

AFCRL-67-0069

00

10

GI

00

Sji

60)

KESEARCH DIRECTED TOWARD THE STUDY OF SEISMICITY IN THE SOUTHEASTERN UNITED STATES

John W. Minear

Research Triangle Institute P. O. Box 12194 Research Triangle Par , North Carolina 27709

Contract No. AF 19(629)-3892

Project No. 8652 Task No. 865207

FINAL REPORT January 2, 1964 thru December 15, 1966 January 1967

Work sponsored by Advanced Research Projects Agency, Project VELA-UNIFORM ARPA Order No. 292, Project Code No. 8100 Task 2

Prepared for

. 'R FORCE CAMBRIDGE RESEARCH LABORATORIES OFFICE OF AEROSPACE RESEARCH UNITED STATES AIR FORCE BEDFORD, MASSACHUSETTS

RESEARCH TRIANGLE PARK, NORTH CAROLINA 27709

DISCLAIMER NOTICE

THIS DOCUMENT IS THE BEST QUALITY AVAILABLE. COPY FURNISHED CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY. AFCRL-67-0069

RESEARCH DIRECTED TOWARD THE STUDY OF SEISMICITY IN THE SOUTHEASTERN UNITED STATES

John W. Mine: 🕆

Research Triangle Institute P. C. Box 12194 Research Triangle Park, North Carolina 27709

Contract No. AF 19(628)-3892

Project No. 8652 Task No. 865207

FINAL REPORT

January 2, 1964 thru December 15, 1966

January 1967

Work sponsored by Advanced Research Projects Agency, Project VELA-UNIFORM ARPA order No. 292, Project Code No. 8100 Task 2

Prepared for

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES OFFICE OF AEROSPACE RESEARCH UNITED STATES AIR FORCE BEDFORD, MASSACHUSETTS

Approved by:

John W. Minear

Project Director

Jamés J. B. Worth, Director Scophysics Laboratory

Distribution of this document is unlimited.

ABSTRACT

This is the final report covering research directed toward the study of the seismicity of the Southeastern United States. Travel-times determined from local earthquake and refraction data are presented which indicate a crustal structure of $h_1 = 33.0 \text{ km} (\alpha = 5.88 \text{ km/sec})$, $h_2 = 10.8$ km ($\alpha = 6.58$ km/sec), and an upper mantle velocity of 8.10 km/sec. Fundamental and first higher order Rayleigh group-velocity data determined by digital bandpass filtering are presented for the Southern Appalachian region. The Dunkin modification of the Thomson-Haskell matrix method is used to compute theoretical Rayleigh dispersion curves for comparison with the observed curves. A slight velocity reversal in the upper crust centered at about 15 km, a general increase of crustal velocities and densities with depth below this zone, and an upper mantle low velocity zone beginning at a depth of 70 km are indicated beneath the Southern Appalachians. The Appalachian foreland has crustal structure similar to the Gutenberg-Birch II continental model with a total thickness of 40 km.

A sin x/x analysis of the Bouguer gravity data yields a total crustal thickness of about 50 km beneath the Southern Appalachians.

P-residuals computed at Chapel Hill, North Carolina and McMinnville, Tennessee show a systematic deviation of as much as ± 3 sec.

TABLE OF CONTENTS

1.0	INTRODUCTION		1		
2.0	TRAVEL-TIME CURVES FOR THE SOUTHEASTERN UNITED STATES 4				
3.0	CRUSTAL THICKNESS FROM GRAVITY DATA 8				
4.0	DETERMINATION C	F RAYLEIGH GROUP VELOCITY	12		
5.0	THEORETICAL RAY	LEIGH DISPERSION CURVES	18		
	5.1 Thomson-Ha	skell Matrix Method	18		
	5.2 Numerical	Difficulties in the Thomson-Haskell Method	20		
	5.3 Dunkin Mod	ification of the Haskell Method	25		
	5.4 Computatio	nal Procedure	26		
	5.5 Variation	of Phase Velocity with Layer Parameters	35		
6.0	CRUSTAL AND UPPER MANTLE STRUCTURE IN THE SOUTHEASTERN				
	UNITED STATES 40				
7.0	CONCLUSIONS		59		
	ACKNOWLEDGMENTS				
	REFERENCES				
	APPENDIX I:	Evaluation of the Secular Equation in Computing			
		Rayleigh Dispersion			
	APPENDIX II:	Modal Shape Computati rs			
	APPENDIX III:	Fortran Listings of Computer Programs FLATRAY,			
		STRESS, INTEGRAL, TRAVEL, VARGRAV, and PRESID			
	APPENDIX IV.	Curves of Particle Displacements and Partial			
		Derivatives of Phase Velocity with respect to Laye	≥r		
		Parameters			

.

1.0 INTRODUCTION

This final report covers the work done on contract AF 19(628)-3892, "Research Directed Toward the Study of the Seismicity of the Southeastern United States". The report is mainly concerned with the work done over the past year; the determination of crustal and upper mantle structure in the Southeastern United States. The First Annual Technical Report [Minear, 1965] covers the development, installation, and calibration of the short-period displacement seismograph at the University of North Carolina and the RTI field refraction system. The Second Annual Technical Report [Minear, 1966] includes the location of local epicenters, the results of the field refraction studies, the results of the computation of P-residuals, the calculations of magnitude, focal depth, and energy release for several local earthquakes, and preliminary crustal structure estimates from gravity data.

Research accomplishments during the performance of the contract are briefly summarized below.

1) During the first year of work a short-period displacement seismograph system was designed, constructed, and placed on routine operation at the University of North Carolina seismograph vault at Chapel Hill, North Carolina. Although the system performed well [Minear, 1965], the background noise level at the UNC station was too high to permit recording of local earthquakes located mainly in the Southern Apralachians. At present, a remote vault is currently under construction by the University to provide an up-to-date seismic facility.

2) Refraction work was carried out using local quarry blasts as energy sources.

3) Local travel-time curves were developed using several of the major local earthquakes which were well recorded by portable and permanent stations in the region.

4) P-residuals were computed for several hundred epicenters recorded at the Cumberland Plateau Seismolog.cal Observatory and Chapel Hill, North Carolina. A systematic deviation of the residuals similar to that noted by other investigators was found. This deviation cannot be explained by crustal velocity variations and must indicate a real error in the Jeffreys-Bullen travel-times.

5) Estimation of focal depth, magnitude, and emergy release from previous intensity studies of four Southeastern earthquakes were made.

6) Total thickness of the Southern Appalachian crust was determined using Bouguer gravity anomalies and the sin x/x method of computing the mass anomaly producing a given gravity anomaly.

7) Crustal and upper mantle structure was determined using fundamental and first higher Rayleigh mode group velocity dispersion.

8) Computer programs were written for bandpass filtering, computation of P-residuals, least squares epicenter location, computation of theoretical travel-times from a given velocity structure, computation of theoretical Rayleigh dispersion curves and modal shape, computation of the variation of phase velocity with layer parameter variations, and the computation of the mass anomaly from a given gravity anomaly profile.

At the start of the project, it was anticipated to do considerable work on phase and amplitude spectra of both seismic signals and background noise. Also, it was hoped that more work could have been done on general seismicity, distribution of epicenters, tocal depth, and energy release. Failure to

acquire a digital system and the fact that much work had been done on background noise did not make the study of spectra appear worthwhile. The general seismicity study was frustrated by the poor recording station distribution in the region. Therefore, crustal and upper mantle structural studies utilizing refraction, gravity, and surface wave dispersion were concentrated on.

This report specifically covers the local travel-time curves for the Southern Appalachian region (Sec. 2), the determination of crustal thickness from gravity data (Sec. 3), the computation of theoretical dispersion curves (Sec. 4), the determination of Rayleigh group velocities (Sec. 5), and the crustal and upper mantle structure in the Southeastern United States (Sec. 6).

Numerical computational methods, tables, charts, and computer program listings are presented in the Appendices.

2.0 TRAVEL-TIME CURVES FOR THE SOUTHEASTERN UNITED STATES

Travel-time curves were determined by using data from three local earthquakes which were well recorded by Worldwide Standard Seismograph Stations and portable Vela stations operating in the Southeastern United States [Minear, 1966]. Fig. 4 shows the location of the epicenters and recording stations. Travel-time curves drawn from the local earthquake data are shown in Fig. 1. Refraction data obtained from quarry blasts and during the East Coast Onshore Offshore Seismic Experiment and theoretical travel-times computed for a typical linear mountain from the Herglotz-Wiechert equations are also plotted in Fig. 1.

Travel-time curves corresponding to arrivals from the first crustal layer and from the crust mantle boundary are drawn from first arrivals and are estimated accurate to within \pm .1 km/sec. Second arrivals were used to define curves corresponding to two major crustal layers. No major third layer in the crust is indicated by the refraction and earthquake data. However, first arrivals from the refraction profiles and second arrivals from 250 to 550 km, indicate that the crustal velocity may increase rether continuously from about 10 km to around 45 km. The local travel-time data yields a crustal model of $h_1 = 33.0$ km ($\alpha = 5.88$ km/sec), $h_2 = 10.8$ km ($\alpha = 6.58$ km/sec), and an upper mantle velocity of 8.10 km/sec. As can be seen from Fig. 4, the epicenters and recording stations are generally located to the west of the core of the Appalachians. Crustal structure determined from the travel-time data thus corresponds to the crust beneath the Appalachian foreland.

Velocity structures of the crust and upper mantle for the Appalachian foreland, the Northern Alps (N), Central Alps (C), and Northern Alpine foreland (F) [Knopoff, et al, 1966], and a linear mountain belt are shown in Fig. 2. Crustal velocities for the Appalachian foreland generally agree

with those for the Northern Alps at depths greater than about 2 km. The disagreement for depths less than 2 km can probably be accounted for by the sedimentary cover present in the Northern Alps. The 5.85 km/sec layer in the Appalachian foreland, extending to a depth of 33 km, is thicker than any of the Alpine structures. However, as mentioned, the Appalachian foreland velocities may increase rather continuously from about 10 to 40 km. Upper mantle depth in the Appalachian foreland is greater than beneath the foreland to the north of the Alps by 14 km and greater than beneath the central Alps by 4 km.

A preliminary summary of seismic refraction work in the vicinity of the Cumberland Plateau Seismological Observatory [Bricherdt et al, 1966] indicates a crustal model of $h_1 = 12$ km ($v_1 = 6.1$ km/sec); $h_2 = 28$ km ($v_2 = 6.7$ km/sec) and an upper mantle velocity of $8.0 \div$ km/sec.

3.0 CRUSTAL THICKNESS FROM GRAVITY DATA

Total crustal thickness was computed from Bouguer gravity values along a Northwest-Southeast profile extending from about 460 km off the North Carolina coast (33°N, 73°W) to the Kentucky-Illinois border (38°N, 88°W). The sin x/x method of Tomoda and Aki [1955] was used to compute the depth to a mass anomaly producing the observed gravity anomalies. Bouguer gravity values were taken from the American Geophysical Union Bouguer Gravity Anomaly Map of the United States. Fig. 3 shows the gravity profile values, the total crustal thickness computed from these anomalies, and regional subsurface geology. The subsurface geological information was ostained from McGuire and Howell [1963] in Kentucky, Hersey, et al [1959] for the North Carolina continental margin, and from the geologic map of North Carolina. Crustal structure to the crust-mantle boundary at location H', and to 2 km at 12-13 is based on refraction profiles of Hersey, et al The subsurface geology in North Carolina is intended only to indicate possible near surface relations between geology and Bouguer gravity anomalies.

In the sin x/x method, crustal thickness is computed from

$$d(nx) = d - d'(nx)$$
 3.0-1

where d is an assumed thickness and d'(nx) is a correction to this thickness given by

$$d'(nx) = \frac{M(nx)}{\Delta \rho} . \qquad 3.0-2$$

M(nx) is the convolution of the observed gravity anomalies $\Delta g(q\Delta x)$ with a symmetric function Φ which is a function of assumed crustal thickness and station spacing. Thus,

$$M(nx) = \frac{1}{2\pi^2 k^2} \sum_{q=-m}^{q=m} \Delta g(q\Delta x) \Phi_{n-q} \qquad 3.0-3$$

-1-

Oscillations in the gravity values $\Delta q(q\Delta x)$ due to near surface density irregularities can result in $\Delta q(q\Delta x)$ going positive and negative, such as in the region over the slate belt in Fig. 3. Thus, M(nx) may oscillate between positive and negative values which in turn yields positive and negative oscillations of d'(nx). The ultimate effect is that in the regions of local near surface perturbations, the total crustal thickness, d(nx), may oscillate widely about the assumed thickness, d, as can be seen from 3.0-1. Introduction of a density contrast $\Delta \rho$ which varies with depth will not eliminate these oscillations. One must either choose the station spacing wide enough so that the convolution of the anomalies with the function Φ_n effectively filters out the local perturbations or smooth the total depth function **d**(nx).

From Fig. 3, it can be seen that the Carolina Slate Belt is associated with a gravity high which effectively introduces a positive perturbation on the regionally decreasing gravity. If the crustal thickness is computed without removing this perturbation, the thickness oscillates about the assumed thickness beneath the belt. As shown in Fig. 3, the local gravity high over the slate belt can be largely accounted for if the belt is approximated by a two-dimensional block with lateral extent equal to the slate belt, an 8 km depth and a density contrast of .26 gm/cm⁻³.

Crustal thickness was computed from 3.0-1 using 3.0-2 and 3.0-3 with an assumed crustal thickness of 45 km and a station spacing of 60 km. The thickness values were then smoothed with a three point moving average filter (.25, .50, .25) resulting in the smoothed crustal thickness curves shown in Fig. 3. Two curves are plotted, corresponding to crustal-upper mantle density contrasts of .3 and .6 gm/cm⁻³. Since the ocean's crust is denser than the continental crust, the 40=.3 curve approximates the crustal thickness

better under the continental margin. The agreement with the thickness as determined by refraction work [Hersey, et.al., 1959] at point H' is good. Both curves indicate a crustal thickness of at least 50 km under the Southern Appalachians. Perturbations in the crustal thickness are caused by the Cincinnati Arch and the Carolina Slate Belt. The thinning of the crust necessary to produce the Bouguer anomaly over the Cincinnati arch and the slate belt is about 9 km for the $\Delta \rho$ =.6 curve and about 4.5 km for the $\Delta \rho$ =.3 curve. Due to the magnitude of the crustal thickness changes, it appears that the sources of the local highs over the Cincinnati Arch and the Carolina Slate Belt are relatively near surface.

The crust thus thickens from about 83 km at the North Carolina coast to about 51 km beneath the core of the Appalachians and then thins to about 43 km at the Kentucky-Illinois border.

4.0 DETERMINATION OF RAYLEICH GROUP VELOCITY

The locations of permanent recording stations in the Southeastern United States lie principally along the Appalachian trend (See Fig. 4). Permanent worldwide standard stations capable of recording long-period seismic signals are located at Spring Hill, Alabama (SHA); Atlanta, Georgia (ATL); McMinnville, Tennessee (CPO); Blacksburg, Virginia (BLA); and Oxford, Mississippi (OXF). Portable long-period units have been operated by the Geotechnical Corporation under project Vela, but these stations are also located along the Appalachians. Because of the widely space station, it was impossible to calculate phase velocities directly using triangular arrays of stations. Therefore, epicenters were selected to give travel paths parallel or perpendicular to the Appalachian trend. It was hoped that variations in crustal and upper mantle structure between stations located along the Appalachians could be detected by observing the variation of group velocity of a wave train traveling the station sequence SHA -ATL -BLA parallel to the Appalachian trend or by comparing group velocities at BLA and ATL from waves arriving perpendicular to the Appalachian with those of a normal continental structure.

On the basis of epicentral location, signal amplitude, and availability of records, two epicenters were selected for study. Table II gives the information pertinent to these epicenters.

Epicenter Location (USGS)	Date	Time (USGS)	Magnitude (USGS)	Focal Depth(km) (USGS)	Distance(km) to station
Jalisco, Mex. 17.8∖, 105.9₩	11 Oct., 1963	10:17:07.6	5.0	33	BLA - 3286.3 OXF - 2467.3 SHA - 2291.0 ATL - 2757.6
S. Alaska 62.7N, 132.0W	29 June, 1964	07:21:32.8	5.6	33	BLA - 5488.0 OXF - 5276.3 SHA - 5110.0 ATL - 5633.9

Table II

Fig. 4

Records from the standard stations were hand digitized at two second intervals using a plastic grid overlay. This digital data was stored on magnetic tape for processing. Since the azimuths of the epicenters measured from the recording stations did not coincide with either of the horizontal component seismograph orientations, Rayleigh wave motion was contaminated by Love wave motion. In order to separate the Rayleigh and Love wave motions, radial and transverse seismograms were generated from the North-South and East-West components at each station. The relations used in the transformations were

> radial component = $r = \overline{OE} \cos\theta + \overline{ON} \sin\theta$, and transverse component = $t = \overline{OE} \sin\theta - \overline{ON} \cos\theta$.

where

θ = azimuth of epicenter from station measured counterclockwise
from east,

OE = east-west component amplitude, positive toward east,

ON = north-south component amplitude, positive toward north

r>0 => radial motion toward epicenter, and

t>0 => transverse motion to right of propagation direction.

Sections of Rayleigh wave motion were then determined from visual inspection of plots of the radial and transverse components. Determination of the particle motion of small amplitude high frequency motion in the presence of laige amplitude low frequency motion is difficult. Ideally, the radial and transverse components should be band-pass filtered to separate the frequencies and particle motion then determined for specified frequency intervals. However, due to the computer time involved, this was not feasible for this study. Since only the first higher Rayleigh mode was present on the recordings, the particle motion for the frequencies in -lved could be fairly well obtained from the unfiltered radial and transverse components.

Vertical component records were convolved with 101 point, digital, band-pass filters described by Minear [1966]. Pass bands of 60-100, 25-62, 16-30, 10-17, and 7-13 sec were used successively. The filtered data was plotted by using a Calcomp plotter. Period was obtained by reading the peak-to-peak period from the Calcomp plots. Arrival time for the period was taken as the time defined by

$$t_{A} = t_{pi} + \frac{t_{p2} - t_{p1}}{2}$$

with the quantities defined in the following figure.

Group velocity wis then obtained by dividing the epicentral distance by the arrival time.

Group velocity vs. period data for the Southern Appalachians is presented in Table III and ______rigs.8-11.

EFTCENTER-S. ALASKA STATION-AFLANTA, GA.

· • • • •

EPICENTER-3. ALASKA STATION-OXFORD, MISS.

Fundamentel Revleigh		First Higher Reyleigh		Pundamental Roylwigh		Fundamental Reyleigh	
Period(sec)	Group Velo⊆ity(cm/sec)	Period(sec)	Group Velocity(km/eec)	Period(eec)	Group Velocity(km/eec)	Period(sec)	Group Velocity(km/sec)
54.00	3.72	8.64	3.52	67.04	3.84	12.40	3.01
52.75	3.72	7.85	3.56	54.79	3.67	12.40	2.96
41.13	3.53	7.85	3.55	40.04	3.37	11.78	3.07
36.90	3.62	7,85	3.51	34.54	3.49	11.62	3.05
32.81	3.44	7.07	3.49	31.40	3.41	10.52	2.98
30,62	3.38	7.07	3.47	29.05	3.35	9.89	2.97
26.09	3.29	7.07	3.49	26.85	3.14	9.89	2.92
27.00	3.24	6.28	3.46	24.81	3.29	9.89	2.90
27.00	3.19	6.28	3.45	24.65	3.24	9.73	2.95
24.02	3.14	6.91	3.50	23.71	3.09	9.73	2.88
19.31	3.05	6.12	3.54	23.08	3.05	8.32	2.93
18.68	3.02	6.12	3.47	21.51	2.97	8.16	2.86
18.84	2.96	5.65	3.52	20.25	3.01	8.01	2.89
18.21	2.99	5.34	3.43	19.94	2.94		
18.06	2.86	4.55	2.53	19.94	2.93		
18 06	2.31			18.37	2.91		
17.90	2,91			18.06	2.85		
16.80	2.94			17.74	2.90		
16.17	2,88			17.43	2.88		
15.70	2.81			16.64	2.73		
15.17	3.04			16.17	2.83		
14.13	2.98			16.17	2.76		
13.25	3.02			16.01	2.78		
13.03	3.07			15.86	2.80		
12.09	3.13			14.97	2.88		
12.09	3.00			14.86	2.86		
10,99	3.11			14.70	2.83		
1: 99	3.09			13.56	2.81		
9.26	3.01			13.19	3.03		
7.54	3.01			12.87	2.98		
7 54	٦,00						
7.22	2.99						
6.59	2.98						

EPICENTER-JALISCO, MEX. STATION-ATLANTA, GA.

2.5.

6.44

EPICENTER-JALISCO, MEX. STATION-BLACKSBURG, VA.

Fundamentel Reyleigh		First His onyleigh		Fundamentel Reyleigh		First Higher Baylaish	
Period/sec)	Group Velocity(km/eec)	Period(eec)	Group Velocity(km/eec)	Period(eec)	Group Velocity(km/eec)	Period(sec)	Group Velocity(km/eec)
55.89	3.76	10.05	3.25	65.16	4.11	18.37	3.76
44.90	3.52	9.89	3.29	62.02	3.81	16.17	3.84
18.7P	3,34	9.89	3.22	50.08	3.55	16.01	3.98
33.75	3.20	8.79	3.16	39.41	3.38	14.13	1.12
27.48	3.20	8.32	2.98	32.34	3.26	13.97	1 23
22.45	3.11	8.01	3.13	31.87	3.26	13.82	3,123
19.94	3.03	8.01	3.05	29.67	3.07	13.66	3.50
17.11	2.97	8.01	3.00	26.38	2.99	13.35	3 20
16.80	2.92	7.85	3.08	25.90	2.92	13.35	3 54
12.40	2.89	7.07	3.18	25.40	2.87	13.03	3.49
12.09	2.70	6.28	3.10	19.80	2.77	12.25	3.47
11.93	2.66	5.81	3.03	19.50	2.79	12.09	3.104
11.78	2.85			18,10	2.69	11.93	3.45
11.78	2.82			14.29	2.77	11.93	1 17
11.52	2.78			13.50	2.74	11.78	3147
19.99	2.69			12.56	2.70	11.46	3.40
10.99	2.66			12.09	2.63	10.68	3 11
19.36	2.75			11.93	2.65	10.05	3.16
10.21	2.75			11.78	2.60	9.73	3.00
10.05	7.72			9.89	2,58	9.26	3.10
10.99	2.69			8,01	2.56	8.16	3,10
9.89	2.73			6. 12	2.55	8.01	1.03
6.90	2.62					7.85	3.00
8.80	2.6					5.97	1.01
8.20	2.64						.d • 173
8.19	2.60						
8.16	2.58						
5.16	2.55						
7.69	2.64						

TABLE III (CONT'D)

1

٠

.

٠

.

.

.

EPICENTER-S. ALASKA STATION-BLACKSBURG, VA.

77

Fund	lamental Rayleigh	First Higher Rayleigh		
Period(sec)	Group Velocity(km/sec)	Period(sec)	Group Velocity(km/sec)	
55,88	4.06	33.13	4.27	
62.64	3.88	32.97	4.16	
58,88	3.72	31.09	4.43	
49.14	3.73	30.93	4.32	
39.41	3,62	30.46	4.54	
39.41	3, 53	28.73	4.09	
31.40	3 45	20.72	4.23	
27.00	3.20	20.10	4.35	
25.43	3.15	17.11	6.18	
25,28	3.10	15.54	4.29	
21.82	3,06	15.23	3.94	
19,94	3.03	14.44	3.98	
19.94	2.97	13.50	4.12	
18,68	2.89	13.03	4.20	
18.06	3.00	13.03	4.16	
18.06	2.94	13.03	4.02	
17.58	2.87	12.72	3.90	
17.58	2.84	12.72	3.80	
16.17	2.89	12.40	3.86	
15.86	2.92	12.25	3.83	
15.39	2.87	11.93	3.76	
13.97	2.84	11.46	3.73	
11.62	3.08	11.78	3.70	
11.62	3.04	9.89	3.49	
11.30	3.06	8.01	3.52	
10,21	3,10	7.85	3.46	
9.42	3.02	7.69	3.60	
9.26	3.00	6.12	3.58	
8.32	2.98	6.12	3.54	
8.16	2,92	6.12	3.51	
8.01	2.93	6.12	3.47	
7.85	3.06	5.97	3.55	
7.85	2.94	5.65	3.57	
7.22	3,00			
7.22	2.99			
7.22	2.97			
6.91	3.07	•		
6.91	3.04			
6.75	3.05			
6.75	3.03			
6.28	2.96			
6.28	2.90			
6.12	3,02			
5.65	2.91			

A CALL CONTRACTOR CONTRACTOR

5.0 THEORETICAL RAYLEIGH DISPERSION CURVES

The basic Thomson-Haskell matrix method was used to compute phase and group velocity vs. period curves for layered earth models. A computer program was written to compute Rayleigh wave dispersion curves and mode shape using the modified formulation of the Thomson-Haskell method presented by Dunkin [1965]. A program was also written to compute mode shape using the Thomson-Haskell method A discussion and comparison of the computation methods used is given in this section. Appendix I and II contain detailed descriptions of the actual mechanics of computation and computer programming. Fortran listings of the programs are given in Appendix III.

5.1 Thomson-Haskell Matrix Method

As is well known, the Thomson-Haskell matrix method consists of evaluating the roots of a determinant formed by the repeated multiplication of 4 x 4 layer matrices which are functions of the layer parameters of density, thickness, compressional velocity, shear velocity, as well as phase velocity and period.

Using Haskell's notation, the displacement-stress matrices at the top and bottom of the $m^{\underline{th}}$ layer are given by

$$\begin{bmatrix} \frac{\dot{\mathbf{u}}_{\mathrm{m}}}{c} \\ \frac{\dot{\mathbf{w}}_{\mathrm{m}}}{c} \\ \mathbf{\sigma}_{\mathrm{m}} \\ \mathbf{\sigma}_{\mathrm{m}} \\ \mathbf{\tau}_{\mathrm{m}} \end{bmatrix} = \mathbf{a}_{\mathrm{m}} \begin{bmatrix} \frac{\dot{\mathbf{u}}_{\mathrm{m}-1}}{c} \\ \frac{\dot{\mathbf{w}}_{\mathrm{m}-1}}{c} \\ \frac{\sigma_{\mathrm{m}-1}}{c} \\ \frac{\sigma_{\mathrm{m}-1}}{c} \\ \frac{\tau_{\mathrm{m}-1}}{c} \end{bmatrix}$$

(5.1-1)

where $a_m = D_m F_m^{-1}$ is the mth layer matrix. By repeated application of (5.1-1), Haskell shows that, assuming no stresses at the free surface $z_m = \tau_0 = 0$ and no sources at infinity,

where $J = F_n^{-1} a_{n-1} \cdots a_1$ is the matrix product of the 4 x 4 layer matrices a_m , eliminating Δ_n' and ω_n' between the four equations yields

$$\frac{\dot{u}_{0}}{\dot{w}_{0}} = \frac{J_{22} - J_{12}}{J_{11} - J_{21}} = \frac{J_{42} - J_{32}}{J_{21} - J_{41}}$$
(5.1-3)

Since the J_{ij} , are functions of phase velocity and wave number , (5.1-3) is an implicit relation between c and k and thus the phase velocity dispersion function. The layer matrix elements of a_m are either trigonometric or hyperbolic functions depending on whether the phase velocity is greater than or less than the layer compressional and/or shear velocities. The multiplication of real and imaginary components of matrices on a computer which does not have complex number subroutines would in genera! add considerable complexity to the problem. However, ad = 3 shown in Appendix I, the form of the layer matrices leads to a simple solution by which the multiplication of the matrices with real and imaginary elements can be accomplished by the multiplication of certain elements by ± 1 .

5.2 Numerical Difficulties in the Thomson-Haskell Method

)

In practice, numerical computational difficulties are encountered in the repeated matrix multiplication required to evaluate the roots of (5.1-3). These difficulties are encountered as the product of kH, where k is the wave number, and H is the total thickness of the layered earth model, becomes large. Dorman, Ewing, and Oliver [1960] have used an upper limit of about 30 for kH. When the value of kH reaches about 30, the number of layers can be reduced and the computation continued with a reduced thickness. Little error is introduced by this technique. However, for higher modes and hence, higher frequencies, the product kH may be relatively large even for layered earth models of small total thickness, H.

Dunkin [1965] has shown the numerical difficulties are caused by the computation of large exponentials and a resulting loss of singificant figures. Dunkin's development is briefly repeated below in order to show the effect of loss of significance due to the addition of large and small quantities on the Haskell matrix. The agrument is applied directly to the Haskell dispersion equation (5.1-3) rather than to the secular equation used by Dunkin.

Let the scalar and vector potential functions for an elastic body have the form

$$\phi_{n} = \exp ik(ct-x) \left[A_{n} \exp(ikz \sqrt{c^{2}/\alpha^{2}} + B_{n} \exp(-ikz \sqrt{c^{2}/\alpha^{2}} - 1))\right]$$

$$= \exp ik(ct-x) \left[\phi_{n}^{+} + \phi_{n}^{-}\right]$$

$$\psi_{n} = \exp ik(ct-x) \left[C_{n} \exp(ikz \sqrt{c^{2}/\beta^{2}} - 1) + D_{n} \exp(-ikz \sqrt{c^{2}/\beta^{2}} - 1))\right] \quad (5.2-1)$$

$$= \exp ik(ct-x) \left[\psi_{n}^{+} - \psi_{n}^{-}\right]$$

Using (5.2-1) and the equation

$$S(u,v,w) = \nabla \cdot \phi + \nabla x \psi (\psi_1, \psi_2, \psi_3) \qquad (5.2-2)$$

the displacement-stress vector, S_n , can be expressed as

$$S_n(z) = T_n \phi_n(z)$$
 (5.2-3)

where

$$\Phi_{n}(z) = \begin{bmatrix} \phi_{n}^{+} \\ \psi_{n}^{+} \\ \phi_{n}^{-} \\ \phi_{n}^{-} \\ \psi_{n}^{-} \end{bmatrix}$$

and T_n is a 4 x 4 matrix function of c, k, and the layer parameters.

Taking the origin at the z_{n-1} interface (5.2-1) gives

$$\phi_{n-1} = A_n + B_n = \phi_n^+ (z_{n-1}) + \phi_n^- (z_{n-1})$$

$$\psi_{n-1} = C_n + D_n = \psi_n^+ (z_{n-1}) + \psi_n^- (z_{n-1})$$

At the z_n interface

$$\phi_n = A_n \exp ikd_n r_{\alpha n} + B_n \exp -ikd_n r_{\alpha n} = \phi_n^+ (z_n) + \phi_n^- (z_n)$$

$$\psi_n = C_n \exp ikd_n r_{\beta n} + D_n \exp -ikd_n r_{\beta n} = \psi_n^+ (z_n) + \psi_n^- (z_n)$$

The relation between $\Phi_n(z_n)$ at the z_n interface and $\Phi_n(z_{n-1})$ at the z_{n-1} interface is then

$$\Phi_{n}(z_{n}) = E_{n} \Phi_{n}(z_{n-1})$$
(5.2-4)

where

$$E_{n} = \begin{bmatrix} expikd_{n}r_{\alpha n} & 0 & 0 & 0 \\ 0 & expikd_{r}r_{\beta n} & 0 & 0 \\ 0 & 0 & exp-ikd_{n}r_{\alpha n} & 0 \\ 0 & 0 & 0 & exp-ikd_{n}r_{\beta n} \end{bmatrix}$$
(5.2-5)

At the n-1 interface

 $S_{n}(z_{n-1}) = T_{n}\phi_{n}(z_{n-1})$

or

$$\Phi_n(z_{n-1}) = T_n^{-1} S_n(z_{n-1})$$
 (5.2-6)

Now, by the boundary conditions of the continuity of stress and displacement

$$S_n(z_n) = S_{n+1}(z_n) = T_n \phi_n(z_n)$$
 (5.2-7)

Substituting (5.2-4) for $\phi_n(z_n)$ and (5.2-6) for $\phi_n(z_{n-1})$ in (5.2-7) gives

$$S_{n+1}(z_n) = T_n E_n T_n^{-1} S_n(z_{n-1})$$
 (5.2-8)

This equation is equivalent to Haskell's equation

$$S_{n+1}(z_n) = a_n S_n(z_{n-1})$$
, (5.2-9)

with $a_n = T_n E_n T_n^{-1}$.

By (5.2-8) the displacement-stress vector is converted into Φ_n , continued through the layer z_n by E_n , and converted back into $S_n(z_n)$ at the interface n+1 which is equal to $S_{n+1}(z_n)$. The Haskell layer matrix carries the displacement-stress vector from the $n^{\frac{th}{n}}$ interface, through the layer, and across the n+1 interface in one operation. Eq. (5.2-8) brings into evidence the effect of the "continuing" matrix E_n .

Consider the matrix linking the displacement-stress vectors at the free surface and the last layer of an assumed layered sequence.

$$S_{n-1} = G_{n-1} \dots G_1 S_0 = PS_0$$
, (5.2-10)

where

$$G_n = T_n E_n T_n^{-1}$$

In the Haskell formulation, the matrix from which the dispersion relation is obtained is given by $J = F_n^{-1}P$ and in the Dunkin formulation this matrix is $T_n^{-1}P$. However, considerations of the numerical evaluation of the P matrix will yield results valid to both developments since the T_n^{-1} or F_n^{-1} do not contain exponential powers. Let P be written as

$$P = A T_{m m} E_{m}^{-1} B$$
 (5.2-11)

where

$$A = G_{n-1} \cdots G_{m+1}$$
$$B = G_{m-1} \cdots G_1$$

Using the definitions of $T_{\mbox{\scriptsize m}}$ and $E_{\mbox{\scriptsize m}}$, it can be shown that the components of P are of the form

$$P_{ij} = B_{ij} \exp ikd_{m}r_{\alpha m} + C_{ij} \exp ikd_{m}r_{\beta m} + D_{ij} \exp ikd_{m}r_{\alpha m} + E_{ij} \exp ikd_{m}r_{\beta m}$$

$$(5.2-12)$$

For the Haskell development, F_n^{-1} is of the form

$$F_n^{-1} = \begin{bmatrix} F_{11} & 0 & F_{23} & 0 \\ 0 & F_{22} & 0 & F_{24} \\ F_{31} & 0 & F_{33} & 0 \\ 0 & F_{42} & 0 & F_{44} \end{bmatrix}$$

which gives for the two components J_{12} and J_{22}

 $J_{12} = F_{11}P_{12} + F_{13}P_{32}$, and $J_{22} = F_{22}P_{22} + F_{24}P_{42}$ (5.2-13) Now suppose that for the $m^{\underline{th}}$ layer $r_{\alpha m}$ and $r_{\beta m}$ are negative imaginary (c< α) so the expide $r_{\alpha m}$ and expide $r_{\beta m}$ may be large depending on the value of k. If the exponential term is large enough, the effect of the smaller terms in P_{ij} will be neglected in computing the P_{ij} , because of loss of significance. In the evaluation of the roots of (5.1-3) the difference $(J_{12} - J_{22})$ must be taken. Although the P_{ij} are large, their differences may be small. Therefore, terms which were lost because of loss of significance in computing the P_{ij} would be important in the difference of J_{12} and J_{22} . Mode shape is computed from repeated applications of (5.1-1) using the starting values of u_0 and w_0 from (5.1-3). Therefore, the same problem with loss of significance is inherent in the Haskell method of computing modal shape.

5.3 Dunkin Modification of the Haskell Method

Dunkin derives the secular or period equation in the form

$$Det R_{11} = 0 (5.3 1)$$

Where

$$\mathbf{R} = \begin{bmatrix} \mathbf{R}_{11} & \mathbf{R}_{12} \\ \mathbf{R}_{21} & \mathbf{R}_{22} \end{bmatrix} = \mathbf{T}_{\mathbf{p}}^{-1} \mathbf{G}_{\mathbf{p}-1} \dots \mathbf{G}_{1}$$
(5.3-2)

He shows that Det R_{11} can be expanded as a product of the second order subdeterminants of T_p^{-1} and G_p yielding

Det
$$R_{11} = t^{p-1} \begin{vmatrix} 12 & p-1 \\ ab & g \end{vmatrix} \begin{vmatrix} ab \\ cd \\ cd \end{vmatrix} \begin{pmatrix} ef \\ 12 \\ p \end{vmatrix}$$
, (5.3-3)

where $g^{p} |_{k,\ell}^{ij}$ is the second order subdeterminant of G_{p} involving rows i and j and columns k and ℓ . Dunkin has shown that by using algebraic expressions for the subdeterminants of the G_{p} , numerical difficulties with loss of significance can be avoided since the products of like exponentials normally occurring in the secular function are excluded at the start. Products of unlike exponentials for a given layer effectively increase the magnitude of Det R_{11} . To prevent machine overflow, the secular function can be divided by the two largest exponents when these exponenets become real and the exponential expression becomes hyperbolic. This results in no loss of significance.

Explicit expressions for the g_{ij}^{lj} and the g_{ij} are given in Appendix II for real frequencies and wave numbers. These are slightly different from the definitions of Dunkin, since he assumes complex frequencies.

Mode shapes are computed using the following relation of Dunkin discussed in Appendix II ,

$$R_n^{m}(z;a) = r_{11}^{-1} t_{1r}^{p} g_{rs}^{p-1} \dots g_{vb}^{n}(z_n-z) g^{n}(z-z_{n-1}) \frac{|ab|}{|cd|} \dots g^{1} \frac{|ef|}{|21|} (5.3-4)$$

5.4 Computational Procedure

1)

?)

The Dunkin method was programmed in Fortran II for the Bunker-Ramo 340 computer. Equation (5.3-1) was used for the determination of Rayleigh wave dispersion curves. Equation (5.3-4) was used to compute the mode shape once the roots of (5.3-1) were obtained. A double precision program was written in Fortran II for the IBM 360-75 using the Haskell method for computing mode shape. Equation (5.1-1) was used for this computation. Figs. 5 and 6 are flow charts of the computer program FLATRAY used in the computation of Rayleigh dispersion and modal shape. A computer listing of the program is given in Appendix III.

Fig. 5. Flow chart of FLATRAY

Fig. 6. Flow chart for determining roots of secular function, Det R_{11} (Dashed boxes of Fig. 5)

Root F.nding Scheme

The technique used for finding the roots of (5.3-1) consists of two steps. In order to determine roots for different modes, a given phase velocity, c_0 , and starting wave number, k_{i0} , are specified. K_{i0} is then incremented using the constant c value until a root is bracketed. A two point interpolation scheme is then used until the difference between two values of k which successively bracket the root is less than an input value. If more than one mode is to be investigated, k is incremented from its value at the last root found using the same value of c until the next root is found. Thus, the roots along a constant c curve are found which correspond to different modes. In order to define a particular mode, computation begins at c_{0} and the k_{10} corresponding to the desired mode. C is decremented and k incremented by values specified as input parameters. K is varied at the - Δc until the root is bracketed. Two point interpolation is then new used until k is obtained with the desired accuracy. The process of decrementing c and incrementing k is continued until three points on a given modal dispersion curve are found. A three point Gregory-Newton interpolation scheme is then used to estimate the next root on the curve. The process of interpolation and bracketing continues until a dispersion curve is defined to some minimum specified value of c.

Group velocity values are computed by perturbing c a small amount from a value at which a corresponding k mas been found. K is found for the perturbed c and a two point difference scheme used to evaluate group velocity, U, according to

$$U = \frac{d\omega}{dk} = \frac{\frac{2\pi}{T_2} - \frac{2\pi}{T_1}}{\frac{k_2 - k_1}{k_2 - k_1}}$$

From Table VI it can be seen that the group velocity curves computed by the Dunkin method for many layered models agree with those computed for models with reduced thickness to within a few terms of a per cent. However, the section must be taken thick enough to include the entire depth to which appreciable particle motion extends. This is illustrated by the first higher mode for the Gutenberg-Birch II model. The period value at 5.00 km/sec is 50.0301 sec for the 400 km section, and 46.4060 sec for the 1000 km section. However, reference to the displacement vs. depth curves in Appendix IV shows that the 400 km section does not include the total depth to which vertical particle motion extends at this period.

Although thick sequences can be used to compute shorter period group velocity curves, it is considerably more economical in computer time to use thinner sequences of fewer layers. Displacement depth curves, such as those in Appendix IV, can be used to indicate the necessary total thickness to be used at given periods.

Modal Shape

After a point (c,k) was found on a given dispersion curve, the mode shape for the given (c,k) was computed using (5.3-4). Horizontal and vertical displacements vs. depth values were then punched out on cards to be used in computing the variation of phase velocity due to variation in layer parameters from INTEGRAL. Modal shape was computed using both the Dunkin and Haskell methods. A double precision program was used in computing modal shape by the Haskell Method. Table IV shows the comparative results for the two methods. Values for horizontal and vertical particle amplitudes a_{ξ} ree very well (<.03%) for the first four layers in each case considered in Table IV. After this, the differences between the two methods increase rapidly. The rapid increase of particle amplitude with depth in

TABLE IV. Fundamental Rayleigh mode vertical and horizontal Particle amplitudes computed by Dunkin and Haskell Methods for the Gutenberg-Birch II model. Displacement normalized to the vertical displacement at the surface

Period = 25..440 Phase Veloc.cy = 3.8000 7 Layer model

Section Thickness = 140 km

HASKE	LL METHOD	DUNKIN METHOD		
Vertical	Horizontal	Vertical	Horizontal	
1.000000	.6950871	1.000000	6950871	
.886979	.0084581	.886972	.0084451	
.518503	.0569591	. 518524	.0568251	
.303885	.1063181	.304132	.0400851	
.164817	.0761211	.062881	.0126391	
.078571	.0509691	.014165	.0034631	
.018264	. 0484311	.002693	.0009951	

Period = 25.1380 Phase Velocity 3.8000 17 Layer model

Section Thickness = 400 km

		100 14	
1.000000	6950441	1.000000	6950441
.886837	.0086111	. 886883	.0085831
.518193	.0569161	.518278	.0569481
.303773	.1056621	. 303749	.0401191
.165958	.0734501	.062646	.0126671
.084840	.0412981	.013984	.0034971
.043072	.0154241	.002541	.0010301
.034665	0212121	000083	.0004061
.087474	1191061	000634	.0002461
.324986	4357491	000713	.0001991
1.117859	-1.4845031	000685	.0001791
4.078959	-4.9270861	000643	.0001651
13.757256	-16.1905901	000595	.0001531
45.749210	53.0181841	000553	.0001431
150.983339	-173.2435981	00512	.0001331
Period = 25.1380 (Cont'd) Phase Velcoity=3.8000 17 Layer model

Section Thickness = 400 km

DINKIN	METHON

HAS	KELL METHOD	DUNE	IN METHOD
Vertical	Horizontal	Vertical	Horizontal
8.176407	-567.5807251	000474	.0001231
10070.040164	-11362.1297281	001556	.0000251

Period = 106.4400Phase Velocity=4.2000 35 Layer model

Section Thickness = 2898 km

1.000000	1 0200701		
1.0/2021	8380621	1.000000	8380621
1.04/2/1	5990881	1.047270	5990121
1.054375	4060961	1.054340	4059721
1.048108	1909051	1.048030	1826711
1.010899	0527151	.968018	0486231
.954535	.0438221	.883244	.0393891
.886795	.1098891	. 793526	.0953051
.812528	.152015i	.703175	.1274421
.735438	.175957i	.615440	.1425871
.658577	.1869151	.532770	.1463311
.583974	.1879691	.456412	.1420871
.513373	.1825901	. 387350	.1331501
.447853	.173001i	. 325880	.1216331
.387824	.1607891	.271911	.1088621
.333572	.147617i	.225107	.0961331
.284944	1341261	.184894	.0839571
.184929	.0991591	. 115100	.0486511
.1'4067	.0723331	.055227	.0274971
.024591	.0434351	.008158	.0065751
005338	.0396271	001498	.0047611
034168	.043999i	004566	.0042311
117644	.0864391	011717	.0032201
299456	.1955751	010744	.002691

....

.

.

•

Period = 106.4400 (Cont'd) Phase Velocity=4.2000 35 Layer model

Section Thickness = 2898 km

HASKE	LL METHOD	DUNKIN METHOD		
Vertical	Horizontal	Vertical	Horizontal	
734195	.438798i	009416	.0022971	
-1.730194	.8698931	008134	.001934i	
-7,174500	-1.427081i	023747	.0005461	
67.316536	-162.8932311	006543	.000141i	
2727.220784	-3866.697396i	001763	.000036i	
58523.227239	-72877.2524311	000463	.000009i	
.108 x 10 ⁷	$127 \times 10^7 i$	000119	.0000021	
.188 x 10 ⁸	$214 \times 10^8 i$	000030	.0000001	
.319 x 10 ⁹	$355 \times 10^9 i$	000007	.000000i	
.525 x 10^{10}	576×10^{10} i	000002	.0000001	
.855 x 10 ¹¹	928×10^{11} i	000000	.0000001	
$.329 \times 10^{12}$	$352 \times 10^{12} i$	000000	.0000001	

the Haskell Method results from the repeated multiplication of 4 x 4 layer matrices and gradual loss of significance in the matrix multiplication. Since the Haskell Method starts at the top layer and works down, and the Dunkin Method starts at the bottom layer and works up, the agreement of the two methods in the near surface layers indicates that the Dunkin Method is yielding correct displacement values over the entire layered sequence. In some cases when relative high frequency points on a dispersion curve were being computed with a many layered model, displacements computed by the Dunkin Method showed some slight perturbations with depth rather than a smooth decrease. Displacement values also tended to change signs as they decreased to very small quantities with depth. This is seen in the vertical displacements for the 35 layer case in Table IV. Horizontal displacement curves generally have one more lobe than the corresponding vertical displacement curves.

Modal shapes for the Gutenberg-Birch model are shown graphically in Appendix IV.

Earth Flattening Approximation

The earth flattening approximation introduced by Alterman, Jarosch, and Pekeris [1961] was used to modify the layer velocities. As has been shown by Kovach & Anderson [1964], the effect of sphericity is not negligible even for higher modes. The linear increase in velocity introduced in the earth flattening appromination is specified by the parameter

$$\xi = \left(\frac{\mathbf{r}}{\mathbf{m}}\right)^2$$

The value of r_{in} for a layer was taken as the radius to the center of the layer; a is the mean radius of the earth, 6371 km. Layer velocities approximately corrected for sphericity are then given by

$$\alpha'_{m} = \alpha_{m} \xi^{-1/2}$$

$$\beta'_{\rm m} = \beta_{\rm m} \xi^{-1/2}$$

5.5 Variation of Phase Velocity with Layer Parameters

The energy integrals for elastic wave propagation [Meissner, 1926; Jeffreys, 1934] have been used by several authors, notably Anderson [1964] and Takeuchi and Dorman [1964] to derive explicit relations between the variation of phase velocity and the variation of layer parameters. Necessary data for the evaluation of the partial derivatives of phase velocity with respect to layer parameters are horizontal and vertical particle amplitude vs. depth values.

For Rayleigh waves, the potential and kinetic energy averaged over a cycle are

$$4T = \int \rho \omega^2 (u^2 + w^2) dz$$

$$4V = \int [\lambda(1 u - w')^2 + \mu(2k^2u^2 + 2w'^2) + k^2w^2 + u'^2 + 2ku'w] dz$$

where

u = horizontal displacement

w = vertical displacement

$$u' = \frac{\partial u}{\partial z}$$
, and the integration extends over the entire depth.

Using the fact that the kinetic and potential energy averaged over a period are equal we obtain

$$\omega^{2} I_{1} = k^{2} (I_{2} + I_{5}) + k (I_{3} + I_{6}) + (I_{4} + I_{2}) , \qquad (5.5-1)$$

where

$$I_{1} = \int \rho (u^{2} + w^{2}) dz \qquad I_{2} = \int \lambda u^{2} dz$$

$$I_{3} = \int 2\lambda uw' dz \qquad I_{4} = \int \lambda w'^{2} dz \qquad (5.5-2)$$

$$I_{5} = \int \mu (2u^{2} + w^{2}) dz \qquad I_{6} = -\int^{2} \mu u' w dz$$

$$I_{7} = \int \mu (2w'^{2} + u^{2}) dz$$

For a layered sequence of n layers, one can define

$$I_{1m} = \int_{z_m}^{z_m + 1} \rho (u^2 + w^2) dz$$
(5.5-3)

and similarly for the other integrals. Thus,

$$I_{i} = \sum_{m=1}^{n} I_{im} \qquad (5.5-4)$$

A perturbation of a layer parameter in the $m^{\underline{th}}$ layer will cause a perturbation in the integral, $I_{\underline{i}}$, for the entire layered sequence of

$$\delta I_{i} = \delta I_{im} \qquad (5.5-5)$$

Differentiating (5.5-1) with respect to the layer parameters, the partial derivatives of c with respect to the layer parameters are obtained. Thus,

$$\left(\frac{\partial c}{\partial \mu_{m}}\right)_{\rho,\lambda,d,\omega} = \left(ck^{2} \frac{\partial I_{5m}}{\partial \mu} + ck \frac{\partial I_{6m}}{\partial \mu} + c \frac{\partial I_{7m}}{\partial \mu}\right) / D \qquad (5.5-6)$$

where

$$D = k[2k(I_2 + I_5) + I_3 + I_6]$$

with the integration of the integrals in D extending over the entire layered sequence.

$$\frac{\partial c}{\partial \rho_{m}} \lambda_{\mu} d_{\mu} \omega = -c \omega^{2} \frac{\partial I_{1m}}{\partial \rho} / D \qquad (5.5-7)$$

$$\frac{\partial c}{\partial \lambda_{m}} = (ck^{2} \frac{\partial I_{2m}}{\partial \lambda} + ck \frac{\partial I_{3m}}{\partial \lambda} + c \frac{\partial I_{4m}}{\partial \lambda}) / D \qquad (5.5-8)$$

$$\frac{\partial c}{\partial \beta_{m}} \rho_{,\alpha,d,\omega} = 2\rho\beta[(\frac{\partial c}{\partial \mu_{m}}) \rho_{,\lambda,d,\omega} - 2(\frac{\partial c}{\partial \lambda_{m}}) \mu_{,\rho,d,\omega}] (5.5-9)$$

Assuming ρ , α , β as independent and ρ , λ , μ as dependent

$$\frac{\partial c}{\partial \rho_{m}} \alpha_{,\beta}, d_{,\omega} = \left(\frac{\partial c}{\partial \rho_{m}}\right)_{\lambda,\mu} + \left(\frac{\partial c}{\partial \lambda_{m}}\right)_{m} \rho_{,\mu} \left(\frac{\partial \lambda_{m}}{\partial \rho_{m}}\right)_{m} \alpha_{,\beta} + \left(\frac{\partial c}{\partial \mu_{m}}\right)_{\mu} \rho_{,\lambda} \left(\frac{\partial \mu_{m}}{\partial \rho_{m}}\right)_{\alpha,\beta}$$

Substituting

$$\left(\frac{\partial \lambda_{m}}{\partial \rho_{m}}\right)_{\alpha,\beta} = \alpha_{m}^{2} - 2\beta_{m}^{2}$$
 and

$$\left(\frac{\partial \mu_{\rm m}}{\partial \rho_{\rm m}}\right) \quad \alpha, \beta = \beta_{\rm m}^2,$$

gives

$$\frac{(\frac{\partial c}{\partial \rho_{m}})}{\alpha,\beta,d,\omega} = -c\omega^{2} \frac{\partial I_{1m}}{\partial \rho} / D + \frac{(\frac{\partial c}{\partial \lambda_{m}})}{\alpha,\beta,\omega} (\alpha_{m}^{2} - 2\beta_{m}^{2}) + \beta^{2} (\frac{\partial c}{\partial \mu_{m}}) (\beta,\lambda,d,\omega)$$
(5.5-10)

$$\left(\frac{\partial c}{\partial \alpha_{m}}\right)_{\rho,\beta,d,\omega} = 2\rho_{m}\alpha_{m}\left(\frac{\partial c}{\partial \lambda_{m}}\right)_{\rho,\mu,d,\omega} \qquad (5.5-11)$$

$$(\frac{\partial c}{\partial d})_{\mu,\lambda,\rho,\omega} = \left[-c\omega^2 \frac{\partial I_1}{\partial d} + ck^2 \left(\frac{\partial I_2}{\partial d} + \frac{\partial I_5}{\partial d} \right) + ck \left(\frac{\partial I_3}{\partial d} + \frac{\partial I_6}{\partial d} \right) + c\left(\frac{\partial I_4}{\partial d} + \frac{\partial I_7}{\partial d} \right) \right]/D$$

The group velocity can be expressed in terms of the integrals I_i by

$$U = \frac{2(I_2 + I_5)k + (I_3 + I_6)}{2}$$
(5.5-12)

Equations (5.5-6), (5.5-8), (5.5-9), (5.5-10), (5.5-11), (5.5-12), and (5.5-13) with the definitions of (5.5-2) were programmed for the IBM 360-75 computer. The integrals of (5.5-2) were evaluated numerically using polynomial approximations to the particle displacements obtained from the modal shape calculations. A sliding fitting procedure was used in determining the polynomials. In this procedure, a polynomial is fitted to say n points at the depths z_i , z_{i+1} , ... z_{i+n} ; and the integrals and their derivatives evaluated over the interval $z_{i+n} - z_i$. The polynomial fit is then shifted to drop one layer and pick up one layer, i.e., to the points at depths

 z_{i+1} , z_{i+2} , \cdots z_{i+1+n} . By using polynomial approximations, the integrals of the derivatives are simply the integrals of the derivatives of the polynomials. Third degree polynomials were found to give adequate fits to the displacement data.

A Fortran listing of the program, INTEGRAL, for computing the partial derivatives of phase velocity, c, with respect to layer parameters is given in Appendix III. Results of computation of the partial derivatives for the Gutenberg-Birch li continental model are given in Appendix IV.

.

6.0 CRUSTAL AND UPPER MANTLE STRUCTURE IN THE SOUTHEASTERN UNITED STATES

Gravity, local travel-time, and Rayleigh wave dispersion data were used to determine crustal and upper mantle structure for the Southeastern United States. Results of the Rayleigh dispersion study and a comparison with the gravity and travel-time results are given in this section.

Observed dispersion curves could be constructed only for periods less than about 50 seconds. Therefore, crustal structure was concentrated on and the upper mantle structure below 70 km was assumed to be that of the Gutenberg-Birch II continental model. The Gutenberg-Birch II crustal structure was used as the basic model for estimating the Southern Appalachian structure. Variations of phase velocity with layer parameters computed for the Gutenberg-Birch II model (See Appendix IV) were used to vary this basic model to yield dispersion curves fitting the observed data. Velocity and density structure of the models considered are given in Table V and Fig. 7. Values of the "earth flattening" velocities for the Gutenberg-Birch II are also given to indicate the effective increase of velocity with depth.

Fundamental and first higher Rayleigh mode group velocity vs. period data observed in the Southern Appalachians (Table III) are shown in Figs. 8-11. Rayleigh wave dispersion curves computed as described in Section 5.0 are given in Table VI and Figs. 8-11 for the models Gutenberg-Birch II, 310, 314, 315, and 320 defined in Table V.

Group velocity curves for waves traveling approximately perpendicular (perpendicular waves) to the Appalachians are quite similar (Figs. 8-11). They all have a local minimum of about 2.85 km/sec at a period of 17 sec, and a local maximum of about 3.10 km/sec at around 12 sec. For periods shorter than about 10 seconds the curves flatten out at about 3.0 km/sec. First higher Rayleigh mode curves indicate a broad minimum of 3.5 km/sec

TABLE V. Layer Parameters for Crustal and Upper Mantle Models

GUTENBERG-BIRCH II

FLAT EARTH

*

EARTH FLATTENING

a	β	ρ	đ	α	β	ρ	d
6.1400	3.5500	2.7500	19.00	6.1486	3.5550	2.7500	19.00
6.5800	3.8000	2.9000	19.00	6.6090	3.8167	2.9000	19.00
0080.8	4.6000	3.5700	22.00	8.1422	4.6354	3.5700	22.00
7.8700	4.5100	3.5100	20.00	7.9574	4.5601	3.5100	20.00
7.8000	4.4500	3.4900	20.00	7.9115	4.5136	3.4900	20.00
7.8300	4.4200	3.5000	20.00	7.9670	4.4974	3,5000	20.00
7.8900	4.4000	3.5100	20.00	8.0541	4.4915	3.5100	20.00
7.9400	4.3900	3.5300	20.00	8.1314	4.4958	3.5300	20.00
8.0000	4.4000	3.5500	20.00	8.2192	4.5206	3.5500	20.00
8.0600	4.4200	3.5600	20.00	8.3074	4.5557	3.5600	20.00
8.1200	4.4507	3.5800	20.00	8.3961	4.6013	3.5800	20.00
8.2000	4.4800	3.6100	20.00	8.5067	4.6476	3.6100	20.00
8.2700	4.5200	3.6300	20.00	8.6074	4.7044	3.6300	20.00
8.3500	4.5700	3.6500	20.00	8.7191	4.7720	3.6500	20.00
8.4300	4.6100	3.6800	20.00	8.8313	4.8294	3.6800	20.00
8.5100	4.6600	3.7000	50.00	8.9670	4.9102	3.7000	50.00
8.7500	4.8100	3.7700	50.00	9.2969	5.1106	3.7700	50.00
9.0000	4.9500	3.8500	100.00	9.6840	5.3262	3.8500	100.00
9.4900	5.2200	4.0000	50.00	10.3422	5.6888	4.0000	50.00
9.7400	5.3600	4.0700	50.00	10.7062	5.8917	4.0700	50.00
9.9900	5.5000	4.1500	100.00	11.1249	6.1248	4.1500	100.00
10.5000	5.7700	4.3000	100.00	11.9007	6.5397	4.3000	100.00
10.9000	6.0400	4.4200	100.00	12.5775	6.9696	4.4200	100.00
11.3000	6.3000	4.5400	100.00	13.2798	7.4038	4.5400	100.00
11.4000	6.3500	4.5700	200.00	13.7780	7.6746	4.5700	200.00
11.8000	6.5000	4.6900	200.00	14.8243	8.1660	4.6900	200.00
12.0500	6.6000	4.7700	200.00	15.7602	8.6321	4 ., 7700	200.00
12.3000	6.7500	4.8500	200.00	16.7759	9.2063	4.8500	200.00
12.5500	6.8500	4.9200	200.00	17.8824	9.7606	4.9200	200.00
12.8000	6.9500	5.0000	200.00	19.0925	10.3666	5.0000	200.00
13.0000	7.0000	5.0600	200.00	20.3437	10.9543	5.0600	200.00
13.2000	7.1000	5.1200	200.00	21.7245	11.6852	5.1200	200.00
13.4500	7.2000	5.1900	200.00	23.3411	12.4949	5.1900	200.00
13.7000	7.2500	5.2700	98.00	24.7819	13.1145	5.2/00	98.00
13.6500	7.2000	5.2500	90	25.0395	13.2077	5.2500	3

41

MODEL 310				MOI	DEL 314			
α	β	ч	d	α	β	ρ	d	
5.8800	3.3800	2.6700	10.00	5.8800	3.3800	2.6700	10.00	
6.1400	3.5500	2.7600	10.00	5.6000	3.2400	2.7600	10.00	
6.5800	3.8000	2.9000	10.00	6.1000	3.5000	2.9000	10.00	
6.5800	3.8000	2,9000	10.00	6.6000	3.8000	2.9000	10.00	
8.0800	4.6000	3.5700	20.00	7.0000	4.1000	3.1000	10.00	
				8.0800	4.6000	3.5700	20.00	
Same as	Gutenberg	g-Birch II	[to 400 km	Same as	Gutenberg	g-Birch II	to 810	km

MODEL 315				MOI	DEL 320			
α	β	ρ	d	α	β	ρ	d	
5.8800	3.3800	2.6700	10.00	5.8800	3.3800	2.6700	10.00	
6.1400	3.5500	2.7600	10.00	5.8 6 00	3.3800	2.7300	10.00	
6.5800	3.8000	2.9000	10.00	6.1000	3.5000	2.9000	10.00	
6.5800	3.8000	2.9000	10.00	6.6000	3.8000	2.9000	10.00	
7.0000	4.1000	3.1000	10.00	7.0000	4.1000	3.1000	10.00	
8.0800	4.6000	3.5700	20.00	8.0800	4.6000	3.5700	20.00	
S a me as	Gutenberg	g-Birch II	to 810 km	Same as	Gutenberg	g-Birch II	to 810 k	m

DEPTH (KM)

Fig. 7

TABLE VI. Rayleigh wave dispersion curves for Gutenberg-Birch II models, and models 310, 314, and 315

GUTENBERG-BIRCH II

FUNDAMENTAL RAYLEIGH MODE

5.5999

5.4999

5.3999

5.2999

.01377

.01503

.01653

,01832

•

	T
c k l U	L
4.5000 .00850 164.2671	
4.4000 .00961 148.5391 3.6990	1/3 80/0
4.3000 .01131 129.1709 3.7695	122 5260
4 1999 .01405 106.4402 3.8361	120.009
4.0999 .01984 77.2556 3.9112	55 022/
3.9999 .03815 41.1794 3.7346	27 1515
3.8999 .05419 29.7316 3.4039	28 2/52
3.7999 .06624 24.9623 3.1759	20.3432
3.6999 .07815 21.7314 3.0493	24.0000
3.5998 .09202 18.9673 2.9510	19 2209
3.4998 .10996 16.3264 3.0336	15 5195
3.3998 .14161 13.0509 3.1084	11.9219
Section Thickness 400.00	
4.0000 .03801 41.3293	
3.9000 .05394 29.8693 3.4253	28.4013
3.8000 .06578 25.1380 J.2096	24,1929
3.7000 .07808 21.7493 3.0305	21.0535
3.5999 .09207 18.9572 2.9639	18.3140
3.4999 .11010 16.3054 3.0331	15,4998
3.3999 .14220 12.9958 3.1018	11.9019
Section Thickness 140.00	
4.0000 .03730 42.1107	
3.9000 .05409 29.7861 3.4066	28.3880
3.8000 .06576 25.1423 3.1768	24.2579
3.7000 .07762 21.8791 3.0923	21.0892
3.5999 .09150 19.0747 2.9947	18.3862
3.4999 .11001 16.3184 3.0426	15.4971
3.3999 .14249 12.9695 3.0988	11.8907
FTRST HIGHER RAYLEIGH MODE	
Section Thickness 2898.00	•
c k T U	т
6,0000 .01020 102.6767	
5.9000 .01091 97.6155 4.5030	96.2532
5.80,0 .01174 92.2541 4.4644	90,8938
5.6999 .01269 86.8711 4.4340	85,5044

81.4673

75.9839

70.4033

64.7021

4.4137

4.3971

4.3821

4.3720

80.0789

74.5686

68.9585

63.2178

FIRST HIGHER RAYLEIGH MODE (Cont'd)

	Section Thi	ckness 2898.00 (C	continued)	
c	k	Т	U	Т
5.1998	.02053	59 3578	4.3631	57.3296
5.0998	.02331	603 . 52.	4.3539	51,2881
4.9999	.02690	46.7207	4.3448	45,1023
4.8999	.03172	40.4258	4.3363	38,7565
4.7999	.03854	33.9652	4.3316	32,2275
4.6998	.04900	27.2834	4.3340	25.4277
4.5998	.06780	20.1477	4.3586	17.9272

Section Thickness 1000.00

5.4000	.01661	70.0684		
5.3000	.01837	64.5405	4.4587	62.8706
5.2000	.02062	58.5864	4.3608	57.0707
5.0999	.02345	52.5303	4.3509	50,9751
4.9999	.02708	46.4060	4.2904	44.9442
4.8999	.03199	40.0905	4.3225	38,4821
4.7999	.03879	33.7500	4.3062	32,1265
4.6998	.04933	27.1034	4.3338	25.2612

Section Thickness 400.00

5.0000	.02512	50.0301		
4.9000	.03111	41.2115	4.4079	39,2169
4.8000	.03846	34.0337	4.3302	32,2991
4.6999	.04883	27.3780	4.3458	25.4449
4.5999	.06819	20.0320	4.3531	17.8824
4.4999	.11357	12.2945	4.1959	11.2612
4.4000	.15149	9.4265	-	
4.3000	.17634	8.2863	3.5422	8.0520
4.2000	.20128	7.4324	3.3111	7.2619
4.0999	.22937	6.6814	3.3545	6.4906
3.9999	.25763	5.8694	3.4094	5.6467
3.8979	.32599	4.9423	3.4869	4.6556
3.7999	.43139	3.8330	3.4694	3.5446
3.6999	.61350	2.7681	3.4616	2.4623

Section Thickness 140.00

3.9000	.32410	4.9709	3.9114	8.4005
3.8000	.43142	3.8327	3.4763	3.5371
3.7000	.61704	2.7521	3.4545	2.4586

SECOND HIGHER RAYLEIGH MODE

Section Thickness 400.00

с	!c	Т	U	Т
4.9000	.05537	23.1581	4,2866	22 2022
4.8000	.06549	19.9891	4.2627	10 118/
4.6999	.08015	16.6789	4.2938	15.6730
4.5999	.10807	12.6396	4.3836	11 0562
4.5000	.25165	5.5484	3,9105	5 3337
4.3999	.29310	4.8721	4.4642	6 2623
4.2999	. 32739	4.4632	3.2661	4 3787
4.1999	.36497	4.0990	3.1949	4 0190
4.0999	.40722	3.7634	3.4253	3,6417
3.9999	.47463	3.3096	3.4644	3 1683
3.8999	.59153	2.7237	3.5669	2,5201
3.7998	.84393	1.9593	3.4754	1.8086

Section Thickness 140.00

4.6000	.09402	14,5273		
4.5000	.25218	5.5369	3.8832	5,3339
4.3999 4.2000	.29289	4.8756	3.5369	4.7581
4.1999	.36532	4.4640	3.3107	4.3744
4.0999	.40970	3.7406	3.3051	4.0019
3.9999	.47503	3.3069	3.4600	3.1671
3.8999	.58812	2 7395	3.5842	2.5214
3.1330	.84289	1.9617	3.4812	1.8076

MODEL 314

FUNDAMENTAL RAYLEIGH MODE

Section Thickness 810 km

с	k	Т	U	Т
4.5000	.00800	174.4980	3.6546	152.3970
4,4000	.00910	156.9458	3.6739	133.7163
4.3000	.01054	138.6728	3.7362	111,4856
4.1999	.01273	117.4773	3.8025	84,3855
4.0999	.01661	92.2917	-	

Section Thickness 310

с	k	Т	U	Т
4.0000	.02547	61.6759	3.4695	39.4730
3.9000	.03856	41.7795	3.1635	33.1033
3.8000	.04824	34.2777	2.9694	29.2182
3.7000	.05646	30.0793	2.3125	26.2169
3.5999	.06486	26.9112	2.7168	23.4925
3.4999	.07445	24.1143	2.7635	20.7638
3.3999	.08602	21.4831	2.8034	17.8086
3.2999	.10206	18.6555	2.8919	13,9951
3.1999	.12901	15.2204		

FIRST HIGHER RAYLEIGH MODE

Section Thickness 310 km					
C	k	Т	U	Т	
5.0000	.02685	46.8048	4.4483	36.2523	
4.9000	.02886	44.4386	4.3098	27.9880	
4.8000	.03353	39.0360	4.2401	21.5914	
4.6999	.04475	29.8741	4.1392	16.2429	
4.5999	.05888	23.1967	3.8165	13,1554	
4.4999	.03004	17.4449	3.5115	11.5744	
4.3999	.10431	13.6899	3.3171	10.4853	
4.2999	.12285	11.8943	3.2139	9.5683	
4.1998	.13938	10.7339	3.1330	8,6651	
4.0993	.15650	9.7925	3.1344	7.7859	
3.9999	.17704	8.8727	3.1097	6.8751	
3.8999	.20128	8.0045	3.1614	5,9217	
3.7999	.23306	7.0948			
3.6999	.27476	6.1807			

.

MODEL 315

FUNDAMENTAL RAYLEIGH MODE

Section Thickness 810 km					
С	k	Т	U	Т	
4.5000	.00820	170.2393			
4.4000	.00930	153.5283	3.6992	148,7251	
4.3000	.01086	134.5723	3.7313	129,1714	
4.1999	.01334	112.1333	3.8018	105.2905	
4.0999	.01812	84.5767	3.8692	74.8110	

Section Thickness 310 km

¢	k	Т	U	Т
4.0000	.03053	51.4482		
3. 9000	.04399	36.6250	3.4296	34,8049
3.8000	.05404	30.5995	3.2226	29.4172
3.7000	.06472	26.2377	3.0726	25.3270
3.5999	.07614	22.9218	3.0533	21,9835
3.4999	.09221	19.4693	3.0333	18,5069
3.3999	.11718	15.7708	3.0416	14.7044
3.2999	.16256	11.7130	3.0354	10.5790
3.1999	.25847	7.5969	3.0323	6.3232

FIRST HIGHER RAYLEIGH MODE

	Sect	ion Thickness 310	km	
с	k	Т	U	т
5.0000	.02700	46.5387		
4.9000	.02898	44.2546		
4.8000	.03375	38.7906	4,4580	35 9338
4.6999	.04593	29.1047	4.3170	27.2273
4.5999	.06249	21.8596	4.3459	19.5919
4.4999	.09907	14.0942	4.1502	13 0875
4.3999	.12798	11.1578	3,7883	10.7461
4.2999	.14814	9.8638	3,4936	9.6058
4.1998	.16823	8.8928	3,4019	8.6584
4.0998	.19220	7.9737	3.4011	7.7268
3.9999	.22623	6,9435		/ / / 200
3.8999	.27637	5.8296	3,4963	5 4822
3.7999	.36302	4.5549	3.4527	2315 J.4022
3.6999	.49743	3,4140	3.3824	3 1/52
3.5998	.72066	2.4220	3,3589	2 1583
3.4998	1.18182	1.5191	3.3175	1 2885
3.3998	3.20689	.5763	5.5175	1,2005

0

MODEL 310

FUNDAMENTAL RAYLEIGH MODE

	Sec	tion Thickness 400) km	
с	k	Т	U	Т
4.0000	.02439	64.4070		
3.9000	.04255	37.8649	3.5912	34.7723
3.8000	.05805	28.4813	3.2801	27,2310
3.7000	.07023	24.1816	3.1144	23,2675
3.5999	.08334	20.9422	2,9759	20,2145
3.4999	.09981	17.9868	2.9384	17.2780
3.3999	.12365	14.9456	2.9835	14.1014
3.2999	.16535	11.5152	3.0190	10.4775

FIRST HIGHER RAYLEIGH MODE

Section Thickness 140 km С k Т U Т 4,4000 .12476 11.4457 4.3000 .16172 9.0352 3.6088 8.7490 4.2000 .18471 8.0990 3.3507 7.9020 4.0999 .21052 7.2797 3.2917 7.0921 3.9999 .24138 6.5077 3.4153 6.2579 3.8999 .29117 5.5333 3.4070 5.2734 3.7999 .36986 4.4707 3.4199 4.1854 3.6999 .49765 3.4125 3.3786 3.1475

MODEL 320

FUNDAMENTAL RAYLEIGH MODE

Section Thickness 310 km

C	k	Т	U	Т
4.0000	.02676	58.6913		
3.9000	.03996	40.3191	3.4514	38,1989
3.8000	.04957	33.3568	3.1758	32.1857
3.7000	.05 8 20	29.1794	2.9781	28.3310
3.5999	.06716	25.9897	2.8662	25.2547
3.4999	.07764	23.1217	2.7526	22.4878
3.3999	.09056	20,4061	2.8481	19,5889
3.2999	.11217	16.9749	2.8878	16.0079
3.1999	.15391	12.7579	3.0158	10.8511

FIRST HIGHER RAYLEIGH MODE

Section Thickness 310 km

с	к	Т	U	Т
5.0000	.02694	46.6523		
4.9000	.02888	44.4016		
4.8000	.03358	38.9835	4.4617	36.0753
4.6999	.04490	29.7720	4,2997	27.9473
4.5999	.05957	22,9299	4.2645	21,2086
4.5000	.08333	16.7565		
4.4000	.11006	12.9742	3.8455	12,4357
4.3000	.12959	11,2758	3.5636	10.9456
4.1999	.14771	10,1280	3,3148	9.8943
4.0999	.16573	9.2470	3.2854	9.0110
3.9999	.18724	8.3893	3,1800	8.1781
3.8999	.21377	7,5367	3.1997	7,3062
3.7999	.24984	6,6182	3.2181	6.3649
3.6999	30270	5.6103	3.2358	5.3289

AEFOCILA (KW\ZEC)

Fig. 8

5.0

Fig. 10

from 6-10 sec. Group velocities recorded at Oxford indicate a slightly shorter period for the minimum and a gradual decrease in velocity for periods shorter than 12 sec. Kowever, in general the curves are quite similar to those for Atlanta and Blacksburg. Waves arriving at Atlanta from Jalisco, Mexico, (parallel waves) have both fundamental and first higher Rayleigh mode group velocities considerably lower than do the perpendicular wave trains for periods less than about 20 sec. The rapidly "tailing-off" of group velocities below 15 sec is probably due to a thick sedimentary sequence (approximately 400 km of the travel path for these waves lie across the Gulf Coastal Plain).

The most significant difference is between the blacksburg and Atlanta group velocities for parallel wave trains. A minimum of 2.75 km/sec occurs at a period of 22 sec and a maximum of 2.80 km/sec occurs at a period of 16 sec for the Blacksburg velocities. Group velocities at periods greater than 30 sec trend toward those for the perpendicular waves. First higher mode Rayleigh group velocities for Blacksburg are lower by about .1 km/ sec than those for Atlanta.

Several models were constructed using the variation of phase velocity with layer parameter curves for the Gutenberg-Birch II model. Basic differences in the models are:

1) 314, 315, and 320 have a crustal thickness of 50 km, while 310 and G-B (Gutenberg-Birch II) have a crustal thickness of 40 km;

2) 314 has a low velocity zone centered at 15 km in the upper crust.
 Except for this low velocity zone, 320 is identical to 314;

3) G-B and 310 have a low velocity zone in the upper mantle beginning at 60 km while the low velocity begins at 70 km for 314, 315, and 320.

4) Velocities in the first 10 km of G-B are slightly higher than those in the other models.

For waves traveling perpendicular to the Appalachians, the group velocity data agree well with model 310 or G-B values for the fundamental Rayleigh mode at periods less than 30 sec. At longer periods, the values fall below those for 310 and approach those for 314 and 315. First higher Rayleigh mode values observed at Blacksburg lie between those for 314 and 315 for periods greater than 10 sec. Thus, it appears that waves arriving at Atlanta, Oxford, and Blacksburg from the Southern Alaska epicenter are just beginning to "feel" the Appalachian structure. The length of the "Appalachian path" is about 240 km in the Appalachian foreland in each case, assuming that the Appalachian structure extends beneath the Mississippi Embayment (Oxford station).

Waves arriving at Atlanta from Jalisco, Mexico yield group velocities conside_ably below those of G-B for periods less than 20 sec (See Fig. 11). Fundamental mode group velocities at Blacksburg show fair agreement with the theoretical curves for either models 314 or 320 being considerably below curves for G-B, 315, and 310 at all periods. On the basis of fundamental mode group velocities it is impossible to determine which of models 314 or 320 most closely approximate the crustal structure. However, first higher Rayleigh mode group velocities from model 314 give a considerably better fit to the observed data than do those from woiel 320 in the period range from 6 to 15 sec. In this period range, the group velocities. Thus, a slight velocity reversal in the crust is indicated by the first higher mode group velocities.

An alternative to the low velocity zone is to lower the velocities and/or densities in the first 10 km of the crust. However, refraction data give a compressional velocity of 5.88 km/sec for the upper crust which has

been used in models 314 and 320. The shear velocity value of 3.88 km/sec in models 314 and 320 corresponds to a Poisson ratio of .25.

Group velocities for periods greater than about 30 sec indicate a mantle low velocity zone beginning at about 70 km.

Compressional velocity crustal and upper mentle structure to the west of the Southern Appalachians determined from the travel times of local earthquakes and for the Southern Appalachian structure as determined from Rayleigh wave dispersion are shown in Fig. 12. Gravity and Rayleigh wave dispersion data indicate a total crustal thickness of about 50 km beneath the Southern Appalachians. Travel-time and dispersion data indicate an upper mantle velocity of 8.10 km/sec. Dispersion data indicate a slight low velocity zone in the upper crust and a general increase of velocity and density with depth below this zone. With the exception of the higher crustal velocity in the first 2 km, the Southern Appalachian s ture approximated by model 314 is similar to the Northern Alpine structure with a 50 km crust reported by Knopoff et al [1966].

CONPRESSIONAL VELOCITY STRUCTURE FOR THE SOUTHEASTERN UNITED STATES AND THE NORTHERN ALPS.

7.0 CONCLUSIONS

The conclusions which have been drawn from this study are:

1) Focal depths of local earthquakes in the Southeastern United States are shallow ranging from about 7 to 18 km.

Systematic deviations in P-residuals observed at Chapel Hill,
 North Carolina, and McMinnville, Tennessee, have magnitudes from + 3 to
 -3 sec. The deviations indicate systematic errors in the Jeffreys-Bullen travel-times.

3) Travel-time curves constructed from local earthquakes and refraction data indicate a crustal structure for the Appalachian foreland of $h_1 =$ 33.0 km ($\alpha = 5.88$ km/sec), $h_2 = 10.8$ km ($\alpha = 6.58$ km/sec), and an upper mantle velocity of 8.10 km/sec.

4) Rayleigh wave dispersion data indicate a crustal low velocity zone centered at about 15 km, an upper mantle low velocity zone beginning at 70 km, and a total crustal thickness of 50 km beneath the core of the Southern Appalachians.

5) Gravity data indicate a total crustal thickness beneath the Southern Appalachians of at least 50 km which is in agreement with the Rayleigh dispersion data. Gravity data indicate a crustal thickness of about 45 km in central Kentucky thickening eastward to about 50 km beneath the core of the Appalachian and thinning to 23 km beneath the North Carolina continental margin at about the 2400 fathom contour.

6) Higher Rayleigh modes can be observed using digital filtering techniques. Care must be taken to isolate Rayleigh type motion and to remove interference effects. This is particularly true for higher modes than the first.

7) It should be possible to use higher modes than the first to delineate fine detail in the crust.

ACKNOWLEDGEMENTS

I wish to particularly express my gratitude and thanks to the Superior Stone Compary of Raleigh, North Carolina, and to the many local quarry managers who made possible the refraction program of this research.

REFERENCES

- Anderson, D. L. Universal dispersion tables, I, Love waves across oceans and continents on a spherical earth, <u>Bull. Seismol. Soc. Am.</u>, <u>54</u>, 681-726, 1964.
- Alterman, Z., H. Jarosch, and C. L. Pekeris, Propagation of Rayleigh waves in the earth, <u>Geophys. J.</u>, <u>4</u>, 219-241, 1961.
- Borcherdt, R. D., and John C. Roller. A preliminary summary of a seismicrefraction survey in the vicinity of the Cumberland Plateau Observatory, Tennessee, USGS Technical Letter, Crustal Studies-43, February, 1966.
- Dorman, James, Maurice Ewing, and Jack Oliver. Study of shear-velocity distribution in the upper mantle by Mantle Rayleigh waves. <u>Bull.</u> <u>Seismol. Soc. Am.</u>, <u>50</u>, d7-115, 1960.
- Dunkin, John W. Computations of modal solutions in layered, elastic media at high frequencies, <u>Bull. Seismol. Soc. Am.</u>, <u>55</u>, 335-358, <u>1965</u>.
- Gutenberg, B., and C. F. Richter, Earthquake agnitude intensity, energy, and acceleration, <u>Bull. Seismol. Soc. Am.</u>, <u>32</u>, Ju-191, 1942.
- Haskell, N. A. The dispersion of surface waves on multilayered media, <u>Bull. Seismol. Soc. Am.</u>, <u>43</u>, <u>7</u>-34, 1953.
- Hersey, J. B., Elizabeth T. Bunce, R. F. Wyrick, and F. T. Dietz. Geophysical investigation of the continental margia between Cape Henry, Virginia, and Jacksonville, Florida, <u>Bull. Geol. Soc. Am.</u>, <u>70</u>, 437-466, 1959.
- Jeffreys, H. The surface waves of earthquakes, <u>MNRAS</u>, Geophys. Supp., 3, 253-261, 1934.
- Knopoff, L., S. Mueller, and W. L. Pilant. Structure of the crust and upper mantle in the Alps from the phase velocity of Rayleigh waves, <u>Bull.</u> <u>Seismol. Soc. Ar.</u>, <u>56</u>, 1009-1044, 1966.
- Kovach, R. L., and D. L. Anderson. Higher mode surface waves and their bearing on the structure of the earth's mantle, <u>Bull. Seis. Soc. Am.</u>, <u>54</u>, 161-182, 1964.
- MacCarthy, G. R., and E. Z. Sinha. North Carolina earthquakes, 1957, J. Elisha Mitchell Soc., 117-274, November, 1957.
- MacCarthy, G. R., and J. D. Waskom. The Virginia-North Carolina Blue Ridge earthquake of October 28, 1963, <u>J. Elisha Mitchell Soc.</u>, 82-84, December, 1964.
- McGuire, W. H., and Paul Howell. Oil and gas possibilities in the Cambrian and Lower Ordovicion in Kentucky, Spindletop Research Center Report, 1963.
- Meissner, E. Elastische Oberflachen Querwellen Verhandl., Intern., Kongr. Tech. Mech., 2nd, Zuric, 3-11, 1926.

- Minear, John W. Quarterly Report No. 9, Seismicity of the Southeastern United States, AFCRL Project CRL-46116, 1966.
 - _____. Research directed toward the study of seismicity in the Southeastern United States, Annual Technical Report #2, Air Force Cambridge Research Lab, Project CRL-46116, January, 1966.

_____. Semi-Annual Technical Report, Seismicity of the Southeastern United States, Project CRL-46116, January 1965.

Takeuchi, H., and J. Dorman. Partial derivatives of surface wave phase velocity with respect to physical parameter changes within the earth, J. Geophys. Research, 69, 3429-3441, 1964.

Tomoda, Y., and K. Aki. Use of the function sin x/x in gravity problems, <u>Bull. Earthquake Res. Inst.</u>, Tokyo, 443-448.

APPENDIX I

EVALUATION OF THE SECULAR EQUATION IN COMPUTING RAYLEIGH DISPERSION

In the Dunkin Method, the Rayleigh dispersion equation is the secular equation

Det
$$R_{11} = r \begin{vmatrix} 12 \\ 12 \end{vmatrix} = t^{p} \begin{vmatrix} 12 \\ ab \end{vmatrix} g^{p-1} \begin{vmatrix} ab \\ cd \end{vmatrix} \cdots g^{1} \begin{vmatrix} mn \\ 12 \end{vmatrix}$$
 (I-1)

Writing out (I-1) explicitly yields

Det
$$R_{11} = t |_{12}^{12} g |_{1d}^{p-1} |_{1d}^{13} \dots$$

 $+ t |_{13}^{12} g |_{1d}^{p-1} |_{1d}^{13} \dots$
 $+ t |_{14}^{12} g |_{1d}^{p-1} |_{1d}^{14} \dots$ (I-2)
 $+ t |_{23}^{12} g |_{1d}^{p-1} |_{1d}^{23} \dots$
 $+ t |_{24}^{12} g |_{1d}^{p-1} |_{1d}^{24} \dots$
 $+ t |_{24}^{12} g |_{1d}^{p-1} |_{1d}^{24} \dots$
 $+ t |_{24}^{12} g |_{1d}^{p-1} |_{1d}^{24} \dots$

where the ... signifies multiplication of the form g $p^{-2} \begin{vmatrix} cd \\ ef \end{vmatrix} p^{-2} \end{vmatrix} p^{-2} (cd) p^{-2} (cd)$

Det
$$R_{11} = a_1 g^{p-1} \begin{vmatrix} 12 \\ 12 \end{vmatrix} g^{p-2} \begin{vmatrix} 12 \\ ef \end{vmatrix} \cdots + a_1 g^{p-1} \begin{vmatrix} 12 \\ 13 \end{vmatrix} g^{p-2} \begin{vmatrix} 13 \\ ef \end{vmatrix} \cdots +$$

+ 4 more similar terms with a_1 as a factor
+ 5 more expressions with a_2 , a_3 , a_4 , a_5 , and a_6
replacing a_1

where

$$a_1 = t \begin{vmatrix} 12 \\ 12 \end{vmatrix}$$

 $a_2 = t \begin{vmatrix} 12 \\ 13 \end{vmatrix}$, etc. (I-3)

Collecting terms with like coefficients $g \stackrel{p-1}{|} \stackrel{12}{|} g \stackrel{p-1}{|} \stackrel{13}{|} g \stackrel{p-1}{|} \stackrel{13}{|} g \stackrel{p-1}{|} \stackrel{13}{|} g \stackrel{p-1}{|} \stackrel{13}{|} g \stackrel{p-1}{|} \stackrel{p-1}{$

Det
$$R_{11} = A_1 g^{p-2} \begin{vmatrix} 12 \\ ef \end{vmatrix} + A_2 g^{p-2} \begin{vmatrix} 23 \\ ef \end{vmatrix} + A_5 g^{p-2} \begin{vmatrix} 24 \\ ef \end{vmatrix} + A_5 g^{p-2} \end{vmatrix} + A_5 g^{p-2} \begin{vmatrix} 24 \\ ef \end{vmatrix} + A_5 g^{p-2} \end{vmatrix} + A_5 g^{p-2} \begin{vmatrix} 24 \\ ef \end{vmatrix} + A_5 g^{p-2} \end{vmatrix} + A_5 g^{$$

where

$$A_{1} = (a_{1}b_{11} + a_{2}b_{21} + a_{3}b_{31} + a_{4}b_{41} + a_{5}b_{51} + a_{6}b_{61}) ,$$

$$b_{11} = g^{n} \begin{vmatrix} 12 \\ 12 \\ 12 \end{vmatrix} ,$$

$$b_{21} = g \begin{vmatrix} 13 \\ 12 \\ 12 \end{vmatrix} ,$$

$$b_{31} = g \begin{vmatrix} 14 \\ 12 \\ 12 \end{vmatrix} , \quad \text{etc.}$$

(I-4) is of the form (I-2); the sum of six terms which are each products of the second order subdeterminants. The process of evaluating the second order subdeterminants of a given layer, multiplying by six previously determined coefficients, a_i , and summing to obtain six new coefficients, A_i , is repeated until the entire layered sequence has been traversed from bottom to top. This can be quickly and easily adapted to computer processing as is indicated in the following considerations of the real and imaginary structure of $t \begin{vmatrix} 12 \\ ab \end{vmatrix}$ and g $p \begin{vmatrix} 12 \\ ab \end{vmatrix}$ $t \begin{vmatrix} 12 \\ ab \end{vmatrix}$ is of the form of a 6 x 1 row matrix

The real and imaginary structure of the $g \begin{vmatrix} ab \\ cd \end{vmatrix}$ is of the form of a 6 x 6 mattix

$$\begin{array}{c} \mathbf{g} \\ \mathbf{g} \\ \mathbf{c} \mathbf{d} \\ \mathbf{d$$

The ab indices have been taken as the row indices and the cd indices the column indices with 1=1.2, 2=13, 3=14, 4=23, 5=24, and 6=34; $g_{34}^{12} = g_{16}^{12}$, etc. Multiplication of t_{ab}^{12} by the g_{ab}^{p-1} ab in (I-2) yields a matrix of the form

Elements of this matrix correspond to the terms a_1b_{11} , a_2b_{21} , etc. in (I-4). Thus, the six new coefficients A_1 are simply the sum of the elements in a column of (I-7). The six new coefficients can then be considered as just another 6 \times 1 row matrix of the form of (I-3), Minus ones have been inserted in (I-6) to account for the multiplication of two like-signed imaginary quantities.

APPENDIX II

MODAL SHAPE COMPUTATIONS

In the Dunkin Method, mode shape is computed from the relation

$$R_{n}^{m}(z;a) = r_{11}^{-1} t_{1r}^{p} g_{rs}^{p-1} \cdots g_{vb}^{n} (z_{n}^{-z}) g^{n}(z_{-z_{n-1}}) \Big|_{cd}^{ab} \cdots g^{1} \Big|_{21}^{ef}$$
(II-1)

where a denotes the component of displacement. R_n^m (z;a) is the ath component of the displacement-stress vector, at the depth z, normalized to the vertical displacement at the free surface. Note that r_{12}^{-1} is simply a constant multiplier for all of the displacement-stress components. Thus, it may be dropped and the $R_n^m(z;a)$ at different depths divided by the vertical displacement at the surface to normalize the displacements. The equation actually used for the determination of mode shape was

$$R_{p}^{m}(z;a) = t_{1r}^{p} g_{rs}^{p-1} \cdots g_{vb}^{n} (z_{n}-z)g^{n} (z-z_{n-1}) \begin{vmatrix} ab \\ cd \\ cd \end{vmatrix} = t_{21}^{p} (11-2)$$

Writing (II-2) explicitly

$$R_{n}^{m}(z;a) = \check{t}_{11}^{1} g_{1s}^{p-1} g_{st}^{p-2} \cdots$$

$$+ \check{t}_{12}^{p} g_{2s}^{p-1} g_{st}^{p-2} \cdots$$

$$+ \check{t}_{13}^{p} g_{3s}^{p-1} g_{st}^{p-2} \cdots$$

$$+ \check{t}_{14}^{p} g_{4s}^{p-1} g_{st}^{p-2} \cdots$$

$$+ \check{t}_{14}^{p} g_{4s}^{p-1} g_{st}^{p-2} \cdots$$

When the dots denote the product of g_{ij}^n post multiplying g_{st}^{p-2} .

II-1

Sum over s

$$R_{n}^{m}(z;a) = a_{1}g_{11}^{p-1} g_{1t}^{p-2} \dots + a_{1}g_{12}^{p-1} g_{2t}^{p-2} \dots + a_{1}g_{13}^{p-1} g_{3t}^{p-2} \dots + a_{1}g_{14}^{p-1} g_{4t}^{p-2} \dots$$

$$\begin{bmatrix} a_{2}g_{21}^{p-1} g_{1t}^{p-2} \dots + a_{2}g_{22}^{p-1} g_{2t}^{p-2} \dots + \dots \\ a_{4}g_{41}^{p-1} g_{1t}^{p-2} \dots + \dots \end{bmatrix} (II-4)$$

where

ŧ

$$a_1 = t_{11}^p$$
, $a_2 = t_{12}^p$, $a_3 = t_{13}^p$, and $a_4 = t_{14}^p$.

 R_n^m (z;a) has been expanded into 16 terms of the form $a_i g_{ij}^{p-1} g_{jt}^{p-2} \cdots$ Now the g^{p-1} which have explicit subscripts can be included in the constant factor a_i . Collecting terms with common factors of g_{ij}^{p-2} yields

$$R_{II}^{m}(z;a) = (a'_{1} + a'_{2} + a'_{3} + a'_{4}) g_{1t}^{p-2} \dots + (a'_{1} + a'_{2} + a'_{3} + a'_{4}) g_{2t}^{p-2} \dots$$

$$+ \dots + (a'_{1} + a'_{2} + a'_{3} + a'_{4}) g_{4t}^{p-2} \dots \qquad (II-5)$$

$$a'_{i} = a_{i} g_{ik}^{p-1}$$
, etc.

which is of the form of (II-3).

Continuing this process yields

$$R_{n}^{m}(z;a) = a_{1}g^{n}(z-z_{n-1}) \begin{vmatrix} a_{1} & \dots & g^{1} \end{vmatrix} \begin{bmatrix} ef_{12} \\ + & a_{2}g^{n}(z-z_{n-1}) \\ + & a_{3}g^{n}(z-z_{n-1}) \end{vmatrix} \begin{vmatrix} a_{2} & \dots & g^{1} \end{vmatrix} \begin{bmatrix} ef_{12} \\ 12 \\ + & a_{3}g^{n}(z-z_{n-1}) \\ + & a_{4}g^{n}(z-z_{n-1}) \end{vmatrix} \begin{vmatrix} a_{3} & \dots & g^{1} \end{vmatrix} \begin{bmatrix} ef_{12} \\ 12 \\ 12 \\ + & a_{4}g^{n}(z-z_{n-1}) \end{vmatrix} \begin{vmatrix} a_{4} & \dots & g^{1} \end{vmatrix} \begin{bmatrix} ef_{12} \\ 12 \\ 12 \end{vmatrix}$$
(II-6)

II-2
The norizontal component, u, of displacement corresponds to a=1 and the vertical component, w, to a=2, so that

$$u = a_2 g^n \begin{vmatrix} 12 \\ cd \end{vmatrix} \dots + a_3 g^n \begin{vmatrix} 13 \\ cd \end{vmatrix} \dots + a_4 g^n \begin{vmatrix} 14 \\ cd \end{vmatrix} \dots and (II-7)$$

$$w = a_1 g^n \Big|_{cd}^{21} \dots + a_3 g^n \Big|_{cd}^{23} \dots + a_4 g^n \Big|_{cd}^{24} \dots$$
(II-8)

ote that $q^n \begin{vmatrix} ij \\ kl \end{vmatrix} = 0$, if i=j or k=1. Writing (II-7) explicitly

$$u = a_2 g^n \begin{vmatrix} 12 \\ 12 \end{vmatrix} g^{n-1} \begin{vmatrix} 1 \\ ef \end{vmatrix} \cdots + a_2 g^n \begin{vmatrix} 12 \\ 13 \end{vmatrix} g^{n-1} \begin{vmatrix} 13 \\ ef \end{vmatrix} \cdots + a_2 g^n \begin{vmatrix} 12 \\ 14 \end{vmatrix} g^{n-1} \begin{vmatrix} 14 \\ ef \end{vmatrix} \cdots$$

 $+ a_2 g^n \Big|_{23}^{12} g^{n-1} \Big|_{ef}^{23} \cdots + a_2 g^n \Big|_{24}^{12} g^{n-1} \Big|_{ef}^{24} \cdots + a_2 g^n \Big|_{34}^{12} g^{n-1} \Big|_{ef}^{34} \cdots$

+
$$a_3 g^n \begin{vmatrix} 13 \\ 12 \end{vmatrix} g^{n-1} \begin{vmatrix} 12 \\ ef \end{vmatrix}$$
 ... + 5 more terms in a_3 (II-9)

+
$$a_4 g^{n} | 12 g^{n-1} | 12 \dots + 5$$
 more terms in a_4

u is expressed in terms of the sum of 18 terms of the form $a_m g^n \begin{vmatrix} ij & g^{n-1} \\ kl & g \end{vmatrix} \stackrel{k_1}{ef} \cdots$ Collecting terms with common $g^{n-1} \begin{vmatrix} kl \\ ef \end{vmatrix}$ gives u as the sum of six terms of the form $a_m g^{n-1} \begin{vmatrix} ij \\ ef \end{vmatrix}$...

$$u = a'_{1} g^{n-1} \Big|_{ef}^{12} \dots + a'_{2} g^{n-1} \Big|_{ef}^{13} \dots + a'_{3} g^{n-1} \Big|_{ef}^{14} \dots + a'_{4} g^{n-1} \Big|_{ef}^{23} \dots + a'_{5} g^{n-1} \Big|_{ef}^{24} \dots + a'_{6} g^{n-1} \Big|_{ef}^{34} \dots , \qquad (II-10)$$

where

Ì

$$a_1' = a_2 g^n | 12 + a_3 g_{12}^{13} + a_4 g_{12}^{14}$$
, etc.

The process of evaluating the displacements u and w now proceeds exactly as for the evaluation of Det R_{11} described in Appendix I.

Let us consider the real and imaginary forms of the factors appearing in (II-4), (II-6), and (II-10). From the definition of T_p^{-1} given by Dunkin, t_{1r} is of the form

The layer matrices G_n are of the form

$$G_{n} = \begin{bmatrix} R & I & I & R \\ I & R & R & I \\ I & R & R & I \\ R & I & I & R \end{bmatrix}$$
(II-12)

Thus
$$t_{1r} g_{rs}^{p-1} = [I R R I]$$
 (II-13)

Each successive multiplication by a layer matrix G_n yields a row matrix of the form [I R R I] until the first multiplication by a second order subdeterminant is encountered. In order to account for the multiplication of two imaginaries in the evaluation of column 2 and 3 in (II-13) minus ones are inserted in (II-12) to give

. ...

$$G_{n} = \begin{bmatrix} R & -I & -I & R \\ I & R & R & I \\ I & R & R & I \\ R & -I & -I & R \end{bmatrix}$$
(II-14)

By (II-9) and the definitions of $g^n \stackrel{\text{ij}}{kl}$, the form of the matrix by which a_2 , a_3 , and a_4 of (II-7) are multiplied is

and for a_1 , a_3 , a_4 in the case of the vertical component

For the u component

$$\begin{bmatrix} R & R & I & I & R & R \\ R & R & I & I & R & R \\ -I & -I & R & R & -I & -I \end{bmatrix} = \begin{bmatrix} R & R & I & I & R & R \\ R & R & I & I & R & R \end{bmatrix}$$
(II-17)

and for the w component

$$[IRI] \cdot \begin{bmatrix} R & R & -I & -I & R & R \\ I & I & R & R & I & I \\ R & R & -I & -I & R & R \end{bmatrix}$$
(II-18)

Minus ones have been inserted to account for multiplication of two imaginaries. To continue the process to the surface, the form of the matrices composed of the second order subdeterminant elements is

for the u component and

R	R	-I	-I	R	R
R	R	-I	-I	R	R
I	I	R	R	I	I
I	I	R	R	I	I
R	R	-I	-I	R	R
Į.k	R	-I	-I	R	R

and for the w component. Minus ones have been inserted in the appropriate elements to account for the multiplication of two pure imaginary quantities. Since the lower subscripts in (II-1) for the surface layer matrix are 21, the layer matrix of the surface layer is a 6 x 1 column matrix. The final multiplications are then of the forms:

u component

$$[RRIIRR] \cdot \begin{bmatrix} R \\ R \\ -I \\ -I \\ -I \\ R \\ R \\ R \end{bmatrix} = [RRRRR]$$

II-6

w component

$$\begin{bmatrix} I I R R I I \end{bmatrix} \cdot \begin{bmatrix} R \\ R \\ I \\ I \\ R \\ R \end{bmatrix} = \begin{bmatrix} I I I I I I I \end{bmatrix}$$

.

EXPLICIT FORMS OF LAYER MATRIX COMPONENTS g ij

$$g_{11} = g_{44} = \frac{2\beta^2}{c^2} \cosh P - \frac{P_{B}^2}{k^2 c^2} \cosh Q$$

$$g_{12} = g_{34} = \frac{i\beta^2 p}{r_{\alpha}c^2 k^2} \sinh P + \frac{2ir_{\beta}\beta^2}{c^2} \sinh Q$$

$$g_{13} = g_{24} = \frac{i\beta^2}{\mu kc^2} \cosh P - \frac{i\beta^2}{k\mu c^2} \cosh Q$$

$$g_{14} = \frac{\beta^2}{kr_{\alpha}c^2\mu} \sinh P + \frac{p\beta^2r_{\beta}}{\mu kc^2} \sinh Q$$

$$g_{21} = g_{43} = -\frac{2ir_{\alpha\beta}^2}{c^2}\sinh P - \frac{ip\beta^2}{k^2r_{\beta}c^2}\sinh Q$$

$$g_{22} = g_{33} = -\frac{p_{\beta}^2}{k^2 c^2} \cosh P + \frac{2\beta^2}{c^2} \cosh Q$$

$$g_{23} = \frac{r_{\alpha}\beta^2}{\mu kc^2} \sinh P + \frac{\beta^2}{\mu r_{\beta}c^2 k} \sinh Q$$

$$B_{31} = B_{42} = \frac{2i\mu\beta^2 p}{kc^2} \cosh P - \frac{2ip\mu\beta^2}{kc^2} \cosh Q$$

$$g_{32} = -\frac{\mu p^2 \beta^2}{k^3 c^2 r_{\alpha}} \sinh P - \frac{4\mu k r_{\beta} \beta^2}{c^2} \sinh Q$$

$$g_{41} = -\frac{4\mu kr_{\alpha} \beta^2}{c^2} \sinh P - \frac{\mu p_{\beta}^2}{r_{\beta} c^2 k^3} \sin Q$$

SUMMARY OF EXPLICIT FORMS OF SECOND CRDER SUBDETERMINANTS g

•••

$$\frac{112}{12} = s \left|_{34}^{34} = -2\gamma(\gamma - 1) + (2\gamma^{2} - \gamma + 1)\overline{CP} \ C\overline{Q} - \left[\frac{(\gamma - 1)^{2}}{r_{\alpha}r_{\beta}} + \gamma^{2}r_{\alpha}r_{\beta}\right]\overline{SQ} \ \overline{SP} \right|$$

$$s \left|_{13}^{12} = s \left|_{34}^{24} + (c\lambda^{2}k)^{-1} \left[\frac{\overline{SQ} \ \overline{CP}}{r_{\beta}} + r_{\alpha} \ \overline{SP} \ \overline{CQ}\right] \right|$$

$$s \left|_{14}^{12} = s \left|_{23}^{12} - s \right|_{34}^{14} - s \left|_{34}^{23} - 1(c\lambda^{2}k)^{-1}\right| \left\{(2\gamma - 1)(1 - \overline{CP} \ \overline{CQ}) + \left[\frac{(\gamma - 1)}{r_{\alpha}r_{\beta}} + \gamma r_{\alpha}r_{\beta}\right]\overline{SP} \ \overline{SQ} \right\}$$

$$s \left|_{24}^{12} = s \left|_{34}^{13} - (c\lambda^{2}k)^{-1} \left[r_{\beta} \ \overline{CP} \ \overline{SQ} + \frac{1}{r_{\alpha}} \ \overline{SP} \ \overline{CQ}\right] \right]$$

$$s \left|_{34}^{12} - (c\lambda^{2}k)^{-2} \left[2(1 - \overline{CP} \ \overline{CQ}) + \left(\frac{1}{r_{\alpha}r_{\beta}} + r_{\alpha}r_{\beta}\right) \ \overline{SQ} \ \overline{SP} \right]$$

$$s \left|_{34}^{12} - s \left|_{24}^{34} - (c\lambda^{2}k) \left[\gamma^{2}r_{\beta} \ \overline{CP} \ \overline{SQ} + \frac{(\gamma - 1)^{2}}{r_{\alpha}} \ \overline{SP} \ \overline{CQ} \right] \right]$$

$$s \left|_{34}^{12} - s \left|_{24}^{34} - (c\lambda^{2}k) \left[\gamma^{2}r_{\beta} \ \overline{CP} \ \overline{SQ} + \frac{(\gamma - 1)^{2}}{r_{\alpha}} \ \overline{SP} \ \overline{CQ} \right] \right]$$

$$s \left|_{33}^{13} - s \left|_{24}^{24} - (c\lambda^{2}k) \left[\gamma^{2}r_{\beta} \ \overline{CP} \ \overline{SQ} + \frac{(\gamma - 1)^{2}}{r_{\alpha}} \ \overline{SP} \ \overline{CQ} \right] \right]$$

$$s \left|_{34}^{13} - s \left|_{24}^{14} - s \right|_{24}^{23} - 1(\gamma r_{\beta} \ \overline{CP} \ \overline{SQ} + \frac{(\gamma - 1)}{r_{\alpha}} \ \overline{SP} \ \overline{CQ} \right]$$

$$s \left|_{34}^{13} - s \left|_{24}^{14} - s \right|_{24}^{23} - 1(\gamma r_{\beta} \ \overline{CP} \ \overline{SQ} + \frac{(\gamma - 1)}{r_{\alpha}} \ \overline{SP} \ \overline{CQ} \right]$$

$$s \left|_{34}^{13} - s \left|_{24}^{14} - s \right|_{24}^{23} - 1(\gamma r_{\beta} \ \overline{CP} \ \overline{SQ} + \frac{(\gamma - 1)}{r_{\alpha}} \ \overline{SP} \ \overline{CQ} \right]$$

$$g \begin{vmatrix} \frac{14}{12} = g \cdot \frac{23}{12} = g \begin{vmatrix} \frac{34}{14} = g \end{vmatrix} \begin{vmatrix} \frac{34}{23} = 1(\rho k\lambda^{2}) \left\{ \gamma(\gamma-1) (2\gamma-1) (1-\overline{CQ} \ \overline{CP}) + \left[\frac{(\gamma-1)^{3}}{r_{a}r_{\beta}} + r_{a}r_{\beta}\gamma^{3} \right] \overline{SQ} \ \overline{SP} \right\}$$

$$g \begin{vmatrix} \frac{14}{13} = g \end{vmatrix} \begin{vmatrix} \frac{23}{13} = g \end{vmatrix} \begin{vmatrix} \frac{24}{14} = g \end{vmatrix} \begin{vmatrix} \frac{24}{23} = -1\left(\frac{(\gamma-1)}{r_{\beta}} - \overline{CP} \ \overline{SQ} + r_{a}\gamma - \overline{CQ} \ \overline{SP} \right)$$

$$g \begin{vmatrix} \frac{14}{14} = g \end{vmatrix} \begin{vmatrix} \frac{23}{23} = 1 + 2\gamma(\gamma-1) (1-\overline{CQ} \ \overline{CP}) + \left(\frac{(\gamma-1)^{2}}{r_{a}r_{\beta}} + \gamma^{2} r_{a}r_{\beta}\right) \ \overline{SP} \ \overline{SQ}$$

$$g \begin{vmatrix} \frac{14}{23} = g \end{vmatrix} \begin{vmatrix} \frac{23}{14} = g \end{vmatrix} \begin{vmatrix} \frac{14}{14} - 1$$

$$g \begin{vmatrix} \frac{124}{12} = g \end{vmatrix} \begin{vmatrix} \frac{34}{13} = + (\rho\lambda^{2}k) \left[\frac{(\gamma-1)^{2}}{r_{\beta}} - \overline{CP} \ \overline{SQ} + r_{a}\gamma^{2} \ \overline{SP} \ \overline{CQ} \ 1$$

$$g \begin{vmatrix} \frac{24}{13} = + \frac{r_{a}}{r_{\beta}} \ \overline{SP} \ \overline{SQ}$$

$$g \begin{vmatrix} \frac{14}{13} = + \frac{r_{a}}{r_{\beta}} \ \overline{SP} \ \overline{SQ}$$

10.04

II-10

*7

EXPLICIT FORMS OF
$$t \Big|_{ab}^{12}$$

 $t \Big|_{12}^{12} = -\frac{\beta^2 \mu}{2\omega^2} (4k^4 r_{\alpha}r_{\beta} + p^2)$
 $t \Big|_{13}^{12} = -\frac{r_{\alpha}}{r_{\beta}} t \Big|_{24}^{12} = \frac{4\beta^2}{2\omega^2} r_{\alpha}k(2k^2-p)$
 $t \Big|_{14}^{12} = t \Big|_{23}^{12} = \frac{4\beta^2 k}{2\omega^2} (2k^2r_{\alpha}r_{\beta} + p)$
 $t \Big|_{14}^{12} = t \Big|_{23}^{12} = \frac{4\beta^2 k}{2\omega^2} (2k^2r_{\alpha}r_{\beta} + p)$
 $t \Big|_{34}^{12} = -\frac{\beta^2 k^2}{2\mu\omega^2} (r_{\alpha}r_{\beta} + 1)$

$$P = kdr_{c} \qquad Q = kdr_{\beta}$$

$$\gamma = \frac{2\beta^{2}}{c^{2}} \qquad p = 2k^{2} - \frac{\omega^{2}}{\beta^{2}}$$

$$r_{c} = \sqrt{\frac{c_{2}}{\alpha^{2}} - 1}$$

$$SP = \sin P \qquad c \ge \alpha$$

$$CP = \cos P$$

$$r_{\beta} = \sqrt{\frac{c_2}{\beta^2} - 1}$$

SQ = sin Q
CQ = cos Q

The g_{ij} expressions are written for the hyperbolic functions (c< α , c< β). For $c>\alpha$, $c>\beta$, the hyperbolic functions transform according to

.....

.

cosh P	>	cos P	c>α
cosh Q	>	c os Q	c> β
sinh P	→	-i sin P	c>α
sinh Q	>	-i sin Q	c> β

.

APPENDIX III

FORTRAN LISTINGS OF COMPUTER PROGRAMS FLATRAY, STRESS, INTEGRAL, TRAVEL, VARGRAV, AND PRESID

INPUT DATA AND FORMAT FOR FLATRAY

.

.

-1-<u>1-</u>

1

CARD	FORMAT	DATA DESCRIPTION
1.	14	Model identification no.
	14	No. of layers <41
	14	No. of modes to be computed <11
	F10.4	Precision of root values of k
	F10.4	Cutoff k value to automatically stop
		computation
2	8F10.6	Layer parameters stored in sequence
		α , β , ρ , d; two layers to a card
3	F10.6	Starting c value
	F10.6	Minimum c value
	F10.6	Decrement of c
	F10.6	Starting k value
	F10.6	k increment for individual modes
	F10.6	k increment to find starting points of
		different modes
	F10.6	c perturbation
	F10.6	k perturbation
4	2014	Mode no. to be found stored sequentially

III-1

18

```
U[MENSIUN ALPHA(40),BEITA(40),MHO(40),THICK:40),RODIS(15,40),MODE
1(10),PEM[0D(15,40),H(6),E(8),G(6,6),A(6),UD]SP(40),WU]SP(40)
                 1.4(4)
1.-((4)

COMMUN UDISH.WDISH.H

HEAU 150.HOUEL.NLAYER.NHODE.XKMIN .4KHAX

150 Format (314.2F10.4)

MEAO 200.(Alpha(I).Hetta(I).RHU(I).THICK(I).I=1.NLAYER)

201 Format(BF10.6)

MAINI 900.HUDEL

MAINI 900.HUDEL
 900 FORMAT(314-LAYER PAMAMETERS FUM MODEL RYI 14 // 6H LAYER,5X,6M AL
1944,52,6H BETTA,74,4H MH0,5X,14H THICKNESS(KM),3X, 6H M(KM) /)
                   1944.5%.6H BETTA,7%.4H MH0,5%.14H THICKHESS(KH),3%,6H 

1THIU#=0.

UD 902 I=1.NLAYER

1THIU#ETTHICK +THICK(I)

MHIU#ETTHICK +THICK(I),MH0(I),THICK(I),TTHICK

PHAT(1A.13,3%,F10.4,4%.F8.4,4%.F8.4,5%.F8.2,5%.F8.2)

1)IAL= TTHICK

MEAO 200. CMA%.CMIN.DELC,AK.DELK.DELK1.PTR8C.PTR8 K

MEAO 200. CMA%.CMIN.DELC,AK.DELK.DELK1.PTR8C.PTR8 K

MEAO 200. CMA%.CMIN.DELC,AK.DELK.DELK1.PTR8C.PTR8 K

HEAD 350. (MODE(I).I=1.NMODE)

+ DMAT(2014)

NEMMUD = 1
  982
   350
                      NEHHUD = 1
UHAX1 =CMAX
                       N4UD = 10
14=4UDE(1)
15141 =10
                        IAT NLAYEM-1
                      1 441
A<=40015(1M,1N)=AK
19146 =1
C = CMAX
                         LICUC
۲ ۲۰۱۲ ۲۰۱۲
۱۵۱۶ ۱۵۱۶ ۲۰
۱۵۲۱ ۲۱
۱۵۲۲ ۲۱
۱۵۲۲ ۲۱
                      5164# 1.
134AC = 10
 i vux2=1
10J i=iA
                      U(+)=114=115
U(+)=114=115
U(+)=115=-RUET+012/HALPH
U(0)=T16=-BEFAC+xk++2+(-HALPH+KBET+1,)/AMU
UAH=2,+ BETTA(1) ++2/C++2
         51
                       uamz,...BETTA(1) ...2/C++2
UIVS+1,
H=JT#7,UU(1)+C++2+3K
M=LPM=SUMT(ABS((C/ALPHA(1))++2-1,))
M=t = SGRT(ABS((C/BETTA(1))++2-1,))
M=X+2+RLP+4TH(CK(1)
U=X+2+RLP+4TH(CK(1))
I=(C-+ALPHA(1))1,2,2
+AC4*1,
U=CUS(P)
D=TUS(P)
D=SUN(P)
U=1U J
               ć
                       G3 TU 3
FaCA ==1,
C3=(EXP(P)+EXP(-P))/2,
S3=(EAP(P)-EAP(-P))/2,
                      >>=(cAP(P)-GAP(-P))/2.

I=(C-dETTA(I))5,4,4

+AC381.

U=CUS(U)

>=sin(U)

== 10

+AC38-1.

C2=(cXP(0)-EAP(-U))/2.

>==teAP(0)-EXP(-Q))/2.

U=N=CPCQ
                       U(1,1)=(GAM-1,)=>2/(HALPH=RBET)=GAM==2=HALPH=RBETeFACA=FACB

U(1,1)==G(1,1)=SO=SP=2,*GAM=(GAM=1,)=(2,*GAM==2=2,*GAM=1,)*CP=CU

U(1,2)=(S3=CP/HBET=HALPH=SPECO=FACA)/RHOC

U(1,3)=((GAM=1,)/(HALPH=RBET)=GAM=MALPH=RBETeFACA=FACB)=SP=SU+(2,*

1:4A=1,)=(1,-CP=CO)

U(1,3)=G(1,3)/HHOC

U(1,3)=G(1,3)

U(1,3)=(2,*(1,-CP=CU)+(1,/(HALPH=RBET)=RALPH=RBET=FACB=FACA)=SU=S

U(1,5)==(2,*(1,-CP=CU)+(1,/(HALPH=RBET)=RALPH=RBET=FACB=FACA)=SU=S
                   6(2,2)=CQ+CP
                        U(2,3)=GAM+MBET+FAC8+CP+SQ+(GAM-1,)+SP+CQ/RALPM
                       U(3,1)=((3AH=1,)==3,1AL;A=AL)=(2,*GAM=1,)*(1,=CQ*CP) +G(3,1))

U(3,1)=- HA^;=*(GAM*(GAM=1,)*(2,*GAM=1,)*(1,=CQ*CP) +G(3,1))

U(3,2)= ((LA*=1,)*CP*SQ/HBET*ALPM*3AM*FACA*CO*SP)

U(3,3)=1,*2,*GAM*(GAM=1,)*(1,*CP*CU)*((GAM=1,)**2/(RALPH*RBET)*GAM

1*C*A**C(4,3)=1.
                       \begin{array}{c} (1, 2, 3) = 0 \\ (1, 3, 3) = -0 \\ (2, 3) = -0 \\ (2, 3) = -0 \\ (2, 3) = -0 \\ (2, 3) = -0 \\ (2, 3) = -0 \\ (2, 3) = -0 \\ (2, 3) = -0 \\ (2, 3) = -0 \\ (2, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3, 3) = -0 \\ (3,
```

Ŧ'

G(4,7);=-G(2,3) U(4,0):=-G(1,3; G(7,1):(GAM-1,)+2+CP+SG/HBEI+HAL+++GAM+GAM+SP+CQ+FACA)+HHUC U(7,3):=-G(3,2) G(7,4):=-G(3,2) U(7,7):=U(2,2) U(7,5):=G(3,2) U(7,5):=G(3,2 1U G(0,1)=HH0C++2+(2,+GAM+GAM+)GAM-1,)++2+(CP+CQ-1,)-G(0,1)) G(6,2) = G(5,1) G(6,3) = -G(3,1) G(6,4) = -G(3,1) $\begin{array}{c} G(6,4) = -G(3,1) \\ G(6,5) = G(2,1) \\ G(6,5) = G(1,1) \\ IF(1) = SF-1) = 62,62,8012 \\ 6d = IF(1-1) = 402,402,101 \\ 101 = D_3 U = J=1.6 \\ SJM = U, \\ U2 = 4U = K=1.6 \\ SJM = DUH+B(K) = G[K,J] \\ AU = MTINUE \\ \end{array}$ 5JH=5UH+8(K)+6(K,J) 4J C3NTINUE AJJ=5UH 30 C3NTINUE U3 8 J=1.6 4(J)=A(J)/DIV5 4 C3NTINUE 1=1-1 43 TU 51 402 F=d11)+6(1+1)+8(2)+6(2+1)+8(3)+6(3+1)+8(4)+6(4+1)+8(5)+6(5+1)+8(6) 1*314-13 402 Fad11)+G(1,1)+B(2)+G(2,1)+B(3)+(1*3(6,1) **/U|VS 1*(ISTMT+1) 603,301,603 C ** COMPUTE FIRST HOOT OF EACH MOUL 603 I*(!NDX2+1)605,604,605 604 I VUX2 =10 X<1=X4 *1=F X<1=X4+PELK1 UD TU 100 HJUTSIJH, [N]XXK MEHIUO([N,[N]X (2,+3,1416)/[XK+C]]F([STHT-1) 950,901,950 1%()STWT-1) 950.001/050 950 14%1M+1 1%(14-MUDE(YHUDE)) 015.015.010 610 1%% A (1*A A (1*A A (1*A A (1*A A (1*A U) TU YOO 615 A (*A(1*A) (14+1,1) A (1*A (10) (14+1,1) A (1*A) U) TU YOO 010 15141*1 UJH 2*1 1400*1 14 #MODE(1H00)

...

10154=10)_=1 A(MINE ,01+XK IJNP=1 B(4)-B(1=1)80(0.8009 B(1=1)80(0.8009 B(0)9 B(150=80+TA(1)0+2 Aqua B(TA(1)0+2+HH0(1) KALPHSQRT(ABS((C/ALPHA(1))0+2-1,)) K3E1=SQHT(ABS((C/BETTA(1))0+2-1,)) Matomatomic UBAC+ABETHICK() UBAC+ABETHICK())F(C-ALPHA(I)) 8002,8003,8003 8003 FAGATI. CPECUS(P) SPESIV(P) G) TU 8030 8004 FACTATI 8002 FAUAI-1. USI(EXP(P)+EXP(-P))/2. 52*(EAP(P)-EXP(-P))/2. 8030 1*(C-JETT\(1)) 8004,8005,8005 8007 FAUBE1. (JECUS(4) SJES)N(0) 5]=5]4(4) (5) TU 8006 2004 : ACJ=-1. CJ=(txP(0)+ExP(-0))/2. 5J=(txP(0)-ExP(-0))/2. 8200 UIG = HETTs(1)++2/(XK+C+C) A_=2,+XK+AK-(XK+C)++2/BETTA(1)++2 (1)1-2 = AL-TS(ACPU/(CPC)-AL+BETS(D)) A_=2, +X++K+-(X++C)++2/B+TA(1)++2 u(1,1)+2, +y_TSU+CP/(C+C)+AL+BIG+CD/XK u(1,2)=-(AL+BIG+SP/(RALPH+XK)+2,+BIG+SD+FACB+AK) b(1,3)=-BIG+(CP-CD)/AHU u(1,3)=-BIG+(CP-CD)/AHU u(2,1)=-2,+9IG+RALPH+SP+FACG+XK+AL+3IG+SO/(XK+BET) u(2,3)=-AL=BIG+CP/XK+2,+BIG+CQ+XK u(2,3)=+AL=BIG+SP+FACG+XH+4)G+SU/(RBET+AHU) u(2,3)=+AL=BIG+SP+FACG+XH+4)G+SU/(RBET+AHU) G(2,4)==G(1,3) G(3,1)=2,0AMU0AL0BIG0(CP-CQ) G(3,2)==AMU0AL0BIG0SP/(R4L³H0XK3XK)=4,0AMU0RBET0SU0FACB0BIG0AK0 L(3,2)=-AMU+AL+AL+BIG+SP/(HAL+H+XK3XK)-4,+AHU+HBET+SU+FA(1X4 L(3,3)=G(2,2) U(3,5)=-3,+AHU+AK+AK+RALPH+UIG*SP+FACA-AHU+AL+AL+UIG*SG/ 1(xK+XC+HBET) U(4,2)==5(3,1) U(4,2)==6(2,1) U(4,2)==1,4 SJM=U, 000/ U3-TINUE U3 8011 J=1.4 E(J)= 8(J) H(J)=9(J)=A(J) 8011 C3NTINUE I7(L-1)89.03,84 83 I=I-1 U3 TU 8001 801J E(3)=3(1) E(6)=3(2) E(7)=3(4) t(b)=4(2)
t()=3(3)
t(b)=8(4)
)?(1-1)81.81.82
81 m)LosTH(C<(1)
1.41CK(1)=0.
1.=10
1.=10
1.=10
0.TU 8009
84)?(1L1=1)%0.87.86
85 U015F(2))=A(2)=G(1,1)=A(3)=G(2,1)=A(4)=G(3,1)
=015F(2))=A(1)=G(1,1)=A(3)=G(4,1)=A(4)=G(5,1)
U0)5F(2)=U015F(2)/D1V5
1.1=10
e(1)=E(1)
0(1)=E(1)
0(1)=E(2)
0(1)=E(2) &d UUiSP(1)=-A(2)*G(1,1)-A(3)*G(2,1)*A(4)*G(3,1)
#DISP(1)=A(1)*G(1,1)*A(3)*G(4,1)*A(4)*G(5,1)
U0ISP(1)* UDISP(1)/DIVS
#DJSP(1)* UUISP(1)/DIVS

-15

IDISM=1 |41CK(1)=HOLD L=1x41 MJNCH 2701,HDDEL.IM.L.TOTAL.C.PEHIDU(IM.IN) MJNCH 1032.(UDISP(J),HDISP(J),J=1,L) JIM=HDISP(1) US 4006 444 444 444 PUNCH 1032.(UDISP(J),WDISP(J),J=1,L) UJV=WDISP(1) UD J=UDISP(J)/DIV WDISP(J)=UDISP(J)/DIV MDISP(J)=WDISP(J)/DIV 1001 CONTINUE FDW=FUVH+2 PUNCH 2701,MDDEL,IM,L,T0TAL,C,PEHIUJ(IM,IM) PUNCH 1032.(UDISP(J),WDISP(J),J=1,L) 2701 FDWAT(14,359,3) 1032 + DMAT(14,359,3) 1032 + DMAT(6E13.6) UD TU (8025.901.8026).IJMP 62 MDL0=THICK(I) I + 1CK(I)=U, L=0 UD TU 4009 87 I + 1CR(I)=+0LD LL=U M=1 UIVS=1, UD 51 90 UD TU 93.90,M 92 UD 51 90 UD TU(92,91,93,96),M 92 UD 8015 J=2,4 SJM=SUH+8(J)+6(J=1,K) 8014 CONTINUE 803> CONTINUE A(K)=SUM 8014 CONTINUE U3 8031 J=1.6 4(J)=A(J)/DIVS 8031 CONTINUE)=i-1 M=2 G3 TU 51 91 if(i-1) 94,94,95 9> UJ 9036 J=1.6 SJM=0. 92 UJ 3016 J=1+6 3J##0, 3J 8017 K=1+6 3J##5UH+B(K)+G(K,J) 8017 CONTIVUE $\begin{array}{l} U_1 \forall \overline{s} = 1, \\ u_3 & \top U & 5 \\ A_{(1)} = B_{(1)} = G_{(1,1)} = B_{(3)} = G_{(4,1)} = B_{(4)} = 3_{(5,1)} \\ A_{(2)} = B_{(1)} = G_{(1,2)} = B_{(3)} = G_{(4,2)} = B_{(4)} = 3_{(5,2)} \\ A_{(3)} = B_{(1)} = G_{(1,3)} = B_{(3)} = G_{(4,2)} = B_{(4)} = G_{(5,3)} \\ A_{(4)} = B_{(1)} = G_{(1,4)} = B_{(3)} = G_{(4,4)} = B_{(4)} = G_{(5,4)} \\ A_{(5)} = B_{(1)} = G_{(1,5)} = B_{(3)} = G_{(4,5)} = B_{(4)} = 3_{(5,5)} \\ A_{(5)} = B_{(1)} = G_{(1,6)} = B_{(3)} = G_{(4,6)} = B_{(4)} = 3_{(5,6)} \\ = B_{(4)} = B_{(4)} = G_{(4,6)} = B_{(4)} = 3_{(5,6)} \\ = B_{(4)} =$ ə s A (φ) = -B(1) + C(1,6) U_0 = 0019 J= 1,6 U_0 = 1 + A(J) 01 + C (J) + A(J) 01 + C (J) + C (J) + A(J) U_0 = 1 + C (J) + J U_0 = 1 + C (J) + J U_0 = 1 + C (J) + J U_0 = 1 + C (J) + C 8019 $\begin{array}{c} (i(3,2)) = -G(3,5)\\ (i(3,0)) = -G(4,6)\\ (i(4,2)) = -G(4,6)\\ (i(4,2)) = -G(4,6)\\ (i(5,3)) = -G(4,6)\\ (i(5,3)) = -G(4,6)\\ (i(5,3)) = -G(5,3)\\ (i(5,3)) = -G(5,3)\\ (i(5,4)) = -G(6,3)\\ (i(5,4)) = -G(6,4)\\ (i(5,4)) = -G(6,4)\\$

.

.

1-4(5)*G(5,1)-A(6)*G(6,1) *DIS*(L+1)* WDIS*(L+1)/DIVS U(1)*E(5) U(2)*E(5) U(3)*E(7) U(4)*E(8) irL LrL-1 12* 50 (0 8001 8025 X4#40DI\$(1M, 1)+DELK 8029 ACHTODISTIN, 17+DELK 19=2 19=4UDE(140D) C= CMAX-DELC 2000 P31V1 1030,IM,TOTAL 1030 F3MMAT(6H-MODE 13 /19H SECTION THICKNESS F8.2 //11X, 15H PMASE VEL 1051 F3MMAT(6H-MODE 13 /19H SECTION THICKNESS F8.2 //11X, 15H PMASE VEL 1051 F3MMAT(6H-MODE 13 /19H SECTION THICKNESS F8.2 //11X, 15H PMASE VEL 1051 F3MMAT(6H-MODE 13 /19H SECTION THICKNESS F8.2 //11X, 15H PMASE VEL 1051 F3MMAT(6H-MODE 13 /19H SECTION THICKNESS F8.2 //11X, 15H PMASE VEL 1051 F3MMAT(6H-MODE 13 /19H SECTION THICKNESS F8.2 //11X, 15H PMASE VEL 1051 F3MMAT(6H-MODE 13 /19H SECTION THICKNESS F8.2 //11X, 15H PMASE VEL 1051 F3MMAT(6H-MODE 13 /19H SECTION THICKNESS F8.2 //11X, 15H PMASE VEL 1051 F3MMAT(6H-MODE 13 /19H SECTION THICKNESS F8.2 //11X, 15H PMASE VEL 1051 F3MMAT(6H-MODE 13 /19H SECTION THICKNESS F8.2 //11X, 15H PMASE VEL 1051 F3MMAT(6H-MODE 13 /19H SECTION THICKNESS F8.2 //11X, 15H PMASE VEL 1051 F3MMAT(6H-MODE 13 /19H SECTION THICKNESS F8.2 //11X, 15H PMASE VEL 1051 F3MMAT(6H-MODE 13 /19H SECTION THICKNESS F8.2 //11X, 15H PMASE VEL 1051 F3MMAT(6H-MODE 13 /19H SECTION THICKNESS F8.2 //11X, 15H PMASE VEL 1051 F3MMAT(6H-MODE 13 /19H SECTION THICKNESS F8.2 //11X, 15H PMASE VEL 1051 F3MMAT(6H-MODE 13 /19H SECTION THICKNESS F8.2 //11X, 15H PMASE VEL 1051 F3MMAT(6H-MODE 13 /19H SECTION THICKNESS F8.2 //11X, 15H PMASE VEL 1051 F3MMAT(6H-MODE 13 /19H SECTION THICKNESS F8.2 //11X, 15H PMASE VEL 1051 F3MMAT(F3 1030 + 344+160+-MODE 13 /104 SECTION THICKNESS 10717,4X,2H K, 8X,30H PERIDD(S),4X,15H GR 10(S)) + 4141 1031,CHAX,RDDTS([M,1),PEHIDD([H,1) 1031 + 54AT(12X,F10.4,3X,F10.5,4X,F10.4) GJ TU 500 301 IF(1MDX2-1) 502,501,502 501 WUX2 = 10 X(1=X4 +1=F X(=X4 + 0ELK GJ TU 100 502 AF=ABS(F1) 1F(A)-AF1, 504,503,503 503 IT(ABS(F1-F)-AF1)507,506,506 504 IF(ABS(F1-F)-AF1)507,506,506 504 IF(ABS(F1-F)-AF1)507,506,506 504 IF(ABS(F1-F)-AF1)507,506,506 504 IF(ABS(F1-F)-AF1)507,506,506 504 IF(ABS(F1-S1-AF1)507,506,506 504 IF(10P1-1) 2004,2004,510 2004 IF(10P1-1) 2004,2006,2005 2005 X(1=X4 +1=F - 14 2004 +1+F 43 TV 2006 X(2=NDUIS(1W,[N-1) C1= CMAX1-C U1= -(XK3-XK1)/(2.*DELC) U2=(XK3-2.*XK2 *XK1)/DELC*2 X(* XK1- D1*C1 *(D2*C1*(C1-DELC))/2. 1>(40=10)>U-1 10P+1 17(XK-XKMAX) 500,500,61 |] U=1 if (XK-XKMAX) 500,500,61 531 C=C-UELC i=1HU=1 if (C-CM[N)520,521,521 521 if (IN-3) 522,523,523 522 X(=RUDTS(IN,IN)+,5*(RDOTS(IN,IN)-RDJTS(IN,IN-1)) iy=in+1 i) U=1 if (XK-XKMAX)500,500,520 723 X(1=KUTS(IM,IN-1)) A(3= RODTS(IM,IN-1)) U=1 i(XK-XKMAX)500,500,520 524 if (IM-MODE(NMODE))524,525,525 524 if (IM-MODE(NMODE))524,525,525 524 if (IM-MODE(NMODE))524,525,525 524 if (IM-IN-1) NEMMUD = 1

14±440DE (IMUD) A<#RUD)S(IM,1) A<MIN=,01=X4 A<MAX=10.+RODTS(IM,1) I=14=1 C4AX1 =CMAX USCHAX ID:SP=10 L=1 IJHP=3 IN=1 IX=VLAYER=1 ID:AL=TTHICK UD TU 8000 8020 U=UHAX=DELC IN=2 IX=NLAYER=1 IDP=1 UD TU 2000 530 M1=RUDTS(IM,IN)=(C+PTRBC) M2=FASC UC= HODTS(IM,IN)=XK HS=(H2=H1)/DK USCHAR USCHAR ID=RUC IDH=2,*3.1416/((W2=H1)/2,+W1) ID=RUC VALUE VALU C=CHAX IDISF=10 [>]RU=1
X<MAX=RDDTS([M, IN)+10,+(RDDTS(IM, IN)-ROUTS(]:(, IN-1))
X<MIN=,01+RDDTS(IM, IN)
PRIM' 1020,C,RDDTS(IM, IN),PEHIUD([M, IN),R,TGRR
1020 F0MAT(12X,F10.4,3X,F10.5,4X,F10.4,6X,F10.4,17X,F10.4)
G) TU 531
61 C=C+TRHC
Pair 1020,C RUDTS(IM, IN)</pre> U3 10 531 61 C:C+PTHUC MAINI 1031.C.RUDTS(IM,IN),PERIOD(IM,IN) G3 TU 520 52> MJNCH 2701.IPUN MAUSE 7 MEAD 350.IPUN U3 556 I=1.IPUN MEAD 2701.MODEL.IM.L.TDTAL.C.PERIDU(1.1) MEAD 2701.MODEL.IM.L.TDTAL.C.PERIDU(1.1) MEAD 1032.(UDISP(J),MOISP(J),J=1,L) MAINI 557.MODEL.IM.C.PERIDD(1.1).TUTAL 557 F0MAIN(304-MDDEL.RTI 14 /.5M MODE 14/.15M PHASE VELDCITY F8,3 /. 1 7M MENIDD F9,3/.22M SECTION JHICAVESS(KM) F9.3 ///) MAINI 2703 2703 F0MAIN(32M SECTION JHICAVESS(KM) F9.3 ///) MAINI 2703 2704 F0MAIN(32M SECTION JHICAVESS(KM) F9.3 //) MAINI 2704 2704 F0MAIN(32M SECTION JHICAVESS(KM) F9.3 //) MAINI 2704 2704 F0MAIN(32M SECTION JHICAVESS(KM) F9.3 //) MAINI 2704 2704 F0MAIN(32M SECTION JHICAVESS(KM) F9.3 //) MAINI 2704 2704 F0MAIN(32M SECTION JHICAVESS(KM) F9.3 //) MAINI 2704 2704 F0MAIN(32M SECTION JHICAVESS(KM) F9.3 //) MAINI 2704 2704 F0MAIN(32M SECTION JHICAVESS(KM) F9.3 //) MAINI 2704 2704 F0MAIN(32M SECTION JHICAVESS(KM) F9.3 //) MINI 2704 2704 F0MAIN(32M SECTION JHICAVESS(KM) F9.3 //) MINI 2704 2704 F0MAIN(32M SECTION JHICAVESS(KM) F9.3 //) MINI 2704 2704 F0MAIN(32M SECTION JHICAVESS(KM) F9.3 //) MINI 2704 2704 F0MAIN(32M SECTION JHICAVESS(KM) F9.3 //) MINI 2704 2704 F0MAIN(32M SECTION JHICAVESS(KM) F9.3 //) MINI 2704 2704 F0MAIN(32M SECTION JHICAVESS(KM) F9.3 //) MINI 2704 2704 F0MAIN(32M SECTION JHICAVESS(KM) F9.3 //) MINI 2704 2704 F0MAIN(32M SECTION JHICAVESS(KM) F9.3 //) MINI 2704 2704 F0MAIN(32M SECTION JHICAVESS(KM) F9.3 //) MINI 2704 2704 F0MAIN(32M SECTION JHICAVESS(KM) F9.3 //) MINI 2704 2704 F0MAIN(32M SECTION JHICAVESS(KM) F9.3 //) MINI 2704 2704 F0MAIN(32M SECTION JHICAVESS(KM) F9.3 //) MINI 2704 2704 F0MAIN(32M SECTION JHICAVESS(KM) F9.3 //) MINI 2704 2704 F0MAIN(32M SECTION JHICAVESS(KM) F9.3 //) MINI 2704 F0MAIN(32M SECTION JHICAVESS(KM) F0MAIN(32M SECTION JHICAV 2704 FJM=11104 INTERFACE, 58-134 HUN12, UD 556 JUGL=1 HRIV: 556 JJ,UDISP(J+1),NDISP(J+1) 556 FJM=4T (58.13.118.613.6.08.613.6) HRIVI 1024 1024 FJM=4T (19H END DF CDMPUTATION) HAUSE

0

ENU

-

INPUT DATA AND FORMAT FOR STRESS

CARD	FORMA	DATA DESCRIPTION
1	15	No. of layers in model
	15	No. of (c,k) pairs for which modal
		shape is to be computed
2	8F10.4	Layer parameters stored in sequence,
		α , β , ρ , d; two layers to a card
3	E13.6	c
	E13.6	k
	E13.6	Horizontal to vertical surface dis-
		placement ratio, $\frac{u_o}{w_o}$

Repeat card 3 for each set of c,k, $\frac{u_o}{w_o}$.

-V-11 110	ኒሶሽ	INN OS/160 BASIC PORTRAN IV (2) CONFILATION
	e	PROGNAM STHESS. J.W.DUNN GU-163
4.9994	,	DIMENSION ALPANSOC, BETANSOC, DNSO).NHONSOC, LANBDANSOC, ANNA, AC, MUSOD
5.000 '		NEAL LANBOX, NU
8.0001	1	DONALE PRECISION AN, WATIO, SION TAUD, NNDO, NNNO, NENSIG, NENTAU, HUHI, Cosph.cosom.sikpm.sikon.udot.udotn.wdot.wdotm.x.y.pm.om.walfam
8.0004		OCUBLE PRECISION DEXPPS, NECIPP, DEXPON, NECIPO, NEETIN, ON', NHC2, ALPA
5.0005		COULE PRECISION AND, PERIOD COULE FRECISION C. ALPNA, BETA, BATEA, K. D. DN, OAENAN, TESTER, CSQARE
8.0007	• • • •	PODBLE PHECISION NEWNATSAC, OLDRATSAC
5.0004	1.466	CONTINUE READ(1,3) LAYENS,NCASUS
	С С. 114	RCASES IS THE NUMBER OF CASES OF C.K.RATIO FOR A GIVEN SET OF
5.0010	561	HEADS1, 1< (ALPASI<, BETASI<, HHO(I), D(I), Y = 1, LAYERS)
5,3011	1	WHITE(3,%){ALPA(I},BETA(I),HHO(I),D(I),I=1,LATENS) TOMMAT(AP10.4)
4.0011	1	FORMAT (215)
5.0014		NUTR = LATERS - 1 DO 200 LO=1, NCASES
8.3016		HEAD41,2 <c,k,hatio< th=""></c,k,hatio<>
4.0014		PERIOD# 6.2811853072/%K*C<
5.0010		UDOTENATIO Nootel.0
8.0021		OLDNAT SIC & UDOT
5,0023	2	FORMAT WICH MIDE
4,0004	а	NRITE43,94C,PENIOD RORMATE141.5%,15MPHASE-VELOCITY4.200.12./.5%,7MPENIOD4.5%,220.12.
		//, 10X, 9HIWTPMPACE, 1X, 10X, 12HHOBIZ. DISP. "BI, 10X, 11WVENT. DISP.,/<
3.0027		49177 43, 1048, DDOT, NDOT
3, 1979 3 1313	10	7044AT410X, 2X, 15, "X, 1X, 6X, 220.12, 6X, 220.12<
3. 111		419#<*BFT15#< *+2 • RH05#<
5, 1011 5, 1032	100	LANDEATHS BHOTHS - WALTANHS - 2-2.00HETANHS - 2C Continde
5, 1011	1.201	SIGU01.
1 1115	1202	DIDHAT RAC # SIGU
5.7437	1204	612944 444 8 TAUU 30 200 8 = 1, KWITR
5. 7024	1205	41 = H + 1
5.06.19	1,09	ALPHA - ALTANAK 909 8 Sh0544
2,11,1 8 1 1 1	1209	BATEA & BETACHC
	1211	X=DARS ((C/ALPHA) ++2-1.)
5,0044 5,0045	1212	Y = DADS((C/RATEA)++2-1.) PALTAM = DSONT(X)
5.0946	1214	SPETAN - DSONT (Y)
·. ·	1215	GATTAT * 2.**D4/5A/CK**2
7,0343	1216	рн 6 К • ЗАЦРАЧ • ОЧ Эм 6 К • ЗАЦРАЧ • ОЧ
c	1219	TESTIR C-ALPHA
7, 1151	1219	TF (C+ALPMA) 225,220,220 COSPH = DCCS(PH)
5,0351		STWP4 0 DSTWEPHC
= 1955		CO TO ?30
2.0976 7.0976	225	
3.0058		TECTER # 1497DEAFES
C 3053		COSP4 # #DEXPP4 # RECIPE/2.0
5,3453 3,1463		COSPH # TORREN RECIPE/2.0 SIRH # TORREN-RECIPE/2.0 APASYMP-1.0
9,3453 3,3453 9,4463 9,4463	230	COSPU & TUYDIAPER COSPU & TDERPH & RECIPE/2.0 SINPM & TDERPH-RECIPE/2.0 APASYNA-1.0 CONTINUE TESTER * C - SATEA
5,3453 3,3453 5,4451 5,9453 5,4453 5,4453 5,4454	0 F C	CCSP# # 1.//DIAPES CCSP# # TDEXPPM * RECIPE/2.0 SIHPM # \$DEXPPM-RECIPE/2.0 APASYMM-1.0 CONTINUE TESTER * C - SATEA IF (C-BATEA) 221,237,237 DEXPONDENTSAGA
5,3053 3,7053 5,0051 5,0053 7,0053 7,0054 7,0054 7,0055	231 231	TLOPE T.//DIAPES COSP4 # TDERPPH <f 2.0<="" recippc="" td=""> SIAPM # DERPPH-RECIPPC/2.0 APASYN4-1.0 CONTINUTE TESTER C - SAT2A TESTER C - SAT2A DEIPOHOEXTFORC PECIPO4 PECIPO4 1.0/DERPAR</f>
5,3053 5,3053 5,3053 5,0053 7,0053 7,0053 7,0053 7,0053	233 233	TELEP * 1.//DEAPER COSP# * 5DERPH * RECIPE/2.0 SIMP# * SDERPH-RECIPE/2.0 APASYM0-1.0 CONTINUE TESTER * C - SATEA IF (C-BATEA) 231,237 DEMPONDERF60HK RECIPO* 1.0/DEXPGM COSQ# * SDEXPOM * *CTPOK/2.0 SIK03# * SDEXPOM * *CTPOK/2.0
9,3053 3,7653 7,0181 9,0181 7,0183 7,0163 7,0163 7,0165 7,0165 7,0165 7,0165 7,0165	233 233	TELEP * 1.//DEAPER COS94 * 3DERP94 * RECIPPC/2.0 SIMPM * 4DERPPN-RECIPPC/2.0 APASYN*-1.0 CONTINUP TESTER * C - SATEA IF (C-BATEA) 233,237,237 DEXPONSDERFONC SECONSDERFONC RECIPO* 1.0/DERPON COS94 * 4DERPON 5 *ECIPOC/2.0 SIK038 *DERPON 5 *ECIPOC/2.0 PTASIN*-1.0 PTASIN*-1.0
\$, 3053 3, 7053 7, 7053 7, 7053 7, 7053 7, 7053 7, 7053 7, 7053 7, 7053 7, 7053 7, 7054 7, 7054 7, 7054 7, 7054 7, 7054 7, 7054 7, 7054 7, 7055 7,	233 233	TELEP * 1.//DEAPER COS94 * DERPPH * RECIPPC/2.0 SIFPM * SDERPPH-RECIPPC/2.0 APASYN*-1.0 CONTINUE TESTER * C - SATEA IF (C-BATEA) 233,237,237 DERPONDERFONC SETED* 1.0/DERPON COS97 * SDERPON * PECIPOC/2.0 SIRON* SDERPON-RECIPOC/2.0 SIRON* DERPON-RECIPOC/2.0 SIRON* DERPON-RECIPOC/2.0 SIRON* DERPON-RECIPOC/2.0
5, 3453 3, 1453 5, 1453 5, 1453 5, 1453 7, 1454 7, 1455 7, 1457 7, 14577 7, 145777777777777777777777777777777777777	231 231	TELEP * 1/DEAPER GOS94 * SDERP94 * RECIPPC/2.0 SIFP# * SDERP94 * RECIPPC/2.0 APASY44-1.0 CONTINUE TESTER * C - SATSA IF (C-BATEA) 23,217,217 DERP040DERF60K *ECTP04 1.0/NEIP0H GOS97 * SDERP04 * #ECTP0C/2.0 SIKQN* SDERP04 * #ECTP0C/2.0
5, 3453 3, 1453 5, 1451 5, 3451 5, 3453 7, 445 7, 445 7, 445 7, 9453 7, 9453 7, 9453 7, 9453 7, 9453 7, 9053 5, 9053 7, 9054 7, 9054 7, 9054 7, 9055 7, 9054 7, 9055 7, 9054 7, 9055 7, 9054 7, 9055 7, 9055 7, 9054 7, 9055 7, 9055 7, 9054 7, 9055 7, 9055 7, 9055 7, 9054 7, 9055 7, 9057 7, 9077 7, 90777 7, 90777 7, 907777 7, 9077777777777777777777777777777777777	231 233 237 237	TLOPP 1/DIAPPA COSP4 4 SDEXPPH 4 RECIPPC/2.0 SIFPH 4 SDEXPPH-RECIPPC/2.0 APASYN4-1.0 CONTINUP TESTER * C - SATSA IP (C-BATEA) 233,237,237 DEXPONDEXF60K PECIPO4 1.0/NEXPON COS94 * USEPON COS95 SIKON4 *DEXPON-RECIPOC/2.0 CONTINUE CONTINUE CONTINUE
5, 3453 3, 7453 3, 7463 5, 9463 7, 9475	233 233 237 232	TLOP * 1/DIAPPA COS9* * DIPP**RECIPP SIFP*** PASY*** COS**** SIFP*** COS**** TESTER * C - SATSA IP (C-BATEA) DEXPONDER*60K PECIPO* 1.0/DEXPON COS************************************
5, 3453 3, 3453 3, 3451 5, 3451 5, 3451 5, 3451 5, 3455 7, 3455 7, 3455 7, 3455 7, 3455 7, 3455 7, 3455 7, 3455 7, 3457 7, 3477 7, 34777 7, 34777 7, 34777 7, 347777 7, 3477777777777777777777777777777777777	233 233 237 237 237 237	TLOPP 1/DIAPPA COS94 # TEXPP1 * RECIPPC/2.0 SIFP# 4 SDEXPP1 * RECIPPC/2.0 APASYN4-1.0 CONTINUE TESTER * C - SATSA IP (C-BATEA) 233,237,237 DEXP0M0DEXF40m COS94 * DEXP0M 05 #PCIPOC/2.0 SIK0M4 *DEXP0M-RECIPOC/2.0 SIK0M5 * DEXP0M-RECIPOC/2.0 SIK0M5 * DEXP0M-RECIPOC/2.0 SIK0M5 * DEXP0M-RECIPOC/2.0 SIK0M5 * DEXP0M-RECIPOC/2.0 CONTINUE G1A145 SIR0M54 STATEA SIR0M54 SIR0M54 SIR0M54 SIR0M54 SIR0M54
5, 3453 3, 7453 3, 7463 5, 9463 7, 9475 7, 9455 7, 9455 7, 9455 7, 945 7, 947 7, 947	233 233 237 237 237 237 1111 1112 1111	TELEP 1/DEAPER GOSP4 4 DEXPPH 4 RECIPPC/2.0 SIFPH 4 4DEXPPH-RECIPPC/2.0 APASY44-1.0 CONTINUE TESTER * C - SATEA IF (C-BATEA) 223,237,237 DEXPONEDEXF40HC RECIPO 1.0/NEXPON GOSP4 * DOSTPON 5 *ECTPOC/2.0 SIKONE 4DEXPON-RECIPOC/2.0 SIKONE 4DEXP
5, 3453 3, 7453 3, 7463 5, 9463 7, 9463 7, 9463 7, 9465 7, 9465 7, 9465 7, 9465 7, 9465 7, 9465 7, 9465 7, 9465 7, 9465 7, 9475 7, 9455 7, 9455 7, 9455 7, 9455 7, 9455 7, 9455 7, 9457 7, 9477 7, 94777 7, 9477 7, 9477	233 233 237 237 237 237 1111 1112 1115 1114	The first form the straight form of the straight form the straigh
5, 3453 3, 7453 3, 7463 5, 9463 7, 9463 7, 9463 7, 9465 7, 9465 7, 9465 7, 9465 7, 9465 7, 9465 7, 9465 7, 945 7, 947 7, 9575 7, 947 7, 947 7, 947 7, 947	233 233 237 237 237 237 1111 1112 1115 1114 1115	The state of the
5, 3453 3, 4459 5, 4459 5, 4459 7, 4453 7, 9453 7, 9453 7, 9454 7, 9454 7, 9454 7, 9454 7, 9454 7, 9454 7, 9457 7, 9477 7, 94777 7, 9477 7, 9477 7, 9477 7, 9477	233 233 237 237 237 237 1111 1172 1117 1117	TLOP T.J./DIAPPA COS94 # DEXPP4 + RECIPPC/2.0 SIFP# 4 DEXPPA + RECIPPC/2.0 PASY4-1.0 CONTINUE TESTER * C - SATEA IF (C-BATEA) 23,237,237 DEIPOM+DEXT40H RECIPOC/2.0 SIF0H 4 DEXP0H-RECIPOC/2.0 SIF0H 5 MC0H SIF0H 5 MC0H CCG9 4 DEXPOH-RECIPOC/2.0 SIF0H 5 MC0H SIF0H 5 MC0H TASINA-1.0 O COS04 DSIFNQH SIMOT # DSIFNQH COS01 SIMOT # DSIFNQH COS04 GNOT # DSIFNQH COS04 SIMOT # DSIFNQH COS04 SIMOT # DSIFNQH COS04 SIMOT # DSIFNQH COS04 SIMOT # DCOS(20) SIFNQH SIFNGH SIFNPHCALPAH SIFNCH COS04 SIFNCH SIFNCH SIFNCH SIFNCH SIFNCH SIFNCH SIFNCH SIFNCH SIFNCH SIFNCH SIFNCH SIFNCH SIFNCH SIFN
G. 3063 G. 7069 G. 7061 S. 7063 J. 7064 J. 7064 J. 7064 J. 7064 G. 7056 G. 7056 G. 7056 G. 7056 G. 7056 G. 7056 G. 7056 G. 7057 G. 7077 G. 7076 G. 7077 G. 7076 G. 7077 G. 7074 G. 707	233 233 237 237 237 237 1111 1172 1117 1117	TLOP T.J./DEAPEN COS94 # DEEPP4 f RECIPPC/2.0 SIFP# 4 DEEPP4 f RECIPPC/2.0 PAST44 1.0 CONTINUE TESTER * C - SATEA IF (C-BATEA) 231,237,237 DEIPOMODEXTEQH CONTINUE CSG94 4 DEEPP4 f RECIPOC/2.0 SIK094 SDEPOM-RECIPOC/2.0 SIK094 SDEPOM-RECIPOC/2.0 SIK094 SDEPOM-RECIPOC/2.0 SIK094 DEEPOMOR & RECIPOC/2.0 SIK094 DEEPOMOR OT TO 2.39 SIM074 DECS(20) MTASINA-1.0 CONTINUE GAMHA4-1. MTC2 MTASINA-0 CONTINUE GAMHA4-1. MTC2 MTASINA-1.0 CONTINUE GAMHA4-1.0 CONTINUE GAMHA4-1.0 CONTINUE MTASINA-1.0 CONTINUE MTASINA-1.0 CONTINUE MTASINA-1.0 CONTINUE MTASINA-1.0 CONTINE MTASI
G. 3063 G. 7069 G. 7061 S. 7063 G. 7064 G. 7064 G. 7064 G. 7064 G. 7064 G. 7064 G. 7076 G. 7076 G. 7076 G. 7077 G. 70776 G. 7077 G. 7074 G. 7077 G. 7074 G. 7074 G. 7077 G. 7074 G. 70	233 233 237 237 237 1111 1172 1117 1117	TLOP T.J./DEAPEN COS94 # DEEXPP4 f RECIPPC/2.0 SIFP# 4 DEEXPP4 f RECIPPC/2.0 APASY4-1.0 CONTINUE TESTER * C - SATEA IF (C-BATEA) 231,237,237 DEIPON®DEXTEOR CONTACT AND
5, 3053 3, -055 5, 0055 5, 0055 7, 0055 7, 0055 7, 0057 7, 0057 7, 0057 7, 0057 7, 0057 7, 0057 7, 0077 7, 007	233 233 237 237 237 1111 1122 1113 1114 1117 1117 1121 1122	TLOP T.J./DEAPEN COS94 # DEEPP4 f RECIPPC/2.0 SIFP# 4 DEEPP4 f RECIPPC/2.0 PASSM4-1.0 CONTINUE TESTER * C - SATEA IF (C-BATEA) 231,237,237 DEIPOMODEXTEQH SECTOCK.2.0 SIFNT * SDEEPP4 f RECIPOC/2.0 SIFNT * SDEEPO4 f SECTOCC/2.0 SIFNT * SDEEPO4 f SECTOCC/2.0 SIFNT * DESTACH OT TO 2.9 SIMOGA SIMOT # DESTACH SECTOCCON ATASIN*-1.0 O CONTINUE GAMHA4-1. YTC.2 = DHO(4)*CSQAME AMT1.1 C * GAMHA4-1.0 YTC.2 = DHO(5) YT.1 G AAMHA4-1. YTC.2 = DHO(4)*CSQAME AMT1.1 C * GAMHA4 C OSPH-G1*COSOM ATASI,3 C * SCOSPH - COSOMC / HTC2 YT.1 G * STEMP/RALPAN & GAMHA4 * SIMOM*BTASIMC / MHC2 YT.1 G * STEMP/RALPAN & MBETAH * SIMOM*BTASIMC / MHC2 YT.1 G * STACHAN * SIMPH * APASIM * GMI / MBETAH *SINOM ATASI,4 C * ARC1,3 C SIMOM * ATASIM * GMI / MBETAH *SINOM ATASI,4 C * ARC2 * GAMHAM * COSOM ATASI,4 C * ARC2 * GAMHAM * COSOM ATASI,4 C * ARC2 * GAMHAM * COSOM <td< th=""></td<>
G. 3063 G. 7063 G. 7066 G. 7066 G. 7066 G. 7066 G. 7066 G. 7066 G. 7066 G. 7071 G. 7076 G. 7076 G. 7077 G. 7074 G. 707	233 233 237 237 237 1111 1122 1113 1114 1117 1119 1117 1119 1112 1121 1122 1121	TLOP T/DEAPEN COS94 * DEEPPH * RECIPPC/2.0 SIFPH * GEEPPH * RECIPPC/2.0 PASYM*-1.0 CONTINUT TESTER * C - SATEA IP (C-BATEA) 23,237,237 DEMPONDEEFONK OCTO 1.3/DEIPON CGS94 * DETEPON 5.*ECIPOC/2.0 SIROR® SDERPON * #ECIPOC/2.0 SIROR® * DESINSON GONTINNE GT1 * DECISON SIROR® * COSON AN*1.1C CONTINNE GT1 * SIROR* * GOSON * MECA ANT, 4 * TIRPA/#ALPAN & GANNAN * SINON*BTASINK / #MC2 ANT, 4 * SIROR* * EXEPH * AFASIN & SINON*BTASINK ANT, 4 * TIRPAPALEAN & GANNAN * SINON*BTASINK / #MC2
G. 3063 G. 7069 G. 7069 G. 7069 G. 7066 G. 7066 G. 7066 G. 7066 G. 7066 G. 7066 G. 7066 G. 7066 G. 7076 G. 7076 G. 7076 G. 7076 G. 7077 G. 707	233 233 237 237 237 237 1111 1122 1113 1114 1117 1119 1119 1119 1120 1121 1122 1121	TLOP T/DEAPEN COS94 * DEEPPH * RECIPPC/2.0 SIFPH * GDEEPPH * RECIPPC/2.0 PASYM*-1.0 CONTINUT TESTER * C - SATEA IP (C-BATEA) 23,217,217 DEEPOHOEERFONK PECEPO* 1.0/DEEPOH CGS94 * DEEPOHOEEPOH CGS94 * DEEPOHOEAECEPOK/2.0 SIRON* SDEEPOH-RECIPOK/2.0 SIRON* SDEEPOH-RECIPOK/2.0 SIRON* SDEEPOH-RECIPOK/2.0 SIRON* SDEEPOH-RECIPOK/2.0 SIRON* SDEEPOH-RECIPOK/2.0 SIRON* DESINSON Conson - DOS(2M) PTASTN*-1.0 CONTINUE GH1* GANHAM*-COSPH SIRON* DESINSON AW*1.1C CONTINUE GH2 - SENDOR* - COSON AW*1.1C GANHAM*COSON AW*1.4C * GANHAM*COSON SINON*DTAIPAN & NBETAM * SINON*BTASINK AW*1.4C * TINPM/PALPAN & NBETAM * SINON*BTASINK / HHC2 AW*1.4C * ARTAN* SINPH * APASIN & SINON*BTASINK AW*2.1C * GANHAM * SINPH * APASIN & SINON AW*2.1C * RALPAH * SINPH * APASIN & SINON AW*2.2C * GANHAM * SINPH * APASIN & GANHAM **2 * NBETAM * TINO**PRIA.YMC
G, 3063 G, 7063 G, 7065 G, 7065 G, 7065 G, 7065 G, 7065 G, 7065 G, 7065 G, 7065 G, 7075 G, 707	233 233 237 237 237 237 1111 1122 1114 1117 1114 1117 1114 1117 1120 1121 1122 1121	TLOP T/DEAPEN COS94 * DEEPPH * RECIPPC/2.0 SIFPH • GDEEPPH * RECIPPC/2.0 PASYM-1.0 CONTINUE TESTER * C - SATEA IF (C-BATEA) 23,217,217 DEEPOMODERFORK PECTPO* 1.0/DEEPOH COS94 * DETPOMODERFORK PECTPO* 1.0/DEEPOH COS94 * DEEPOMORKFORK PECTPO* 1.0/DEEPOH COS94 * DEEPOMORKFORK SIND# * DEEPOH-RECIPOC/2.0 SIND# * DEEPOH-RECIPOC/2.0 SIND# * DEEPOH-RECIPOC/2.0 SIND# * DEEPOH-RECIPOC/2.0 SIND# * DEEXPOH-RECIPOC/2.0 SIND# * DEEXPOH-RECIPOC/2.0 SIND# * DEEXPOH-RECIPOC/2.0 SIND# * DESING SIND# * DEEXPOH-RECIPOC/2.0 SIND# * DEEXPOH-RECIPOC/2.0 SIND# * DEEXPOH-RECIPOC/2.0 SIND# * DECXPOH-RECIPOC/2.0 SIND# * DEEXPOH-RECIPOC/2.0 SIND# * DEEXPOH-RECIPOC/2.0 SIND# * DECXPOH-RECIPOC/2.0 SIND#************************************
S, 3053 3, -050 3, -050 5, -055 5, -055 7, -057 7, -05	233 233 237 237 237 237 1111 1122 1113 1114 1115 1114 1115 1114 1122 1121 1122 1121 1126	TLOP T.J./DEAPA COS94 * DEEPPH * RECIPPC/2.0 SIFPH * GDEEPPH * RECIPPC/2.0 PASYM-1.0 CONTINUE TESTER * C - SATSA IF (C-BATEA) 23,217,217 DEEPOMODER*60H *ECTP0* 1.0/DEEPOH COS94 * DETPOMODER*60H *ECTP0* 1.0/DEEPOH COS94 * DEEPOH-RECIPOC/2.0 SINDM* * DEEPOH * RECIPOC/2.0 SINDM* * DEEXON-RECIPOC/2.0 SINDM* * DEEXON-RECIPOC/2.0 SINDM* * DEEXON-RECIPOC/2.0 SINDM* * DEXTMONT ************************************
S, 3053 3, -055 3, -055 5, -055 5, -055 5, -055 5, -055 7, -057 7, -05	233 233 237 237 237 237 237 1111 1172 1173 1174 1175 1174 1175 1126 1121 1122 1121 1126 1126 1126 112	Telept # 1,0/Diares Cosp# # 3DERPPH-RECIPP SIFP# # 4DERPPH-RECIPP CMTINUT TESTER * C - SATEA IF (C-BATEA) 233,317,237 DEIPOMBDERF40H PECIPO* 1.0/DEIPQH CGG9# # 5DERPOM-RECIPQ CGG9# # 5DERPOM-RECIPQ CGG9# # 5DERPOM-RECIPQ CGG9# # 5DERPOM-RECIPQ TASIN*-1.0 TO Z03 SIMO# DECOS(24) PTASIN*-1.0 TO Z03 SIMO# DECOS(24) PTASIN*-1.0 TO Z03 SIMO# DECOS(24) SIMO# DECOS(24) SIMO# COSON STASIN*-1.0 TO Z03 SIMO# DECOS(24)
G, 3663 G, 7669 G, 7669 G, 7667 S, 9667 G, 9667 G, 9667 G, 9667 G, 9667 G, 9667 G, 976 G, 976 G, 976 G, 976 G, 977 G, 977 G, 9776 G, 9	233 233 237 237 237 237 1111 1172 1113 1114 1115 1120 1121 1121 1122 1121 1126 1126 1126	TLLP**.1.0/DEAPEN COSP# # %DEXPPN-%ECIPP YASYM*-1.0 CONTINUT TESTER * C - SATEA IF (C-BATEA) 233,337,237 DEIPOMBDEXF%ORC *ECIPO* 1.0/DEXPQ# CGOP* # %DEXPOM-RECIPQ CGOP* # %DEXPOM-RECIPQ CGOP* # %DEXPOM-RECIPQ CGOP* TASIN*-1.0 TO Z00 SIMO# DEIPOMPDEXF%ORC CONTINE GCOP GOT TO Z00 SIMO# DEOS(24) SIMO# DEOS(24) GT TO Z00 GIND# GOT TO Z00 GIND# DEOS(24) GT TO C0239 SIMO# DEXPONDEX FASING SIMO# DCOS(24) SIND# COSOP# COSOP# SIND# SIND# SIND# SIND# SIND# SIND# SIND# SIND# SIND# <
G. 3063 G. 7066 G. 7066 S. 7066 S. 7066 S. 7066 S. 7066 S. 7066 S. 7066 S. 7066 S. 7076 S. 707	233 233 237 237 237 237 1111 1172 1113 1114 1117 1117 1117 1120 1121 1122 1121 1126 1126 1126 1126	TELEP • 1.0/DEAPS GGSP# • SDEXPPM • RECIPPC/2.0 SIRPW • SDEXPPM • RECIPPC/2.0 SIRPW • SDEXPPM • RECIPPC/2.0 STROT# IF TESTER • C - SATEA IF (C-BATEA) 223,237 DEXPONEDER*GGK BECTPD0 + 1.0/REXPON • RECIPOC/2.0 SIRON • VDEXPON • RECIPOC/2.0 SIRON • VDEXPON • RECIPOC/2.0 SIRON • VDEXPON • RECIPOC/2.0 SIRON • DEXEON • RECIPOC/2.0 SIRON • DEXEMPSION ATT1, * • GATHAN • CISPAH • SIRON • SIRON • BIANN • SIRON • BIANN • • TO • TO COSON • GATHAN • COSON ATT2, * • RECIPOSUM • GATHAN • COSON • RECIPOCOSON • RECIPOCOSON • RECIPOCOSON • RECIPOCOSON • SIRON • SIRON • RECIPOCOSON
S, 3653 3,	233 233 237 237 237 237 1111 1112 1112 1	The Terry of The State and

\$.0191 \$.0192 \$.0193 \$.0195 \$.0195 \$.0197 \$.0197 \$.0197 \$.0199 \$.0199 \$.0199 \$.0199	મ લ લ મ	DO 8889 KIY RODKIY 8 HOD NFXP 8 HIHDI HFAC 8 FLOAT HPWRATSINPS CONTINUE UDOTH 8 RFWR WDOTH 8 RFWR WDOTH 8 RFWR WDITK 53,100 00 8080 KII	9 3,4 * KXY,2< * NODKXY * NPXP INPAC< PAC* ANXY IAT \$1< IAT \$2< (N,000TH, 4 0 4	N P, KEY<' Nootn	DIDHATSKIY(6 N 2 W N A T B I I	N P <			,	
5.0112	8989	OLDNAT SELIC	· · · · · · · · · · · · · · · · · · ·	T SELJC							
S. 9111	200	CONTINUE									
5.0114		40 TO 1961									
8.0115	•	ENO									
			STORAGE	NAP	VANIABLES	(TA05: C	-CONNON,	Z=EQOIVALENCE)			
449F	TAT	PFL ADR	****	TAG	NEL AO	N NAME	TAG	REL AON	RANN	TAG	NEL AON
n		000158	X		000219	Y		000270	с		000275
*		0 00 300	AN		000 30 8	PN	•	000388	QN		000390
~ *		0 00 39 9	NHO		000340	0 N 1		000530	NON		000536
1		000540	BETA		000600	SIGU		000860	7800		000868
		000870	불벽불이		000878	000 T		000880	NDOT		000888
7 * ` `		000490	RATIO		000891	WNON1		000880	COSPN		0000849
2233 *		009900	STRP9		000888	SINQN		000800	00071		0008CN
N. Jan		000900	ALPHA		000808	BATZA		OOUNEO	NENSIG		000825
Auffaur		000470	RALPAN		000878	OZIPPI	N	000900	RECIPP		000908
1540.00		000910	RECIPO		000918	NB TTA	H	000920	PENIOD		000928
.7		000410	TESTFR		000938	CPOVA	E .	000940	NENNAT		000948
		000468	T		000988	۹.		000980	L		000990
• 1		010048	10		000450	N 3		000460	NK		000464
••2		046464	FXY		000460	PAC		000470	RLJ		000474
(- (-		900474	TFAC		000470	RHITH	-	000450	MINPT		000474
2 1 an 1		000057	LATENS		000870	NCASE	5	000854	APASIN		000 85 8
0.0014		1.1.1.1.1.2	HODIMP		000860	NUDKA	¥	000864			
					EXTENNAL	REPENENCI	KS				
7.5 • *		REL ADP	NAME		NEL AO	N NANE		NEL AOR	NANE		REL AOR
• 15		0.0.0 86.4	DC0 *		000860	DSIN		000870	OZZP		000574
- e • 9 •		010874									
					CON	STANTS					
1 1 4 2		PEL ADP	845 T		REL AO	R NAME		NEL ADR	WANE		REL AON
	· ·	00193.0	000000	0	000 884	00000	002	000BBB	\$110000	00	000350
	1 1	2017:10	0101000	0	000864	41646	720511211	57P 0008CR			000 J9C
201303	• •	200219									

-

.

INPLIED EXTERNAL REPENENCES

111-10

٠

INPUT DATA AND FORMAT FOR INTEGRAL

CARD	FORMAT	DATA DESCRIPTION
1	110	No. of layers in model
	F10.4	Factor for singular matrix criteria
		in curve fitting subroutine,
		generally 🐂 .99.
	110	degree +1 of the polynomial fit to
		the displacement data
	110	Read option; 1 if read every set of
		displacements; 0 if read every other
		set
2	8F10.6	Layer parameters stored in sequence
		α , β , ρ , d ; two layers to a card
3	20A4	Text identification ≤ 80 characters
4	14	Model identification no.
	14	Mode no.
•	14	No. of layers
	F9.3	Total section thickness
	F9.3	Phase velocity in km/s
	F9.3	Period in sec
5	6E13.6	Displacements stored in pair sequence
		v ₁ , w ₁ , u ₂ , w ₂ ;3 pairs to a card

For computations involving more than one set of displacements corresponding to a (a,T) pair, repeat cards 4 & 5 for each set.

ļ 154 03/360 BASIC POHTRAN IV (E) CONPILATION

1 89 81 1 1 1 1 KG	Ŧ	r y r +	:	,		66	
--------------------	---	----------------	---	---	--	----	--

<.0031 5.3013

5.0014 5.0014

5.0004

5.0014 6.0014 5.0010 5.0015 5.0015 5.0015 5.0015 5.0015 5.0015

TAVENO 5 1

9,0375 9,0377 9,3079 9,3079 DO 333 IL+START, 476D RL 73 ASKUN ISYZKRZYSKZ, KLK+USLLK FSN7K # BSRZKR72SKZ, KLK+VSLLK

 P0
 7.3
 ELECTRP, VICO

 NTL
 F1
 ATC.
 F1

 ATC.
 F1
 ATC.
 F1

 ATC.
 F1
 ATC.
 F1

 ATC.
 F1
 ATC.
 F1

 ATC.
 F1
 F1
 F1

 COMPTUTE
 F1
 F1
 F1

 COMPTUE
 F1
 F1
 F1

 COMPTUE 5.0010 5.7041 5.0111 4,0143 4,0144 4,0144 5.0046 5.0047 5.0049 5.0049 5.0040 5.0040 5,0001 . . . с С 4.540r 2.4432 2.4433 2.4433 2.4433 2.4433 2.3433 ę . C C C e, p > 1 = 1 c, n = 40 c, n = 4 %. 0 1 + 3 %. 0 1 5. 11 i k -, , -, ,•,, 9. 191 - 3.37 - 3.37 ~, .†++ ^, '*4* 7, **4* ר 14 י ה, יד 14 ז - - - - - -- - - - - -- - - - - - -1 /-71#****-1[5] <<<INT*5L*4< 1214 CONTINT NUTTICAL # IANDOATIJC#INTFOLT4< I*5< * THFTOFAL OF & HU*52#USONA#EGUSOUAPEC*DZ FPON Z1 TO Z2. 45 # THFTOFAL OF & HU*52#USONA#EGUSOUAPEC*DZ FPON Z1 TO Z2. 45 # THFTOFAL OF & HU*52#USONA#EGUSOUAPEC*DZ FPON Z1 TO Z2. 45 # THFTOFAL OF & HU*52#USONA#EGUSOUAPEC*DZ FPON Z1 TO Z2. 100 CONTAUNT THTTOTAGEC # HU*TIC*INT*GL*SE . (* 14 13. (* 14 13. (* 154 1.0.51 1.011

.

		IT-C . INTERJ	1 01 -21		12+¥+32 7808	21 T . 22.		
9,3354		46 8 *****- 147	FMMKF1					
P. 1155		DC 1206 11 .	1,46					
1 I I I I		T##F/(1467 #]	[N., 40] 404	ENK Cenentum	LL <td>-11</td> <td>516+442</td> <td>•</td>	-11	516+442	•
1 110.1	1 1 7 6	-111 -111	16-21+4		-119166			
4 9154	1 '0	THE STREET			:1554			
•••		TT 12 # +H#13	¥ 05782	SOUARE	UPPIME SOUA	BRC+OZ PR	08 21 10	Z2.
5.0152		47 8 4 ******	1<<51	•				
5.0110		be 1207 11 +	1,87					
5.01+1		1477-114768181	TEGLE7 <f1< td=""><td>62.0*¥PR</td><td>IM2%LL<80PRTM</td><td>2511<<td>OAT\$17</td><td>-LL51<</td></td></f1<>	62.0*¥PR	IM2%LL<80PRTM	2511< <td>OAT\$17</td> <td>-LL51<</td>	OAT\$17	-LL51<
	1	144 <u>7</u> 1444×7	-1161<-1	1 * * * 47	-1161< <			
S. 0 16 7	1.07	CONTINUE.						
5 N 16 C			1200 12	17 1217 17 1213				
5 1151	1202		10074,1 11 8 14 25 81	183.34				
5.0164	•	DITC . THTE	01+24/12	HADASAJC				
5, 3167		NTRAC # TRAFF	TRICH A	BDAT 1JK				
9. 112.0		0**44 • *N**	01 34 <td>ዓ<u></u>ምስት ምንተ የ</td> <td></td> <td></td> <td></td> <td></td>	ዓ <u></u> ምስት ምንተ የ				
4,3163			01¶5K/+8'	*.1JK				
2.01.0		57876 8 THTE		C.3C				
8, 111		-11-74 - 18783 -71 - 78/77778	5 • · · · · · · · · · · · · · · · · · ·	a.1.1 <				
0,111			• •					
5. 11.4	1111	110 KO +-	1,7					
4 3176		SAVE # DTD"*	roc .					
e.0176		D100#F0C # 1	RI SUI ANO	r - 0150	erec			
5,0177	• • •	INTEGISENC .	CAVE					
5.01	- 10	CONTINUE.			2014 44			
	194	1 52 9005 15		•••				
		150	Inctry .	r*0.4.10	*.6475PIOD .F	10.4.10x.	14838002	TTOCTT
		iv ,τ10,6,//	. 1 4 .					
		440PH184.00 0	Phru	01/0	r HO DO	7040	DC/	OBETA
		6 <u>577555</u> 94		ADIARSDA	ຸ ກິດ/ລະ	.//<		
2.1171		- 1217 41 V V V V	ас н түрі н п	C.108-11.	•			
	1 1 1 1		221014					
	••••		1,7	• •				
e 11.		STTENE, 14 4	INTERLOT	<				
			r]\$]<					
2. 144		Correction, IX	SUIND&IK					
• • • • • •		C						
		0.4 X + X						
0,010		50 F351 - 4	17					
5, 11-1			0.0					
1.5150		on then spet	. 5 3 85					
• • • • •	1924	39878317C •	e (* * * * * * *	४ ६ ०३-२	"7, IK			
F. 1994	• 15 5	*15*1******	e .	_			_	
··· · ·					TESCCORR SH4	3043K5508	iINT#6< </td <td>/\$2.0*XC+</td>	/\$2.0*XC+
c 11-		1			T-1 301 HODE			
					are re 103 en 000			
1. 1. 1		11 4 N.T						
7 . 7 1 2		P.1						
· · · · ·		-10-2040 t #	1,7					
S. 273			7.42,14					
6.4315			***** **					
	1 41							
		ingline is dura	¥×42 + €¢9	*****		45081478	KASURIN7	3444
	-	00/00114,0#1	,2,7,4					
3.7.7.3.		D	ANKOWIAL	r 580	***PI76<	XC+DI414	<td>103</td>	103
			****	2K 5.8	C+x+DI434	5X2+07\$44	<td>NOR</td>	NOR
- · · ·		181 - 8 21044 1925 - 8 2104	1 · · 2					
- 171			+++++	******C	< /http://w			
		11-11-4++2-2.	0+27-3++	24400018	*55778**7*500	411		
5.0211		102274 # 2.1	 CROTATK 	*#2-1+*5	CD##-7.0+2001	A		
·····		500 710 + 51 0	**!'? *.* *	+41×t+ <i>u</i> C	ETAM			
e.u.u.s			+7+5100*	145 9097	+?+10100+2<61	*******	(C+K+SpTS	374345
114		***		• 2 • 22 • 24	CCX32307			
· · · · ·	- 14		. 10.4.7	F15,56				
e.est4		121 + 11-1		•				
2.0317		********	11 2.0</td <td></td> <td></td> <td></td> <td></td> <td></td>					
	519e	A.1.1.1.2" 2001) TL, YPC	, crot 10,	DCDHH,DCDPTA,	DCDA17,DC	DIAN, DCI	00
• • • •		00 10 144						
		6 - 01						
7.2343		747						
			5701804	48.P	VAPTABIES	TAGS: CnC	:0980#, 1	REBUITALENCE)
				•••				
			N N	1415	FFL ACR	NA 52	783	321 403
		£ 11+50			000293	λ		003154
^		J J J J L =	r		000469	2		000519
		^) } / t · ·	3		0005-4	2		001414
-		131941	÷ •		000264	91		000128
1			7 T		000004	PHO		010010

###E = + F	2.4 7.4	58*** ***G	PFL ADR	NA 55 TAG	321 403	NAME TAG	TTL ADB
••	0.1145.0	¥	000293	à	003134	3	300429
C C	1 11 2	*	000409	2	000519	2	000650
r	^)) f & 1	x	000554	2	000434	T	33843
	C 17947	÷.	000264	91	000338	62	330.004
* 1	220-22	7 7	000004	BHO	000010	377	303/51
÷ •• •	214 123	r nc	001479	5105	001470	***	1014 4
J-J.	171510	PFTS	001539	SAVP	001580	ST.FA	331548
	n n1 -=n	HAT VA	0016.90	UPRTH	001700	89319	011430
+1 +// v	731 174	1 P P T V	001997	DC DHU	002083	DENON	33 30 43
(****	333 -0	URDERA	002010	HORTHW	003080	109783	031143
LAMONT	70.1130	8.85.9.83 F	002200	DRIVAD	001109	511478	0.3 1444
18 31 TT	231100	DCDIA*	002004	30.0880	003980	751715	10.1388
3 - T	111111	COMIE	0029FH	SRUPPL.	002100	PACTOR	003438
•	0.12+10	T	002114		002118	1.00	00 18 10
4 .	217170	11	002424	10	007178	10	0.0.20.10
•	1121-10	¥ 2	007876	11	00 11 19	• 1	0.024.20
** *	333493	• •	002884		003384		0338.00
• •	1001-0	* 1	002154	N 1	007154	1A M 3	CO2A4C
¥7	107460	- 4	00.25.64		003168	44	00.344.0
	037270	*	002174		002465	101	101470
491	194500	1.11	007184	78 8 4	0028/7	181	302470
*1 * 17	0174**	V 11 21 1	007404		002481	***	002498
₩ - 1T	3724=0	11.11	002410	START	002884	24044	002889 002888

19971: 137166	3		,	FBB 057369	BASIC FORT	NAN IV (2) COMPILAT	TON	D	ATE: 66.339
5.0091		SURDOUTINE G	JR7 44, F. 1	PSC					
5,0033		DISPESSION AS DOUBLE PRECI	10, 2<,8%) STON A.D.O	20<,C%20<,. C.EPS+P1V01	420<,0%20< .2				
5.00-14		TROPORA D.O.	• • •	•					
5.000 C		DETTRATIONTO	8 OF THE	PTVOT PLEN	TF				
<,0001 <,0001		P1V07#0. 50 70 1#4.8							
5.0034		00 20 J#K,N	144-048581		0.30				
5,0010	10	PIVOT#A"T, J<							
5.0011									
5,0013	20	CC41.845							
5.0074 C		EXCLARGE OF TARAVAGADIAD	26-364680 246 01806	ታቁህታጋ። ለኪ ግባብ ዝደግ፤	THE FTE B	01			
5.0015	50	15454K<-*<60	100,KO						
5.0017		187944							
5.0019		- X#X#1, 1< - X#X#1, 1< #1 4#, 3	<i>c</i>						
s, 1113	23	ARK,JCE2 PTOPARSE OF	TH7 DTV()"	AL COLUMN I	UTH THE PT	F COLUMN			
5,0011	90	THE STRC-RCPS	90,¤5						
5,00,7	45	.F\$04K< 							
5,0014		28877,1<							
s. na 1.	110	14+, ***							
5.4017	10	CONTINUE JORDAN STEP							
5.0014		70 113 141,4	20 130						
5. 1041	177	NE34#1./77.90	÷.						
8,0011 2,0011		3516#1. 30 70 140			•				
5,1011	110	198768-618,20 28264983	/P*VC*						
e, 1115	140	1 TT 1 C 1 C							
5, 10 25	111	11. 10 10 11. 10 10 10 11 11 1							
2, 10.14				17					
		EPOPOTTIC -	hE ++++						
1, 10 ; 1 5, 11 ; 1		- ጥዓ - የኖኖ - የቋን _ታ ሃ - የቋຽ- ዋኖ የ							
•	• * *	**************************************	0,170,160						
6.1.44		TEDIAC	1						
		- 7 41 5 7 <u>1</u> 6 - 5 5 7 1 6 4 1 7 1 8							
5.15.7	141	4 * ", *< ± ^	0 155 100						
••••									
n, nn, s	190	153 113	:						
\$ 3251		7#171, °C							
4° 1 2 1	121	- 346 1444 - 346 1444	14						
- 1-51 - 1-51	124								
g	40	787-73,150	**<,;***<,	FIVOT		•			
e, ***, 4	47	-10 TO 151	STEGHTAR N	WIDIAAN IS	13,38 3413,	78 PI¥0T#E15.9/<			
-, 3		283							
			10101	443 AV	PIAB'ES -	195: CaCONMON, ERE	OUTVALENCE)		
1144 - 2-		SEL THE	44.5	743	PEL AD3	NAME TAG	SET YOR	SASS TAN	REL ADP
•		1.33154	P		000160	с	000200	7.	000280
		10010	PIVOT F		0002290	N T	000279	P T	210290
2		111769	•		000.246	•		*	0.00
					EXTEPHAL FE	FERENCES			
·····		.	5145		PET ADA	48.9F	PEL ADR	NAME	PCT APP
					CONSTA	875			
N.X.***		STT ADD	N 6 M 7		PEL ADP	NA 42	BEL ADB	8447	BEL ADB
192121		0.0-1-0	0200000		000304	41100000	000374		
		~ ~ 1 % 1 ~	00100051		000443				
				142	I I ED SATEEN	AL REPERENCES			
***		BL. YUE			BFL ADP	-	PFI ADR	NAME	BEL 379
***:		000444							
defeimente do	49.00	BET TUD	57477588	ि सग्रम्बद्दर	REL AUR	STATEMENT NUMBER	NEL AON	STATEMENT NUMBER	REL ADS
r 11 J J 1		013441	2002	3	000454	00050	000520	00060	0.20542
ئور د - 1) لو د ـ تر ب		010114	0000	10	000576	00085	000500	00100	000524
20112		0 17	000	1	000732	00160	009776	30190	000425
0(151		09934-4	0004	0	000467	00150	000488	00155	000434
TTT OF CIMMIN 000000 ERGENN 000379									

END OF COPPLETION GJP3

INPUT DATA AND FORMAT FOR TRAVEL

Card	Format	Data Description
1	Ţ4	No. of models for which T-D curves are
		to be computed
2	20A4	Identification for models \$ 80 characters
3	14	NLAYER = no. o. velocity layers in model
	14	NR; depths of penetration for which T-D
		values are to be computed = (NR)*(DELR)
	F8.4	DELR = Interval in (km) for numerical
		integration
	F8.4	DEPTH = maximum depth (km) of penetration
		<pre>≤ depth of last velocity value</pre>
	F8.4	EPSLON = distance (km) from maximum depth
		to begin using modified trapezoidal rule
		of integration; usually .3km
	F8.4	DELTA = distance from maximum depth at
		which integration is stopped; usually .01km
4	10F8.4	Velocities in km/sec
5	10F8.4	Depths (km) from surface of given velocities

III**-16**

UIMENSIUN T(200), UEL(200), R(200), VEL(200), Z(900), ANGLE(200), V(900) 1, D(500), TEXT(20) UJUBLE PRECISION T, DEL, R, VEL, Z, V, OZ, DELR, DEPTH, EPS, DELTA, H1, R2, H3, YUE1, A, B, C, DEPTH1, R0, XR, P, P2, SUM, SUM1, SUM2, ETA, FACT, FACT1, FACT2, 2 IEST, VY1, D0, DLL1, DEPTM2, FACT5, FACT0, FACT3, FACT4, TA0, SLDP, SKD, A1, A2 3, 31, 42, C1, C2 UJUBLE PRECISION ZMAT(4,4), RDUMMY, VVEC(4), AVEC(4), D YOF JMAT(4E25,16) MEAD (1,100) NMUN UJ JUD (RUN = 1, NRUN MEAD (1,100) (EXT(1), I=1,20) MEAD (1,200) (VEL(1), I=1, NLAYEM) MEAD (1,200) (VEL(1), I=1, NLAYEM) MEAD (1,200) (VEL(1), I=1, NLAYEM) 100 FJMAT (214.4F8,4) 200 FJMAT (10F8,4) 2(1)=2(I=1)+DELR IF (2(1)=DEPTH) 19,19,20 200 J=1 R=1 Ist K#1 |#1 [JMP#1 [JHP=1 7 JsJ+3 NARsJ 42 LDATINUE UJ 710 L[=1.4 NDUHAY = NRA - 4 + L] UJMAY = K(NDUHMY) A(ITE (3.5000) DUHMY 4(AT(L].1) = 1. UJ 7U5 LJ=2.4 4(AT(L].LJ) = DUHMY++(LJ-1) 7D L(DTINUE 244T(LI,L) = DUMMY++(LJ-1) 7D5 CONTINUE NOUMY = 4 tP5 = 0.001 CAL_ GJR4(24AT.NDUMMY,EP5) U3 715 LJ=1.4 NDUMY = NRR - 4 - LJ VVE3(LJ) = VEL(NDUMMY) 715 C34TINUE U3 725 L1=1.4 UJM4Y = 0. U3 725 L1=1.4 U3 725 L ... 72 LONTIVUE
A = AVEC(1)
U = AVEC(2)
C = AVEC(3)
U = AVEC(4)
G = Tu(3).40).[JMP
31 v(1) = A + B=Z(1) + C=Z(1)==2 + D=Z(1)==3
I=1=1
I=(2(1)-B=PTH)33.33.34
30 I=(2(1)-B=PTH)3.33.33.4
33 I=(3J-B=PTH)7.7.32
32 H(J)=D=PTH
I=U 1±0 37 1±1+1 4(1)#6371.-4(1) 1=(2(1)-DEPTH1)36.36.35 36 |[=[M)=6371.0 X4=YH M 3=6371.0 X = YM [YG= DEPTH/(XR+DELR) [YG= INC+NR M=1 N = YM N=1 = NR + 1 [YG=1 > IYC < 1 N=H = 4 UD 8 J > N=1,INCP1.NR U=G1=DELH [JM=2 UZ(Y) = 6371.-Z(J) X= = XR+DELH [JM=2 UZ(Y) = 6371.-Z(J) X= = XR+DELH [Y=C] = NRR) 42.42.45 YM= XR+R + 3 UD TU 42 U = 2(J)/Y(J) M2=2+0-2 (J) = 200 400 400 400 400 400 P2#P++2
If ((R0/V(1))++2-F2) 4000,405,405 P20P002 IF ((R0/V(1))002-F2) 4000.405.4 407 LDWTINUE SJM=USQKT((4D/V(1))002-P2) IF(J=2)11.11.10 11 SJM=0. SJM=20. SU IG 12 USJM=1./(R00SUM) SJM=2SUM10(R00/V(1))002 K=2 K=2 24 LTA=2(K)/V(K) IF (ETA=P) 4000.240.240 240 LDWTINUE FACT=FACT1 0(2(K)/V(K))002 SJM=SUM1+2.0FACT1 SJM=SUM1+2.0FACT1

Ą

SUM2+2. +FACT2 k = K+1
if(2(K)-2(J)-EPSLON)22.23.24
22 ig)T=2(J)+EPSLON-.01
if(2(K)-TESI)12.23.23 25 D=TH1=2(J)+EFSLCN D=TH1=6371.-DEPTH1 VV1=A+DEPTH1*(8+DEPTH1*(C+DEPTH1*O)) vii=A+DEPTHi*(0+DEPTHi*(C+DEP1 u=PTHi *6371,-DEPTHi uD*EPSLON ETA=UEPTH1/VV1 I* (ETA=P) 4000.230.230 230 CDNTINUE +ACT=DSURT((ETA=P)*(ETA=P)) +ACT=DSURT((ETA=P)) +AC 60 TU 23 21 Jz1 20#20. P)==U, UD =EPSLDN UD=PTM=z/(J)+DD 14 MD==PDN+1, I7(I=1)16.16.17 10 UD=PTH=2 UD=PTH=2EPTH2 UD=PTH1=0EPTH1=(U+DEPTH1=(C+DEPTH1=D)) UD=VTM1=06371,-DEPTH1=(C+DEPTH1=D)) UD=VTM1=06371,-DEPTH1 SJM1 = SUM1 +TAD0(FACT1 +FACT3)+2, SJM2 = SUM2 + TAD+(FACT2 +FACT3)+2, If(IAD-DELTA)60,60,62 60 A1 = FACT3 A2 = FACT4 81 = FACT1 B1 = 7ACT2 34=FACT2 C1=FACT5 C4=FACT6 EPHDM= TAD+(FACT4+3+A2=5,+B2/2.+,5+C2)/SUM2 WHITE(J,1050) ERRON SJM1= TAU*(FACT3+3,*A1=5,*B1/2,*,5*C1)*SUM1 SJM2= TAD*(FACT3+3,*A2=5,*B2/2,*,5*C2)*SUM2 UEL(N):P+SUM1+6371. I(N):SUM2 SINU = P+V(1)/RD UDSIUE SQMT(1, - SIN[0+02) AVULE(N) = ATAN(SINIO/CDSID)+180./3.1416 MEN+1 GD TU 8 4000 CONTINUE UEL(N) = 0. I(N) = 0. AVULE(N) = UEL(N)=P+5U41+6371. HAITE(3.401) (TEXT(1), 1+1.20) Hard teta.aoi) (TEXT(1), 1+1.20)
Hard teta.aoi) (TEXT(1), 1+1.20)
Hard teta.aoi) (TEXT(1), 1+1.20)
Hard teta.aoi) (Text(1), 1+1.20)
Hard teta.aoi) (TEXT(1), 1+1.20)
Hard teta.aoi) (TEXT(1), 1+1.20)
Hard teta.aoi)
Cond + Jamat (2x, 10H TRAVEL TIME (SEC) .5%, 11H DELTA (KH), JX.21H DEPTH ()
15 Menethation .5x .19H Angle UF INCIDENCE)
Hard teta.aoi) (Text(1), 02(1), 02(1), 03(1), 03(2), 03(1), 03(2), 03(1), 03(2), 0 STUP ENU

INPUT DATA AND FORMAT FCR VARGRAV

CARD	FORMAT	DATA DESCRIPTION
1	13	No. stations
	F10.5	Station spacing in km, Staspa
	F6.1	Depth to mass sheet in km , Depth
	13	No. of Density layers \$ 50
	13	No. of Density profiles 5 100
	F10.5	Minimum ¢ value
	F10.5	Delta z spacing for integration
	F10.5	Subcrustal Density

$$\phi_{\min} \geq \frac{[\exp(\pi \cdot \text{ Depth/Staspa}) - 1.] * \text{ Depth/Staspa}}{(\frac{\text{Depth}}{\text{Staspa}})^2 + k^2}$$

$$k = \frac{No. of \phi's to be used}{2}$$

2	10 F8.2	Gravity values in milligals
3	4012	No. of Density profile to be used at
		each station
4	16F5.2	Density values stored by profile

```
LIMENSIUN GHAV'100), DENSTY(50,50), ACURR(300), DEPOIF(100), PHI

1PAUF(100)

HEAD 100, NOSTA, STASPA, DEPTH, IUENS, NPHOF, PHIMIN, DEL2 - SUBCRU

100 + DHAT(13,F10,5,F6,1,213,3F10,5)

HEAD 200, (GHAV(1),I=1,NOSTA)

200 + DHAT(10F8,2)

HEAU 150, (IPROF(I),I=1,NOSTA)

150 + DHAT(10F8,2)

HEAU 150, (IPROF(I),I=1,NOSTA)

300 + JHHAT(10F5,2)

UD 1492 I=1,NPHOF

UD 1492 J=1, IDENS

UENSIY (I,J)= SUBCRU-DENSTY (I,J)

1492 CONTINUE

EXPOND = (-EXP(3,1416* DEPTH/STASPA)-1,)*DEPTH/STASPA

EXPENSE (EXP(3,1416*DEPTH/STASPA)-1,)*DEPTH/STASPA

AI=0.
                                                                      UIMENSION GHAV/100), DENSTY(50,50), #CURR(100), DEPDIF(100), PHI(50), I
           EXFOLD 3 (EXP(3,1416-DEPTH/ST/

AI=0.

IEI

MAT I(DEPTH-02)/(STASPA002)

0 IF((I+1)/2 - I/2)1.1.2

1 M4I(I)EXPODO/(PART+AI002)

M7INI 101.PMI(I)

101 53MAT (F10.5)

GD TU 3

2 M4I(I)EXPEVN/(PART + AI002)

102 53MAT(F10.5)

3 IF(ABS(PHI(I))-PMIMIN)4.4.5

5 IEI+1

A; EXI(1.0

GD TU 6

4 IA1 = 20I-1

IA = 10

IX20

JEIN

JEIN
                                                                         JEIX
                                                                      nin):
Mai(n):bHi(i)
Noig is5°ix5
Noig
                                 13 CONTIQUE

MAI(1X2 )*PHI(1)

JIIX1
                P-1(112 )#PMI(1)
J111
1A2#1A2
U3 7 [=1,1X2
P-1(1)#PMI(J)
J=J-1
7 U3=T19UE
P-2(VG(K4),F10.5)
P-2(V
                KIR+1

y CONTINUE

500 + DMAT(2X.FID.2)

ixIA-1

KE N EN-1

0 CONTINUE

ixJENDSTA-IXI+1

JEIX2+1

UD 11 LEI.IXI

ACORM(J)=CRAV(K)=PHI(L) +XCORM(J)

KEN+1

1 CONTINUE
                                                                      REA+1
                     11 CONTINUE
600 FOR44T(21,F10.2)
                              J=J+1
1J CONTINUE
1x3=1x3+1
                                                                      NENOSTA-122
UD 12 18123.N
R±1
RCUMM(J)FD.
              ACUMA(J)=0.

4CUMA(J)=GA4V(K)=PHI(L) =×COR4(J)

Ash=1

13 CONTINUE

700 + Damat(2x,F10,2)

J=J=1

Msh=1

12 CONTINUE

FACT=22.e(3,1416=+2)=6.67

D) 14 I=1.NOSTA

ACUMA(J)= XCOHN(J)/FACT

14 CONTINUE
                            A JUNACI J: KOOHA (J)/F

14 CONTINUE

DJ 30 J: NOSTA

SJARU.

AMAXIKOOHA(J)

if (AMAX-D.)50,51,52

50 SJMII.0

GD TU 53

52 SJMII.0

GD TU 53

51 UEMDIF(J)=UEPTH

GD TU 30

51 I: IPHOF(J)

LEMOIF(J)= 0.

MIU
```

A statistical sta

-

*

.

,

.

- 40 K=K+1 U_HS = DENSTY(1,K) U_HS(=DENSTY(1,K)) 17 (K-1DENS(43,43,44 4 U_EVPUF(())=DEPDF())=DEL2 30ms SUN=DENS(DEPDF())=DEL2 30ms SUN=DENS(DENS())=DED() 4 U_EVDIF())=DEPTN=SGN=(DEPDIF())=R/DENS(-DEL2) 4 U_EVDIF())=DEPTN=SGN=(DEPDIF()) 4 U_EVDIF()=DEPTN=SGN=(DEPDIF()) 4 U_EVDIF()=DEPTN=SGN=(DEPDIF()) 4 U_ENS(=DENSTY(1,K-1)) U_HS(=DENSTY(1,K-1)) 4 U_ENS(=DENSTY(1,K-1)) 5 TU 43 3 U_ONTINUE 4 H(1) 2000 2000 F3N4AT(1,M-43X,27H THICKNESS OF CRUSTAL LAYER /) 4 H(1) 2000 2000 F3N4AT(1,M-43X,27H THICKNESS OF CRUSTAL LAYER /) 4 H(1) 2000 2000 F3N4AT(1,M-43X,27H THICKNESS OF CRUSTAL LAYER /) 4 H(1) 2000 2000 F3N4AT(1,M-43X,27H THICKNESS OF CRUSTAL LAYER /) 4 H(1) 2000 2000 F3N4AT(1,M-43X,27H THICKNESS OF CRUSTAL LAYER /) 4 H(1) 2000 2000 F3N4AT(1,M-43X,27H THICKNESS OF CRUSTAL LAYER /) 4 H(1) 4000 2000 F3N4AT(1,M-43X,27H THICKNESS OF CRUSTAL LAYER /) 4 H(1) 4000 (DENSTY (1,J),J=1,1DENS) 3500 U_SMAT(1,M-43X,10H GMAN(TY(M)LLIGALS),2X,10H DEPTN(KH), 14 (2,214) DENSITY PROFILE USED) 15 HAMAT(2,113,13X,5A,2,0X,F6,2,13X,13) 17 (DOT1)NUE 4 HAU 4 H

INPUT DATA AND FORMAT FOR PRESID

CARD	FORMAT	DATA DESCRIPTION
1	13	No. of stations at which residuals will
		be computed
2	16F5.1	Jeffreys-Bullen P-travel times in sec
3	20F4.1	Latitude corrections for converting to
		geocentric coordinates
4	13	No. of epicenter locations for each
		station
5	F6.1	Station latitude (geocentric)
	F6.1	Station longitude
6	18F4.1	USGS origin times for earthquakes stored
		in sequence as HH:MM:SS.S
7	18F4.1	Record arrival times and store in sequence
		as HH:MM:S5.S
8	16F5.1	USGS focal depths in km
9	12F6.1	USGS latitude and longitude of epicenters
		stored in pair sequence Lat ₁ , Long ₁ , Lat ₂ ,
		Long ₂ ,
		Sign Convention
		East Long -
		West Long +
		North Lat +
		South Lat -

U[MENSION QUALOC(200).ORTIM(300). UE^MTH(100).STA::H(300).RESID(100 1).A:IPM(100).DELTA(100).A2:NU^T(100).P(14.103).LOCOEL(100).GEOC(9 11).UEU0A(200) MEAO 100.LIMSTA 100 FOMMAT(13) MEAD 100.(P(1,J).[=1.14).J=1.103) 150 FOMMAT(16F5.1) MEAD 112.(UEUC(J).J=1.91) .112 FOMMAT(20F4.1) J SEI STATION INDLX UD 1 I=1.EIMSTA MEAO 200.LIMOUA 200 FOMMAT(13) 1k=29LIMOUA MEAD 700.STALAT.STALNG 700 FOMMAT(F6.1.F6.1) 1k2 = 3= LIMOUA MEAO 600.(OPTIM(U).J=1.1X2) UU FOMMAT(18F4.1) HEAO 600, (OPTIM(J), J=1, IX2) FJMMAT (18F4.1) HEAD 400, (STAIIM(J), J=1, IX2) FJMMAT(18F4.1) MEAO 500, (DEPTH(J), J=1, LIMOUA) FJMMAT(16F5.1) HEAO 300, (OUALUC(J), J=1, IX) FJMMAT(12F6.1) UD 1111 J=1, IX.2 KEZ 90 iu0 500 300 Kad K=2 A_AT =1,0)?(QualOC(J)-ALAT)565,501,501 A_4T =A .T +1,0 A=K+1 vc ;::UUALOC(J)=ALAT)565,501,501 wt A_4T =A .T +1.0 RTX+1 G) TU 502 565 CJM+TSEOC(K) = (GEUC(K)=GEUC(K-1))*(ALAT=UUALOC(J)) 111 uju3(J) = OUALOC(J) = CORR U) 2 J=1,IX.2 IVUX=J/2+1 STALMS = STALAT=3,1416/180. UJAVG = GOLANG = OUALOC(J+1) i: ("DLANG = STALAT=0,0000 (J+1) i: ("DLANG=180,)3,3.4 M) LANG = STALAT=0.0000 (J+1) i: ("DLANG=180,)3,3.4 M) LANG = POLANG=360. 3 M) LANG = POLANG=3.0416/180. C) SOLL = SONT(I.=COSOEL=0 = 180./3.1415 U; TA(INDX) = DELTA(INDEL/COSUEL) = 180./3.1416 U; TA(INDX) = DELTA(INDX) = 00. -SIGN(9U..0ELTA(INDX") SI = 51 TA = TAX = 180. V: TA(INDX) = TA = 180./3.1416 U; TA = TAX = 180. SI = 0.182.84.83 SI = 17A = 180. SI = 0.182.84.83 SI = 17A = 180. SI = 0.182.84.83 SI = 17A = 180. SI = 0.182.84.83 SI = 0.171.VUE TIA = 180. SI = 0.1 502 501 1111 5 2 4=1 J5 12 J=1.L'NGOM A=2 U=4 = 33.0 F=(U=_TA(J)=102.) 13.13.14 13 18 15 17 10 17 90 (42) 1 92 (42) 1 92 (42) 4 2 0 1 1 - (0[F1 -0[F2]*(0(2P-0(2)|M(J))/63,0)1 (420 MTIM(4)*3600,*0WTIM(M*1)*60,*0RTIM(M*2) 21 4 ± STATIM(M)*3600,* STATIM(M*1)*60.+S(ATIM(M*2)) ¥1 ¥Ż. JTINE * STATIM(H)*3600. * STATIM HEN+3 1:(3)[ME - 65562.6)20.4000.4030 400°. 1:(5)[ME - 6552.6)21.20.20 21 STINE * 5178 * 86400. 20 HESID(J)* STIME - 0TIME - THEOTH 03 TO 12 MEM BRANCH OF RESIDUAL TIME 14 HESID(J)*0. MEMBA 21 20 С CONTINUE CONTINUE RECENTERS 64 DICTANCE ALIEM(1)#DELTA() ALIEM(2)#DELTA() 12 C LICUEL(1)=1 LICUEL(1)=1 LICUEL(2)=2 UI 60 K=3. LIMOUA M=1

L=1 50 17(DELTA(K)-XITEM(L))22.22.23

```
25
                        L=L+1
17 (L-K)24,25,25
                        MEM+1
GD TU 30
X116M(L)=DELTA(K)
24
25
                        LOUDEL(M+1)=K
                        G) TU 80
22
           | X1=K

X| EM([X1)= X| EM([X1-1)

L)UBL([X1)=LOCDEL([X1-1)

| X1=|X1-1

| f([X1-N]27,27,51

X| EM([X1)=DEL[A(K)

L)UBL([X1)=K

80 CONTINUE

ND W 1000
27
                   HALNI BOO
Harni BOO
Harni 2014-4ECORDING STATION CODRN /26X,9H LATITUDE.4X,10H LONGI
8.0
2 JUE)

2 JUE)

2 JUE)

4 JUE

4 JUE)

4 JUE

4 JUE)

4 JUE

4 JUE
4 JUE
4 JUE
4 JUE
4 JUE
4 JUE
4 JUE
4 JUE
4 JUE
4 JUE
4 JUE
4 JUE
4 JUE
4 JUE
4 JUE
4 JUE
4 JUE
4 JUE
4 JUE
4 JUE
4 JUE
4 JUE
4
                   TRINI 2000
PRINI 2000
POMMAT(3X,9H DISTANCE,3X,9M LA'ITUDE,3X,10H LONGITUDE,3X,6H DEPTH,
13X,6H AZ[HUTH,3X,33H P-RESIDUAL(DBSEMVEN-TMEORETICAL))
DD 60 K#1,IX,2
IX1#K/2+1
 2000
                        IXIN/2+1
L=LJUDEL('X1)
#= 2+1
PRINI 3000,XITEM(IX1),QUALOC(M),QUA_UC(M+1),DEPTM( ),AZIMUT(L),RES
    1|0(L)
3000 - D=+41(5x,F7,2,5x,F6,1,7x,F6,1,7x,F6,1,12x,F/.1)
                       LONLING
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
61
ċ
                        LDUDEL(1)=1
LDUDEL(2)=2
"D 93 K=3,LIMDUA
M=1
                      L=1
l=:(A2|HUT(K)=X|TEM(L)) 101,101,102
     105
                       L=L+1
i=(L=K) 103,104,104
M=4-1
     102
     105
                        UD TU 155
AIIEM (L)=AZIMUT(K)
LOUDEL(M+1)=K
     104
LOUDEL(M+1)*K

,) TU 93

101 |x1=K

107 A[10[(1X1)*10[COEL(1X1=1)

LOUDEL(1X1)*LOCOEL(1X1=1)

Ix1=|x1=1

If(1x1=M)108,1C<sup>2</sup>-107

108 A[10[(1x1)*K

93 COMTINUE

M=(N) 5000

5000 Fommat ( 254-RECORDING STATION CODMU, /32X,9M LATITUDE,9X,10M LCM

16(1000)
    101022)

HEINI 5001, STALAT, STALNG

5001 FORMAT(36A, F6.1, 23X, F6.1)

HEINI 5002

5002 F MMAT(/87H ERICENTER PARAMETEMS DHJERED BY AZIMUTH-AZIMUTH MEASUR
     5002 > MART(/87M ERICEMIEN PARAMETEMS DHJEHED BY AZIMUTH-AZIMUTH MEASUR

16. CUUNTEH-CLOCKWISE FHOM NORTH )

MAINI 5003

5003 + JHANT(//3X,8M AZIMUTH,37,9M LATITUJE,3X,10H LONGI(UNE,7X,6M DEPTH

177,18M DISTANCE(DEGREES) ,12X,33M - HESIDUAL(DBSERVEJ-TMEDRETICAL

17 )

DJ 109 K=1,1X,2

17.14
                         IX1#K/2 /1
L=LOCOEL (IX1)
H=2+L-1
M=1+1 5004,XITEM(IX1),QUALOC(M),QUALUC(M+1),DEPTM(L),DELTA(L),
                      1MESID(L)

+ FORMAT(5X,F6.1.5X,F6.1.7X,F6.1.7X,F6.1.11X,F6.1.27X,F7.1)

CONTINUE

A|[=M (1)=DEPTM(1)
     5004
109
                        HILE (1)*DEFIN(1)

X11EM(2) * DEFIN(2)

LOUDEL(1)*1

LOUDEL(2)*2

UD 207 K*3.LIMOUA

M*1
        L=1
202 IF (UEPTH(K)-XITEM(L)) 203,203,204
                       L=L+1
Ir(L=K)205,206,206
         204
      205 MxH+1

G) TU 202

200 X] I = M(L)* D=PTH(K)

C)CDEL(H+1)*K

G) TU 207

201 X1*K

203 X] EM([X1)*X]TEH([X1-1)

C)CDEL([X1)*LOCDEL ([X1-1)]

IX1=[X1-1]

IT([X1-H) 209,209.208

204 X] EM([X1)*DEPTH(K)

C)CDEL ([X1)*K

207 CDNTSUE

MXIN 501
        205 HaH+1
        PAINT 301
801 FONMAT (25 H-RECORDING STATION COOND, /26X,9M LATITUDE,4X,10M LONG
11TUDE)
Paint 802,5TALAT,5TALNG
```

- 802 FJMMAT (27X,F6,1,9X,F6,1) "RIN" 803 803 FDMMAT (/85M EPICENTER PANAMETERS 0<UERED B) DEP?"-A4IMUTH MEASUR 1ED CUUMTER-CLOCKNISE FNOM NORTH //) MRINI 804 804 FDMMAT(3X,6M OEPTH.3X,9M DISTANCE,5X,9M LATITUDE,3X,10M LONGITUDE, 13X,3M A/IMUTM.3X.33H P-RESIOUAL (OBSERVED-THEORETICAL) UD 805 K=1,1X,2 IX1=K/2+1 L=CUDEL(1X1) MadeL=1 MRINE 806,XITEM(1X1),DE(T_(L),UUALUC(M),OUA_OC(M+1),AZIMUT(L), 1MESIU(L) 806 FDMMAT (5X,F6,1,5X,F6,1,7X,F6,1,7X,F6,1,27X,F7,1) 805 COMFINUE 1 CONTINUE MAUSE 7 ENU

.

.

-

.

.

.
APPENDIX IV

CURVES OF PARTICLE DISPLACEMENT

CURVES OF PARTIAL DERIVATIVES OF PHASE VELOCITY WITH RESPECT TO LAYER PARAMETERS

o

HORIZONTAL AND VERTICAL PARTICLE AMPLITUDES NORMALIZED TO THE VERTICAL AMPLITUDE AT THE SURFACE FOR FUNDAMENTAL RAYLEIGH MODE, GUTENBERG - BIRCH II MODEL.

.

FIRST HIGHER RAYLEIGH MODE PARTICLE AMPLITUDES NORMALIZED TO THE VERTICLE AMPLITUDE AT THE SURFACE FOR THE GUTENBERG-BIRCH II MODEL.

FIRST HIGHER RAYLEIGH MODE PARTICLE AMPLITUDES NORMALIZED TO THE VERTICAL AMPLITUDE AT THE SURFACE FOR THE GUTENBERG - BIRCH I MODEL.

SECOND HIGHER RAYLEIGH MODE PARTICLE AMPLITUDES NORMALIZED TO THE VERTICLE DISPLACEMENT AT THE SURFACE FOR THE GUTENBERG - BIRCH I MODEL.

400-

THIRD HIGHER RAYLEIGH MODE NORMALIZED TO THE VERTICAL AMPLITUDE AT THE SURFACE FOR THE GUTENBERG-BIRCH II MODEL.