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ABSTRACT

This work is concerned with the development and application of an

analytical model for "impulsive" phenomena. Specifically, a new model

is developed for atmospheric noise, which is radio noise that originates

in lightning discharges. This model is applied to the detection of known

signals in additive atmospheric noise.

The modeling approach used here is based on the observation that a

gaussian model is inappropriate for received atmospheric noise, primarily

because gaussian noise does not have the large dynamic range exhibited

by the received noise power. The generalized "It" model resulting from

the approach used in this work is in good agreement with measured data,

and describes the received atmospheric noise y(t) as

y(t) = a(t) n(t)

where n(t) is a narrowband gaussian process and a(t) is a slowly

varying process, independent of n(t), that modulates n(t).

The detection of known signals in additive generalized "t" noise--

i.e., in the presence of additive noise described by the generalized "t"

model, is considered, and the receiver that minimizes the probability of

error is found to be a "logarithmic-correlator" receiver that implements

the rule:

Decide that the known signal is present iff

T T

f n[ +-y2]+ dt > f n[Ix(t) (t) 2 t

0 0

where m(t) is the known signal, x(t) is the received signal, jx(t)j

is the envelope of x(t), and jx(t) - ý(t)I is the envelope of

[x(t) - m(t)]. An "exponentially correct" estimate of the probability of

error achieved by this receiver is given by

P • K expF- 1.35 El

e Y 0
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where E is the energy of the known signal, Y = 2y/B is proportional
0~ -1/2

to the average noise energy, and K is a polynomial in (2MB)

The performance of the log-correlator receiver is compared with that

achieved by other receiver forms in the presence of additive generalized

"t" noise. Analytical results indicate that the log-correlator receiver

performs significantly better than any linear receiver in the presence of

additive atmospheric noise. Available experimental data support this

conclusion.
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1, i= J,{ the Kronecker delta

0, otherwise;

rj(t) complex envelope of y(t)

0 m+l; parameter specifying slope of the tail of the
generalized "t" distribution

A an arbitrary square matrix

P(t) complex envelope of m(t)
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x (t) * x 2 (t) = f X 1 (') x 2 (t-T) dT
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Fourier transform of x(t):

X(f) f X(t) exp(-±2nft) dt

Hilbert transform of x(t):

-(t) 00 ~ y d (Cauchy principal value)
S~-00

Vector notation:

S= IlI ; a column vector

Other notation:

x t the transpose of x

UxU the norm of x

< X x' !2' >the inner product of the vectors x and x2

< X1' 22 >A the bilinear form x A x2-t

A(t) d [X(t)j; time derivative of x(t)
dt
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I. INTRODUCTION

A. PURPOSE

The purpose of this work is two-fold: 1) to develop an analytical

model for "impulsive" phenomena, i.e., phenomena having impulse charac-

teristics, and 2) to apply this model to the study of communication

channels having additive impulse noise. In particular, this work focuses

on a specific impulsive phenomenon, atmospheric radio noise. Atmospheric

radio noise is selected as a case of special interest because: 1) there

is a reasonable amount of experimental data available against which pro-

posed models can be checked, and 2) additive-atmospheric-noise channels

are importani both for communication purposes and as a source of infor-

mation on naturally occurring signals of scientific interest. (An example

of such signals is the whistler-mode signal discussed in Chapter IV.)

I
I

B. BACKGROUND

Atmospheric noise, which is described in more detail in Chapter II,

is radio noise that originates in lightning discharges. At a represen-

tative receiving site, lightning discharges are typically observed to

occur at a rate of the order of 10 discharges per second, although it is

emphasized that this typical rate can vary from about one per second to

nearly 100 per second dependent on several factors menticied in C,.pqtVr

II. Since the principal noise pulse produced by each discharge has a

duration of about 100 .sec, it follows that the obs'_rvcd noise has a dis-

tinctive impulsive character. Various analytical models have been pro-

posed for received atmospheric noise, and these usually are derived from

one of two points of view, which will be discussed in more detail in

Chapter II. Briefly, the most interesting approach from a physical point

of view takes the received noise to be the weighted sum oi contribuLions

from individual lightning discharges. Although this approach is well

motivated physically, it has the disadvantage that the resulting models

are not analytically tractable. The alternative approach is an empirical

method that yields analytical models chosen to fit the measurcL' statistics

of the noise. However, in addition to the lack of direct physical support

- 1 - SEL-66-G32



for this procedure, the existing empirical models suffer from the fact

* that they consider only the first-order statistics of the noise, while

* neglecting the higher-order statistics.

Although several models for received atmospheric noise have been

proposed in the literature, very few analytical results are available on

problems of signal detection or estimation in the presence of additive

atmospheric noise. The published results, which are discussed in detail

in Chapter III, fall into two categories:

1. A signal-to-noise ratio (SNR) criterion has been used to compare
specific receiving techniques.

2. Several workers have employed empirical models to calculate the

probability of error resulting from the use of linear receivers
in the presence of additive atmospheric noise.

C. CONTRIBUTIONS OF THIS WORK

Using an approach which differs from both of those mentioned above,

a new analytical model for received atmospheric noise is developed in

Chapter II. This model, called the generalized "t" model, is attractive

from an analytical point of view and also provides a good fit to the mea-

sured statistics of received atmospheric noise, including statistics of

higher-order as well as those of first-order. This model is applied in

Chapter III to the detection of known signals in additive atmospheric

noise. A receiver called the "logarithmic-correlator" receiver is found

to minimize the probability of error in the presence of additive general-

ized 't" noise. The probability of error achievable using this receiver

is calculated and provides the only theoretical estimate known to the au-

thor of the error performance achievable in the presence of additive at-

mospheric noise. In Chapter IV, the performance of the log-correlator

receiver is compared with that of receivers commonly used in practice in

the presence of additive atmospheric noise.

S
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II. THE GENERALIZED "t" MODEL

A. INTRODUCTION

The purpose of the work described in this chapter is to obtain a

class of nongaussian random processes that can serve as a model for cer-

tain impulsive phenomena observed in nature. Specifically, it is desired

to develop a model for certain impulsive noises observed in communications

engineering, with particular emphasis on the additive impulse noise, com-

monly termed atmospheric noise, observed or radio circuits operating at

frequencies below approximately 100 Mc. The work in this chapter is con-

cerned with the formulation of a model for impulsive phenomena, and the

verification of the applicability of this model, when appropriately spe-

cialized, as a model for received atmospheric noise.

1. Physical Description of Atmospheric Noise

Before proceeding with the modeling problem, a brief physical

description of atmospheric noise is presented as follows: Atmospheric

noise is taken h,,re to be radio noise that has its source in lightning

discharges. A descriptive discussion of both this noise and its lightning

sources is presented by Watt and Maxwell [Ref. 11, who point out that the

lightning discharge consists essentially of a slowly developing leader

stroke (predischarge) of about one msec duration followed by a return

stroke (main discharge) of about 100 jsec duration. Although the details

of the discharge are complicated, The observed noise can be explained by

noting that the leader stroke is actually made up of a oeries of discrete

leaders occurring at a rate of one every 25 to 100 ý,sec. Each of these

leaders travels over a successive 30 ft to 200 ft portion of the cloud-to-

ground path, producing a current pulse of about one sec duration with an

intensity of the order of 300 amp. The result of this recurrent process

is that the energy radiated by the predischarge has a 3-db bandwidth of

the order of 40 kc centered at a frequency of approximately 30 kc. Foi-

lowing this predischarge, the single return stroke takes place, producing

a current pulse of about 100 ý.sec duration having an average peak intensity

of 20 kiloamperes. The energy radiated by this return stroke, which ac-

counts for about 95 percent of the total energy radiated by the lightning

- 3- SEL-66-052



discharge, has a 3-db bandwidth of the order of 10 ke centered at a fr,-

quency of approximately 10 kc. This behavior of the lightning discharge

as a function of time and frequency is illustrated in Fig. 1 (taken from

Watt and Maxwell) which shows both the waveform and the spectrum of the

radiated field (see also Refs. 2 and 3). The total enu:rgy radiated by a

single lightning discharge is of the order of 200,000 joules [Ref. 4];

therefore it is not surprising that the resulting atmospheric noise is

the predominant radio noise at vlf and lf. However, because the spectrum

"of the lightning discharge is approximately proportional to 1/f at fre-

quencies above the upper "3-db-down point," as indicated in Fig. 1, it

is often true that atmospheric noise is the predominant radio noise even

at hf. It should be noted, however, that hf atmospheric noise differs

from vlf atmospheric noise in that the former is primarily the result of

the predischarge with its discrete fine structure, whereas the latter is

predominantly the result of the return stroke. With the above description

of the individual lightning discharge in mind, and noting that the average

number of lightning discharges observed per unit time at a receiving site

typically lies in the range from one per second to 100 per second, it is

clear, in agreement with experience, that the received atmospheric noise

will be impul.,ive in nature. It is pointed out that the large range ex-

hibited by the average rate of *served lightning discharges is the result

of several factors detailed in the next section. Of particular importance

among these factors is the geographical position of the receiver. For

example, the average rate can vary from about one distinguishable dis-

charge per second at temperate latitudes to nearly 100 per second in the

tropics.

2. Summary of Existing Models for Atmospheric Noise

Turning attention now to the prcblem of developing P model for

received atmospheric noise, it is seen that this noise is always observed

through the passband of some receiver filter. Thus the noise observed at

any instant of time is the resultant of several lightning discharges spaced

in time and location of occurrence, with the observed number and intensity

of the lightning discharges dependent upon a number of factors. Notable

among these factors are receiver bandwidth and band center frequency,

SEL-66-052 - 4
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U
receiver location, thunderstorm activity, and propagation conditions.

These factors must be taken into consideration in the model.

To provide motivation for the development of a new model for at-

mospheric noise, a brief summary of available models is now presented.

It is reasonable to categorize the available models for observed atmo-

spheric noise into two groups, to be called here the filtered-impulse

models and the empirical models, respectively.

a. The Filtered-Impulse Models

The filtered-impulse models [Refs. b 6, 7, 81 are well mo-

tivated physically and are similar to one another in that they all take

the received noise n(t) to have essentially the form

N

n(t) = ai p(t-ti), (2.1)

i=l

where the ai are independent, identically distributed random variableF:

whose distribution is deduced primarily from lightning discharge statis-

tics as affected by receiver location and propagation considerations; p(t)

gives the form of the noise pulse resulting from an individual lightning

stroke as shaped by an assumed filter in the front end of the receiver;

and the ti are the occurrence times of the N individual lightning

strokes. With this formulation for the received noise, and with the as-

sumption that the contributions to the received noise by the individual

lightning strokes are statistically independent, various results (Refs. 6,

7, 81 have been obtained on the first-order statistics of the received

noise using the method of characteristic functions. In particular, the

workers referenced above have focused on the problem of determining the

probability distribution of the envelope of the received noise, since

this distribution has been measured quite extensively (Refs. 6, 9, 10, 11,

12]. Although the analytical results vary in their agreement with the

measured data as a function of both tne choice of p(t) and the choice

of the statistics of N, of the ti, and of the an, the following con-

clusions on the filtered-impulse models appear to be warranted in general:

The strong point of the filtered impulse approach is of course that the

SEL-66..052 - 6 -
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model is well motivated physically. Thus it is possible to specify the

model and to determine the degree to which the received noise is expected

to be nongaussian in terms of physically meaningful parameters. On the

other hand, there are several disadvantages that arise as a consequence

of the filtered-impulse approach. These can be summarized as follows:

1. The resulting probability distribni ions are quite complicated, and
one is not able to put them in closed form except in certain limiting
situations. As a result of the complexity of these distributions,
they are not of much use in the consideratx'n o, the statistical de-
tection problem at the receiver. The available results [Ref. 7] are
achieved by resorting to a signal-to-noise ratio SNR argument as a
criterion for comparing specific receiving techniques; it is well
known that SNR is not necessarily a good measure of the ability of
a receiver to process digital information.

2. The assumption that the contributions of the individual lightning
strokes to the received noise are statistically independent of one
another, which is crucial to the solution for the first-order sta-
tistics of n(t), does not appear to be true, at least for vlf at-
mospheric noise. This conclusion follows from the experimental
results obtained by Watt and Maxwell [Ref. 9] on the distribution
of the time interval between crossings of a fixed level b) the en-
velope of vlf atmospheric noise in which it has been found that re-
ceived noise pulses are usually statistically dependent on preceding
pulses.

The second disadvantage is particularly disturbing, because

the strongest argument in support of the filtered-impulse models has been

the closeness of their approximation to the physics of the noise. In this

regard it is noted that the filtered-impulse models in the litevrature have

typically been based on the assumption, either that the number of noise

pulses influencing the received noise is known •Ref. 81, or that the noise

pulses occur in a Poisson fashion [Refs. 5, 6, 7]. The latter assumption,

which enables one to think of the received noise as - filtered Poisson

process, seems quite reasonable, but does not admit the particular type of

statistical dependence between adjacent noise pulses that is usually ob-

served in practice.

One approach that may be useful in introducing this depondence

into the filtered-impulse model is that taken by Furutsu and Ishida LAef.

6], who have considered the case of Poisson-Poisson noise. In this case

the noise is assumed to consist of clusters of noise pulses, where the

pulses within the cluster occur in a Poisson fashion with mean rate v,

7
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while the clusters themselves occur in a Poisson fashion with mean rate

'', where v' < v. It is to be noted that Furutsu and Ishida were pri-

marily studying hf atmospheric noise, and introduced the Poisson-Poisson

noise model as a means of representing the fine structure of the leader

stroke. It has not yet been demonstrated that the Poisson-Poisson model

yields the distribution of inter-level-crossing intervals observed by

Watt and Maxwell at vlf; but it seems reasonable as a model which imitates

the tendency of received atmospheric noise to consist of clusters of noise

pulses.

Finally, it should be mentioned as noted by Galejs (Ref. 81

that the filtered-impulse models may be most useful as a method for study-

ing the problem (the inverse of that being studied here) of using the rela-

tively large amount of data on received atmospheric noise to determine the

statistics of the lightning source itself.

b. The Empirical Models

The empirical models differ fundamentally in their concept

from the filtered-impulse nodels in that they result from an attempt to

construct a mathematical expression that fits the observed data without

regard for the phys4cs of the noise source. In every case, these empir-

ical models consist of mathematical expressions constructed in an attempt

to fit the messured data on the first-order statistics of the envelope of

the received noise. A recent summary of the various empirical models that

have been proposed i. presented by Ibukun (Ref. 12]. Despite the diver-

sity of these models, the following conclusions appear to be warranted in

general: The principal advantage that accrues from use of the empirical

modeling procedure is that the resulting model for the first-order statis-

tics of the receivd nois-e is much simpler than that obtained from any of

the filtered-impulse models. Hopefully, this simplic0.ty will make the

empirical model useful in the consideration of the signal-detection prob-

lem at the receiver. On the other hand, disadvantages that result from

use of the empirical m~odeling procedure are:

I. It may not be possible to justify the empirical model on physical
grounds.

2. By the nature of their construction, the empirical models consider
only the first-order statistics of the noise. In order to extend
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these models to the point that one has a model for the random pro-
cess, it is necessary to make further assumptions concerning the
higner-order statistics of the noise. Because of the distinctly
nongaussian nature of the noise, it appears that the assumptions
required to produce an analytically tractable model must include
the assumption that the contributions of individual lightning
strokes to the received noise are statistically independent. As
discussed earlier, thi3 assumption is not in agreement with measured
results.

Although (I) above is a fundamental disadvantage of the empir-

ical approach, it is noted that several workers [Refs. 13, 14, 15] have had

some success in finding physical justification for empirical models. Per-

haps the most interesting of these, because of its simplicity and its

closeness of fit to measured data, is the model that takes the envelope Ir

of the received atmospheric noise to be Rayleigh-distributed at low values

of the envelope and log-normally distributed at high values. Beckmann

(Ref. 14] has given a physical argument which supports this model, pa'tic-

ularly in the situation wlere there is little local thunderstorm activity.

It is noted that several workers (Refs. 12, 14, 15, 16i have proposed mod-

els similar to that considered by Beckmann, although they differ in regard

to how the two distributions should be combined to give the best resultant

model.

With this brief summary of available models in mind, the de-

velopment of a new model called the generalized 'It" model will proceed

in the next section from a point of view different than those leading co

either the filtered-impulse models or the empirical models discussed above.

It is noted at this point, however, that the generalized "t"

model will be seen to give some physical support to perhaps the simplest

of the empirical models. This empirical model is the one [Refs. 12, 17]

that. takes the probability P0 (V) that the noise envelope exceeds the

value V to be

P[ M ()(2.2)

where V is the average value of the envelope and Q and r are two

parameters to be chosen. This empirical model is also essentially identical
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to the model studied in detail by Mertz (Refs. 18, 19). In addition to

the fact that the first-order statistics of the generalized "t" model

agree closely with this class of empirical models, it will be shown that

the generalized "t" model has the advantage over the empirical models

in general that it can be specified to also give a good fit to the higher-

order statistics of the noise.

Before proceeding with the development of a new model for impul-

sive phenomena, it is acknowledged that the conceptual motivation for this

development derives from the work of Mandelbrot [Ref. 20) on the applica-
bility of a class of "self-similar" random processes as a model for cer-

tain intermittent phenomena. Mandelbrot introduces the concept of a random

process that is controlled by one "regime" for the duration of observation,

where this regime is itself a random variable. Although the class of

"self-similar" random processes considered by Mandelbrot is not of inter-

est as a model for atmospLeric noise, the regime concept will be useful

in suggesting a model of the form of the generalized "t" model.

B. DEVELOPMENT OF THE NEW MODEL

Before mathematically formulating a new model for impulsive phenomena,

a physical discussion focusing on the particular case of received atmo-

spheric noise is presented in order to lend physical significance to the

mathematical formulation. Although this discussion is based on experience

with received atmospheric noise, it is seen that similar models may be

applicable to other impulsive phenomena, e.g., to the impulse noise ob-

served on telephone lines.

As mentioned in Section A2, the atmospheric noise observed at an in-

stant in time through the passband of a linear receiver is dependent on a

nuwber of factors; notably receiver bandwidth and band center frequency,

receiver location, thunderstorm activity, and propagation conditions. Now,

if the receiver is sufficiently narrowband, it is reasonable to assume that

the noise at the receiver output is modeled well as a gaussian process.

This follows because of the fact that the filtered noise is the sum of con-

tributions from a large number of independent lightning discharges, none

of which is dominant at the filter output. However, experimental data

[Ref. 9) indicate that the bandwidth required to achieve this condition at
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vlf is substantially less than one cps, so that a gaussian assumption is

not physically viable at vlf. The goal of the model development here is

the formulation of an analytical model that is both an accurate descrip-

tion of the received noise and suitable for application to the statistical

detection problem at the receiver. As far as the detection problem is

concerned, it appears necessary to model the atmospheric noise prior to

the performance of any receiver operations, so that a gaussian assumption

is certainly not justified.

Although the gaussian assumption cannot be justified, the modeling

problem can nevertheless be simplified by noting that in practice atten-

tion can be restricted to receiver bandwidths substantial.v smaller than

the band center frequency. This result, which enables the received at-

mospheric noise to be thought of as a narrowband random process, follows

from the fact of limited spectrum availability at the frequencies where

atmospheric noise is predominant. This limited spectrum availability means

that the receiver bandwidth must be sufficiently restricted to validate

the assumption that interference from strong adjacent channel signals is

negligible. Further, it is noted that this "narrowband" assumption is pre-

cisely what is needed to enable verification of the accuracy of the al'alyt-

ical model, since almost all avaixable experimental data [Refs. 6, 9, 10,

11, 12] have been obtained in narrowband situations.

1. Specification of the Generalized "t" Model

With the above general features of the atmospheric noise in mind,

the formulation of tne generalized "t" model proceeds as follows: Al-

though the gaussian assumption is not justified for the atmospheric noise

of interest, it is conjectured, following loosely the intuitive notion of

regime suggested by Mandelbrot [Refs. 20, 21], that this may be closely

related to the fact that the regime of sources controlling the received

noise varies with time over a large dynamic range. That is, the gaussian

model may be inappropriate principally because the received noise at an

instant in time is controlled by a few lightning discharges that vary in

intensity and location as a function of time. Continuing with this line

of reasoning, it is proposed that a model for received atmospheric noise

worth consideration is one that takes the received noise to be a narrow-

band gaussian noise multiplied by a weighting factor that varies with time
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in accordance with the regime of sources in control of the noise. Thus

it is proposed that the narrowband received atmospheric noise y(t) be

considered to have the formA

y(t) = a(t) n(t) , (2.3)

where n(t) is a zero-mean narrowband gaussian process with covariance

function R (T); and a(t), the "regime" process, LS a stationary ran-

dom process, independent of n(t), whose statistics are to be chosen so
that the product a(t) n(t) is an accurate description of the received

atmospheric noise. It is noted that the above discussion leading to this

model formulation suggests that a(t) will be a slowly varying random

process as compared to the narrowband process n(t). It will be shown

below that this is indeed the case in the sense that for a good fit to

measured data the power spectrum of the lowpass function a(t) needs to

have negligible overlap with the power spectrum of the band-centered gaus-!I

sian process n(t).

Before attempting to specify the statistics of the regime process

a(t), an alternate argument suggesting the existence of such a regime

process is presented in support of the model proposed in Eq. (2.3). Set-

ting aside the regime notion and observing the narrowband atmospheric noise

that it is desired to model, it is interesting to note that a gaussian

model is inappropriate primarily for the following two reasons [Refs. 9,

17]:

1. The atmospheric noise process does not tend to deliver energy at a
constant rate as would a gaussian process.

2. The contribution of a single source component may not be small com-
pared to the total received energy.

Further, it is known [Ref. 17] that in almost every case where the received

noise satisfies requirement 1, so that excursions far above the rms value

are extremely unlikely, the process can be well approximated as a gaussian

process despite the fact that it may exhibit a preferred waveform in vio-

lation of requirement 2. This is particularly true in narrowband situa-

tions where the signal shape is essentially a sinusoid at the band center

frequency, and in fact an example of this result is that in most calcula-

tions a sinusoid is well approximated by a narrowband gaussian process.
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Thus it is concluded that it is primarily the large dynamic range of at-

mospheric noise that makes a gaussian model inappropriate. Now, noting

that it is desirable from an analytical point of view to model the re-

ceived atmospheric noise in terms of gaussian processes, it seems nat•-"

to ask how we can operate on a gaussian model to introduce the large dy-

namic range observed in atmospheric noise. One possibility, which in fact

appears to be the simplest feasible possibility, is to multiply (modulate)

the narrowband gaussian process by a process having the desired dynamic

range. Noting that this modulating process is expected to vary as the

envelope of the narrowband atmospheric noise, we are again led to a model

of the form given by Eq. (2.3), where a(t) is now thought of as a slowly

varying modulating function.

The above discussion based on the physical characteristics of re- t
ceived atmospheric noise has been presented to give physical support to

the model proposed in Eq. (2.3) and to indicate the existence of the mod-

ulating process a(t). It remains to specify the statistics of a(t),

and this crucial step will now be considered from an empirical point of

view.

Recalling that a(t) is expected to be a slowly varying random

process, whereas n(t) is a narrowband gaussian process, it is assumed

that the envelope V(t) of the received atmospheric noise y(t) is given

by

V(t) = ja(t)i E(t) ,(2.4)

where E(t) is the envelope of n(t). It is now observed that the first-

order statistics of the product Ia(t)I E(t) have the following "repro-
ducing" property: If the probability density function of Jai has ihe

form

lim Pal (x) 0 .5)

where ý > 1, then the probability density function of V = lai E has
the form

lim p (X) cc (2.6)
- 0 3 - x
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Now, it is seen that the hyperbolic distribution specific 1- Eq. (2.6)

is asymptotically identical in form to perhaps the simpleb f the empir-

ical models (Refs. 12, 17, 18, 191 proposed from observation of measured

data on the envelope of received atmospheric noise (see Eq. (2.2)]. Thus

it is concluded that Eq. (2.5) gives a reasonable specification of the

asymptotic behavior of the first-order statistics of a(t).

It is next observed that if a random variable b is defined to

be distributed according to the "tw( .sided" chi distribution

4 m/2

P(b) = (2) JI'1m - ep•p • b 2, - < b <o (2.7)

b a is dis2rib-

designated ae x 2 (m, a), then the random variable a =1/b is distrib-

uted according to

N m/2

2ba (a•l , m1 exp - - , M- < a < o. (2.8)Pa 2Ja) = m+b 2= 2

Thus it is seen that pa(a) given by Eq. (2.8) has precisely the asymp-

totic behavior specified by Eq. (2.5). Now it is certainly true that

other distributions could be formulated having this same asymptotic be-

havior, but that given by Eq. (2.8) is preferred in the model development

here for the following reasons:

1. a(t) distributed according to Eq. (P.8) provides a distribution

for a(t) n(t) that agrees very well with available measured

data on the first-order statistics of received atmospheric noise.

This is demonstrated in detail in Section Cl.

2. The model development to this point has considered only the first-

order statistics of the noise. However, the fact that x2 (l'Gc)

is identical to N(O,a 2 ) means that b(t) = 1/a(t) is a gaussian

process in this special case. Thus the model becomes the quotient

This designation follows from the fact that IbI is distributed according

to the well-known chi distribution [Ref. 22].
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of two gaussian processes, and it is anticipated that this fact will
be useful in fitting the model to the observed higher-order statis-
tics of the noise.

Now, with the above specification of the first-order statistics of

a(t) [or equivalently b(t)), a direct solution can be obtained for the

first-order statistics of y(t) = a(t) n(t) as follows: Since n(t) and

b(t) are assumed to be statistically independent, it follows that [Ref. 221:

p (Y,) =f dx lxi Pn,b(YXIX)p

f dx Ixj pn(YX) Pb(X) , -oo< y < ,o (2.9)

where

Pn (n) N[O,Rn)(0)) RnO7 0 2)

so that

Pn(n) = lexp 2-o < n < oo (2.10)

2ff7.1--

and pb(b) is given by Eq. (2.7). Thus, using Dwight [Ref. 231, item

860.17, this gives

n

PyXy =1/2 1

r(M) 1"
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which is conveniently written as

r

S([) 2j/ 2  < y < c (2.12)

r m2/2 /y 2 m ;Y

where 7i, A /2 ( and m+1 > 1. Now, noting that in the special

case (l = o, p (y) given by Eq. (2.11) is Student's "t" distribution
y

(Ref. 22, p. 180] with parameter m, it will henceforth be said that the

first-order statistics of y(t) are given by the generalized "t" dis-

tribution defined by Eq. (2.12) with paraneters e and 7.

Before proceeding to check the vali 4ity of the generalized "t"

model as a model for atmospheric noise by comparing it with measured sta-

tistical data, there are several points of interest to note concerning the

model. In conjunction with the modulating function b(t) whose first-

order statistics are given by the x distribution specified in Eq. (2.7),

22
|it is interesting to note (Ref. 22) that if xi, x 2, ... , X n are indepen-

dent gaussian variables, each distributed as N(0,c2), then

n 1/2

2 x (2.13)n Xk

k=l

is distributed as x(n,c-). Thus it is seen that Ib(t)I has a relation-

ship to a combination of gaussian variables that may be useful in later

calculations. It will be shown below that e in the range 2 < e < 4 is

appropriate to fit measured data on atmospheric .oise, with 9 3 being

appropriate to fit a large body of data at vlf and lf. Now

2 1P (Y) I1 , -Zo < y < oo, (2.14)

y SL=-3 2 [y2 + 2 ]32
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so that Ely)e13 = 0 and var(y)el 3 = •. Thus it is seen that e=3

results in an infinite variance, so that this is not a model for a phys-

ical noise, although it will be found to fit the data very closely. This

problem of infinite variance will be considered in detail in Section C,

and it will be shown that there are two possible solutions to the diffi-

culty:
1. The measured data actually requires 9 > 3 for an optimum fit at

large values of y, so that var(y) is bounded; or

2. The generalized "t" model as formulated in this development re- [

quires modification in that the measured data depart from the model
for cumulative envelope probabilities greater than about one minus
10-5. It will be shown that the mepsured data in this region of
envelope probabilities, which is somewhat suspect because of the
tremendous dynamic range required for its observation, can be fitted
well by truncating pa(a) given by Eq. (2.8) at some point. This
truncation will have negligible effect on py(y) as determined
above in Eq. (2.12) for cumulative probabilities smaller than about
I-I0-5, so that the truncation is not of practical significance ½n

most problems of interest.

It should be mentioned that the above discussion, which indicates

that the atmospheric noise has very large average power, agrees in princi- I
ple with the results of Mandelbrot (Ref. 21) in which he notes that inter-

mittent phenomena often appear to have barely convergent, or even divergent,S|
second moments dependent strongly on sample size. Mandelbrot [Ref. 21)
also gives an excellent discussion of how the mathematical result of in-

finite variance is to be interpreted in a physical application.

Finally, it is noted that p (y) as given by Eq. (2.12) is a

function only of the two parameters e and y. This result is in agree-

ment with measured data (Refs. 9, 10, 11] on the first-order statistics

of atmospheric noise, in which it is found that these statistics are ade-

quately described by the rms value of the noise together with the ratio

of this rms value to the average value of the noise envelope.

C. VERIFICATION OF APPLICABILITY OF THE GENERALIZED "t" MODEL

Although a heuristic argument indicating the plausibility of choosing

a model of the type of the generalized "t" model accompanied the develop-

ment of this model, it remains to be shown that a specific form of the model

is in fact of any practical use as a model for received atmospheric noise.
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Since we are attempting to develop a model for a random process, the mea-

surements required to check the validity of the model fall into two cate-

gories, as follows:

The first of these categories, and the one for which the greatest

- amount of experimental data are available, is concerned with the first-

order statistics of the random process. The particular measurements in

this category that have been reported in the literature are measurements

of the probability distribution of the envelope of the received noise

(Refs. 6, 9, 10, 11, 121, and measurements of the average number of level

crossings per unit time of a fixed level by the envelope of the received

noise (Refs. 9, 101. Relatively extLnsive measurements have been made of

the probability distribution function of the envelope, and these measure-

ments itive been used exclusively in the verification of the empirical mod-

els discussed in Section A2. Thus, as the first step in the verification

of the applicability of the generalized 'It" model, the probability dis-

triloution function of the envelope will be calculated. Particular interest

will center on the fit of the model as a function of band center frequency

and receiver bandwidth. Because of the fact that we are interested in

modeling the atmospheric noise in as wide a bandwidth as possible subject

to the interfering signal constraint discussed in the model development,

ýhe model will be checked using the widest bandwidth data available. It

is noted, however, that all reported data have been obtained in bandwidths

justifying a narrowband assumption for the received noise. In this narrow-

band case, the envelope V(t) and phase (p(t) of the received noise

waveform have an unambiguous and physical (operationally meaningful) signif-

icance. Further, the available data on the first-order statistics of V(t),

plus the intuitive notion that q(t) must be uniformly distributed in the

interval [0,2gl, provide the opportunity to check conclusively the appli-

cability of the generalized "t" model as far as the first-order statis-

tics are concerned.

As a further check on the first-order statistics of the model, the

average number of level crossings by the envelope per unit time will be

calculated. This calculation is of interest, because it bears out the

experimental fact that the average number of level crossings per unit time

for the case of atmospheric noise is not given by the product of the
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1m
probability density Junction oi the cnvelope with a sui table bandwidth

factor, as it would be if tho noise were a gaussian process (Ref. 24].

It is noted that this calculation has not been carried out for any o, the

empirical models aiscussed in Section A2, although Nakai (Ref. 25] has

obtained numerical results in agreement with the experimental data of Watt

and Maxwell for a filterea-impulse model in Ahich the noise pulses occur

in a Poissoi. fashion. 1:

The second category of measured data, and the one where much less data

are available, is concerned with the second- and higher-order statistics

of the random process. The particular measurements that have been reported

in this category are measurements of the probability distribution of the

vIme interval between crossings of a specified lhvel by the envelopc of

the noise (Ref. 91. While availaole experimental data are spa 3e, being

restricted to a few measurements at vlf, it is also true that th.-o ,nalyt-

ical derivation of these statistics is complicated, requiring machine com-

putation in the general case. Nevertheless, this derivation will be

considered in detail in Section C3 and limiting cases will be presented to

demonstrate that the higher-order statistics of the generalized "t" model

can be selected to fit the measured data. It is noted that the interpre-

tation that the generalized "t" model is made up of a narrowband gaussian

noise modulated by a slowly varying random process will be useful in the

specification of these higher-order statistics.

1. First-Order Distributions of Envelope and Phase

As discussed above, the significance of the representation

y(t) = V(t) cosLo 0 t + ?(t)] (2.15)

for narrowband received noise is clear. In order to check the applicabil-

ity of the generalized "t" model as far as the first-order statistics

are concerned, it is sufficient to calculate the joint probability density

pv, (V, 9 ) of envelope and phase which can be accomplished as follows: It

is well known that (Ref. 261

Pv,9) = V p y-(V cos :p, A sin •) , (2.16)
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where V =(y
2  ; 2l/ 'P tan~ -('/y), and '(t) is the quadrature

component corresponding to y(t) which can be found by taking the Hilbert

transform tof v(t). Perhaps the easiest way of finding ý(t) Ihere is

to pass y(t) through a Hilbert transforming filter as shown in Fig. 2.

Now, recalling that

y(t) = a~t) n(t) ,(2.3)

where n(t) is a zero-mean stationary narrowband gaussian pr,,--,ss and

a(t) is assumed to be a slowly varying stationary random process, it is

usefutl to make the specific assumption, depicted in Fig. 3, that in fact

FIG. 2. HILBERT TRANSFORMING FILTER.

bL

_ _ _ _ I tB

-f0 0 to

A

FIG, 3. TYPICAL FOURIER TRANSFORMS, ACI) AND N(f), OF a~t) AND
n(t). (magnitude only)

tSee "Conventions,"1 p. xi.
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the Fourier transformt A(f) of a(t) has, with high probability, neg-

ligible overlap in the frequency domain with the Fourier transform N(f)

of n(t).

Define Y(f) as the Fourier transform of y(t); then with the

above assumption, it follows directly that Y(f), the Fourier transform

of y(t), is given by

Y(f) ( (-i sgn f) Y(f)

0 co

i N(a) A(f-•)d- i N(a) A(f-c) daf f ~
-co0

SAWf * N(f) , i = 4:: (2.17) •

where * signifies the convolution of A(f) with N(f). t Thus it is

found that, with the assumptijn of negligible overlap of A(f) and N(f)

(which is intuitively reasonable for the noise of interest),

Y(t) - a(t) (t) (2.18)

Now, n(t) being a gaussian process implies that _n(t) is a gaussian

process where it is easily shown that n(t) and n(t) at the same time

instant t are independent and identically dtstributed random variables.

Thus it follows that

p (y,(y) = p (Y,•)
y, anan

f dx -L Pa~nn x )

S--00 -cof(

f dx -L Pa(X) Pn - (2.19)

-. 00

1 See "Conventions," p. xi.
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Swherý-

n 2\

and where pa(X) is given by Eq. (2.8). Making a change of variable and
using Dwight, item 860.17, this yields

C-)) = 0 Y e - 1 1__ _ _ _ _ _ _ _

p ~(y' _ _ (e-l e- 1 (2.20)

2 + yY ' 2(e+1)12

w"here 7 and e are defined in Eq. (2.12). Now, substituting Lq. (2.20)

into Eq. (2.16):

Spv,(v,q,) = (e-l) e-.1 v
2 2 ](6+1 T2

IV2 + 72

= pv(V) p (q,) 0 < V < , 0 < q) < 2 t. (2.21)
iV

Thus, finally:

p..(V) = ( 0-1) - 0 V(e+l)12 o < v<0 (2.22)

V2+ 2

and

p0< (p 2•. (2.23)
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a. Discussion of Calculated Results

The results calculated above lead to the following comments

and conclusions: i

1. As anticipated, cp(t) is found to be uniformly distribu'ed in the
interval f0,2n] in accord with intuition.

2. It is noted that the results on pV(V) and p (qp) straightforwardly
calculated above could have been deduced directly using the formula-
tion assumed in Eq. (2.4) along with the reasonable assumption that
the phase is uniformly distributed in [0,2,t].

3. Finally, it is important to note, in support of the generalized 'It"
model as a model for received atmospheric noise, the following as-
ymptotic forms of Pv(V): 1(2

S~E)-1 1 (2A4
i •lira pV (0-1) 7 (224--- 00

VcV2

lim p (V) = (e-l) V = lim -V exp - (2.25)

V-_ 0 7 V-0 0" 2 20_"2)

~ 2 2a~

where

2 Y2

ll2 e-lI0 2
Thus it is seen that for large V/7  the generalized "t" model has
precisely the desired behavior specified by Eq. (2.6), while for
small V/7 the envelope of the generalized "t" model behaves as
if it were Rayleigh-distributed. This is of course in agreement with

both experimental results and intuition, since the noise at low lev-
els is expected to be the result of contributions from a large num-
ber of independent noise sources.

Now, to proceed with the comparison of the distribution of the

envelope given by the generalized "t', model with available measured data,

it is necessary to compute the complement of the envelope probability dis-

tribution function, i.e., go find P0 (V), where
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P0(v) = 1 - p(v) = f PvWx) dx , (2.26)

in which pv(x) is given by Eq. (2.22). Evaluation of this integral

gives

p- 0-1

P 0 (V) - keC,2 (2.27)

p 0v) calculated as above is plotteO in Figs 4 through 13

along with measured data from Watt and Maxwell (Ref. 9] (Figs. 4-9) and

Clarke et al (Ref. 10] (Figs. 10-13). (Note that in the figures,

p logI log P0 (V)I is plotted vs log V. This choice of scales has the

interesting property that the Rayleigh-distributed envelope plots as a

straight line.) In addition, Fig. 14 using data from Furutsu and Ishida

:1 [Ref. 6] is presented to demonstrate the variation observed in the sta-

tistics of the received noise at hf where the choice of an appropriate

noise model is strongly a function of local thunderstorm activity.

In order to produce these plots, it was necessary to specify

values to be taken on by the two parameters of the model 7 and 0. The

plots in these figures were produced by letting 0 take on integer values

as labeled, while 7 was chosen in the following manner: For the case

S0 = 3, 7 was chosen to make E[V] = Vavg, where E[V] is the expected

value of the envelope as given by the model, and V is the time aver-avg t
age of the envelope of the received noise obtained by direct measurement.

Now

V

E[V] =- f V pv(V) I dV , (2.28)
0= ()=300

For Figs. 10 and 11, Vavg was obtained by using the ratio Vrms/Vavg
presented by Clarke, et a_ in their Section 3.1.
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Figures 4 through 14

appear on the following pages.
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FIG. 10. COMPOSITE PROBABILITY DISTRIBUTION FUNCTION OF THE ENVELOPE
OF RECEIVED VLF ATMOSPHERIC NOISE: COMPARISON OF MODEL RESULTS WITH
DATA MEASURED AT SLOUGH, ENGLAND AND AT SINGAPORE.

P (V) = Probability that envelope intensity V
exceeds abscissa value.

(Note: Vertical scale is logJ log P0 (V)' .1

LEGEND:

Measured data, Slough, England

Band center frequency, fo = 24 kc

Receiver power bandwidth = 425 cps

(Clarke, ot al, [Ref. 10])

2I
Measured data, Singapore

(Same conditions as above)

3 Generalized "t" model

9=3
S 3V= E[V] 13 db below c"
0.636V - ms

4
Modified generalized 'It" mod,Ž1 0%

e= 3

= 0.636 V

2 2 6= 2.5 X 10

5f I
5

-. -.. Rayleigh-distributed envelope

3[V2- = V2
rms
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FIG. 11. COMPOSITE PROBABILITY DISTRIBUTION FUNCTION OF THE FNVELOPE

OF RECEIVED LF ATMOSPHERIC NOISE: COMPARISON OF MODEL RESUL.S WITH
DATA MEASURED AT SLOUGH, ENGLAND AND AT SINGAPORE.

Po(V) = Probability that envelope intensity V

exceeds abscissa valiue.

[Note: Vertical scale is logj log P0 (V) .IJ

LEGEND:

Measured data, Slough, England

Band center frequency, fo = 135 kc

Receiver power bandwidth = 425 cps

(Clarke, et al, (Ref. 10])

Measured data, Singapore

Band center frequency, fO = 145 kc

Receiver power bandwidth = 425 cps

(Clarke, et al, (Ref. 10])

3
-I Generalized "t" model

=3

0.636 V, V = E[V] 6 db below Vrms

4
Generalized "t" model

e=2

7 =33 db below V
rms

5
Rayleigh-distributed eavelope

E[V 2 = V2
rms
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FIG. 12. COMPOSITE PROBABILITY DISTRIBUTION FUNCTION OF THE ENVELOPE

OF RECEIVED IF ATMOSPHERIC NOISE: COMPARISON OF MODEL RESULTS WITH

DATA MEASURED AT SLOUGH, ENGLAND AND AT SINGAPORE.

Po(V) = Probabilit) that envelope intensity V

exceeds abscissa value.

INote: Vertical scale is logilog Po(V)I.]

LEGEND:

I2Measured data, Slough, England

Band center frequency, fo = 11 Mc

Receiver power bandwidth = 425 cps

(Clarke, et al, [Ref. 10.))

2
Measured data, Singapore

(Same conditions as above)

Generalized 'It" model

t e=4
7 070 • , ,, A V2j V2

0.707 V V E ] 10 db above
rms r. is rms

(see, footnote, page 48)

f
4

-*. . Itaylei. ..- Jistributed envelope

E[V I V: 2
rms
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FIG. 13, COMPOSITE PROBABILITY DISTRIBUTION FUNCTION OF THE ENVELOPE
OF RECEIVED 1F ATMOSPHERIC NOISE: COMPARISON OF MODEL RESULTS WITH
DATA MEASURED AT SLOUGH, ENGLAND AND AT SINGAPORE.

Po(V) = Probability that envelope intensity V
exceeds abscissa value.

[(Note: Vertical scale is logllog P0(V) M .1

LEGEND:

Measured data, Slough, England I
Band center frequency, fo = 20 Mc

Receiver power bandwidth = 425 cps

(Clarke, et al, [Ref. 10])

2
Measured data, Singapore

(Same conditions as above)

3 Generalized 'It" model

e=4
=0.07 V V2  E[V 2  1I0 db below V2

rms' rms rms

(see footnote, page 48)

4
Rayleigh-distributed envelope

2 "-2

E[V V = V

I
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FIG. 14, PROBABILITY DISTRIBUTION FUNCTION OF TUE ENVELOPE OF RECEIVED
HF ATMOSPHERIC NOISE: DEMONSTRATION OF EFFECT OF A PREDOMINANT LOCAL
NOISE SOURCE.

P (V) = Probability that envelope intensity V
exceeds abscissa value

LNote: Vertical scale is logllog Po(V)I.1

LEGEND:

Measured data (Furutsu and Ishida (Ref. 6])

Ohira, Japan, 0218, Feb. 19, 1957

(Predominant local noise source)

Band center frequency, fo = 3.5 Mc

Receiver bandwidth = 1.2 kc

a 5 db below u (see [Ref. 6], Fig. 8(a)) F

2 Measulred data (Furutsu and Ishida [Ref. 6])
Ohira, Japan, 0605, Feb. 19, 1957

(No predominant local noise source)

Band center frequency, fo = 3.5 Mc

Receiver bandwidth = 1.2 kc

= 10 db above a (see [Ref. 61, Fig. 9(a))

3 Rayleigh-distributed envelope

a~ V
rms

I
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where r
PV (V) =2-/ 2

0=3 (v2 + 2)

follows from Eq. (2.22). Thus it is found that E(VJ y 2 ; so that,

for the case 9 = 3, Y was ch( j to satisfy

2"" Va . (2.29)i avg

For the case 6 = 4, because of the fact that V and not V was
rms avg

presented in the measured data where 0 = 4 was appropriate, 7 wa=

chosen to make (E[V2 ]) 1/2 = . (It is noted that, if available,

V is preferred to V for calibration, since it is less dependent
avg rms

on large values of V, at which values the mensured data are least reli-

able because of the tremendous dynamic range and long observation time

required to obtain valid results.) Now

Elf21v(= ) v
E[4 2 f PV (V)2  dV

0

= 373 572 dV = 2 (2.30)

"J37(V2+ 7 2)52

so that, for the case 0 = 4, 7 was chosen to satisfy

y = 2- 1/2 V . (2.31)• rms

tFor Figs. 12 and 13, V rms Vrms was chosen to give the best fit, sincevalues of Vrms presented by Clarke, et al in their Fig. 6, for the cases

at 11 Mc and 20 Mc, are not compatible with cach other.
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Finally, for the case 0 = 2, y was chosen empirically to give the best

fit to the measured data, since none of the moments of the envelope of

the generalized "t" model are finite in this case. (The nonexistence

of these moments is discussed further in the next section.)

"b. Discussion of Plotted Results

The plotted results are reasonably self-explanatory, but sev-

eral comments and conclusions of interest are warranted. Because of the

extremely impulsive nature of the received atmospheric noise at vlf, it

is anticipated that the generalized "t" model for the received noise

will be most useful in this portion of the spectrum. Thus the plotted

results emphasize the vlf region, the applicable figures being Figs. 4 to

10. Further, because of the fact mentioned in the introduction that the

spectral shape of the received noise is determined by the receiver in all

cases of available measured data, and since it is desired to model the

noise as little affected by the receiver as possible, the plotted data in

Figs. 4 to 9 make use of the widest-band measured data known to the author.

It is noted, however, that a closely similar form is obtained for the dis-

tribution of the envelope for bandwidths in the range from about 100 cps

up to at least 2 ke, which is the largest bandwidth for which any experi-

mental results have been reported. Verification of this statement is con-

tained in the experimental results of Watt and Maxwell [Ref. 91 and Harwood

(Ref. 271, and it is supported by Fig. 10, where the data were obtained in

a 425-cps bandwidth rather than in the 1000-to 1300-cps bandwidths used to

obtain Figs. 4 to 9. With thi3 explanation of the choice of vlf experi-

mental data, the conclusions to note are:

1. At vlf the generalized "t" model is obviously a much better fit to
the received noise than is a gaussian model (Rayleigh dis~ributed

envelope). Quantitatively, it is seen that in most cases the gen-

eralized t!t" model gives a good fit for cumulative envelope prob-
abilities smaller than about 1-10-5 or more, while the gaussian model
gives a good fit only for cumulaLive envelope probabilities smaller

than about 1-10-!.

2. It is seen that a good fit to the measured vlf data is attained by

athe generalized "t" model when the parameter 9 is assigned ars
Sappropriate value in the range 2 < 9 < 4, and the parameter ýf

is chosen according to an appropriate moment of the envelope given
0 as discussed above. It is interesting to note that the choice of

e is dependent on the location, number, ana intensity of noise
sources, since in general, the smaller values of e are required to
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fit the Canal Zone data (Figs. 8 and 9) characterized by strong local.
thunderstorm activity, while the larger values of e are appro-.
printe for the Alaskan data (Figs. 4 and 5) characterized by much
less local thunderstorm activity.

In addition to the fit of the generalized "t" model at vlf, it is el

interest to consiaer the applicability of the model as the band center

frequency fo is increased. This subject is considered in Figs. 10 to 14

and leads to the following conclusions:

1. Although the improvement shown by the generalized "t" model as
-ompared with a gaussian model is most dramatic at vif (Fig. 10)
and at lf (Fig. 11) it is seen that the generalized "t" mocel
may have application at frequencies up to and including the hf band
(Figs. 12 and 13). The fact that the importance of individual noise
source components decreases with increasing band center frequency
is evident in the plotted data however, and Fig. 14 is presented to
emphasize that the choice between the gaussian model and the gener-
alized "t" model is not as clear at hf as it is at vlf, i.e.,
Fig. 14 shows that the s:-tistics of hf atmospheric noise are
strongly a function of local thunderstorm act. *ity.

2. It is seen, consistent with the fact that the dynamic range of the
received noise decreases with increasing band center frequency, that
the value of 9 required to fit the measured data increases with
band center frequency with 0 > 4 being appropriate at hf (Figs. 12 P
and 132.

In summary of the above discussion, it is concluded that the first-order

statistics of the generalized "t" model are in good agreement with a

usefully wide range of measured data on received atmospheric noise. The

fit of the generalized "t" model is seen to be esp.F-ially good at vlf

and 1f in those situations characterized by low-to-modvrate local thunder-

storm activity.

With this result in mind, it is of interest to consider modifi-

cations to the generalized "t" model that will improve its fit when either

the measured data is characterized by strong local thunderstorm activity

or the band center frequency of interest is increased to hf. The plotted

results discussed above are useful in suggesting the appropriate modifica-

tions when the following observations are made:

1. It is noted above that the generalized "-" model produces a prob-
ability distribution for the envelope that diý,erges from some experi-
mental results for cumulative probabilities above about 1-10-5 (see,
for exampie, Figs. 10 to 13). It is emphasized that this di'.ergc.,e
is somewhat questionable at vif because of the tremendous (l';•.0.ic
range required for the receiver to observe these probabili.L-s without
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distortion, so thot it may be receiver nonlinearity that cause

this apparent divergence. In fact, it is seen that the relatively
wideband data in Figs. 4 to 9 adapted from Watt and Maxwell do not
exhibit this divergence, whereas ij is evident in the relatively
narrowband data in Fig. 10 adaptea from Clarke, et al as well as in
relatively narrowband data presented by Watt ino Maxwell (Ref. 9].
Thus, despite the questionable existence of the divergence between
measured and generalized "t" model curves for bandwidths greater
than about 1000 cps at vlf, the fact that such a divergence is seen
in narrower bandwidths for cumulative probabilities greater than
about 1-10- plus the fact that the divergence may become more ev-
ident as the band center frequency of interest is increased (see
Fig. 1/0 indicate the desirability of modifying the generalized 'It"
model tu accommodate this behavior.

2. It is pointed out above that the fit of the generalized "t" model
to measured vlf data is optimized if 0 is chosen apropriately in
the range 2 < a K 4. Now, as mentioned in Section 131, ? in the
range 2 < e < 3 means that Ety 2 ] = 1 , so that the generalized
"t" model with @ in this range does not correspond to a physical
noise. This is not disturbing, since it is expected [Refs. 18 and
21] that models for "impulsive" phenomena will be characterized by
barely convergent or divergent second moments because of the large
dynamic range which these models must possess. Despite this argu-
ment, it is desirable to consider modifications to the generalized
"t" model which satisfy the condition that every physical noise i!as
finite average power.

c. Development of the Modified Generalized "t" Model

With the above observations in mind, the modification proposed

here is merely that the ensemble of values that the modulating process

a(t) can assume be truncated as follows:

paa = I exp(a 2 -k < a < • (2.32) j
2(r a

where k is chosen to satisfy

f pa(a) da = 1

The physical justification for this modification is simply that since ca~h

lightning stroke must emit finite energy the measured data must diverge at
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some level from the generalized "t" model with e < 3. The above trun-

cation of t1e range of a(t) is perhaps the simplest way to introduce

into the generalized 'It" model a change in trend that will follow the

change in trend of the measured data for cumulative probabilities above

about 1-10-5 (see Figs. 10 to 14). Furthermore, it is clear in agreement

wiLh the measured data that this trend change will occur at lower noise

levels if either the receiver bandwidth is reduced or the band center fre-

quency is increased, since either procedure results in reducing the impor-

tance of any single lightning stroke to the received noise. Now, applying

the same procedure used in conjunction with the generalized "t" model

in order to calculate the distribution of the envelope for the modified

generalized "t" model, it is found that

p2(V) J - exp m + dT (2.33)
• 2 2 + 2c1

This integral is easily evaluated in closed form for m even, and we will

proceed by considering m = 2, which corresponds to the important case

0 = 3. (See Appendix A for evaluation of Eq. (2.33) with m odd.) Thus,

taking m = 2 and substituting the proper value for the normalizing con-

stant k, it is found using Dwight, item 567.9, that

(v M 2V exp£ V2[ 2 +0=3 , 2 ,222 2
0=3 2 1)_(V2 + 2) 227(v + 2)J

0 < v < , (2.34)

where

1/2 ('l
72
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Now, calculating the complement of the probability distribu-

tion function for compnriso.. with the measured data,

2- _V2

P (V) ex (2.35)
0 2 22 22

0=3 V -r Y

This result is plotted in Fig. 10, where it is seen that the modiication

has the desired effect of improving the fit of the model to measured data
-6

at cumulative probabilities above about 1-10 without significantly

altering the fit at lower cumulative probabilities. Thus it is concluded

that the modified generalized 'It" model has flexibility not possessed

by the generalized "t" model. This flexibility may be of practical

significance whetn the dynamic range of the received noise becomes suffi-

ciently limited because of either increasing band center frequency or

decreasing receiver bandwidth.

f• Finally, it is conjectured that the model can be further

improved with regard to its ability to fit measured data characterized

by strong local thunderstorm activity by taking the first-order statis-

tics of a(t) to be given by

m +1 eP 2 -2 ý I 1 <•
2oa

lfal 1 2\0 )
p (a) = (2.35)
a

1k/
S2 exp 2l <1 ja <FD2

Jai m2 2q 2

This second modification will not be further considered here, because it

does not fundamentally change the form of the model although it substan-

tially complicates the calculations of interest.

2. Average Intensity of Envelope Level Crossings

As discussed earlier, it is of interest to calcul-te the average

number of crossings of a fixed level by the envelope of the noise per unit
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time, both as a further check on the first-order statistics of the gen-

eraj1zed "t " modd- and as a demonstration of the analytical usefulness

of this mndel. Letting N V(V) denote thŽ average number of crossings

of the level V0 by the envelope per second, it is well known [Ref. 241

that for an ergodic random process V(t)

Nvf (~ ipV'(V,v) dv ,(2. 37)
-00 V=V 0

where V(t) 0 d/at v(t). Now, it was shown in Section Cl that with the

assumption of negligible spectral overlap of act) and n(t),

V(t) , a(t)l E(t) , (2.4)

where E(t) is the envelope of the narrowband gaussian process n(t).

Thus

I't a(t),i (t) + 1,a(t)l E(t) (2.38)

However, noting that the available experimental measurements of N - -- )

which are presented in Fig. 15, were obtained in a bandwidth of 1100 cps,

it is interesting to consider .he assumption that the modulating function

a(t) is sufficiently slowly varying so that with high probability

Ia(t)O-(t) >> 1;(t)0 E(t) (2.39)

This assumption is of interest since it means that with high probability

Ia(t)I i(t) (2.40)

so that one can write

S
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-r (VI) PI '11 1IalEVV
11

f dx W px ~EfEf'~ (2.41)= x 2- PI al E,) xP ,
0

where

m/2

a r(21) 2cr xI
2/

follows from Eq. (2.8) and where, pE,(V/x, '/x) is calculated as fol-
E,E(/'ýX

lows: Since E(t) is the envelope of a stationary gaussian process n(t)

with covariance function R (T), it can be shown [Ref. 261, making then

reasonable assumption that ýi(t) has finite second mom.nt, that

"• PE,i('' 1/2
PE,(,E =Rn(O) [2i (iin(O) - __A())/

1xY .i E2 i2R .(0)0  j~IO Rn 2(0) R

n pEE) p•(K) , (2.42)

2 '2

.: where R (o) = o"1 in the previous notation, and R (t) is the Hilbert
n 1 n

"transform of R (n). Now, it is interesting to note that ifn

R n(T) = Rc(t) cos 0 (2.413)
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EL ii

FIG. 15. AVERAGE RATE OF ENVELOPE LEVEL CROSSINGS: COMPARISON OF MODEL
RESULTS WITH MEASURED VLF DATA.

LEGEND:

Ii

Measured data: A- rage rate of envelope level

crossings. (Watt and Maxwell [Ref. 91)

Point Barrow, Alaska, 1450 A.S.T., Sept. 27, 1956

Band center frequency, ýO = 2' .

Receiver 6-db bandwidth = 1100 cps

6' antenna, N.E.-S.W. plane

2
Measured data: Envelope probability density function.

(Watt and Maxwell [Ref. 9)

(Same conditions as above)

* 3
Generalized "t" model: Average rate of envelope

level crossings.

e= 2

1.5 X 10-6

rms bandwidth, B= 500 cps

4
- Generalized "t" model: Envelope probability density

function.
(Same conditions as above)
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where S (f), the Fo'irier transform of Rc (T), is zero for Ifl _ fO
(which is in fact the case of interest in this development), then

I
- (0)- 2( 0) (2.44)

Also, it is easily shown that in this situation

2 222-R (0) = (2v) Rc(0) B = (2O)2 Rn (O) B2  (2.45)

where

B ( f S2  df) /2

is defined to be the rms bandwidth of n(t). Thus, substituting these

results into Eq. (2.42):

E__1 2 E

PEi(•) 2 (2.46)

E,•-'I•) = (2 )3/2 B ( exp -- 2 [E + (2,)2

Ec 1 j 1 2 J 2.6

Now, substituting thii, result into Eq. (2.41), making a change of variable,

and using Dwight, item 860.17, it is found that

=' r(1-:1) '3/2 BV22(12/
2 c [ V 2 + ( 2 1) 2 B 2

(2.47)
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Finally, substituting Eq. (2.47) into Eq. (2.37), there is obtained the

desired result

r(0+2 81/2 9 B VO

N (V )V 0 _ 22 2 e/2' 0 < V0 < 0, > .

V~~ ~ 0 (A v 2 )-0

(2.48)

Now, the measured data presented by Watt and Maxwell [Ref. 9j and repro-

duced in Fig. 15 are for crossings of the level V0 in the positive

direction only, and are seen to correspond to the case 9 = 2, for which

formula (2.48) becomes

V0

Nvo) = 27 B (2.49)
9=2 V

a. Discussion of Plotted ResultsIm Although the basic agreement of the results derived using the

generalized "t" model with the measured level-crossing results is clear

from inspection of Fig. 15, the following comments and conclusions are in

order: Recalling the result due to Rice [Ref. 241 that if the noise were

gaussian the average number of level crossings by the envelope per second

would be equal to an appropriate bandwidth factor multiplied by the enve-

lope probability density function, it is once again clear that the gen-

eralized "t" model is far more appropriate than a gaussian model for vlf

atmospheric noise. In fact, it is seen that the generalized "t" model

gives the asymptotic result

e-1
lim p (V) = (9-1) 9 > i (250)

V+00V 0 V9  2.0
0 0
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• I i
whereas j

IB
77 A1/2 B2.5-)lrn N V 8 \) Z.....(.1

., -- V r(l) V0

In addition to being in good agreement with the experimental data from

Watt and Maxwell [Ref. 9], the asymptotic result given by Eq. (2.51) is

a1so in good agreement with the vlf level-crossing rate measurements

made by Clarke, et al (Ref. 101, who find for thresholds in excess of the

average value of the noise envelope that N is given by

(V 0 (Vo/A) (2.52)

whece A and C are constants such that

A =V + 30 db, 1.3 < C < 2
avg - -

*: Taking now a closer look at the results plotted in Fig. 15, it

is noted that, although the measured data correspond well with the general-

ized "'t" model with e = 2, the experimental determination of p v(V )

"contains no data points for envelone values larger than that corresponding

to 2.4 crossings per second. Now, consistent with the arguments presented

earlier in the discussion of the distribution of the envelope, it is seen

that the slope of pv(V0 ) must change at high values of VO, since the

noise has finite average power. Thus it is conjectured, although it will

not be considered further here, that the fit of the generalized "t"

model to the measured level-crossing data can be further improved by em-

ploying the modified generalized "'t" model proposed in subsection 1c.

In support of this conjecture, it is noted that the measured dato presented

by Clarke, et al also shows a departure from the power law (Vo/A)-C at

crossing rates below 1 per second, with this departure becoming less ap-

parent as the v.ilue of C increases. This behavior is consistent with

the result found from envelope distribution considerations--namely that
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the generalized "t" model provides a better fit to the received noise

at vlf as the required value of e increases corresponding to the situa-

tion of low-to-moderate local thunderstorm activity.

Finally, in summary, it is concluded that the data plotted

from Watt and Maxwell in Fig. 15, as well as comparisons with the experi-

mental results of Clarke, et al indicate good agreement between the aver-

age number of level crossings of the envelope given by the generalized

"t', model and by the measured vlf data. The significance of this agree-

ment is, of course, that it is further verification of the applicability

of the generalized "t" model as far as the first-order statistics of the

noise are concerned. From a physical point of view, this agreement in-

creases confidence in the generalized "t" model, since it indicates that

on the average the envelope of the model varies with time at the same rate

(at least at vlf) as the envelope of the received noise. To complete

verification of the applicability of the generalized "t" model as a model

for vlf atmospheric noise, it remains to investigate the manner in which

these variations with time occur. This is, of course, a function of the

second- and higher-order statistics of the noise, which will be the next

topic of discussion. Before leaving the present discussion of the average

level-crossing rate, however, it is noted that the fit of the model to the

measured data in Fig. 15 was achieved by taking the rms bandwidth B to
c

be 500 cps. On the other hand, the measured data were taken in a 6-db

bandwidth of 1100 cps, which corresponds to an rms bandwidth of the order

of 400 cps. This discrepan~cy is not large, but may be a result of the as-

sumption that the term !a(t)lE(t) is negligible in Eq. (2.38). Thus it

is conjectured that the fit of the calculated level-crossing rate to the

experimental results may be improved by relaxing the above assumption,

which is equivalent to the assumption that the modulating process a(t)

has a much smaller bandwidth than the envelope E(t) of the narrowband

gaussian process n(t). Finally, it is pointed out that the bandwidth

factor is absorbed into the constant A in the work of Clarke, et al where

all of the measurements of level-crossing rate were made in a fixed power

bandwidth of 425 cps.
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3. The Distribution of Envelope Level Crossings

Having demonstrated that the first-order statistics of the gener-

alized "t" model are in good agreement with measured data on received

atmospheric noise over an interesting range of receiver bandwidth and band

center frequency, completion of the verification of the applicability of

the model to received atmospheric noise requires investigation into the

higher-order statistics of the noise. Physically, this means that although

the consideration of the average rate of level crossings shows that the en-

velope of the generalized "t" model fluctuates at the same average rate

as the envelope of observed atmospheric noise, it remains to investigate

the fashion in which these fluctuations occur. That is, it remains to

verify that the higher-order statistics of the generalized "t" model can

be chosen so that the relationship between the process at various distinct

instants in time, as predicted by the model, is consistent with measured

results on this relationship. As mentioned earlier, the available experi-

mental data (Ref. 9] dependent on che -. igher-order statistics of the noise

consist of measurements of the probabil.ty distribution function of thle

interval between successive crossings of a fixed level by the envelope of

the noise. Inspection of these data indicates U At at vlf the noise pulses

do not in general occur in a Poisson fashion, but rather that received

noise pulses are usually statistically dependent on preceding ones. Now,

the calculation of the probability distribution of the inter-level-crossing

interval is difficult, requiring numerical techniques to obtain even an

approximate solution (Refs. 24, 28, 29]. This is true even for the special

casc of gaussian processes, which is the only case that has been treated

in any detail in the literature [Refs. 28, 29). Thus we will not attempt

to find an exact solution for the nongaussian situation of interest here,

but will resort to simplifying assumptions, based on an understanding of

the generalized "t" model, in order to obtain an approximate solution.

Noting, as discussed in the introduction, that the received atmospheric

noise of interest can be considered to be n narrowband random process, it

follows that its envelope can at least be assumed to be bandlimited. Thus

it is propoised that a useful representation of the envelope in an interval

of observation -At < t T is given by
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ii
V(t) V(ti)(At.12 qi(t) ,(2.53)

"i=O

where q (t), i=O,..., N, is defined in Fig. 16 and where the value of
i

N required to make this representation reasonable depends upon the band-

width through which the signal of duration T + At is observed.

!t

0 tT t i tA

2 2

FIG. 16. DEFINITION OF q (t), 1 = 0,..., N, WHERE t (i - At.

Now, recalling that with the reasonable assumption of negli-

gible spectral overlap of a(t) and n(t) that

V(t) - la(t)l E(t) (2.4)

where E(t) is the envelope of the narrowband gaussiar process n(t),

the representation in Eq. (2.53) becomes

N

VW 1.(t )I E(t.) (Ati)/2 q(t) . (2.54)

Let T now be defined as the interval between a down-crossing of the level

V by the envelope of the received noise, and the next up-crossing of the
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same level. (This is the quantity whose statistics have been measured by

Watt and Maxwell (Ref. 9).) Applying the representation of V(t) pro-

posed in Eq. (2.53), it is seen that the probability distribution actually

measured by Watt and Maxwell is given by

P (To) = Probability that T exceeds TO

= PrT > TO

= Pr no up-crossing', of V0  in [t, t+T 0 ] down-crossing of V0  at ti

Pr no up-crossings of V0 in [O,T o, down-crossing of V0  at t = 0

Prldown-crossing of V0  at t= f1
'•Pr{Vkto > Vo, V(tl)< Vot ...'P V(tNO < Vo}(.5

Pr1 00 ~ N 0(2.55)

Pr IV(t 0 ) > VO, V(t) < V

where No = smallest integer > T 0/At.

With this simplified formulation of the solution for P 0(T ) one

can now proceed to investigate the possibility of specifying the higher-

order statistics of a(t) and n(t) in such a way as to reproduce the

distribution of the inter-level-crossing interval observed experimentally.

Two special cases will be considered, as follows.

a. Case of Independent Samples

In this special case, which is the simplest case of interest,

it is assumed that the values taken on by the envelope at the (N +1)

sampling instants are statistically itndependent. It is obvious that thin

assumption of independence greatly simplifies the evaluation of P (To)
0 0

given by Eq. (2.55); but it remains to verify that the representation of

V(t) given by Eq. (2.53) is reasonable in the light of the independence ,

assumption. Assuming that the observed atmospheric noise is bandlimited

by the receiver to an rf bandwidth 2B, it follows that the envelope of the

received noise is bandlimited to a frequency band of width 2B centered

about zero frequency [Ref. 30]. Thus it can be shown [Ref. 311 that this
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bandlimited envelope V(t) is approximately described in the time inter-
val [0,T ] by its samples at N equidistant instants, where NO 0 2To B

is required if the samples are to be reasonably assumed both independent

and sufficient in number to yield a good approximation. Such a represen-

tation is given by:

2To0B

v(t)t) m(t) (2.56)

i= 1

where the t. are defined as in Fig. 16 and where the best approximation

to V(t) comes from taking the p•(t) to be the prolate spheroidal wave

functions [Ref. 31]. However, because the spectral shape of the received

atmospheric noise is determined by the filter through which it is observed

in the situations of practical interest, it is pror-s'ed that the represer-

tation in Eq. (2.53) in terms of the pulse "bass'' Lions q.(t),

i=O, ... , 2T B, is in fact a reasonable approximation to the envelope of

this filtered "white" noise.

Now, making use of the assumption that the (2T 0oB+) samples

in Eq. (2.55) are statistically independent, it is found directly that

P0 (To) = [Pr 1V(t) < Vo0 (2TOB-1) (2.57)

where, from Eq. (2.27), i

e- 1

Pr.V(t) < Vol -1 7 0-0/2 (2.58)

ov )2 )/2

Thus, for the case of independent samples,
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I.

r(2T 0 B-1)
P (T ) - e-0 (2.59)

Special cases of this result corresponding to 0 = 2 and e = 3 are

plotted in Fig. 17 along with data taken frcm Watt and Maxwell (Ref. 9],

and the special case corresponding to e = 2 is also plotted in Fig. 18

along with data taken from Watt and Maxwell and along with data from the

constant a(t) case considered below. It is seen that the assumption of

independent samples, like the assumption that noise pulses occur in a

Poisson fashion (exponentially distributed intervals, Fig. 17), neglects

certain dependencies between adjacent level crossings. In fact, it is

seen that for the high levels of most interest, i.e., for V0 >> 7,

lim P0 O(T) = exp 2B T , (2.60)

so that the assumption of independent samples produces exponentially dis-

tr~buted inter-level-crossing intervals at high levels. It is noted that

the value of P (T ) given by Eq. (2.59) and plotted in Figs. 17 and 18

is actually consistent with Eq. (2.55) only for those values of T such

that 2T B is an integer. A smooth curve is fitted through these points

in preference to the step function specified by Eq. (2.55) because the

probability distribution function of the interval is of course continuous

in nature. in any case, the discrepancy between the smooth curve and the

associated step function is negligible at large values of 2T 0 B, the sit-

uation of most interest. Now, the goal of the calculation of the probabil- 4

ity distribution of the inter-level-crossing interval here is to investigate

tIt is noted that the discrepancy between the calculated and measured re-

salts at low values of To is due in part to the breakdown of the assump-

tion that No • 2T B is sufficient at low values of the T0 B product.
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our ability to specify the higher-order statistics of the generalized

"t" model in order to reproduce the distribution of inter-level-crossing

intervals observed experimentally. Tho assumption of independent samples

is seen to give a distribution which agrees with some experimental data

but which, in general, neglects some observed dependence between adjacent

level crossings. A second special case will now be considered in an

attempt to introduce this observed dependence into the calculated results.

b. Constant a(t) Case

In this special case the slowly varying modulating function

a(t) is in fact assumed to be constant for the duration of observation,

so that V(t) as represented by Eq. (2.54) takes the form I,

N
V(t) j ai E(ti) (At,)'/ qi(t) ( 2.61)

i=O

In order to complete the specification of V(t) in the intervial [-At,To],

which is the interval of interest in Eq. (2.55), it is assumed that the

(N0 +0) samples of E(t) are statistically independent [recalling that

E(t) is the envelope of the narrowband gaussian process n(t)]. Thus it

follows from the development of the tndependent-samples case that

N0 : 2T B is required, so that the representation of V(t) in the inter-

val [-At, T ] takes in this case the form

2T 0 B

v(t) lal E(t) (Ati)d/2 qi(t) (2.62)

i=0

Now, turning to the calculation of P 0 (T 0 ) as given by Eq. (2.55), it is

seen that the solution requires evaluation of the joint probability dis-

tribution

Pr (to) > VC, V(t 1 ) < V0 , ., V(tN) < V} =
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Now, in this constant a(t) case

C V V0

N(Vo df dV dV0 ..1  f dV N PV) (2.64)

V0 0 0

where

pv(V) p Vol ... , VN (Vo 0 ... , VN)= Paj Eo, .. J., ai EN (V0 ' ... , VN)

in which

V~ -J t f , i=O, ... , N

E(t Eiii

Thus

00

pv(V) fdx pD7 Pial Cx) P (2.65)
0

where

p (EE N (E•, ... , P )E n ex( /-- Eo i=O q 2 0'l

follows from Eq. (2.10), since E(t) is the envelope of n(t), and where

p1  Wx) is given by Eq. (2.41). Evaluating Eq. (2.65) by making a change

of variable so that Dwight, item 860.17, is appropriate:
S 0
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N

[,2N + m 4 2\ (Vi)
-(V) = N+I 2 m i=O (.6

PV' 2N~ N 2 /m2N+m+2)/2 (2,66)

r(v (2) + 2]

Substituting this result into Eq. (2.64),

O2N + m + 2)^ N V 0 2 N 2" m

coV 0  V0

f V dVo f V1 dV1 ... f VN dVN [1(v~) + 2]

fN

Now, Eq. (2.67) can be -valuated by recursively applying Dwight, item

201.9, which gives the result

r 2N + m + 2

SN(V) 2 N+l 2 m 1
NO (M) _ (2N+ m)(2N + m- 2) ... (mi

Sk mr/2 (2.68)

k=O [(k+l )V2 + Y2]

where (N) is the binomial coefficient.
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Finally, substituting Eq. (2.68) with the appropriate value

for N into the numerator and denominator respectively of Eq. (2.55)
S~gives the diesired result

2N + mn + 2
O(T 2 02I + 2)(m)

00 m0 + 2) (2No + 0 2) (m)

2 m

k=O (k+l'V0 +
1 0 (2.69)_-l)k

k=0[(k+l)V2 
+ 72]m/2

where No= 2T0 B. In the interesting special case 0 = 3 (m = 2), this

gives

2ToB 2T B)
!0 (_i)k

(1k

2
k=O k+l + (2.)

Po(T) =- (2.70)j e~~=3 lk

k=O k+l1 + R-)

This result is plotted in Fig. 18 for various values of y/v , along with

results from the independent-samples case and experimental data taken from

Watt and Maxwell. These plotted results indicate that the constant a(t)

Case is characterized by the fact that very short t and very long inter-
level-crossing intervals occur with a higher probability at high levels

This conclusion follows when we neglect To corresponding to 2ToB < 1,
where the No = 2T 0 B assumption breaks down.
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than is actually observed experimentally. This means that the constant

a(t) case predicts more "clustering" of noise pulses than is consistent

with measured data, as contrasted to the independent-samples case, which

predicts less "clustering" than is actually observed. The usefulness of

this result is that it indlcateq the versatility of the generalized "t"

model, and it is conjectured that the observed distribution of Inter-level-

crossing intervals car) be obtaineo with the generalized "t" model with

the proper specification of the higher-order statistics of the modulating

process a(t). Although it will not be further considered here, it is

suggested that a reasonable approach to this problem follows from con-

sidering the special case e = 2 for which the generalized "t' model

takes the formi

yb t) n(t) , (2.71)

where n(t) is a zero-mean narrowband gaussian process with covariance

function Rn (T), and b(t) is a zero-mean, slowly varying gaussian pro-

cess, independent of n(t), with covariance function Rb (). Thus in

this case the higher-order statistics of the modulating process are com-

pletely specified by the covariance function Rb([), so that investiga-

tion of the proper choice of these statistics appears to be analytically

feasible.

D. SURMARY AND CONCLUSIONS

The work in this chapter has been concerned with the development of

an analytical model for "impulsive" phenomena and with verification of the

applicability of this model as a description of received atmospheric noise.

The generaliz,,d "t" model proposed here takes the received atmospheric

noise y(t) to be given by

y(t) = a(t) n(t) , (z.3)

where n(t) is a zero-mean, narrowband gaussian process with covariance

function R (T), and a(t) is a stationary slowly varying random process,
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indecpendent of i(t), %hich modulates n(t). This modulating process

is further described as

a(t) = ,(2.72)
1t) TY

where the first-order statistics of b(t) are specified by the "two-sided"

chi distribution with parameters m and af given by Eq. (2.8).

The applicability of the generalized' "t" model as a model for re-

ceived atmospheric noise has been investigated in some detail in this

chapter, and the pertinent resulti can be summarized as follows: The

first-order statistics of the generalized "t" model are in good agree-

ment with experimental results, with this agreement be~ng particularly

good at vlf and lf in those situations characterized by low-to-moderate

local thunderstorm activity. This conclusion follows from results ob-

tained in Section Cl and C2, where it is shown that:

1. The probability distribution of the envelope of the generalized "t'

model is in good agreement with a large amount of measured dati on
received atmospheric noise. This is demonstrated in Figs. 4 to 13.
It is noted that the agreement with measured data achieved by the
generalized "t" model compares favorably with that achievable by
either the filtered impulse or the empirical models discussed in
Section A2.

2. The phase of the generalized "t" model is distributed uniformly
in the interval (0, 21] in agreement with intuition.

3. The average rate of crossings of a fixed level by the envelope of
the generalized "t" model is in good agreement with the available
measured data. This is demonstrated in Fig. 15, and means physi-
cally that the envelope of the generalized 't" model fluctuates
at the same average rate as does the envelope of received atmospheric

noise. It is noted that no calculation of this average rate of level
crossings has bee,: reported for any of the empirical models, although

Nakai (Ref. 25j has obtained numerical results in agreement with the
measured data, using a filtered-impulse model.

The higher-order statistics of the genera.ized "t" model can be specified

to give good agreement with experimental results. This conclusion follows

from the calculation in Section C3 of the probability distribution of the

interval between successive crossings of a fixed level by the envelope of

the model. This is demonstrated in Fig. 18, where the plotted data indi-

cate that the higher-order statistics of the modulating process a(t)
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(it is to be noted that these statistics are not yet specified in Eq. (2.72)

abovej can be specified to produce the observed devendence between adjacent

level crossings. Physically this means that the generalized' "t" model

can be specified to imitate the tendency of received atmospheric noise to

consist of clusters of noise pulses. This is an advantage of the gener-

alized "t" model over any of the empirical model3 or any of the filtered-

impulse models which assume the noise pulses to occur 4n a Poisson fashion.

Finally, it is concluded that tile generalized "t" model is an appro-

priate model for received atmospheric noise that may be useful in the study

of signal detection and estimation problems in the presenc,' of additive

atmospheric noise. This will be demonstrated in Chapter III, where the

detection problem is examined in detail.

-
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III. APPLICATION OF THE GENERALIZED "t" MODEL

A. INTRODUCTION

In Chapter HI a new model for impulsive phenomena was developed a.)d

was demonstrated to be applicable to the representation of received atmo-

spheric noi,_e. The work in this chapter is concerned with the application

of this model to the signal detection problem in the presence of additive

atmospheric noise. Thuw, the con.munication channel to be considered here

is the additive-noise channel shown in Fig. 19, where m(t) is the trans-

mitted signal, y(t) is the additive atmospheric noise, and x(t) is the

received sum of signal plus noise. Now, the goal of the analysis is the

determination of the receiver form which detects the transmitted signal

in the presence of additive atmospheric noise in an optimal manner with

respect to a performance criterion to be specified. Thus, while the addi-

tive noise y(t) is given by the generalized "t" model, completion of

the statement of the statistical detection problem requires specification

of both the character of the transmitted signal and the performance cri-

terion to be used.

1. Summary of Known Results

Before proceeding wl.h this specification, however, a brief summary

of known results on the detection problem in the presence of additive atmo-

spheric noise is presented. To the author's knowledge, no analytical re-

sult specifying an optimal receiver form for use in the presence of additive

m Ct) i(t)
+i

FIG. 19. DESCRIPTION OF ADDITIVE-'ATMOSPHERIC-NOISE
COMMUNICATION CHANNEL.
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I
atmospheric noise is available in the literature. Rather, the receiving

cechniques that have been proposed stem from observation of the distinc-

u tive impulsive nature of the noise and can be conveniently classified in

two categories:

1. Linear receivers. At least two linear receiving techniques have

been proposed [Refs. 17, 32] for use in the presence of atmospheric
noise, One of these is the "smear-desmear" technique proposed by
several workers and discussed by Lerner (Ref. 17]. This technique
consists of linearly smearing the received noise pulses in time, so
that the smeared noise can be modeled as a gaussian process. Having
done this, the optimal receiver in the presence of the smeared noise
is just the well-known matched-filter receiver which must, of course,

be matched to the smeared signal. It is clear that this technique
Is suboptimal in the presence of atmospheric noise. This can be seen
quantitatively by comparing the error curve resulting from its use

with the optimal error curve, if known. In fact, for the known sig-
nal situation considered in this chapter, it will be seen that use
of the smear-desmear technique corresponds to a loss of 12-15 db in
input SNR.

2. Nonlinear receivers. Most proposed techniques (Refs. 17, 33, 34],
and in fact the techniques generally used in practice, employ non-

linear processing of the received signal. The purpose of this non-
linear processing is to reduce the effects of noise pulses on the
receiver decision by amplifying the received .;ignal nonlinearly prior
to the performance of any linear filtering. (This of course ref.rs
to matched filtering, and not to the bandpass filtering discussed iri
Section IIB, which is required in practice in the front end of the

receiver to suppress adjacent channel interference.) It will be
shown that this procedure is supported by the "logarithmic-correlator"
receiver shown to be optimum in the known signal situation analyzed
compared in detail with specific nonlinear receivers used in practice

in Chapter IV.

Although no analytical determination of optimal receiver forms is available

in the literature, there are several analytical results of interest on the

performance of specific receiving techniques. Several workers [Refs. 35,

36, 37, 38) have computed the probability of error resulting from the use

of a matched filter rece-.ver in the presence of additive atmospheric noise.

Bello [Rcf. 37] and Conda [Ref. 383 have, in addition, included the effects

of fading on these error curves. It will be seen in Section D4 below that

the results obtained by these investigators in the absence of fading, using

various models for the atmospheric noise, are in good agreement with the

results obtained using the generalized "t" model. These results lead to

the conclusion that the matched filter is a poor receiver choice in the
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presence of additive atmospheric noise. Finally, we note the work of

Bowen (Ref. 7] who uses an SNR criterion to investigate the use of hard

limiting in the presence of atmospheric noise. He shows that the use of

a hard limittr followed by a zonal filter produces a much greater improve-

ment in the ratio of output SNR to input SNR when the additive noise is

impulsive, than is obtained when the additive noise is a gaussian process.

This result supports the use of nonlinear processing of the received sig-

nal as mentioned above.

With this brief summary of available results ii mind, the specifi-

cation of the detection problem to be considered here will now be completed.

There are, of course, several possible specifications of the transmitted

signal of practical importance. Consideration will be focused here on the

simple hypothesis-testing situation, wherein the transmitted signal is one

or the other of two a priori equally probable known signals. This sit-

uation is described in Fig. 20, where m£1)(t) and m(2)(t) are known

signals described by

m(2)(t) 0 , (3.1)

with

i T

f m2(t) dt = E

0

and where y(t) is the additive atmospheric noise described by the gener-

alized "t" model. The performance criterion to be used here is the

probability-of-error criterion, so that the statistical detection problem

at the receiver becomes that of choosing between the a priori equally

probable hypotheses

h (1): x(t) = m(t) + y(t)

h'(2: x(t) = y(t)
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FIG. 20. DESCRIPTIQN OF "KNOWN"-SIGNALS DETECTION PROBLEiM.
m(l)(t) and m 2)(t) are equally probable, a priori.

with the smallest probability of error. Now, it is well known (Refs. 5,
39, 40, 41] that the decision rule which minimizes the probability of

* €error in this situation is the Bayes ruie given by

Choose h(l) iff

L[x(t)] wE (2) (3.3)
w[x(t)lh,]-

where wfx(t)lh(i>I, i=l, 2, is the probability density of x(t),

0 < t < T, under hypothesis (i), and where L(x(t)) is the likelihood

ratio. Thus the solution ol che detection problem requires the calculation

S(i)of wLxt)lh 3, i=!, 2, which will be done here by expressing x(t),
0 < t < T, in vector notation with respect to a suitable set of ortho-

normal basis functions. In order to express x(t) in this manner, how-

ever, it is necessary to specify the temporal behavior of the additive

atmospheric noise; i.e., it is necessary to specify the higher-order sta-

tistics of the generalized "t" model.

It is recalled that the generalized 'It" model takes the received

atmospheric noise to be given by
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y(t) = a(t) n(t) , (2.3)

where n(t) is a zero-mean narrowband gaussian process with covariance

R (T), and a(t) is a stationary slowly varying random process, indepen-

dent of n(t), whose first-order statistics are given by Eq. (2.72).

Thus, as in Section IIC3, it is convenient to distinguish two cases, de-

pending on the temporal behavior of the modulating process act).

B. CASE I: SHORT-DURATION SIGNALS, act) = a, 0 < t < T

This case is similar to the constant a(t) case considered in Section

IIC3, in that it assumes the slowly varying modulating process a(t) to

remain constant for the signal duration T. Physically, this corresponds

to the situation in which the signal duration is sufficiently short that,

with high probability, the modulating process a(t) can be assumed con-

stant in the signaling interval. (The practical applicability of this

assumption will be discussed further in Section B5.) In this case the

decision problem reduces to choosing between the two hypotheses

h x(t) = m(t) + a n(t)
3 0 < t 34 0

h (2)ah"': x(t) a n(t)

An often-used procedure for developing the desired vector formulation,

which is applicable to this problem, is to expand the gaussian process

n(t) in terms of a Karhunen-Lo,6ve expansion. Assuming that R (T) is

continuous in T) it is possible to write (Refs. 30, 41]

X
n(t) 1 .i~m. - ni •t_, 0 < t < T ( 3.5)

;L i=1

where l.i.m. denotes ý'limit in the mean,"

I: T

n= f n(t) q 1i(t) dt (3.6)

0

SEL-66-052 - 82 -



and the qi(t are the eigenfunctions of R (t,s), i.e., they are the

solutions to

TT

f R n(t's) i(s) ds i i(t) , 0 t < T (3.7)

0

This expansion has the desirable properties:

1. The Oi(t) are orthogonal, i.e., they can be normalized to satisfy

T

f (Pi(t) C(t) dt = 5ij (3.8)

0

where .ij is the Kronecker delta.

2. The ni are uncorrelated, i.e.,

E[n n i = i . (3.9)

SIf R nit,s) is strictly positive definite,T the pi(tO, i=1, ... , I ,
will span L 2(T) the (Hilbert) space of square integrable functions on

[O,T]. Then the signal m(t) can be expressed in terms of the i(t)

as

m(t) = l.i.m. m •i(t) , 0 < t < T , (3.10)
NI i~l

tIf Rn(t,s) is not strictly positive definite, it suffices to assume
that m(t) lies in the space spanned by the eigenfunctions of Rn(t,s).
If this is not true, error-free detection can obviously be obtained. 8
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where

T

m= f m(t) .p,(t) dt . (3.11)

0

Having expressed n(t) and m(t) in terms of the orthonorral functions

• Ct), i=i, ... , N, in Eqs. (3.5) and (3.10), the problem can now be

formulated in vector notation as follows:

h(i): x m + a n,

(3.12)h (2): x= a n,

.4.

where, for example,' n t nl', nN is an element of Euclidean N-space

EN. It is noted that this formulation is written in terms of N dimen-

sions, so that N- co will be taken at the conclusion of the problem.

For a rigorous justification of this procedure, see Grenander (Ref. 42].

1. Calculation of the Likelihood Ratio

One can write

w(Alh(i)) = f w(xlh(l), b) Pb (b) db , (3.13)

where p (b) is given by Eq. (2.7), and where Eq. (3.12) plus the fact

that a~t) = /b(t) gives

w(xlh(I), b) = JbIN P_(b(x - )] , (3.14) .!

, t n denotes the transpose of the column vector n.
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a ii

where

p(n) exp[- n A- (3.15)
•'~~~ N/'"- 2,)III 1T2 2

(2r) JA

with

A {i B}

Therefore

(1) bbN 2 1
w(lh ,b) ( 2 7)N/2 !AI1T2 L 2 ( - m)t A 1 (a

(3.16)

so that, substituting into Eq. (3.13),

00 m+N-1

w(- h f (2 T)N/2 am r(m) IAI1/2

[-( 1/27

exp (12E - _112_1 + a) b2 J db (3.17)

where li-.l- A= (x1m) A 1 (x-M). This integral can be evaluated using
where 1xm - amtA9

A 1

Dwight, item 860.17, which gives

m m/2

w(xJl h(1)) 2 1V r AAI Ila M 1-1 + ,]

(3.18)
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Similarly,

mm/2

w(_lh(2)) 2 m > 0.

(3.19)

Now, substituting Eqs. (3.18) and (3.19) into the vector formulation of

Eq. (3.3), there results

L(-) = + a (m+N)/ 2 (3.20)

I-+

Thus, the optimal decision rule is given by:

h(l)
Choose h iff

-l2 ÷ "-_ "- 2 (3.21)

A A

which reduces to the familiar rule for the detection of known signals in

additive gaussian noise:

(1)
Choose h iff

< x, m > 1 2 (3.22)

where

~xt A- m.
<X, m> A-I - "

A
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Now, letting N- o, it is seen that in terms of the time functions

available to the receiver, rule Eq. (3.22) goes over into

h(1)
Choose h iff

T T

fx(t) c(t) dt > m(t) c(t) dt , (3.23) f
t 2t d

0 0

where c(t) is the solution to the Fredholm integral equation

f R(t,s) c(s) ds = ,n(t) , 0 < t < T . (3.24)

0

2. Discussion of the Optimal Receiver Rule

It is seen from Eq. (3.23) that the receiver that minimizes the

probability of error for the additive generalized "t" noise channel in

the case where a(t) = a is constant for the duration of the signal is

the well-known correlator or matched-filter receiver. Before proceeding

to the calculation of the probability of error resulting from the use of

this optimal receiver, there are several points of interest to note. First,

the decision rule is independent of the parameters m and a- of the gen-

eralized "t" model; i.e., the same receiver is applicable in the presence

of additive generalized "t" noise regardless of the value of the param-

eter e > 1. (It will be shown in Section B3 that similar statements are

alno true for additive modified generalized "t" noise.) Also, it is

worthwhile to note that the receiver rule Eq. (3.23) could have been de-

duced directly by inspection of p (y), the probability density of the

additive noise vector. This deduction proceeds as follows: Noting that

w(xlh (2) given by Eq. (3.19) is just py(X), there results

(m+N m/21
N ) ma

N [' - 1 S M > 0 (3.25)
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I I.

ti

where = . However, assuming R (t,s) to be strictlySwh re t Yl . .. YN n

positive definite, there exists a nonsingular "whitening" transformation

W such that

Sm / 2

p iL.4(.N, (m+N)/2 , m > 0 (3.26)( 1

Z ( 2) It [I1 k, w112 +

l2]

where w= Wy. In fact, in this case it is easily seen that

w-- {(xi)"1/2 6 . (3.27)

Now, in terms of the %hitened noise vector 4W the detection problem

becomes that of choosing between the a priori equally probable hypotheses

-- "(1)
h x = m +-- w"-w

(3.28)

i (2) x= •.

It can easily be shown that the correlator receiver given by Eq. (3.23)

is indeed the optimal receiver in this case, and in fact this result can

be generalized as specified in the following well-known proposition:

Proposition 3.1. Given an additive noise channel where the two hypotheses

can be written in the form of Eq. (3.28), and given th.i the probabil-

ity density function of the additive noise can be written as a monot,'ni-

cally decreasing function of the norm of the noise vector, then the

receiver that minimizes the probability of error is a correlator re-

ceiver.
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Proof of Proposition 3.1.

The proof of this proposition is so short that it will be given here.

w ,The likelihood ratio is given by

w (xwh(1)) Pw(X - m) f(IXw - mj)

L(x (329
w(--- h2P(- f(!IX-) ' (3.29) f
w(x w h ) -w

where ikxli)_, is a monotonically decreasing function of ijij- Therefore,

from Eq. (3.3), the optimal decision rule is given by: -

Choose h(I) iff

ff 1 - m 11 2:f 1X i

W'

< > Choose h iff

l4xw - Mwr < 1j1Xw , (3.31)

since f(jxif) is z monotonically decreasing function of ;Ix11.
< > Choose h1 iff t

< xlw 1 (3.32)< _•2 i-

This completes the Proof of Proposition 3.1.

3. Case Ir: Modii'ied Generalized "t" Noise

As an application of Proposition 3.1, the results of Case I will

now be extended to the case of additive modified generalized "," noise.
In this situation the additive noise is given in the vector notation of |

Eq. (3.12) by I

a n , (3.33)

- 89 - SEL-66-052



I-

where pn (n) is given by Eq. (3.15) and pa(a) is given by Eq. (2.32).

Thus

00

00 K T2(m+N/2)/2 exp [ T -. ,

- 2( 2v)N/2 JAI A 'T2)
1 /B

"(1.34)

where it is recalled that K is a constant chosen to satisfy

f Pa(a) da = . (2.32)

For m+N-2 > 0 and even, the integral in Eq. (3.34) can be evaluated

using Dwight, item 860.17, which gives

K [p 1 fI -

4 m + N -2)
2  

2 2•m+N-2 2 -4Y -1

iA A

(m+N-2)/2 (m + N - 2), 2 (m+N)/2 (m + N-2),
2 2 22 2

+ EL6,-5 + (3935)
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where

if
S( _ = + _ (3.36)

For m+N-2 > 0 and odd, Eq. (3.34) is evaluated in Appendix A, where it

is shown that

( 21f)= ()N/2AI' t -JAI f2 2 IA1))]

24 (m + N - 2)

___ 2_+____2_2__2__+

[~+N-2 f (IiIZI21) + e+N-4 f2  h + F*_ tF

2(m+N-3)/2 (m + N- 2) (m + N -4) (.)l1I2
+ 3 [f () +N-3)/2J

F (m+N-l)/2 (m + N -2) (m + N ) ()1+N- 2 (m+N- )/2 -

exp erfc 1

(3.37)

Now, assuming that R (t.,s) is strictly positive definite, the whitening

transformation W given by Eq. (3.27) can be applied to the modified gen-

eralized 'It" noise vector y to produce the whitened noise vector
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w= Wy. Furthermore, inspection of p(y) given by Eq. (3.35) or Eq.

(3.37) showb that the probability density pyw(YW) of the whitened noise

vector will be a monotonically decreasing function of J1z.iI. Thus, ap-

plying Proposition 3.1, the receiver that minimizes the probability of

error in the presence of Case I modified generalized "t" noise is a
m

correlntor receiver. In fact, inspection of the proof of Proposition 3.1

shows that this optimal receiver is the same correlator receiver, speci-

fied by Eq. (3.23), that is optimal in the presence of Case I generalized

"t" noise.Ii
4. Calculation of the Probability of Error for Case I and Case Im

km

As given by Eq. (3.22), the receiver that minimizes the probability

of error in Case I (and also in Case I ) is the one that implements the
m

rule

(1)
Choose h iff

< 1,> -1 I2 IL (3.22)

Since the hypotheses are a p.rkrri equally probable, the probability of

error P is given bye

P = Pr < _ m > 2 hl(2) is truee r-ue-
A A

Pry Y-, m >->1 A:2m12 (3.38)1

However, this expression is identical tc

where =Wy and mw = WS, since as mentioned above, the nonsingular

transformation W is known to exist when R (t,s) is strictly positive
n
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definite, and in fact is given by Eq. (3.27). Now, it is seen from Eqs.

(3.36), (3.35), and (3.37) that pZw(Z,) f-"r both generalized 'It" noise

and modified generalized "t" noise is a function only of the length of

the noise vector; i.e.,

q2. (2.40)

Thus, because of the spherical symmetry of this probability distribution,

it follows, as shown geometrically in Fig. 21, that the calculation of

P reduces to the one-dimensional calculation independent of direction: [
ePry 1 ! (3.41)

e 2-w

That is, the spherical symmetry of pyw(• ) means that the probability

that the component of the noise vector in the direction of m is greater

than or equal to (l/2)Ilm 11 is independent of the direction of m-w

2i

CONTOURS OF 2

-- = CONST

PM (() \M

P /

FIG. 21. GEOMETRICAL PICTURE OF SPHERICAL SYMMETRY OF THE
PROBABILITY DISTRIBUTION OF THE CASE I ADDITIVE-NOISE
VECTOR.
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5. Generalized ttttt Noise

Applying the above results to the case of generalized 'It" noise,

it is found by setting N = 1 in p,(4) given by Eq. (3.26) that

p Wx - 2___ 7W 10 < x < 0 (3.42)
(le-) 1/2 /2

1/

where 0=m+I> and y mI/2 1/cr. Thus, using this probability

density to evaluate Eq. (3.41), there results:

e f r Y- dx (3.43)

ill-l 1/2 k 2 + Y

Now, it is necessary to specify 0 in order to evaluate this integral in

closed form. Initially, consider the important case 0 = 3 (see Section

IICI) which gives

e3 [l + 4(. (3.44)
e -"2 + (w/mw)2-/

In order to evaluate the significance of this result, it is convenient to

consider two subcases of interest, corresponding to high and low average

SNR:

a. a. h SNR; i.e., imla >il > w

In this case there is found the asymptotic result

lim P . (3.45)Ilm1 1 II e0=3

7w
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b. Low SNR; i.e., j1I1 f<

In this case there is found the asymptotic result

lim Pee 2 1 2
-- 07w

lim erfcy. (3.46)

7w !

Discussion of these results for the generalized "t" model will be post-

poned until the associated results for the modified generalized "t"

model have been determined. Plots of P vs mjwj/7w are presented in

Fig. 22 for both the generalized 'It" and modified generalized 'It"

models. These error curves are presented to show the effects of various

types of noise on the optimal performance achievable using "short duration"

signals. For purposes of comparison, the gaussian noise curve is also

presentea for a noise whose average power is equal to that typically mea-

sured in atmospheric noise situations where the generalized "t" model

.:ith parameters 8 = 3 and 7w is appropriate._

"t :

00

erfc(x) = f i exp(- 7) dr(2, 1/)

denotes the area under the tail of the normal probability density with
zero mean and unity variance.

•This normalization is accomplished by using the fact that for the gen-

eralized "t" model

I • ' (2.28)
0=3

together with the empirical result at temperate latitudes that, typically
at vlf and lf, V MS/Vavg 3 (Refs. 9, 10].
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FIG. 22. "SHORT-DURATION" SIGNAL (CASE I) PERFORMANCE: COMPARISON OF
ERROR CURVES ACHILVABLE BY OPTIMAL MATCHED FILTER RECEIVER IN PRESENCE
OF VARIOUS ADDITIVE NOISES.

[Note: Vertical scale is iog logPe.

LEGEND:

Modified generalized "t" noise model

e=2

=103 7w

Generalized 'It" noise model

I
e=3

. Gaussian noise model

Same average power as typically

observed when the generalized

"t" model with parameters 0 = 3

and 7w is appropriate.
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6. Modified Generalized "t" Noise

Turning attention to modified generalized "t" noise and taking

0 = 2, since this is the simplest case of interest, it is found by set-

ting N = 1 in p y(y) given by Eq. (3.35) that

py(x) - 1/ 2 2 . 1 2)]p2x 2 e~lcp F- (x2 + 7w] -co < x <

wm 0=2 (2t)1/2 x + 72w 20'

(3.47)

where 7 =1/ and

K -- exp ] da . (3.48)
f aa

Thus, evaluating Eq. (3.41) in this case,

S= 1/2 K exp Z x2 + Yw2 d. (3.49)

2 7_ +2

Pe=2 1 ,x +i 7w 2J3

Now, this integral cannot be evaluated in closed form as it stands; but

it can be approximated in two subcases of interest, corresponding to high

and low SNR:

a. High SNR; i.e., 11!m ; >> yw

In this case is found the approximate result

21CO /2 Kp1 7 yI 2 dy
Pe 2  J wy [ 202

2 2ee W W

K- 2I , -2 x - 98 -2o erfc (3.50)
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In order to complete this evaluation, K must be determined from Eq.

(3.48), which gives

S= ( 3 . 5 1 )2(2v) /erfc(•

However, this expression can be simplified by using the fact that >> 7w

is satisfied in the application of the modified generalized "t" modelt
to atmospheric noise. Now

Yw

lim K 1

T -0 0 (21)1/2 - 2()

A[ Yw 12(3.52)
('2,t)1/ "

Therefore, substituting this result into Eq. (3.50),

p fw 2 I 1/2Pe! I ým 1 exp j! er -- -' ,-- LLtn)(.3
-- 0= "8V 2 f

tThis follows from the results of Section IICI. Fron their definitions

m1/2Lw = _Y_- I
13 ry C. 13 ' - Cr

since m = 1 here. However, in the application of the modified general-
ized 'It" model in Fig. 10 it is seen that aa = 5 X 102 is required to

fit the measured data. Thus, for this case, which is typical of results

at vlf and lf,

7w - 3
-= 2X O1 << j
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Jn order more easily to compare the form of this high SNR result with

that given by Eq. (3.45) for the generalized "t" model, it is illumi-

nating to consider two further s-hcAses as follows:

i << 1:

In this case there resuits

2 .w (3 .54 )

9=2 -

(2)-- >> 1:

In this case there results

2 1 exp[ 112  1 (2)/4P7w

e42 • lim 32 ] J-im - erfc2 -- w-. (3.55)

ew 9--2 it11 8 wM
tim 00imw

b. Low SNR; i.e., 1m w<<

Rewriting P given by Eq. (3.49) in the form

e=2

1w2
1/2a Y

S,) / K 1 exp __ (y 2  + 1 dy (3-5)
e=2 2 7w y + 1 2ý 2

0

it is seen, using the fact yw/ << 1 in conjunction with the low SNR

condition "mwinI/.w << 1, that

2 7w

- 1 1 dy (3.57)e@=2 2 0 •
0L 0y + 1
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Thus, for the low SNR case:

e=2

II I

lirn erfc 2 1/2 :). (3.58)

'=t • 0YWI

7. Discussion of Probability-of-Error Results

Before proceeding to the discussion of the P results calcuiated
e

I above, it is recalled that these Case I results apply to the situation

where the additive atmospheric noise is given by y(t) = a n(t), 0 < t < T;

i.e., they apply when the transmitted signal duration T is short enough

that a(t) = a can be assumed constant for the duration of the signal.
With this in mind, the P results for Case I lead to the following con-

e
clusions:

a. Generalized "t" Noise

The description of the lightning discharge presented in Section

IIA indicates that the P results for Case I apply at vlf when the dura-e
tion of the transmitted signal is less than about 0.1 msec. In 3ddition,

inspection of the plotted results in Chapter II indicates that these results

apply nractically to any situation at vlf or if where the duration of the

transmitted signal is less than or equal to the inverse of the receiver

bandwidth for bandwidths greater than a few hundred cycles per second.

tThis follows as an engineering approximation from the fact that the rise

time of a signal passed through a bandpass filter of bandwidth 2B is
about 1/2B seconds; i.e., 2TB < 1 in these situations. This is consis-
tent with the short-duration signal idea, since receiver bandwidth i; re-
stricted In practice at both vlf and If because of the lack of spectrum
availability (see Section IIA).
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To the author's knowledge, there are no vlf communication systems In oper-

ation with either of these characteristics. There is good reason for this

(in addition to the difficulty of obtaining transmitting antenna bandwidths

of this size at vif), as indicated by theý P e results. In particular,

the high SNP, result given by Eq. (3.45) indicates that, even when using

the optimal receiver, '.N, ..wrovemcnt in P with increased signal energy
e

at low error rates is .- v~ small compared to the improvement achieved in

the case of additive gaussiari noise (see Fig, 22). This indicates that

short-duration signals are not an optimal choice for use in the presence

of vlf or If atmospheric noise if it is desired to achieve economically a

low probability of error; this is physically reasonable because of the dis-

tinctly impulsive nature of atm'. pheric noise.

b. Modified Generalized 'It" Noise

Inspection of the plotted results in Chapter II indicates that

the P eresults for Case I= apply practically in two situations: those

situations at mf or hf in which the duration of the transmitted signal is

less than or equal to the inverse of the receiver bandwidth, and those

situations at vlf or lf in which the duration of the transmitted signal is

less than or equal to the inverse of the receiver bandwidth for bandwidths

less than a few hundred cycles per second. Once again, the most interesting

results are those pertaining to the high SNR case, given by Eqs. (3.54) and

(3.55). These results are demonstrated in Fig. 22, where it is seen *that

the improvement in P wwith increasing 11m 1 is greatly enhanced when the

inequality 11m V 1/1 >> I is satisfied.

In regard to th-~ practical applicabf'lity of these results for

the modified generalized 't" model, the plotted data in Chapter 17 in(=-

cate that, for a fixed receive.- bandwidth, the value of a/7' decreav.es

as the opc -ating frequency is increas;ed. Thus the use ef short-duration

signals i!; more attractive at hf that, at lower operating frequ sis

C. CASE Il. LONG-DURATION SIGNALS; THE GENERAL CASE

The probability-of-error results obtained in Case I indicate that short-

duration signals are not an optimal choice in the presence of additive at-

mospheric noise. Thts follows from the fact that, particularly at vlf and
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If where the generalized "t" model is appropriate, the P resultinge

from the use of short-duration signals behaves in a much less desirable

fashion than would the Pe if the additive noise were gaussian. Thus

it is desirable to investigate the use of long-duration signals, where
"long duration" means that the Case I assumption that a(t) = a is con-

:tant for the duration of the signal mus" now be relaxed. This consider-

ation of long-duration signals is well motivated physically, since we

would like to be able to disregard the received signal when it i largely

tie result of a pulse of noise, and base our decision on the relatively

noise free signal received between tOese noise pulses. This, in f.it, is

the procedure typically employed in practice, where long-duration signals

ar- used in conjunction with nonlinear receiving techniaues,

In this case, the decision problem at the receiver becomes that of

cloosing between the two a priori equally probable hypotheses

h ():X(t) = m(t) + a(t) n(t)} 0T3
, 0 < t < T . (3.59)

h(:.x(t) = a(t) n(t)

The desired vector formulation in this cz-se is developed as follows: De-

fining q i(t), i=l, ... , N, as -1own in Fig. 16, and assuming the additive

noise y(t) = a(t) n(t) to have a continuous covariance function, it is

possible to write (Ref. 41]

N

y(t)= l.i.m. Y(t (Ati)l/2 q(t), 0 < t < T . (3.60)

i=l

Since it is also possible to write

N

rn(t) =l.i.m. q /2 , 0 < t < T (3.61)
N o0
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for all sq,':lre-integrable signals m(t), it is seen that the vector for-

mulation of the decision problem can be written as follows with respect

to the orthonormal basis functions qi(t), i = i, ... , N: (As in Case I,

N will be taken to infinity at the conclusion of the problem.)

h . x=M +

(3.62)

where, e.g., wt =Y 1 ' "" Y, with Y= y(t) (t /2

1. Calculation of the Likelihood Ratio

Now

w(xth(l) p (x -A ) , (3.63)

where the probability density function p (y) of the additive-noise vector

SIis specified as follows: Recalling that a(t) is now allowed to vary

"slowly" on thle interval rO,T) one can write

i = Y(t1) (Ati/2 a(ti) n(ti1 (Ati/2

(3.64)
=ai n i1, ... , N,

A ~1/2A
where ni n(ti) (At' and ai = a(ti). (It is noted that this is

consistent with the interpretation in Chapter II of a(t) as a dimension-

less weighting factor.) Since, as in Case T, n(t) is a zero-mean gaus-

sian process with covariance function Rn(t~s), the distribution pn(n)

of the vector n. =-ni, ... , nN is given by

,n) _I 2 expl- n n ' (3.65)
- (2 6-)5N/2 IR0 - 2 -t
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where

R = {Rn(tit t.) (At i Atj)i/2}. (3.66)

In order to complete the specification of the problem, the distribution

of the vector a of coefficients must be specified. However, recalling

that a(t) l__ I/b(t), the distribution p b(b) of the vector b =

bit ... b can be equivalently specified. Now, the first-order statis-

tics of b(t) are given by the two-sided chi distribution x 2(ma). How-

ever, in the special case 8 = 2 (m = 1) this reduces to the normal
2distribution N(O,a ), so that b(t) is a gaussian process in this spe-

cial case. Thus, initially considering the case e = 2,

Pbb xF 1bt , (3.67)

b - ( 2 1)N1/2 IRI/2 L 2 t exp

where

in which it is noted that R b(tip t ) = cr in the notation previously
used. Now

00

p = f py(V) Pb(b) db , (3.69)

where setting yi =ni/bi, it =, . .. , N, gives

P-(yIb) = i Pn (ni = b. Yi' i = i , .. ., N)

(t) N/2 1  - SEL-6/-052n bi
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in which by = b1 Yl, "'p bN YN' Thus, substituting into Eq. (3.69),

(Y. )N 1i/2 1/2i - dbl .... f dbN(. IbilI
Y_ (2 r) IR nI IRb IiI

1ex[ R bi Yj + bt Rb 1 b)] . (3.71)

In order to evaluate this N-fold integral, it seems reasonable to diag-

onalize simultaneously the two quadratic forms 'n the exponent. This can

be done (Ref. 43), but requires the use of linea. transformations depen-

dent in an unknown way on the vector y. As a renult, it does not appear

feasible to pursue this general formulation without specification of one

or the other (or both) of R (t,s) and Rb(t,s). Actually, it is easily

shown that both Rn(t,s) and Rb (t,s) must be specified if p (Y) is

to be evaluated as a known function of y; hence we will proceed to con-

sider special cases of interest as follows:

The special case that first comes to mind is a "white" noise case:

Rn(t,s) = N12 5(t-s) I (3.72a)Rb(t,s) = B0 /2 b(t-s) , (3.72b)

but this case will not be further considered here since it is not appli-

cable to the communication channels of interest. This follows from the

results of Chapter II, where it is shown that the generalized "t" model

is in practice an appropricte model for received atmospheric noise when

n(t) is a narrowband random process and a(t) = I/b(t) is a slowly-

varying random process. While these results discourage the "whiteness"

assumption, they do suggest alternate ways of specifying the higher-order

statistics of a(t) and n(t). One such specification which is of

Note that b1 y is the transpose of the column vector b i Y.1
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particular interest, since it provides a formulation retaining much of

the simplicity of the white noise case, is considered below as Case Iha.

D. CASE lla: COMPLEX ENVELOPE REPRESENTATION

Recalling from the discussion in Section lIB thaL in practice atten-

tion can be restricltA to the situation in which the receiver bandwidth

is substantially less than the band center frequency, the Case II hypothe-

ses can be further described by noting that x(t), m(t), and y(t) = a(t)

n(t) can be considered to be narrowband functions of time. Thus it fol-

lows that the Case II decision problem can be written directly in terms

of the slowly varying complex envelopes (Ref. 40] of x(t), m(t), and

y(t). In terms of these complex envelopes, the decision problem becomes

that of choosing between the hypotheses

h(1): x(t) = p(t) + T(t)
•--•i , 0 <_ t _< T (3.73)

h x(t) =,(t)

where, e.g.,

x(t) = x (t) cos 21f 0 t - xs(t) sin 2,Tfot

= Re X(t) e i 0 (3./4)

and x(t) X (t) + ix s(t) is the slowly varying complex envelope of

x(t). Proceeding as in the Case II developmeat, one can write

N

X(t) =l.i.m. x(t (At1/2 q (t), 0 < t < T . (3.75)
N coi=
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Furthermore, it is proposed that n practically useful model results from

assuming that the slowly varying complex envelope is given by

N

x(t) • x(ti) (Ati)l/2 qi(t) , 0_< t < T , (3.76)

i=l

where the value of N required will be discussed further below and is

dependent on the bandwidth in which the signal of duration T is observed.

Proceeding again as in Case II, the vector formulation of this problem

with respect to the orthonormal basis functions q i(t), i = I, ... , N,

can be written as

h(l) X +

(3.77)

= .~ ~ wihx =• (t~/

where, e.g., ' with q TI(t (Ati )1/2

1. Calculation of the Likelihood Ratio for Case Ha

Now

w(xlh(l)) = p (x - j) , (3.78)

where the probability density function p2 (a) of the complex additive

noise vector is specified as follows: Recalling that a(t) is itself a

slowly varying random process, one can write

I= I(ti (t )l/2 = a(t ) v(t) (Ati)/2 a v (3.79)

whreaiA a~i n iA(til2
where a = a ~t and v = V(t i) (A in which v(t) is the com-

plex envelope of n(t). Since v(t) is the complex envelope of a gaus-

sian process, it follows that it is a complex gaussian process. Thus the

probability density function p.(K) of the vector vt =ýI ... VNc

be written (assuming the power spectral density of the narrLband process
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n(t) to be symmetric about the band center frequency) (Refs. 40, 41] in

the form:

P N exp j, (3.80)

N --

where

= E[v v _I , (3.81)

V t

with

E. v t.) 11/2

E[i V. ] V *(t () (At At) (3.82)

Motivated by the difficulties encountered in the Case II calculations, it

is proposed that an interesting case for initial consideration is given

by

E[v(ti ) V*(tj = N0 5ij' i,j = l, ..... N. (3.83)

Substituting this specification into Eq. (3.80),

Pj'(") - N_)ox expL -N~ tv (3.84)

N Nex N AtLt-
- ,(NnAt 0J

where t'e fact that At. = At for all i = 1, ... , N has been used.

It now remains to specify the probabilily density function of the

/ector a = a , ... , a of coefficients. Following Case II above, the

equivalent specification of Pb(b) will again be made where e =2 is

assumed so that b(t) is a gaussian process. Thus Pb (b) is given by

Eq. (3.67). However, again motivated by the Case II results, it is pro-

posed that a case of interest follows from the assumption

B0

E(b(t ) b(t) -I = 0 ij = i ... , N . (3.85)
i' -2 ij
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Although the representation for the received signal given by Eq. (3.76)

is particularly convenient in the detection problem being considered here,

it remains to verify the validity of this representation In the light of

tLe asbumptioii on ¢ and Rb maue in Eqs. (3., ) and (3.85), respec-

tively. In order to do this, it will be recalled that the received signal

x(t) has one of the forms

h) x(t) = m(t) + y(t)

h (2): X(t) = y(t) (

where y(t) = fl/b(t)] n(t). Then the following observations can be made:

1. As far as the observed noise y(t) is concerned, the representation

proposed by Eq. (3.76) with OV and Rb given by Eqs. (3.83) and
(3.85) is identical in form to the representation considered in the
case of independent samples in Section IIC3. It follows, from the
results shown there, that this representation is a repsonable first
approximation to the complex envelope r(t) when N = 2TB, where
2B is the rf bandwidth in which the received signal of duration T
is obqerved.

2. As far as the known signal m(t) is concerned, it will be found
that in practice this signal of duration T has a bandwidth signifi-
cantly less than the receiver bandwidth 2B. Thus the representation
proposed by Eq. (3.76) with N : 2TB gives a good approximation to

the complex envelope L(t).

Therefore, combining observations (1) and (2), it is concluded that the

representation given by Eq. (3.76) with N = 2TB is a repsonable repre-

sentation for the received signals of interest in Case Ha when D andi V

R are given by Eqs. (3.83) and (3.85). Now, substituting Eq. (3.85)
b

into Eq. (3.67),

P = ( N)21B/2 exp E b # t 1 (3.86)

Now 

i 
2 

v V
P - o i (b, i 1 1, N) (3.87)
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where use has been made of the fact that in terms of real variables

PVIVi): P n (nic p, S P (nic pni(nis (3.8,/

ic,nis ic " ic ic ns is i

so that the Jacobian of the 'ransformation is

J(ib . (3.89)

Therefore,

(xpiN 2)

-i 1 N N N N At b b ie , (3.90)

so that

3N/2 (No~t)N N/2 fdb, ... , dbN b

N (6 it +4b]

I ~i~l 312ya. +T2 7) (\Bo/ t)il _N6t 3/

I,
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Now, using Eq. (3.78) and the similar expressioi, for h (2), the likeli-

hood ratio can be written directly as follows:

w lh) N LiI2 + B 0

L(X) -- = 1 [372 (3.92)
w(xlh ) il - 2 + oj

Thus the Bayes rule in this case is given by:

Choose h(l1 iff

N f 2  +N01At1 N 2x NLfrtl
xi1 1 -- iI2 + B i (3.93)i--1 L --oJ -i~l L - l Oj

However, this is equivalent to the rule

Choose h (1) iff

• nxti2 + N N x(t )2 NO
i-1 - n1 -in(t.11(t + ] . (3.94)

Therefore, noting that it has been assumed

x(t) = x(t V t E Ati, (3.95a)

= ±(ti) V t E Ati , (3.95b)

it follows that, in terms of the time functions available to the receiver,

the Bayes rule is given by

Choose h(l) iff

f Ix(t)n 2 dt > f In x(t) V(t)l2 + dt. (3.96)

0 0
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Noting that x(t)! is the v,,elope of x(t), and x(t)-,.(,)! is

the envelope of x(t) - m(t), It is scen that one receiver structure

which implements this MtVe is that shown in Fig. 23.

A

,ENVELOPE FrSQuýARELOT
DETECTOR LAW AMPLIFIER

x t _ýBO A

M(t) DK~ ETVECTORELG LAW AMPLIFIER

BITA THRESHOLD
. SNC• A • OGIC DECISION

A

FIG. 23. BLOCK DIAGRAM OF OPTIMAL LOOARITHMIC-CORRELATOR RECEIVER.

2. Discussion of Optimal Receiver &ule (Case Ila,

In this casc, which is proposed as perhaps the implest formulatior.

of' the long-duratin signal problem of practical interest, several comments

are warranted. First, it is interesting to compare the receiver rule given

by Eq. (3.96), and its implementati -r shown in Fig. 23, with intuitive no-

tions concerning receiver operation in the presence of additive atmospheric

noise. It is seen from Eq. (3.96) that this nonlinear receiver, which will

be called here the "logaritlhnic-correlator" recztiver, does indeed agree

with intuition, since it suppr'ýsses consideration of the received signal

at Lhose times when the quantities IX(t)I2 and Ix(t) - i(t)I2 are both

large, i.e., those times when the received signal is predominantly due to

a pulse of noisc, ard bases its decision strongly on the received signal

at those times wher one of the quantities Ix(t)/ 2  or Ix(t) - 2(t)2 is
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small. Thus, heuristically, the log-correlator receiver ignores the re-

ceived signal when it is largely the result of a pulse of noise and b'ises

its decision on the relatively quiet periods bet•een the occurrence of

these noise pulses. Furthermore, it is noted that the receiver becomes

increasingly nonlinear as the average SNI increases, which (again in agree-

ment with intuition) means that the receiver has increasing confidence in

the received signal at those times when either Ix(t) 2 or Ix(t) - (t)j2

is small as the average SNR increases.

Although the calculation of the receiver rule Eq. (3.96) was

carried out for the special case e = 2, it is seen that the Case Ha

calculations could have equally easily been carried out without specifi-

cation of 0, by making the assumption that the received noise is statis-

tically independent at the instants ti and t for all i,j = 1, ... , N.

When the calculation of the likelihood ratio is carried out with this as-

sumption, it is seen that the decision rule becomes:

Choose h(i) iff

2 N1 0 r,2 N0]

J n 11x(t)0 2 + mIII.F dt >J •nL-(L) -int)I + B B dt (3.97)

0 0

where it is recalled that e = m + 1 > 1. Thus it is seen that the form

of the optimal decision ruxe is not changed as m is varied, the only

effect on the realization shown in Fig. 23 being a change of the bias on

the logarithmic amplifier. It is noted that such a modification is rea-

sonable, since the average noise power is proportional to m(N o /3 ), with

m = I leading to Eq. (3.96).

It is clear that the realization of the optimal receiver rule given

in Fig. 23 is net the only realization possible. It is desirable to find

realizations that are simpler in the sense that the number of zero-memory

nonlinear operations required is reduced. Specialization to the high SNR

case does not appear to lead to any such simplifications, but specializa-

iion to the low SNR case does as follows:
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L~ow SNR case, i.e.,

2 << 2

S~where

N•2 0 N
i:m c( At

In this case it is easily shown that the optimal decision rule is

given approximately by

Choose h(1) iff

Re >fIgodJdt }t (3.98)
0 [,(t)12 + 00 [,X(t)12 +

* Thus it is seen that the low SNR assumption gives an interesting

rule which is in fact the correlator receiver modified by the weighting

of each instantaneous contribution by a factor dependent on the value of

j~ the envelope of the received signal at that instant. However, closer

examination of the derivation of Eq. (3.98) shows that the low SNR assump-

tion cnn actually be relaxed, since the condition required to produce
2 2Eq. (3.98) is precisely that I V i = 1, ... , N. Now, this con-

dition does not necessarily imply the low SNR case, and in fact may be

compatible with the high SNR case, i.e. with Hila 2 >> E2; so that the re-

ceiver rule given by Eq. (3.98) may be of practical interest. This possi-

bility will be examined further in Section E and is of importance because

Eq. (3.98) has a realization similar to the matched-filter realization of

tihe correlator-receiver rule.

Finally, it is interesting to apply the Case [Ia assumptions to

the situation where the additive noise is given by the modified generalized

"t" model, rather than by the generalized "t" model considered above.

The calculation of the Bayes rule appropriate to this situation can be

"* carried out in the same manner as that demonstrated above for additive
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generalized "t" noise, The decision rule for the special case e = 3

is found to be:

(1)Choose h' iff
i2

T + + 2 "0]3-0 2

o+ -I Re[)�(t()2+ 0( + ] +o

(_(2t+N. 2  +2 -iC; X1L~J

$I + , +-_ (t. (3.99)

I This result is interesting, since it allows a quantitative check as to

whether or not the log-correlator receiver is appropriate in a given situa-

tion. It 4 s clear that the rule given by Eq. (3.99) reduces to the log-
S2

correlator receiver rule as • -. ; and inspection of the experimental

data presented in Section IIC1 shows that, in fact, the log-correlator

receiver is the receiver of practical interest at vlf and If frequencies

of operation. On the other hand, no such statement can be made when the
operating frequency is increased to h2. In this case, Eq. (+.99) must be

examined for each particular situation. This follows from the fact noted

in Section IICl that the nature of the received noise at hf is strongly af function of local thunderstorm activity.

3. Calculation of the Probability of Error (Case Iha)

SThe receiver that minimizes the probability of error in Case Ifa
op the one that implements the rule given by Eq. (3.93). Thus the prob-

ability of error resulting from the use of the optimal receiver is given

S~by
2p
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Pe Pr{L(x)> 1 h(2) is true}

[N [lxi2 0t 1 (2)1
= o J- N1h is true

= I Ix - Pil2 + m •0At

S r 12 No

However, (3.100) is equivalent to the more manageable formulation

B

N I l + m 0 At A
Pe= r~~lZ0N > 0 =Pr4 In zi >0 ,

i=1  l - 2 + m F0 A(3.=0

I0
where

N

2 N0

PrJ2+ +m At j
"(3.1021)

2 N0
-ii + m g- A t

Since the z are statistically independent, it follows that the central

limit theorem can be invoked to obtain a va-id estimate of the probability

of error at high values of Pe , where the range of validity of this esti-

mate is dependent upon the size of N [Ref. .14. Therefore, the calcu-

lations of initial interest are those of E[An z J and var(An z ).

However, the difficulties involved in making even these calculations are
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clear, so that it is reasonable to consider bounds on the probability of

error obtainable in closed form. One such bound of interest, since it

tightens with increasing P (i.e., tightens as the SNR decreases), is

given as follows: Noting that

in z >1- (3.103)
zi

with equality iff z= 1, it follows that

p Prf (1 > 0} (3.104)

Invoking the central limit theorem as discussed above in order to evaluate

this lower bound on Pe' it is found that

0 00 = c s 2q ic lic + 211is is - itii2

• co .co21t 2 2 •2,(m+4)/2 'SJic + +
-00 -.00 [q i

(3.105)

where use has been made of

PC =T nm 1 ic is3.i106)
l+ 2 2 (m+2)/2 (q. ic, is(3lO)SP'T=,12 + 2 ] 1C P ic ls

in which rli= qic + i1is' ti = Pic + l~is' and •2 m N0 /B0 At. 0it

is noted that Eq. (3.106) is obtained by setting N = 1 in p (a), which

is given by Eq. (3.91) for the special case m = 1.] Taking now the spe-

cial case 0 = 3, since it is the case of most interest,

Co co 2 2
E[ z1d dri -ii'

[ j it f~ dii f is[11c 2 s+2]3

(3.107)
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Thus

rN N 2]c • (3.108)

1z Li1 2i J

Similarly,

(3.109)

so that

va~ (3.110)

Therefore, since the z are statistically independent,

Now, knowing that

Ii

becomes norm&lly distributed as N -• o, an estimate of the lower bound

given by Eq. (3.104) can be obtained as follows:

______• F .-.)>
I1/2 dx , (34]

- 119 - SEL-66-052

12 

....

1Z,-~



where ýL is given by rIq. (3.108) and 0*z is given by Eq. (3.111). Thus

2

ee >erc .12(k3.113)
e=( 

N [ 

1
12

Since this bound was obt:Ined by applying the central limit theorem to the

sum of N independent random variables, it is well known that the result-
ing error is small if attention is restricted to those situations where P

1 2 e
is sufficiently large--i.e., greater than about CN1/2 , where C is a
proportionality constant [Rei. 44). Thus for the finite N of interest,

there is negligible error in the result given by Eq. (3.113) when thi- re-

j suit is specialized to the low SNR ca3e; i.e., there is negligible errorII~ whenIi

N
S 1 ,.i 2 2

i=l

and there is obtained the asymptotic result

lim P > erf[c T J] (3.114)

I~i.'IIe=3-- "p0

where use has been made of the fact that

N 1/2
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However, in addition to the fact that the accuracy of the result obtained

using the central limit theorem improves as I~I•"0 for fixed N, it

is also true that the lower bound on in zi used to obt,.ain Eq. (3.113) !

tightens as [•]•-0, so that, asymptotically, we have the low SNR
result

III

It is interesting to note that, as expected, this low SNR result is depen-

dent only upon a ratio of signal energy to noise energy and is not depen-

dent on signal shape.

Now, if thte low SNR condition 1n se << t isot saied, (3.

(3.115) does not hold and attention must be returned to the bound given

by Eq. (3.113). However, as mentioned above, Eq. (3.113) is not a useful

4Pbound on the probability of error at low values of P with the finitee
N of interest here. Therefore, it is necessary to find a better estimate

of P upfor the high SNR, low situation. One method for accomplishing

this is to apply the technique known as distribution "tilting" [Ref. 45].

Noting that the results found for low P using the central limit theorem
e

are poor because of the fact that it is the tail of the probability dis-

tributed that must be evaluated, the tilting procedure will be applied

here with the purpose of moving the mean of the tilted distribution to the

point at which the cumulative probability is to be calculated. Having

accomplished this, the desired cumulative probability can be determined
accurately using the central limit theorem; and, in fact, an exponentially

correct bound on this probability is given by the appropriate Chernoff

bound (Ref. 411. Now, Eq. (3.101) states that

P P1n -> 0 (3,101)
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where

S"i - ~ •2 (.l6 IT- il +t
(3.102)

Also, there is the Chernoff bound given by

SPr in ,> 0 < exp[LN(s) - s,'(s)] .(3.116)
i~l S=So

where

and

N
g(S= g(s) , (3.118)

j3 in which the g (s), i = 1, ... , N, are the moment-generating functions

of the independent random variables In z,, i = 1, ... , N, respectively.

Furthermore, the point s0 at which the right hand side of Eq. (3.116)

is to be evaluated specifies the amount of tilt employed. It is given

here by the value of s > 0 which satisfies pu(s) = 0, where

N ds N(S) . (3.119)

Thus for the case of interest here, there is obtained the bound

SPr, In zi > oý < 1 g(S) I•(3.120)
i• =

j. SEL-66-052 - 122 -

-- ----



1,,
Now, although the Chernoff bound given by Eq. (3.120) is an upper bound,

it can be shown (Ref. 41] through application of the Berry-Esseen theorem

[Ref. 44] that this bound is "exponentially correct", i.e., that

Pr n I> II ? 0 f(N-/2) gi(s) (3.121
i=1 i=l s0s0

/
where f(N-/2) is a polynomial in N-/2. Therefore

N
e •f(N-1/2) i gi(s) (3.122:I=I s=s0

where f(N-/2) is a polynomial in N-1/2, and s0 > 0 is that value

of s satisfying p'(s) = 0. Thus the calculation of P reduces to
e

the determination of gi(s) , i = 1, ... , N. This determination is
S=S0

accomplished as follows:

g (s) = Kexp(s In z~) E[z5 ]
i i

2_f_____ f[dn2s+

g~~ (2) 9 )]

2d~ _.w [_00 - 1,2 + g 2j

(3.123)

Now, in order to simplify the calculations the following assumptions will

be made:

Assumption 1. Let pis 0 Vi = 1, ... , N, so that the known signal

m(t) takes the form m(t) = c(t) cos wot. This asstaption is not
essential but greatly simplifies the resultant integrals.

Assumption 2. Take e = 3 (m = 2), since this case is easily evaluated

and in fact is the case of most interest.
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With these assumpttons,

2 2

g f dx fdy f + s (3.124)
s=S 0 - [(xc )2 2 2 0

i +y +

where s > 0 must satisfy the equation

dds g(s)i = 0 . (3.125)
i- S=So

1=1 0

That is, so > 0 must be the solution of

fd0 fY 2X 2 - 2 2 2dX dy -x + + n + 0+g

N 2 )2 2 s2 (n - 2 2
N f f (x - + y + Eic y + ]

S0
'00 2 2 2 s-2 -

"J dx dy Ex + y I s

--C L0 - i.' + y + t I

(3.126)

Conveniently, it can be shown (see Appendix B) that Eq. (3.126) is in

fact uniquely satisfied by s = 1. Thus, plugging this fortunate result

into Eq. (3.124):

2 
1

9 (S) 1 J dx dy 2 2 2 2

s=1 it f f x2 + y2 + t j[(x - ) 2 + y + tsl-00 -00 '" ic

(3.127)

Now, the integration with respect to x can easily be done as a contour

integral (see Appendix A), and it is found that
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00

2 f _ _ _ _ _ _

hi(S)I = jdy 1/2 1
-s=l 02 (4y 2 2+-oo [2 + + 42 + ic

•O00

2 f dy 1 2 (3.128)

P 1 ic~ 2 0 1 Y +ic y2
_+ t• 2 y2 12 4 1

"4 t ic •2

This integral can be evaluated using Erdelyi (Ref. 46], item 6.2(35),

which gives

9 S) F,(,1; .; 2 2t 2
g (s /I 2 3 1 - 4 2 1 2 4 2 (3 .129 ))I=1 2F 2 2; P; + 2 2

s~l gic + 4• ic+42

where 2F1 (a, b; c; x) is Gauss' hypergeometric function. Finally,

substituting Eq. (3.129) into Eq. (3.122),

P. f (N12 n F,(, -1 2 3130e=3 -1/ = P.2+ 4g 2 1  '; 2 2 2
iic

where it is recalled that N = 2TB.

At this point it should be mentioned that the estimate of Pe

given by Eq. (3.130) can perhaps be further refined by approximating the

f(N-I/2) factor. Ibis possibility will not be pursued at this time, how-

ever, since Eq. (3.130) gives the essential behavior, particularly at low

values of P . Rather, we will consider optimization of the exponentiallye

correct estimate given by Eq. (3.130) with respect to parameters under the

control of the design engineer, where it is noted that this estim.'e is

dependent on both signal shape and receiver bandwidth in addition to sig-

nal energy and noise energy. In order to proceed with this optimization,
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it is necessary to set down the pertinent constraints on the transmitted

signal and on the receiver bandwidth. These can be specified as follows:

1. The only constraint to be placed on the transmitted signal in the

interval [O,TJ is an average-power constraint, although it is
noted that this will lead to the same result as if a peak-power
constraint were also imposed.

2. In order to specify the constraint on the receiver bandwidth, it
is noted that the dependence of Eq. (3.130) on the receiver band-

width enters through N = 2TB. This dependence follows, of course,
from the signal representation used in this case (Case IIa), which
assumes that the atmospheric noise is observed in an rf bandwidth
2B. This assumption stems from the discussion of limited spectrumi availability in Section IIB, and means that the log-correlator re-
ceiver shown in Fig. 23 is in practice preceded by a bandpass filtei

of bandwidth 2B. Therefore, it follows that the pertinent con-
straint on the receiver bandwidth is that it be small enough to

suppress strong adjacent channel signals, and yet large enough to

pass the transmitted signal.

Proceeding now with the optimization problem, it is first of all noted

that the optimal signal shape must be achieved when the transmitted signal

energy is distributed uniformly in a portion, say T, : T, of the avail-

able signaling interval of length T. This follows directly from the

Case iIa representation of the complex envelope of the received signal in

terms of the pulse basis functions qi(t), i = 1, ... , N. With this re-

sult in mind, it is convenient to rewrite Eq. (3.130) as

2TkB /B- YBB B

Pee3 f(1/v2• ) TI nB 2 F 1  , .; .; 1 i , (3.131)

where

2
~2 2(t)

Qi icB - (3.132)

is the signal power received under h in the interval Ati, and

Y Y0 (6 g23
f - 3.133)
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is proportional to the average noise energy received in each intcrval of

length it; so that

No

2 N0
Y0 B= 22  4 - (3.134)

is proportional to the average noise power received in the bandwidth 2B.

These identifications are seen to be consistent with the assumption thilt

in practice the atmospheric noise can be considered to be "white" prit.i

to filtering by the receiver.

It is next observed that, in the optimal situation,

Y B
0

ýi + Y0B

must be independent of the value of Tk < T, since both Qi and Bmin

are directly proportional to l/Tk when the constraints imposed above

are satisfied. Thus it follows directly that the optimal choice of Tk
is given-by Tk = T. Plugging this result into Eq. (3.131) and making

use of the fact discussed above that Q = Q i , ... , 2T kB is opti-

mal, there results

3 +YB 2' 2 F l(l ; 2; 1 YOB . (3.135)
e=3 0

Thus, as far as the signal shape is concerned, it is concluded that the

minimum value of P follows from distributing the signal energy uni-
eeformly in the signaling interval (0,T). Furthermore; as expected, P e

is minimized by making T as large as possible.

It now remains to choose the optimal receiver bandwidth 2B. It

is shown in Appendix C that, in fact, Bopt = 0. This result is disturbing,

of course, since the noise model from which it is derived has been demon-

I strated to be valid only for bandwidths up to a few thousand cycles per

second. However, examination of the value of P resulting from large B
e

- 127 -SEL-66-052



shows that the estimate given by Eq. (3.135) is of practical interest,

since there is found the result fsee Appendix C)

If B >> Q/Yo, then

2T /Y0
P f 1/,rTB) 0.51 0 .(3.136)

0=3

Furthermore, the practical usefulness of this result is dentonstrated by the

fact that the asymptote is approached quite rapidly with increasing re-

ceiver bandwidth, since, e.g., B = 3Q/YO gives

2TQ/Y0
030

P e f: (1,2B (0.56) (3.137)

e=3 Q

Examination of the error curve given by Eq. (3.137) (see Fig. 24) shows
-5

that error rates of the order of 10 can be achieved in practice using

receiver bandwidths of the order of a thousand cycles per second. Thus

it is concluded that Eq. (3.136) gives a valid estimate of the error per-

formance achievable in the presence of additive atmospheric noise. This

estimate is conveniently written as

lim Pe f3•(l/,/2-) exp[ l"5 ]Y , (3.138)

where E = QT is the signal energy under h(I) distributed uniformly

in the signaling interval. This P result is plotted vs SNR ine

Fig. 24, along with the error curve resulting from the use oe a matched-

filter receiver in the presence of additJve generalized "t" noise. In

addition, the error curve achieved by a noncoherent FSK system operating

at vlf is also presented using measured data obtained by Watt, et al

(Ref. 47].
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In Fig. 24, the parameter A = Vrms/Vavg is introduced and the

error curves plotted for 2 < A < 4 because of the fact, discussed in

detail in Chapter II, that -V is determined primarily by the tail of* rms

the probability distribution, whose observation is made difficult by the

large dynamic range exhibited by atmospheric noise. Thus, noting that

the noise envelope distributed according to the generalized "t" model

actually has a divergent second moment for e < 3, the parameter

2 < A < 4 is introduced to show the variation in the error curve due to

the range of values of A actually observed in practice.t

4. Discussion of Probability-of-Error Results (Case IIa)

Before proceeding to the discussion of the results calculated

above it is recalled that these Case II results apply to long-duration

signpls, where long duration means that the slowly varying modulating

process a(t) is allowed to vary on the signaling interval. Furthermore,

the Case Ha results apply specifically to the Case II situation where

the complex envelope of the received signal can be described by Eq. (3.76)

in terms of N = 2TB statistically independent samples. It is proposed

that this is the simplest representation of Case II signals of practical

interest. It is seen that it essentially includes the Case I signals as

a special case. With this in mind, inspection of the error curves plotted

in Fig. 24 shows that the performance predicted for the log-correlator

receiver in the presence of additive atmospheric noise is significantly

better than either that predicted for the matched-filter receiver or that

actually achieved by the FSK system. Although the error curves are fairly

self explanatory, several comments concerning their derivation are war-

ranted:

*Note that the square of the nns carrier-to-noise ratio plotted on the

abscissa in Fig. 24 is related by a proportionality constant to the
signal-to-noise energy ratio E/Yo. This constant is proportional to
the ratio of signal bandwidth to receiver bandwidth. For the case in
Fig. 24 (using A = 3) it is about 5 X l0-3, although this value may
be too small by a factor 1/2. This error would result in the performance
of both the matched-filter receiver and the log-correlator receiver
being 3 db worse than that shown in Fig. 24. This cannot be resolved
due to the fact that Erms as given by Watt, et al in their Fig. 18 does
not appear to be consistent with the scale on the abscissa.
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FIG. 24. RECEIVER PERFORMANCE IN PRESENCE OF ADDITIVE ATMOSPHERIC NOISE:

COMPARISON OF PREDICTED ERROR CURVES WITH MEASURED PERFORMANCE OF AN
FSK SYSTEM OPERATING AT VLF.

Specification of transmitted signal:
Frequency shift keyed, ± 25 cps shift
60 WPM start-stop teletype

[Note: Vertical scale is logllog PoI or logllog Po(V)I
where Po(V) is the probability that the envelope
V exceeds the value specified by abscissa.]

LEGEND:

Measured data: Complement of the probability dis-
tribution function of the envelope of the received
vlf noise. (Watt, et al, [Ref. 47])

Receiver 6-db bandwidth = 120 cps

2
Measured data: Noncoherent receiver binary error
curve (derived by Watt, et al from measured character

error rates).
Receiver specifications:

120 cps IF bandwidth
70 cps base-bandwidth

Predicted matched-filter receiver error curves

(matched to mark frequency only).
Generalized 'It" noise model, e = 3

-4 Vrms/Vavg = (see page 129)

V /V =4
rms avg

Predicted log-correlator receiver error curves (coher-
ent detection of mark frequency, space frequency re-
moved)

Generalized "t" noise model, 0 = 3

V rms/V avg = 21

6 r V avg (see page 129)

131/V = 4SIi
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1. Loa-correlator receiver: The error curve presented for the log-

correlator receiver was obtained by using the 4ponentially correct
estimate given by Eq. (3.138) in conjunction with the low SNR result
given by Eq. (3.115). The low SNR result gives a good estimate of
the probability of error at high values of Pe. This portion of the
error curve was obtained by writing Eq. (3.115) in terms of the no-
tation introduced in Eq. (3.131). This gives the convenient form:

Irm = erfc (3.139)
E e=30_e=3 0
YO
0

Note, as mentioned earlier, that this low SNR, high P. result de-
pends only upon a ratio of signal energy to noise energy and is
independent of signal shape. In contrast to this, the estimate of

SPe given by Eq. (3.138), which is exponentially correct at all
values of P., was shown above to depend crucially on signal shape.
Now, 't is interesting to investigate the claim that the performance
predicted by Eq. (3.138) is, in fact, guaranteed only if the signal
energy is distributed uniformly in the signaling interval. Obser-
vation of the result that B = o is optimum is a.tually seen to
discount this claim when the only constraint on tlh? transmitted sig-
nal is an average power constraint, since a given Pe performance
can be obtained (when the signal energy is not uniformly distributed
in the signaling interval) merely by sufficiently increasing the
receiver bandwidth 2B. However, it must be remembered that chese
results are obtained using the Case Ila assumption that the samples
of the complex envelope of the received noise are statistically in-
dependent--an assumption that certainly breaks down for receiver
bandwidths larger than about 104 cps. Thus it is concluded that,
practically speaking, the optimal situation is indeed that where the
signal energy is uniforiily distributed in the signaling interval,
since this achieves a given level of performance with the smallest
receiver bandwidth.

2. Matched-filter receiver: The error curve presented for the matched-
filter receiver was obtained by noting that if attention is re-
stricted to a class of signals whose matched filter can be assumed
to be a narrowband filter of bandwidth l/T, then the calculation
of the probability of error reduces to a one-dimensionai calculation
(Ref. 373 similar to that required in Case I. It may be noted that
this class of signals contains many signals of interest, including
the FSK signal used in the system studied by Watt, et al.

Now, as in Case 1, the high SNR case is the most interesting and
gives the result

Y 0
l! =e (3.140)

8E
YO0
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Thus the improvement possible using the log-correlator receiver

instead of the matched-filter receiver in the presence of additive
generalized "t" noise is clear. This is demonstrated in Fig. 24

* where the entire erior curve is plotted.

3. Noncoherent FSK system: The error curve presented for the FSK sys-
tem was derived by Watt, et al from measured character error rates.
Once again, the advantage to be gained by using a log-correlator
receiver instead of the receiver actually employed is obvious. Al-
though all of the details of operation of this receiver are not
presented by Watt, it is one of a class of receivers often used in
practice and will be considered in more detail in Chapter IV.

The fact that the predicted performance of the log-correlator

receiver is much better than that predicted for the matched-filter receiver

indicates the necessity of using nonlinear' receiving techniques in the

presence of additive atmospheric noise. In fact, this is the procedure

used in practice Ji, conjunction with long-duration signals. However, the

relatively poor performance of the FSK system studied by Watt, et al

indicates that some of the receiving techniques used in practice are far

from optimum. For example, for the 60 wpm start-stop teletype system con-

Ssidered in Fir. 24, the plotted error curves indicate that an error rate

of 1 error per 104 bits can be achieved using an appropriate log-correlator

receiver with an SNR that is 20 to 30 db less than the SNR required by the

FSK system analyzed by Watt, et al. This means that there is an order-of-

magnitude difference in the transmitt'er power required by the two systems

in crder to reach this particular level of performance; and this, of course,

has strong economic overtones. As a result, it is of Interest to apply

the generalized "t" model in an attempt to predict the probability of

error resulting from the use of the various receiving techniques that have

been proposed for use in additive atmospheric noise. For example, the

"smear-desmear" technique mentioned earlier can be investigated using the

generalized "t" model. It appears from cursory examination chat this

technique leads to considerably poorer error performance than that calcu-

lated for the log-correlator receiver. This follows from the fact that

the performance predicted by Eq. (3.138) for the log-correltor receiver

is significantly superior to the performance of an optimal matched-filter

receiver in the presence of additive gaussian noise with the same average

noise power. Quantitatively, this superiority is equivalent to 12 to

15 db in input SNR; and the fact of this superiority is consistent with
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II

the notion that the additive-atmospheric-noise channel has a higher ca-

pacity than the additive-gaussian-noise channel having the same average

noise power.

This investigation of proposed receiving techniques will be pur-

sued further in Chapter IV, where proposed nonlinear receiving techniques

will be considered.

E. SUMMARY AND CONCLUSIONS

The work in this chapter has been concerned with the detection of

known signals in additive atmospheric noise. In particular, detailed

consideration has been given to the problem of deciding between the two

priori equiprobable hypotheses

h( x(t) = m(t) + y(t)
ýI 0 < t < T (3.2)

h(2): X(t) = y(t) (

with the smallest probability of error. The additive atmospheric noise

y(t) is represented in this work by the generalized "t" model developed

in Chapter II. Two cases are identified:

1. Case I: Short-duration signals. This case is characterized by the
fact that the slowly varying modulating process a(t) in the gen-
eralized 'It" model can be assumed constant for the duration of
the transmitted signal. The correlator receiver described by Eq.
(3.23) is found to be optimum in this case, and the probability of
error achieved by this receiver is calculated in Eq. (3.44). The
probability of error for high SNR is the result of most interest,
and is given by

2
7i Pe w (3.45)

E 0=3 ww
2Yw

2

where 7 w is proportional to the average received "whitened" noise
energy and Ew is the energy of the known signal m(t) at xhe out-
put of the whitening filter. The slow decrease with increasing sig-
nal energy of this Pe result, relative to the exponential decrease
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achieved in the presence of additive gaussian noise (see Fig. 22),
indicates that short-duration signals are not an optimal choice tn
the presence of atmospheric noise. This is, of course, physically
reasonable because of the distinctive impulsive nature of atmo-
spheric noise. This suggests the use of signals of long duration
relative to that of the typical noise pulse.

In addition to these short-duration signal results, the Case I as-
sumption was also applied to the situation (Case Im) where the
additive noise is described by the modified generalized "t" model.
The correlator receiver given by Eq. (3.23) continues to be optimum
in this case, but the probability of error is now given approximately

in the high SNR case by

Peel2= exp w erfc .(3.53)

This result reduces in form to that given by Eq. (3.45) above when
(E//2) << 1 is satisfied, which is the case of practical interest

at vlf and if frequencies of operation. On the other hand
(3.5L) predicts an exponential decrease in Pe with increas.. sig-
nal energy when (E>/• 2 ) 1 1 is satisfied; this condition may be

approached in practice at hf. Thus it is concluded that short-
duration signals are more attractive for use at hf than at lower
frequencies of operation. This is consistent with the fact that the
received noise loses its impulsive appearance as the frequency of
observation increases.

2. Case II: Long-duration signals, the general case. This case is
characterized by the fact that the slowly varying process a(t) is
now allowed to vary on the signaling interval. In particular,
Case Ha generalized "t" noise is considered in detail and is
specified to be that Case II noise whose complex envelope can be
described by Eq. (3.76) in terms of 2TB statistically independent
samples. This is proposed .s the simplest representation of Case II
signals of practical interest, and the optimal receiver in this case
is found to be a "logarithmic-correlator" receiver (see Fig. 23)
which implements the rule

Choose h(1'/ iff

T T

f PAn~x(t)j 2 + 7'2)dt > f nflx(t) i.±(t)j + 7 ]dt (.7

0 0
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where Ix(t)j is the envelope of x(t), jX(t) - p(t)j is the
envelope of x(t) - m(t) and y2 is proportional to the average
received noise power. An "exponentially correct" estimate of the
probability of error achieved by this receiver when the transmitted
signal energy is distributed uniformly in the signaling intervwl
is given by

0li P f(l/, ) exp 1.35, ] , (3.13)-

Y 0B L 0= 2B)J0(318

Q

where f(ll//T---) is a polynomial in (ll/,2T/), E -QT is the
energy of the known signal m(t), and YO = 2(42/B) is propor-
tional to the average received noise energy. The exponential be-
havior of this Pe result is strikingly superior to that given by
Eq. (3.45) for short-duration signals. Furthermore, it is shown
(see Fig. 24) that this performance of the log-correlator receiver
is significantly better than either that achievable by a matched-
filter receiver or that actually achieved oy a typical FSK vlf
coamnunication system. Also, to demonstrate that the asymptotic per-
formance predicted by Eq. (3.138) can be closely approached in prac-
tice, the special case YoB/Q = 3 is noted. It is shown in Section
D3 that this special case is reasonably achieved in practice, and.
that it gives the result

Pe3 f(1/ 12T-B)exp 1.15y . (3.141)
0=3OY

Y0 B

Q

With the above probability-of-error results in mind, it is inter-
esting to note that there is an alternate realization of the log-
correlator receiver given by Eq. (3.98) that is approximately
equivalent to Eq. (3.97) when the condition (Y B)/(4Q) >> 1 is sat-
isfied. This realization takes the form:

Choose h(l) iff

rT T , 2~

Re, XI')I 2,t 2 t > 2 2 dt . (3.98)
S[[x(t)02 + X(t)1 + 72

(- 0
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This receiver rule is of interest, since it may be simpler to imple-
ment than Eq, (3.97), and since it has a realization closely related
to the matched-filter realization o' the correlator receiver rule.

* However, it is important to note that the condition (YoB)/(4Q) -> 1
is a low signal-to-noise power ratio condition whose satisfaction in
practice may introduce more system complexity than it removes, given
a desired level of system performance.

Finally, it is concluded that the error performance predicted by Eq. (3.138)

for the log-correlator receiver in the presence of additive atmospheric

noise is of particular interest, since it is the only theoretical estimate

known to the author of the performance achievable in the prebence of addi-

tive atmospheric noise. Furthermore, the simplicity of the log-correlator

receiver indicates that this level of performance can be approached by

practically realizable receivers.

- 137 - SEL-66-052



IV. RELATED TOPICS

A. COMPARISON OF THE LOG-CORRELATOR WITH ANOTHER RECEIVER FORM

in the Case II "known signal" considerations in Chapter III, it was

shown that the receiver which is optimal in tae presence of additive at-

mospheric noise, in the sense that its use minimizes the prcbability of

error, is the log-correlator receiver. During the discussion of this

Case II result, the desirability of comparing the performance predicted

for the log-correlator receiver with that obtainable using other receiving

techniques was mentioned. In particular, it Is desired to compare its

performance with that of receivers commonly used in practice. Inspection

of the log-correlator receiver (Fig. 23) leads to several qualitative con-

t clusions on this comparison. It is seen that the log-correlator receiver

performs essentially four operations as it processes the received signal.

In the order of their performance, these operations can be described as

follows:

1. The receiver makes use of the "known" nature of the transmitted
signal, i.e., the received signal is compared with each of the

possible transmitted signals, each of which is known.

2. The results of the comparisons in (1) are nonlinearly processed in
a fashion which suppresses the effect on the resultant decision of

the comparisons at those times when the received signal is largely
the result of a pulse of noise.

3. The results of the zero-memory nonlinear processing of step (2) are
summed over the signaling interval.

4. The resultant sums in step (3) are compared against one another .nd
a decision made on the basis of this comparison.

It is important to note that the "ase II considerations of Chapter III

make the assumption that the received signal has been appropriately

bandpass-filtered prior to step (1) above. Several factors enter into

the choice of this predetection bandwidth, which is discussed in detail

in Chapter III; but in practice the selection procedure can be summarized

as follows: At operating frequencies where atmospheric noise is impor-

tant, the predetection bandwidth should be chosen as large as possible

consistent with the exclusion of strong interfering narrowband signals.

This means that the limited spectrum availability in the frequency range
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of interest is typically the factor that determines the predetection re-

ceiver bandwidth.

The receiver form whose performance will be compared here with the

performance of the log-correlator receiver is that shown in Fig. 25. This

receiver is of interest because of its simplicity of construction, which

makes it perhaps the most commonly used receiver form in the presence of

additive atmospheric noise. Typical zero-memory nonlinear devices used

in the configuration shown in Fig. 25, depending upon the type of modula-

tion employed at the transmitter, are:

1. The wideband "clipper" which operates to limit the amplitude of the
received signal when this signal amplitude exceeds a specified level
indicating that it is predominantly the result of a pulse of noise.

2. The wideband "limiter", often used with angle modulation schemes,
which provides an output signal whose amplitude is fixed independent
of the amplitude of the input signal, and whose sign is the same as
that of the input signal.

MATCHED

RECEIVE NONLINEAR THRESHOLDSIGNAL DEVICE LOGIC DEClSiON

l MATCHED

FILTER * 2 "

FIG. 25. BLOCK DIAGRAM OF RECEIVER COMMONLY USED IN PRESENCE OF"A ADDITIVE ATMOSPHERIC NOISE.
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Comparison of the performance of the receiver forn described in

Fig. 25 with the performance previously outlined for the log-correlator

receiver proceeds qualitatively as follows: Noting that the predetec-

tion filtering required in conjunction with the log-correlator receiver

is also required in practice by the receiver described by Fig. 25, it is

seen that the two receivers perform similar operations on the received

signal, with the exception that the order in which operations (I) and (2)

are performed is interchanged. In addition to the fact that the two re-

ceivers employ different zero-memory nonlinear devices, it is clear that

the receiver described by Fig. 25 must be inferior to the log-correlator

-, receiver because of this interchange of operations. This conclusion fol-

lows from the fact that the receiver described by Fig. 25 destroys part

of the information known about the possible transmitted signals before

it makes use of this information, arid thus must perform less well than

the optimal log-correlator receiver in the "known signal" situation being

considered here. Experimental support for this conclusion was given in

Fig. 24, where the performance predicted for the log-correlator receiver

is seen to be Zar superior to that actually achieved by an FSK communica-

tion system operating at vlf. Although Watt, et al do not give all of

the details of the particular FSK receiver employed, they indicate that

it basically has the form described in Fig. 25, where a limiter performs

the zero-memory nonlinear uperation.

B. DETECTION AND ANALYSIS OF WHISTLER-MODE SIGNALS

In addition to the "known signal" detection problem considered so far,

it is of interest to consider the application of the generalized "t"

model to other signal analysis problems in the presence of additive atmo-

spheric noise. One such problem is the estimation problem in which it is

desired to find the "best" (in some sense) estimate to a transmitted sig-

nal that is not completely known a priori, given observations at the

receiving site--i.e., given observations only after the atmospheric noise

has been added. As an example of practical importance, we will consider

the problem of detecting the presence of signals propagating in the

whistler mode [Ref. 48] and in addition of measuring the defining charac-

teristics of the detected whistler-mode signals. Although no analytical
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results are as yet axailable on this estimation problem in the presence

of additive atmospheric noise, it appears worthwhile to note the following:

The whistler-mode signals which it is desired to analyze are described in

detail by Helliwell [Ref. 48), and can be described for the purposes of

this discussion as vlf signals possessing a very large time-bandwidth

product, i.e., bandwidths of the order of 10 kc and durations of the order

of one second. Furthermore, the name "whistler" stems from the fact that

these signals typically consist of a gliding tone which sweeps across the

vlf band from high to low frequencies producing an audible "Whistle."

1. Analysis of Typical Whistler Receivers

The purpose of this investigation of the whistler estimation prob-

lem is twofold: to consider the usefulness of the generalized "t" model

in formulating a solution to this problem, and to use the insights gained

in the known-signal problem for evaluating the performance of receiver

forms presently used in whistler analysis. Thus in order to proceed, the

receiver form typically used to study whistlers in the presence of additive

atmospheric noise is presented in Fig. 26. The zero-memory nonlinear de-

vice normally used in this configuration is the wideband clipper described

in connection with Fig. 25, so that this receiver will henceforth be called

IVED ZERO - MEMORYLIERWSTR

DNINEA FILTER ESTIMATE

DEIC

ASPECTRUM WHISTLER

ANALYZER DATA

FIG. 26. BLOCK DIAGRAM OF CLIPPER RECEIVER COMMONLY USED TO
ANALYZE WHISTLER SIGNALS.
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a "clipper receiver." In order to proceed with the analysis of this re-

ceiver, it is first of all noted that the Case II known-signal results

cannot be applied directly, since the information known about the whistler

and of course that utilized by the clipper receiver is not sufficient to

make the whistler a known signal. Rather, we can conclude that if the

whistler to be analyzed can be further specified so that the problem be-

comes a known-signal problem, then the log-correlator receiver is the

optimal receiver. Otherwise (as is usually the case since it is the de-

tailed measurement of whistler parameters that is of scientific importance)

the optimal receiver is not obvious, and the clipper receiver is a candi-

date whose use can be supported on physical grounds. In order to show

this, it is noted that whereas the whistler is characterized by both a

large bandwidth and long duration, the received whist'.er signal is con-

taminated by additive noise which primarily comes from two distinct sources:

1. Additive atmospheric noise: This noise, which is discussed in detail
in Chapter II, has a bandwidth of the order of 10 kc (no narrowband
assumption here) and can be characterized as a sequence of noise
pulses, each of which has a duration of much less than one second.

2. Narrowband interfering signals: In contrast to the communication
situation where a narrowband assumption is reasonable, the wide band-
width of the whistler means that strong narrowband interfering com-
munication signals may exist within the frequency band of interest.

With this description of the additive noise in u.nd, the perfor-

mance of the clipper receiver can be investigated by examining the opera-

tions performed by the individual receiver components. This examination

shows that in fact the clipper receiver is a good candidate for use in the

presence of the additive noise described above, since it suppresses the

effect of the noise on the spectrum analyzer output in the following ways:

1. The wideband clipper serves to reduce the effect of atmospheric
noise pulses before these pulses can be "smearea" in time by the
narrowband filters comprising the typical spectrum analyzer. It is
clear that the usefulness of the clipper depends upon the ability
of the operator to set the clip level close to the maximum level of
the received whistler. This ability is a function of knowledge both
of the level of the whistler signal and of the level of narrowband

interfering signals. (The problem of optimally setting the clip
level is discussed further below.)

2. The effect of narrowband interfering signals is suppressed by the
fact that they contaminate only a small portion of the frequency
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band examined by the spectrum analyzer. Thus the observer at the
output of the spectrum analyzer is able to pick out the whistler
signal by simply ignoring the spectral lines produced by the narrow-
band interference.

It is important to note that although the above discussion indi-

cates that narrowband interfering signals are not directly a problem, they

may be an important factor in preventing an optimum setting of the clip

level. Thus it is seen that the actual interfering signal environment is

important in the analysis of the performance of the clipper receiver, and,

of course, is also important in any analytical formulation of the whistler

estimation problem. In fact, the above discussion dictates that the clip-

per receiver performs best when strong narrowband interfering signals are

removed by selective linear filtering prior to the performance of the clip-

ping operation. Having removed these strong interfering signals ("strong"

refers here to the situation where the received interfering signal power

mance of the clipper receiver becomes a function of how well the level of

the whistler signal to be analyzed is known. In fact, if this level is

known quite precisely, and if the setting of the clip level just above this

known signal level results in clipping for only a small percentage of the

time, then the clipper appears to be a good choice of nonlinearity that is

effective in suppressing the additive atmospheric noise. On the other hand,

if the whistler signal level is known only approximately (perhaps only sta-

tistically), or if the setting of the clip level just above the known sig-
nal level results in clipping a large percentage of the time, then it
appears that there must certainly be another nonlinearity which performs

better than the wideband clipper.

2. Conclusions

The foregoing discussion has been presented to specify an estimation

problem of practical interest in the presence of additive atmospheric noise.

The clipper receiver typically used in the analysis of whistlers has been

examined in some detail, and is seen to operate on the received signal in

a fashion that agrees both with intuition and with the results of the known-

signal detection problem. However, the discussion also indicates that the

clipper receiver is certainly suboptimal if either the power level of the
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whistler signal is unknown or the whistler signal is a very weak signal--

i.e., if there is a very low SNR characterized by clipping for a large

percentage of the time. Since usually the first and often both of these

conditions are characteristic of the whistler estimation problem in prac-

tice, it Is proposed that improved receiving techniqaes may result from

applying the generalized "t" model to the whistler estimation problem.

This possibility will be considered further in Chapter V.

4S
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V. SUMMARY AND CONCLUSIONS

A. THE GENERALIZED 't" MODEL FOR RECEIVED ATMOSPHERIC NOISE

This work has been concerned with the development and application of

an analytical model for impulsive phenomena. In particular, the work has

focused on a specific impulsive phenomenon, atmospheric raoio noise.

In Chapter II a new model, called the generalized "t" model, was

developed and was verified to be appropriate as a description of received

atmospheric noise, i.e., atmospheric noise as observed through a given

receiver passbana. This generalized "t" model describes the received

atmospheric noise y(t) as

y(t) = a(t) n(t) ,(2.3)

where n(t) is a zero-mean narrowband gaussian process with covariance

function Rtn() and a(t) is a stationary, slowly varying random process,

independent of n(t), that modulates n(t). This modulating process

a(t) is further described as

a(t) = l/b(t) , (2.72)

where the first-order statistics of b(t) are specified by the two-sided

chi distribution given by Eq. (2.8).

The applicability of the generalized "'t" model as a description of

received atmospheric noise was considered in detail in Chapter II, and the

pertinent results can be summarized as follows: The first-order statistics

of the generalized "'I" model are in good agreement with measured data on

i received atmospheric noise. This agreement is demonstrated in Figs. 4 to

13 and in Fig. 15, and it is noted that this agreement is particularly good

at vlf and lf in those situations characterized by low-to-moderate local

thunderstorm activity. In addition to this gcod agreement of first-order

statistics, the higher-order statistics of the generalized "t" model can

be specified to give good agreement with measured data on these statistics.

This result is demonstrated in Fig. 18, where the plotted data indicate

that the higher-order statistics of the modulating process a(t) can be
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specified (it is noted that these statistics are not yet specified in

Eq. (2.72) above) to reproduce the experimentally observed probability dis-

tribution of the interval between successive crossings of a fixed level by

the envelope of the noise.

The investigution into the applicability of the generalized "t" model

leads to the conclusion that this new model is an analytically attractive

model that is appropriate for received atmospheric noise. Furthermore,

it v s pointed out in Chapter II that the generalized "t" model will be

useful in the study of signal detection and estimation problems in the

presence of additive atmospheric noise. This follows from the fact that

limited spectrum availability generally dictates that the received signal

be observed through a bandwidth that, in fact, is substantially smallcc

than the band center frequency.

B. DETECTION OF KNOWN SIGNALS IN ADDITIVE ATMOSPHERIC NOISE

Having developed and checked the applicability of the generalized "t"

model in Chapter II, this model was applied in Chapter III to the detection

of known signals in additive atmospheric noise. In particular, the prob-

lem of deciding between the two a priori equally probable hypotheses

h(l): x(t) = m(t) + y(t)

( y t <t T (3.2)

h h(2): x(t) = y(t)

with the smallest probability of error was considered in detail, The addi-

tive atmospheric noise was represented by the generalized "t" model and

two cases were identified:

1. Case I: Short-Duration Signals

This case is characterized by the fact that the slowly varying

modulating process act) in the generalized 'It" model can be assumed

constant for the duration of the transmitted signal. The familiar corre-

lator receiver described by Eq. (3.23) was found to be optimum in thia

case, and the probability of error achieved by this receiver was calcu-

lated in Eq. (3.44). The probability of error result for hith SNR is the

result of most interest. It is given by
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2

(7w (3.45)
E e/= 3  wjw

2
7w

where 2 is proportional to the average received whitened noise energy

and E is the energy of the known signal m(t) at the output of the

whitening filter. The slow decrease with increasing signal energy of this
P eresult, relative to the exponential decrease achieved by the correla~or

receiver in the presence of additive gaussian noise (see Fig. 22), leads

to the conclusion that short-duration signals are not an optimal choice

in the presence of additive atmospheric noise. This is, of course, phys-

ically reasonable since the distinctive impulsive nature of atmospheric

noise suggests the use of signals of long duration relative to that of the

typical noise pulse.

2. Case II: Long-Duration Signals, The General Case

This case is characterized by the fact that the slowly varying

process a(t) is now allowed to vary during the signaling interval. In

particular, Case Ila generalized "t" noise was considered in detail.

It is specified to be that Case II noise whose complex envelope can be

described by Eq. (3.76) in terms of 2TB statistically independent samples.

This is proposed as the simplest representation of Case II signals of prac-

tical interest. The optimal receiver in this case was found to be a

logarithmic-correlator receiver (see Fig. 23) that implements the rule:

Choose h(l) iff

T T

f in[jx(t)j 2 + y2]dt > f In(IX(t) -i(t)j

2 + 7
2 ]dt (3.97)

0 0

where Ix(t)I is the envelope of x(t), Ix(t) - .LW) is the envelope of

Ix(t) - m(t)], and 72 is proportional to the average received noise

power. An exponentially correct estimate of the probability of error
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I

achieved by this receiver when the transmitted signal energy is distributed

uniformly in the signaling interval is given by

lim ~ ~ r1.35 E (3.138)lm P e exp Y ]
YB 00 3 L 0

where f(l/Vý/ ) is a polynomial in (2TBe-/2, E = QT is the energy of

the known signal m(t), and YO = 2y2/B is proportional to the average

received noise energy. The exponential behavior of this P result ise

strikingly superior to that given by Eq. (3.45) for short-duration signals.

Furtheiigore, it was shown (see Fig. 24) that this error performance pre-

dicted for the log-correlator receiver is significantly better than either

that achievable by a matched-filter receiver or that actually achieved in

practice by a typical FSK vlf communication system.

Also, to demonstrate that the asymptotic performance predicted by

Eq. (3.138) for the log-correlator receiver csn be closely approached in

practice, we note the special case Y0 B/Q = 3. It was shown in Chapter III

tzl?: this special case is reasonably achieved in practice, and that it

gives the result:

P 3 f[l ex[ 1.15 . (3.141)e =3 ¥ý=)Y0

Y0B

Q 
3

With the above probability of err-;, results in mind, it is inter-

esting to note that there is an alternate realization of the log-correlator

receiver that is approximately equivalent to Eq. (3.97) when the condition

(Y0 B)/(4Q) >> I is satisfied. This realization takes the form:

Choose h(l) iff

Re f X(t) *() dt2 > f dt . (3.98)

1e [ix(t)12 + 2 - 0 [Ix(t)12
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This receiver rule is of interest, since it may be easier to implement

than Eq. (3.97), and since it has a realization closely related to the

* •matched-filter realization of the correlator receiver rule.

The above summary of results on the general case of long-duration

signals leads to the conclusion that the error performance predicted by

Eq. (3.138) for the log-correlator receiver in the presence of additive

atmospheric noise is a result of particular interest. This follows because

Eq. (3.138) gives the only theoretical estimate known to the author of

the error performance achievable in the presence of additive atmospheric

noise. Furthermore, the reasonable simplicity of the log-correlator re-

ceiver indicates that this level of performance can be approached by prac-.

tically realizable receivers.

C. RECOMMENDATIONS FOR FUTURE WORK

In Chapter IV, the operation of the log-correlator receiver was com-

pared with that of a nonlinear receiver form commonly used in practice in

the presence of additive atmospheric noise. A qualitative discussioli was

presented there to indicate why this commonly used receiver form must

perform in a suboptimal fashion. However, the analytical difficulties

involved in making this comparison quantitative, plus the need for experi-

mental verification of the performance predicted by Eq. (3.138) for the

log-correlator receiver, lead to the obvious recommendation that the log-

correlator receiver be built and compared experimentally with receiver

forms commonly used in the presence of additive atmospheric noise.

Also in Chapter IV, the statistical estimation problem in the presence

of atmospheric noise was briefly considered as it pertains to the problem

of obtaining the "best" (in some sene) estimate of a whistler mode signal

that has been contaminated by additive atmospheric'noise. As was pointed

out there, the scientific importance of the whistler estimation problem

indicates that the generalized "t" model can perhaps be fruitfully ap-

plied to the statistical estimation problem in the presence of additive

atmospheric noise. Related to this problem, it is suggested that another

problem of interest is the two-hypotheses communications problem, in which

the signal whose presence is to be tested is taken to be random, i.e., is

known only statistically. Furthermore, it is proposed that a procedure
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that may give results applicable to the whistler estimation problem is to

consider the two-hypotheses testing problem in which the random signal is

taken to be a gaussian process.

Finally, returning to the generalized "t" model itself, it is pro-

posed that an interesting problem consists of choosing the covariance

matrices 4 and Rb introduced in Chapter III in a manner which repro-

duces the probability distribution of the inter-level-crossing interval

observed in practice for received atmospheric noise. In this regard it

is pointed out that the calculations of the inter-level-crossing interval

distribution in Chapter II indicate the existence of the desired co-
variance matrices.

46
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APPENDIX A. EVALUATION OF INTEGRALS

1. An integral that appears in consideration of the modified gener-

al. zed 't" model has the form

I xf / exp[axjdx, n odd > 1, a < 0, b > 0 . (A.1)

b

This integral can be evaluated by parts, giving the result

I = exp~axj / - (.�) x(n-2)/2 (a)[(n2] x(n-4)/2

-I(n-l)/2 a 2 32 2 _
a a

(n-3)/2 2 (n)2 L
(n[(~2] **(V(1-)/ Jl/2

+ 1Cl)2 ~ (-l)2bexp(ax~dx f
(A.2)

and:

J x/ explaxldx =2 Jz2 exp(az ]dz
b b1 /2
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where: z 2 x

2 2 1
2 z exp[az 2  - f exp az 2 ldz

I1_bl/2 bl/2

2Z=001/ 0

- z explaz 2 ] - I( 1) 1 exp dT d

z=bl/2 (-2ab)1/2

I) z-b1/2

Thus, substituting into (A-2);'I~exra I e rb { c/(bn)' -(n)[(v (An.3)/

+ .. (:)(!a-x1... 5 i 32

a pba

~~~~zb a1/22 -- - x~b

" i - (-1 a) erzc(-vaIJ(.4

:14
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2. An integral that appears in the Case Ila probability-of-error

calculations has the form
S!

(12J 2 2 2 2dx, a ,b O
(x2 + a2)[(x - b)2 + a2]

F dx (A.5)
f (x + ia)(x - ia)(x - b + ia)(x - b - ia)

This integral is easily evaluated as a contour integral as described in

Fig. 27.

IM.

4¢

X -PLANE

"I A

_i101

x :b- 1101

FIG. 27. DESCRIPTION OF CON'TOUR OF INTEGRATION USED
TO EVALUATE EQ. (A.5).
N~ote: 1) The contour of integration C is closed at

2) The poles of the integrand plotted above
are for the special case b >0.
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Now, it is clear that

2

II (x + ia)(x' ia)(x- 1 + ia)(x-b- b a) dx 2viI Kj

j =l

(A.6)

where

1 + K1 K 2(x + ial(x -ia)(-.c- b + ia'l(x - a) -x -iala+ x- - i I a

K3  K4
+ + .. .

x + it x-b- ital

such that, for the residues K and K2 of interest:

K = 1 2 2= 21 (A.7)
1 2ial ((ilal - b) + a I 2ilal (b - 2ialb)

1 2 1 (A.8)21 ial [(b + ilal ) + a ) 21lal(b + 2ialb)

Thus, substituting into (A.6) there results

11 ~I~ 2  42)

ii

i !~al (b2 + 4a1
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APPENDIX B. PROOF THAT EQ. (3.126), 0•(s) = 0, IS UNIQUELY SATISFIED
BY s= 1.

In the calculation of the Chcrnoff bound on P in Case IIa, it ise

necessary to find the value of s(finite) > 0 which satisfies the equation

00 00 2 s2522

dx dy (x + y + ) x + y2 + E2
N ]s 2 )(x- 2

-00 -0 [~ -•i) + y+t

a =0.
2 2 2=2

1=1 (dx dy (x,+ y+ )f J)2 2 2s
-.0 -.0 [x - &1 +y

(B.1i)

Noting that the denominator of the summand is positive and finite for all

i and all finite s, it is first of all concluded that each term of the

sum must be zero if the sum itself is to be zero, since for any given s

the sign must be the same for each term in the sum. Thus it is concluded

that we desire that value of s > 0 which satisfies the equation

I(s) f c f Jxdy 2 + + + 2)s In x 2 + d ) n+ 2+2 2s -i2 2 2

-co -.0 ( - i) + y + - P ) 2

Vi = 1, ... , N . (B.2)

It will now be demonstrated that (B.2) is uniquely satisfied by s = 1.

Setting s = 1 in (B.2), it is desired to evaluate
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Co o

I s = dx dy .... 2 ... 2
s=l f f (x 2 + y + 1 - L + Y +

-.00 -,¢o

2 2 2

.In x + • X,2 t+ --
(x- ) + y +

Co co

f dx (dJ dx 2 2 2) •2 2 •2I.0 (x2 + Y + [(x + y +

•r •,(x2 + .Y2 + g2)

-f -I (xf+y + 2)(x 2 2 2 2

-. 00 d+y(- + y +

2 2 2
in~x+ y tii

00 Co
f f 12 -2 2

_0 - (x + y + M)(x •- + y + g I

2 2 2
•.x+ y + t)

--o -co 2i + 2 + t2](r2 + Y2 + t2)

2 2 2

in +y +t.)

where T = x - Hi Therefore,
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(s) =dy 2 2 2 2
S=i f f (x + y + M)[( i) + y +

2 �in (x2 + y2 )2

2 222 2

- y + [(x + 14 + y + ]

"0 (x + 2 + (x - 2

fdy dx 2 2 2 2 22 2 2 2 2
-co -o Cx0+ y +02)f(x + Y + [( 2x- + y

x2 2 2

*2n(x2 + y + 9 ) (B.3)

Thus it follows directly that I(s) I=0, since the integrand above is
s=

seen to be odd in x.

Now, to show that this solution is unique, consider the following:

ds = Jy d 2 2 2

- I(s) f - dx -~ dy (n +y + y

f (x2 + y2 + t2)[2(x2 A 2i + (y2 + •2)2 +•)1

2 2 2
d xT +y ) .+ +

s )2 + Y2+ t

(2 + 2  2, 2 2
fdx dy 2 + + x + Y2 +2 28

-- 2 g2 2 i) 9
-co -oo ((x-p) +y ~

- •i)2

W -dx p -+(
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Thus, (l/ds I(s) > OVs, such that s = 1 is shown to be the unique

solution to p.l,(s) = 0, and the proof is thus complete.

INhi
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APPENDIX C. PROOF THAT INFINITE RECEIVER BANDWIDTH (2B = -o) MINIMIZES
THE CASE IIa P RESULT

e

In the P calculations of Case IIa, an exponentially correct esti-e
mate of the probability of error optimized with respect to signal shape

is given by expression (3.135):

2e'=3 Q 2 ' 1 2 + YoB2 Q +YB B

YB

- F 1 3 1 j (3.135)( 2 FI~ 2 1' +' i 0" 0 Bt

Noting that Y and Q are not functions of the receiver bandwidth 2B,

the optimal bandwidth can be determined by optimizing with respect to k,weekA *

where k YoB/Q. Thus, in terms of this new parameter

2TQ k
peL__ f( 7 ) 2 1 l 3 1) k}3 • Fl~l, k); l k

2E

YO

= 1 )13 -- (C.1)
2 2l\' 21 + k

Yhere E = QT is the energy of the known signal. Now, neglecting the

f(1/2v--6) factor, since it is of negligible importance in comparison to,

the factor that varies exponentially with 2TB, the optimization problem

reduces to that of finding the value of k > k min which minimizes the

function
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- k -+ F 2F 1 ' ; 2 "_-'_! ' (C.2)

where kmin YO/(2E).t

Perhaps the simplest way to minimize g(k) is to plot it vs k,
since it is seen in this way that in fact g(k) is a monotonically de-

creasing function of k > 0. From this it follows directly that the opti-

mal choice for the receiver bandwidth is B = 0, and the proof is thus

complete. Such a plot of g(k) is not presented here, but a formula

from which it can be easily prepared is presented as follows: Using

Erdelyi [Ref. 49], items 2.8(18) and 2.8(16), it is seen that

F (.1 3 1 ,

2F1 (1 ~.2; 22; k F(i, 1; .2;

121 2 1 1/ 2
(1 +k)112 Inl+k 1 /2k +1 (C.3)

2 •[1 + k.) 1 2  1)

Thus:

g(k)k
2(l + k) 1/2 + k)1/2 -

and, for particular values of k of interest, it is seen that (C.4) gives:
1. ltm g(k) = 1;

k-00

2. g(o.125)- 0.821;

3. g(O.5) = 0.684;

4. g(5) - 0.544;

5. lir g(k) - 0.5129.
k - oo •

tThis minimum valu.. -sults from the constraint that the receiver band-

width must be at least as large as the signal bandwidth; i.e., 2B > l/T,
where, as mentioned in the te,.•, the choice of T that minimizes P ise
clearly T = co.
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