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SUMMARY

This report is concerned with the transfer of radiative energy by
the lines of a gas of uniform properties in local thermodynamic equilibrium,

By means of comparatively simple calculations, the relative intensities
«f the potentially strong lines of a simple (hydrogenic) spectrum are
computed and these results are interpreted in detail. An important
conclusion from these calculations is that the influences of lower state
occupation number and line oscillator strength can, under some conditions,
be outweighed by factors such as the line width and the local value of
the Planck func*ion.

The remainder of the report is concerned with the numerous weak lines
associated with high quantum numbers. It is shown that these lines
can be allowed for by extending the cross sections of the appropriate
continuum processes, These techniques are then used to compare the
intensities of groups of weak lines with the intensities of certain

strong lines.
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PRINCIPAL SYMBOLS

Planck function
vclocity of light in a vacuum
charge of electrcn
energy of electronic state with principal quantum number m
absorption oscillator strength for a transition from a state with
principal quantum number m to a state with principal quantum
number n
function defined by Eq. (3.5)
statistical weight of the state with principal quantum number m
Planck's constant
specific intensity of radiation

®
frequency integrated specific intensity of radiation, I Ivdv
I for the isolated line with quantum numbers m and n?
Boltzmann's constant
linear spectral absorption coafficient
principal quantum number of lower state
lower state quantum number corresponding to the first high series
which is completely merged according to effective widths or is
completely optically thin
the sum of the intensities of either all lines or all transitions
with m :_m* is equal to 10% of the intensity of the leading
line
mass of electron

principal quantum number of upper state
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upper state quantum number of the first high line which is either

merped according to its effective width or optically thin
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the sum of the intensities of all lines with n > n is equal to

10% of the intensity of the series leading line

number density of atoms
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center frequency for a transition from a state with principal

quantum number m to a state w.th principal quantum number n.
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1. INTRODUCTION

It is well known that when a space vehicle enters a planetary atmosohere
radiative mechanisms are important in the transfer of enerry from the locallv
heated pas to the vehicle; one of the current interest< in this rroblem is in
the role of spectral lines in the transfer process.l However, the task of
computing the line intensities in even an isothermal slab of pas is e: remely
involved due to the complexity of the line spectra, If one is to attemnt
such computations and interpret the results meaninpgfully, it is necessarv 1o
make approximation: which reduce the immerse number of transitions to a more
tractable number, The prcblem of making such approxima*icns is made corsid-
erably easier by an understanqinn of the interaction of the various ractors
which contribute to the radiative inzensity of a line. This understandinc
can be rained in part frem previous work, Some relevant papers are due to
Allen,2 Biberman and coworkers‘a'u Olfes and Aroeste and Benton.6 The pur=
pose of this Part is to supplement the results already available with a rmore
detailed investigation -f relative lire intensities.

Throushout this Part the line positions and oscillator strencths used
are those of hvdroren. These v2lues have the advantare of beinr o.tainable
from simple analytic expressions and althoush the resultine spectrum is
simpler than that of a nonhvdrorenic ras, it displays most of the rain
features. In contrist, the line profiles of hvdroren are not typical cf
other gases (and a-e generally rore complex). Therefore, since the main
concern in this work is with nonhvdrorenic rases, we choose the line nrofiles
to be representative of a nonhvdroceric ras,

Chapter 2 describes some comparativelv simple calculations on the
relative intensities of the stronger lines and cives a detailed ~hvsica:
interpretation, Chapter 3 is concerned with the treatment of weak iines,
vew methods of treating these lines are described and then used o indicate

the impcrtant of such lines relative to strenger lines.,




2, RELATIVE INTENSITIES OF ELECTRON IMPACT BROADENED LINES

2.1 Introduction

The strongest lines of a nonhydrogenic pas correspond to transitions
betweer. states of relatively low excitation, Such lines are nredominantly
broadened by electron impacts (see Part 1, Chap. 4) which pive rise to 'is-
persion profiles. The prowth of intensity of a dispersion line has been
described in Pert 1, Section 3.3 where it was shown that two simple asymp-
totic expressions describe the growth tc a pocd approximation, The expres-

sion for small optical depth is
I =B s J K dv (2.1)
v v
o ‘o
and the cxpression for lerge optical depth is

I =28 (ws J K dv)llz. (2.2)
v v
o o

These curves intersect at the point
L.
s J K“dv/w =y (2.3)
o

In order to evaluate Eq. (2,1) or Fq. (2,2) one needs to know the end states
of the transition, the thermodynamic state (n,T) and the path length, s,

For a line Letween lower state m and upper state n we have for the
absorptiun coefficient

{” 7."‘2 hvmn
dV = === N f n{l - exp(- -k—T—-)] (2.4)




wiere N is the numher derisity of na-ticles in the lower state m, Ff

is the oscillator strensth (se¢ Section 3.2 of Part 1) and the factor
l-exp(~-hv /kT) makes allowance for stimulated emission. The occunation
mn

number Nm is related to the total number cf nmarticles, N, by the

Boltzmann formula (Part 1, Section 2.1),
Nm =p exp(-Em)N/OeQ (2.5)

where Rm and v, are the enerpy and statistical weight resnectively for

the lower state m and e is the electronic partition function,

4

For hydrogen, the frequencies, energy levels and oscillator strengths

. . . 7
are gsiven by the "“ollowing expressions

_ - 1l 1
hvmn = En - Em z XH( 3 > (2.6)
m n
and
6
NI = (2.7)
3/37 "m rm3 (1/m2-1/n2)3

where Xy is the Rydberg enerpy. Vinally, we need an expression for the
line width w, A detailed dissussion of nonhydrosenic line widths has heen
given in Part 1, Section 4.5, In that discussion, two approximate expres-
sions for electron impact line widths in a hydrogenic spectrum were given.
The first expression, based on adiabatic theory and due to Margenau and
Lewis.8 is

n *

w eV = 0,98 x 10723 (-z‘i) (Necm'a)(k'r ev)l/6

(2.8)
where n, is tue orincipal quantum number of the upper state and Ne is
the number density of electrons, The other expression, valid for inelastic

C e s . g |
collisions and first eiven by Stewart and Pyatt is
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n .
weV s 3.3 x 1027 1 (N em™3) (kT ev)~3/2, (2.9)

22
For our present purposes it is interesting that despite their other differ-

ences, the twWwo expressions Fqs. (2.8) and (2,9) are each of the form
w = N _£(T,z)n", (2.10)
€ u

In this chapter it will not be necessary to specify f(T,2) since we will
restrict curselves to comparing pairs of lines which are such that either
both are self-absorbed or neither is self-absorbed.

The ratio of intensities of two lines which are both self-absorbed can

be obtained from Egs. (2.2}, (2.4) and (2.5) in the form

B -
mn__ Von  Ymnfminnt 1 ” exP(-hv /KT)] _41/2 exp(- Em-rm').
Itn! va'n' WointBnt g LU - exp(-hv , \/kT)] KT
(2.11)
Then, if the explicit form of the Planck function
3
v
2h mn
B 2 — ) (2.12)
Von | o2 exp(hvmﬁ7?T) -1

the hydrogenic expression Fqs. (2.6) and (2.7) and the general line width

formula Fq. (2,10) are inserted into Eq. (2.11) the following result is

obtained
_mn_ {_g_(gﬁd3 ( 1/m2-1/n? )3 exp(t/n?) ggp[t(l/m'2-1/n'2)1-1)1/2.
Tntne noon 1/m'2-1/n'2 exp(t/n'?) expl[t(1/m2-1/n?)]1-1 (2.13)

where t = xH/kT.
In contrast to the case for olute intensities, Fq. (2,13) is

independent of o and s. Sections 2.2 and 2.3 apply Eq. (2,13) to the




ieadine lines of different series and different lines of the same series
respectively,

Tn the case of two lines which are net self-absorbed, Fa. (2.1) holds.
Substituting in this equation the hvdrosenic enersy and oscillator strensth

expressions, one obtains a result analopous to FEq. (2.13), explicitly

‘mn (n'm')3 exn(t/n?)
I, mn
m'n

.

(2.14)

exp(t/n'?) .

Sections 2.4 and 2.5 aoply Eq. (2.14) to the classes of lines treated in
Sections 2.2 and 2.3,

Some caution is required in applying results obtained in this chapter
to lines with moderately hirh quantum number upper states. Such lines can
have different profiles from those with low quantum number upper states,
(See Part 1, Section 4.6, for a discussion of this effect in nitroren.)
The line width expression (Eq. 2.10) used in the calculatiors preserited herc
may therefore break down for some higher quantum number transitions,

Finally, it must be nointed out that when self-absorption occurs,
the backeround continuum is a factor which is active in determinine the
relative importance of the lines. This is beciause lines which occur where
the continuum absorption coefficient is larpe are reduced in importance
(see Partl, Fq, (3,2)). The detailed calculation of Part 3 considers this

effect but it is not accounted for in the calculations of this part,

2,2 Self-Absorhbed Leadine Lines

In this section we compare the intensity of the leadine line of a
series with an excited lower state to the intensity of the leadinr line in

the series oripinatinr from the pround state. Both lines are assumed to be




self-absorbed. The reference line just introduced is sometimes called the
resonance line or (since the spectrum is that of hydrocen) the Lyman a lire,

The relevant form of Eq. (2,13) is

Im'm-o-l ; {l_(u)3 explt/(m+1)2] (2me1)3 exp(3t/u) - 1 W2 (5.15)
¢ Y (2,
Il,? 2 explt/4) m2(m+1)S  expl(2m+1)t/m2(m+1)21-1
The quantity Im,m+l/Il,2 is shown on Fig. 1 for several values of m and

a wide range of t. The asymptotic limit of t + 0 is also shown for
comparison. The analytic expression for this limit is easily obtained from

Eq. (2,15) and is

Lim Imlm+l ; 2.[5. (2m+l)zll/2 (2.16)
t+0 I1,2 3 72 m’(m+1)3

The factors which combine to produce the results displayed on Fig, 1,
and their independent effects, are as follows., Line broadening increases
with upper state quantum number and hence tends to increase the intensities
of the higher series lines, Values of gf slipghtly favor the hipher series
lines. The unweiphted occu;ation numbers, exp(-Em/kT)/Qel, favor the reso-
nance line, The factor due to stimulated emission decreases with rreguency
and hence acts apainst the low frequency high series lines, Finally, there
is the value of the Planck function. This factor can emphasize either the
hipgh series line or the resonance line depending on the position of the
line centers with respect to the position of the Planck maximum,

Fipure 2 is intended as an aid to discussion of the influence of the
Planck function. 7Tt shows the Planck function plotted arainst the similar-
ity narameter hv/kT, In terms of this variable, the positions ¢ the line
centers (which are at constant “requency) chanre with ternerature. This

movement of line centers is linear with t and is shown for a nurber of
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lines on Fip. 2, At very hirh terneratures t -+ 0 and all the lines are to
the left of the Planck maximum with the lst Lyman line (i,yman a) nearest to
the maximum. The Planck function will therefore favor radiation from the
Lyman line., As the temperature falls, the lines mov¢ towards the Planck
maximum until at t = 3,8 the lst Lyman line reaches the maximum and,
thereafter, the assoc’ated value of the Pianck function will start to fall
while those of the other leadins lines continue to rise until they too irn
turn nass over the maximum,

As shown by Fig, 1, this influe:'ce of the Planck function is the
dominant effect. In particular it can be seen that at low temperatures
(i.e. hiph values of t) the intensitics of the hipher series lines can
become greater than that of the Lyman line. At these hipsh values of t,
the influence of Bv is in opposition to those of induced emission (which
is small anyway) and the Boltzmann distributicn but whereas the intensity
is linear in Bv’ it varies as the square root of the Roltzmann distribu-
tion factor and also as the square root of the stimulated emission factor
(see, Eq. 2.11), At low values of t, these three effects reinforce each

other to produce deminance of the Lyman a line,

2.3 Self«Absorbed LinesWithin the “ame Series

In this section we compare lines within the same series (i.e, havinpg
the same value of m)., The reference line is chosen to be the series
leading line,

The appropriate form of Fq. (2.13) is

im|m+n . ((2fn:§2)3 .mzlxs exp{t/(men)?] expl (2me1)t/m2(me1)2]-] 4}1/2(2.10
mym-" «m TP axp(t/(me1)2] expl (2mpsp?)t/m2(mep)21-1




where m+p = n, The asymptotic limit for small t |is

I 2

m,mep _ 2mp + n< m+ly3/2
lim el = L2 (mp) . (2,18)
1+0 m,m+l

A further asymptotic limit which is outside the ranpge of validity of our
assumptions but exhibits an interesting trend is that of m + », The for-

mal limit is

lim Im=m+2

mre Im,m+1

(2,19)

Equations (2,17), (2.,18) and (2,19) have been evaluated and are plotted
on Fips, 3a, 3b and 3¢ for m = 1,2 and 3 respectively.

The relative intensities of lines within the same series are not
affected by population densities since each line starts from the same lower
state, Line broadening favors the upper lires while the oscillator strength
is preatest for the leading line, Of these two factors, the line width is
the stronper effect at high values of n since then 1/m2-1/n? is approxi-
mately constant with n so that an = n.3 while w « n“%, 1t is this
effect which is responsible for the upward trend at hiph values of p
shown on Fig, 3. Since vm,n¢1 > Vm,n' stimulated emission decrecases with
n and thus the intensity tends to rise, The main influence of temperature,

however, occurs through the Planck function. Fipure 2 shows that

Bv > Bv for the Balmer and hipher series except at very low tempera-
m,n m,n+l

I3 » ~
tures and for the Lyman series at comparatively high temperatures (t < 3),
These effects are clearly shown on Fig, 3, Further, as m increcases the
influence of temperature becomes less (because the difference in frequencies

becomes less) until, in the limit of very high m, the relative intensities




become independent of temperature (cf. Eq. (2,19))., This trend can be seen

by comparinp Fips, 3a, 3b and 3c.

2,4 Optically Thin lLeading Lines

When the Lyman a line is optically thin, local thermodynamic equilibrium
will not normally nold but it is useful for comparison with the results of
Section 2,2 to choose the Lyman a as the reference line for this section.

For the present case, E5. (2.14) Lecomes

Im,m+1 . 8 exn[t/(m+1)?]

L) (2.20)
11,2 m3(me1)3 exp(t/4)

Values of I /

mmel 11'2 have been obtained from Eq. (2.20) and are plotted

on Fig., 4, They are shown both on a linear scale (which is stretched by a
factor of 10 compared to Fig, 1) and on a loparithmic scale.

The dominance of the resonance line when it is optically thin is clearly
shown by Fipg, 4, In terms of the discussion of Section 2.2, we can say that
line broadening is no longer a factor and the influence of the Planck func-
tion is exceeded by those of the Boltzmann distribution and stimulated emis-
sion, Unlike the self-absorbed case, the importance of the hipgh series lines
increases with temperature since now the Boltzmann distribution is the deter-
mining factor.

Expressing the absoiute intensity in terms of the population of the
upper state further emphasizes the importance of the resonance iine. The

following form can easily be obtained from Fqs. (2.1), (2.4) and (2.5)
- 2 X - 3 - /0
1 n 2h/c — 7. orVmn exp( rn/kT)h/‘e!' (2.21)

s0 that it can be seen that the refonance line

in which pn‘ v «
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must always exceed ary other leading line., Notice that Eq., (2.21) does not
contain Bv because, when the pas is optically thin, only spontaneous

emisgion contributes to the intensity,

2,5 Optically Thin Lines Within the Same Scries

This section compares the intensity from the general line Im mep to
]

the series leading line Im mel when both are optically thin,
1]

Equation (2,14) for this case is

Eplgfpr. (m+1 3 explt/(mep)?] .

7 - (2.22)
m,mel P explt/(m+1)?)

Values calculated from Eq, (2,22) are presented on Fip, 5. Unlike the case
where self-absorption occurs, the ratio Im,m+p/Im,m¢1 is always less than

unity since now line broadening has no influence and the f-number effect is

stronger (linsar instead of square root). Tquation (2,21) is again instruc-

tive since gnf vl o«

and decreases with n as does exp(~-E /kT),
nm mn n

3.3
n’m
Because En chanpes most rapidly for m = 1, the Lyman series shows the
most rapid fall off, Finally, the chanpe in all se:ies is most rapié for

high t because of the factor exp(-En/kT).
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3, THE TREATMENT AND IMPORTANCE OF WcAK LINES

3.1 Introduction

Radiation from lines can be calculated by well established methods (see
Part 1, Section 3,3) provided the lines do not interfere with each other., A
method of accounting for the interference of small proups of lines (such as
multiplets) has been described in Part 1, Section 3.4, This chapter is con-
cerned with the problem of the larpe number of weak, closel, spaced lines which
are found in any spectrum, These lines can be considered in two classes.

(1) Lines which occur at the high frequency end of series with low quantum
number initial states (called here high lines). (2) The complete series which
have highly excited initial states (called here hipgh series).

Tne merging of high lines in an optically thin medium pgives rise to an
apparent depressicn of the jonization limit, as is well known (see Section
3.2). The treatment of high lines developed here is related to this apparent
depression. An analogous method is also demonstrated for the hiph series.

The presentation is as follows. Section 3.2 describes briefly the theo-
retical treatment of the apparent dep-ession of the ionization limit in an
optically thin gas, Section 3,3 then presents a method for calculating the
radiation from high lines, As an example, the method i{s applied to a hydro-
penic pas in Section 3.4 where, for each of the first three series, the
importance of the hirh lines with respect to the series leadiny line is calcu-
lated, Section 3.5 then presents an analogcus method for dealing with high
se~ies (and high bound-free transitions), TFinally, the application of the
rnevhod tc a hydrorenic pas is demonstrated and the Importance of hiph series

with respect to the Lyman a line is examined in Section 3.6.
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3.2 Line Mer-ing and the Apparent Depression of the Ionization Limit

As one passes alonp a series of lines away from the leading line, the
inter-line spacing rapidly decreases and at the same time, if the gas is at
least partially ionized, the influence of charged particles on the energy
levels {ucresses and produces a larger line width. The high lines of a
series thus tend to merge and produce the appearance of an extension of the
continuum in the direction of lower frequencies., In other words, there is an
apparent drop in the ionization potential. The similar behavior ¢‘ merged,
high quantum number states and free states is a consequence of the correspond-
ence principle. The appearance of the absorption coefficient in the merging
region is exhihited in papers by Pannekoeklo and Vidal.ll

As we have already seecn (Part 1, Chap. 2), there is also a real drop in
ionization potential due to the presence of charged particles but it can easily
be shown that this drop {s less than the apparent drop due to line merging
within our ranpe of conditions, Therefore, although it is important for other
reasons, such as calculating species composition (see Part 1, Chap. 2), the
real depression of ionization limit may be ignored in the study of abscrption
cross Sections and the photo-electric threshold fixed instead from the pseudo-
depression due to line merging,

The exact position of the depressed threshold is clearly somewhat
arbitrary: Inplis and Teller12 required that at the threshold the line width
at Nalf its peak value be equal to the spacing between line centers and this
criterion seems to have been penerally adcpted. The oripinal paper by Inrlis
and Tel.er takes the half-widtn given by quasi-static thecory (see Part 1},
Chap. 4, for a discussion of line broadi iing) whereas recent work hy Armsutnnla
uses the half-width due to inelastic impact broadening by electrons. The

resulting expressions are very little different at tewperatires of interest

10 us.
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Theoretical results of the tv=e Aiscussed in the nrevious nararranh
iocate the position of the apparent -hotorlectric edre of the absorption coeffi-
cient, i.e. the edre which would be observed from an optically thin slab. !'ow-
ever, we are not concerned with predicting the spectral apvearance of radiation
from a thin slab but with the frequency inteprated intensity from a slab of
variable thickness., In the next section it is shown that the contribution of
hiph lines to the frequency inteprated intensity can be obtained by denressing
the photoelectric edpe even further, snecifically, to the first line which is
optically thin or to the first line whose effective width (see Partl, Section

3.3) exceeds the interline spacing, whichever occurs first,

3.3 Treatment of High Lines

Since there is no sharp cut-off point between merped and isolated lines,
the lines below the apparent threshold will be overlapping but distinecuishadle
if an optically thin sample is observed. However, when self-ahsorption cccurs,
each line is blackened cut across the effective width (see Part 1, Section 3.3)
which can be considerably greater than the half-width of the absorption cocffi-
cient and which is representative of tne width of the intensity nrofile. As
a result, merping of the lines obdbserved from an optically thick siab will de
more extensive than the merping of the lines emitted by an optically thin slab
at the same condlticns,

Tipure 6 [= a sketch contrasting the appearance of the intensity pro‘ile
with that of t>e absorption coefficient for a series of lines in which 3 self-
absorled, is0ia! . line is followed ky several effectively merped lines.

One way cf 'rrating these =erred iines is by compiting the blacky body
output cver the merred interval (as was done by Biberrman etaLB). Tt is true
that once two succesxive lines in a series merpre ali subsequent, hirher .ines

wiii be merped so lone as they arc seif-absorbed (since the effective wi-th
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1/2

I/Bv FrowWs as n for impact broadening or remains constant for quasi-
stat?c broadening, whereas the interline spacing falls as n-a). Nonetheless,
this approach involves certain complications, In the first place, the lines
may become optically thin before the true continuum commences and the thin
lines must be treated by another method., Secondly, the background continuum
can make no contribution to the total intensity from the pas over the
blackened-out interval and an appropriite subtraction must bLe made from the
frequency intepgrated continuum intensity., Finally, a quite different analysis
must be used when the lines are optically thin; integrated expressions for
this condition exist (see Ref, 13 and Appendix I) but they do not allow for
the variation of the background centinuum across the group of lines.

We will now describe an alternative approach which avoids these
difficulties. Our methud is to extend the bound-free continuum still further
down the series, the threshold being fixed by the first pair of lines which
are merged according to their effective widths or by the first optically thin
line, whichever comes first, The remainder of this section is spent in dis-
cussing this method,

In the first place, let us consider an optically thin <imple of gas. It
is shown in Appendix I that the frequency-integrates intensity from a proup of
high lines (n >> 1) 1is equal to the frequency-integrated intensity due to
the (extended) bound-free continuum over the same frequency interval, Now, if
we 3tart at the first high (n >> 1) 1line of a seriec and examine each in
turn, then, if we encounter an optically thin line, we kaow that all hipgher
lines must also be optically thin because¢ the f-numbers decrease along the
series (Eq. {2.7)) and the line widths increase., The question remains as to
whether the bound-free continuum is aiso untically thin (since only then does
the equivalence demonstrated in Appendix T hold)., In this connection, one

must observ: that whereas the lines are (arbitrarily) considered either thick
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or thin, no such sharp division is made for the continuum, Appendix TTI
discusses tne oroblem and concludes that wherever high lines are optically
thin, the use of an extended bouné-free absorption coefficient will yield a
pood approximation to the frequency-integrated radiation from the thin high
lJines. We may therefore extend the bound-free absorption coefficient back-
wards to the first high, thin line,

Our second problem is to deal with the high lines if they are optically
thick. It has been pointed out earlier that self-absorption of high lines
will cause extensive merging with the result that the interval over which the
lines are merped emits black-body radiation, Now, when the emitted rxidiation
is black~body, any absorption cocefficient which is sufficiently large to pro-
duce approximately complete self-absorption may be substituted for the actual
coefficient, It is shown in Appendix II that the extended bound-free absorp-
tion coefficient is sufficiently large in this sense wherever the lines are
merged according to their effective widths. Suppose now, that we examine
in turn each high line of a series in a self-absorbing medium, starting with
the first high line. Then, if we find a self-absorbed line whose effective
width exceeds the interline spacing, one of two possibilities can occur with
regard to the lines higher up the series., Either they are all self-absorbed
or, at some point, a line becomes optically thin. In the first of these two
cases, as we have pointed out earlier in this section, all the higher lines
are merged and hence their (black-body) intensity can be achieved by using
the extended bound-free absorption coefficient, In the second case, from the
thin line onwards all the lines must be thin and we have the situation
discussed in the preceding paragraph.

According to the arguments just presented, we have two alternative
criteria for fixing the position of the pseudo-photoionization threshold: The

first criterion is the center frequency of the first high line which is
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2a/(a-l)

optically thin, e.g. satisfies 1 < where 1 (f: dev/W)s and a
is the exponent of the wing profile (see Part 1, Section 3.3)., The second
criterion is the center frequency of the first line whose effective width,
W, exceeds the interline spacing, Avc. Figure 7 illustrates schematically
the two criteria in two cases where they almost coincide., It illustrates
the behavior of t and W/Avc as one passes along a series of lines., In
many cases, in contrast to Fig, 7, either all the high lines will be opti-
cally thin or they will all be merged and the start of the pseudo-continuum
will occur at the first high line.

According to the analyses of Appendices I and II, the method just
described is valid only where the upper state quantum number n is such
that n >> 1; we have been referring to lines with upper states satisfying
this condition as high, However, it will now be argued that some of the
lower lines can also be treated by the pseudo-continuum method. First, sup-
pose the lines are optically thin, Section 2,5 shows that in these circum-
stances, the intensity carried by each line falls off rapidly alonz the
series, Thus it is only necessary to have an accurate treatment of the first
few lines, all the remainder can be included in the pseudo-continuum,
Secondly, suppose the lines are self-absorbed and merged. In this case,
the interval of black-body radiation extends into the low lines and the ex-
tended bound-free absorption coefficient can again be used to produce the
radiation in this interval, However, an adaption of the analysis in Appen-
dix II tc lower lines shows that when the lines are only just self-absorbed
and merged, the ccntinuum absorption coefficient may be too small to produce
black=body radiation. Fortunately, the error in the overall intensity pro-
duced by this infrequent occurrence will be small, Thus it turns out that,

in any series, the only lines whicli may not be included in the pseudo-cantiruum
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are a few early lines plus anvy other lines which are both isolated and self-
absorbed.,

Figure 8 shows for the first three series of hydrogen the value n of
the upper state quantum number of the first mergad or thin line according to
the criteria just presented. Only values where the pat}l length is an integer
power of 10 have meaning. The lines were taken to be quasi-statically broad-

ened with line width parameter w calculated from (see Part 1, Section 4.6)

2 2/3

‘l/ 2_.2
z, (n? nl)(Ne/NL+ E szzp/NL) . (3.1)
P

w=0.691 x 10"

It can be seen from Fig. 8 that as the path length increases from a low
value, the first thin line movec higher up the series. Then, self-
absorption begins and the start of the pseudo-continuum is set by the first
merged line which moves back down the series for further increases in path

length.

3.4 Importance of High Lines

As an example of the method of the previous section, the intensity of
some of the high lines of a hydrogenic gas was computed,

The purpose of the computation was to find for a given initial quantum
number m, the upper state quantum number, n*, such that all lines of
that series with upper states higher than nﬁ taken together carry less
than 10% of the energy in the series leading line. The calculatioa treated
the high lines as an extension of the bound-free continuum. The leading
line was assumed to> be eleitron impact bivadened with the width given by
Eq. (2.8).

The calculation was carried out on a digital computer. The quantity

#*
n was treated as a continuous variable and found by trying successively
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lower vaiues until the correct value was straddled, after this, linear
interpolation proceeded until a value which save the desired inteprated
intensity to within 1% was achieved.

Before discussing the results of the calculation, certain analytical
expressions which hold where the high lines are optically thin will be
presented, First, suppose the leading line iz also optically thin, then

/1 (where I is the total inten-

an expression for the i . .
P ° ratio Ingh m,m+l Hipgh

#
sity due to all lines with n » n ) can be obtained from Eq. (2.22)., The
#
procedure is to replace m#p by n and inteprate over n from n to =
in the manner of Appendix I. One then pets

. 3 b
High v (me1) (exp[t/(n")2] = 1}. (3.2)

Im,m+l 2t exp[t/(m+1)?]

(It is clear from Appendix I that the hiph series contribution to Fq. (3.2)
can also be obtained by integrating the optically thin emission of bound-

free radiation with initial quantum number m over the ;.oton enerpy inter-

*
2_ 2 2 hg = d “'i )
val xH[l/m 1/(n )<] to xH/m .} Setting IHigh/Im,m#l 0.1 and solving
Eq. (3.2) for n yields
%
n = {t/wnf0,.12¢ exp[t/(m*l)zT((le)3 + 11)1/2. (3.3)

Seccndly, suppose the leadins iine is self absorbed, then we make use of the

expression

-y ) J
" thick (3.u)
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where
s z(N /M )s (3.5)
e L
and
3 N1/2
F(m,t) = 25,1 J' u ? exp(t/2m2 )tsl6
L (mel)(2mes)3
- /2
x i1 - exp [- t -2l i} si/? (3.6)
i m2(me1)2 °

Fquation (3,6) assumes an electron impact-broadened leading line with a width
piven by Fq. (2.8)., It also assumes the number densities of iou. and elec-

®
trons to be equal. Zombining Eqs. (3.4) and (3.2) and solving for n gives

/2 1/2

n* z {t/en[0,12¢ exp[t/(m+l)2]/(m+1)3F(m,t);1 +11}77°, (3.7)

%
For (n )2 >> t Eq. (3.7) becomes

#t 3
n = {10 F(m,t) iﬁ:&l—'exp[- t/(me1)2]}

1/2 =1/4
2t S

(3.8)
(the corresponding form of Fq., (3.3) is not of interest since for this case
(n*)2 is not larper than t),

“ipures 9a, b and 9c show results for m = 1,2 and 3 respectively.
The optically thin expression (3.3) appears as a numbder of horizontal lines
while Eq. (3.7) gives straipht (or nearly straipht) lines on these fipures.
The intersections of these lines correspond to the point at which the
treatment o the leadinr line chanres from optically thin to self-absorbed

0y

(see Tip., 7 of ®Part 1), Curves obtained by nurmerical intepration of the

. - -3 .. .
pseudo-continuum are shown for donsities of 1 and 16 ° times atmospheric,
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As s increases, these curves foliow the optically thin results until sel®-
absorption of the hiph lines causes a departure from the analytical expres-
sion., It can be seen that n* reaches a maximum and then falls off at

large values of s due to the self-absorption of the high lines, The values
of n* pive an indication of the relative impcrtance of the hiph lines since
where n* is larpe, a larpe number of lines have to be accounted for if
errors of 10% are to be avoided,

It can be seen from Fips, 8 and 9 that in peneral, n* lies above n,
the beginning of the pseudo-continuum, One implication of this is that the
high lines penerally transfer more than 1/10 as much enersy as the leading
line, For this reason, some reasonable method of accounting for the high

lines has to be included in any radiative transfer calculation for a real

fas.

3.5 Treatment of Lines and Photoionization from Highly Excited Lower States

Sections 3.2 and 3.3 treated lines at the end of comparatively low-lying
series where a number of preceding, isolated lines exist. In this section,
we follow a similar line of arpument for the case of high series and bound-
free transitions from highly excited states.

In Section 3.2 we saw that the merping of the hirh lines of a series
causes an apparent extension of the bound-free continuum., Since the line-
width increases with the upper state quantum number, as one passes to higher
series the line merging will spread, covering more and more lines until all
the lines are merged. At approximately the same condition the minimum fre-
quency for a transition will go to zero: this behavior corresponds %o
perturbations of the energv levels at m and m+¢l bleing so great that they

overlap and the energy changes can take all values. Such a situation sugrests
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that transitions by highly excited electrons will be similar to those of free
electrons. The following discussion shows that this is essentially true and
points out certain differences.

Let us suppose that the quantum number at which the energy levels
overlap is m as predicted by the theory of either Inglis and Teller12 or
Armstrong13 and let us consider the absorption coefficient due to transi-
tions between states with m > m >> 1. For any high series, since n > m,
the lines will be merged throughout the series and since m > m the first
two levels overlap and the serics extends to zerc frequency. As noted previ-
ously (see Section 3.2), overlapping line profiles produce an ahsorption
coefficient which can be closely appro;imated by extending the bound-free
absorption coefficient to the beginning of the merged lines. In this case
(m > m), the bound-free absorption coefficient can thus be extended to zero
frequency.

The absorption coefficient at frequency v due to all transitions from

all states with m > m is therefore given by:

-hv/kTy (3.9)

N -
9 e‘x/kT 22 X- exp(z2Ry/m2kT) —l-(l-e
3/3 ch “a h? v} mem m3

where Ry is the Rydberg energy constant. Changing the summation to inte-

gration, Eq. (3.9) becomes

$.2,6 .2 _ 1 N - -
K = 2%e e X/KT 8 4r(1-e ™/ T Y exp(z2Ry/ (m)2KT) - 1] (3.10)
V' 33 it a vl
or
X =K 1 fexp(z2Ry/(M)XT) - 1) (3.11)




where K\,,ff is the free-free absorption ccefficient. Iin the case of
hydrogen, Qi = 1. It is worth:.olserving that zzRy/(r'r'v)2 = Ay where A

is the distance below the threshold of the energy level corrcsponding to m.
The appearance of free-free-like behavior in Eq. (3.11) at all frequencies
is a consequence of the free-bound absorption coefficients extending to zero
and may be contrasted with the result of the corresponding integration car-
ried out by Sibulkinlu for the true photoionization transitions. In the
latter case, free-free-like behavior only exists for frequencies above a
certain minimum value.

It is tempting to suggest from Eq. (3.11) that the transitions from
highly excited states can be accounted for by depressing the ionization
potential by Ax thus increasing the number oi free electrons and reducing
the number of atoms. However, if such a reduction in ionization energy is
carried out in the Saha equation, the increase in the number cf free elec-
trons predicted is less than the number of atoms which previously occupied
states such that m > m. The explanation for this disparitv is that if the
ionization potential were suddenly depressed, all electrons in states with
m > m would be released but, on collision with ions already present, some
would recombine to form atoms.* In summary, we may say that highlv excited,
highly perturbed states behave like free states in their interaction with
radiation (i.e. as far as their cross-sections are concerned) but the elec-
trons are not available for collisional interaction with other particles and
hence they must not be treated as free in the calculation of species concen-

trations. (This is in contrast to the electrons released by the Debye-Hkkel

Where the ionization is very low, there are virtually no ions available for
collisions and the released electrons remain free. Under these conditions,
it can be shown that a reduction of 4y in the ionization notential used in
the Saha equation leads to an additional contribution to the free-free
absorption coefficient equal to the expression (3.1l1).
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effect discussed in Section 2.2 of Part 1 which are in all senses free.)

It will now be shown that Eq. (3.11) can be used to calc'ilate the
intensity from series that have no isolated, self-absorbed lines. The
approach is similar to that used for the high lines of low series. Where
the lines are optically thick and merged according to their equivalent
widths, it has already been shown that they can Ye represerfted bv an exten-
sion of the bound-free coefficient., But when the entire series is merged,
this extension will go to zero frequency and can be included in the summa-
tion of Eq. (3.9). Similarly, we have shown that the radiation from optically
thin lines with n >> 1 and that from a corresponding section of the extended
continuum is the same, a completely optically thin series can therefore be
treated as entirely bound-free and if m is large may be considered to
reach zero frequency with very small error, it can therefore be treated by
Eq. (3.11). Now, the effective width of the leading line rises as m3/5
whereas the interline spacing falls as m_3 so that once a series with com-
pletely merged leading lines has been fourd, all hipher series whose leading
lines are optically thick will also be completely merged. We can therefore
use Eq. {3.11) to treat all series higher than the first which is either
entirely cptically thin or completely merged and satisfies m >> 1,

The results of calculations of m are presented in Fig. 10. Only
values where the path length is an integer power of 10 have meaning. The
iines were taken to be quasi-statically broadened with a linewidth parameter
according to Eq. (3.1). As the path length increases from a low value, the
number of completely thin series decreases and hence m increases. Subse-
Gquently, m is fixed by the first completely merged series and consequently

falls with increasing path length.
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3.6 Impertance of Lines and Photoionization from Highly Excited Lower States

This section reports some calculations which apply the treatment of the
previous section to a hydrogenic gas.

The computations were anaiogous to those of Section 3.4. Their purpose
was to calculate m* the lower state quantum number sucl. that all transi-
tions with lower states higher than m‘ together carry less than 10% of the
energy of the Lyman a line. Two computations of m* were performed: one
which accountes only for high series and one which accounted for high series
and high photoionization (i.e. photoionization from hipghly excited initial
states). In each case, the Lyman a line was taken to be electron impact
broadened with a width given by Eq. (2.8). The intensity of the combination
of high series and high photoionization was calculated by numerical integra-
tion using the continuous absorption coefficient given in Zq. ¢3.11) with

*

m replacing m. The intensity of the high series alore was obtained from

the following absorption coefficient

x
4

# 2
= K, ff[exp(Ry/(m )2kT) - exp(nv/kT)] for hv < Ry/(m )2kT
£3.12)

*
for hv > Ry/(m }2kT.

bl
"
(=]

Equation (3.12) mav be obtained by integrating the true bound-frez contribu-
tions due o states with m > m* and subtracting the result from Fn. (3.11).
A trial and interpclation procedure similar to that used for the high lines
(Section 3.4) was employed.

As in the case of high lines, analytic expressions can be obtained where
trhe lines are optically thin, as follo's, TFirst, suppose the Lyman a line is

optically thin. Then, starting from Fq. (2.14) we set m' = 1, n' = n,

"
integrate n from =+l to =» and m from m to =. The recult is
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Lis

- S ft
T2t 2exp(-t/“)(expft/(m*)zl -1 - t/{m )2} (3.13)
a

] .
whore IHS is the total intensity due to all lines with m > m and Ia 1s
the intensity due to the Lyman a line. Setting IHS/Ia = 0.1, Eq. (3.,13)

can be written

1/2

® *
m = {t/&n[0.05t%exp{t/u4) + 1 + t/(m )2}) (3.14)

*
which can be sovlved by iteration, starting with t/(m )2 = 0. A similar pro-
cedure can be applied to the case of combined high series and high photoioni-

zation, yielding

m* = {t/tn[0.05tZexp(t/u) + 1]}1/2. (3.15)

Secondly, if the Lyman a line is self-absorbed, Eq. (2.4) must be

introduced, yielding for high series the relation

% - - - i - -4
m 2 (e/tnf1.67 x 10720 /8e /M (173N /2 12 L 2 23169

- &
where s = SNe/NL' For m > t Eq. (3 "f) becomes

* -
m = 2.u2et/16 tS/Q“f(l—e 3t/“)§f/8. (3.17)

The result for high series and high photoionization corresponding to Eq.

(3.16) is
3 - 7 ~t/u - W, - --12 /
m = (t/tn[1.87 x 1077 ¢ /8 /M (1YY 2 (1.18)
a ’
For m > t Eq. (3.18) becomes
# /8 -1/1? -3t/u 1/4 -1/4
m = 8.33e0 8 17 3/ L/ (3.19}
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Figures 11 and 12 show results for high series and high series plus high
photoionization respectively. Equations (S.iu) and (3.15) give horizontal
straight lines for each temperature but these only appear within the range
of values considered at t = 4, Equations (3.16) and (3.18) give straight
(or nearly straight) lines on thesc figures. The intersection of lines from
Eq. (3.16) or (3.18) with the line at the same temperature given by Eq. (3.1u)
cr (3.15), as appropriate, corresponds to the point at which the Lyman a line
changes from being optically thin to self-absorbed (see Fig., 7 of Part 1).
Curves obtained by the aumerical integration procedure outlined previously
are shown for densities of 1 and 10"3 times atmospheric. As s increases,
these curves follow the optically thin results until sgelf-absorption of the
nigh transitions sets in. This self-absorption causes m* to pass through
a maximum in the case of the high series alone but for high series and high
bound-free, m* is sufficiently high that the transitions remain nearly
optically thin for all cases presented. Figures 11 and 12 show that m* can
reach considerable values,

Comparing Fig. 10 with Figs, 11 and 12 shows that in most cases m*

lies above m implying that the high series usually transfer at least 1/10

as much energy as the Lyman a line.
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APPENDIX I. Ootically Thin Radiation from High Lines and the Bound-Free

Cont inuum
The intensity from an optically t...n line corresponding to a transition

m tc n in an ion of charge z-1 1is (see Section 3.1)

Substituting the Boltzmann relation, Eq. (2.5), the hydrogenic expressin

for fmn and the explicit form of the Planck function we get

2 2

. X,, N z€y.,/n<kT
T b DL R (1.1)
mn /3 c3né m3 “a n3

<n <n is found

The total intensity from lines lying in the interval n 2

1

by summing Eq. (I.1) over n . Changing the summation to integration (which

implies n, >> 1) pgives

28n“mee1°z“

n’\

g ¥l e~ 1.a

n=n, mn 3¥3 ¢3h® 3 Oa
(1.2)

=

eﬂﬁ{kaT s[exp(zsz/nikT) - exp(zsz/nng)].

Now, since the photcn energy can be expressed as
- - 22 2 _
hv = Xy - 2 xH/n Bm’

Eq. (I.2) may be written

n 8. L 10,4

2 2°1'm e'Vz N -E /kT -hv. /kT ~hv,/kT

oI n Ll —L-aé-e ™ kT sfe e 2 (1.3)
n=n, m 3/3 c¢Ih6  m3 Ya

where vy and v, are the central frequencies of lines with lower state m

and upper states ny and n, respectively.
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The optically thin emission from a bound-free continuum with initial

state m in the interval vl to v2 is
V2
Ibf = I Bvov,m Nm dv
v
1l
B b 10,4 _ v
i 2%n mee 2 1 Na Em/kT 2 -hv/kT
= -—-6— e 8 e d
3/3 ¢3nd m3 “a vl
which gives
8,4 10,4 " -
2°%n mee z 1 Na Em/kT hvllkT
Ibf —,-Q—e kT s[e
3/3 c3nb m° "a

—hvz/kT

Finally, ccmparing Eqs. (I.3) and (I.5) we find that I ¢

1.

(I.4)

(1.5)
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APPENDIX II. The Use of the Bouni-Free Continuum Absorption Coefficient

to Represent Self-Absorbcd, Effectively Merged High Lines

Self-absorbed, effectively merged high lines radiate with black-body
intensity at all frequencies of the interval over which they occur. Such
lines can therefore be replaced by any continuous absorption coefficient
which is large enough to give black-body radiation in the appropriate
interval. It is the purpose of this Appendix to show that the extrapolated
bound- ‘ree absorption coefficient is sufficiently large in the above sense.
We do this by showing that the minimum value of the optical depth of the
extended continuum corresponding to merged, self-absorbed lines is suffi-
ciently large to give approximately black-body radiation.

The lines which we consider are assumed to have the asymptotic wing
profile L(v) = b/(v-Vo)a (see Part 1, Section 3.3) where b and a can
vary from line to line. Certain useful relationships for such lines have
been derived in Part 1, Section 3.3 and will be repeated here for convenience.
The line is considered as either opiically thin or self-absorbed depending
on the optical depth Tt defined by

T = [I” dev/w)s = 1-e-i-f Ns/w [1-exp(- hv/kt) ] (11.1)
o

mC
e

where N is the number density of particles in the initial state and w is

a line width parameter given by
w= /(@ Drpey %)]a/(a'l). (11.2)

The separation between optically thin and self-absorbed behavior is defined

to be at
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- 2/(a-1) (11.3)

When optically thin, the effective width is given by
W= owr, (I1.4)

When self-absorbed, the effective width is ;iven by

W= 2w ri/2, (11.5)

Our first step is touse the above equations to find the optical depth at
a distance of half the effective width from the line center (i.e. at
Vy z vo ! W/2) when the line is self-absorbed. Using the standard relation-

ship between the normalized line profile and the absorption coefficient at a

point in the line, we get for the optical depth at vy

T = K s = [. XK .dv L(v,)s.
v",L vw,L o v,L W

Inserting into this the expression for L(v) and Eq. (II.1) we obtain

1 = wib/(W/2)2. (I1.6)
VH’L

Finally, Eqs. (1I.2), (II.5) and (I1I.6) yield the simple result

. l,4-a ®
va,L = [r(1 - ;)] . (11.7)

Having obtained this convenient expression for optical depth at Vo We next

seek to compare the value of the continuum absorption coefficient at the line

#*
The value of T L for a = 2 (dispersion profile) is 1/x while the
w'

value for a = 2.5 (quasi-static profile)is 1/2.7,
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frequency to the line absorption coefficient at v, and hence. using Eq.
(I1.7)., determine the optical depth of the continuum at the frequency of the
line.

First, we ask under what conditions will the optical depth of the
extended continuum be a minimum, consistent with the line to which it corres-
ponds being both self-absorbed and merged. This question is most easily
answered if we transform it into a problem in terms of th> line absorption
coefficient. We may do this as follows. For N particles per unit volume,
the optical depth of the continuum may be written Yv,c = Nov'cs where ov’c
is the continuum absorption cross section which is independent of tempera-
ture and density. Thus, LI is a minimum when Ns is a minimum. On the

,

other hand, the line optical depth at v, may be written, from Fq. (II.7),

T = No S = constant where o, [ ™may vary because of the variable

VW'L VH,L W
line width. From this last result, Ns will be a minimum when ovH,L is a
maximum. Thus our preliminary problem has become that of finding under what
conditions the line absorption cross section at the equivalent width (i.e. at
Vw) has its maximum value consistent with self-absorption and merging.

This maximum value will occur when the line is simultaneously just
self-absorbed and just merpged as will now be argued. The line must be just
self-absorbed because any greater self-absorption will increase the effec-
tive width and thus push vy further into the wings of the line with a

consequen? decrease in the line absorption cross section at v To see that

W
the line must also be just merped we first observe that further merging
while remaining just self-absorbed can only be achieved by an increase in
line width, w, (in order to increase W at constant 1, see Eq. (11.5))

with a compensating increase in the value of Ns (in crder to maintain v

constant for increasire w, see Eq. (II.1)). Now, the optical depth at vy
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is constant (see Eq. (II.7)) and hence, since Ns has increased, the
absorption cross section at v,* must have decreased.

It follows that if the extended continuum absorption coefficient gives
approximatily black-body radiation at the frequency of a line that is just
self-absorbed and just merged, it will also give black-body radiation when-
ever the lines are self-absorbed and merged. We therefore examine the
optical depth of the continuum in this worst case of a just self-absorbed
and just merged line.

When a line is just self-absorbed, the effective width is given by

combining Eqs. (II.3) and (II.S) to get

sy 22/(a-1) (11.8)

Hence, the line coefficient a*t ->ne half the equivalent width from the line

center is given by

K - lez

b
r - _ h g
LS me £N 01 exp( hv“/kT)] waQa/ ) (11.9)

”w' e

where we have put v -v = W/2 and then used Eq. (II.8). The relationship

between b and w is given in Eq. (II.2). Inverting Eq. (II.2) and substi-
tuting for b 'n Eq. (II.9) yields

2 traa - Ly
It _fN (2 (-hv,/kT)] a (11.10)
c mt b T eXPi-hvy " ?aira-l) ) :

Kvw,L *

Inserting the hydrogenic expression for f (Eq. (2.7)), we get

1,,-2
6 o2 Ipd (r(i- =)]
K\) L = 2 %—E 11 1 c¢R (1 - exp(—hv“/kT)]Nm x “‘——a—/‘(‘-:f_v' . (I1.11)
W /3 €n m3 ol v; w 2
The hydrogenic bound-free absorption coefficient is
5 2 2p?
Kk =2 e 1 1 cRTyy exp(-hv/kT)IN_. (11.12)
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Putting Vg TV TV in Eq. (II.11) and dividing Eq. (II.12) by the result
we pet
9 -
% = SheR . (11.13)
v,L

But the interline spacing, D, 1is given by

o
"

cRh[1/n2 - 1/(n+1)2]

ne

cRh 2/n3 (1I.14)

(since n >> 1) and where lines are just starting to merge, w 2a/(a-l)=‘4=D
so that Eq. (II,13) and (II.1l4) can be combined to give
Kv c l,,a
= = r(1 - 2)]1° (11.15)
K\J[ a

Finally, since T, 7 Kv s, we combine Eqs. (II.15) and (II.7) to obtain the

optical depth of the continuum,

T = 1. (I1.16)

The interpretation of Eq. (II.16) in terms of a specific intensity is
straightforward since in a uniform medium with no incident radiation we have
(see Part 1, Section 3.1)

-T

I =B (l-e V). (11.17)
v v

It therefore turns out that at the frequercy cf a line which is just self-
absorbed and just merged, use of the pseudo-continuum absorption coefficient

gives 63% of black-body radiation. Since the case examined is on the
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borderline between self-absorption and non-self—absorption*. thiis value of
intensity should be close to the true value. Under conditions where the

lines are more heavily self-absorbed and/or further merged, use of the corres-
ponding extended bound-free absorption coefficient will give an intensity

closer to the black-body value.

'
It should be remarked that whereas the lines are considered either self-

absorbed or non-self-absorbed in our simplified model, no absolute
distinction is made for the continuum. The pseudo-continuum mav therefore

be said to have correctly reproduced the partially self-absorbed condition
of a more accurate line model.
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APPENDIX III. Self-Absorption of the Extended Continuum Corresponding to

Optically Thin Lines

In order to be able to represent optically thin lines by an extension of
the bound-free absorption coefficient (see Section 3.3) it is necessary that
where the lines are optically thin, then the extended continuum should also
be approximately optically thin,

To start the discussion, we have to consider a situvation in which we
know the optical depth of the continuum. Appendix Il demonstrates that, in
the case of a line which is just optically thick (and hence also just opti-
cally thin) and whose equivalent width equals the interline spacing, then
the optical depth of the corresponding bound-free continuum is unity. In
this case, therefore, the continuum is partly self-absorbed. If the path
length is decreased for constant line width then the line will become thinner
while the continuum will also become thinner. If the line width and path
length are decreased at the same rate the line will remain just optically
thin but the continuum will become thinner. The final possibility is to
increase the line width and path length keeping the line iust optically
thin. The increasing path length will increase the self-ahsorption of the
continuum, apparently making the representation worse. However, we recall
that we start with a line whose equivalent width is equal to the interline
spacing. Increasing the width of the absorption coefficient of such a line
will cause it to more heavily overlap its neiphbors with a mutual increase
in line absorption coefficients (except near the line centers). The line
is therefore no longer necessarily thin and must he described bv taking
into account the mutual interference with adiacent lines. According to
Section 3.2, the combined absorption coefficients of these merged lines tend

towards the extended bound-free absorption coefficient.
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It can thus be seen that the bound-free absorption coefficient will give
a good epproximation to the frequency integrated intensity from high lines

wherever these lines are optically thin.
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