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ABSTRACT 

BRL Report No. 1316 contains a serious logical error. This 

invalidates that Report's assertions about the ease with which examples 

of !-dimensional flows can be constructed. The present Report 

{i) expurgates BRL Report No. 1316; {ii) describes the error; {iii) corrects 

it; and (iv) salvages a family of examples of !-dimensional flows. 
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1. INTRODUCTION 

Our recently published report [ d' contains a fundamental logical 

error which invalidates our assertions about the ease with which certain 

parametric representations of non-steady one-dimensional flows could be 

constructed. Of course, this grievously restricts the prospects for 

application of such representations. 

In this note we shall (i) expurgate [ 1]; (ii) describe our error; 

(iii) correct it ; and (iv) develop a family of correct examples of our 

parametric representations. 

The following changes are required in [ 1]: 

Section 1: Delete the last three paragraphs. 

Section 4: Delete all material starting with the paragraph that contains 

equation (4. 9) and continuing to the end of Case 1. 

Section 5: Delete the last paragraph. 

Sections 6 to 8: Proposals to apply the method suggested in Section 4 

are absurd and should be deleted. 

The nature of our error can be summarized as follows. One dimensional 

flows can be characterized by means of solutions of a family of Mange­

Ampere equations that involve a single non-constant coefficient, determined 

by the equation of state and by the form of the distribution of entropy among 

the various particle paths. By means of this coefficient we can subdivide 

the set of one-dimensional flows into mutually exclusive subsets. If we 

consider any two flows of the same subset we can identify the values of times, 

geometrical coordinates, and flow functions that correspond to identical 

values of the pressure, p , and of a Lagrangian variable , 1/J The 

*References in br-ackets may be found on page ?7. 
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mapping of one up-plane onto another, defined in this way, preserves area. 

A well-known representation of the general area-preserving in terms of two 

parameters, a and f3 , involves an arbitrary function H(a, {3). In 

attempting to apply this result to the comparisor, of two flows in the same 

subset, we determined a necessary condition that relates H(a, {3) to a 

function z(p, 1/!) such that a= zp and {3 = zl/! • We assumed, erroneously, 

that H(a, {3) remains arbitrary in our application. A necessary and sufficient 

condition, which will be developed in this note, restricts the permissible 

function H(a, {3) to be any solutions of a certain quasi-linear, second order, 

hyperbolic partial differential equation. 

It is not easy to guess solutions for the equation that defines H. 

Nevertheless, our representation retains a little value as a source of 

novelties, since for an important class of equations of state, which 

includes that of the perfect gases, we have been able to determine a family 

of separated-variable solutions of a suitably transformed version of the 

equation for H. 
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2. THE FALLACY IN [1] 

We shall require the following extract from the valid and relevant 

parts of [ 1]. 

M. H. Martin [2] has developed the following formulation for the 

equations of all one-dimensional flows, except for an easily discussed 

special class. Let us define a Lagrangian variable, !/! , by 

dl/J = pdx- pudt. ( 2. 1) 

Then the specific entropy must be of the form 

s=s(l/J), (2. 2) 

and by the equation of state we can express the density in the farm 

p = p(p, s(l/J)) . 

Assume that p and 1/J are functionally independent, and let 

;(p, 1/J) be any solution of 

where 

2 
A (p,l/J) =- (1/p) f. 0 . p 

Then the description of a one-dimensional flow is completed by 

t = ; 
p 

where t denotes time, u particle velocity and x an Eulerian 

coordinate. 
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* Now let us suppose ~(p, l/J) and ~ (p, l/J) are two different solutions 

of (2. 4) that correspond to the same A(p, l/J). The mapping of the 

~}:: ~:' 
u t -plane onto the ut-plane, defined by identifying points with identical 

values of p and l/J preserves area. Hence we must have 

~p = a.+ H/3 (2. 8) 

(2. 9) 

for some function H(a., /3) of some parameters a. and {3 • Since 

~:..: * * we are actually interested in t and u , rather than ~ for its 

own sake, it would suffice to determine an acceptable H, or even 

just Ha. and H/3 • If we set 

* * 2 z (p, l/J) = ~ + ~ , 2w (p, l/J) = ~ - ~ , (2. 10) 

then by (2. 8) to (2. 10) 

(2.11) 

H/3 =w 
p 

( 2. 12) 

If we eliminate w from (2. 12) we obtain 

(2. 13) 

Up to this point in [ l] all of our reasoning has been legitimate. 

In [ l] we assumed that H was arbitrary. This is incorrect since, 

as we shall show in the following section, H(a., /3) must satisfy the quasi-

linear partial differential equation (3. 16). 
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3. ON THE DETERMINATION OF H(ct, {3). 

Let us continue to assume that ~(p, ~) is a known solution of (2. 4) for 

a given A(p,~) f 0. Recall that by (2. 6), (2. 8), and (2.11) we have 

and 

for some H(ct, (3) and z(p, ~). Since ;p and ;~ are functionally 

independent by (2. 4), (3. 1) implicitly defines 

p = p(t, u) , ~ = ~(t, u) • 

Since the functions (3. 3) are the inverses of the functions (3.1), we 

must have 

( :: ::: ) -1 0 (:: :: ) 

Thus 

By (3. 1) and (3. 3) we can express p and ~ as functions of ct 

( 3. 1) 

(3. 2) 

(3. 3) 

(3. 4) 

and (3. Since we have assumed that p and ~ are independent, then 

ct and (3 must also be independent. Now let us make the Legendre 

transformation defined by (3. 2) and 

Z(ct, {3) = pzp t ~z~ - z = ctp t (3~ - z (3. 5) 

11 



Then we must have 

(3 0 6) 

and now by {3o 5) and (3o 6) 

z {p, ~) = azo: + f3 z13 - z = ap + f3~ - z 0 (3 0 7) 

Furthermore, by a well-known property of Legendre transformations 

By (3o 1) and (3o 6) we have 

~p(Zo:, Zf3) = o: + Hf3 , 

~~ ( Zo:, Zf3) = f3 - Ho: 

(3 0 8) 

(3 0 9) 

For a known ~{p, ~) let the pair H(a, {3), Z{o:, {3) be any solution of the 

system {3o 9)o Define p and ~by {3o 6) and z(p, ~)by (3o 7)o Then 

(3o 2) follows from the Legendre transformation (3o 6) and (3o 7)o Finally, 

(3o 9) and (3o 6) imply (3o l)o Thus (3o 1) and (3oZ) are equivalent to (3o 6) and 

{3o 9}o 

If we eliminate H from {3o 9) we obtain 

{3o lQ} 

which is equivalent to 

(3 0 11) 
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where the arguments of ~pp' ;pi/J , and ~1/11/1 have been replaced by 

the expressions (3. 6). In general, (3. 11) is a non-linear partial differential 

equation for Z(O!, {3). By (2. 4) it is of hyperbolic ~ 

If we let Z(O!, {3) be any solution of (3. 11) such that ZO! and Zf3 are 

independent, and if we define p and 1/J by (3. 6), then (3. 11) is 

equivalent to (3. 10). This, in turn, implies (3. 9) for some H(O!, {3). A 

possible H(O!, {3) could be defined by 

(3. 12) 

I£ we know a solution Z(O!, {3). we need not actually determine H(O!, {3). 

For, by (2. 8), (2. 9), and (2. 11) 

* ; (p, 1/1) = 2z(p, 1/1)- ;(p,I/J) (3. 13) 

* To determine ~ (p, 1/J), it would suffice to find z(p,I/J). But the 

latter can be defined by (3. 7). 

Instead of eliminating H from (3. 9), let us solve for Z and 
0! 

to obtain 

ZO! = p(O! + Hf3 , f3 - HO!) , 

Zf3 = 1/1(0! + Hf3 , f3 - HO!) , 

in terms of the inverse functions p and 1/J defined by (3. 3). If we 

eliminate Z from (3. 14) we obtain 

@.!£ = 
,80! 0 • 

13 
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or in expanded form 

By (3. 4) this becomes 

(3. 16) 

If we replace the arguments of (pp' ;pi/J , and ;1/JI/J by the right 

members of (3. 14), (3. 16) becomes a quasi-linear partial differential 

equation for H(O', {3). All steps from (3. 14) to (3. 16) are reversible. 

Hence, for any solution H of (3. 16) there exists a Z(a, {3) which 

satisfies (3. 14). 

* The problem of constructing a new solution ~ (p, 1/J) of (2. 4) from 

a previously determined solution ((p, 1/J) has been transformed into 

that of solving the quasi-linear equation (3. 16). For most equations of 

state (3. 16) will still be non-linear. Thus nothing has been gained unless 

we can at least guess some solutions H(a, {3). This will be done in 

Sections 4 and 5 for an important special class of flows. 

In our discussion up to this point we have assumed ((p, 1/J) is known. 

As a by-product we have discovered the parametric representation (3. l), 

(3.6) for t, u, p, 1/J in terms of suitable functions H(a,{3) and Z(a,{3). 

Prior knowledge of ((p, 1/J) is not really essential for this parametric 

representation, since we can determine a system of partial differential 

equations for H and Z that does not depend on ;. First, note that by 

(2. 4) we must have 

14 



d (~p' ~y) - - 2 Cl(p, 1/>l 
il(a, f3l - A (p, 1/>l o(a, f3) 

By (3. ll and (3. 6l this is equivalent to 

(3. l7l 

On the other hand, if we eliminate .; from (3. ll, we obtain 

In expanded form this becomes 

whence by (3. 2l and (3. 8l 

(3. l8l 

Thus, in the present case the pair H, Z must be a solution of the 

system (3. l7l , (3, l8l. 

To complete our parametric representation note that by (2. 7l, 

(3. ll, and (3. 6l. 

-1 
xa = ({3- Hal (l + Ha{3l + p Za{3 , 

(3, l9l 
-1 

xf3 = ({3 - Hal Hf3{3 + p Zf3{3 

It might be worth mentioning that for H = constant (3. l8l is 

certainly satisfied, By (3. ll we have 
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a = t = ~P , {3 = u ~ ~1/J • 

Now (3. 2) yields 

~ = z 

and (3. 6) becomes 

Z(t,u) = pt + f;lu- ~ 

Then (3. 17) reduces, as one would expect, to the equation that 

would be obtained from (2. 4) under the Legendre transformation 

(3. 20), (3. 22). 
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4. FLOWS ASSOCIATED WITH ~ = K(p) + L(l/!) 

Equation (2. 4) will have the solution 

; = K(p) + L(l/J) ( 4. 1) 

if 

( 4. 2) 

where primes denote differentiation with respect to the appropriate 

argument, and by (2. 5) 

K" (p) L" (l/!) cf 0 ( 4. 3) 

By (2. 5) this choice of A 2 corresponds to 

p = li[K' (p)L" (l/J) + M(l/J)] , (4. 4) 

where M(l/!) is an arbitrary function of l/! • If 

l/! = l/! ( s) ( 4. 5) 

is the inverse of the function s(l/!) mentioned in (2. 2), then (4. 4) 

and (4. 5) define an equation of state. The equation of state of a perfect gas, 

-sic I 
pIp = e p (PIp ) 1 y ' 

Q 0 

is in the class defined by (4.4) for M = 0. 

By (4. 1) equation (3. 16) assumes the form 

K" (p) Ho:o: + L" (l/J) H{J{J = 0 , 

where by (2. 8) 

(4. 6) 

K'(p) =a+ H{J, L'(l/J) = (:3- Ho:. (4. 7) 
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By {4. 3) equations (4. 7) uniquely define 

( 4. 8) 

Since (4. 6) is non-linear we cannot hope to find the general 

solution for arbitrary choices of K" and L". However, we can 

develop some particular solutions, as follows. 

First, it will be convenient to make one of the transformations 

(4. 9) 

± ± ± 
Z = 2(afj 'f H) - P Q , ( 4. l 0) 

± 
Q = a 'f Hfj (4. ll) 

Then 

(4.12+) 

for + superscripts, and 

I I ~* * 
~p = K (p) = Q, ~l/J = L (l/J) = Y , "P = X, ¢1/J = P (4.12-) 

for - superscripts. 

In the sequel we shall assume that one of the pairs + + X , Y or 

X , Y is functionally independent. The exceptional case in which 

both pairs are functionally dependent will be discussed in Section 6. 

For convenience we shall omit the superscripts hereafter. 

It can easily be verified that dZ = PdX + QdY, so that 

18 



and then 

(4. 13) 

From (4. 9) to (4. 12) we obtain 

Eliminate HO'O' and H/Jfl from the latter of these equations and 

(4. 6) to find either 

K
11

(p(X))ZXX + L 11
(1/J(P))Zyy = 0 (4. !4 +) 

for + superscripts, or 

K
11 

(p(Q))ZXX + L
11 

(1/J(Y))Zyy = 0 (4. 14 -) 

for - superscripts. 
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5. SEPARABLE SOLUTIONS 

Now let us try to find solutions of (4.14-) of the form 

Z(X, Y) = k(X) 2- (Y) • ( 5. l) 

As we shall eventually discover, this will impose a strong, but 

acceptable, restriction on the permissible functional forms for 

K(p) . 

By(5.l) 

p "'k
1 

(X)J-(Y) • Q "'k(X)f- I (Y) (5. 2) 

By (4. 7) and (4. 9) for - superscripts 

K I (p) "' Q , L I (I/!) "' y ( 5. 3) 

whence 

p "' p(Q) 1/! "' 1/J(Y) ( 5. 4) 

Now (4. 14-) yields 

K
11 

(p(Q))k" (X)f-(Y) + L" (1/J(Y))k(X)f-
11 

(Y) = 0 • ( 5. 5) 

Next, we may assume Q and X are independent. For, if 

they were not, then by (4. 12 -) and (2. 6) ~ and ;'" 
p p 

would be dependent. 

~e ,;c 
Since t = ~ must not be constant, we would have 

p 

some non-constant function G. Hence 

* I 
; ·" = G (~ ) ~ '" = 0 p,._ p P'l' 

,, 
( = G(( ) for 

p p 

* :o.'c * by ( 4. l). Hence ( = K IP) + L (1/!). Since solutions of this farm have 

been considered in [ 1 ], this requires no further discussion. 

Incidentally, if Q and X are independent, then by (5. 2) k 2,
1 f 0 , 

and hence k 2, f 0 , in general. Then we can rewrite (5. 5) as 

20 
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K''( (Q}} k" (X) L" (1/J(Y)) p," (Y) = O , 
P k (X} + . £(Y) 

Differentiate the left-hand member of (5.6} with respect to X, 

and use (5, 2} to find 

K"'(p}p I (Q)Q 

K" (p) 

By(5,3) 

K" (p)p
1
(Q) = 1 

= 
k(X) 

k' (X) 

L"(I/J)I/J
1
(Y) = 1 

Thus (5. 3) and the outer members of ( 5, 7} yield 

whence 

CASE 1 : If c
1 

= 1, then (5, 9) implies 

c2p 
K(p)=c

3
e +c

4 

whence 

" 2 c2p 1 
K (p} = c

2 
c

3 
e = c

2 
K (p) = c

2
Q , 

and then 

1 Q 
p =- log 

C2 c2C3 

Now ( 5, 5) yields 

L"(ib)i,"(Y) "( 
£(Y)£'(Y} =- c2k X)= c5 • 

Then by ( 5, 'l ) and ( 5. 13) k and 1, must satisfy 

( 5. 0} 

( 5, 7} 

( 5. 8) 

( 5. 9) 

(5. 10) 

( 5, 11) 

(5, 12) 

{5.13) 



k(X) 

.t"(Y) = c
5

1/J
1
(Y).t(Y).t 1 (Y) 

where 1/J(Y) is defined by (5. 3) . 

Note that although the choice of K(p) is restricted by (5. 10), 

the choice of L(I/J) is arbitrary. Any solution of (5. 15) with 

.e" I 0 can be multiplied by any polynomial (5. 14) with c
5

1 0 

to form a product solution Z of (4. 14-) . Then (4. 12-) will 

* enable us to construct a ~ that differs from ~ in the following 

important respect. By (4. 1) 

( 5. 14) 

( 5. 15) 

~pi/! = 0 • ( 5. 16) 

On the other hand, by (4. 12-) and (5. 2) 

(~ = P = k
1
(X) .t(L

1
(1/J)) 

By (5.2) and (5.3) 

K 1 (p) = Q = k(X).t I (L I (I/!)) 

Since b¥ (5. 8) Kn I 0, then by (5. 14) with c
5

1 0 this actually suffices 

to define a function X(p, 1/J) such that X I 0 
p 

~~~ = kN .t(L
1 

(1/J)) X I 0 
'+'P p 

But then 

in contrast with (5. 16). Thus ("' is not a completely trivial 

modification of ~ • 
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CASE 2: Now suppose c
1 

f 1 • By (5. 9) 

K(p) = c
2
(Lc

1
) ~- (l-cl)c2(p+ c3) l 

L . 

Q=K'(p)= 

cl 
K"(p)-c Q - 2 

Now (5. 2), (5, 5), and (5. 19) yield 

"(·'· " c -1 

1 

2-c 
1 

1-c 
1 

L ..,).e (Y) = - c k l (X)k" (X) 
c 2 = c5 . 

.I{Y).e I l(Y) 

Then by (5, 8) and (5, 20) we obtain 

1-c 
k"(X)=-c;

1
c

5
k 

1
(X), 

c 
.e"(Y) = c

5
1/J'(Y).e(Y).e' 

1
(Y). 

Equation (5, 21) can be solved by quadratures, of course. 

Again, the choice of K(p) is restricted, this time by (5. 17), 

( 5. 17) 

( 5. 18) 

(5. 19) 

(5.20) 

( 5, 21) 

( 5. 22) 

but L(I/J) is still arbitrary, The restriction on the form of K(p) is not 

too serious, if we note that for c
3 

= 0, c
1 

= y + l, M(I/J) = 0, and 

arbitrary L(I/J), (5. 18) and (4. 4) lead to the equation of state for a 

perfect gas. 

~' 
By the argument presented at the end of Case l, 1;1/Jp f 0 again. 
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All of the discussion in this section has dealt with (4. 14-). A similar 

analysis of separable solutions could be developed for (4. 14+). All that 

we really require are the analogs of equations (5. 10), (5. 14), and (5. 15), 

or of (5. 17), (5. 21), and (5. 22). These can easily be written by 

interchanging X and Y; k and i, ; K and L; and p and 1/J. Now, of 

course, it becomes possible to choose K(p) arbitrarily, but then L(I/J) 

is restricted. This situation seems to have less physical interest than 

the one we have just discussed at length. 
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6. BOTH X+, y+ AND X , Y ARE FUNCTIONALLY 

DEPENDENT 

If both x+ , y+ and X , Y are functionally dependent, then in 

accordance with ( 4. 9) 

o(a ± H/3, {3 ± Ha)/o(a, (3) = 0 . Thus 

These equations are equivalent to 

( 6. 1) 

( 6. 2) 

By(6.1) 

H(a, .B) = f(a) + g(/3) , ( 6. 3) 

{3) 6 II II {3 for some f(a) and g( • By ( • 2) f (a)g ( ) = 1 , whence 

(' = cl ' " I g = 1 c 1 

Thus 

( 6. 4) 

g(/3) = ( 6. 5) 

By (2. 11) we can rewrite (2. 8) in the form 

25 



Hence 

where f(C) is an analytic function of the complex variable 

Thus 

-2 
~pp + c l ~~~ = 0 • 

If we demand that ~ be of the form (4. l),then 

K"(p)=·-c~ 2 L"(~)=c6 . Thenby (4.1) and 

(2. 4) to (2. 7) 

t = ~p = c 6 p + c 7 , 

2 
u = ~~ =- c 1 c 6~ + c 8 

2 2 2 
A = c 1 c 6 

2 2 
lIp = - c l c 6 p + M(~) 

( 6. 6) 

( 6. 7) 

This corresponds to a class of flows with straight particle paths on which the 

velocity is constant (though it varies from path to path). 

J. H. GIESE 
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