s) | . (3.120)
i=1 i=1 s=s0 .

e e ————— S TS AL A AP P\ ISR
[ 4
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Now, although the Chernoff bound given by Eq. (3.120) is an upper bound,
it can be shown [Ref. 41] through application of the Berry-Esseen theorem
[Ref. 44) that this bound is "exponentially correct", i.e., that

N
-1/2 N
Pr Ei Inz, >0})=~1(N ynoe(s)| (3.121
1< 4o 1

i=1 5=%0

where f(N-l/z) is a polynomial in N-l/z. Therefore

N

"12 1 .

P ~f(N / ) nog(s)| (3.122;
i=1 s=so

-1/2 -
where f(N 1/ ) is a polynomial in N 1/2, and 5, > 0 is that value

of 8 satisfying pﬁ(s) = 0, Thus the calculation of Pe reduces to
the determination of gi(s) | ,1i=1, ..., N, This determination is
s=sQ

accompiished as follows:

g;(s) = Elexp(s fn 2,)] = E[z:]
(2s-m-2)/2
e S [V
) I‘('%) Tt -O_{dnic _o[dnis []’l . I2+ g‘.z]s
i P4

(3.123)

Now, in order to simplify the calculations the following assumptions will

be made:

Assumption 1, Let Big = OvVi=1, ..., N, so that the known signal
m(t) takes the form m(t) = pc(t) cos wot. This assumption is not
essentia) but greatly simplifies the resultant integrais.

Assumption 2, Take © = 3 (m = 2), since this case is easily evaluated

and in fact is the case of most interest,
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With these assumptlons,

50-2
2 g ® b2 4 2 4 62
g,(s) | = = fdx _[dy Y : — (3.124)
S'_—SO -0 ~0c 2 2 2 0
[(x =, )7 +y" + &7
where o > 0 must satisfy the equation
N
2{ d (g (s)]] =o0. (3.125)
ds i s=s
i=1 0
That is, So > 0 must be the solution of
0 0 s=2
2 2 2 2 2
(x" + y~ + €7] ) X +y + &7
dx dy s n 2 2 3
N 2 '
. - - (=, )7+ ¥+ £?) (x =my )™y ot
= 0 .
0 ) s=2
2 2,2
i=1 .f dx -[ dy [(x" + y~ &}
2 2 8
-00 -00 [(x - pi ) +y + ¢ ]
(3.126)

Conveniently, it can be shown (see Appendix B) that Eq. (3.126) is in
fact uniquely satisfied by s = 1. Thus, plugging this fortunate result
into Eq. (3.124):

.

o«
1
fdy Z
2 Z 2. 2 2 2
{ -
o [x® + y" + 7000 =y )7+ 9" + 7]

(3.127)

Now, the integration with respect to x can easily be done as a contour

integral (see Appendix A), and it is found that
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2
g, (s) | =2¢ dy 1 :
17 s 2 212 2z

-0 [y° + ¢°] [a4y” + 4¢° + “ic] )

:;;

- 1 gl

== dy 17z . (3.128) §

1 2 1 2
Hic + §2 o) [1 + 5y ] 14 2 y !
4

¢ Hic + §2 -

4 :

&l

This integral can be evaluated using Erdelyi [Ref. 46], item 6.,2(35), %f
which gives %ﬁ
2 2

1 3 4 P

g (s) | =F (1,3 3,-2 cH , (3.129) gi

A S L L 2 Lt i s al ¥

- Hic Hic * 48 g
i
where 2F1 (a, b; c; x) 1is Gauss' hypergeometric function. Finally, ‘}
substituting Eq. (3.129) into Eq. (3.122), 8
£
i
¥

N 2 2
pe| ~ f(N'l/z) n & 5 <,-§- g; 1--—45-—> , (3.130)

- .12 2271 ! 2 2 :
0=3 i=1 Hio + 4¢ Pie + 4¢ .
wiere it is recalled that N = 2TB. i

At this point it should be mentioned that the estimate of Pe
given by Eq. (3.130) can perhaps be further refined by approximating the
f(N-l/z) factor., 1his possibility will not be pursued at this time, how-
ever, since Eq. (3.130) gives the essential behavior, particularly at low
values of Pe. Rather, we will consider optimization of the exponentially

correct estimate given by Eq. (3.130) with respect to parameters under the

control of the design engineer, where it is noted that this estimaie is
dependent on both signal shape and receiver bandwidth in addition to sig-

nal energy and noise energy. In order to proceed with this optimization,
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it is necessary to set down the pertinent constraints on the transmitted

signal and on the receiver bandwidth. These can be specified as follows:

1. The only constraint to be placed on the transmitted signal in the
interval [O,T] is an average-power constraint, although it is

noted that this will lead to the same result as if a peak-power
constraint were also imposed.

TR G, B T

2, In order to specify the constraint on the receiver bhandwidth, it
is noted that the dependence of Eq, (3.130) on the receiver band-
width enters through N = 2TB, This dependence follows, of course,
from the signal representation used in this case (Case IIa), which
assumes that the atmospheric noise is observed in an rf bandwidth
2B. This assumption stems from the discussion of limited spectrum
availabtlity in Section IIB, and means that the log-correlator re-«
ceiver shown in Fig, 23 is in practice preceded by a bandpass filte:
of bandwidth 2B. Therefore, it follows that the pertinent con-
straint on the receiver bandwidth is that it be small enough to

suppress strong adjacent channel signals, and yet large enough to
pass the transmitted signal.

. o —————_

OB I s e e

Proceeding now with the optimization problem, it is first of all noted

that the optimal signal) shape must be achieved when the transmitted signal
energy is distributed uniformly in a portion, say Tk < T, of the avail-
able signaling interval of length T. This follows directly from the

Case fla representation of the complex envelope of the received signal in

o erhawen oo e K0

terms of the pulse basis functions qi(t), i=1, ..., N, With this re-
[ sult in mind, it is convenient to rewrite Eq. (3.130) as ¢

st

2T B

k Y B Y B
for B 0 1.3, ,____90
P | zf(l/ 2TkB) n -——-——0-5 oF <1, 51 5 1 > , (3.131)

1=1]% * ¥

ﬁ { Q =u B=—3 (3.132)

is the signal power received under h(l) in the interval Ati, and ¢

o e

Yo 2

- = 26 (3.133) .

]
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is proportional to the average noise energy received in each interval of

length 4t; so that

[re—

(3.134)

is proportional to the average noise power received in the bandwidth 2B,

These identifications are seen to bhe consistent with the assumption that

Wi

in practice the atmospheric noise can be considered to be "white" prio:
to filtering by the receiver,

; It is next observed that, in the optimal situation,

k Y B

0_

Qi + Y0

must be independent of the value of Tk < T, since both Qi and Bmin
- are directly proportional to 1/'1’k when the constraints imposed above

are satisfied, Thus it follows directly that the optimal choice of 'I‘k
is given'by T = T. Plugging this result into Eq. (3.131) and making
use of the fact discussed above that Qi =QVi=1, ..., 2TkB is opti-

mal, there results

TB
Y B YB \|°
0 1.3 ,__0
o ~ f(l \/21'3) - 2F1<1, 5 2 LTI Y Yo") . (3.135)

Thus, as far as the signal shape is concerned, it is concluded that the
minimum value of Pe follows from distributing the signal energy uni-
formly in the signaling interval [0,T]. Furthermore; as expected, P,
is minimized by making T as large as possible.

It now remains to choose the optimal receiver bandwidth 2B, It
is shown in Appendix C that, in fact, Bopt = o, This result is disturbing,
of course, since the noise model from which it is derived has been demon-
strated to be valid only for bandwidths up to a few thousand cycles per

second, However, examination of the value of Pe resulting from large B
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shows that the estimate given by Eq., (3.135) is of practical interest,

since there is found the result {see Appendix C):
1f B>> Q/Yo, then

1

1NN
vor

21Q
P, | =t(1\/2m8) (0.51) Mo : (3.136)

6=3

Furthermore, the practical usefulness of this result is demonstrated by the
fact that the asymptote is approached quite rapidly with increasing re-
= ceiver bandwidth, since, e.g., B = 3Q/Y0 givee

‘ ' P | ~ f(l/vfz'r'a) (0.56) . (3.137)
8=3 Q

B=3 L2

0

Examination of the error curve given by Eq. (3.137) {see Fig. 24) shows

that error rates of the order of 10“5 can be achieved in practice using
3 receiver bandwidths of the order of a thousand cycles per second, Thus
it is concluded that Eq. (3.136) gives a valid estimate of the error per-
? formance achievable in the presence of additive atmospheric neise. This

estimate is conveniently written as

ety sy &

_ 1.35 E
. éim pee‘—; 1(1/,/21'8) exp[- ——Y——] , (3.138)

L
Q

(1)

where E = QT is the signal energy under h distributed uniformly

R L T

in the signaling interval. This Pe result is plotted vs SNR in
Fig. 24, along with the error curve resulting from the use of a matched-
filter receiver in the presence of additjive generalized "t" noise., In
addition, the error curve achieved by a noncoherent FSK system operating
at vlf is also presented using measured data obtained by Watt, et al
(Ref. 47].
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In Fig. 24, the parameter A =V /V is introduced and the
rms’ avg
error curves plotted for 2 < A < 4 because of the fact, discussed in
detail in Chapter I1, that 'Vrms is determined primarily by the tail of
the probability distribution, whose observation is made difficult by the

Y

large dynamic range exhibited by atmospheric nnise., Thus, noting that

the noise envelope distributed according to the generalized "t" model

T £ttt TE T I VORECTVLE e
L P
e e e T T TR e S

actually has a divergent second moment for 9 < 3, the parameter
2 <A< 4 is introduced to show the variation in the error curve due to

the range of values of A actually observed in practice.T

4. Discussion of Protability-of-Error Results (Case 1la)

Before proceeding to the discussion of the results calculated
above it is recalled that these Case II results apply to long-duration
signals, where long duration means that the slowly varying modulating
process a(t) is allowed to vary on the signaling interval. Furthermore,
the Case Ila results apply specifically to the Case II situation where
the complex envelope of the received signal can be described by Eq. (3.76)
in terms of N = 2TB statistically independent samples, It is proposed
that this is the simplest representation of Case II signals of practical
interest, It is seen that it essentially includes the Case 1 signals as
a special case, With this in mind, inspection of the error curves plotted
in Fig. 24 shows that the performance predicted for the log-correlator
receiver in the presence of additive atmospheric noise is significantly é‘
better than either that predicted for the matched-filter receiver or that X
actually achieved by the FSK system. Although the error curves are fairly B
self explanatory, several comments concerﬁing their derivation are war- i

ranted:

fNote that the square of the rms carrier-to-noise ratio plotted on the
abscissa in Fig. 24 is related by a proportionality constant to the
signal-to-noise energy ratio E/Yo. This constant is proportional to
the ratio of signal bandwidth to receiver bandwidth, For the case in
Fig. 24 (using A= 3) it is about § X 10'3, although this value may
be too small by a factor 1/2., This error would result in the performance
of both the matched-filter receiver and the log-correlator receiver
being 3 db worse than that shown in Fig. 24, This cannot be resolved
due to the fact that E,,c as given by Watt, et al in their Fig. 18 does
not appear to be consistent with the scale un the ahscissa.
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FIG, 24. RECEIVER PERFORMANCE IN PRESENCE OF ADDITIVE ATMOSPHERIC NOISE:
COMFARISON OF PREDICTED ERROR CURVES WITH MEASURED PERFORMANCE CF AN
FSK SYSTEM OPERATING AT VLF,

Specification of transmitted signal:
Frequency shift keyed, i 25 cps shifr
60 WPM start-stop teletype

[Note: Vertical scale is 1log|log P | or log|log Po (V)]
where PO(V) is the probabifity that the envelope

V exceeds the value specified by abscissa, )

LEGEND:

———— Measured data: Complement of the probability dis-
tribution function of the envelope of the received
vlf noise. (Watt, et al, [Ref. 47])
Receiver 6-db bandwidth = 120 cps

—ewore—eeee—n  Measured data: Noncoherent receiver binary error
curve (derived by Watt, et al from measured character
error rates).

Receiver specifications:
120 cps IF bandwidth
70 cps base-bandwidth
Predicted matched-filter receiver error curves
(matched to mark frequency only).
3 Generalized "t" noise model, & = 3
- vrms/vav =2
4 E (see page 129)
—— v/ =4
rms’ avg
Predicted log-correlator receiver error curves (coher-
ent detection of mark frequency, space frequency re-
moved )
5 Generalized "t" noise model, o = 3
e - rms/ avg =2
6 (see page 129)
— e / =
rms’  avg
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1. Log-correlator receiver: The error curve presented for the log-
correlator receiver was obtained by using the «ponentially correct
estimste given by Eq. (3.138) in conjunction with the low SNR result
given by Eq. (3.115). The low SNR resul: gives a good estimate of
the probability of error at high values of Pg. This portion of the
error curve was obtained by writing Eq. (3.115) in terms of the no-
tation introduced in Eq. (3.131). This gives the convenient form:

lim P | =erfc(/§§) (3.139)
B Y

e
E o “e=3 0

Yo

AT T R PR

H
H

bt iermria
I P M

R

QR e s

Note, as mentioned earlier, that this low SNR, high Py result de-
pends only upon a ratio of signal energy to noise energy and is
independent of signal shape. In contrast to this, the estimate of
Pe given by Eq. (3.138), which is exponentiaily correct at all
vaiues of P, was shown above to depend crucially on signal shupe,
Now, it is interesting to investigate the claim that the performance
predicted by Eq. (3.138) is, ir fact, guaranteed only if the signal
energy is distributed uniformly in the signaling interval., Obser-~
vation of the result that B = o is optimum is a.tually seen to
discount this claim when the only constraint on ti2 transmitted sig-
nal is an average power constraint, since a given Pe performance
can be obtained (when the signal energy is not uniformly distributed
in the signaling interval) merely by sufficiently increasing the
receiver bandwidth 2B, However, it must be remembered that chese
results are obtained using the Case Ila assumption that the samples
cf the complex envelope of the received noise are statistically in-
dependent--an assumpticn that certainly breaks down for receiver
bandwidths larger than about 104 cps. Thus it is concluded that,
practically speaking, the optimal situation is indeed that where the
signal energy is uniformly distributed in the signaling interval,
since this achieves a given level of performunce with the smallest
receiver bandwidth,

Lmite s ot E A

L2 et et v e ey

2. Matched-filter receiver: The error curve presented for the matched~
filter receiver was obtained by noting that if attention is re-
stricted to a class of signals whose matched filter can be assumed
to be a narrowband filter of bandwidth 1/T, then the calculation
of the probability of error reduces to a one-dimensionai calculation
[Ref. 37] similar to that reguired in Case I. It may be noted that
this class of signals contains many signals of interest, including
the FSK signal used in the system studied by Watt, et al.

Now, as in Case I, the high SNR case is the most interesting and
gives thez result

¥o

o ! — ——

iim P, Rk (3.140) .
.E.:... - 0 =

Yo
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Thus the improvement possible using the log-correlator receiver
instead of the matched=-ifilter receiver in the presence of additive
generalized "t" noise is clear. This is demonstrated in Fig, 24
where the entire erior curve is plotted.

X

[

3. Noncoherent FSK system: The error curve presented for the FSK sys-
tem was derived by Watt, et al from measured character error rates,
Once uagain, the advantage to be gained by using a log-correlator
receiver instead of the receiver actually employed is obvious. Al~
though all of the details of operation of this receiver are not
presented by Watt, it is one of a class of receivers often used in
practice and will be considered in more detail in Chapter 1V,

The fact that the predicted performance of the log-correlator
receiver 1s much better than that predicted for the matched-filter receiver
indicates the necessity of usirg nonlinea. receiving techniques in the
presence cof additive atmospheric noise. In fact, this is the procedure
used in practice 3n conjunction with long-duration signals, However, the
relatively poor performance of the FSK system studied by Watt, et al
indicates that some of the receiving techniques used in practice are far
from optimum. For exampie, for the 60 wpm start-stop teletype system con-

sidered in Fig. 24, the plotted ercor curves indicate that an error rate

of 1 error per 104 bits can be achieved using an appropriate log=-correlator
receiver with an SNR that is 20 to 30 db less than the SNR required by the
FSK system analyzed by Watt, et al, This means that there is an order-of-
magnitude difference in the transmitter power required by the twc systems
in crder to reach this particular level of performance; and this, of course,

has strong economic overtones, As a result, it is of interest to apply

the generalized "t" model in an attempt to predict the probability of
error resulting from the use of the various receiving techniques that have +
been proposed for use in additive atmospheric noise. For example, the

"smear-desmear" technique mentioned earlier can be investigated using the

generalized "t" model, It appears from cursory examination tchat this
technique leads to considerably poorer error performsnce than that calcu~
lated for the lug-correlator recoiver., This follows from the fact that
the performance predicted by Eq. (3.138) for the log-correlztor receiver
is significantly superior to the performance of an optimal matched-filter
receiver in the prescrnce of additive gaussian noise with the same aversage
noise power. Quantitatively, this superiority is eguivalent to 12 to

15 db in input SNR; and the fact of this superiority is consistent withk
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the notion that the additive-atmospheric-noise channel has a higher ca-
pacity than the additive-gaussian-noise channel having the same average
noise power.

This investigation of proposed receiving techniques will be pur-

sued further in Chapter 1V, where proposed nonlinear receiving techniques
will be considered.

E. SUMMARY AND CONCLUSIONS

The work in this chapter has been concerned with the detection of
known signals in additive atmospheric noise. In particular, detailed
consideration has been given to the problem of deciding between the two

& priori equiprobable hypotheses

e S T
U OO WA At e

A

et AT Tt

T
N

T 0

w

il

T I

h(l): x(t)

m(t) + y(t)

(3.2)
2)

h( : x(t)

y(t)

with the smallest probability of error., The additive atmospheric noise

y(t) is represented in this work by the generalized "t"
in Chapter II.

model developed

Two cases are identified:
1. Case 1: Short-duration signals. This case is characterized by the
fact that the slowly varying modulating process a(t) in the gen-
eralized "t model can be assumed constant for the duration of
the transmitted signal. The correlator receiver described by Eq.
(3.23) is found to be optimum in this case, and the probability of
error achieved by this receiver is calculated in Eq. (3.44), The
probability of error for high SNR is the resuit of most interest,
and is given by

/2
lim k| =3+, (3.45)
E 9=3 w
. S
2
7W

where 7: is proportional to the average received "whitened" noise
energy and Ew is the energy of the known signal m(t) at the out-
put of the whitening filter, The slow decrease with increasing sig-

nal energy of this Pe result, relative to the exponential decrease
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achieved in the presence of additive gaussian noise (see Fig. 22),
indicates that short-duration signals are not an optimal choice :in
the presence ¢f atmospheric noise. This is, of course, physically
reasonable because of the distinctive impulsive nature of atmo-
spheric noise, This suggests the use of signals of long duration
relative to that of the typical noise pulse,

In addition to these short-duration signal results, the Case 1 as~
sumption was also applied to the situation (Case Im) where the
additive noise is described by the modified generalized "t" model,
The correlator receiver given by Eq. (3.23) continues to be optimum
in this case, but the probability of error is now given approximately
in the high SNR case by

y E 1/2
P, | = __:?v 2 exp|- \; - Qﬂé erfc(?é‘-v-) . (3.53)
6=2 E, 8

This resulf reduces in form to that given by Egq. (3 45) above when
(Ew/ﬂ ) << 1 1is satisfied, which is the case of practical interest
at vlf and 1f frequencies of operation. On the other hand,

(3 52) predicts an exponen~ial decrease in Pg with inbreab-né sig=-
nal energy when /B ) >> 1 1is satisfied; this condition may be
approached in practice at hf, Thus it is concluded that short-
duration signals are more attractive for use at hf than at lower
frequencies of operation., This is consistent with the fact that the
received noise loses its impulsive appearance as the frequency of
observation increases,

Case II: Long-duration signals, the general case. This case is

characterized by the fact that the slowly varying process a(t) is
now allowed to vary on the signaling interval. In particular,

Case IIa generalized "t" noise is considered in detail and is
specified to be that Case II noise whose complex envelope can be
described by Eq. (3.76) in terms of 2TB statistically independent
samples. This is proposed &s the simplest representation of Case II
signals of practical interest, and the optimal receiver in this case
is found to be a "logarithmic-correlator" receiver (see Fig. 23)
which implements the rule

(1)

Choose h'"’/ iff

T T
f | x(£)% + y2lat » f ml|x(t) - u(t)]® + %),  (5.97)
0 0
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where |x(t)] is the envelope of x(t), [x(t) - u(t)] 1is the
envelope of x(t) - m(t) and 5° 1is proportional to the average
received noise power, An "exponentially correct" estimate of the
probability of error achieved by this receiver when the transmitted

signal energy 1s distributed uniformly in the signaling interval
is given by

lim | 1 (14/ZT5) exp[ 1.35 E] , (3.138)
. Yo

where f(l/ 2TB) is a polynomial in (IA/ZT ) E = QT 1is the
energy of the known signal m(t), and Y, = 2(7 /B) is propor-
tional to the average received noise energy. Tne exponential be-
haviqr of this P, result is strikingly superior to that given by

(3.45) for short-duration signals. Furthermore, it is shown
(see Fig. 24) that this performance of the log-correlator receiver
is significantly better than either that achievable by a matched-
filter receiver or that actually achieved oy a typical FSK vlf
communication system. Also, to demonstrate that the asymptotic per-
formance predicted by Eq. (3.138) can be closely approached in prac-
tice, the special case YOB/Q = 3 1is noted. It is shown in Section
D3 that this special case is reasonably achieved in practice, and
that it gives the result

(14/55_) exp[ 115 E] . (3.141)
0

(=]
oleC E
]

[A]

With the above probability-of-error results in mind, it is inter-
esting to note that there is an alternate realization of the log-
correlator receiver given by Eq. (3. 98) that is approximately
equivalent to Eq. (3.97) when the condition (Y B)/(4Q) >> 1 is sat-
isfied. This realization takes the form:

choose h1) ifg
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This receiver rule is of interest, since it may be simpler to imple-~
ment than Eq. (3.97), and since it has a realization closely related
to the matched-filter realization of the correlator receiver rule,
However, it is important to note that the condition (Y4B)/(4Q) > 1
is a low signal-to-noise power ratio condition whose satisfaction in
practice may introduce more system complexity than it removes, given
a desired level of system performance,
Finally, it is concluded that the error performance predicted by Eq. (3.138)
for the log-correlator receiver in the presence of additive atmospheric
noise is of particular interest, since it is the only theoretical estimate
knowri to the author of the performance achievable in the presence of addi-
tive atmospheric noise, Furthermore, the simplicity of the log-correlator
receiver indicates that this level of performance can be approached by

practically realizable receivers,
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IV, RELATED TOPICS

A, COMPARISON OF THE LOG-CORRELATOR WITH ANOTHER RECEIVER FORM

in the Case II "known signal" considerations in Chapter III1, it was
shown that the receiver which is optimal in tue presence of additive at-
mospheric noise, in the sense that its use minimizes the prcbability of
error, is the log-correlator receiver, During the discussion of this
Case Ii result, the desirability of comparing the performance predicted
for the log=-correlator receiver with that obtainable using other receiving
techniques was mentioned, 1In particular, it is desired to compare its
performance with that of receivers commonly used in practice. Inspection
of the log-correlator receiver (Fig. 23) leads to several qualitative con-
clusions on this comparison., It is seen that the log-correlator receiver
performs essentially four operations as it processes the received signal,

In the order of their performance, these operations can be described as

follows:

1. The receiver makes use of the "known" nature of the transmitted
signal, i.e., the received signal is compared with each of the
possible transmitted signals, each of which is known.

2. The results of the comparisons in (1) are nonlinearly processed in
a fashion which suppresses the effect on the resultaont decision of
the comparisons at those times when the received signal is largely
the result of a2 pulse of noise,

3. The results of the zero-memory nonlinear processing of step (2) are
summed over the signaling interval,

4, The resultant sums in step (3) are compared against one another .nd
a decision made on the basis of this comparison.

It is important to note that the Case II considerations of Chapter III
make the assumption that the received signal has been appropriately
bandpass-filtered prior to step (1) above, Several factors enter into
the choice of this predetection bandwidth, which is discussed in detail
in Chapter I1I; but in practice the selection procedure can be summarized
as follows: At operating frequencies where atmospheric noise is impor-
tant, the predetection bandwidth should be chosen as large as possible

consistent with the exclusion of strong interfering narrowband signals.

This means that the limited spectrum availability in the frequency range
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of interest is typically the factor that determines the predetection re-
ceiver bandwidth,

The receiver form whose performance will be compared here with the
performance of the log-correlator receiver is that shown in Fig, 25, This
receiver is of interest because of its simplicity of construction, which
makes it perhaps the most commonly used receiver form in the presence of
additive atmospheric noise, Typical zero-memory nonlinear devices used
in the configuration shown in Fig. 25, depending upon the type of modula-
tion employed at the transmitter, are:

1. The wideband "clipper" which operates to limit the amplitude of the

received signal when this signal amplitude exceeds a specified level
indicating that it is predominantly the result of a pulse of noise.

2, The wideband "limiter", often used with angle modulation schemes,
which provides an output signal whose amplitude is fixed independent
of the amplitude of the input signal, and whose sign is the same as
that of the input signal.

>l MATCHED
FILTER #!
v
ZERQ - MEMORY
RECEIVED

—séra—{ NONLINEAR THRESHOLD | ..
SIGNAL DEVICE Logic | OECIsSio:

MATCHED

FILTER #2

FIG, 25. BLOCK DIAGRAM OF RECEIVER COMMONLY USED IN PRESENCE OF
ADDITIVE ATMOSPHERIC NOISE.
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Comparison of the performance of the receiver forin described in
Fig. 25 with the performance previously outlined for the log-correlator
receiver proceeds qualitatively as follows: Noting that the predetec-

tion filtering required in conjunction with the log-correlator receiver

.y ErT » g L T
L be el e e e 1

is also required in practice by the receiver described by Fig, 25, it is
seen that the two receivers perform similar operations on the received

signal, with the exception that the order in which operations (1) and (2)
are performed is interchanged. In addition to the fact that the two re-

ceivers employ different zero-memory nonlinear devices, it is clear that

[ —
NPTV

the receiver described by Fig. 25 must be inferior to the log-correlator
4 receiver because of this interchange of operations. This conclusion fol-

: lows from the fact that the receiver described by Fig. 25 destroys part

of the information known about the possible transmitted signals before
it makes use of this information, arid thus must perform less well than

the optimal log-correlator receiver in the Yknown signal" situation being

considered here, Experimental support for this conclusion was given in
Fig. 24, vhere the performance predicted for the log-correlator receiver
is seen to be far superior to that actually achieved by an FSK communica-
tion system operating at vlf. Although Watt, et al do not give all of
the details of the particular FSK receiver employed, they indicate that

Ot

1 e
Ao s A B9 | AR RS At PN SSor .\

it basically has the form described in Fig. 25, where a limiter performs

s

the zero-memory nonlinear uperatiom,

e

B, DETECTION AND ANALYSIS OF WHISTLER~MODE SIGNALS

In addition to the "known signal' detection problem considered so far,
it is of interest to consider the application of the generalized "t"

model to other signal analysis problems in the presence of additive atmo-

[t

PR TN

spheric noise. One such problem is the estimation problem in which it is

desired to find the 'best" (in some sense) estimate to a transmitted sig-

nal that is not completely known & priori, given observations at the

receiving site--i.e., given observations only after the atmospheric noise ~
: has been added. As an example of practical importance, we will consider

y the problem of detecting the presence of signals propagating in the

whistler mode [Ref. 48] and in addition of measuring the defining charac- s

teristics of the detected whistler-mode signals., Although no analytical
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results are as yet available on this estimation problem in the presence s

of additive atmospheric noise, it appears worthwhile to note the following:

The whistler-mode signals which it is desired to analyze are described in
detail by Helliwell [Ref. 48], and can be described for the purposes of
this discuss}on as vlf signals possessing a very large time-bandwidth
product, i.e., bandwidths of the order of 10 kc and durations of the order
of one second, Furthermore, the name "whistler" stems from the fact that
these signals typically consist of a gliding tone which sweeps across the
vlf band from high to low frequencies producing an audible "whistle,"

1, Analysis of Typical Whistler Receivers

The purpose of this investiigation of the whistler estimation prob-
lem is twofold: to consider the usefulness of the generalized "t" model
in formulating a solution to this problem, and to use the insights gained
in the known-signal problem for evaluating the performance of receiver
forms presently used in whistler analysis., Thus in order to proceed, the
receiver form typically used to study whistlers in the presence of additive
atmospheric noise is presented in Fig. 26, The zero-memory nonlinear de-~
vice normally used in this configuration is the wideband clipper described
in connection with Fig. 25, so that this receiver will henceforth be called

5.

ZERO ~ MEMORY 5

IVED | unear WHISTLER '
siohaL | M Upue =1 FLTER ™ ESTIMATE :

SPECTRUM WHISTLER

ANALYZER DATA

FIG. 26, BLOCK DIAGRAM OF CLIPPER RECEIVER COMMONLY USED TO
ANALYZE WHISTLER SIGNALS,
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a Y“"clipper receiver." In order to proceed with the analysis of this re-~
ceiver, it is first of all noted that the Case II known-signal results
cannot be applied directly, since the information known about the whistler
and of course that utilized by the clipper receiver is not sufficient to
make the whistler a known signal, Rather, we can conclude that if the
whistler to be analyzed can be further specified so that the problem be-

comes 8 known-signal problem, then the log-correlator receiver is the

optimal receiver. Otherwise (as is usually the case since it is the de-
tailed measurement of whistler parameters that is of scientific importance)
the optimal receiver is not obvious, and the clipper receiver is a candi-

date whose use can be supported on physical grounds. In order to show

S

this, it is noted that whereas the whistler is characterized by both a

large bandwidth and long duration, the received whist’.er signal i1s con-

DA

taminated by additive noise which primarily comes from two distinct sources:

1, Additive atmospheric noise: This noise, which is discussed in detail
in Chapter 11, has a bandwidth of the order of 10 ke (no narrowband
assumption here) and can be characterized as a sequence of noise
pulses, each of which has a dursation of much less than one second.

i 2, Narrowband interfering signals: 1In centrast to the communication
situation where a narrowband assumption Is reasonable, the wide band-
width of the whistler means that strong narrowband interfering com-
munication sigrals may exist within the frequency band of interest.

With this description of the additive noise in n.nd, the perfor-
mance of the clipper receiver can be investigated by examining the opera-
tions performed by the individual receiver components. This examination
shows that in fact the clipper receiver is a good candidate for use in the
presence of the additive noise described above, since it suppresses the

effect of the noise on the spectrum analyzer output in the following ways:

iy )

1. The wideband clipper serves to reduce the effect of atmospheric
noise pulses before these pulses can be "smearea' in time by the
narrowband filters comprising the typical spectrum analyzer. It is
clear that the usefulness of the clipper depends upon the ability
of the operator to set the clip level close to the maximum level of
the received whistler, This ability is a function of knowledge both -
of the level of the whistler signal and of the level of narrowband
interfering signals. (The problem of optimally setting the clip
level is discussed further below.)

inantanty
I T

e

ore b

2. The effect of narrowband interfering signals is suppressed by the
fact that they contaminate only a small portion of the frequency

Ko
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band examined by the spectrum analyzer, Thus the observer at the
output of the spectrum analyzer is able to pick out the whistler
signal by simply ignoring the spectral lines produced by the narrow-
band interference.

It is important to note that although the above discussion indi-
cates that narrowband interfering signals are not directly a problem, they
may be an important factor in preventing an optimum setting of the clip
level, Thus it is seen that the actual interfering signal environment is
important in the analysis of the performance of the clipper receiver, and,
of course, is also important in any analytical formulation of the whistler
estimation problem, 1In fact, the above discussion dictates that the clip-
per receiver performs best when strong narrowband interfering signals are
removed by selective linear filtering prior tc the performance of the clip~
ping operation, Having removed these strong interfering signals ("strong"
refers here to the situation where the received interfering signal power
is significantly greater than that of the received whistler), the perfor-
mance of the clipper receiver becomes a function of how well the level of
the whistler signal to be analyzed is known, In fact, if this level is
known quite precisely, and if the setting of the clip level just above this
known signal level results in clipping for only a small percentage of the
time, then the clipper appears to be a good choice of nonlinearity that is
effective in suppressing the additive atmospheric noise., On the other hand,
if the whistler signal level is known only approximately (perhaps only sta-
tistically), or if the setting of the clip level just above the known sig-
nal level results in clipping a large percentage of the time, then it
appears that there must certainly be another nonlinearity which performs

better than the wideband clipper.
2, Conclusions

The foregoing discussion has been presented to specify an estimation
problem of practical interest in the presence of additive atmospheric noise.
The clipper receiver typically used in the analysis of whistlers has been
examined in some detail, and is seen to operate on the received signal in
a fashion that agrees both with intuition and with the results of the known-
signal detection problem. However, the discussion also indicates that the

clipper receiver is certainly suboptimal if either the power level of the
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whigstler signal is unknown or the whistler signal is a very weak signal--

i.e., if there is8 & very low SNR characterized by clipping for a large

»
O o GRS Sl R

percentage of the time. Since usually the first and often both of these .
conditions are characteristic of the whistler estimation problem in prac-

tice, it is proposed that improved receiving techniques may result from

applying the generalized "t" model to the whistler estimation problem.

This possibility will be considered further in Chapter V,
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V. SUMMARY AND CONCLUSIONS

A. THE GENERALIZED "t" MODEL FOR RECEXIVED ATMOSPHERIC NOISE

This work has been concerned with the developmeht and application of
an analytical model for impulsive phenomena. 1In particular, the work has
focused on a specific impulsive phencmenon, atmospheric raaio noise.

In Chapter Il a new model, called the generalized "t" model, was
developed and was verified to be appropfiate as a description of received
atmospheric noise, i.e., atmospheric noise as observed through a given
receiver passbana. This generalized "t" model describes the received

atmospheric noise y(t) as
y(t) = a(t) n(t) , (2.3)

where n(t) is a zero-mean narrowband gaussian process with covariance
function Rn(T) and a(t) 1is a stationary, slowly varying random process,
independent of n(t), that modulates n(t). This modulating process

a(t) 4is further described as

a(t) = 1/v(t) , (2.72)

where the first-order statistics of b(t) are specified by the two-sided
chi distribution given by Eq. (2.8).

The applicability of the generalized "t" model as a description of
received atmospheric noise was considered in detail in Chapter 1I, and the
pertinent results can be summarized as follows: The first-order statistics
of the generalized "t" model are in good agreement with measured data on
received atmospheric noise, This agreement is demonstrated in Figs. 4 to
13 and in Fig, 15, and it is noted that this agreement is particularly good
at vlf and 1f in those situations characterized by low-to-moderate local
thunderstorm activity. In addition to this gouod agreement of first-order
statistics, the higher-order statistics of the generalized "t" model can
be specified to give good agreement with measured data on these statistics,
This result is demonstrated in Fig. 18, where the plotted data indicate
that the higher-order statistics of the modulating process a(t) can be
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specified [it 1s noted that these statistics are not yet specified in

e

Eq. (2.72) above] to reproduce the experimentally observed probability dis-
tribution of the interval between successive crossings of a fixed level by

the envelope of the noise,

o R ety

The investigation into the applicability of the generalized "t model
leads to the conclusion that this new model is an analytically attractive

model that is appropriate for received atmospheric noise, Furthermore,

it v s pointed out in Chapter II that the generalized "t" model will be

useful in the study of siginal detection and estimation proklems in the

I i e it M s
i aseseteene

presence of additive atmospheric noise. This follows from the fact that

—

AT K e

limited spectrum availability generally dictates that the received signal
be observed through a bandwidth that, in fact, is substantially smalle:

than the band center frequency.

i B, DETECTION OF KNOWN SIGNALS IN ADDITIVE ATMOSPHERIC NOISE

Having developed and checked the applicability of the generalized "t"
model in Chapter 11, this model was applied in Chapter III to the detection

of known signals in additive atmospheric noise. In particular, the prob-

s+ e, W S 5 b ¢ DL TR A e

lem of deciding between the two a priori equally probable hypotheses

h(l): x(t) = m(t) + y(t)
) 0<t<T (3.2)

n(2), x(t) = y(t)

H

with the smallest probability of error was considered in detail, The addi-

tive atmospheric noise was represented by the generalized "t" model and

two cases were identified:

1. Case 1l: Short-Duration Signals

This case is characterized by the fact that the slowly varying
modulating process a(t) 1in the generalized "t" model can be assumed
constant for the duration of the transmitted signal. The familiar corre-
lator receiver described by Eq. (3.23) was found to be optimum in this

case, and the probability of error achieved by this receiver was calcu-

lated in Eq. (3.44). The probability of error result for high SNR is the

result of most interest, 1t is given by
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lim P_| = F’”— , (3.45)
E 6=3 w
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where y: is proportional to the average received whitened noise energy
and Ew is the energy of the known signal m(t) at the output of the
whitening filter. The slow decrease with increasing signal energy of this
Pe result, relative to the exponentinl decrease achieved by the correlac.or
receiver in the presence of additive gaussian noise (sece Fig. 22), leads

to the conclusion that short-duration signals are not an optimal choice

in the presence of additive atmospheric noise, This is, of course, phys-
ically reasonable since the distinctive impulsive nature of atmospheric
noise suggests the use of signals of long duration relative to that of the

typical noise pulse.

2. Case I1: Long-Duration Signals, The General Case

This case is characterized by the fact that the slowly varying
process a(t) is now allowed to vary during the signaling interval. In
particular, Case IIa generalized "t" noise was considered in detail.

It is specified to be that Case 1l noise whose complex envelope can be
described by Eq. (3.76) in terms of 2TB statistically independent samples,
This is proposed as the simplest representation of Case 11 signals of prac-
tical interest. The optimal receiver in this case was found to be a

logarithmic-correlator receiver (see Fig. 23) that implements the rule:

Choose h(l) iff
T T
J' £n[|x(t)|2 + 42 ldt > f Inl]x(t) - p(t)lz + y2lat (3.97)
0 0

where |x(t)| is the envelope of x(t), |x(t) - u(t)| is the envelope of
[x(t) - m(t)], and 72 is proportional to the average received noise

power. An exponentially correct estimate of the probability of error
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achieved by this receiver when the transmitted signal energy is distributed
unifermly in the signaling interval is given by

1 1.35 E \
lim P | = r( ) exp |- ' (3.138)
Y B Ce=3  \V?TB L Yo
_g__ -

where f{(1//2TB) is a polynomial in (2TB)"1/2

the known signal m(t), and YO = 272/8 is proportional to the average

received noisc energy. The exponential behavior of this Pe result is

, E = QT 1is the energy of

strikingly superior to that given by Eq. (3.45) for short-duration signals,
Furthermore, it was shown (see Fig. 24) that this error performance pre-
dicted for the log-correlator receiver is significantly better than either
that achievable by a matched-filter receiver or that actually achieved in
praccice by a typical FSK vlf communication system.

Also, to demonstrate that the asymptotic performance predicted by
Eq. (3.138) for the log-correlator receiver can be closely approached in
practice, we note the special case YOB/Q = 3, It was shown in Chapter I1Il
thet this special case is reasonably achieved in practice, and that it

gives the result:

1 1.15 E
P | ~ ff ==} exp|- ~==—] . (3.141)
€ =3 (x/m") [ Yo ]

With tne above probability of errss results in mind, it is inter~
esting to note that there is an alternate realization of the log-correlator
receiver that is approximately equivalent to Eq, (3.97) when the condition
(YOB)/(4Q) >> 1 1is satisfied. This realization takes the form:

Choose h(l) itf

T T 1 2
5lu(t)
Re j-’—‘it) ;‘*(‘; dt] > j 2'“2| 5= dt (3.98)
3 [[x()]"+ 7] J 5 Ux(e)]® +57)
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This receiver rule is of interest, since it may be easier to implement
than Eq. (3.97), and since it has a realization closely related to the
matched-filter realization of the correlator receiver rule.

The above summary of results on the general case of long-duration
signals leads to the conclusion that the error performance predicted by
Eq. (3.138) for the log=-correlator receiver in the presence of additive
atmospheric noise is a result of particular interest, This follows because
Eq. (3.138) gives the only theoretical estimate known to the author of
the error performance achievable in the presence of additive atmospheric
noise, Furthermore, the reasonable simplicity of the log-correlator re-
ceiver indicates that this level of performance can be approached by prac-.

tically realizable receivers,

C. RECOMMENDATIONS FOR FUTURE WORK

In Chapter 1V, the operation of the log-correlator receiver was com-
pared with that of a nonlinear receiver form commoﬁly used in practice in
the presence of additive atmospheric noise, A qualitative discussioa was
presented there to indicate why this commonly used receiver form must
perform in a suboptimal fashion. However, the analytical difficulties
involved in making this comparison quantitative, plus the need for experi-
mental verification of the performance predicted by Eq. (3.138) for the
log-correlator receiver, lead to the obvious recommendation that the log-
correlator receiver be built and compared experimentally with receiver
forms commonly used in the presence of additive atmospheric noise,

Also in Chapter IV, the statistical estimation problem in the presence
of atmospheric noise was briefly considered as it pertains to the problem
of obtaining the *"best" (1n some sen.e) estimate of u whistler mode signal
that has been contaminated by additive atmospheric'noise. As was pointed
out there, the scientific importance of the whistler estimation problem
indicates that the generalized "t" model can perhaps be fruitfully ap-
plied to the statistical estimation problem in the presence of additive
atmospheric noise, Related to this problem, it is suggested that another
problem of interest is the two-hypotheses communications problem, in which
the signal whose presence is to be tested is taken to be random, i.e,, is

known only statistically, Furthermore, it is proposed that a procedure
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that may give results applicable to the whistler estimation problem is to

consider the two-hypotheses testing problem in which the random signal is

taken to be a gaussian process, -
7 Finally, returning to the generalized "t" model itself, it is pro-
§ posed that an interesting problem consists of choosing the covariance
i matrices Ov and Rb introduced in Chapter III in a manner which repro-
: duces the probability distribution of the inter-level-crossing interval
: observed in practice for received atmospheric noise. In this regard it

is pointed out that the calculations of the inter-level=-crossing interval

distribution in Chapter II indicate the existence of the desired co~
g variance matrices. -
i
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APPENDIX A, EVALUATION OF INTEGRALS
* 1. An integral that appear's in consideration of the modified gener-
al:2ed "t" model has the form
x
n/2
1= x exp[ax]dx, n odd>1l, a<0,b>0. (a.1)
b
Thic integral can be evaluated by parts, giving the result
n/2 (g) L (n-2)/2 (_xl)[(n-n] (n-a)/2
I= explax){Z— - 2 p 2L 2 0
a 2 3
a a
X=00
. meaye OS] .. @) ) <2
- (_l)n-)/ 2/L_2 2
' d(n-lj/z
x=b
s
((n-2)] ... (3
+ (_1)(n-1)/2 @) n2 ] (E) W ocx]'/2 exp [ax ]dx
(n-1)/2 xP !
a b
(A.2)
and:
0 &}
I xl/2 exp[ax]ldx = 2 I 22 e'xp[azzldz ,
. b L1/2
-~
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where: z2 = X
Z=00
o0
1 2 1 2
= 2{>= 2z exp(az”] o Jh explaz®laz
1/2
z=b1/2 b
; z=o0
o0
& = Z exp[822] - l(. _11)1/2 J’ ____1_175 exp[.
a a a 1/2 (21{)
g z=b1/2 (-2ab)
?" where: T = ('28)1/22
=00
1/2
z 1
§ == explaz”) | - ';(" ") erfc<\/-2a b)
z~b1/2
Thus, substituting into (A-2)};
i n/2 (2\ b(n 2)/2 (Q_)Lfn 22] b(n 4)/2
) 2/ 2 2
| 1 = explab] {~ — + 5 - 3
a a

+ (-1\(l‘-°1)/2 (%)[ ngzl] .o (%) (1) b3/2
’ (n-1)/2

T
e T e b L

L n\ {{n-2 [3) ¢
*}i ' (-1)(n-l)/2 (2) {‘_2—1] . \2) () {- b1/2 explab]

a(n+1)/2
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2, An integral that appears in the Case Ila probability-of-error

calculations has the form

1 2
11 = dx, » b 0
.5! (x2 + az)[(x - b)2 + a2) ) f

1
) .f (x + 1a){x - 1a)(x - b + 1a)(x - b - 1a) &% * (A.5)

This integral is easily evaluated as a contour integral as described in
Fig. 27.

X ~ PLANE

X =b+ilol c 3
xzilgl X—=——————-X - 48
| \
|
| |
— RE. i‘
) 1
:. .
l ;
!
¢ =s-ilal * ——————— -0'( H
X = b-ilol I
i
i
FIG, 27, DESCRIPTION OF CONTOUR OF INTEGRATION USED ;
TO EVALUATE EQ. (A.5). {
Note: 1) rhr contour of integration C is closed at g
X = 00, 7
2) The poles of the integrand plotted above ;
are for the special case b > 0,
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Now, it is clear that

2
11 = 1 dx = 2xi 25 K
“Ye (x + 1a)(x - fa){x - o + ia){x - b ~ ia) = ox j?
Je=1
(A.8)
where
1 Kl K2

Tx + 1a)(x - 1a)(x - b + 1a)(x - b - 1a)  x - 1] a - - 1] o]

Ks Ky

X + i|a| * X -b - i|a|

such that, for the residues Kl and K2 of interest:

1 1
L 21fa|[(1]a} - b)* + a’) 21| af (b® - 21|a|b)

(A.7)

1 _ 1
2i}a] [(b + i|a])2 + a2 21|a|(b2 + 2i}a|b)

K (a.8)

2

)

Thus, substituting into (A.6) there results

11 2x

% i |a] (6% + 4a°)

SR A B

TR
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APPENDIX B, PROOF THAT EQ, (3.126), pN(S) = 0, IS UNIQUELY SATISFIED
BY s =1,

In the calculation of the Chernoff bound on Pe in Case 11a, it is

necessary to find the value of s(finite) > 0 which satisfies the equation

© 0 8- 2
fdx.fw R +§) h[ x2+;2+é2 2]
N o [(x-p.)+y+§] (X‘Hi)"'y + €
z ) s=2 =0.
2 2 2
=1 f dx f dy (x +y + £ )
8
- -0 [(x - pi)z + y2 + 2]
(B.1)

Noting that the denominator of the summand is positive and finite for all
i and all finite s, it is first of all concluded that each term of the
sum must be zero if the sum itself is to be zero, since for any given 8

the sign must be the same for each term in the sum. Thus it is concluded

that we desire that value of s > 0 which satisfies the equation

s=-2

by 2 2 2 .2 2 2 .2
I(s‘-—}fdxjdy (x° +y° + &%) sz“{ x+;+§ 2]=0’
-0 <0 [(x-ui)2+y2+§2] (x-ng)" +y" 8

Vi=1, ..., N. (B.2)

It will now be demonstrated that (B.2) is uniquely satisfied by s = 1.
Setting s = 1 in (B.2), it is desired to evaluate
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1(s) dx dy
l .! _{ (x> + y2 +§)[(x-u)+y + £

R A ot
?

B

H]
é'\,s
&
é"ﬂa
e

o~

§ o %
l“ Jr dx J{ dy
2 2 2 2 2 .2
i = 2 7+ 5"+ ) x = 0 ))” 4 y7 4 )
X L 2
!
i 2 2 2
g% chnl(x -0 )% 4 yT e 60
g:
; ’
| -
i 1
B =[d"f"y(2 7, i PRI
| - o 2 x +y +8)lx-p ) vy + ¢
g i
2 2
i 'Zn(xz +y +¢8)
«© (<]
-fd‘rfdy—- 1
2 2 2..2 2 2
! A A [T+ u))" + 5" + £°1(2% + 5" 4 ¢°)
-ﬂn(Tz + y2 +§2) v
where T=x = By Therefore, -
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1(s) ' Jf dx J. A P I - 72 .2
LA A (G AN S IR S R R
1 2 2 .2
- TR I(x” +y + &)
e )k ui)z iy s 521}

(x + ui)z + (x - “1)2

= ~{ dy .f dx 2
A T R [ ST L

-ﬂn(x2 + y2 + gz)

w0 00
2pix
= Jr dy .{ dx )
2 2 2 2 2
00 -0

O (RN RN (L S [ ")

2 2 2
An(x” + y" + E7) . (8.3)
Thus it follows directly that I(s) Il = 0, since the integrand above is
s=

seen to be odd in x,
Now, to show that this solution is unique, consider the following:

d 1 - [+ i+ &
as 1e) = ] o i’ @ 2 2 zn’_(x - ui)z Py s §2]

(x2 + ¥ + €%

o s
et ) )
ds (X - pi)z + yZ + §2

o 0 8-2
2 2 2 2
_ { (x +y2+§) 2[x2+y + &
= dx ] dy " En‘j )2 ) 5| -
- e [(x =0,)" +y" +¢7) “«-pg) vy +E
(8.4)
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Thus, d/ds 1(s) > OVs, such that s = 1 1s shown to be the unique
solution to p&(s) = 0, and the proof is thus complete,
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APPENDIX C. PROUF THAT INFINITE RECEIVER BANDWIDTH (2B

) MINIMIZES

i

THE CASE 1la Pe RESULT
In the Pe calculationgs of Case Ila, an exponentially correct esti-
mate of the probability of error optimized with respect to signal shape

is given by expression (3.135):

2TB

1 { 1 3 YoB YoB
Pe| “f,/'rs Fi\ly gi g8 1= Y B B
9=3 2 \ Q + 0 Q + Yo

2TB
YOB

1 13 __1 Q
= g -i= 1.3 : 3.135
f(/—‘z.m> 2F1l' 2P 2 Ty BT+ e (3.135)

Q Q

Noting that Y0 and Q are not functions of the receiver bandwidth 2B,
the optimal bandwidth can be determined by optimizing with respect to k,

where k e YOB/Q. Thus, in terms of this new parameter

Y,
1 1.3 1 K
oy = () 3 3 )
eeL3“(,2m>{2F11’2’2’1+k 1+k}
2E
Yo

= f(\/";_ﬁ) {[2F1(1' YT T k]k} ' (c.1)

vhere E = QT 1is the energy of the known signal. Now, neglecting the
f(lA/EEE) factor, since it is of negligible importance in comparison to:
the factor that varies exponentially with 2TB, the optimization problem
reduces to that of finding the value of k 2> kmin which minimizes the

function
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g(k) = [——5-— F (1, %; %; L )]k , (c.2)

_ t
where k .= Yo/(ZE).
Perhaps the simplest way to minimize g(k) 1s to plot it vs Kk,
since it is seen in this way that in fact g(k) is a monotonically de-
creasing function of k > O, From this it follows directly that the opti-

mal choice for the receiver bandwidth is B = o, and the proof is thus

complete, Such a plot of g(k) is not presented here, but a formula
from which it can be easily prepared 1s presented as follows: Using
Erdelyi [Ref. 49], items 2.8(18) and 2.8(16), it is seen that

3 Y
2F1(1' % 3 1 : k) = 2F1(%’ 1 %‘ 1 1 %)
_ {1+ k)l/2 (1 + k)l/ + 1] c
2 {(1 + k)l/ -1 (c:9)
Thus:
( k r(l + k)}/z + 1
(k) = ; (C.4)
et iz(l Y P h \

and, for particular values of k of interest. it is seen that (C.4) gives:

1. 1im g(k) =
k=0

2. g(0.125)w 0,821;

3. gi9.5) ~ 0.684;

4, g(5) ~ 0.544;

5. 1lim g(k) ~ 0,5129,

k * » v
TThis mininum valu: :csults from the constraint that the receiver band-
width must be at least as large as the signal bandwidth; i.e., 2B > I/T,
where, as mentioned in the tex»:, the choice of T that minimizes Pe is
clearly T = o, a
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