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THE COST FUNCTION
by

Ronald W. Shephard

1. THE PRODUCTION STRUCTURE

For some technology, let x = (xl, X £ 5 xn) denote a vector of nonnegative

29
inputs per unit of time of the relevant factors of production. The technology pre-
scribes a family of technical possibilities, which may or may not be realized
in practice.

The technical possibilities of production are defined by a family of pro-
duction possibility sets L(u) , which are subsets of the nonnegative domain
D= {x | x >0, xc¢ Rn} specifying for each output rate u ¢ [0,2) the input

vectors which yield at least the output rate u . These sets are assumed to

have the following properties:

P.1 L) =0, 0¢ L(u) for u>0,
P.2 If x e L(u) and x' >x , then x' ¢ L(u) ,
P.3 If x>0 ,0r x>0 and (Ax) € L(u) for some A >0 and
u>0, the ray {ix | A2 0} intersects all sets L(u) , u e [0,») ,

P.4 L(uz) C L(ul) if u 2>u

2 1 °?
P.5 N L) =L(u) for any u >0,
) 0
O<u<u
= 0
P.6 N L(u) = ¢ , i.e., the empty set,
ue(0,=)

B Y L(u) 1is closed for any u ¢ [0,®) ,

P.8 L(u) 1is convex for any u ¢ [0,») .

As shown in [4], the production function for the technology is a function
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¢(x) = Max u defined on the nonnegative domain D of R" with the properties:
xeL (u)

A.l  ¢(0) =0,
A.2 ¢(x) 1is finite for x finite,

A.3  o(x'")

v

¢(x) for x' > x,

Al If x>0 ,0r x>0 and ¢(Ax) >0 for some A > O, then
d(Ax) > » as A > »

A.5 ¢(x) 1is upper semi~continuous on D ,

A.6 ¢(x) 1is quasi-concave on D .

The sign (>) dimplies (>) but not (=) .

To the properties P.1, ... P.8 we add that
P.9 E(u) 1is bounded for all u e [0,») ,

i.e., the set of efficient points E(u) = {x | x ¢ L(u) , ¢(y) <u V y < x}

for each production possibility set is bounded, and (see [4], §4)
L(u) = E(u) +D . (1)

The assumption P.9 is no restriction on the generality of the production model,
while it assures the existence of the minimum of a linear functional over the
production set L(u) . E(u) is the closure of E(u) , and the sum of two sets
A+B={x | x=y+w,yeA,weB}.

A nonnegative vector p = (pl’ Pys *oes pn) is used to denote the prices
of the factors of production. When p = 0 , all of the factors are free goods -
a situation of trivial interest in economic theory, but this possibility is not

excluded.

Some convention is required for the costing of mixed inputs per unit time

of the factors. If x and y are two input vectors for the production structure,
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the input [(1 - 6)x + 9y] where 6 ¢ [0,1] may be interpreted to mean that the
input combination x is used a fraction (1 - 6) of the time interval and an
inﬂut y 1s used the remaining fraction 6 , taking the technology to be time
divisible. The cost of this mixed input is calculated by [(1 - 8)p:x + 6p-y]
(where p-.x , p'y denote the innerproduct of two vectors), implying for capital
services that the real capital is charged for only when used. 1f [(1 - 6)x + gy]
is interpreted as an input rate of a combined input over the entire interval,
the costing of the input is still calculated by [(1 - 6)p:x + ép:y] . The
physical interpretation, in any event, is made to conform to property A.6.

The factor input and factor price domains are regarded as superimposed
on the set D , with each point of D representing an input vector or a price

vector.



2. DEFINITION OF THE COST FUNCTION

For any price vector p € D and output rate u the cost structure of
interest is that of the total cost p'x , where the factor applications x are
adjusted to yield the smallest total cost for the output rate u ¢ [0,#) , and the

cost function is defined by

Q(u,p) = Min (p*x) 3 peD, ue [0,») (2)
xeL(u)
where (p°a) 1is the inner product of the two vectors p and x . Since

L(u) = E(u) + D, if xe L(u) then x =y +w where y ¢ E(u) , weD and
Min (p*x) = Min (p°y) + Min (p-w)
xeL(u) yeE (u) weD (3)

= Min  (p-y) .
yeE(u)

The compactress of E(u) (i.e., E(u) 1s bounded and closed) assures existence
of minimum total cost. Moreover,

Q(u,p) = Min (p-x) . (2.1)
xeE(u)

Evidently, Q(u,0) = 0 for all u ¢ [0,») and Q(O;p) =0 for all pe D .
Neither of these two situations are of particular interest for economic theory;
they are included for completeness of definition. For the minimum problem defined
by (2), the components of the price vector p and the output rate u are
arbitrary parameters, and the cost function Q(u,p) gives the minimum total cost
per unit time corresponding to any nonnegative output rate and nonnegative prices
of the factors of production. In effect, it is assumed that the prices

pi(i =1, ..., n) do not depend upon the amounts xi(i =1, 2, ..., n) of the

factor inputs.



Uncer the assumptions made above, it is possible for Q(u,p) to be zero
when p# 0, u# 0. In order to see this, classify the price and factor input

points of D by D, = {p|p>0t=1{x]| x>0},

n n
D, =¢p | p>0, np,=0)={x| x>0, nx, =0). The set D_ is the set of
2 - 1 i = 1 bl 1

positive price or factor input vectors and the boundary of D 1is {0} L)02 :

If peD, and u > G the cost minimizing input x*(u,p) may have zero com-
ponents for factors with positive prices and positive components for factors with
zero prices. Hence it is useful to pursue further a classification of the

boundary points D2 . Let

D' ={p|ped,,Qup) >0 forall u>0},

292" ={p|pe D2 , Q(u,p) = 0 for all u > 0} .

Proposition 1: .@2' n-@z" ¢ (the empty set) and D, =-@2' U'Zz" .

Suppose for some u>0 and P E D2 that Q(ﬁ,p) = 0, Then the cost
minimizing input x*(G,p) is such that pox*(ﬁ,p) = 0 , which implies for each
5 that xi*(ﬁ,p)-pi = 0 since both p and x*(u,p) are nonnegative. Hence
when Py > o, xi*(ﬁ,p) = 0 . Therefore x*(ﬁ,p) € D2 .- Moreover, the ray
O x*(u,p) | A > 0} 1intersects all level sets L(u) for u > 0O (see P.3, §1).
Hence Q(u,p) = 0 for all u >0, if Q(u,p) = 0 for some u >0 and p ¢ D2 :
Thus the sets SZ;' and JZZ" are exclusive and 2%' f\i%" is an empty set.
Further D2 = 2%' LJ;Z%" , since no point of D2 can yield both a positive and a
zero value for Q(u,p) for different positive ouput rates, because suppose
Q(u,p) = 0 for some u > 0 . Then Q(u,p) = p’x*(ﬁ,p) = 0 , implying that

x*(G,p) 3 D2 . But the ray {ax*(u,p) s > 0} intersects all level sets and
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hence for any u > 0 there is some X > 0 where Q(u,p) = p-kx*(u,p) = Ap-x*(u,p) =0 .
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If JZE" is nonvoid, all positive output rates may be obtained at zero cost
for price vectors of this set, but the price vectors LZZ" need not be available
for any particular production regime. The cost function expresses potential
minimum total cost-output-factor price combinations which need not be realized
in practice.

It is interesting to inquire when SZE" is an empty set and zero cost for
positive output is excluded. For this purpose we classify the boundary points

D2 relative to factor inputs by (see [5], §1)

Dz' ={x | xe D, , (Ax) ¢ L(u) for some X >0 and u > 0},

D2" = {x | x¢ D, , (Ax) ¢ L(u) for all A >0 , u>20}.

By the property P.3, the ray {Ax | A2 0} intersects all production possibility

sets L(u), u>0 if x ¢ D2' , and 1f x ¢ Dz' then x ¢ D2" , and conversely.
] n A = 1) "

Hence D, ﬁD2 4 and D, =D, U D," .

Regarding whether LZ;" is nonempty, the following proposition holds:

Proposition 2: -ZE" is nonempty if and only if D2' is nonempty.

Assume DZ' is nonempty and let x € D2' . Then there is a price point
po # 0 such that po-x = 0 . Moreover, the ray {ix | A > 0} intersects all
sets L(u) for u> 0, by virtue of property P.3, and for any u > 0 there is
a point (Ax) € L(u) with ()\x)'po ~0 . Hence p° ¢ 2%" , and JZE" is nonempty.
If Dz' is empty no point of D2 yilelds positive output aad hence for all
p € D, any cost minimizing output x*(u,p) 3 D1 for u > 0 . Consequently
Q(u,p) = p'x*(u,p) >0 1if pe D2 and u > 0 , which implies ‘2%" is empty.
Thus, in order to exclude zero minimum total cost for positive output we must
require that positive output is possible only with positive input for all factors

of production, i.e. none of the boundaries of the production possib‘lity sets



coincide with the boundary of D for u > 0 . This restriction is too strong,
since some of the factors may be alternatives for others, i.e., not all the fac-
tors are assential by themselves. (See [4], §8.) We need not require the set

D2' to be empty, since the subset of prices ‘2%" is merely a formal possibility,
which may or may not be realized in practice. On the other hand, we do not

wish to require that p be positive. Some factors may be free goods, and it is
not correct technologically to exclude them from the input vectors. What is free
depends upon the exchange economy which may vary from place to place and from

time to time.
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3. GEOMETRIC INTERPRETATION OF THE COST FUNCTION

Consider the hyperplane p-:x = Q(u,p) . Since O(u,p) 1is the minimum of

p'x for all points x e L(u) , it follows that
L(u) € {x | p'x > Q(u,p)} for all p# 0,

and the hyperplane is a supporting hyperplane of the production possibility set
L(u) (see [6], Part II, §B) and the cost function Q(u,p) 1is a support functicnal
of L(u) (see [6], Part V) for any u > 0.

The relation of the hyperplane p°x = Q(u,p) to the production possibility
set L(u) 1s depicted in Figure 1, where x*(u,p) denotes an input at which
the minimum of p-x is attained for x € L{u) . Note that the contact point
x*(u,p) 1s not necessarily unique.

Let r denote the intersection of the ray {ép | © & 0! from the origin
normal to the hvperplane p.x = Q(u,p) , for p # 0 . For some value of 6 ,

say 90 , T = Go-p , and, since r lies in the hyperplane p-.x = Q(u,p) ,

por = o |Ipl[2 = 0Cu,p)

and
eo = 95242% ,p#FO0
[ el
Consequently
3912‘2%'?’17 o,
B
and

||r||=$ﬁl.p¢o
P
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L(u) , u>20

p'x = Q(u,p) Py

—» {0} U DZ

FIGURE 1: RELATION OF HYPERPLANE p°x = Q(u,p) TO L(u}
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Thus
QCu,p) = |[e][-|lpl| , p#O. (4)

If the price point p 1is normalized so that ||p|| = ] , the minimum total cost
Q(u,p) 1is merely the normal distance of the supporting hyperplane p-x = Q(u,p)
from the point O .

The closure of the efficient point set E(u) in Fiéure 1 is the boundary of
L(u) comprised between the points P and P,. In general, the total minimum

cost occurs for an input vector x*(u,p) € E(u) , and x*(u,p) will be under-

stood always to be such a point, unless otherwise specified.



4. PROPERTIES OF THE MINIMUM TOTAL COST FUNCTION Q(u,p)

For positive output rates u the following proposition states in detail the

properties of the minimum total cost function Q(u,p) :

Proposition 3: If the production structure has production possibility sets

Q.1
Q.2

Q.3
Q.4
Q.5
Q.6
Q.7
Q.8
Q.9
Q.10

Q.11

L(u) satisfying P.1, ... P.9, then for any u > 0

Q(u,p) = 0 for all pe {0} UD",

Q(u,p) 1is finite for finite p € D and positive for all
P E D1 lJJZ%' ,

Q(u,Ap) = AQ(u,p) for A >0 andall peD,

Q(u,p + q) > Q(u,p) + Q(u,q) for all p,q e D,

Q(u,p') > Q(u,p) if p' 2pe D,

Q(u,p) 1is a concave function of p on D,

Q(u,p) 1is a continuous function of p on D ,

For any p e D, Q(uz,p)

v

Q(ul,p) if u, 24
For any p e D, , Q(u,p) > » as u =+ o ,
If there exists for 6§ > 0 an open neighborhood

N(0) = {x

x| <6, x € D} such that x ¢ L(u)

for any u > 0 when x € N(0) , thenas u-+ 0

A\

inf Q(u,p) > 0 for all p ¢ D1 , otherwise

inf Q(u,p) = 0 for all p ¢ D1 .
For any p ¢ D, Q(u,p) 1is a lower semi-continuous

function of u for all u ¢ [0,») .

Property Q.1 is merely a restatement of the definition of JZZ" and the

evident fact that Q(u,0) = 0 for all u > 0 .

11
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Regarding property Q.2, Q(u,p) = p-x*(u,p) where x*(u,p) belongs to the
closure of a bounded efficient point set E(u) (see (3)) and hence Q(u,p) is
finite for finite p . When pe D , |1r|| > 0, since otherwise the support
plane p:x = Q(u,p) has contact with points of D only at O and 0 ¢ L(u) for
u > 0 ; from equation (4) it follows then that Q(u,p) > O since ||p|| >0 . 1If
P EJC;' it follows from the definition of .2%' that O(u,p) > 0 for all u > 0 .
Thus property Q.2 holds.

Property Q.3 applies because

Q(u,Ap) = Min (Ap)*x = A-Min p'x = A0(u,p)

xeL(u) : xeL(u)

forany X >0, p# 0 and when X =0 or p =0 it is obvious that

Q(u,Ap) = AQ(u,p)
In order to show that Q.4 holds, let p,q # 0 and let x*(u,p +q) ,

x*(u,p) 3 x*(u,q) denote input combinations minimizing (p + q)+x , p*x and

q-x respectively. Then
*
Q(u,p + @) = p+x"(u,p + @) + q'x (u,p + q)

Clearly

P'x*(th + q) p-x*(u,p) O(U,p) ’

v

q-x*(u,p + @) > q-x*(u,q) = 0(u,q) ,

[ [

and

Q(u,p + q) 2 Q(u,p) + Q(u,q)

If p=q=20, then Q(u,p +q) = Q(u,p) + Q(u,q) since
Q(u,p + q@) = Q(u,p) = Q(u,q) =0 . When p# 0, q=20, then
Q(u,p + q) = Q(u,p) + Q(u,q) since Q(u,p + q) = Q(u,p) and Q(u,q) =0 .

Similarly, for p =0 and q # 0 .
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Property 0.5 follows directly from the nonnegativity and super-additivity of

Q(u,p) , since p' = p + Ap where Ap > 0 and
Q(u,p') 2 QCu,p) + 0(u,bp) > Q(u,p)

The concavity of O(u,p) on D is a simple consequence of the homogeneity
and super-additivity of O(u,p) , since for any p,q e D, (1 - 6)p and 6-q

belong to D for any 6 ¢ [0,1] and
0(u,(1 = 8)p + 6q) > (1 - 8)0(u,p) + 60(u,q)

The continuity of O(u,p) 1in p on D may be established as follows:
First, for any u > 0 the function 9Q(u,p) 1is continuous on the interior of D ,
i.e., for p ¢ D1 , since ~0(u,p) is a convex function and a convex function
defined on a convex open set in R" is continuous on this open set (see [2], pl93).
Second, regaiding the boundary of D, i.e., for p ¢ {0} U D2 y, 0(u,p) 1is lower
semi-continuous (see Theorem, p3l, [4]). But Q(u,p) 1is also upper semi-
continuous for p e {0} U D2 . In order to show this last statement, we extend
the definition of the cost function to all points p ¢ R" in the following way.

Let

L(u/R) = L(w) N'8.(0) 5 u>0, Re (R | L(u/R) ¥ ¢}

where

||x|| SR, xe Rn} .

SR(O) = {x

The set L(u/R) 1is compact, i.e., bounded and closed. Then let

Q(u,p/R) = Min (p'x)
xeL(u/R)
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for any u >0, R>0 and p ¢ R" . The extended cost function Q(u,p/R) 1is

concave function defined on R" , since the arguments used for Q(u,p) apply

also to Q(u,p/R) , and the function Q(u,p/R) 1is continvous in p for all

P € R" . Now suppose po e {0} U D2 and let {Rn} be a nondecreasing sequence
of values of R tending to « . The sequence {Q(u,po/Rn)} is nonincreasing,
since

Q(U.PO/Rn+1) < Q(u,po/Rn)

for any n , because L(u/Rn+1)ZD L(u/Rn) for any n . Also, since po >0

the sequence {Q(u,po/Rn)} is uniformly bounded blow by zero and lim 0(u,po/Rn)

n->-o
exists. The greatest lower bound of the sequence is Q(u,po) , since

L(u/Rn) + L(u) monotonically as n » « and Q(u,po) = Min (po-x) . In fact
xeL(u)

E(u/R) = E(u) for R sufficiently large. Thus

lim Q(u,po/Rn) = Q(u,po)

n->o

Let o be positive. Then there is a positive integer N such that

&

Q(U,po/RN) < Qu,p?) + 5

Further, since Q(u,po/Rn) is continuous at po for n =N, there isa 6§ > 0

llp-p°||<6.p€Rn}

such that, for all p ¢ Sé(po) ={p

Q(u,p/RY) < QCu,p°/RY) + 5 .
Thus
Q(u,p/Ry) < Qu,p?) + a

for all p € Sé(po) and therefore also for all p e DN Sé(po) . Then, since

a
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Q(u,p) < Q(U,P/RN) for all pe DN Sé(po) , it follows that
Q(u,p) < Q(u,po) + a

for all peDN Sé(po) , and Q(u,p) 1is upper semi-continuous on the boundary of
D . Therefore, Q(u,p) 1is continuous for all p e D .
We turn our attention now to property 0.8. Since L(u,) C L(u;) 1f

u, (see property P.4, §1), it follows for all u, > u, that

) 1 2

>
=

Q(uz,p) = Min (pex) > Min (p'x) = Q(ul,p) .
xEL(uz) xEL(ul)

Hence Q(u,p) 1is nondecreasing in u for any p € D .

Regarding property 0.9, let x*(u,p) denote a contact point of the hyper-
plane px = Q(u,p) with E(u) for any p € Dl , and suppose that Q(u,p) is
bounded for u > = , i.e., Q(u,p) ¢ Q, for all u e [0,») . Then let {un}
be an arbitrary nondecreasing sequence of values tending to « . Due to property
Q.8, the corresponding sequence {p'x?un,p)} is then monotone nondecreasing and

bounded above by Qo . Hence

lim (p-x*(un,p)) = p-x°(p) finite i

o
and since p > 0 by supposition it follows that xo(p) is finite and by
property P.4 it belongs to all L(u) for u e [0,®) contrary to property P.6.
Thus Q(u,p) *® as u + « for any p € D1 o

When p 522" , Q(u,p) = 0 for all u e [0,») and when »p e.@z' , it 1is
possible for Q(u,p) to be positive and finite for all u ¢ (0,%) as shown by
by the example in Figure 2 where p = (O,pzo) € 22' and Q(u,p) = Q° for all

u € [ng) o
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0 - xl(pl)

FIGURE 2: EXAMPLE OF BOUNDED Q(u,p) FOR p e.@z'
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Property Q.10 holds, because let {un} be an arbitrary nonincreasing sequence
tending to zero. The corresponding sequence fp-x*(un,p)} is nonincreasing and
bounded below by zero, and hence the

lim inf {p-x*(un,p)} = p-x*(0,p)

n-»-«
exists. Suppose p-x*(O,p) =0 . Then, since p > 0 it follows that x*(O,p) =0 .
But this is impossible, because ¢(x) = O for any x € N(O) and p-x*(O,p)
would not be the greatest lower bound of the sequence {p-x*(un,p)} . If p 5.2%' 3

it is possible for inf Q(un,p) = 0 when the nejighborhood N(0) exists such that
n+«e

x £ L(u) for any u > 0O when x ¢ N(O) , as illustrated in Figure 3 where the
boundaries of the level sets converge to the axes as n » « ,

Finally, regarding the continyity of Q(u,p) in u e [0,») we note first
that the cost function is generally not upper semi-continuous in u . The example
shown in Figures 4 and 5 illustrates this fact. The step function of Figure 4
satisfies the properties A.l, .,. A.6 (see §1). At u=0, Q(0,p) = 0 and
%Q(O,p) =0. For any uce (i,1 +1] , clearly x*(u,p) = (1 + 1) ,
p-x*(u,p) = p(1 + 1) and %Q(u,p) = (1 + 1) , and the cost function is evidently
not upper semi-continuyous in u ; because suppose u = 3 , then
%‘Q(u,p) = Q(u,1) > Q(3,1) +a for 0 <a<1l and u> 3.

Now in order to establish the lower semi-continuity of the cost function,
we need only consider p e DV 2%' because 1f p ¢ {0}tJ£2" then Q(u,p) = 0 for
all u e [0,») and the cost function is continuous and therefore lower semi-
continuous in this case. Hence let p € Dl V) J%' and consider an arbitrary out-

put rate u_ e [0,2) . Then, by the property Q.8, Q(u,p) > Q(uo,p) for all

[ AY]

u

u, and Q(u,p) > Q(u_,p) - o forany a« >0 and u3u . For ugu ,

>
-
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xl(pl)

FIGURE 3: EXAMPLE OF inf Q(un,p) =0 FOR ¢(x) =0 IF x e N(O)
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let {un} be an arbitrary nondecreasing sequence of output rates less than u

and converging to u assuming that u, > 0, otherwise the lower semi-continuity
has been established. The corresponding sequence {Q(un,p)} = {p-x*(un,p)}, where
x*(un,p) is a contact point of the hyperplane p:x = Q(un,p) with the set

E(un) ,» 1s nondecreasing and bounded above by Q(uo,p) , due to property Q.8.

Hence 1lim Q(un’p) = p-i(uo,p) where i(uo,p) 3 L(uo) , because
n->oe
x(u ,p) € M L(u) =L(u) by P.4 and P.5. Moreover,
o n=1 n )

lim Q(u_,p) = p-x(u_,p) = p+x*(u_,p) = 0(u_,p) ,

n—)m

since 1lim Q(un,p) < O(uo,p) implies a point §(u0,p) € L(uo) such that

n-bw

p-§(u°,p) < Q(uo,p) contradicting the fact that 0(uo,p) = Min (pex) . Then,
xeL(u )
o

since the sequence {Q(un,p)} converges monotonically to O(uo,p) , there exists

for any a > 0 on N such that
Q(UOQP) - Q(uNsp) <a,
or

for all u satisfying (uN <u < uo) . Thus the cost function is lower semi-

continuous in u for any p e D .
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5. COST FUNCTION OF A HOMOTHETIC PRODUCTION STRUCTURE

We consider now the special form of the cost function when the production
structure has a production function of the form F(¢(x)) , where ¢(x) is a
homogeneous function satisfying A.1l, ... A.6 and F(:) 1s any nonnegative,
continuous, strictly increasing function with F(0) = 0 and F(v) » « as
v > @ , As shown in [4], §7, the function ¢(x) 1is continuous for x ¢ D and
also strictly increasing along rays {\x | A > 0} where x ¢ DllJ D2'

The production possibility sets (level sets) of the homothetic production

structure are

LF(u) {x | F(o(x)) >u, xc¢ D}

{x | ¢(x) > f(u) , x € D} = L¢(f(u)) ,

where f(.) 1is the inverse function of F(.) . But for u >0, let % =

and define L¢(l) = {x l o (%) 21, x ¢ D} . Then

Ly (£(0)) ={x | ¢(f’2u)) >1,xc¢ D}
= {x | ¢(]) 2 x e RIS

since &(:) 1is homogeneous. Thus for any u > 0 , x ¢ LF(u) if and only if
R e L¢(l) independently of wu .

Consequently, for homothetic production structures and u > O

Q(u,p) = Min (p°x) = Min f(u)(p . f?u)) =  Min f(u)(p-R) ,

xeLF(u) xELF(u) ﬁeL¢(l)

and

Min (p-R) = P(p)
ieL¢(l)
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where P(p) 1is independent of u and homogeneous of degree one in the price
vector p . If u=0, clearly LF(u) =D and 0(0,p) = 0. Therefore, for

and peD and ue [0,) “~he cost function O(u,p) 1s given by
Q(u,p) = f(u)-P(p) . (5)

The properties of the homogeneous factor price function P(p) follow from
those for the cost function given above. First, if p ¢ {O}L}JZE" , then by Q.1
we have P(p) = 0, and by Q.2 it follows that F(p) > 0 for p ¢ DIU JZ%'

Thus

0 V pe (0}JUuZD"
P(p) 1is (6)
>0 V pe DlLJJZE'

It is interesting to note that if the factor price vector p belongs to 292" ,
then the scalar measure of this price vector is zero.

Property 0.3 is consistent with the homogeneity of the factor price function
P(p) and adds nothing new, while the properties Q.4, Q.5, 0.6, and 0.7 imply
that the price function P(p) 1is super-additive, nondecreasipg, concave and
continuous for p e D .

Thus, the following proposition holds for the cost function of homothetic

production structures:

Proposition 4: The cost function of a homothetic production structure is

Q(u,p) = f(u)-P(p) where the factor price function P(p)

has the following properties:

HQ.1 P(p) = 0 for all pe {O}LJJZZ" .
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HQ.2 P(p) is finite for finite p ¢ D and P(p) > 0 for all
p € DIU .'02' .

HQ.3 P(p) = AP(p) for X >0 and all p e D.

HQ.4 P(p + q) > P(p) + P(q) for all p,q e D,

HQ.5 P(p') 2 P(p) if p' 2pe D,

HQ.6 P(p) 1is a concave function of p on D,

HQ.7 P(p) 1is a continuous function of p on D .

The property Q.8 is consistent with the strictly increasing character of
F(u) . But property 0.9 is strengthened to Q(u,p) > * as u > ~ for all
p € DlLJkDZ' , since P(p) >0 and f(u) > ® as u > o . The example of Figure
2 does not apply, since along any ray {ix | A > 0} where x ¢ D1 U Dz' the
homogeneous function &(-) is positive for X > 0 and the level sets L(u)
cannot be supported by a hyperplane p-:x = Q(u,p) for all u > 0 . Similarly,
the neighborhood N(O) of property Q.10 cannot exist and inf Q(u,p) = 0 for
P € DILJQDZ' as u >0, since f(u) >0 as u-~>0.
Finally property Q.11 is strengthened to: Q(u,p) is a continuous function of u
for all p € D, since f(u) 1is continuous.

Hence, regarding the properties of the cost function Q(u,p) 1in respect to

output rate for homothetic production structures, the following proposition holds:

Proposition 5: If the production structure is homothetic:

HQ.8 For any p e D, Q(ul,p) > O(uz,p) if u, >2u;,
HQ.9 For any p € DILJ;ZE' , Q(u,p) » » as u > o
HQ.10 For any p ¢ DILJJDZ , inf Q(u,p) =0 as u~-> 0,

D, Q(u,p) 1is a continuous function of

™

HQ.1l1 For any p

u for all u e {0,»)
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The special form (5) of the cost function is of some interest for the study

of changing returns to scale, because for any p ¢ DILJJDZ' it implies

= Qu,p) - 7 (Uu.p)
f(u) P(p) or u=F ( P(p) )

and, if cost data reflects minimum cost operation for the output rates and factor
prices encountered, then £(u) and hence F(:) may be investigated by studying
the relation between output rate and factor price deflated costs. The function
F(+) has direct meaning for changing returns to scale, since ¢(x) has the
properties of a scalar measure of input. It will be shown later that homotheticity
of production structure is an if and only if condition for the factorization of

the cost function given by equation (5), and thus for the use of factor price

deflated costs tc estimate changing returns to scale.
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6. COST STRUCTURE

We note that the cost function OQ(u,p) has the properties of a distance
function (see [5]) for a family of convex subsets in the factor price domain
D={p | p > 0} C R" , bounded by the unit cost surfaces Q(Cu,p) =1, ue (0,»)
These subsets of D define the cost structure for any output rate u > 0 ,
which is not surprising, because for any u > 0 the locus Q(u,p) = 1 states all
relevant cost information, since Q(u,p) 1is linear homogeneous in p and the
minimum total cost 0(u,q) for any q ¢ DIU 532' is derivable from Q(u,po) =1
where p0 = eo-q is the intersecticn of the ray {6q | 6 2 0} with the unit
cost locus O(u,p) =1 . In fact Q(u,po) = GOQ(u,q) =1 and Q(u,q) = %—

)
Hence in order to proceed carefully along these lines, we define the cost

structure by the subsets

L@ ={p | Qup) 21,ped,uz0 (7

itv

of the linear space R" . Corresponding to u =0 ,
L0 =1t ]e@p z1,pen =4,

the empty set. The set ,{ku) of the cost structure for any u e [0,») 1is the

set of price vectors which yield a minimum total cost equal to or greater than unity.
Before demonstrating that the cost function O(u,p) 1is a distance function

for the sets‘Jz(u) , u >0 , consider first the properties of the price sets of

the cost structure which are summarized in the following proposition:

Proposition 6: The price sets of a cost structure Jg(u) , u e [0,®)

corresponding to a cost function Q(u,p) have the

following properties:
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7.1 ,E(O) = ¢ , the empty set, and O ¢.€(u) for any u > 0 .
Lo

m.2 If »p s£(u) and p' > p , then p' EJZ(U) R

D]U{P | p e.@z' » Q(u,p) > 1 for some u >0},

.3 If p>0,o0r p>0 and peoC(u) for some u > 0 ,

then the ray {6p | 6 > 0} intersects all price sets

Lw ,us>0,

v

.4 oC(uz)DoC(ul) if u, 2 u,
m.5 N £(U) =£(UO) ’
u>uo
7.6 N oC(u) is empty ,
UE[O,‘”)

.7 aQ(u) is closed for u e [0,x) ,

2

.8 £(u) is convex for u ¢ [0,=)

We shall verify these properties in turn.

First, since Q(O,p) = 0O for all pe D, ilt is evident that ,C(O) is
empty; and the price vector O does not belong to any 4C(u) for u > 0 because
Q(u,0) = 0 for all u >0 . For the second part of property m.l, suppose first
that p € Dl . Then by property Q.9 of the cost function, Q(u,p) » © as u > o |
and for any p € D1 we have p eoC(m) . If pe .@2' , then according to the
example of Figure 2, §4, it is possible to have Q(u,p) fixed and bounded as
u > o , and hence p E‘C(“’) only if Q(u,p) > 1 for some wu > 0 ; thus only if
pedlp | p e,@z' , Q(u,p) > 1 for some u > 0} does p edA(=) . If p 6232" ,
Q(u,p) = 0 for all u > 0 (see property Q.1 of the cost function) and p ¢£(°°)

Property m.2 follows directly from property Q.5 of the cost function, since
P e£(u) implies Q(u,p) > 1 and Q(u,p") > Q(u,p) > 1, implying p' eoC(u) s

Regarding property n.3, note that if p > 0 then O(u,p) >0 for all u > 0

(see property Q.2 of the cost function). Hence if p > O , then for any u > 0
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there is a positive scalar 6 such that 0Q(u,8p) = 6Q(u,p) > 1 , and the ray

{op | 8 > 1} 1intersects all price sets J:(u) for u >0 . On the other hand,

I v

if p-0 and Q(u,p) > 1 for some u >0, then p E;C;' (see Proposition 1)
and, by property 0.2 of the cost function, Q{u.p) > 0 for u > 0 , so that again
the ray {6p | © > 1} intersects all price sets l:(u) for u~> 0.

Property n.4 follows directly from the property 0.8 of the cost function,
since if p £¢£}u1) then Q(ul,p) >1 and for u, 2 u we have
Q(uz,p) z Q(ul,p) > 1, whence p EJ:(UZ) . Thus OC(UI)CQLRUZ)

Property m.5 may be established as follows. First, if p ecikuo) then by

n.4 we have p EJC(U) for all u>u  and p ¢ N L) . Contrary wise, if

u>u
o

pe N lj(u) then e<£kuo) , because if p éc(}uo) there is a u > ug such
u>u

o
that Q(G,p) <1 and p ¢¢(XG) , a contradiction .

Property m.6 is obvious, since O(RO) is empty. We note that M J:ku)
u>0

is not necessarily empty due to the possibility illustrated in Figure 2 above.
Property m.7 holds because for any u > O the cost function Q(u,p) 1is a
continuous function of p on D and therefore upper semi-continuous on D

which implies that

p | QCu;p) 2 Q , p e D},

is closed for all numbers Qo , because this property is an if and only if condition

for the upper semi~continuity of Q(u,p) in p on D . (See [2], p76.) Hence,

Lw = | at,p >1,pebD}

is closed for any u > 0 . For u=20 ,OCRO) is empty.

e e ——————
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Finally, property n.8 follows directly from the concavity in p on D of
the cost function, i.e., property Q.6. Let p eoe(u) | e,e(u) , then for any

scalar 6 ¢ [0,1] and any u > O
Q(U,(l - e)P + eq) ; (l - e)Q(U,P) + eQ(u’Q) ’

recalling that Q(u,p) 1is homogeneous in the price vector p , and since
) e,,e(u) => Q(u,p) 21, q eﬁ(u) => Q(u,q) > 1 it follows that
Q(u,(1 - 8)p + 8q) >1 . Hence the point [(1 -8)p + 6q] ecfiu) . If u=20,
L£(0) 1is empty.

Now we may verify that the cost function Q(u,p) 1is a distance function for
the price sets Jg(u) of the cost structure. Consider any price vector p e¢ D .
If p e {0} U12%” we note that Q(u,p) = 0 (property 0.1) and due to the
homogeneity of the cost function Q(u,gp) = 0 for all scalars 6 > 0 . Hence,
the ray {6p | 6 > 0} does not intersect any price set J(u) and for the reasons
explained in [5] the distance function may be taken zero, i.e., Q(u,p) = 0 if
p ¢ {0} L)LZ;" - Now suppose p e D V) 22‘ (see Figure 6), then Q(u,p) > 0
(property Q.2) and by property m.3 of the price sets Jg(u) it follows that the

ray {6p | 6 > 0} 1intersects all sets Jfku) for u>0.: For any u >0 ,

we may define

60 = Min 6 ,
opefL(u)

since the price set af?u) is closed. Let £ = Oop . The distance ratio

el
€]

- L
6
o



-— {0} U.Zz"

FIGURE 6: INTERSECTIONS OF PRICE RAYS WITH o@(u)
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and

Q(u,p) = Q(u, -g—) = é— 0(u,t)
(o) [o]

But, by the definition of the price point & it lies on the boundary of the

closed set oe(u) and Q(u,£) =1 . Thus

|lp!]
el
Q(u,p) = (8)

|
for p e DU .'(72

0 for p € {O}UIDO"'

and the cost function is a distance function for the price sets of the cost

structure.
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7. EFFICIENT PRICE VECTORS OF THE COST STRUCTURE

Following the definition of the efficient points of a production possibility
set L(u) , see §4 of [4], we use the following definition of an efficient price

vector p of the price set ofiu)

Definition: A price vector p ecfiu) is efficient relative to the
price set JEKU) if and only if O0(u,q) <1 for all

price vectors q < p .

Hence, for any output rate u a price vector is efficient if and only if the
minimum total cost is less than unity for all price vectors which are equal to

or less than but not equal to the given price vector.

Definition: The efficient subset &(u) of a price set L£(u) of the

cost structure is defined by

€m)=WIp€ih).QmA)<lV q < p!}

From a cost-factor price standpoint, the efficient price vectors are those which
for the given output rate cannot be decreased ithout making the minimum total
cost less than unity.

Now, in all essential respects so far as efficiency is concerned, the price
sets t(ﬁu) have the same properties in regards to the price vectors p as the
production possibility sets L(u) have in terms of the input vectors x -
compare m,2, n.3, mn.4, 7.7, n.8 with P.2, P.3, P.4, P.7, and P.8.

In particular, the argument given in §4 of [4] to show that E(u) 1is

nonempty may be used here to verify that :

+
qQ<p=>q <py,but g#p.
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Proposition 7: The efficient point set &) of a price set

£(u) is nonempty.

The counter example refered to in [4], see [1], shows that &(u) need not
be closed. However, for our purposes it will be sufficient to work with the
closure é(u) of €(u) , and é(u)Cf(u) since f(u) is closed.

For reasons explained in [4] it is suitable to assume that the efficient
point set E(u) of a production possibility set L(u) 1is bounded. But the
question remains whether boundedness of E(u) implies that £(u) is boundecd.

We note first that if p e &(u) then p belongs to the boundary of a(',)(u)
Now let p € €(u) and suppose that p 1s unbounded, i.e., for at least one
factor of production, say the ith » Py is unbounded. First, if p ¢ Dl , then
since Q(u,p) 1is a distance function for the price set ﬁ(u) and
p € Boundary OC(u) it follows that O(u,p) =1 . But Q(u,p) = p‘x*(u,p) where
x*(u,p) belongs to E(u) (see (3), §1 above) and x*(u,p) 1is positive and
bounded in all components, if the efficient set E(u) of L(u) 1is bounded.
Hence, if p e D , p ¢ €(u) and E(u) is bounded, then p is bounded. The

only uncertainty arises when p e%' . But here too, Q(u,p) =1 if p € €(u) ;

because otherwise if Q(u,p) = Q0 > 1 then Q(u . %—)= 1 due to the homogeneity
o)

of the cost function and for p/QO < p we have Q(u,p/Qo) = 1, a contradiction to
the efficiency of the point p . But again p'x*(u,p) = 1 , where x*(u,p) is
bounded but not necessarily positive in all components. Here we may have a com-
ponent 12 unbounded only if the corresponding component xi*(u,p) is zero.
However, such a price point p cannot be efficient, because any bounded non-
negative value of Py yields Q(u,p) =1 . Thus, if p E'Zz' , p e &u) and

E(u) is bounded, then p 1s bounded. Hence the following proposition holds:



Proposition 8: 1If the efficient set E(u) of L(u) 1is bounded,

L(u)

then the efficient set &(u) of J?hﬂ is bounded.

Finally, by a proof which parallels that given in [4] for the property

E(u) + D , one may verify the following proposition and corollary:

9 Lw) =& + 0,
10 L) =€) +D .

=]

=
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For the study of the cost structure we shall assume that E(u) 1is bounded for

each u ¢ [0,0) and correspondingly éRu) is bounded for each u ¢ (0,x)
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8. MINIMUM OUTPUT FUNCTION

Recall that the production function ¢(x) is definable as the maximum out-
put corresponding to a given input vector x , relative to the production struc-
ture (production possibility sets L(u) , u € [0,)). In an analogous way we may
define a minimum output function [T(p) relative to the cost structure as the
minimum output corresponding to a given factor price vector p , i.e., the mini-
mum output for the price vector p to belong to a price set }3(u) or to yield
at least unit minimum total cost.

For any given cost structure Jzku) , u e (0,°) , having the properties

n.1, ... 1.8 consider the function TI'(p) defined on the price sets afiu) by

I'(p) = inf u (9)
peflu)

We need to determine on which subset of D the function T(p) 1is defined.
Clearly when »p ¢ {O}LJQDé" , Q(u,p) = 0 for all u > 0 (see property Q.1 of
the cost function) and p ¢J300 for any u > 0 . Hence the function [I(p) 1is
not defined for p e {0} U ‘Zzu .

Now consider price vectors p belonging to DI(J-Z%' . We note first that if
p € D, then inf Q(u,p) 1is greater than zero or equal to zero according as there

! u-+0
exists or does not exist for ¢ > 0 an open neighborhood

N(0) = {x

x € N(0) (see property Q.10). Also, by the property m.4 the sets Jg(u) are con-

[1x]] <8, x¢ D} such that x ¢ L(u) for any u > 0 when

tained in their predecessors for decreasing u . Hence, if p € D1 >

inf Q(u,p) > 0 . Also, by property Q.8, Q(u,p) » » monotonically as u > =
u>0

for all p e D1 . Thus, if inf Q(u,p) > 1 when the neighborhood N(O0) exists,
u-+0

then p etfku) for all u > 0 and i?ii u =0 ; otherwise, there exists a
peAlu)
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finite, positive value of output rate, say u , such that p E}Bhﬂ for all

u > u and u_= inf u 1is positive and finite. Since u is the infimum of u
pelu)

it follows that p e}fﬁo for all u > U, and, by the property 7.5,

Jz(uo) = 0N Jz(u) so that also p acfiuo) . Then p ¢ Jﬁu) for all u in the

u>u
(o]

closed interval [uo,w) and u_ = Min . Thus, if p ¢ Dl , and

peflu)

inf Q(u,p) > 1, I'(p) = 0, otherwise TI(p) > 0 and inf may be replaced by
u-0

min in the definition of [(p) . Next, if p ¢ 22' , it may happen that

Q(u,p) = Q, > 0 and finite for all u ¢ (0,0) (see discussion of property
Q.9), and if QO < 1 the function TI(p) 1is not defined, since Q(u,p) <1 for
all u ¢ (0,0) . However, if Qo > 1, then Q(u,p) > 1 for all wuce (0,») ,

in which case T(p) =0 .

Thus the Minimum Output Function (9) is defined for p ¢ D1 and

p e {p | p e 2%' » Q(u,p) > 1 for some u>0}. If pe D1 and inf O(u,p) < 1 ,
u>0

then inf may be replaced by min in the definition of T[(p) and TI(p) > 0 ,
otherwise T(p) = 0. If p EJZ%' and for some u > 0, O(u,p) > 1, the
function I'(p) 1is defined, but in this case Q(u,p) may be equal to or greater
than one for all u > 0 with [(p) = O and otherwise [(p) > 0 and inf may
be replaced by min in the definition of TI(p) . The possibility that [(p)

is not defined on the boundary of D 1is a natural consequencé of the general
properties of the cost function,

The minimum output function [I(p) gives the minimum output corresponding to
any p € D1 uip|lop E&Q; , Q(u,p) > 1 for some u > 0} for minimum total
cost to be at least unity. It is, in a sense, * dual of the production function
and it will be shown later (see [3]) that the 71oduction function can in fact be

interpreted as the maximum output corresponding to any X € R U D2' for minimum
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total cost to be at least unity, where cost is minimized with respect to factor

prices instead of factor inputs.

The properties of the Minimum Output Function are summarized in the following

proposition:

Proposition 9: The minimum output function [I'(p) for a cost structure

J?(u) , uc (0,0) saticfying the properties n.1, ... 7.8

has the following properties:

a.1 T(p) 1is not defined for p ¢ {0} U 22" , and [I(p) = 0 1if

p € DllJ 2D' and inf Q(u,p) 21,
2 u>0

a.2 I'(p) 1is finite for finite
p € D1 Uip | p ed," , Q(u,p) > 1 for some u > 0} ,
.3 T(p') < T(p) for p'>pe D, L’JZE' ,
a.4 If p>0 or p>0 and TI(6p) > 0 for some scalar
8 >0, then I(8p) 0 as 8 » = ,
a.5 TI'(p) 1is lower semi-continuous on D1U 2%' ~

a.6  T(p) 1is quasi-convex on D U &CE' .

The property a.l is merely a restatement of the properties of T'(p) des-
cribed above following the definition of the minimum output function.

Regarding property a.2, we need not concern ourselves with the cases where
I'(p) = 0 . Hence, consider p ¢ Dl where TI'(p) > 0 , and, by the property Q.9
of the cost function Q(u,p) , Q(u,p) » » monotonically as u =+ » and for some
finite u > 0 we have Q(u,p) > 1. If p e.Z%' , and ['(p) 41is defined and

I'(p) > 0 , the same argument applies.
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Property a.3 follows directly from the property n.2. Suppose

u = inf u . Then p caC(u) , and by 7.2 p' c(,(?(u ) if p' > p , whence
o o) o =
prdlu)
inf uc<u
p'eQuw)

For property a.4, it follows from the property m.4 of the price sets DC)(u)
that the ray {6p | 8 > 0} intersects all price sets ﬁ(u) , u>0, and
0(u,8p) = 6Q(u,p) (homogeneity of the cost function) . As 6 > «» monotonically,
the sequence {I(8p)} 1is monotone nonincreasing (property a.3) bounded below by

zero and lim (8p) equals S 0 . Suppose Ll e 0 and let 0 < u < ug
g

Then Q(u,6p) = 6Q(u,p) , where Q(u,p) > O since the ray {6p | © > 0} inter-
sects all ﬁ(u) for u > 0, and by taking 6 large enough, say 8 ,

Q(u, 6p) > 1 . Hence, a contradiction, since u > 0 impiies [(6p) > u for
all 8 > G , but I'(8p) < ug

In order to show the property a.5, consider the level sets of the function

I'(p) defined by
L@ = | re)<a,ped ,a>0.

u , then inf u < u which implies Q(l—l,p) > 1, since Q(G,p) > Q(u,p)
pEﬁ(U)

for u >u by property Q.8 thus P eﬁ(ﬁ) . Hence if p eoE' (u) then P 506(1_1)

1f I (p)

(LN

and ﬂ(ﬁ)c oe(ﬁ) . Contrarywise, if p c£(1_1) then Q(G,p)'; 1 and

'(p) = inf u < u so that p eﬁ' (u) . Hence also ﬂ'(ﬁ)cf(ﬁ) and therefore

P u
ﬁ' (u) =£(G) . Now, since the level sets £(l-1) are closed (property m.7) it
follows that the level sets oG' (u) are closed. Therefore, the function I (p)
is lower semi-conti.nuous, because the closure of the level sets ﬁ'(ﬁ) is an if
and only if property for the lower semi-continuity of [I'(p) ([2], p76).

Finally, regarding property a.6, it follows from the fact that the level éets
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ﬁ' (u) of I'(p) are identical to the price sets JS(u) and the convexity of the
sets £ (u) for any u > 0 , that the level sets ,,G'(u) are convex. Hence the
function [I(p). is quasi-convex, i.e., '((1 - 8)p + 6q) < Max [I'(p), I'(q)] ,
for all 6 € [0,1] , because let u = Max [(F(p),M(q)] , then p e,e' (v) ,

C e£' (u) and [(1 - 8)p + 6q] e L'(W) for all 8 ¢ [0,1] , due to the convexity

of LE'(G) , and
r((1 - e)p + 6q) < Max [I(p),/(q)]

for all 6 ¢ [0,1] and any p,q ¢ DIUZZ' .
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9. COST STRUCTURE OF HOMOTHETIC PRODUCTION STRUCTURE

For a homothetic production structure the cost function has the special form
Q(u,p) = f(u)-P(p) ,

where P(p) is a homogeneous function having the properties HQ.1l, ... HQ.1ll
(see §5 above), and f(u) 1is a nonnegative, strictly increasing, continuous
function of output rate with f(0) =0 .

The corresponding price sets xiu) of the cost structure are homothetic,
as are the production possibility sets L(u) of the production structure. Let
{6p I 6 > 0} be an arbitrary ray in the price domain D for p ¢ Dl v ;%'
Denote by ¢ and n the intersections of this ray with the boundaries of the
price sets iﬂu) and }3(1) respectively, i.e., the price vectors ¢ = 6,p
n=6p for which Q(u,elp) = 1 and Q(l,ezp) = 1 , as illustrated in Figure 7.

Since P(p) 1s homogeneous (property HQ.3), it follows that

Q(u,elp) f(u)P(elp) elf(u)P(p)

Q(1,6,p) = £(1)P(6,p) = 8,£(1)P(p)

and

3-&1-
8 =t %

Hence

and the price point ¢ on the price set¢12(u) is obtained from the point n for
<,(3(1) by radial contraction with a scalar f(1)/f(u) independently of the price

direction p ¢ DIU 2%' .
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v o'
\
P
n
p
£t n
’ £E(LP(p) = 1

= {0} U2

FIGURE 7: INTERSECTIONS OF PRICE RAYS WITH PRICE SETS Jg(u) FOR
A HOMOTHETIC PRODUCTION STRUCTURE



The properties n.1, ... m.8 (see Proposition 6) hold for the price set
ﬁ(u) , but they may be strengthened somewhat. First, since f(u) 1is strictly
increasing in u , there is for any p c.@z' an output rate u such that
Q(u,p) = £(u)P(p) > 1, since P(p) > 0 (HQ.2). Thus L(=) = D UL in

property m.l. Second, property n.6 may be strengthened to M oe(u) is empty,
u>0

because suppose a finite p < p belongs to N ﬂ(u) . Then P(p) 1is positive
u>0

and finite (HQ.2) and there exists an output rate u > 0 such that f(G)P(p) S

since f(u) > 0 monotonically as u » 0O , and p éof(t_l) , hence, p ¢ N aC(u) ,
u>0

a contradiction.

In summary:

Proposition 10: If the producticn structure is homothetic, the cost structure

is homothetic and the price sets OE(U) satisfy:

Hm.1l ,,6(0) is empty, 0 ¢£(u) for any u > 0
and oe(m) = DIU-OZ' ;

Hr.6 N o&u) is empty.
u>o

and the remaining properties of Proposition 6 apply as stated.

The minimum output function [(p) for homothetic production structures is

given by

Fp) =Min u, pe D UD"' , (9.1)
peﬁu) 1 2

because by property HQ.10 inf Q(u,p) = O as u-> 0 for any p € D1 U,Zz' and
the minimal output rate exists. Moreover, the first two properties stated in

Proposition 9 are modified to:
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Ha.l TI(p) 1is not defined for p ¢ {0} U.@Z" .

Ha.2 [(p) 1is finite for finite p ¢ DIU Zz' R
while the fifth property is strengthened to
Ha.5 TI'(p) 1is a conti uous function on Y :(72'

From the properties HC 8 and HQ.9 we have Q(u,p) » » monotonically as
u >~ and for finite u > 0 , Q(u,p) > 1 for any p ¢ DIU .@2' , whence
property Ha.2 holds.

The strengthening of the fifth property follows from the special form

O(p) = F (;}—J) (9.2)

of the minimum output function.
In order to verify that equation (9.2) is valid, consider an arbitrary point

p € DIU .@2' where P(p) > O . C(Clearly Mi‘ré u satisfies Q(u,p) =1 or
per(u)

£(C(p))P(p) =1,

and, since f(-) 1is the inverse function of F(-:) ,

1
r(p) = F (P(p))

Then, since F 1is a continuous function and P(p) is continuous on DIU .'Dz'

(property HQ.7), it follows that T(p) is continuous on D, J Q" .
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