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THE COST FUNCTION 

by 

Ronald W. Shephard 

1.  THE PRODUCTION STRUCTURE 

For some technology, let x ■ (x , x , ..., x ) denote a vector of nonnegative 

inputs per unit of time of the relevant factors of production. The technology pre- 

scribes a family of technical possibilities, which may or may not be realized 

in practice. 

The technical possibilities of production are defined by a family of pro- 

duction possibility sets L(u) , which are subsets of the nonnegative domain 

D^jx | x>0 ,xeR( specifying for each output rate u e [O,00) the input 

vectors which yield at least the output rate u . These sets are assumed to 

have the following properties: 

P.l  L(0) =0,0^ I,(u)  for u > 0 , 

P.2  If x e L(u) and x' > x , then x' e L(u) , 

P.3  If x > 0 , or x > 0 and (Xx) e L(u)  for some X > 0 and 

u > 0 , the ray {Xx | X > 0} intersects all_ sets L(u) , u e [O,00) , 

P.4  L(u2) C L(u1)  if u2 > u1 . 

P.5    O  L(u) = L(u )  for any u > 0 , 
o 0 

0<u<u 
■  o 

P.6     O   L(u)  " 6  ,   i.e.,  the empty set, 
ue[0,») 

P.7  L(u) is closed for any u e [O,00) , 

P.8  L(u)  is convex for any u e [0,<») . 

As shown in [4], the production function for the technology is a function 
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•Kx) « Max u defined on the nonnegative domain D of R  with the properties: 
xf.L(u) 

A.l «KO) = 0, 

A.2 $(x)     is finite for    x    finite, 

A.3 «Kx')  > <l>(x)    for    x'   > x  , 

A.A If x > 0 , or x > 0 and *(Xx) > 0 for some X > 0 , then 

*(Xx) -► o» as X ->■ "o , 

A.5 «Kx)  is upper semi-continuous on D , 

A. 6 "tCx)  is quasi-concave on D . 

The sign (>)  implies (>) but not  (-) . 

To the properties P.l, ... P.8 we add that 

P.9  E(u)  is bounded for all u e [0,») , 

i.e., the set of efficient points E(u) ■ {x | x e L(u) , <I>(y) < u V y < x} 

for each production possibility set is bounded, and (see [4], §4} 

L(u) - E(u) + D . (1) 

The assumption P.9 is no restriction on the generality of the production model, 

while it assures the existence of the minimum of a linear functional over the 

production set L(u) . E(u)  is the closure of E(u) , and the sum of two sets 

A + B«{x | x"y + w,yeA,weB} . 

A nonnegative vector p ■ (p , p„, ..., p )  is used to denote the prices 

of the factors of production. When p « 0 , all of the factors are free goods - 

a situation of trivial interest in economic theory, but this possibility is not 

excluded. 

Some convention is required for the costing of mixed inputs per unit time 

of the factors.  If x and y are two input vectors for the production structure. 
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the input  [(1 - e)x + ey]  where 6 e [0,1] may be interpreted to mean that the 

input combination x is used a fraction  (1 - 6)  of the time interval and an 

input y is used the remaining fraction 0 , taking the technology to be time 

divisible.  The cost of this mixed input is calculated by  [(1 - 6)p'x + öp.y] 

(where p.x , p«y denote the innerproduct of two vectors), implying for capital 

services that the real capital is charged for only when used. If  [(1 - e)x + ey] 

is interpreted as an input rate of a combined input over the entire interval, 

the costing of the input is still calculated by  [(1 - 6)p«x + ep*y] .  The 

physical interpretation, in any event, is made to conform to property A.6. 

The factor input and factor price domains are regarded as superimposed 

on the set D , with each point of D representing an input vector or a price 

vector. 
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2.  DEFINITION OF THE COST FUNCTION 

For any price vector p e D and output rate u the cost structure of 

interest is that of the total cost p'X , where the factor applications x are 

adjusted to yield the smallest total cost for the output rate u e [O,00) , and the 

cost function is defined by 

Q(u,p) - Min   (p'x) ; p e D , u e [0,°°) 
xeL(u) 

(2) 

where  (p*x)  is the inner product of the two vectors p and x . Since 

L(u) ■ E(u) + D , if x e L(u)  then x ■ y + w where y e E(u) , w e D and 

Min   (p'x) ■ Min   (p*y) + Min (p'w) 
xeL(u)       yeE(u)       weD 

- Min  (p-y) 
yeE(u) 

(3) 

The compactness of E(u) (i.e., E(u)  is bounded and closed) assures existence 

of minimum total cost. Moreover, 

Q(u,p) - Min   (p'x) . 
iceE(u) 

(2.1) 

Evidently,    Q(u,0) - 0    for all    u e  [0,»)    and    Q(0,p) »0    for all    p e D  . 

Neither of these two situations are of particular interest  for economic theory; 

they are included for completeness of definition.     For the minimum problem defined 

by (2),  the components of the price vector    p    and  the output rate    u    are 

arbitrary parameters, and the cost  function   Q(u,p)     gives  the minimum total cost 

per unit time corresponding to any nonnegative output rate and nonnegative prices 

of the factors of production.     In effect,  it is assumed that the prices 

p (1 ■ 1,   ...,  n)    do not depend upon the amounts    x  (i ■ 1,  2,   ..., n)    of the 

factor inputs. 



Uncier the assumptions made above,  it  is possible for    0(u,p)     to be zero 

when    p ^ 0  ,  u ?* 0   .     In order to see this,  classify the price and  factor input 

points of    D    by    D    =  (p   |  p > 0} =  {x   |   x > 0}   , 

D2=)Plp>0»1TPi
!s0(={xlx^0»1Txi

,s0(- The set D  is the set of 

positive price or factor input vectors and the boundary of D is  {0} U D . 

If p e D  ind u > 0 the cost minimizing input x (u,p) may have zero com- 

ponents for factors with positive prices and positive components for factors with 

zero prices. Hence it is useful to pursue further a classification of the 

boundary points D  .  Let 

'©^ - {p | p e D2 , Q(u,p) > 0 for all u > 0} , 

-Zy « {p | p e D2 , Q(u,p) - 0 for all u > 0} . 

Proposition 1; ^ ' HJZ) " . ^ (the empty set) and D =^f U^> . 
 c  2 2 2 2 2 

Suppose for some    u > 0    and    p e D      that    Q(u,p) « 0.  Then the cost 

minimizing input    x  (u,p)     is such that    p«x  (u,p) - 0 , which implies for each 

1 that    x.   (u,p)*p,  ■ 0    since both    p    and    x (u,p)    are nonnegative.    Hence 

when    p    > 0  ,  x     (u,p)  ■ 0  .    Therefore    x  (u,p)  e D    .-   Moreover,  the ray 

Ux*(ü,p)   |   X  > 0}     intersects all level sets    L(u)    for    u >  0    (see P.3,   §1). 

Hence    Q(u,p)  ■ 0    for all    u > 0  ,  if    Q(u,p)  = 0    for some    u > 0    and    p e D 
2 

Thus the sets Ä'  and &"    are exclusive and .Z)' ^Zl"    is an empty set. 

Further D - ZD*  U JS" , since no point of D  can yield both a positive and a 

zero value for Q(u,p)  for different positive ouput rates, because suppose 

Q(u,p) ■ 0 for some u > 0 .  Then Q(u,p) ■ p-x (u,p) ■ 0 , implying that 

x (u,p) e D .  But the ray {Ax (u,p) | X > 0}  intersects all level sets and 

hence for any u > 0 there is some X > 0 where Q(u,p) ■ p«Xx (u,p) ■ Xp'x*(u,p) » 0 



If  jZ) "    is nonvoid,  all positive output  rates may be obtained at zero cost 

for price vectors of this  set,  but the price vectors  Z> "    need not be available 
' 2 

for any particular production regime. The cost function expresses potential 

minimum total cost-output-factor price combinations which need not be realized 

in practice. 

It is interesting to inquire when 2> " is an empty set and zero cost for 

positive output Is excluded. For this purpose we classify the boundary points 

D  relative to factor inputs by (see [5], §1) 

D^ ■ {x | x e D2 , (Ax) e L(u)  for some X > 0 and u > 0} , 

D2" - {x | x e D2 , (Ax) i  L(u)  for all  X > 0  ,  u > 0} . 

By the property P.3, the ray {Xx | X > 0} intersects all production possibility 

sets L(u), u > 0 if x e D ' , and if x E D '  then x i  D " , and conversely. 

Hence D,,' 0 D^' - ^ and D2 - D^U D2" . 

Regarding whether <^ " is nonempty, the following proposition holds: 

Proposition 2: -£" is nonempty if and only if D '  is nonempty. 

Assume D '  is nonempty and let x e D' .  Then there is a price point 

p i* 0 such that p «x » 0 . Moreover, the ray {Xx | X > 0} intersects all 

sets L(u)  for u > 0 , by virtue of property P.3, and for any u > 0 there is 

a point  (Xx) e L(u) with (Xx)'p »» 0 . Hence p e •22" , and J2) " is nonempty. 

If D '  is empty no point of D  yields positive output a:id hence for all 

p e D  any cost minimizing output x (u,p) t D  for u > 0 .  Consequently 

Q(u,p) - p,x*(u,p) > 0 if p e D  and u > 0 , which implies ^>" is empty. 

Thus, in order to exclude zero minimum total cost for positive output we must 

require that positive output is possible only with positive input for all factors 

of production, i.e. none of the boundaries of the production possib-'lity sets 
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coincide with the boundary of D for  u > 0 .  This restriction is too strong, 

since some of the factors may be alternatives for others, i.e., not all the fac- 

tors are assential by themselves.  (See [4], §8.) We need not require the set 

D '  to be empty, since the subset of prices X>"    is merely a formal possibility, 

which may or may not be realized in practice.  On the other hand, we do not 

wish to require that p be positive.  Some factors may be free goods, and it is 

not correct technologically to exclude them from the input vector3.  What is free 

depends upon the exchange economy which may vary from place to place and from 

time to time. 

S i 
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3.     GEOMETRIC  INTERPRETATION OF THE COST FUNCTION 

Consider the hyperplane    p-x ■ Q(u,p)   .    Since    0(u,p)    is the minimum of 

p'X    for all points    x r L(u)   ,   It  follows that 

L(u) C {x  |  p*x > Q(u,p)}    for all    ? + 0 , 

and the hyperplane is a supporting hyperplane of the production possibility set 

L(u) (see [6], Part II, §B) and the cost function Q(u,p)  is a support functional 

of L(u)   (see [6], Part V) for any u > 0 . 

The relation of the hyperplane p*x ■ Q(u,p)  to the production possibility 

set L(u)  Is depicted In Figure 1, where x*(u,p)  denotes an input at which 

the minimum of p-x is attained for x e L(u) . Note that the contact point 

x*(u,p)  is not necessarily unique. 

Let  r denote the intersection of the ray {0p j 9 > 0) from the origin 

normal to the hyperplane p.x » Q(u,p) , for p ^ Q .  For some value of 6 , 

say 6  , r » 9 «p , and, 'iince r lies in the hyperplane p«x « Q(u,p) , 

p.r - 9o||pl|2 - 0(u,p) 

and 

Consequently 

and 

e   ,Ziih£l . p o . 
0    MPII2 

rm^}h£l, P , p^Q , 

IPII2 

llrll   .^.p^G. 
I IPII 
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{0}   U D^ 

L(u)   ,   u  >  0 i 

-^ {0} U   D " 

FIGURE  1:     RELATION OF HYPERPLANE    p-x = Q(u,p)     TO    L(u) 

' 
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Thus 

Q(u.p)  -  ||r|Hlp||   .  p f 0  . (A) 

If the price point p is normalized so that 1 |p| | ■ 1 , the minimum total cost 

Q(u,p) is merely the normal distance of the supporting hyperplane p«x = Q(u,p) 

from the point    0  . 

The closure of the efficient point set    E(u)     in Figure 1 is the boundary of 

L(u)     comprised between the points    P      and    P     .     In general,  the total minimum 

cost occurs for an input vector    x (u,p)  e E(u)   ,  and   x (u,p)    will be under- 

stood always to be such a point, unless otherwise specified. 
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4.     PROPERTIES OF THE MINIMUM TOTAL COST  FUNCTION    Q(u.p) 

For positive output rates    u    the  following, proposition states in detail the 

properties of the minimum total cost   function    Q(u,p)   : 

Proposition 3;     If the production structure has production possibility sets 

L(u)     satisfying P.l,   ...   P.9, then for any    u  >  0 

Q.l      Q(u,p)  = 0    for all    p E   {0}   U^"  , 

Q.2  Q(u,p)  is finite for finite p £ D and positive for all 

p e D U^' , 
F   1   2 ' 

Q.3  Q(u,Xp) = XQ(u,p)  for A > 0 and all p e D , 

Q.4  Q(u,p + q) > Q(u,p) + Q(u,q)  for all p,q c D , 

Q.5  QCu.p') > Q(u,p) if p' > p e D , 

Q.6  Q(u,p)  is a concave function of p on D , 

Q.7  Q(u,p) is a continuous function of p on D , 

Q.8  For any p e D , Q(u2,p) > QCu^p) if u2 > Uj . 

Q.9  For any p e Di , Q(u,p) -> « as u -»■ «> , 

Q.10 If there exists for 6 > 0 an open neighborhood 

N(0)  -<x||x||<6,xeD>    such that    x i L(u) 

for any u > 0 when x e N(0) , then as u ->• 0 

inf Q(u,p) > 0 for all p e D  , otherwise 

inf Q(u,p) ■ 0 for all p c D . 

Q.ll For any p e D , Q(u,p)  is a lower semi-continuous 

function of u for all u e [0,«) . 

Property Q.l is merely a restatement of the definition of *D "    and the 

evident fact that Q(u,0) ■ 0 for all u > 0 . 

■ 
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Regarding property Q.2, Q(u,p)  ■ p-x  (u,p)    where    x  (u,p)    belongs to the 

closure of a bounded efficient point set    E(u)     (see  (3))  and hence    Q(u,p)     is 

finite for  finite    p   .     When    peD    ,   ||r||   >0,  since otherwise  the support 

plane    p*x = Q(u,p)     has contact with points of    D    only at     0    and    0 i L(u)     for 

u > 0  ;   from equation  (A)  it follows then that    Q(u,p)  >  0    since     ||p||   > 0  •     If 

p  tZ>*     it  follows  from the definition of   2) *    that    0(u,p)   > 0    for all    u > 0   . 

Thus property 0.2 holds. 

Property Q.3 applies because 

Q(u,Ap)  = Min (Ap^x =  A«Min        p-x =  X0(u,p) 
xeL(u) xeL(u) 

for any X > 0 , p ^ 0 and when X = 0 or p = 0 it is obvious that 

Q(u,Xp) = XQ(u,p) . 

In order to show that Q.4 holds, let p,q 4  0 and let x (u,p + q) , 

x (u,p) , x (u,q)  denote input combinations minimizing  (p + q)'X , p'x and 

q'X respectively.  Then 

Q(u,p + q) = p-x (u,p + q) + q-x (u,p + q) . 

Clearly 

JL. JL 

p-x (u,p + q) > p«x (u,p) = 0(u,p) , 

JL JL 

q'X (u,p + q) > q'X (u,q) = 0(u,q) , 

and 

Q(u,p + q) > Q(u,p) + Q(u,q) . 

If p = q = 0 , then Q(u,p + q) = Q(u,p) + 0(u,q)  since 

Q(u,p + q) = Q(u,p) = Q(u,q) = 0 .  When p 7« 0 , q = 0 , then 

Q(u,p + q) = Q(u,p) + Q(u,q)  since Q(u,p + q) = Q(u,p)  and Q(u,q) = 0 

Similarly, for p = 0 and q # 0 . 
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Property 0.5 follows directly  from the nonnegatlvlty and super-additivity of 

Q(u,p)   ,   since    p'  ■ p + Ap    where    Ap > 0    and 

QCu.p1)   > Q(u,p) + Q(u,Ap)   > Q(u,p)   . 

The concavity of 0(u,p)  on D is a simple consequence of the homogeneity 

and super-additivity of 0(u,p) , since for any p,q e D , (1 - e)p and  S'q 

belong to D for any  9 c [0,1]  and 

o(u,(i - e)p + eq) > (i - e)o(u,p) + eo(u,q) . 

The continuity of 0(u,p)  in p on D may be established as follows: 

First, for any u > 0 the function Q(u,p) is continuous on the interior of D , 

i.e., for p G D , since  -0(u,p)  is a convex function and a convex function 

defined on a convex open set in R  is continuous on this open set (see [2], pl93). 

Second, regarding the boundary of D , i.e., for p e {0} U D , 0(u,p)  is lower 

semi-continuous (see Theorem, p31, [4]). But Q(u,p)  is also upper semi- 

continuous for p e {0} U D .  In order to show this last statement, we extend r        2 

the definition of the cost function to all points p e R  in the following way. 

Let 

L(u/R)  - L(u) n SR(0)   ;  u > 0  ,  R e {R  |  L(U /R)  i* ^} 

where 

SR(0) 1- |x|l<R,xeRn>. 

The set    L(u/R)    is compact,   i.e., bounded and closed.    Then let 

Q(u,p/R) «      Min       (p-x) 
xeL(u/R) 
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for any    u  >  0  ,  R > 0    and    p e R     .     The extended cost  function    Q(u,p/R)     is a 

concave  function defined on    R    ,   since  the arguments used  for    Q(u,p)    apply 

also to    Q(u,p/R)   ,  and the function    Q(u,p/R)    is continuous  in    p    for all 

p c R    .     Now suppose    p    e {0} U   D      and let    {R  }    be a nondecreasing sequence 

of values of     R    tending to "  .     The  sequence    {Q(u,p  /R )}     is nonincreasing, 

since 

0(u,pO/Rn+1)   < 0(u,pO/Rn) 

for any    n  ,   because    L(u/R  l.)^>  L(u/R )    for any    n  .     Also,  since    p    > 0 
n+i       n = 

the sequence  {0(u,p /R )} is uniformly bounded blow by zero and lim 0(u,p /R ) 
n-H» 

exists.     The greatest lower bound of the  sequence  is    Q(u,p  )   ,  since 

L(u/R )  -* L(u)    monotonically as    n -+ <*>    and    Q(u,p  )  » Min (p  «x)   .     In fact 
xeL(u) 

E(u/R)  = E(u)     for    R    sufficiently large.    Thus 

lim Q(u,p0/Rn)  = 0(u,pO)   . 

Let    a    be positive.    Then there  is a positive integer    N    such that 

0(u,pO/R )   <  Q(u,p0)  + f 

Further,  since    Q(u,p /R )     is continuous at    p      for    n « N   ,  there is a    6  > 0 

such that,   for all    p e s6(p°)={ Ilp-P0||   <  6   .  p  e  R11' 

Q(u,p/RN)   < Q(u,p /V + 2   " 

Thus 

Qfu.p/Rj^)   < Q(u,p0) + a 

for all    p  e  S.(p  )    and therefore  also  for all    p  e  D 0   S.(p  )   .    Then,   since 
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Q(u,p) < Q(u,p0) + a 

for all peDHS-Cp) , and Q(u,p)  is upper semi-continuous on the boundary of 

D .  Therefore, 0(u,p)  is continuous for all p e D . 

We turn our attention now to property 0.8.  Since L(u2) C LCuj)  if 

u2 >  u.  (see property P.A, §1), it follows for all u > u  that 

Q(u ,p) -  Min  (p-x) >  Min   (p-x) - 0(u ,p) . 
2     xeL(u2)      " xeLCu^ 

Hence Q(u,p) is nondecreasing in u for any p e D . 

Regarding property 0.9, let x*(u,p) denote a contact point of the hyper- 

plane px ■ Q(u,p) with E(u)  for any p e D  , and suppose that Q(u,p)  is 

bounded for u -► 00 , i.e., Q(u,p) < Q  for all u e [0,») .  Then let  {u } 

be an arbitrary nondecreasing sequence of values tending to 0° .  Due to property 

Q.8, the corresponding sequence {p'x(u ,p)}  is then monotone nondecreasing and 

bounded above by Q  .  Hence 

litn (p-x (u ,p)) ■ p-x (p)  finite , 

and since p > 0 by supposition it follows that x (p) is finite and by 

property P.4 it belongs to all L(u) for u t  [O,00) contrary to property P.6. 

Thus Q(u,p) -»■ 00 as u -^ « for any p e D 

When p zZ>"  , Q(u,p) ■ 0 for all u £ [0,») and when p e^O ' , it is 

possible for Q(u,p) to be positive and finite for all u e (0,») as shown by 

by the example in Figure 2 where p - (0,p ) e *Z?' and Q(utp) • Q  for «11 

u e [0,«°) . 
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(P2) 

P »  (O.P0V 

or 

x/p^ 

FIGURE 2:     EXAMPLE OF BOUNDED    Q(u,p)     FOR    p   e^2' 
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Property Q.10 holds,  because  let     {u  }    be an arbitrary nonincreasing sequence 

tending to zero.     The  corresponding sequence     [p-x  (u   ,p)}     is nonincreasing and 

bounded below by  zero,   and hence  the 

lim inf  {p-x*(un,p)} - p-x*(0,p) 

exists.  Suppose p«x*(0,p) = 0 .  Then, since p > 0 it follows that x*(0,p) » 0 . 

But this is impossible, because $(x)  ■ 0 for any x e N(0)  and  p-x (0,p) 

would not be the greatest lower bound of the sequence  {p.x*(u ,p)} .  If p e ^5,' , 

it is possible for inf Q(u ,p) * 0 when the neighborhood N(0)  exists such that 
n-H» 

x i  L(u)  for any u > 0 when x t  N(0) , as illustrated in Figure 3 where the 

boundaries of the level sets converge to the axes as n -► o» . 

Finally, regarding the continuity of 0(u,p) in u e [0,°°)  we note first 

that the cost function is generally not upper semi-continuojs in u . The example 

shown in Figures 4 and 5 illustrates this fact. The step function of Figure 4 

satisfies the properties A.l, ... A.6 (see §1). At u ■ 0 , Q(0,p) « 0 and 

^Q(0,p) » 0 .  For any u E (i,i + 11 , clearly x*(ulp) « (1 + 1) , 

P'X*(u,p) ■ p(i + 1)  and -Q(u,p) ■ (i + 1) , and the cost function is evidently 

not upper semi-continuous in u ; because suppose u « 3 , then 

- Q(u,p) - Q(u,l) > Q(3,l) + a    for 0 < a < 1 and u > 3 . 

Now in order to establish the lower semi-continuity of the cost function, 

we need only consider p e Di^ •^2*  because if p e {0}U^2" then Q(u,p) ■ 0 for 

all u c [0,<») and the cost function is continuous and therefore lower semi- 

continuous in this case. Hence let p t  D U «0' and consider an arbitrary out- 

put rate u c [0,«) .  Then, by the property Q.8, Q(u,p) > 0(u ,p)  for all 

u > u  and Q(u,p) > Q(u ,p) - a    for any a > 0 and u > u . For u < u , 
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let  {u } be an arbitrary nondecreaslng sequence of output rates less than u 

and converging to u , assuming that u > 0 , otherwise the lower seml-contlnulty 

has been established. The corresponding sequence {Q(u ,p)} ■ {p«x (u ,p)}, where 

x*(u ,p)  Is a contact point of the hyperplane p-x « Q(u ,p) with the set 

E(u ) , is nondecreaslng and bounded above by Q(u ,p) , due to property Q.8. 

Hence 11m Q(u ,p) ■ p-xCu ,p) where x(u ,p) e L(u ) , because 

00 

x(u ,p) e H L(u ) = L(u ) by P.4 and P.5. Moreover, 
o r     .no 

n=l 

lim Q(un,p) = p«x(uo,p) = p'X*(uo,p) = 0(uo,p) , 

since lim Q(u ,p) < 0(u ,p)  Implies a point x(u ,p) e L(u )  such that 
n^oo 

P'x(u ,p) < Q(u ,p)  contradicting the fact that 0(u ,p) ■ Min   (p'x) .  Then, 
xeL(u ) o 

since the sequence {Q(u ,p)} converges monotonically to 0(u ,p) , there exists 

for any a > 0 on N such that 

Q(uo,p) - Q(uN,p) < a , 

or 

Q(uN,p) > 0(uo,p) - a 

for all u satisfying (u^ < u < u ) . Thus the cost function is lower semi- 

continuous in u for any p e D . 
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5.  COST FUNCTION OF A HOMOTHETIC PRODUCTION STRUCTURE 

We consider now the special form of the cost function when the production 

structure has a production function of the form F((t>(x)) , where ^(x)  is a 

homogeneous function satisfying A.l, ... A.6 and F(')  is any nonnegative, 

continuous, strictly increasing function with F(0) = 0 and F(v) -* «> as 

v ->• «> .  As shown in [4], §7, the function $(x)  is continuous for x e D and 

also strictly increasing along rays  {Xx 1 X > 0} where x e D U D ' . 

The production possibility sets (level sets) of the homothetic production 

structure are 

Lfu) = {x | FCMx)) > U , X e D} 
F = 

= {x | $(x) > f(u) , x e D} = L$(f(u)) , 

v 
where f(')  is the inverse function of F(«) .  But for u > 0 , let x = 

f(u) 

and define 1^(1) = {x | <t(x) > 1 , x e D} .  Then 

= {x I *(*)    > 1 , x e D} , 

since $(•)  is homogeneous. Thus for any u > 0 , x e L (u)  if and only if 
F 

it  e L4(l)  independently of u . 

Consequently, for homothetic production structures and u > 0 

Q(u,p) =  Min  (p-x) =  Min f(u)(p • 77-7)=  Min f(u)(p-*) , 
xtL^iu) xeUCu)       rw/  xeL fl) 

and 

Min  (p-Ä) = P(p) 
xeL^l) 
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where P(p)  is independent of u and homogeneous of degree one in the price 

vector p . If u = 0 , clearly L^di) = D and 0(0,p) = 0 . Therefore, for 
r 

and p e D and u e [0,°°)  'he cost function 0(u,p)  is given by 

Q(u,p) = f(u).P(p) . (5) 

The properties of the homogeneous factor price function P(p) follow from 

those for the cost function given above.  First, if p e {0}U^Z)" , then by Q.l 

we have P(p) « 0 , and by Q.2 it follows that F(p) > 0 for p e D U ^ ' . 

Thus 

j  0  V p e {0}U^2" 

P(p)  is | (6) 

v > o V v t JilU2>2' . 

It is interesting to note that if the factor price vector p belongs to JÖ " , 

then the scalar measure of this price vector is zero. 

Property 0.3 is consistent with the homogeneity of the factor price function 

p(p)  and adds nothing new, while the properties Q.4, Q.5, 0.6, and 0.7 imply 

that the price function P(p)  is super-additive, nondecreasing, concave and 

continuous for p e D . 

Thus, the following proposition holds for the cost function of homothetlc 

production structures: 

Proposition A; The cost function of a homothetic production structure is 

Q(u,p) = f(u)'P(p) where the factor price function P(p) 

has the following properties: 

HQ.l  P(p) = 0 for all p e {0} U -0" , 
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HQ.2 P(p) is finite for finite  p c D and P(p) > 0 for all 

p e DjU <^2' , 

HQ,3 P(Ap) = AP(p)  for A > 0 and all p c D . 

HQ.4 P(p + q) > P(p) + P(q)  for all  p,q e D , 

HO.5 PCp') > P(p)  if p' > p e D , 

HQ.6 P(p) is a concave function of p on D , 

HQ.7 P(p) is a continuous function of p on D . 

The property Q.8 is consistent with the strictly increasing character of 

F(u) .  But property 0.9 is strengthened to Q(u,p) -► «> as u -► ^ for all 

p e D U «Z) ' , since P(p) > 0 and  f(u) ^ ^ as u -»■ ^ .  The example of Figure 

2 does not apply, since along any ray  {Ax | A > 0} where  x e D U D '  the 

homogeneous function <!>(•)  is positive for A > 0 and the level sets L(u) 

cannot be supported by a hyperplane p'X = 0(u>p)  for all  u > 0 .  Similarly, 

the neighborhood N(0)  of property 0*10 cannot exist and  inf 0(u,p) = 0 for 

p e D U 2) }     as  u > 0 , since  f(u) ^-0 as u -> 0 . 

Finally property Q.ll is strengthened to: 0(u,p)  is a continuous function of u 

for all p e D , since f(u)  is continuous. 

Hence, regarding the properties of the cost function Q(u,p)  in respect to 

output rate for homothetic production structures, the following proposition holds: 

Proposition 5;  If the production structure is homothetic: 

HQ.8  For any p e D , QCu^p) > 0(u2,p)  if u2 > Uj , 

HQ.9  For any p c D U 2? ' , Q(u,p) -»• »> as u ^ ^ , 

HQ.10 For any p e D U-0  , inf Q(u,p) = 0 as u ^ 0 , 

HQ.ll For any p e D , Q(u,p)  is a continuous function of 

u for all u e [O,00) . 
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The special form (5) of the cost function is of some interest for the study 

of changing returns to scale, because for any p z  D U ^Z5 '  it implies 

£(u).M „r u.F(^i) 

and, if cost data reflects minimum cost operation for the output rates and factor 

prices encountered, then f(u)  and hence ?(•) may be investigated by studying 

the relation between output rate and factor price deflated costs. The function 

F(*) has direct meaning for changing returns to scale, since ^(x) has the 

properties of a scalar measure of input.  It will be shown later that homotheticity 

of production structure is an if and only if condition for the factorization of 

the cost function given by equation (5), and thus for the use of factor price 

deflated costs to estimate changing returns to scale. 
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6.  COST STRUCTURE 

We note that the cost function 0(u,p) has the properties of a distance 

function (see [5]) for a family of convex subsets in the factor price domain 

D = {p ; p > 0} C R , bounded by the unit cost surfaces 0(u,p) = 1 , u e (0,°°) . 

These subsets of D define the cost structure for any output rate u > 0 , 

which is not surprising, because for any u > 0 the locus 0(u,p) = 1 states all 

relevant cost information, since Q(u,p)  is linear homogeneous in p and the 

minimum total cost 0(u,q)  for any q e D U «22 '  is derivable from 0(u,p ) = 1 

where p = 6 -q is the intersecticn of the ray  {Sq | 6 > 0} with the unit 

cost locus 0(u,p) = 1 .  In fact Q(u,p ) = 6 Q(u,q) = 1 and 0(u,q) = — 
o '      ö 

o 

Hence in order to proceed carefully along these lines, we define the cost 

structure by the subsets 

,£(u) = {p | Q(u,p) > 1 , p e D} , u > 0 (7) 

of the linear space R .  Corresponding to u = 0 , 

£(0) = {p | 0(0,p) > 1 , p e D} = «i , 

the empty set.  The set ^(u) of the cost structure for any u c [0,00)  is the 

set of price vectors which yield a minimum total cost equal to or greater than unity, 

Before demonstrating that the cost function 0(u,p)  is a distance function 

for the sets aL(u) , u > 0 , consider first the properties of the price sets of 

the cost structure which are summarized in the following proposition: 

Proposition 6;  The price sets of a cost structure ^(u) , u e [O,00) 

corresponding to a cost function Q(u,p)  have the 

following properties: 
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TT.l  JkXO) = i  . the empty set, and 0 i  iju)  for any u > 0 . 

£(<») = D U {p | p e 2) ' , Q(u,p) > 1 for some u > 0} , 

TT.2  If p eJ2(u) and p' > p , then p' eJE(u) , 

TT.3  If p>0,or p>0 and p eJ^Cu)  for some u > 0 , 

then the ray {öp | 6 > 0}  intersects all price sets 

£(u) . u > 0 , 

TT.A   CC(U2) ^cliUj)   if  U2 > Uj  , 

Tr.5   H J2(u) =j[:(urt) . 
u>u o 

IT.6     n  Jr(u) is empty , 
ue[0,<») 

TT.7 J^(u)     is closed for u e [O,00) , 

TT.S  cv,(u)  is convex for u e [O,«») . 

We shall verify these properties in turn. 

First, since Q(0,p) = 0 for all p e D , it is evident that Jj.0)     is 

empty; and the price vector 0 does not belong to any J^(u)  for u > 0 because 

Q(u,0) ■ 0 for all u > 0 .  For the second part of property TT.I, suppose first 

that p e D .  Then by property Q.9 of the cost function, Q(u,p) ->■ ^    as u ->■ <» , 

and for any p e D  we have p eJl^00) .  If p e 2?' , then according to the 

example of Figure 2, §A, it is possible to have Q(u,p)  fixed and bounded as 

u -► o" , and hence p e jQt00)  only if 0(u,p) > 1 for some u > 0 ; thus only if 

p e {p | p e .£) ' , Q(u,p) > 1 for some u > 0} does p £<?(.(co) •  If p e #2? " , 

Q(u,p) " 0 for all u > 0 (see property 0.1 of the cost function) and p tfjCX00) . 

Property IT.2 follows directly from property 0.5 of the cost function, since 

p ej^iu)     Implies Q(u,p) > 1 and QCu^') > 0(u,p) > 1 , implying p1 tjZ(u)   . 

Regarding property TT.3, note that if p > 0 then 0(u,p) > 0 for all u > 0 

(see property Q.2 of the cost function). Hence if p > 0 , then for any u > 0 
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there is a positive scalar  6  such that  0(u,ep) = 6Q(u,p) > 1 , and the ray 

{Op | 6 > 1}  intersects all price sets JTAU)  for  u > 0 .  On the other hand, 

if p • 0 and Q(u,p)   1  for some u > 0 , then p  t JO '   (see Proposition 1) 

and, by property 0.2 of the cost function, Q(u p) > 0  for u > 0 , so that again 

the ray  {Gp | 9 > 1}  intersects all price sets J^(u)     for u > 0 . 

Property TT.4 follows directly from the property Q.8 of the cost function, 

since if p £ A,(u )  then Q(u ,p) > 1 and  for u > u  we have 

Q(u2,p) > QCuj.p) > 1 , whence p ej^iu^   .     Thus X(u1)
<^^u2^ • 

Property TT . 5 may be established as follows.  First, if p EcL(u )  then by 

n.4 we have p E^/U)  for all  u > u  and p e O J^{u)   .     Contrary wise, if 
u>u o 

P t ^  oL(u)  then p c Jjiu  ) , because if p ^ J^iu  )  there is a  u > u  such 
u>u o 

that Q(u,p) < 1 and p i £{u)   , a contradiction . 

Property TT.ö is obvious, since <3L(0)  is empty.  We note that  H XXn) 
u>0 

is not necessarily empty due to the possibility illustrated in Figure 2 above. 

Property TT.7 holds because for any u > 0 the cost function Q(u,p)  is a 

continuous function of p  on D and therefore upper semi-continuous on D 

which irrplies that 

{p | 0(u,p) > Qo , p e D} , 

is closed for all numbers Q  , because this property is an if and only if condition 

for the upper semi-continuity of Q(u,p)  in  p on D . (See [2], p76.)  Hence, 

for Qo = 1 

j£(u) = {p | Q(u,p) > 1 , p e D} 

is closed for any u > 0 .  For u = 0 ,CAJ0)  is empty. 
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Finally, property TT.8 follows directly from the concavity in p on D of 

the cost function, i.e., property Q.6. Let p z Jjiu) , q e X/u) , then for any 

scalar     6 e   [0,1]    and any    u > 0 

Q(u,(l -  e)p +  6q)   >   (1 -  e)Q(u,p)   +  eQ(u,q)   , 

recalling that Q(u,p)  is homogeneous in the price vector p , and since 

P e^u) *> Q(u,p) > 1 , q e JZ(U)   m>  Q(".q) ^ 1 it follows that 

Q(u,(l - e)p + eq) > 1 .  Hence the point [(1 - e)p + eq] ejQu) .  If u = 0 , 

J^(0)  is empty. 

Now we may verify that the cost function Q(u,p)  is a distance function for 

the price sets dL(u) of the cost structure.  Consider any price vector p e D . 

If p e {0} \j£>"    we note that Q(u,p) = 0 (property 0.1) and due to the 

homogeneity of the cost function Q(u,ep) = 0 for all scalars 6 > 0 .  Hence, 

the ray  {6p j 6 > 0} does not intersect any price set ^c(u) and for the reasons 

explained in [5] the distance function may be taken zero, i.e., Q(u,p) = 0 if 

p e {0} U2)" .  Now suppose p e D U ^ '  (see Figure 6), then Q(u,p) > 0 
2 12 

(property Q.2) and by property IT.3 of the price sets Jfyu)    it follows that the 

ray {0p j 6 > 0} intersects all sets JZM    for u > 0 * For any u > 0 , 

we may define 

9 » Min e , 
0  epd^u) 

since the price set Jj,n)     is closed.    Let    ^ = 9 p   .    The distance ratio 

Si I eo 
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{o}u.z>2" 

FIGURE  6:     INTERSECTIONS OF PRICE RAYS WITH  j^(u) 
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and 

Q(u,p) = Q(U, f") = 7- O(u,0 
*   o '   o 

But, by the definition of the price point C it lies on the boundary of the 

closed set ^(u) and Q(u,0 = 1 .  Thus 

for p e D, U ^ ' r   1   2 

Q(u,p) = (8) 

\ 0   for p e {0} U-^ ,; 

and the cost function is a distance function for the price sets of the cost 

structure. 
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7.  EFFICIENT PRICE VECTORS OF THE COST STRUCTURE 

Following the definition of the efficient points of a production possibility 

set L(u) , see §4 of [4], we use the following definition of an efficient price 

vector p of the price set c3(^^
u) • 

Definition; A price vector p cJ^{u)     is efficient relative to the 

price set ^c(u)  if and only if 0(u,q) < 1 for all 

t 
price vectors q < p . 

Hence, for any output rate u a price vector is efficient if and only if the 

minimum total cost Is less than unity for all price vectors which are equal to 

or less than but not equal to the given price vector. 

Definition:  The efficient subset ^(u)  of a price set <£(")  of the 

cost structure is defined by 

(?(u) = {p | p e &u)   ,   Q(u,q) < 1 V q < p} 

From a cost-factor price standpoint, the efficient price vectors are those which 

for the given output rate cannot be decreased ithout making the minimum total 

cost less than unity. 

Now, in all essential respects so far as efficiency is concerned, the price 

sets jC(u) have the same properties in regards to the price vectors p as the 

production possibility sets L(u) have in terms of the input vectors x - 

compare TT.2, TT.3, TT.A, 7r.7, TT.8 with P.2, P.3, P.4, P.7, and P.8. 

In particular, the argument given In §4 of [4] to show that E(u)  is 

nonempty may be used here to verify that : 

^ f P => ^i = Pi » but: ^ ^ P 



32 

Proposition 7: The efficient point set ^(u)  of a price set 

/ (u)  is nonempty. 

The counter example refered to in [A], see [1], shows that ^(u) need not 

be closed.  However, for our purposes it will be sufficient to work with the 

closure C(u) of e(u) , and CM c J^u)  since J^Xu)     is closed. 

For reasons explained in [4] it is suitable to assume that the efficient 

point set E(u) of a production possibility set L(u)  is bounded.  But the 

question remains whether boundedness of E(u)  implies that ^(u)  is bounded. 

We note first that if p e ^(u) then p belongs to the boundary of dC(u) • 

Now let p e c(u)    and suppose that p is unbounded, i.e., for at least one 

factor of production, say the  i  , p.  is unbounded.  First, if p c D  , then 

since Q(u,p)  is a distance function for the price set /^(u) and 

p e Boundary ^(u)  it follows that 0(u,p) = 1 .  But Q(u,p) = p'x (u,p)  where 

x (u,p)  belongs to E(u)  (see (3), §1 above) and  x (u,p) is positive and 

bounded in all components, if the efficient set E(u)  of L(u)  is bounded. 

Hence, if p e D , p e ^(u)  and E(u) is bounded, then p is bounded.  The 

only uncertainty arises when p e j^ ' . But here too, Q(u,p) = 1 if p e C(u) , 

because otherwise if Q(u,p) = Q > 1 then Q (u , •-— 1= 1 due to the homogeneity 

of the cost function and for p/Q  < p we have Q(u,p/Q ) = 1 , a contradiction to 

JL JL 

the efficiency of the point p .  But again p-x (u,p) = 1 , where x (u,p)  is 

bounded but not necessarily positive in all components.  Here we may have a com- 

ponent p,  unbounded only if the corresponding component x. (u,p)  is zero. 

However, such a price point p cannot be efficient, because any bounded non- 

negative value of p  yields Q(u,p) = 1 .  Thus, if p e 2) ' , p e C(u)  and 

E(u)  is bounded, then p is bounded. Hence the following proposition holds: 
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Proposition 8:  If the efficient set E(u)  of L(u)  is bounded, 

then the efficient set ^(u)  of JL(u)  is bounded. 

Finally, by a proof which parallels that given in [4] for the property 

L(u) = E(u) + D , one may verify the following proposition and corollary: 

TT.9  c£(u) = (f(u) + D , 

TT.10 i!(u) =<?(u) + D . 

For the study of the cost structure we shall assume that E(u)  is bounded for 

each u c [(),«>)  and correspondingly C(u)  is bounded for each u e (0,°°) . 



m 

34 

8.     MINIMUM OUTPUT FUNCTION 

Recall that the production function    <I>(x)     is definable as  the maximum out- 

put  corresponding to a given input vector    x  ,  relative to the production struc- 

ture   (production possibility sets    L(u)   , u  e   [O,00)).    In an analogous way we may 

define a minimum output  function    r(p)     relative  to the cost structure  as the 

minimum output  corresponding to a given factor price vector    p   ,   i.e.,   the mini- 

mum output  for the price vector    p    to belong to a price set ^(u)    or  to yield 

at  least unit minimum total cost. 

For any given cost  structure  jj(u)   ,  u e   (0,°°)   , having the properties 

TT.l,   ...  IT.8 consider  the  function    r(p)     defined on the price sets JLXu)    by 

r(p)  = inf    u (9) 

We need to determine  on which subset of    D     the  function    r(p)     is defined. 

Clearly when    p e  {O}U-0  "   , Q(u,p)  = 0    for all    u > 0    (see property Q.l of 

the cost function)  and    p  i JcM    for any    u >  0   .    Hence the  function    r(p)    is 

not defined for    p e   {OU^"  . 
2 

Now consider price vectors    p    belonging to    D   U *^ '   .    We note  first that  if 

p  e D      then    inf Q(u,p)     is greater than zero or equal to zero according as there 
u->0 

exists or does not exist  for    6 > 0    an open neighborhood 

N(0)   =<x||x||<6,xeD>    such that    x i  L(u)    for any    u  >  0    when 

x e N(0)     (see property Q.10).    Also,  by the property TT.4 the sets  ^3(u)    are con- 

tained in their predecessors for decreasing    u   .     Hence,  if    p  e D     , 

inf Q(u,p)  >  0 .    Also,  by property Q.8, Q(u,p)  -*■ <*>   monotonically as    u ->• ^ 
u->0 

for all    p e D    .    Thus,  if    inf Q(u,p)  >  1    when the neighborhood    N(0)    exists, 
1 u^O 

then    p t Jj,u)    for all    u > 0    and    inf    u = 0  ;  otherwise,  there exists a 
pej8") 
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finite, positive value of output rate, say u , such that  p t ^(u)  for all 

u > u and  u = inf u is positive and finite.  Since u   is the infimum of  u 

it follows that  p f ^(u)  for all u > u  and, by the property TT . 5, 

jC(u ) = ^  c£ku)  so that also p z jC(u ) . Then p e iju)  for all u in the 
u>u 

o 
closed interval  [u .«O  and u = Min   .  Thus, if p e D  , and 

0 0 ^   ^ 1 

inf Q(u,p)   >   1   ,   r(p)  = 0   ,   otherwise     r(p)   >  0    and     inf    may be replaced  by 
u-0 

min    in  the  definition of     r(p)   .     Next,   if    p  t ^'   ,   it  may  happen  that 
2 

Q(u,p) = Q  > 0 and finite for all u c   (0,°°)  (see discussion of property 

Q.9), and if Q  < 1 the function  FCp)  is not defined, since Q(u,p) < 1  for 

all u e (0,°°) .  However, if Q  > 1, then Q(u,p) > 1  for all u c (0,m) , 

in which case  r(p) = 0 . 

Thus  the Minimum Output  Function   (9)   is defined  for    p   e  D      and 

p  e   {p   |   p   G 2?'    ,   Q(u,p)   >  1     for  some     u >  0}   .     If    p  e  D       and    inf 0(u,p)   <   1   , 
1      u->0 

then inf may be replaced by min in the definition of  r(p)  and  r(p) > 0 , 

otherwise  TCp) = 0 .  If p e «£* '  and for some u > 0 , 0(u,p) > 1 , the 

function IXp)  is defined, but in this case Q(u,p) may be equal to or greater 

than one for all u > 0 with FCp) = 0 and otherwise r(p) > 0 and inf may 

be replaced by min in the definition of r(p) .  The possibility that  r(p) 

is not defined on the boundary of D  is a natural consequence of the general 

properties of the cost function. 

The minimum output function  IXp)  gives the minimum output corresponding to 

any peD U{p |pc,0' ,Q(u,p)>l for some u > 0}  for minimum total 

cost to be at least unity.  It Is, in a sense, i  dual of the production function 

and it will be shown later (see [3]) that the loduction function can in fact be 

interpreted as the maximum output corresponding to any x e T). U D '  for minimum 
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total cost  to be at  least unity,  where cost  is minimized with  respect  to factor 

prices  instead of  factor  inputs. 

The properties of the Minimum Output  Function are summarized in the following 

proposition: 

Proposition 9:    The minimum output function    FCp)    for a cost  structure 

j^(u)   ,  u  E  (0,°°)     satisfying the properties TT.I,   ...  TT.8 

has  the  following properties: 

a.l      r(p)     is not defined  for    p  e   {0} U 2)"  ,  and     r(p)   = 0    if 

p   e D   U  ^ '     and    inf Q(u,p)   >   1   , 
1 2 u^O 

a.2  r(p)  is finite for finite 

p e D U {p | p e^' > Q(U»P) 1  ^ for some u > 0} , 

a.3 FCp') < r(p)  for p' > p e D1 U^' , 

a.A  If p > 0 or p > 0 and  ^(ep) > 0 for some scalar 

6 > 0 , then  r(ep) -»-0 as 9 -► °° , 

a.5  r(p) is lower semi-continuous on Dil-''^f » 

a. 6  r(p) is quasi-convex on DU ^2? ' , 

The property a.l is merely a restatement of the properties of r(p) des- 

cribed above following the definition of the minimum output function. 

Regarding property a.2, we need not concern ourselves with the cases where 

r(p) = 0 . Hence, consider p e D  where r(p) > 0 , and, by the property Q.9 

of the cost function Q(u,p) , Q(u,p) ->■ <*    monotonically as u -► ^ and for some 

finite    u >  0    we have    Q(u,p)  >  1  .     If    p  e 2) '   ,  and    r(p)     is defined and 

r(p)  > 0  ,  the same argument applies. 
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Property  a. 3  follows  directly  from the property  TT . 2.     Suppose 

u    =  inf     u   .     Then    p  e^(u  )    ,   and   by TT . 2    p'   cjv(u  )     if    P*   ^ P   .  whence 
0      p^(u) "  '    0 o = 

inf       u   <   u 
P'^ßu)   =     0 

For property a.4,   it   follows  from the property  IT.4  of  the price  setsj^Cu) 

that   the   ray     {6p   1   9  >  0}     intersects all price  sets Jp(u)   >  u >  0   ,  and 

Q(u,9p)   =   9Q(u,p)     (homogeneity of  the cost  function)   .     As    6 ->• o0    monotonically, 

the  sequence     {r(9p)}     is monotone nonincreasing   (property a.3)  bounded below by 

zero and     lim r'(9p)     equals    u     >  0   .     Suppose    u     >  0    and    let    0  <  u  <  u r   ^      o = o o 

Then Q(ü,9p) = 9Q(ü,p) , where Q(ü,p) > 0 since the ray  {9p | 9 > 0}  inter- 

sects all J^,(u)     for u > 0 , and by taking 9  large enough, say  9  , 

Q(u,9p) > 1 .  Hence, a contradiction, since u  > 0  implies r(9p) > u  for 

all  9 > 0 , but r(0p) < u  . 

In order to show the property a. 5, consider the level sets of the function 

r(p)  defined by 

^'(u) = {p | r(p) < ü , p e D} , Ü > 0 . 

If r(p) < ü , then inf u < u which implies Q(u,p) > 1 , since Q(u,p) > Q(u,p) 
pe^u) 

for    u  >  u    by property Q.8*  thus P   e/w(u)   .     Hence   if    p   c^L'tu)     then    p   cj^iu) 

and   J^ (u) C X(u)   •     Contrarywlse,   if    p  e^C(u)     then    Q(u,p)   >  1    and 

r(p)   =  inf     u  <  u    so  that    p   e^'(u)   .    Hence also ^'(u^XCu)     and  therefore 
PQ/5U) 

J^'(u)  = JZ(M)   •     Now,  since  the  level  sets JC(u)     are closed  (property TT.?)   it 

follows  that  the level sets JZ'(u)     are closed.     Therefore,  the function    /"(p) 

is  lower  semi-continuous,  because the closure  of  the  level sets  (AJ (u)     is an  if 

and only  if property for the  lower  semi-continuity of    /"(p)     ([2],  p76). 

Finally,   regarding property a.6,   it follows  from the  fact that the  level sets 
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jP'(u)  of rip)     are identical to the price sets ^(u)  and the convexity of the 

sets ^£(u)  for any u > 0 , that the level sets jC'(u)  are convex. Hence the 

function /"(p). is quasi-convex, i.e., r((l - e)p + 0q) < Max [r(p) , r(q) ] , 

for all 6 e [0,1] , because let ü = Max [r(p),r(q)] , then p ej^'(u) , 

q ejj,'(u)  and  [(1 - 9)p + Sq] e j^'(ü)  for all 9 e [0,1] , due to the convexity 

of X.' (u) , and 

r((l - e)p + eq) < Max [r(p),r(q)] 

for all B e [0,1] and any p,q e D U .Z> ' . 
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9 .      COST   STRUCTURE OF HOMOTHETIC PRODUCTION  STRUCTURE 

For  a homothetic  production  structure  the  cost   function has  the  special  form 

Q(u,p)  =  f(u)-P(p)   , 

where P(p) is a homogeneous function having the properties HQ.l, ... HQ.ll 

(see §5 above), and f(u) is a nonnegative, strictly increasing, continuous 

function  of output  rate with     f(0)  = 0   . 

The corresponding price  sets   jj^u)     of the cost   structure are homothetic, 

as  are  the production possibility sets    L(u)     of  the  production  structure.     Let 

{8p   |   6  >  0}    be an arbitrary ray In the price  domain    D    for    p  c D   U jS'   . 

Denote  by     ^    and     n     the  intersections  of  this  ray with  the boundaries  of   the 

price  sets   J^Cu)     and  A'(l)     respectively,   i.e.,   the  price vectors     ^  =   e,p   , 

n =   9 p     for which    Q(u,e  p)   =   1    and    Q(l,e p)   =  1   ,   as  illustrated   in   Figure  7. 

Since    P(p)     is  homogeneous   (property HQ.3),   it   follows that 

Q(u,eip) = f(u)p(e1p) = e1f(u)p(p) 

Q(i,e2p) = f(i)p(e2p) = e2f(i)p(p) 

and 

61   "   f(u) e2    * 

Hence 

c      Uli 

and  the price point    E,    on  the price set^.(u)     is obtained  from the point     n    for 

/^(l)     by radial contraction with a scalar    f(l)/f(u)     independently of the price 

direction    p e D  U ;Z? '   . 
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{0}U ty 

f(l)P(p) - 1 

f(u)P(p) - 1 

{0}U^', 

2 

FIGURE 7:  INTERSECTIONS OF PRICE RAYS WITH PRICE SETS j2(u)  FOR 

A HOMOTHETIC PRODUCTION STRUCTURE 
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The properties TT.I, ... IT.8 (see Proposition 6) hold  for the price set 

f,(u) , but they may be strengthened somewhat.  First, since  f(u)  is strictly 

increasing in u , there is for any p e j?) '  an output rate  u such that 

Q(u,p) = f(u)P(p) > 1 , since P(p) > 0  (HQ.2). Thus /^C00) = D U ^ '  in 

property  TT.1.     Second,   property  TT.6 may  be  strengthened  to      H   JLj(u)     is  empty, 
u>0 

because suppose a finite p < p belongs to  O JZiu)   .     Then  P(p)  is positive 
u>0 

and finite (HQ.2) and there exists an output rate u > 0 such that f(u)P(p) < 1 , 

since f(u) ->■ 0 monotonlcally as u -> 0 , and p i Ji(u)   , hence, p ^ O Jijiu)   , 
u>0 

a contradiction. 

In summary: 

Proposition 10;  If the production structure Is homothetlc, the cost structure 

is homothetlc and the price sets j[^(u)    satisfy: 

HTT , 1 öMO)  is empty, 0 t Mu)  for any u > 0 

and <£» » D^ ^   , 

HTT. 6   H «/-(u)  is empty. 
u>o 

and the remaining properties of Proposition 6 apply as stated. 

The minimum output function Fip)     for homothetlc production structures Is 

given by 

r(p) - Mln u , p e D U^ ' , (9.1) 

Pe, ßu) 1    2 

because by property HQ.10 inf Q(u,p) "0 as u ->■ 0 for any p e D UJZ) '  and 

the minimal output rate exists. Moreover, the first two properties stated in 

Proposition 9 are modified to: 

/ 
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Ha.l  r(p)  is not defined for p e {0} U^" , 

Ha.2  r(p)  is finite for finite p e D U ^ ' , 

while the fifth property is strengthened to 

Ha. 5  r(p)  is a conti" uous function on DU «2? ' . 

From the properties HC 8 and HQ.9 we have Q(u,p) •+ «> monotonically as 

u ->. oo and for finite u > 0 , Q(u,p) > 1 for any p e D U JZ) ' , whence 

property Ha.2 holds. 

The strengthening of the fifth property follows from the special form 

r^-F(fb) (9'2) 
Cp) 

of the minimum output function. 

In order to verify that equation (9.2) is valid, consider an arbitrary point 

p e D U ;£> '  where P(p) > 0 .  Clearly Min  u satisfies Q(u,p) « 1 or 
1   2 pe£(u) 

f(r(p))-P(p) = 1 , 

and, since f(')  is the inverse function of F(*) , 

r(p) = F 
(P(P))  ' 

Then,   since    F    is a continuous  function and    P(p)     is continuous on    DU  %)% 

(property HQ.7),   it  follows  that    r(p)     is continuous on    DJ Z>%   , 
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