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FOREWORD

This technical report was prepared by John vW. Goresn and
Robert G, Dunn, Fluid Dynamics Facilities Research Laboratory,
Aerospace Research Laboratories, Wright-Patterson Air TForce
Base, Ohio, on Project 7065, "Aerospace Simulation Techriques
Research," under the direction of Mr, Elmer G. Johnson, Director
of the Laboratory.

The authors wish to extend their gratitude to Henry E.
Fettis and James C. Caslin of the Applied jathematics Research
Laboratory for their helpful suggestions in formulating the
analytical expressions and adapting these to numerical computa-
tions., Ve also express our indebtedness to !rs., Karen Thompson

for her assistance in typing the report,
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ABSTRACT

> The problem considered is that of finding the thermal

entranée or thermal mixing region of a pipe wvhere the wall heat
flux is zero along the length of the pipe. The fluid is assumed
to enter the pipe with a non-uniform temperature profile and a
fully developed turdulent veloéity profile.

The approach is analogous to that irtroduced by Fettis for
the solution of the uniform wall temperature problem.

The results for different radii tubes and Reynolds nunbers
are presented in graphs which show the adjustment of the temper-
ature profile down the pipe. These results provide information

concerning the minimum length mixing tube, since any wall losses

will require a greater length.
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NOMENCLATURE

Apn defined by Equation L4O
A, arbitrary constants
a,b,c constants defined directly under Equation 15
Cp specific heat
Cn coefficients defined by Equation 30
D pPipe diameter
Dn constants defined by Equation 12
exp designates exponential
f(r) function defined by Equation 43
gn(z) eigenfunctions for Equation 7
h heat transfer coefficient
k conductivity of the gas
ky conductivity of the gas at the wall
Ly mixing length (i)

D jy

Cou

Pr Prandtl numbdber = —E—
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Re

parameter defined by Equation 27
total heat flux

radial heat flux

flux along the inner wall surface
pipe radius

Non-dimensionalizing pipe radius
radial coordinate

non-dimensional radius %

entrance Reynolds number

effective thermal conductance considerced at the
radius of the inner tube surface

velocity of the fluid stream in the direction of flow
average velocity

axial coordinate

dimensionless axial length

constants defined directly under Equation 25

parameter which is proportional to the exponential
decay factor for the temperature in the arial direction
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gamma function

indicates partial differentiation

temperature difference detween the local temperature
and the temperature at the inner wall

temperature at x = 0 and r = 0

entrance temperature distridbution

eigenvalues for Equation 13

dynamic viscosity

kinematic viscosity

density of the gas

refers to a summation

eigenfunctions for Equation 13

eigenvalues for Equation 7
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I. INTRODUCTION

The problem of heat transfer in fully established turbu-
lent flow in cylindrical tubes has received considerable
chbentlons 21 Tun wil easss the flow Reynolds number is
sufficiently large to justify the assumption of negligidble axial
conduction in the fluid. As a consequence, many of the mathe-
matical investigations were reduced to solving an eigenvalue
problem with the wall temperature taking the form of a step
function. Once this was accomplished, other boundary conditions
such as prescribed heat flux or prescribed wall temperature
variation were included by the method of superposition. The
case of a perfectly insulated tube wall is considered in this
paper.

The fluid enters the pipe with a non-uniform temperature
and a fully developed turbulent velocity profile. At succeed-
ing axial stations, due to the radial conduction and turbulent
mixing, the temperature will deviate from the entering profile
until a uniform distribution is approximately achieved. Pipes
with this length are used as mixing tubes and the adjustment
or damping of the temperature profile is important in estimating
the exit temperature profiles of shorter tubes.

The analysis is similar in the general mathematical approach
to that presented by Latzkol and Fett152 for an isothermal wall.
They assumed a one-seventh pover velocity profile, a simplified

eddy diffusivity and a Prandtl number of unity. However,



,-

Latzkol obtained crude approximations to the first three

2 obtain-

eigenvalues by using Legendre polynomials, while Fettis
ed good estimates of the same three eigenvalues by the use of

Jacobi polynomials.



II. STATEMENT OF THE PROBLEM

A schematic diagram showing the coordinate system is given
in Figure 1. We shall consider the section of pipe to the
right of x = 0, where the wall heat flux is equal to zero. The
flow possesses a fully developed turbulent velocity profile
and a selected entrance temperature profile at x = 0,

Subject to the limitations given below, the steady state

energy equation is:

0_1 9
PcD"a_x'75—r('qr) ()

vhere q, is the radial heat flux, positive in the +r direction.

In writing the energy equation (1), the usual basic assump-
tions are adopted:

a. The fluid properties are assumed constant.

b. Viscous dissipation is negligible.

¢c. Axial diffusion of heat is negligible compared to the
axial convection.

d. The flov is hydrodynamically fully developed.

The statement of the problem is completed when the initial

and boundary conditions are specified for the function 6(r,x).



At the inner surface of the pipe, we have:

dlrx)l .. .0
kw or r=R (2)

vhere k., and qw represent the gas conductivity and flux at

v
the wall, respectively.
The fluid temperature at the entrance (i.e., at x = 0)

is given by the following:

0(r,o)=9°'9;6'(‘|%)z )z (2a)

Equations 1, 2 and 2a, arnd also the imposed condition
that no infinite temperature exists, constitute the mathematical

statement of the problenm.



ITI. ANALYSIS

In a previous paper, Latzko's differential equation

from Equation (1)

i/ e
2P e wT e

for convective heat transfer in fully developed turbulent flow

with a velocity profile represented by the equation

u.@,v{.-(?;-)‘}"’ o

wvas solved subject to the following boundary condition at the

wall:

R (@)

The present paper considers the same equation (3), but with the
boundary condition q = 0 at the wall. This condition when the
inlet temperature profile is constant leads to a trivial

solution. In order to obtain a non-trivial solution, an initial

temperature represented by *he function

66.(1-72) -9,

(5)



is used, vhere ¥ 1is defined ar the non-dimensional radius, %—.

e [-Gh)]"

A solution to Equation 3 can be written in the form

and

0= glr) exp(~pBx)
(6)
and, since the fluid temperature and vall temperature
asymptotically approach each other as the pipe length increases,
B must be positive. When the solution as given by Equation 6,
is inserted into Equation 3 and use is made of the non-dimension-

al radial transformation previously defined as z, the differen-

tial equation (3) becomes

ad;(l-z’)-gg- =-w2'g -

vhere w is defined as _h% B

A procedure analogous to that used dy Fett132 for the
isothermal wall problem was followed in obtaining a solution to
equation T for this case, where the surface heat flux is zero,

The appropriete boundary condition is:

aJl 2
32 O at 2=0 (8)



In addition, because of the singularity in Equation 7, i.e.,
vhen 2z = 1, it is necessary to require that the function g be
finite at the centerline of the pipe.

Solutions of Equation T wvhich satisfy the above requirement
and boundary condition will exist only for discrete values of o

and have the form

Gsiongn(z) exp (-ﬁg)x (o)
n=o

vhere g(z) is the eigenfunction solution of Equation 7. The

constants "D" must be determined to satisfy the initial condition
0 (z,o)seo, vhere Go is prescribed entrance temperature profile.
This may be saccomplished by use of the orthogonality property of

the eigenfunctions, g,(z), that is

j; lz"g“(z)qvﬂ.‘z)dz =0

(10)
vhen m ¥ n. Setting,
nze
g)o,,o,,(z)-eo T



ve find that

|
7
f 2"g (2) dz
Dn: ol% g ] ('2)
Lz g2(2) dz
Before obtaining the solution of Equation 7, we wish to

consider the solution of the auxiliary equation

4 (|-z7):—‘z‘-=-x 25 (13)

which is similar, but not jidentical, to Equation 7. With the
change of variable tez’ » Equation 13 becomes an equation of

the hypergeometric type:

2
_pnde ( _&)Qn A qs
-0 +($-L 1)@+ 5970 (14)
The details for obtaining the eigenvalues and eigenfunctions

for Equation 1k are given in the Appendix.

Now assume that a solution of Equation T can be found in the

form

o (z)-ion Opl2) (15)

n=0



If Equation 15 is substituted into Equation 7, we odbtain

N
dd
ZOD,, [agz-(l- 17)# + wp z7¢n] =0 (16)
n:

Because the eigenfunctions On also satisfy the auxiliary

Equation 13, Equation 16 beconmes

N
ZD,, [)\nZ" ®n (z)-wnz7¢n(2)] =0 (17)

n=0

We can nov make use of the Galerkin method to determine the
D, by requiring that the left side of Equation 17 be orthogonal

to the @, for n =0, 1, 2 ...N, thus arriving at the following

system of equations:

io,, [a'mn-wAmn] =0 (18)

n=o0

for m = 0, 1...N, with defined by the equation
n

!
Amn-_/;z7¢m(z) ®nlz)dz (19)



The characteristic equation of the system given by Equation 18

is the determinant

iDn ["'mn""nAmn] =0 (20)

n=0

The roots of Equation 20 give approximations to the first n
eigenvalues of Equation 7T, and the complete solution to Equation
3 is given by Equation 9.

In the present case, where the ¢%#z) and therefore the
gn(z) are expressed as polynomials, the coefficients Dn can
be obtained explicitly provided the initial temperature distri-
bution can also be described by a polynomial. For example, a
suitable entrance temperature profile could be represented by the

function

9|f(?')=0| (I-?2)2=Giz'4 (21)

By equating like powers of the function 2! » We obtain the follow-

ing system of algebraic equations for the D.:

D +0.26688 D, + 0.22691 Dy + 0.19413 D; + 0.32980 D, = O

-0.31298 p, - 0.68164 D, - 0.98781 Dy - 5.42133 D, = 0O
-0.86258 D; - 1.51668 D - 2.83335 Dy + 21.29T47 Dy =1  (22)
+0.51278 D, + 2.63729 Dp + 11.2T409 Dy - 30.31206 D, = O
-0.18864 D, - 0.3607T1 Dy - T.95572 Dy + 1L4.22400 D, = O

10



Solving the last four of Equations 22 for the coefficients Dp»

we obtain

D, = -1.19346

Dp = 0.25817
> (23)
Dy = 0.061657

D, = 0.025205 )

Substituting these four values for the coefficients Dy through
Dy into the first of Equations 22, we obtain for D° the

numerical value

D = 0.23965 (24)

o]

The complete solution as given by Equation 9 can now be written

in the form

-é% = D°+ qul exp (—f%+ Dz J2

exp (—%%—x)i'Ds gs erp (- g;%x)
+ 04 9, exp (-gg x) (25)



-
kY

or

2
'ee =0.23965 - 1.9346 exp (— % x)[o.zssae ~0.3129827
i

-0.862582'* + 0.512782%' -o.|8864z2°]

2
+0.25817 exp (- -%g- X )[0.2269! - 06816427

- 1.516682'* + 2.63729z2 -0.3607|z“]

2
+0.06166 exp (- -pég-x )[0.!9 413 - 0.9878127

-2.83335z" +11.2740922' - 7.95572:20]

2
+0.025205 exp (- Bs x)[o.azeao -5.4213327

pR
+21.297472'% -30.312062%' + |4.22400z“] (26)
where
ex2¥ &
p= ':’Tg-rg-g Re (27)

and E represents the inner wall radius.

12



IV. DISCUSSION AND CONCLUSIONS

The approach employed in obtaining a solution to Equation 3
for the specified boundary condition was analogous to that first
used by Fett152 in solving the isothermal problem with a uniform
entrance temperature profile. However, to obtain a non-trivial
solution for the present case it was necessary to assume that
the fluid entering the pipe had a non-uniform temperature
profile. The eigenvalues wp and the eigenfunctions%remain
unchanged for any profile chosen, because neither depend on the
initial temperature distribution. In the chosen numerical example,
the initial temperature distribution was represented by the

following equation:

6(r,0)=6,t(7)=6;(1-7%2 (28)

where 9' is the initial centerline temperature. The centerline
temperature as a function of length-to-diameter ratio is presented

in graphical form for several pipe diameters in Figure 2, and in
Figure 3 the mixing lengths for various initial Reynolds numbers

are shown. All the presented data are for a fixed mass flow, pressure
and entrance centerline temperature. The results show that as the

Reynolds number increases the mixing length increases. The adjustment:

of the temperature profile from a radial variation to a uniform distri
bution at succeeding axial stations are also presented in Figures U

through 9. The variations of the exponential decay factor "g2" yith

8 198



Reynolds number are given in Tabdle I.

The engineer is often required to design mixing tubes with
varying degrees of wall heat losses. Thus, these calculations
give the length of a perfectly insulated mixing tube for turbulent
flow. This is the minimum length mixing tube, since any wall losses
will require a greater length. Calculations for non-perfectly
insulated pipes were presented in Reference 8. In the solution
for non-perfectly insulated pipes, non-uniform entrance temperature

profiles were not considered.

14
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APPENDIX A

The general solution to Equation 14 is

g€ = A Fla,b,c,t) + 3t17% FP(a-c+l,b-c+l,2-c,t) (A-1)

vhere

and c = é
T

For the boundary condition given by Equation 8 to be satisfied
at z = 0, B must be zero. Therefore, Equation 15 now reduces

to

g€ =A F(a,b,c,z7) = A F[&,(,? - a') ’ :?‘s 27] (A-2)

But at z = 1, g must be finite; hence, the function F at

z =1 is

r(c)r(c-a-n) . (A-3)

F(a,b,c,l) =
r(c-a)r(c-b)

and if

b = é and z = 1

16



the function F becomes

_ P(Q})P(s‘“'?*") N o (A=)

rla, & -a, &, 1) =
r($-a)r r($-a)ri

=
-3

Thus, for the particular values of b and ¢ given above, the
series for the function F(a,b,c,l) diverges unless it terminates.
This requires that "a" must be zero or a negative integer, which

leads to the following admissible values of "a":

a =0, -1, =2, ===, =n (A-5)
Yielding the corresponding eigenvalues

-, = b9 (-n) (g + n)

vhere n = 0, 1, 2, 3 . . . . (A-6)

The resulting polynomial solutions are included in a more
general class known as Jacobi polynomials and are defined by

the equation

Fn(u; v; 27) = P(-n, % + n; g; z’). (A-T)

17



For the present case

’
a = n, vheren=20,1, 2, 3. . .

S (A-8)

=N |n = |on

Thus, the eigenfunctions of Equation 13 are given by the

equatioen
. 6. .7\ . 6 . 6.

vhere the An are arbitrary constants.

The functions Fn(z) are orthogonal with respect to z° as a

veight factor:

S‘l z 5 F (z) F (z2) dz = o for m # n

o
(A-10)
S“ zd Fﬁ(z) dz = Cg vhen m = n
o
In terms of the variable t = z7, the orthogonality
relation is

1 .Y-1 a-y

t (1-t) F .Fpdt = o form = n, (A-11)

o)

18




where

and

S“ £Y"1(1-¢)%"Y F2at
(o]

Fr{(y) I' (¢« + 1-y) (a + 1 -y)n n!

r(a) (c)n (Y)n 2n

(A-12)

It is easily verified that for the values a and y given

above, Equation 26 becomes

— n

S'l 25 F2dz = (“2)22 - = 2 (A-13)
o + 2n
7[7,,] (7" *)

where

(a)n =a (a+1) (a + 2)...(c + n-1) for n 1, 2, 3...

19



=

with (u)° defined as

For n = 0, 1, 2, 3 and 4 Equation 27 yields

C = 0.4082

(o]
c1 = 0.2609
C = 0.2155

2

= 0.1904

c3 0.190
C = 0.1738 (A-1k)

The first five Jacobi polynomials are casily obtained by

expanding the series

Fn(a; Y; t) = F(-n, a + n; y; t) =1

+i(n\(a+n)(a+n+1) oo (@+ n + k - 1) 2K (A-15)

k:lk’ Y(Y + 1)-..(Y + k-l)

forn'o,l+oooh &ndY#O, -l’ ooo-n+lo

20



For n = o

FO(GQ Yy t) =1

n =1
F (a, v, t) =2 - 2,1667 z7
) |
n=2
Pz(a, Y, t) =1 - 6.6667 z7 + 6.9231 gl* (A-16)
n =3

13.5000 z7 + 35,3077 z!% - 24.1269 z2!

Fa(a, Yy, t) =1

n=1.

22,6691 z7 + 107.2429 2% - 171.5886 z2!

F“(a, Yy, t) =1

+ 87.3830 z28

With the Cn and Fn thus obtained, we now proceed to obtain
an approximate solution to Equation T by applying the Galerkin
technique.

For this method, it is convenient to define a set of
functions ¢ (z) such that

Fn(z)
¢ (z) = = n=1, 2, ... (A-1T)

Cph v An

21



-

vith the property that

A g; 25 0 (5) ¢ (z) 4z = 6, (A-18)
vhere
’ = 0 ifm¢n e
A-
e l ifm=n

For n = 0 we shall define

F
¢ = E2_., (A-20)

vhile the eigenfunctions ¢ (z) for n =1, 2, 3 and L are
computed by substitution of the A, Cn and Fn directly into

Equation 31. Listed below are the first five eigenfunctions:

= )
oo 2.4k49s5

01 = 0.4018 - 0.8706 2z’

¢ = 0.2773 - 1.8488 27 + 1.9199 z!*

2 > (A-21)

@ = 0.2206 - 2.9776 27 + T7.7877 z!* - 5.321621

¢ = 0.1866 - 4.2293 27 + 20.0080 z!% - 32,0128 z2!

+ 16.3028 228

22
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THERMAL MIXING LENGTH—L

N
(3 )
|
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]
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| | J |
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Fig. 3 VARIATION OF MIXING LENGTH WITH

INITIAL REYNOLDS NUMBER
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TABLE

I.

VARIATION OF THE EXPONENTIAL DECAY

R (inches)

FACTOR WITH REYNOLDS NUMBER

Re x 10 °

82
n

0.375

2.24939

1.63577
5.04350
10.20157
20.,37003

0.500

1.6870kL

1.31831
L.06U69
8.22172
16.41676

0.625

1.34964

1.11516
3.43831
6.95473
13.88689

0.750

1.12470

0.97263
2.99888
6.06589
12.11209

0.875

0.96403

0.866L44
2.67146
5.40361
10.78969

1.000

0.84352

0.78387
2.41688
L.88867
9.761k4T

1.125

0.74980

0.71760
2.21254
L, L7534
8.93615

1.250

0.6T482

32

0.66308
2.04443
4,13531
8.25720




TABLE

I.

(Contiruned)
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