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ABSTRACT 

■- 
x The problem considered is that of finding the thermal 

entrance or thermal mixing region of a pipe where the wall heat 

flux is sero along the length cf the pipe.  The fluid is assumed 

to enter the pipe with a non-uniform temperature profile and a 

fully developed turbulent velocity profile. 

The approach is analogous to that introduced by Fettis for 

the solution of the uniform wall temperature problem. 

The results for different radii tubes and Reynolds numbers 

are presented in graphs which show the adjustment of the temper- 

ature profile down the pipe.  These results provide information 

concerning the minimum length mixing tube, since any wall losses 

will require a greater length. 
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NOMENCLATURE 

mn 

a(btc 

C„ 

exp 

f(r) 

h 

Pr 

defined by Equation ko 

arbitrary constants 

constants defined directly under Equation 13 

specific heat 

coefficients defined by Equation 30 

pipe diameter 

constants defined by Equation 12 

designates exponential 

function defined by Equation 1*3 

elgenfunctlons for Equation 7 

heat transfer coefficient 

conductivity of the gas 

conductivity of the gas at the vail 

mixing length - 
iD/i 

Prandtl number 
k 

i 

vil 



- 

parameter   defined   by  Equation   27 

total  heat   flux 

radial  heat   flux 

I 

flux along the Inner wall surface 

pipe radius 

Non-dlmenslonallzlng   pipe   radius 

radial  coordinate 

Re 

non-dimensional radius r 

entrance Reynolds number 

effective thermal conductance considered at Che 
radius of the inner tube surface 

velocity of the fluid stream in the direction of flow 

average velocity 

axial coordinate 

x 
n 

dimenslonless axial length 

o,r constants defined directly under Equation 25 

parameter which Is proportional to the exponential 
decay factor for the temperature in the arial direction 

vili 



r 

3 

gamma function 

indicates partial differentiation 

temperature difference between the local temperature 
and the temperature at the inner vail 

temperature at x « 0 and r = 0 

entrance temperature distribution 

eigenvalues for Equation 13 

dynamic viscosity 

kinematic viscosity 

density of the gas 

I refers to a summation 

♦. eigenfunctions for Equation 13 

u. eigenvalues for Equation 7 

ix 



I. IBTRODUCTIOB 

The problem ot heat transfer in tully established turbu-

lent tlov in cylindrical tubes has received considerable 

3-7 attention. In all cases the tlov Reynolds number is 

sutticiently large to justity the assumption ot negligible axial 

conduction in the tluid. As a consequence, many ot the mathe-

matical investigations were reduced to solving an eigenvalue 

problem with the vall temperature taking the torm ot a step 

tunction. Once this vas accomplished, other boundary conditions 

such as prescribed heat tlux or prescribed vall temperature 

variation were included by the method ot superposition. The 

case ot a perfectly insulated tube vall is considered in this 

paper. 

The tluid enters the pipe with a non-unitorm temperature 

and a tully developed turbulent velocity protile. At succeed-

ing axial stations, due to the radial conduction and turbulent 

mixing, the temperature will deviate trom the entering protile 

until a unitorm distribution is approximately achieved. Pipes 

with this length are used as mixing tubes and the adjustment 

or damping ot the temperature protile is important in estimating 

the exit temperature profiles ot shorter tubes. 

The analysis is similar in the general mathematical approach 

to that presented by Latzko1 and Fettis2 tor an isothermal vall. 

They assumed a one-seventh power velocity protile, a simplified 

eddy dittusivity and a Prandtl number ot unity. However, 

1 



Latzko  obtained crude approximations to the first three 

p 
eigenvalues by using Legendre polynomials, while Fettis  obtain- 

ed good estimates of the same three eigenvalues by the use of 

Jacobi polynomials. 



II.  STATEMENT OF THE PROBLEM 

A schematic diagram shoving the coordinate system Is given 

In Figure 1.  We shall consider the section of pipe to the 

right of x = 0, where the vail heat flux is equal to zero.  The 

flov possesses a fully developed turbulent velocity profile 

and a selected entrance temperature profile at x ■ 0. 

Subject to the limitations given below, the steady state 

energy equation is: 

^Vlf-HH» (■> 

where  qr is the radial heat flux, positive in the +r  direction. 

In writing the energy equation (l), the usual basic assump- 

tions are adopted: 

a. The fluid properties are assumed constant. 

b. Viscous dissipation is negligible. 

c. Axial diffusion of heat is negligible compared to the 

axial convection. 

d. The flow is hydrodynamically fully developed. 

The statement of the problem is completed when the initial 

and boundary conditions are specified for the function  6(r,x). 



At the inner surface of the pipe, ve have: 

a0(r.x) 
* dr (2) 

where kw and  q represent the gas conductivity and flux at 

the vail, respectively. 

The fluid temperature at the entrance (i.e., at x ■ 0) 

is given by the following: 

e(r.oi.vfliHi)2 y (2a) 

Equations 1, 2 and 2a, and also the imposed condition 

that no infinite temperature exists, constitute the mathematical 

statement of the problem. 



III.  ANALYSIS 

In a previous paper, Latzko's differential equation 

from Equation (1) 

(3) 

for convective heat transfer in fully developed turbulent flov 

vith a velocity profile represented by the equation 

-vf^T (3a) 

was solved subject to the following boundary condition at the 

vail: 

qr.UrÖ 
(4) 

The present paper considers the same equation (3), but vith the 

boundary condition q ■ 0 at the vail.  This condition vhen the 

inlet temperature profile is constant leads to a trivial 

solution.  In order to obtain a non-trivial solution, an initial 

temperature represented by ♦he function 

'       * (5) 



is used, vhere  r  is defined a: the non-dimensional radius, 1—, 
R 

and 

[-(*)! 
A solution to Equation 3 can be written in the form 

0«glr) expH9x) 
(6) 

and, since the fluid temperature and vail temperature 

asymptotically approach each other as the pipe length increases, 

0 must be positive.  When the solution as given by Equation 6, 

is inserted into Equation 3 and use is made of the non-dimension« 

al radial transformation previously defined as z, the differen- 

tial equation (3) becomes 

;£(•-«■)£—* 
(7) 

vhere a» is defined as  ß 
k 

A procedure analogous to that used by Fettis  for the 

isothermal vail problem vas followed in obtaining a solution to 

equation 7 for this case, vhere the surface heat flux is zero. 

The appropriate boundary condition is: 

■T^«0 at 2*0 
dz (8) 



In addition, because of the singularity in Equation 7» i.e., 

when i ■ 1, it is necessary to require that the function g be 

finite at the centerline of the pipe. 

Solutions of Equation 7 vhich satisfy the above requirement 

and boundary condition will exist only for discrete values of M 

and have the form 

n«o (9) 

vhere g(z) is the eigenfunction solution of Equation 7.  The 

constants "D" must be determined to satisfy the initial condition 

6 {7.,O)S9Q*       vhere Q0  is prescribed entrance temperature profile. 

This may be accomplished by use of the orthogonality property of 

the eigenfunctions,  gn(z), that is 

r«v*a«w«-o 
(10) 

vhen  m # n.  Setting. 

n«o (ID 



ve  find  that 

D    i^jin  (|2) 

/o'z^(z)dz 

Before obtaining the solution of Equation 7» ve wish to 

consider the solution of the auxiliary equation 

itHi-^ "« 
which is similar, but not identical, to Equation 7* With the 

change of variable t«z7 , Equation 13 becomes an equation of 

the  hypergeometric   type: 

♦"-»äH^-'Haf^"-0 "4' 

The  details  for  obtaining  the  eigenvalues  and  eigenfunctions 

for   Equation  Ik   are   given  in  the  Appendix. 

Now assume that  a  solution  of Equation  7  can  be  found  in  the 

form 

In(z).£Dn *n(z] 
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If Equation 15 Is substituted into Equation 7, ve obtain 

lDn|^(l-2^)^+cunz^nl-0 (16) 

Because the elgenfunctlons <I>n  also satisfy the auxiliary 

Equation 13, Equation 16 becomes 

^Dnkz^ndJ-o.^nwl-O (17) 
nso L J 

Ve  can  nov make use  of  the  Galerkln method  to determine  the 

Dn by  requiring  that  the  left  side  of  Equation IT  be  orthogonal 

to the  $n   for     n  «  0,   1,   2   ...N,   thus  arriving at  the  following 

system of equations: 

^Dnpmn-^mnl (18) 

for m = 0, 1...N, with ABn defined by the equation 

Amn-jk7*mU)*nU)d2 (19) 

\ 



The characteristic equation of the system given by Equation 18 

is the determinant 

N      r 1 

XDnpnn-wnAmn  s0 

nso   "■ ■* 
(20) 

The roots of Equation 20 give approximations to the first n 

eigenvalues of Equation 7, and the complete solution to Equation 

3 is given by Equation 9* 

In the present case, vhere the  ^n^2^ and therefore the 

gn(z) are expressed as polynomials, the coefficients D  can 

be obtained explicitly provided the Initial temperature distri- 

bution can also be described by a polynomial.  For example, a 

suitable entrance temperature profile could be represented by the 

function 

öjfcn^id-r2)2^^14 
(21) 

By   equating  like  powers   of  the   function   z      ,   ve  obtain  the   follow- 

ing   system  of   al rebraic   equations   for  the   Dn: 

+0.26688 D 

-0.31298 D 

-O.86258 D 

■»•0.51278 D 

-O.I886U   D 

4  0.22691   D2 +   0.191*13   D3   ♦   0.32980  D4   «   0 

- 0.6816U   D2 -   0.98781   D3   -   5.1«2133   D4   «   0 

- 1.51668  D2 -   2.83335  D3   ♦  21.2971*7  D4   »  1 

♦  2.63729  D2 ♦   11.271*09  Ds  -   30.31206 D4   «   0 

- 0.36071   D2 -   7.95572   D3   +   1U.22U00  D4   =   0 

(22) 

10 



Solving the last four of Equations 22 for the coefficients Dn, 

ve obtain 

-1.1931*6 

0.25817 

0.06l657 

0.025205 

>   (23) 

Substituting these four values for the coefficients Dj  through 

D4  into the first of Equations 22, ve obtain for D  the 

numerical value 

D0 « 0.23965 (24) 

The   complete   solution   as   given  by  Equation   9   can  now be  written 

in  the   form 

_2 

^-«D^D.g, exp(^+D2g2 

exp(-?Rx) + D5«3 exp(-|ftx) 

+ D4«4  exp(|lx) (25) 

11 



or 

■^«0.23965-1.9346 exp 
9\ (-i'i° 26688-0.31298z7 

-0.862582,4 + 0.5l278z^, -0.I8864228 I 

4-0.25817 exp (--||-x)[o.2269l - 0.68l64z7 

-LWeeei14 + 2.63729z^, -0.3607lzMl 

+ 0.06166 exp (--^■X)|0.I94I3-0.98781z7 

-2.83335z,4 + 11.27409z21 - 7.95572z281 

+ 0.025205 exp (- -^- x)| 0.32980 - 5.42l33z7 

+ 2l.29747z,4 -30.3l206z2, + I4.22400z28l (26) 

where 

x2?       * 8 
7x0.199 Re (27) 

and  R   represents   the   inner  vail   radius 

12 



IV. DISCUSSION AND CONCLUSIONS 

The approach employed in obtaininr. a solution to Equation 3 

for the specified boundary condition was analogous to that first 

2 
used by Fettis in solving the isothermal problem with a uniform 

entrance temperature profile. However, to obtain a non-trivial 

solution for the present case it was necessary to assume that 

the fluid entering the pipe had a non-uniform temperature 

profil·e. The· eigenvalues Wn and the eigenfunctions~ remain 

unchanged for any profile chosen, because neither depend on the 

initial temperature distribution. In the chosen num~rical example, 

the initial temperature distribution was represented by the 

following equation: 

(28) 

where 81 is the initial centerline temperature. The centerline 

temperature as a function of length-to-diameter ratio is presented 

in graphical form for several pipe diameters in Figure 2, and in 

Figure 3 the mixing lengths for various initial Reynolds numbers 

are shown. All the presented data are for a fixed mass flow, pressure 

and entrance centerline temperature. The results show that as the 

Reynolds number increases the mixing length increases. The adjustment~ 

of the temperature profile from a radial variation to a uniform distri 

bution at succeeding axial stations are also presented in Figures 4 

through 9. The variations of the exponential decay factor "s2" vith 

l J 



Reynolds number are given in Table I. 

The engineer is often required to design mixing tubes with 

varying degrees of vail heat losses.  Thus, these calculations 

give the length of a perfectly insulated mixing tube for turbulent 

flow.  This is the minimum length mixing tube, since any vail losses 

vill require a greater length.  Calculations for non-perfectly 

insulated pipes were presented in Reference 8.  In the solution 

for non-perfectly insulated pipes, non-uniform entrance temperature 

profiles vere not considered. 

11» 
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APPENDIX A 

The general solution to Equation lh   is 

g « A PU.b.c.t) ♦ Btl'c P(a-c+l»b-c-».1.2-c.t)      (A-l) 

where 

a+b « 1 

ab = - — 
U9 

and   c = H 

For the boundary condition given by Equation 8 to be satisfied 

at z = o, B must be zero.  Therefore, Equation 15 now reduces 

to 

g « A F(a,b,c.z7) » A fUJi -A    . -. *71 (A-2) 

But at z = 1, g must be finite; hence, the function 7 at 

z B 1 is 

P(a,b,c,l) = r(c)r(c-a-b) . (A.3) 
r(c-a)r(c-b) 

and if 

v  6  A b * — and z = 1 
7 

16 



the  function  F becomes 

P(a. | -a. |. 1) 
7    7 

r(|)r(j-o-H,       s 

r(f-a)r(a)       r(7-a)r(a) 
(A-ll) 

Thus,   for  the  particular  values  of b and  c  given  above,  the 

series   for  the  function  F(a,b,c,l)  diverges  unless   it  terminates. 

This  requires  that  "a"  must  be  zero  or  a  negative  integer,   which 

leads   to  the   following  admissible  values   of   "a": 

o,   -1,   -2, ,   -n (A-5) 

yielding the corresponding eigenvalues 

-*n ■ ^  (-) (f + ») 

where n « 0, 1, 2, 3 . . . (A-6) 

The resulting polynomial solutions are included in  a more 

general class known as Jacobi polynomials and are defined by 

the equation 

F_(o; y; Z7)   ■ P(-n, i + n; 6; t7)# 
7     7 

(A-7) 

17 



For the present case 

a « n, where n«0,l, 2, 3. .. 

o » — 

Y ■ - 

(A-8) 

Thus, the eigenfunctlons of Equation 13 are given by the 

equation 

An Fn(f f «7) - An Fn (-n. f ♦ n; |; ^) (A-9) 

where the A„ are arbitrary constants, n " 

The functions Fn(*) are orthogonal with respect to z5 as a 

weight factor: 

I 
J 

1 z5 F(z) F„(2) dz ■ o for m j* n in     n 
o 

(A-10) 

1 z5 FJ(Z) dz ■ cj when m « n 
0 

In terms of the variable t « z7, the orthogonality 

relation Is 

C1 tY"1 (l-t)a"Y FmFndt « o for m « n. (A-ll) 

18 



where 

-I 
7 

and 

I 1 tY"l(l.t)a-T Pjdt n o 

r(Y) F (o ♦ l-y)  (o + 1 -Y)n   n! (A-12) 

r(o)        (a)n (Y)n     2n 

It is easily verified that for the values o and y  given 

above. Equation 26 becomes 

(njl2 - Cj (A-13) f1 z5 F2dl ,  (n')^  

where 

(o)  ■ a (o ♦ 1) (a ♦ 2)...(o + n-l) for n 1, 2, 3... n 

19 
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with (o)  defined as o 

(a)o - 1. 

For n = o, 1, 2, 3 and U Equation 27 yields 

C  « 0.1»082 o 

C ■ 0.2609 

C  « 0.2155 
2 

c - 0.190U 
3 

C  ■ 0.1738 (A-l»») 

The first five Jacobi polynomials are easily obtained by 

expanding the series 

P (o; Y; t) ■ P(-n, o + n; y; t) ■ 1 
n 

n k 
+ y /P\ (a» n) ( Q ■!• n •»• l) ... (a*  n -»• k - I) r*   (A-15) 

k-l      Y(Y + 1)---<Y + k-D 

for n « 0, 1 ♦ ...1» and y # 0, -1, ...-n + 1. 

20 



For n ■ o 

F (o, Y. t) « 1 
o 

D « 1 

F (a, Y. t) » 1 - 2.1667 z7 
1 

n - 2 

F (a, Y, t) « 1 - 6.6667 x7 + 6.9231 s1** 
2 

(A-16) 

n « 3 

F (o, Y, t) « 1 - 13.5000 z7 + 35.3077 t1** - 21».1269 z21 

3 

n ■ U 

F (o, Y. t) « 1 - 22.6691 z7   + 107.2U29 z11*   - 171.5886 i21 
k 

+ 87.3830 z28 

With the  Cn  and  F    thus  obtained,   ve  now proceed to  obtain 

an  approximate  solution  to Equation  7  by  applying  the  Galerkin 

technique. 

For  this method.   It   is  convenient  to define a  set  of 

functions  *     (z)   such   that n 

#,(»)  « 

F   (z; n 
n Cn  -T 

nsl,   2,   ... (A-17) 

21 



T 

with the property that 

X       C1 z5 f (■) *(z)   dz - 6nn (A-i8) 

where 

'mn 
f« 0 if m j* n 

\« 1 if m « n 
(A-19) 

For n = o we shall define 

(A-20) 

while the eigenfunctions ♦n(z) for  n = 1, 2, 3 and h  are 

computed by substitution of the Xnt C  and F  directly into 

Equation 31.  Listed below are the first five eigenfunctions: 

♦  « 2.UU95 
0 

♦ ■  O.U018  -  O.8TO6  z7 

1 

♦ -  0.2773  - 1.81»88   z7  +  1.9199  z11* 
2 

♦ «  0.2206  -  2.9776  z7  +  7.7877   *lk   -   5.321621 

3 

♦ ■  0.1866 - U.2293   z7  +  20.0080  zlk   -  32.0128  z21 

«♦ 

+  16.3028   z28 

►    (A-21) 
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TABLE     I. 

VARIATION  OF  THE  EXPONENTIAL  DECAY 
FACTOR  WITH  REYNOLDS   NUMBER 

R   (Inches) Re x  10    5 B2 

n 

__ ~"     2.2k939 ""        1.63577 
5.01*350 

10.20157 
20.37003 

0.500 1.6870U 1.31831 
k.06k69 
8.22172 

16.U1676 

0.625 1.3U96U ~        1.11516 
3.'♦3831 
6.9^13 

13.88689 

0.750 1.12U70 0.97263 
2.99888 
6.06589 

12.11209 

0.875 0.96U03    "~       ^~    0.8661»U 
2.671U6 
5.1»036l 

10.78969 

1.000 0.8U352 ~ 0.78387 
2.U1688 
1».88867 
9.76l»»7 

1.125 0.7,*980 0.71760 
2.21251* 

8.93615 

1.250 O.67U82 0.66308 
2.0U1*1»3 
»».13531 
8.25720 
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TABLE     I.      (Continued) 

R  (inches) Re  x  10 ß' 

1.37 5 0.613 0.61733 
1.90339 
3.85002 
7.68755 

1.500 0.562 0.57833 
1.78315 
3.60680 
7.20189 
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