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SU1MARY

This report discusses the data needed to perform radiative transfer

calculations in nonhydrogenic gases in local thermodynamic equilibrium and

presents some approximate methods for computing the radiative energy

transferred by spectral lines where the properties of the gas are uniform.

The methods currently available for calculating the cross sections of

radiative processes are described and compared. An accurate method for

calculating the species composition of nýtrogen is described and the results

of such a calculation are presented. The important line broadening

mechanisms are discussed and the potentially accurate, modern theories of

line broadening are outlined. The results of these theories are used to

justify approximate line profiles which are simpic enough for use in

radiative transfer calculations.

Simple approximations to the exact curves of growth of intensity are

described for lines with Doppler profiles and for lines with profiles of

a class which includes the dispersion and quasi-static forms. The concept

of the effective width of a line intensity profile is introduced and

techniques are developed for dealing with the overlapping of the intensity

profiles of small groups of closely spaced lines (as, for example, in a

multiplet).
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GENERAL INTRODUCTION AND OUTLINE OF REPORTS

The transfer of energy by radiative processes in gases has been a

sulbject of study for many years by astrophysicists and spectroscopists.

The aim of these workers has for the most part been to examine the spec-

tral distribution of radiation and to use it to predict the internal

stri.c cure and state of the gas from which the radiation emerged. More

recently, the high temperatures associated with nuclear explosions and

with the gases surrounding a space vehicle as it enters a planetary

atmosphere have lead to interest in the subject of raOiative pas dynamics

which combines radiative transfer and fluid wchanlcs,

In gas dynamic problems, radiation appears as a frequency integrated

flux in the energy equatioa. Therefore, the spectral distribution of the

radiated energy is, in principle, not required. In practice, however, no

exact method of avoi •ig the computation of the spectral distribution has

been devised except in the limiting cases of optically thin and optically

thick media. A widely used approximation which avoids spectral difficul-

ties is the "gray gas" approximation which treats the radiative properties

of the gas (specifically the absorption coefficient) as independent of

frequency. The gray gas has been the model for much of thc woik in radia-

tive gas dynamics but recently some progress has been made in the use of

nongray absorption coefficients.

A principal difficulty in any attempt to approximate real absorption

coefFicients is that not much is known of the relative roles played by the

various radiating mechanisms even in simple transfer problems and, in

particular, the importance of spectral lines is uncertain. The work pre-

sented here examines the radiative processes which occur in gases for the
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simplest possible :ase, namely a Ras of uniform properties in local

thermodynamic equilibrium. Since it happens that the relative importance

of the various radiative processes depends strongly on the state of the

gas and the path length, this investigation was carried out for a specific

range of conditions chosen to include those achieved by a space vehicle

reentering the earth's atmosphere.

This work is in three parts. Part I describes the various radiative

processes, discusses how the corresponding absorption cross sections and

occupation numbers may be calculated, presents approximate methods for

computing the radiative energy transferred by spectral lines and gives an

account of the relevant theories of line broadening.

Part 2 examines some characteristics of line radiation in a

bydrogenically distributed spectrum. Some fairly simple calculations help

to reveal the factors which determine the distribution of relative import-

ance among the stronger lines. Also presented are new methods of account-

ing for the many weak lines and an indication of their importance relative

to the strong lines.

Part 3 is an account of the calculation of specific intensities in

uniform nitrogen allowing for all important radiative processes and with

particular emphasis on the lines. The data is tabulated and discussed,

the method of calculation is described and, finally, the results are

presented graphically and interpreted in detail.
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. INTRODUCTION

The basic equation governing the transfer of radiant energy in a

non-scattering gas in local thermodynamic equilibrium may be written

dI /ds r K (B - I ) (1.1)
V V V V

where I is the specific intensity of radiation in the direction s per

unit frequency v per unit time per unit area, B is the Planck distribu-

tion function and K is the linear absorption coefficient. The quantityV

K is here defined to include stimulated emission and completely specifiesV

the radiative properties of the gas; this Part is concerned with the methods

of calculating K which are currently available for light non-hydrogenicV

atoms and ions, in particular nitrogen.

i.1. The Absorption Coefficient

Absorption and emission of radiation in a gas correspond to changes in

internal energy undergone by atoms and molecules and changes in the transla-

tional energy of free electrons. Since the discussion of this Part is re-

s,.,.cted to atoms and ions, the energy changes we have to consider are

exclusively electronic. Fortunately, this aspect can be separated from the

problem of finding the number of particles ii a given state so that the ab-

sorption coefficient due to a species S can be written

K = S NISi v il - exp(-hv/kT)] (1.2)

where N is the number density of particles of species S in state 1Si

(known as the occuDation number of state i)o a. is the cross section for

absorption from state i, and che factor [l - exp(-hv/kT)] accounts for
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stimulated emission. The main problem in finding the occupation numbers is

to determine the total number of particles present for each species, th.'s is

considered in detail in Chap. 2 where plotted values cf the species composi-

tion of nitrogen are presented.

1.2. Absorption Cross Sections

The cross section aV of Eq. (.2)is the sum of a number of cross

sections each corresponding to an independent electronic process with initial

state i and it is usually most convenient to consider each one separately.

A sketch of a simple arrangement of electronic energy levels is shown in

Fig. 1. As can be seen from the figure, three distinct types of absorptive

transition can occur: bound-bound, bound-free (or photoionization) and

free-free. Free-free transitions give rise to cross sections which are con-

tinuous for all values of frequency, bound-free cross sections are zero for

frequencies below a threshold value but finite and continuous for higher

values, in contrast the cross section of a bound-bound transition is signifi-

cant only over a very small frequency interval and can in some senses be

treated as a singularity occurring at a single frequency.

Bound-bound transitions are discussed in Chaps. 3 and 4: Chap. 3 is

concerned with the calculation of the frequency integrated line absorption

coefficient while Chap. 4 discusses line profiles as predicted by the rele-

vant theories of line-broadening. Finally, Chap. 5 describes methods for

calculating the cross sections due to bound-free and free-free transitions.
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2, SPECIES COMPOSITION AND OCCUPATION NUMBERS

2.1 Introduction

In a gas in local thermodynamic equilibrium the occupation number

density Nsil of the ith energy level in a given soecies, S. may be

found from the Boltzmann formula

N Si gins exp(-Ei/kT)/(Q)S (2.1)

where NS is the total number of particles of species S per unit volume,

E.i is the energy of the ith level above the species ground state, gi is

the statistical weight of the ith state, and (Q)s is the partition func-

tion of species S. The species composition is determined by a set of mass

action equations together with species conservation and charge neutrality

conditions. In the case of a single diatomic gas, like nitrogen, the mass

action equations are ionization and dissociation equations which have the

general form

NSNS' (Q) s(Ws' -D/kT
N - - - ,S 0 )S , e (2 .2 )

For an ionization reaction, for example, S' is the electron gas and D is

X, the ionization energy of species SS'. Since the partition functions

(Q)s* (Q)S, and (Q)ss, depend on the number densities of the various

species (except at low temperatures), their evaluation is coupled to the

solution of the mass action equations (which themselves must be solved by

an iterative procedure). It is clear therefore that an accurate determina-

tion of the species composition is a complex problem. Section 2.2 discusses

the problem of predicting the truncation point of a partition function.
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Section 2.3 describes the calculation of species composition in the particular

case of nitrogen; the results presented here will be of use in Part 3.

2.2. Partition Functions

The partition function of species S may be written to a close approxi-

mation as the product of a translational partition function, (Qtr)S =

V(2wm kT/h 2 ) 3 / 2  (where V is the volume and m5  the mass of a particle of

*species S), with an internal partition function (Qint)S which involves

the energy levels associated with the internal structure. In the case of a

diatomic molecule the internal energy levels are those of rotational, vibra-

tional and electronic excitation whereas only the electronic levels exist for

a monatomic particle. Unfortunately, the higher temperatures at which the

monatomic particles occur lead to a complication of the electronic partition

function which is discussed in the next few paragraphs.

The definition of the electronic partition function of species S is

- -Ei/kT (2.3)

(el)S I

where gi is the statistical weight of the ith energy level, E.i is its

value relative to the ground state of species S and the index i is chosen

such that Ei. 1 > E .. It is well known that the series in Eq. (2.3) is

divergent since it represents the partition function of an atom in an un-

bounded volume of non-interacting particles. When the interactions between

particles are allowed for, the series terminates at some level, imax,

Eq. (2.3) thus becomes
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i
max -Ei/kT

(QelS gie (2.4)
iel

At low temperatures (Z 70000 K) the exponential factors in Eq. (2.4) become

so small that the summation may be truncated after a few terms and the value

of i is not important. At higher temperatures, on the other hand, latermax

members of the series become important and because the energy levels tena to

a limit, X the ionization energy, the last terms in the series are frequent-

ly the dominant ones since the gi increase with i. The value of imax is

then of great importance in the calculation of the partition function and

since the value of i depends on the interaction force and the density ofmax

interacting particles, it follows that the partition function must be density

dependent. One consequence of this density dependence is that the perfect

gas equation of state does not strictly hold (since the derivative of Q

with respect to volume is not zero) but it is shown in Appendix I that the

departure over the range of conditions considered here is negligible in the

case of hydrogen (which is the only gas which can be treated analytically).

The termination of the partition function series is interpreted as a

reduction in the number of bound states to a finite number which implies a

reduction in the ionization potential. There will therefore be a correspond-

ing change in the value of X to be used in the mass action equation: the

vacuum ionization potenttial X has to be replaced by an effe-tive ionization

potential Xeff 2 X - AX. This effect is additional to the influence of the

partition function oi the species composition. The effective ionization

energy is related to the termination of the partition function by the obvious

relation E. < f while for hydrogen-like states, the highest bound
Iax - eff

quantum number n is given by the largest value of n satisfying the
maX etax

relation



6

hRc < AX (2.5)
( -

max

where R is the Rydberg wave number constant.

The depression of the ionization potential clearly depends on the mech-

anism of interaction between the particles; at sufficiently low temperatures

the interaction will be through a Van der Waals force but at such temperatures

(except at extremely low densities) the partition function will be dominated

by its leading terms and the details of the cut-off point are not important.

At higher temperatures, the dominant interaction is by the electrostatic

forces of charged particles and it is with this effect that we are concerned.

The problem of the determination of AX as produced by the interaction of

charged particles has received considerabli attention but as yet there does

not appear to be complete agreement on the model to be used. According to

most authors, an adaption of the theory due to Debye and HUckel for electro-

lytes1 is valid in some form and over some range c-f relatively low densities

and high temperatures while at high densities UnsSld's2 nearest neighbor
'3

effect is dominant; a recent paper by Stewart and Pyatt presents a more

elaborate theory in which the Debye-HUckel and nearest neighlor expressions

appear as limiting cases. Bond, Watson and Welct%, however, suge.it that at

low densities and a low degree of ionization the Bohr radius should noz

exceed th, mean distance between particles. These theories are discussed in

the next paragraph but it should be remarked that even the best of them are

not highly accurate since they all postulatc a sharp cut-.iff between bound

and free states and neglect the displacemert of the higlier bout levels

which occurs due to external force field'.

The Debye-HUckel theory examines the screening Offect -f cha-'ýed

particles surrounding an atom. According to this ::.ecrv the characteristic



distance for the reduction in the Coulomb potential is the Debye radius,

RD, defined by

DR Z 2] (2.6)

where N is the number of electrons per unit volume and N the number of
5

z times charged particles per unit volume. One can now either calculate

thi polarization energies oE an ion and an electron and frnai them the reduc-
6

tion in ionization energy or treat all states whose semi-major axis exceeds

the Debye radius as free. These two procedures are qualitatively equivalent

but lead to results which differ by a factor of two. These are respectively

AXz (ztl)02 /RD (2.7)

and

(ztl)e2 /2RD. (2.8)

The Debye-HUckel theory involves an averaging over charges which is only

valid if the Debye sphere contains a minimum number of charged particles,

according to Duclos and Cambel7 the condition is

N 0 + I N 1 1 (2.9)
* Z 8 r R DZ8 D

which implies that there must be at least one sixth of a charged particle in

the Debye sphere. Combining Eqs. (2.1) and (2.9) rives

N + I z2 N 3_. 1.z1/2 r )1 /2 1.o
SN r (IT) (2.10)

z
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and since the ratio (N + Z Z2 N )/(N + N) 2.6 for kT < 3eV and

0/° 3 10", then Eq. (2.10) must become

i3
N+ 2N < 1kT3(2.11)Ne z2N -_ w Y

z

It can thus be seen that the equality of Eq. (2.9) represents an upper bound

on charged particle density since the Debye volume increases more rapidly

than the charged particle density and hence the number of particles in the

Debye volume must decrease as the number in unit volume in space increases.

Ecker and Kroll8 agree with the Duclos and Cambel result except for a factor

of 3/4 in the limiting density. Bond, Watson jind Welch 4 on the other hand

suggest that the Debye criterion sho'.ld be used provided RD > r m, the mean

distance between particles (not electrons), otherwise the ionization limit

should be depressed to the first state whose Bohr radius, a , is less than

r. Since we have that

ri.- ]l/3 (2.12)
a 4w NN

where N is the number density of atoms, the condition for validity of thea

Debye theory becomes, inserting Eq. (2.12) into the relation RD > r.,

N + < i (N.i3)
a 2 - 4R 3z R

In contrast to Eq. (2.9) this constitutes 3n upper bcund on the number

of particles in the Debye sphere. As an example suppose that the first ior

dominates, then since N x N and all other species are neRligible, the
c o

coebination of E qs. (2.13) and (2.6) with •2.I0) g•ives
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1 N 1 (L) (2.14)
288W - e _ (

which is a very small range of conditions. Most recent workers, 3 ' 5 9

however, use the Debye criterion at much lower densities than the lower limit

of Eq. (2.14). we have to choose between the methods and, in the absence of

any direct evidence, we follow the majority and do not use the mean particle

distance criterion. The question remains as to whether the upper bound of

Eq. (2.10) is ever reached in our range cf conditions. Some numerical checks

confirm that for temperatures above 1/2 eV, Eq. (2.10) is satisfied up to

densities of at least 10 times atmospheric.

A calculation of species composition can therefore be set up as follows.

Starting with arbitrary truncation points for the partition functions, the

system of mass actior plus conservation equations are repeatedly solved and

the results from each solution ar? used to calculate the depression of ioni-

7ation potential according to Debye-HUckel theory and hence to correct the

truncation points of the partition functions. The solution of the mass

action and conservation equations for given partition functions is itself

an iterative procedure. A rapidly convergent scheme is presented in Appen-

dix IV. The composition calculation for nitrogen (some details of which are

discussed in the next section) has been programmed for tie IBM 360 computer

and proves tc be a rapidly convergent computation (50 points take less than

3 minutes,.

2.3. The Co-position of a Nitrogen Plasma

The applicatie;- to nitrogen of some of the ideas of the previous section

will now be discussed. The results of this section will be used in the

radiative transfer calculations of Part 3.
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The lowering of the ionization potentials of any of the components can

be significant but the higher ions have such high excited energy levels that

the truncation point of thu partition functions is nct relevant under our

conditions. We therefore account for the effect in N and N+ (details of

the energy levels ,sed are given in Appendix II) and include terms in the

higher ions which contribute more than I% (see Table 2.1 for details); the

calculated partition functions of N and N+ are plotted in Figs. 2 and 3.

Debye-huckel theory in the form Eq. (2.7) was used since the criterion is

somewhat iess arbitrary than that of E,,. (2.q).

It should be mentioned that use of an approximate partition function

was investigated and the details are given in Appendix III. It seems worth-

while to give a summary here, however. If one truncates the partition func-

tions after the first few terms, the errors in number densities of N and

K÷ can be considerable, but it turns out that the electron density and the

occupation numbers of the variouv energy levels are much more nearly correct.

The electron density is little affected because at low i.onization, where it

Is most sensitive to errors in (Qel)N, either the tempera-ure is low and

therefore the cut-off point is unimportant, or the density is high and the

"exact", density-dependent truncation point is at low energy levels, i.e.,

close to the arbitrary cut-off chosen for the approximate partition function.

The cccupation numbers are insensitive to partition function because where

the truncaced approximation is very badly in error, ionization is high and

ths partition function cancels out between the Saha equation and the

Boltzmann fcrmula (Eq. (2.1)), whereis at low ionization, the approximated

partition function is more nearly correct. A detailed investigation of this

approximation (Appendix III) shows that .rrors in occupation number of about

50t rdn occur at the higher temperatures and densities of the range
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1eV < KT < 3eV, 10- atmos < •p° < 1 atmos. The investigation also

revealed thdt the occupation numbers at high temperatures and low ionization

are sersitive to the cut-off point of the partition function and hence even

our density-dependent truncation point will not yield very accurate results

under these conditions.

Finally, we consider the partition function of molecular species.

Molecular species only exist at relatively low temperatures and hence there

is no problem of truncation in the case of their partition functions. How-

ever, vibrational and rotational states also exist and are coupled to each

other and to the electronic energy levels. As demonstrated in Appendix III,

we will achieve the greatest accuracy if the partition functions used in the

equations of chemical equilibrium are the same as those used in the Boltzmann

formula. Because of this we are restricted in our treatment of the molecu-

lar partition functions of nitrogen to one which is consistent with the
10

absorption cross section material of Allen which we use for the radiative

propert.es of the band-systems (see Part 3). Allen's data is, as far as we

are concerned, a cross section per particle in the lower electronic state

(superscript i) of the transition. We therefore have to find (Ni)s, the

number of molecules in the lower electronic state, with reasonable accuracy.

This may be done by first solving the equations of chemical equilibrium for

the total number of molecules, NS, using the truncated partition functions

in the 'orm

q s
(QitS (O•)S(Q 1s(gi)s exp [-(E 1)s/kT]

and then using the Boltzmann relation in the form

(N) (g)s(Q(Q1 )(Q )N exp [-(Ei)s/kT]/(Qn)
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The rotational and vibrational partition functions used are those given by

Allen,

Qv = [I - exp (-hcw /kT)] (2.15)

and

(Q1) = kT/hcBie (2.16)
r e

where wi and Bi are spectroscopic constants taken from Allen's report.
e e

These expressions treat the molecule as a harmonic oscillator and rigid

rotor respectively. For N2 the first excited level has an energy of 6.2eV

and the summation for (Q int)N2 may be truncated after the first term, for

N+ on the other hand 3 excited levels must be included. Details are to be
2

found in Table 2.1.

The partition functions of Table 2.1 were incorporated in a computer

program to find the particle densities in nitrogen. The mass action equa-

tions for given partition functions were solved by the iterative technique

discussed in Appendix IV. The results as functions of density and tempera-

ture are presented in Figs. 4 to 7. After these calculations were started,

a paper by Drellishak, Aeschliman and Cambel11 became available; they also

use density dependent partition functions according to Debye-Huckel theory

but choose the cut-off according to the alternative criterion (i.e., bound

states have a semi-major axis less than the Debye radius) this gives rise to

a somewhat higher value of partition function. Bearing in mind this differ-

ence and difierent molecular partition functions, the results of Ref. 11

are in reasonable agreement with ours
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TABLE 2.1

Expressions used for the partition functions of nitrogen

(Qint)N+ = kT x 10 3 {8.34[1-exp(-0.274/kT)]I + 18.56 exp(-1.12/kT)
tN2  [1-exp(-O.236/)cT)]

+ 7.74 exp(-3.18/kT)
1-exp(-0.300/kT)

(Q 4 .03 x 103 x exkT
inN21-exp(-.292/kT)

(Qel)N density dependent, see Appendix II for energy levels.

(Qel)N density dependent, see Appendix II for energy levels.

(Q el)N, = 6 + 12 exp(-7.102/kT)

(Q el) N++ = I + 9 exp(-8.340/kT)

(Q el) N..= 2 + 6 exp(-l0.003/kT)
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3. BOUND-BOUND TRANSITIONS

3.1. Introduction

Bound-bound transitions occur between discrete energy levels of the

atoin. They would therefore occur at a precise value of frequency if it were

not for certain perturbations of the energy levels due primarily, in our

case, to neighboring particles. These perturbations are discussed in the

next chapter under the title "Line-Broadening" and it is sufficient to

observe here that for all cases of interest to us the resulting line width

is very small in the sense that the spectral structure of a line is on a

quite different scale of frequency variation than those of either the Planck

function or the continuous absorption coefficient arising from other

processes.

This difference in scale leads to two important simplifications of the

transfer problem. In the first place, the Planck function can be taken as

constant across a line and for some line profiles analytic expressions for

line intensity can be obtained (Section 3.3 discusses some relevant cases).

In the second place, although the transfer problem is highly non-linear in

absorption coefficient, an effective separation of the frequency integrated

intensity into line and continuum contributions occurs if the state of the

gas is uniform.

This second simplification can be easily demonstrated as follows. The

formal solution of the equation of radiative transfer (Eq. 1.1) in a uniform

medium with cool, transparent walls is

a

I f dvB [l-exp(-K s)] (3.1)
J V
0
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Now, let KVL and K be the absorption coefnicients due to lines and

continuum respectively. Then, K = K + K and, adding
v vL vCandig

B Vexp(-KVcs)-exp(-Kvcs)] to the integrand of Eq. (3.1), we get

dvB vl-exp(-KvLs)]exp(-K,(s)+ f dI V I-exp(-KVcs)]

O 0

Finally, if we recognize that the tern l-exp(-KVL s) is negligible compared

to the second term everywhere except in the neighborhood of the unperturbed

iine frequencies vi, we can write

I Z I I Li exp(-KVicS) + IC (3.2)

where we define

I Li = Bvi f dv(l-exp(-K vL S)

0

and

IC £If dvBV[l-exp(-Kvcs))

0

This result is apparently well known. 2 ' 1 3 The interpretation is that near

a line the line and continuum coefficients each reduce the intensity associa-

ted with the other but the overall effect on the continuous rodiatiin is

negligible because the frequency intervals affected are very small while the

reduction in each line gives rise to 3 factor exp(-K VicS).

A further simplification of line transfer problems arises from the fact

that the value of the frequency integrated line cross section is independent

of the line profile. Because of this the cross section for a transition frorn
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a lower state J to an upper state J' can be written in the form

avJJ' e fdjL(v) %3.3)
e

where L(v) represents the line profile defined so that CL(v)dv = I and

fjj,, the f-number, is defined in terms of the dipole matrix element of

quantum mechanics and thus depends on the wave functions of the two states

involved. It may also be interpreted as a correction to the classical solu-

tion for the energy radiated by a harmonic oscillator and for this reason it

is frequently ciiled an oscillator strength. The determination of f and

of L(v) are largely separate problems; the former is discussed in

Section 3.2, but a complete chapter (Chap. 4) is devoted to a discussion of

line profiles. The final threesections of this chapter consider solutions to

the transfer equation for lines with some common types of profiles and a

treatment of the problem of the merging of closely spaced lines as, for

example, in multiplets.

3.2. Oscillator Strengths

The oscillator strength of a line is equal to a constant times the

frequency integrated cross section as can be seen from Eq. (3.3). In

Russell-Saunders coupling (which holds for the stronger lines of most light

or medium elements), the radial and angular contributions to the matrix

element may be separated and the oscillator strength written in the formI1

&2m

f, ( )) (3.4)fJJ' 3h g

where gj is the statistical weight of the lower state and the remaining

factors are as follows. C ) is the relative strenRth of a line within
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a multiplet, it depends on inner quantum numbers J and J' and on total

angular momentum quantum numbers L and L'. Values of ' ( ) have been
compledby Alen15

compiled by Allen. '1 (,.) is the relative strength of a multiplet within

16
a transition array. An early paper by Goldberg gives tables of a related

quantity from which j ( ") can be obtained with the aid of a normalizing
17

factor, fortunately most of Goldberg's values have been normalized and

tabulated in the books by Allen15 and Aller.18 In order to take account of

the possible parentages of number of equivalent electrons, a further paper
19

by Menzel and Goldberg is sometimes required (where Ref. 19 does not apply

see Kelly and Armstrong 20). These tabulations are convenient to use but

unfortunately they do not cover all the cases of interest and for the excep-

tions it is necessary to turn to the more general expressions obtained by

Rohrlich21 (which are also presented by Griem 5) and by Shore and Menzel.22

These expressions take account of the parentage of equivalent electrons and

they give both / (3) and (. ) in terms of the Racah coefficients

w•'-"h are tabulated in a number of places, 5'23 25 the most extensive of

24
which appears to be that of Nikiforov. The final quantity appearing in

Eq. (3.4), 0, is the radial matrix element for the jumping electron. It is

the determination of this quantity which is the main problem in f-number

calculations; r-ime of the methods currently available are discussed in the

following paragraphs.

The most popular general method is that due to Bates and Damgaard2 6

(which is also given in detail in Griem's book 5). They observed that the

most significant contribution to the radial matrix element a frequently

comes from a region in which the potential has almost reached its asymptotic

Coulomb orm. They therefore use hydrogenic wave functions but replace each

principal quantum number n by an effective quantum number n* determined
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from the experimentally measured value of tne energy level. Comparison of

this method with experimental results and the predictions of more accurate

theoretical methods shows good agreement when the jumping electron is out-

side closed shells or in an excited level, but may be orders of magnitude

in error when the jumping electron is one of a number of equivalent

electrons. Griem5 has evaluated f-numbers using the Bates-Damgaard method

for many of the lines listed in Refs. 27 and 28. A check of his values for

some lines of NI against the rtsults due to Kelly (see below) of more

accurate self-consistent field methods shows good agreement in the visible

and infrared, but an underestimate of approximately an order of magnitude

for the ultraviolet lines. This discrepancy is due to the fact that ultra-

violet lines originate from particles in a low state of excitation where the

Bates and Damgaard method is least accurate. Another defect is that this

method cannot predict values for transitions between states within the same

shell (which often give rise to very strong lines). Finally, a modifica-

tion to the Bates and Damgaard method which takes some account of the non-

hydrogenic form of the wave functions may be found in the paper by Burgess

and Seaton29 whose primary purpose is to develop a similar method for

bound-free transitions. This modification removes the worst inaccuracies

of the Bates and Damgaard method (naturally at the expense of greater

complication) but depends on experimental knowledge of energy levels which

is unfortunately not always available.

Nonhydrogenic wave-functions are used in the class of methods known as

self-consistent field approximations. Of these, the most widely used for

accurate calculations is based on the wave-functions of hartree and Fock.

It is, however, very lengthy and has only been applied to a few lines of a

30few elements. Kelly has use.l iZt o calcuiate f-nu-:bers for several
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important lines in the ultraviolet spectra of nitrogen and oxygen; these

calculations can be expected to be accurate to about 20%. Also due to

Kelly is an extensive list62 of values of a2 for nitrogen and oxygen which

he calculated using a simplification due to Slater of the Hartree-Fock

method. Thanks to these values one can calculate the oscillator strengths

for any of the important lines of nitrogen and oxygen to within a factor of

about 2 and can reasonably expect the average accuracy of all the strong

lines to be rather better than that.

3.3. The Curve of Growth for a Single Line with Wing Profile b/(v-v )a
o

It was pointed out in Section 3.1 that the equation of radiative

transfer for a line is simplified by the narrowness of the line. For a

single line Eq. (3.1) therefore becomes

I B [l-exp(-K s)]dv (3.5)

Performing the quadrature In Eq. (3.5) clearly requires the specification of

the function K (0). However, when K s << i for all v the expression

reduces to

I B s! K d'. (3.6)

00

whc'6 is a particular for-, of the well-knorn. o;)ticaliv thin lii't; it s

be observed tnat this ex-ress:orn does not depend on the r'ofiýe (compd re

Eq. (3.3)). There are a nunter of prof es for which the integration in

l. (J.) can be perfc-r-ed In close, . iiowever, we wil. e co-,ncerr,:

here wit, tne as}-ptct'c lir.i of lar-,e path-ienr-.tn for a particular c.ass

of pf --c.
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The normalized profile L(v) of Eq. (3.3) which we will consider has

the form

b
L(v) %. a > 1

1V-% 01

for v-v >> .j. The results to be derived are not new, at least expressions

for the important cases of a = 2.0 and a*= 2.5 can be found. but no

derivation appealrs to be available and the general form does not ap.ear to

have been obtained before. For sufficiently large path-length, the line will

become heavily :elf-absorbed near the line center and the intensity in this

core region will be B. independent of the core profile, the only effective

part of the absorption coefficient will then have the form

K = K dv x b/IVV-a

0

Defining the transformation z E K s and taking appropriat._L c-are of theV

li its we get from Eq. (3.5)

i 1/ Ia f -(l+l/a) -I B 2 - (bIS K dv) X (1-e-z)dz (3.)
v a V Jo

ihe i!.:egra. over z of Eq. (3.?) may he performed by parts to yie.(ý

I!2 _IlaK )ia) a .,-e . a- z e
a Jo IJ 

10

wher• the first term in th sqaar -ac.e: is zero for a > C arc :he seczC.z

terr is a fcr• -o the -omplete garC.a 'ft-ct ;on !'or a c I. ;tic . V?-

th'erfore .eccoes
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2B (bs K dv) 1/a r(i - 1 (3.9)
0 j0

It now becomes convenient to define quantities w a11 T as follows

w - bl/(al)[r(1- al-)a/(al) (3.10)

and

"r sJ iodv/w (3.11)
f0V

Then Eq. (3.9) can be written

I/2wB 1/a (3.12)
0

and the corresponding form of tae optically thin result (Eq. (3.6)) is

I/2wB I/2 . (3.13)
0

The int.ersection of these two cur-es occurs at

2 a/(a-l) 3.1.)

For Y >we call the line self-absorbed (or, sometimes, optically

thi.x), for T c 2 we describe the line as not self-absorbed or

Opticaly thin.

The quantity w has the dimensions of frequency and -:an be interpreted

as representair4 -.he width of the abso"ptiori cicfficient profile (as we will

Show. it is prezisely the semi-h.Mif-width of a dispersion profile). The

ieso) ess pararreter i is arn oAtical depth based on an absorption coeffi-

ciort 2 dv/w. The relao-.:r .,ip berweern this absorption coefficient and

that of a line with a dispersion prmile (a - ?) is sketched on rig. 8a; it
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can be seen that in this case, the value of JOKVdv/w is w times the peak

absorption coefficient of the line. The quantity I/B has the dimensions

of frequency dnd will be called the "effective" or "equivalent" width of the

line. Frwmn this deflnition it follows that the energy transferred by a line

is •qual to the effective width of the line timeL the value of the Planck

intensity at the line center. When the line is self-absorbed, so that the

central part of the line is blackened out, the effective width has a fixed

relationship to the intensity profile (specifically, half the effective width

is the distance from the line center at which the spectral intensity has a

value of 1 - exp-cr(l - !)I-a) times the black-body value). Figure 8ba

shows the equivalent width and the spectral distribution of intensity for a

typical self-absorbed line. When the line is not self-absorbed, the equivalent

width is still defined as before but it is no longer meaningful as a representative

width of the intensity profile (see Fig. 8c). Finally, the ratio of effective

width to line width (i.e., absorption coefficient half-width) is I/2wB vo. This

quantity has the value 21/(a-l) at the intersection point of the asymptotic

relationships Eqs. (3.12) and (3.13).

The two cases of most interest are those of a dispersion profile, where

a = 2, and a quasi-statically broadenea line. where a = 2.5. The corresponding

forms of Eqs. (3.12), (3.13) and (0.14) are to be found in Refs. 31 and 32.

Reference 31 also obtains the con.plete curve of grow-:h of a pure dispersion

profile and it is of interest to compare the asymptotic forms to the exact curve.

A dispersion profile has the form

Ct

L(v) dis (3.15)
1(V- 2 2

o +Wdis

where Wdis is the semi-half-width (i.e., it is half the width of the line
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where the absorption coefficient has half its maximum value). This profile

becomes w d/110-u )2 in the wings and, using r(1/2) = in Eq. (3.10),

we obtain w = Wdis.

'he exact curve plotted from values given by Penner 3 1 is shown on Fig. 9

and compared with the asymptotic resu. tc. (3.12) and (3.13). It can be

seen that the line is well approximated by its asymptotic forms, the maximum

error being about 10%. It will be seen later that in practice lines some-

times depart from the true dispersion profile in the core. In such cases the

asymptotes discussed herc are a slightly better approximation to the correct

curve of growth than the true dispersion curve of growth is.

3.4. The Curve of Growth for a Group of Lines with Wing Profiles b/(v-v )a
S-- 0

As one passes along a ray, the intensity and hence the effective width

of a line increases and, in many cases, eventually interferes with neighbor-

ing lines. This section discusses dhe effect c5 this interference as it

occurs in a group of lines in a uniform gas. The method of presentation is

as follows. First, we consider a multiplet of lines with dispersion profiles

and give a simplified model of the curve of growth, we then extend this

result to a more general group of lines and finally apply the same ideas to

a group of quasi-statically broadened lines.

A multiplet is the group of all transitions between two terms. The

individual lines therefore arise from the splitting of energy levels by the

inner quantum number, J. This splitting is so small that the Planck func-

tion can be taken constant across the multiplet; the multiplet, however,

cannot in general be treated as a single degenerate line since for an impor-

tant range of conditions the individual lines are isolated from each other.

An exact treatment of the behavior of a multiplet must take into account the
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spacing and strengths of the lines and is therefore both complicated and

different for each multiplet.

We first discuss three parts of the curve of growth of a typical

multiplet. Consider a multiplet containing N lines with dispersion pro-

files, and assume that the lines each have the same half-width w but

different strengths. We define an equivalent width for the multiplet,

W =_ I/B where I is the total integiated "*ntensity and B is the Planck
V V

0 0
intensity at the center frequency of the multiplet. The equivalent width

ratio, Vr, is defined by W W/2w = I/2wB . Now, at low densities and
rr 'v

0small path-lengths all the lines are optically thin and we may write

W H TM/2 (3.16)r,l m

where, for a path-length s, T is given bym

N O' vDv

-r - K dv. (3.17)m w ViI

Usually, there will be some optically thicker condition at which all the

lines are self-absorbed but no significant overlapping occurs; in this case

one gets

W r,2 N? T m (3.18)

where

N ( l' N ~'l2 NIN* - )12/ 1 1/
/N j (jo K~idv)'=/( F KVi dv) (3.19)

and is a property of the multiplet. One can show without much difficulty

that N < N. Finally, for very large optical depths the multiplet width

will be much less than the effective line widths and the whole group will



25

behave like a single line:

W - (3.20)
r,3 m

Clearly from Eqs. (3.18) and (3.20), the error in treating a multiplet as

single line under conditions where the lines are isolated but self-absorbed

is an underestimate by a factor F . If the lines are very closely spaced

the group can behave like a single line as soon as it becomes self-absorbed

but multiplets of low-lying states invariably exhibit a considerable range of

the Tntermediate growth rate at conditions of interest to us. We will there-

fore consider Eqs. (3.16), (3.18) and (3.20) as holding for three major

regions of growth and discuss the transitions between them. A typical curve

of growth is sketched on Fig. 10.

The intersection between the curves defined by Eqs. (3.16) and (3.18)

occurs at

T 4N* (3.21)
m

This intersection point corresponds to the point of change from optically

thin to optically thick behavior of an isolated line whose absorption coeffi-

cient is

ON

J Xdv i:l Kdv/N*

Curves (3.18) and (3.20) do not intersect but curve (3.20) will start to

descrih; the growth somewhere in the neighborhood of the optical path length

for which the effective line width of the multiplet treated as a single line

(W 3) equals the frequency spread of the multiplet, similarly, it will depart

from the behavior of Eq. (3.18) approximately when the effective line width

of a single line equals the average inter-line spacing of the multiplet.
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The behavior between these two points may vary considerably, however, as

may be seen from the following two examples.

Firstly, suppose that the lines are of uniform strength and evenly

spaced. Then the overlapping of adjacent lines will occur simultaneously,

the entire center-portion of tl,e multiplet will be blackened out, and growth

will occur only by virtue of the wingb of the two outermost lines. There

will therefore be a region of relatively blow growth until the effective

width of the inner lines exceeds the spread of the multiplet and the behavior

of Eq. (3.20) commences, this type of transition is shown on rig. 10.

As a second example, suppose that the N lines occur in M well

separated clusters of closely spaced lines of approximately equal strength.

After the growth as isolated lines, the line centers of the M clusters wil

blacken out first and the M clusters will each, as in the previous example,

have a relatively siow rate of growth until a point is reached where the

effective line widths exceed the inter-line spacing within each cluster and

the multiplet then starts to behave like M isolated lines. Finally, after

another transition region of slow growth, the multiplet will behave like a

single line. The case where M = 2 is shown on Fig. 10.

A number of multiplets of NI were examined and found to be more

closely approximated by the case of evenly spaced lines than by the case of

isolated clusters. However, the concept of isolated clusters is useful

since we will see in Part 3 that it is sometimes possible to group together

weak, adjacent multiplets. In most cases these do not ever merge to a

super-line in our range of conditions and the model we treat is that of N

line5 distributed in M non-merging clusters.

The intersection of the optically thin region with the self-absorbed

but isolated region does not depend on M, so for Tm 4N* we use Eq.(316).
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For T > we treat the lines as isolated (Eq.(3.18)),tV W = D where
m 2

D is the sum of the widths of all the clusters. Then for D/N-'>W 2 > D

the transition region of slow growth commences and the equivalent width is

approximately constant and given by

W23 X D (3.22)

From here on (W3 W2 /M/-N > D) we treat the system as M isolated

clusters by means of the equation

W Z -' (3.23)
r,3 m

where

/IM- M K" .idv) / 2 /( M fKidv)1 /2  (3.24)is [ V[ P1 K i )
0 0

Lines with moderately highly excited upper states are subject to

quasi-static broadening, as discussed in the chapter on line broadening

(Chap. 4). They are also relatively weak and at least partially degenerate.

The ideas of this section can be applied with certain modifications. No

permanently isolated clusters exist so that the equivalent of /MT is unity.

The growth rate is slower (a single self-absorbed line grows as r2/5 com-

pared to the dispersion rate of T /2) and the equations to be used are as

follows. We start by recalling from Section 3.3 the definition of equivalent

line width

w = b2 / 3(r(3/5)] 51 3  (3.25)

where b is a constant obtained from the asymptotic form of the normalized

5/2Holtsmark profile, L(v) % b/(v-v ) The corresponding optical depth forHoltmarkprofle Lv) •bl~vv°0
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a group of lines is

m s, J Kvidv/w (3.26)

0

and the effective number of lines is

N [i! " Kvdv) 2/5/ *f Kvidv) 2/515/3 03.27)

Vii
"0 0

Then, if

T < 25/3 N* (3.28)

we use

I sB 5 Tw . (3.29)Sm
0

However, if T M 2 5/3N, the expression to be used depends upon the

effective width

*3/5 2/5
W = 2(N*) Tm w

If W < D we have

I B VW (3.30)
0

but if V > D and W(N)3/5 < D the intensity is given by

I z B D (3.31)V
0

and, finally, for W(N*) 3 /5 > D we have

I 2 3 W(N*)" 3 /5 (3.32)
0
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These growth expressions have been programmed as a FORTRAN subroutine

for a general wing decay law b/(v-vo)a and will be applied in the

calculations presented in Part 3.

3.5 The Curve of Growth for Doppler Broadened Lines

This section is concerned with the radiation from Doppler broadened

lines. The approach is analogous to that of Sections 3.3 and 3.4. However,

the form of the Doppler profile causes an additional difficulty which re-

quires special treatment. First we discuss approximations to the single-

line curve of growth and then consider the treatment of groups of lines.

The broadening of a line due to the thermal motion of the radiating

particles is known as Doppler broadening and is discussed in Section 4.2.

The resulting absorption coefficient can be written in the form

(v-v ) Atn-2 2
K =K exp{-[ C w } (3.33)

where wD is the semi-half-width of a Doppler broadened line given by (see

Eq. (4.2))

Vo (2kT )1/2
wD = - In (3.34)

and K is the peak absorotion coefficient. This peak value is related to
0

the frequency-integrated absorption coefficient by the expression

K K dv x 0 wil (3.35)
V0 [ VI W D*

The intensity is given by substituting the expression for KV into Eq.

(3.5) and changing the variable of integration to x S (v-v 0 ) /Ln 2 /wDs to
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obtain

I A_.2 (1 - exp - Kv s exp(-x2 ))dx. 0.36)
V 0D 0 000

31
The above integration cannot be performed in closed formn. Penner

presents a series representation of Eq. (3.36); the series is uniformly valid

but only converges reasonable rapidly at comparatively low values of optical

depth. Penner also gives a simple expression which is approximately correct

for small optical depth and an asymptotic expansion for large optical depth.

For our purposes, the approximate expression and the leading term of the

asymptotic expansion are all that are required. These are respectively,

I (t 2 - T/ exp(-/TV/•2) (3.37)
Bv wD

0

and

I 2/1F72 (3.38)
D v w DD

0

where

T D ! Kv s '
o

TD is analogous to the T of Section 3.3 except for a constant, (Ln 2/0)1/2

(compare Eq. (3.35)).

The curves defined by Eqs. (3.37) and (3.38) intersect at the point

tD X 26. If one uses Eq. (3.36) for tD ) 26 and Eq. (3D37) for TD < 26

than the error compared to the exact curve is always within about 15t. The

exact and approximate curves are ccmpared on Fig. 11.
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Using. E£s. (3.37) and (3.38), the soecific intensitv from a multiplet

of N lines can be written in the form

I /--n- - R 't ex[r-(tl/N) V2/21] (3.39)

0

or

I A R 2/tn r (3.40)
B VwD 2 D,m

0

where

N N

T ( d Koidv)s -
i1I i01

and R1 and R2 are given by the expressions

2 Dj 1w

and

? n t 1/2

R ~ D, D)- (m-2

By reference to Section 3.4 it can be seen tht, for a dispersion profile,

the ouantities corresnonding to R i and j2 are unity and /N respect-

iv'1LV. N is a prooertV of the multiplet. It is unfortunate that in the

Doppler broadened case, both P aml P- "et#nd on the distance s and

on the line width wD?

Any exnressions for A1 and R2 wuld be useful 6"ich involved oniv

a universal property of the multiolet and the ontical derth for the -tulti-Aet

I Such expre-sions mean that it isunnecassary tz* r ach W rviduaiiv.
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Unfortunately, it has not proved possible to express R1 and R2  in this

way except where the lines are of equal streng~th. In this case, one Rets

R1 x I and R2 a z n( tD,m/N)/tn TD (3.43)DM"

One say also observe that in the g~eneral expression (3.41) as TDgm m 0,

R I 1, the equal strength value of Eq. (3.43).

In order to avoid considering the individual strength of each line of

a Doppler broadened multiplet, Eq. (3.43) may be used as an approximation for

lines of unequal strengths. Some checks of the accuracy of F q. (3.43)

against actual multiplets revealed errors of :M%-30%.

The effect of overlapping intensity profiles can be treated in exactly

the same way as when the lines are dispersion or quasi-statically broadened

(see Section 3.4).

We remark in closing this nection that the far wings of a real line

never have a Doppler form. However, the treatment of a line with a nrofile

formed by different broadening mechanisms depends on the relative sizes of

the associated line widths and a discussion is delayed until Section 4.7.
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4. LINE BROADENINC,

4.1 Introduction

It has been pointed out in Chap. 1 that the radiation associated with

bound-bound transitions is confined to a small interval of frequincy but

that when self-absorption occurs, the profile L(v) plays an Important role

in determining the amount of energy transferred. This chapter considers the

problem of calculating the function L(v). It particularly deals with forir.

which are simple enough to be of use in the prediction of radiative .ransfer

from the many lines of a non-hydrogenic gas. As in other sections, some of

the discussion is about nitrogen and will be applied in Part 3.

There are three mechanisms which can cause line breoadening. (a) S'ih

atomic states have finite lifetimes, the uncertainty principle implies that

there must be a range of possible energies associated with each state and

hence a range of frequencies for every line, phenomenon is called

natural broadening (or radiation dampirý,A (b) Because of the Doppler effect,

the frequency of emission (or absorption) of radiation by a partic' in

motion is shifted according to the velocity along the line of emission (or

absorption). The macroscopic result in a Ras where the particles are in

thermal motion is therefore a broadening of the line. (c) The third mech-

anism is a perturbation of the energy levels of the radiating atom resulting

from interactions withooiw' particles; this is called pressure broalening..

The interact ions of importance are due to the van der Waals force, the

electric fHelds of charged particles (called Stark broadening) azd the coup-

1 ArR of two similar particles (called resonance or self-broadening). Of

We are indebted to Professor Hans R. ,riem of the University of "arvland
who very kindly discussed with us a number of points in connection with
the treatment of line jrofiles and who sipplied us with references 37,
3Q and 43.
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these mechanisms, those of importance in a non-hydrogenic gas in the range of

conditions 0-05 to 1 atmosphere density and 5000 to 35000 0 K are Doppler,

resonance and Stark broalening, they are each discussed in greater detail

in the fallowing sections, Stark broadening is given the greatest attention

because of its dominance and complexity.

4.2. Doppler Broadening

The theory of Doppler broadening is well established and may be found

in a number of texts ke.g., Refs. 'I, 33). In the absence of any other broadening

mcchanispi it involves 3 statistical average over the Doppler shifts of the

individual particles. It is therefore a purely temperature dependent effect

which prc-uces a characteristic, symmetrical, narrow line with very low

wings. Analytically, the line shape is

1(v- 0o)21 2
L(v) = exp[- 2 (4.1)4 WD w

where v is the line centc', frequency and wD is half the width at half0

the peak intensity (i.e. L(vO+W) - It is given by
0- D 2 o

V 0 2kT
W o i Zn 2 (4.2)

D c mR

where mR is the mass of the radiating particle.

4.3 Resonance Broadening

Resonance broadening occurs where the radiating and perturbing particles

&re of the same type and are uncharged (since otherwise Stark broadening

would far exceed the resonance interaction). From the point of view of

classical mechanics one can consider the gas as consisting of a collection
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of oscillators which are coupled by some force (e.g. an electrostatic force),

the inte-,action of the oscillators through this force results in each oscil-

lator having a spiead of frequencies around its natural value. When the

oscillators have the same natural frequency, a resonance effect greatly

strengthens the coupling force and produces a greater spreading of frequen-

cies; it is this phenomenon which is called resonance broadening. Now,

imagine the perturber in an initial state 1. If the upper state 2 of the

radiating transition can be reached from state I by a dipole transition,

then the perturbing atom will broaden state 2 by a resonance interaction.

Clearly this is only of importance where there are a significant number of

particles in state 1. This implies that state 1 must have a low-lying

energy level because there will only be a significant number of atoms if

the temperature is low while at low temperatures the number of excited states

is small.

Resonance broadening results in unshifted dispersion profiles,

w
1 resLNv) =-7 Vv-2+W (4.3)
" (v-v )2 , w

o res

where wes (the semi-half-width) may be calculated in an impact approxima-

tion (see next section) and has the form 5

w 31 e 2fres ) N (4.4)
res (m 2:v a"

Here fres' Vres' gt and gu all belong to the resonance line and are,

respectively, the absorption oscillator strength, the frequency, the lower

state statistical weight and the upper state statistical weight, N is the
a

number of perturbing atoms per unit volume. Evaluating the constant,



36

Eq. (4.4) becomes

w (ev) 0.175xelh 1fa (4.5)
rese T Ores v (ev) NL

U ~ res L

where NL is the Loschmidt number.

It can easily be checked that for transitions from low-lying states

under conditions of low ionization this line width can be greater than that

due to Stark broadening (see next section).

4.4 A Brief Review of the Theory of Stark Broadening

The problem of Stark broadening (i.e. the broadening of spectral lines

by charged particles) has received considerable attention, but until recently

the treatments were unsatisfactory in a number of important respects. Now,

however, the work of Griem, Baranger, Kolb and their co-workers has pro-

vided a general, accurate theory (see Refs. 5, 34 and papers referred to

therein). This section gives a brief description of some of the main fea-

tures of the broadening mechanism and its theoretical treatment with

particular emphasis on non-hydrogenic gases.

A detailed discussion of the Stark effect is given, for example, by

Bethe and Salpeter35 and so only a very brief description need be given here.

When an atom is subjected to an electric field, the energy levels are each

split into a number of components. If this is viewed as a perturbation prob-

lem where the expansion parameter is the field strength, then it turns out

that the first-order effect is identically zero and the magnitude of the

splitting is proportional to the square of the field strength ("quadratic

Stark effect") except for very strong fields (where higher order effects

become important) and for energy levels which are degenerate with respect

to the orbital angular quantum number, 1, where the first-order (linear)
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effect occurs and is dominant. Since hydrogen and its isoelectronic sequence

(He II, Li III, etc.) and the highly excited states of more complex atoms

are degenerate with respect to Z, the linear Stark effect governs the

splitting of the associated energy levels; under these circumstances it

turns out that (in contrast to levels split by the quadratic Stark effect)

broadening by the slowly moving ions is important and the fuIl apparatus

of modern line-broadening theory is required to account properly for the

complex line shapes which result (see Refs. 5 and 34).

We turn now to the theoretical treatment of line broadening through the

Stark effect. An exact analysis would proceed as follows: the field at the

Ladiating atom is calculated for a general sequence of perturbers with dif-

ferent ",elocities and trajectories, this field is then substituted into a

quantum mechanicalexpression describing the transition and a statistical

average over the perturbers performned to yield the line shape. Fortunately,

in practice this procedure can be considerably simplified by the existence

of two good approximations which are asymptotically correct in the opposing

limits of interaction times which are, in one case, very much less than

(Iv-v I)0 (the impact approximation) and, in the other case, very much

greater than (IV-V 0)D- (the quasi-static approximation). In the impact

approximation, corresponding to rapidly moving particles, the process is

treated as a series of discrete encounters with single particles. In the

quasi-static approximation, for slowly-moving particles, the perturbations

on any given emitter are treated as coming from a cloud of stationary parti.-

cles. In both cases, statistical averaging is necessary to achieve a

macroscopic result. Electrons, being rapidly moving, can nearly always be

treated by the impact approximation; in principle, fcr v-v sufficiently large)
0

electrons should be treated by the quasi-static approximation. Although

this effect is significant for some hydrogenic lines, it is of no importance
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for non-hydrogenic lines whose wings decay to a negligible level more rapidly

than the wings of hydrogenic lines (see Ref. 5, pages 92 and 93).

Ions sometimes broaden according to the impact approximation, sometimes

according to the quisi-static approximation and sometimes according to

neither limit. Fortunately, the quasi-static approximation always holds for

ion perturbers in the win&s of a line and where it may break down, i.e. near

the line center, electron broadening usually dominates. Indeed, the influ-

ence of ion perturbers in a non-hydrogenic gas may often be neglected

entirely without losing reasonable accuracy; this is particularly true where

the radiating particle is itself an ion, since the local density of positively

charged particles will be reduced. The linear Stark effect greatly increases

the broadening effect of ions so that the study of hydrogenic lines requires

proper accounting for both electronic and ionic broadening.

The simultaneous action of ionr and electrons is treated by a simplified

form of the exact treatment described earlier: first, the Stark splitting

due to a typical field of stationary ions is calculated, then the electron

broadening of these lines is determined from the impact approximation and,

finally, statistical averaging over the various possible field strengths is

carried out. It frequently happens that in the upper state of a transition

the electron is so much more weakly bound than in the lower state that pertur-

bations of the lower energy level may be neglected. In general, one can say

that this is the case fcr all transitions except those where the jumping

electron is one of several equivalent electrons in both states or the levels

are both broadened by the linear Stark effect.

Finally, a few words relating the older treatments of line broadening to

modern theory will prove useful in the next section. The old impact (or

collision) theory due to Lorentz, Weisskopf, Lindholm, Foley and others (see,
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for example, Aller18 for a description and references) is contained as a

special case in the modern impact approximation. The older treatment is

based on the "adiabatic" theory which treats all collisions as elastic in

the sense that only the two levels between which the system is radiating are

perturbed, this is correct only for low perturber velocities (i.e., for

electrons, at low temperatures). In addition, the older theory does not

account for the influence of overlapping lines, which may result from the

near degeneracy of the field-free spectrum or from Stark splitting produced

by the quasi-static ion field or even from the excitation by the ion field

of nearby forbidden transitions. The current form of the quasi-static approxi-

mation is similar to the old statistical (or Holtsmark) theory except that it

improves the distribution function for the positions of the perturbing par-

ticles by accounting for their mutual interactions.

4.5 Stark Broadening of Strong, Non-hydrogeric Lines

In this section we discuss the results of Stark broadening theory as

applied to strong non-hydrogenic lines at space vehicle re-entry conditions

and with particular reference to nitrogen.

According to both the adiabatic and the general impact theories, an

isolated line has a dispersion profile, however, the shift (d) and the half-

width (w ) are different in the two theories. We recall from Section 3.3

a dispersion profile has the form

L(v) (4.6)

" (v-v +d) 2 + w2

Before discussing expressions for w, which will be our main concern

in this section (shift is of no importance in radiative transfer problems),

we first show that ion broadening may be neglected. The influence of ion
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broadening in non-hydrogenic gases appears, in part, in an asymmetric line

5 -2
shape such that one wing decays as (v-vo) (as in the absence of quasi-

0
-7/4static broadening) while the other wing is asymptotic to (v-v- ) • . BeforeO

this latter term is of the same order as the electron contributed impact

broadening, the absorption coefficient of a typical nitrogen line has

dropped to 10-5 times its peak value, as may be checked from the formulae

and tables of Griem (ref. 5, Chapter 4). The influence of ion broadening on

the core profile can also be estimated from Griem's work. Equation (4.90)

of ref. 5 is an empirical expression for line half-widths due to both elec-

trons and ions in terms of the half-width due to electrons alone as obtained

from the Inspection of calculated helium profiles. This equation is

WtotaI 3 Cl + 1.75a (1 - 0.75f]wet (4.7)

whcre a is a measure of ion broadening (absent if a = 0) and r is a

measure of the mutual interactions between the perturbing ions. Taking val-

ues of a from Tables 4-5 and 4-6 of Griem's book and estimating values of

r, one finds that the ion broadening effect on w is at worst (high densi-

ties) about 10% which is less than the estimated accuracy of the best theory.

The general impact approximation results in an analytic expression for

line width, w, (ref. 5, Eqs. 4.68, 4.79 and 4.80) which is accurate to

about 20% but which unfortunately requires considerable computation to

This claim requires a little qualification. It does not hold for some high
orbital angular quantum number states due, as discussed in the next section,
to Debye-shielding of the electrons and partial degeneracy with respect to
t although the experimental results of Day and Griem3 9 for two 4f states of
NII show that, even using the worst estimate of experimental errors, the
theoretical results of ref. 5 are correct to within 35%. Another source of
uncertainty is that a number of experimenters (see Jalufka, Oertel and
Ofelt43 and references therein) have found the theory to be in error by a
factor of 2.5 to 3.0 for AII. However, the results of Day and Griem3 9

confirm an accuracy of 20% for NII.
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evaluate. In view of the other inaccuracies in radiative transfer problems

(in oscillator strengths, energy levels, etc.) such computation is not justi-

fied for our use here. However, Griem5 has evaluated w for 17 lines from

the first spectrum of nitrogen and 75 lines from the second spectrum of

nitrogen at several temperatures covering ofar range of interest; these

results, normalized by their values at 20,000°K, have been used to plot

rigs. 12 and 13. The temperature dependence of the line widths can be seen

to vary considerably, the lineswith negative slopes belong to high orbital

angular momentum upper states and are beginning to exhibit the dominance of

inelastic collisions. As discussed earlier, Debye shielding of the electrons

(not accounted for in Griem's calculation) may be significant for these

states and therefore the line widths may be less accurate than those of the

lower states. Note that because the broadening is assumed to be caused en-

tirely by pertta-bation of the upper states, Griem's results provide the

widths of more (unfortunately not many more) lines than those actually

tabulated. Besides choosing an average temperature dependence, we also

have to obtain an expression with which to predict the line-widths not cov-

ered by Grieni's calculations; a number of approximate expressions are

available in the literature and we now discuss them.

The adiabatic theory of line broadening due to upper level perturbation

gives the following result for the line half-width1 8

4.w = 38.8 2 / 3 (8kT?/ (1.8)
4ww~~~ = 881 -m-'J N e(48

e

where C4  is the quadratic Stark coefficient of the upper state. In its

most general form, C4  is given by

Snce the influence of the lower state is neglected, lines with the same
up:ner state should have the same frequency width, however, the value for NIl
tabulated in 5 do not all satisfy this requirement -- apparently due to
computational errors.
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C4 e A2 f
4  m 8ir2 hc 2  i ui ui

e

or

C4 cm sec"1 z 1.24 x 0 [ ()ui cm) 2 fu (4.:0)i i

where the summation is over all states i to which a dipole transi.tvon kboth

emissive and absorptive) is allowed from the upper state u whose energy

level is being perturbed. In practice, the summation is usually dor,'.nated

by a few strong transitions. Substituting Eq. (4.10) into Eq. (4.8)1 and

evaluating the constant gives

w eV = 1.3 x 10-16 [ [ (Aui cm)2 fui1 ]2/3 (N cm- 3)(kT eV) 1 /6. (4.11)i •

Griem et al38 have compared Eq. (4.11) with the general theory for several

low-lying lines of HeI and, over our temperature range, the discrepancy is

within a factor of 3. It will also be recalled that the adiabatic theory is

asymptotically correct at low temperatures. A simplified form of Eq. (4.11)

is available for a hydrogenic gas since then4 2

6

%1n-17 4 -1
2wC 4 = l.u2 X 6 0- cm sec (4.12)

where we have included a small numerical correction pointed out by
*

Sibulkin4 4 ; nu th- Or- ective quantum number of the upper state. Sub-

stituting this ,, q. (4.8) one gets

i X ( n.a (N cm )(kT eV) 1/6 (4.13)

No derivation of Eq. (4.12) is given in Ref. 42 but presumably it is obtained

by an approximate evaluation 3f Eq. (4.10) for a hydrogenic spectrum and
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oscillator strengths. Since this tr'#atment cannot account for same-shell

transitions it is likely to be inaccurate for non-hydrogenic gases.

An analytic expression is also available in the opposite limit of high
3a.

temperatures where weak, inelastic collisions dominate. Baranger together

with Stewart obtained the following expression for the width of non-hydrogenic

ion lines due to weak, inelastic collisions with electrons,

w - N dv- v (42_)02 (4.14)
3r3 m2  e 0 v i . u +1) uiff

e

where the summation is over all states i which can be I2eached from the per-

turbed state u by dipole transitions, %> " max(tuti ) and gff is the

free-f-ree Gaunt factor for the electron transition. If we now put gff • 1,

we can perform the velocity integration and, assuming a Coulormb force law,

apply a sum rule to obtain, following Armstrong 45

ý2 2m 1/2 n 2

SN (e Uý ~u 2 + 1 - 3t (0 +l)] (4.15)
, m2 e u u u

e

or, numerically,

S2
-22 -11/2( rn02w eV = 0.637 x 10 N (kT eV)- 2 u [5n 2 * 1 - 3W (I tl)]. (4.16)e z-- u .u u

Using an approximation due to Unsold46 it is possible to reduce Eq. (4.16)

still further to the result obtained by Stewart and Pyatt ,

h3 2w n 1/2 (n )
ST) N, Z2 (4.17)(2win)2 • 2

e

w eV -t 3.3 x 10-2 Wk eV)"I/ (N ecm-3) u Z2B
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Note that Eq. (4.18) contains the same dependence on n as does Ec. (4.13),u

the z and temperature dependences are quite different, however.

From the work of Griem et al. on He13 8 , we expect Eq. (4.11) to agree

with the more accurate results of Griem5 to within a factor of 2 or 3; a

number of direct chechson both NI and NII confirm this expectation and we can

.1/6
also see from Figs. 12 and 13 that a temperature dependence of - is an

approximate average of the correct behavior (accurate to within 25% for our

temperature range). Equation (4.13) agrees with Griem's results to withir.

a factor of 5 for NI but is low by a factor of approximately 40 for NIl. In

contrast, Eqs. (4.16) and (4.18) overestimate the widths of NI lines by a

factor of about 10 and the widths of NIl lines by a factor of 4, in both

cases, t~e temp~xrature dependence of Eqs. (4.16) and (4.18) is incorrect at

these temperatures.

For low-lyinig lines not covered by Griem's calculations, the best that

we can do appears to be to use the result of adiabatic theory, Eq. (4.11)

(the higher lines are treated quasi-staticaily as discussed In the next sec-

tion). Thus, we use the following expression for the electron imoact line

width

w eV z A N /N (kT eV) 1 / 6  (4.19)

where N L is the Loschmidt number and A is either evaluated by ratchin7

Griem's results to Eq. (4.19) at 20,0000 K or obtained from the adiabatic

expression (see Eq. (4.11))

A 3.5 o3 ri i cm)2 fuW/3.

There is one exceptional class of strong lines for which the perturba-

tion of the lower state is not negligible and so cannot be treated by Eq.

(4.20), namely same-shell transitions where the jumping electron is one of
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several equivalent electrons in both state-. (which normally sive lines In

the ultraviolet). For these lines, the adiabatic theory rives (see Aller7)

A z 3.5 x 103 ( X [ . cm) 2 fg - * (1 2/m)2 .
i i

where subscript L denotes the lower state.

4.6 Stark Broadening of Lines with Highly Excited Upper States

Lines with highly excited upper states (not covered by (rirem's results)

will be subject to linear Stark broadening. In many cases, however. r'::

will also be either optically thin or merged into a pseudo-continuur, so that

the energy transferred is indepe:ident of the profile. However, calculations

carried out on hydrogen (see Part I1) suggest that under some important con-

ditions (low densities, moderate temperatures and high path lengths) lines

can be i~oiated but self-absorbed up to upper quantum numbers of 10 or so.

It is debatable whether the accuracy of the overall calculation would be

significantly impaired if one were to use impact line profiles for these high

lines but, taking a cautiý.'.s 3pproach, this section discusses an attempt to

account for the peculiarities of these lines.

Perturbation of states with moderate to high principal quantum numbers

(n _> 4 or 5) a.'A high orbital angular quantum numbers is complicated bv

certain characteristics of these states. In the first place, L-S couplinr

36starts to break down so that different selection rules operate. Accor.dli
37

to Day , however, this sho-ild have little effect on the w~ith. Secondly,

`.e ener1y Ievels become r'e-aliveiv closely spaccd. This close 3ac:-Z has

two effects: it increases the .Portan'-e c- "..elastic co>aisons -an .

implies at least a DartIal degeneracy Ain or.itai anpuar cnt: n-er.

Inelastic col.is.ons are due to e.ectro.-s whose tra-ector.ies are relativ•:•,
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distant from the radiatirg atom. Such electrons are subject to a Debye

shielding effect 38. This shieldir.g is not taken into account in non-

hydrogenic electron impact theory with the result that the line broadening

is overestimated. However, the electron impact line width cannot be greater

than the electron impact line width of a corresponding line in a hydrogenic
38,39

gas and we thus have an upper bound which is approached as the degen-

eracy of the levels increases. A further consequence of the degeneracy of

the states under discussion is that ion broadening becomes important in the

line wings. Very accurate calculations of profiles have been performed 4 0

for the strongest hydrogen lines and approximations valid for higher hydro-

41
gen lines are also available . Even the approximations (obtained by folding

a dispersion profile due to electron impacts into a quasi-static profile due

to ion fields) are too complex for us to use here. Instead we take account

only of the behavior in the line wings (this is (see next section) what we

do for the dispersion profiles but in this case the approximation is much

worse). Even the wing shape is not simple5 since there is a gradual break-

down in the validity of the impact approximation for electrons as v-v o

increases until eventually they too are described by the quasi-stdtic theory.

When the impact approximation holds, the line wings are made up of an elfr-

tron contribution which decays as (-v- 0o)2 plus an ionic contribution which

decays as (v-v 0 5/2 whereas when the electrons broaden quasi-statically,0

both contributions decay as (v-v)-5/2 . The latter is the simplest to deal

with and is valid at the lower temperatures. At the upper temperatures of

our range the intensity profiles of the lines will almost always merge

before the effective widths reach the pure quasi-static region but nonetheless

the most generally applicable, simple treatment appears to be to treat both

electron and ion broadening as quasi-static. The analytic expressions for

the widths of degenerate lines are obtained as described in the next parazraph.
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In principle, in the theory of quasi-static broadening the interaction

between the perturbing particles should be taken into account. This effect

is small, however, for neutral radiators except at high densities and is in

any case least in the wings of the line which are caused by close, two-

particle encounters. Fir our purposes the Holtsmark theory of statistically

independent perturbers will be sufficiently accurate even for charged radia-

tors. The simplest form of this theory is given for a single class of

18 42perturbers by Aller18 and by Margenau and Lewis * The resulting asymptotic

form may be written to conform with Griem32 as

L(v) 1V C(2wc F )3/2 1 1 for large Av(=v-v ) (4.22)
0 A3 (2wAv) 5 / 2  0

where C is a constant for a given line, A is the line wavelength and FC

is the Holtsmark normal field strength given by

r = 2.60 zeN2/ 3  (4.23)0

where N is th: -,e: of perturbers (who'e charge must bb z) per cubic

centimeter. If one now allows for more than one class of perturber, Eq.

(4.23) holds but F becomes
0

F = 2.60e (N + I z N )2/3 (4.24)
z P Zp

where N is the number-density of z -times ionized particles. Thusz p

substituting Eq. (4.24) into Eq. (4.22) we get

L(v) " C(5.20ewc)3/ 2 (N e + N ) 1 1 (4.25)
p A3 (2wAv) 5 / 2
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which is consistent with Griem's asymptotic result for quasi-static broadening

5by electrons and singly ionized particles . The constant C can be found

from the approximate analysis due to Griem 1 for Holtsmark broadening of

hydrogen-like lines. If one follows Griem's analysis but does not replace

the wavelength by a hydrogenic value one gets

Sh )3/2 X3 ( _ n (4.26)
r 2 n2 , 23/2

Sz m eqw2c
re

where zr is the charge on the radiating particle, nu is the upper state

quantum number and n is the lower state quantum number. This result

assumes that both levels are degenerate in orbital angular quantum number

I and takes account of the perturbation of both levels. It is clear from

Griem's analysis that where the lower state is non-hydrogenic (and therefore

may be ignored) we may simply set n• = 0 in Eq. (4.26). Combining Eqs.

(4.26) and (4.25) we get

-3/2 (n2±n2)3/2

L(v) eV (1 2.12 h 0- z 3/ 2 (N + I z N )Z ) (. )3 / 2  (4.28)
P

r e p pz p NL (AhveV5/

where NL is the Loschmidt number. The corresponding expression for the

line intensity is given in Section 3.3 where a width parameter is introduced,

namely

w b 2 3 b r(3/5)] 5 3  (4.29)

t
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where b is related to L(v) by L(v) 4, b/(v-v 0 ) Identifying b in0

Eq. (4.28) and inserting it into Eq. (4.29) yields

w = A(Ne/NL + I z N /N L)2/3 (4.30)
z pp

where

A 0 0.691 x 10o2 z-_- (n 2-n 2 ). (4.3l)

4.7 The Relative Importance of Doppler and Stark Broadening

In this section, we first examine the curve of growth of intensity of a

line broadened simultaneously by Doppler and any dispersion profile produc-

ing effect. The important parameter is the ratio of dispersion to Doppler

half-widths which is next calculated for some typical cases in nitrogen.

Finally from these results it is demonstrated that Doppler broadening may be

neglected over a wide range of conditions.

A -.Le.v 'ised, approxi4.•Le expression for a line broadened simultane-

ously by the Doppler effect and a dispersion profile producing mechanism is

K "K exp(-t2) dt (4.32)
V 0 i f a 2 + (&_t)2

where

(v-v )An2
a~ ~ ~ E0t_2

WD WD

f N
K 2 mn m

o meC wD

w is the 4iUpersion semi-half-width and wD is the Doppler semi-half-width.

It can easily be shown that
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wf N •2
mnn m I w (~3

lim K lir K X -- (Li.33)
v V m e c w 2 + (v-v )2

~fa~ 0

which is the pure dispersion prnfile. The first limit, a - =, is the case

of dispersion broadening much greater than Doppler broadening which, of

course, must be asymptotic to the pure dispersion case. The second limit,

/a* , shows that far out in the wings of the line [(v-v) >> w]

the absorption coefficient behaves as though there were no Doppler broadening

present; this result is to be expected since the Doppler profile falls off

much more rapidly than the dispersion profile.

Since the line center is blackened out at large optical depths, the

detailed shape of the core is then irrelevant and the asymptotic growth is

that of a pure dispersion profile with semi-half-width w, and (see Sec-

tion 3.3) the combined intensity is given by

I n- 2B i0: Kvdvs for large s. (4.34)
0

On the other hand for small optical depth, the intensity is independent of

the line shape and thus, if the influence of Doppler broadening is confined

to a sufficiently narrow core region, the curve of growth will be independ-

ent of the Doppler broadening. The curve of growth of a combined Doppler-

dispersion profile has been plotted by Penner31 as a function of a and

optical depth based on the Doppler part of the profile. Figure 14 shows

this curve of growth transformed to an optical depth based on the dispersion

part of the profile. It can be seen that for a > 0.5, the pure dispersion

growth is followed almost exactly. For a > 0.05, the pure dispersion

curve underestimates the combined curve by at most a factor of 2 and that

only for a small range of optical depths. Values of a which we may expect

in our problem are discussed next.
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Ussin the hydropenic aonroxim,,tion to the adiabaTic result, 7q. (,.I3),

and the Do-,Ier half-width Fq. (4.2) we get for a,

* ) ýjIN1 -1/3,A = 26 x (nu I e (hv eV) e (kT eV)(.

Except for the ultraviolet lines, the important lines of NT lie in the

frequency range 1 to 6eV with values of (n )4 > 25, hence, for kT < 3eVu

a > 75 Ne INL

-4 f# -4At a density of 10 atmospheres. N /K 2 x 10 and the correspondinr
e' '

value of a is 0.015. Thus we can say that for densities Preater than 10-4

atmospheres the maximum error on any line is a factor of 4 (with the excen-

tion of some ultraviolet lines where the factor can reach 8), and this will

only apply to those lines (if any) whose optical depths lie in the range

where the Doppler profile influences the radiated intensity. Except in the

case of very lonp path-lengths, most lines will be optically thin at low

densities and so independent of the profile shape. Even the errors in the

ultraviolet lines are not as severe as the factor of 8 obtained above since

these lines are subject to resonance broadening which increases the disner-

sion half-width above the value used in Eq. (4.35). The overall errors in

neplectinp Doppler broadening in NI are therefore likely to be small

comDared to those arising from other sources.

The ionic lines will suffer more on account of their hipher rrequencles,

indeed the resonance lines of NTTT are likely to be Doppler broadened

until well into the wings. It was at first thoupht that the lines of 'ITV"

would not carry much enerry on account of their high frequencies. However,

early results from detailed calculations (reported in Part 3) demnnAtrated

that a number of these lines are the dominant transfer mechanisms at hiph



52

temDeratures. It therefore became necessary to take accouint of the Doonler

broadening of some o" the ionic lines. We do this as follows.

For a > 0.05 we ipnore the Doppler effect and treat the line as a Dure

dispersion line. For a < 0.05 we compute the intensity due to a pure

Doppler shape by the approximate methods discussed in Section 3.5. Next,

we calculate the intensity accounting only for the dispersion contour.

Finally, we compare the two values of intensity and take the larrer.

The treatment just described is equivalent to aDproximatinp the line

by a pure Doppler core repion followed by pure dispersion winps and neflect-

inp the transition region between these two profiles.

The effect on intensity of such an approach i7 shown 1)y a dashed lr.ne

on Fig. 14 for the case of a = 5 x 10 5. It can be seen that The error _n

the transition repion is small.
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5. CONTINUUM CROSS SECTIONS

5.1 Introduction

This chapter discusses some of the methods available for calculating the

cross sections for bound-free and free-free transitions; in the calculations

reported in Part 3 molecular bands are included in the continuum but since

the method of treatment is peculiar to the band systems of nitrogen, the

discussion is deferred until Part 3. Continuous cross sections are more

readily available, in general, than those for lines, and the associated

radiation has been more extensively studied. This means that the task of

preparing data for radiative transfer calculations is much easier for the

continuum contributions than it is for the lines.

5.2 Bound-Free Cross Sections

The bound-free absorption cross section for a particle in initial state

i may be written
2 9

(va !_ g a2e2hv-L (5.1)

where a 0 h 2 /4w 2 mc2  is the first Bohr radius, gi is the statistical

weight of the initial state and S depends on the transition probabilities

of all transitions from i to ionized states such that hv > IV where Ii

is the ionization energy of state i. In Cq. (5.1), hv is measured in

Rydberg units.

In Russell-Saunders coupling, the radial and an.ular contributions may

be separated and the expression

S C (5.2)

"g1 L. ,
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is obtained where the primes denote the final states of the elec-ron and ion

plus electron and is the integral over the radial component of the

wave function (analogous to the o2 of Eq. (3.4)). Fortunately,- t'L' is

generally independent of L' (Ref. 5, page 109) because t~e integral is

dominated by the wave functions in the outer regions where the term split-

ting is small. Multiplet splitting of the ground state may also be ignored

since even the hydrogenic decay from the photoelectric edge (which is as

1/v 3  and which is more rapid than the non-hydrogenic decay) is responsible

for a change in absorption coefficient of only about It across a typical

multiplet width. We can therefore simplify Eq. (5.2) to

(2S*i)(2L+1) 2 C L-1 ,4-1 + Ct+l n Lt+l (5.3)

where C., - ,L,. When the jumping electron is equivalent in the ini-

tial state to q-1 others) a number of photoionization edges will normally

result, each corresponding to a different ion term and thus to a different

parentage of the initial state. It is then necessary to treat each parent-

age separately and apply the fractional parentage coefficients mentioned in

Section 3.2, i.e. one gets 4 8

C zl (rSL(qSL,.)}2 I ." Ct~ (FSL(qSL,)1. 21+--1~ (5.4)

where (FSL(qS'L')) 2  is the fractional par. tags coetficient to be found

in Refs. 19 and 20. It remains therefore to calculate

•1' -(5.5)
t)1, (E' ,n,v,t)(.5

and the remainder of th, section is devoted to this problem.

As in the case of line cross sections, tVe most accurate method of

calculation is by means of self-consistent field functions but, as mentioned
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before, such calculations 4re very lengthy. Fortunately they are not so

necessary in the case of bound-free transitions owing to the widely used

and fairly accurate method of Burgess and Seaton. This method is similar

in approach to the Bates and Damgaard26 analysis of bound-bound transitions.

That is, it is a semi-empirical method based on hydrogenic wave functions.

It is, however, more complicated to .apply than the Bates-Damgaard method

because it includes an empirical correction for the non-hydrogenic wave

functions. A description of the method can be found in the original
29 54

paper and in Griem's book 5; a paper by Peach49 is useful as an example of

its application. Several comparisons of the predictions of this method with

those o)'tained ' om more exact calculations using self-consistent field

functions (see Section 3.2) and with experimental results have been per-

formed by Burgess and Seaton29 and by Armstrong and his co-workers 4 5 50.

These comparisons show that the method is accurate for the photoionization

of an electron which is alone in its shell and in general gives pood agree-

ment for light, more complex systems. The method of Burgess and Seaton im-

plies a general restriction on photon energy, namely hv-1i << z 2 Rvdbergs,

this restriction is not serious at the temper'ature' of interest in re entry

problems (< 3 eV) since it occur- at photon energies far from the maximum

of the Planck function. It is nevertteless worth recording that there

exists an approximation which is valid for high photon energies (Ref. a5,

page 76).

51.Seaton gives a formula from wvhch may be calculated for an

initial configuration 2pq (which corresponds to the most important trans,-

tions in nitrc.en,'. It is not clear from the paper whether Seaton's expr, -

sion is obtained analytically or whether (as seems more likely) it is ýi

empirical fit to other calculations. Seat-n suggests that, at leasl -.7or

positive ions, the accuracy of the formula should be within ?Or art._
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comparison due to Johnston et al. 50 with more exact predictions for a

transition in NII confirms this for low photon energies.

The final method to be discussed is the hydrogenic ?ýpproximation. The

formula for the bound-free absorption coefficient of a hydrogenic gas is

(see e.g. Ref. 33, Chap. 5)

128 w2  13 4z
e a2  - L -g(v;n,L) (5.6)n ,--hc o 5i

where hv is measured in Rydberg units and g(v;n,t) is the Gaunt factor.

The Gaunt factor may be regarded as - quantum-mechanical correction factor

to the classical result Fktensive tables of Gaunt factors are available52

while Ref. 53 contains a review of approximate analytic representations;

except at high photon energies the Gaunt factor is close to unity. The val-

idity of the hydrogenic approximation is greatest at large values of n and,

for given n, for high values of orbital angular momentum. In statesof low

excitation, the core of passive electrons does not fully shield the nucleus,

and the expression (5.6) can be improved somewhat by the use of ze, an

effective charge, in place of z. ze is defined by z2 F n2 /1 whereee n

th( ionization energy I is measured in Rydbergs. When the jumping elec-n

tron is initially one of a number of equi.valent electrons, the hydrogenic

approximation breaks down completely. However, Armstrong5 shows that the

p arentage splitting can be accounted for by the fractional parentage

coefficient (FSL(qS'L')) 2 introduced earlier.

in the nitrogen calculations presented in Part 3, bound-free transitions

from the lower-lying states are represented by values of cross section calcu-

lated by Sherman and Kulander60 using the Burgess-Seaton method. The cross

sections of higher states are assumed to be hydrogenic.
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5.3 Free-Free Crons Sections

Free-free transitions involve the change of energy of a free electron

in the field of a positive ion. When the ion is hydrogenic the following

expression holds

.-16
2 e 6  z2Ngef kT) (5.7)

vff 3/- ch (2wm ) 3i/ /kT) 1.V3)

e

where gff(v,kT) is the free-free Gaunt factor which for temperatures of

interest to us, is close to unity over t) important photon energy range

0.1 eV to 10 eV; accurate values cýI . f ar. tabulated by Karzas and

Latter

Until recently, the only theoretical treatment of free-free transitions

was for hydrogenic atoms. Ntw, novwer, a paper by Peach55 is available

which is an extension of the Burgess-Seaton method (see Section 5.2) to

free-free transitions. Peach's original paper applied her method to He

and compared the results tc Eq. (5.7), differences up to a factor of 2 in

both directions occur with a tendency for the hydrogenic expression to

underestimate the cross sections. Unfortunately from our point of view,

the results were not averaged over electron velocity and it appears at

least possible that this process would decrease the discrepancies. In the
2

past, it has been common practice to use an effective value of z to

account in a crude way for non-hydrogenic effects, this has the merit of

p r s'sving the analytical simplicity of Eq. (5.7).

In Part 3, the free-free cross section is calculated according to the

hydrogenic formula, Eq. (5.7). For transitions in the field of the first

ion, an effective value of z2 based on experimental evidence61 is used.
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APPENDIX I. The Influence of a Density-Dependent Partition Function on the

Thermal Equation of State of Hydrogen

The equation of state of a gas is given by the equation5 6

p :NTV (tn Q) (0.1)3V

Then, using the standard expressions for partition functions in a gas ccnsist-

ing of hydrogen atoms, ions and electrons we get

p (NH + N + Ne)kT + NHkT [-L (tn(Qet)H) T (1.2)

which may be written as the sum of translational and electronic contributions

"to the pressure,

P = Otr + Pet' (1.3)

We see from Eq. (1.2) that the electronic partition function can affect the

value of the pressure in two trays. In the first p~acn it determines, through

the Saha equation, the number of particles present. The particle densities

can be accurately calculated in or range ef ccndition:. if" the t.runcation

point of the partition function is• found from Debye-Hl~ckel theory (see Chap. 2).

This, however, leads to the second way in which the partition function influ-

ences the pressure. The use of Debye-HUckeI theo-y leads to a density-

dependent pcrtition function and, according to Eq. (I.M), this gi,'es rise to

a change in the vhermal equation of state in the form of an additional term

which we call pet in Eq. (1.3). It is this additional term which ..! discuss

now.

"The terms of the hydrogenic partition function are convenienti.y ordered

by the principal quantum number n and we may write



59

nmax -E n/kT
Qet I g n e(1.4)

n=l

where gn = 2n 2 and E= n (X/n). Following the procedure of Appendix II

we may separate QeI into two parts,

e =(Q- +Q (1.5)

e Qetlow (Zet)high

where

n -1 -E /kT
(Qet)iow 2n2 e n (1.6)

n--

and

max -E /kT
(Oet)high I * 2n 2 e n

nzn

onmax -E n/AT

2 2 n dn. (1.7)

"n

We now choose n such that the error in replacing En by X H is small and

we get

-XH/AT

(Qet high • 2/3 e m max)3 - (n )3]. (1.8)

Now since (Qet)low is independent of V, we get from Eqs. (1.2), (1.5) and

(1.8).

"22 XH/'kT •),

P :NHVkT 2V--2 e -x (1.9)

Where we have reo.aced nmax by v to emphasize that we are treating it as

a co'tinuous variable. v is found from the Debye-HUckel theory discussed in
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Section 2.2, Eqs. (2.6) and (2.7), together with the hydrogenic expression for

for energy, Eq. (2.5), those combine to give

V 21/ (1.10)
e4 8we 2N

N
Writing a for the degree of ionization so that a = Ne/(NH+N e Ie V

H NL o Vo

we get

HX_ kT V (1.11)

e4 8we 22aN L0

so that

1 1 (1.12)
~VT 4 V

Substituting Eq. (1.12) into Eq. (1.9) we find

1 a K e-XH/kT

et=2 NHT Iet",I.3

Since the translational pressule due to the hydrogen atoms is given by

(pH)tr V NHkT9 this may be written as

p 1 v3 e-XH /kT 1Qe,(.4

Pet 2 (PH)tr H / QT (I l1)

Now, identifying nmax with v and comparing Eq. (1.8) we see that the

1 3 "XH/kT
quantity j v e is related to the high state contribution to the

partition function and we make the definition

1 v3 e-XH/kT 3
2 3(QWet high Q] (1.15)
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where

Q 2 2/3(n eH (r.16)

In addition we have

(PH) NH 1- a
N+ N + N +t (1.17)

Ptr e + H
H

so that Eq. (1.14) finally becomes

Pet Q 1 - a

Ptr Qeti -+la

For v to be approximately continuous as required by the derivation

of Eq. (1.18), its value has to be relatively large which implies low den-

sities which in turn implies a high degree of ionization. Equation (1.18)

shows that under these circumstances pet/Ptr will be small. Numerical

checks confirm that for a > 0.85, pef/ptr " 0.05. The physical interpre-

tation is that there are so few atoms present that the change in their

partition function is irrelevant to the total pressure.

Where the ionization is low, v tends to be low (because the density

is usually high) and the integral approximation to (Qe) high is less

appropriate. However, the error is Drobably no worse than that caused by

treating the energy levels as unperturbed (which is the only treatment

available at present). We therefore retain the integral approximation for

small values of v. Thus, Eq. (1.18) is assumed to hold but now we need

to evaluate &/Q e more carefully, replacing Q by its definition in

Eq. (1.15) we obtain

-XH/kT

Pet 1 0 • 1 - a (.19)Pt-r 2 %eL + a
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Numerical evaluation of Eq. (0.19) shows that pe /Ptr is less than

5% for densities up to I) znd temperatures up to 3eV.
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APPENDIX II. The Partition Functions of Nitrogen and its First Ion

This appendix is primarily concerned with giving details of the energy

levels and statistical weights from which the partition functions shown on

Figs. 2 and 3 were calculated. Most of the low and moderate energy levels

57
were obtained from the compilation of Gilmore. This compilation conven-

iently combines closely spaced energy levels of each electronic configu-

ration. The basic data for Gilmore's tabulation consisted of exnerimental
58

results listed by Moore supplemented with Gilmore's own estimated values.

Gilmore's work covers states with principal quantum numbers up to 8. Above

this level, Moore's values 5 8 were taken and combined where available (the

method of combination is given in a later paragraph). Otherwise, hydrogenic

estimates asymptotic to the true ionization thresholds were made. For very

high, closely spaced energy levels integral approximations to the summed

terms were used.

The electronic partition functions were calculated from expressions of

the type

0et 2 S1 + S2 + S3 + 12 + I3.

The meaning of the terms is as follows

1 (1)
max

S1 I g) exp(- E 1)/kT)
1.21

and is a sum over all energy levels with n t 3. These levels are below

the lowest value to which the ionization energy is depressed in our range

of conditions. This means that the as3ociated electronic energy configura-

tion of each level need not bo distinguished and occasional further combi-

nation of Gilmore's values has been possible.
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S2 and S3 are defined in a similar manner,

i(2)
max (2) (20 .Z9(2 exp(- El ()/kT)

"" ii
121

and

.(3)1
max

9(3) ep-E(3)/M
S3 g" exp(- )1 /kT).

These sums cover quantum numbers 4 < n < 10. &-.,h corresponds to a differ-

ent electronic core configuration. This distinction is necessary because

for a given depression in ionization potential, Ax, the cut-off energy

(Xeff = X-AX) depends upon the ionization energy and this takes different

values according to the core configuration. A word about the values listed

in Tables II.1 and 11.2 is necessary. Some of the energy levels of S2 and

S3 could have been combined without significant loss of accuracy but were

indivi~ually specified for aesthetic reasors. The levels in question tend

to have large valuer oF statistical weight and, when the series cut-off is in

this 4'e~i.on, the partition function suffers large discontinuities as a function

of density (Lecause we neglect perturbation of the energy levels). These dis-

continuities lead to nonsmooth functiuds for the particle densities. This

lack of smoothness can be avoided by including a sufficient number of terms

in the sums S2 and S3.

The quantities 12 and 13 are integrals definee as follows

n

X g(2) . Max
(2)exp( .'kT) 2n 2 or12 • core t1

2/3 (2) exp(- E2) /kT)(n 3  - 1331)

core

and
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n
- (3) (3)a

13 ( 3 exp(- E 3)/kT) ?n2dn
3 core l

z 2/3 g(3) exp(- E( )/kT)(n 3  - 1331).gcore max 31

(2) (3)

where g (2) and g(3 are the statistical treights of the corresponding
confgrations.

core configurations. 12 and 13 are therefore integrals over high states

whose energy levels are approximated by the threshold values.

Values of the energies and statistical weights art given for the atom

in Table II.1 and for the first ion in Table 11.2. It remains to demon-

strage the method of combining closely spaced energy levels.

For q closely spaced energy levels we require a mean energy level

such that

e-E /kT e-EAkT !(I

1 ge I gi

If we now write E a GAE and substitute in Eq. (11.1) we otktain

e-&Ei/kT * g,

Ljv if AEI 'kT <" 1, Eq. (T. 2) becomes

I 0 (11.3)
zll

which yields

jl RR(II.c)

jul
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Equation (II.4) can therefore be used to combine any number of enerev levels

provided only that in each case IE.i-E (< kT.
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TABLE 11.1

Energy Levels and Statistical Weights of N

Energy Values in Electron Volts

Core: 2s 2 2p 2 (3p) 2s 2 2p 2 (iD)

91Eig () E1(2) Ri(3) E1(3)i •(1) E (1) i(2) E. (2)E

1

1 4 0 54 13.318 160 15.448

2 10 2.384 216 13.686 250 15.S03

3 6 3.575 450 13.957 360 16.069

4 18 10.450 648 14.158 490 16.169

5 12 10.926 882 14.270 640 16.234

6 54 11.875 Li52 14.335 810 16.279

7 10 12.356 1458 14.380 1000 16.311

8 108 12.980 1800 14.412

9 30 13.758

10 66 15.093

Cnre statistical veights g(2) x 9 ( 3 ) *

cor core
Ionization energies E(2) z 14.5481 E(3) a 16.447
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TABLE 11.2

Energy Levels and Statistical Weights of N*"

Energy values in electron volts

Core: 2s 2 2p( 2 P) 232p2 (4 p)

(1) 1 (2) (2) (3) (3)
1.i E. 1. E1 7i Ei

1 9 0 l12 25.860 384 32.990

2 5 1.899 300 27.337 600 34.537

3 1 4.053 432 28.081 864 35.201

4 5 5.800 ;8e 28.500 1176 35.601

5 15 11.436 768 28.730 1536 35.861

6 9 13.541 972 28.940 1944 36.041

7 5 17.876 1200 29.068 2400 36.169

8 12 18.480

9 3 19.232

10 39 20.933

11 60 23.270

12 221 29.045

Core statistical weights (2)z 6 g( 3 ) = 12
core (core

loniza-Lion energies E() 29.612 E(3 =36.713
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APPENDIX III. The Approximations Involved in the Use of a Density-

Independent Partition Function

In radiative transfer calcalations we require the species composition

in order to find the occupation numbers of the initial levels of the various

radiative transitions and we also require the electron and positive charge

densities to find the widths of the stark broadened lines. It turns out

that these quantities are not very sensitive to the cut-off of the partition

functions and can be calculated reasonably accurately without allowing for

the high terms of the partition functions. This appendix discusses the

effect on occupation numbers and charged particle densities of trimcating

the partition function after a small, fixed number of terms.

The possibility of such an approximation springs from the following

observations. In the first place, at low temperatures the factor l/kT

in the exponents of the terms of the partition functions means that the

high terms do not contribute significantly and the cut-off is unimportant

(except for its existence). (From this fact it follows that the problem is

restricted to relatively high temperatures where the gas is completely dis-

sociated and we ignore the molecular species in the remainder of the

discussion.) Secondly, excited states of multiply ionized species have

large energies with respect to the ground state and the corresponding con-

tributions to the partition functions are small, the multiple ions thus tend

to be dominated by a few low-lying states and their partition functions are

consequently density independent. Checks performed a posteriori show that

we do not need to consider the problem of the exact truncation ooint for

any multiply ionized species in our range of conditions. Furthermore,

although (Qel)N+ is treated as density dependent in the accurate calcula-

tions, it does not vary more than a factor of 3.5 from a sum over its first
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four terms (see also Fig. 3). Thus it can be seen that only (O0e)N is

strongly dependent on density.

It follows that when few atoms are present, the electron and posi.Lively

charged particle densities may be calculated reasonably accurately no mat-

ter what form of the atomic partition function is used. On the other hand,

a significant number of atoms (i.e. low ionization) will only be present if

the temperature is low or the density is high. If the temperature is low,

the terms omitted from the approximatc partition function are negligible,

as explained previously If the density is high, there will be a large de-

pression in the ionization limit and thus the density-dependent cut-off

point will be relatively close to the low-lying, density-independent value

which will now be a better approximation. In summary, if we approximate

the atomic partition function by its first few terms, then under conditions

of low ionization, where the value of the atomic partition function is im-

portant, the approximation is reasonably good while for conditions of high

ionization, where the approximation is very poor, the charged particle

density is independent of its value.

At conditions where the ionization is low, the approximate partition

function is relatively accurate, as discussed above, we can therefore use

it to find the occupation numbers of the atomic states with reasonable accu-

racy. There rentains, however, the problem of their calculation for higher

ionization (where the atomic radiative contribution is not necessarily

negligible). Under these conditions, a further observation is of help.

AIthough the region of high ionization is the region of largest error in

the density-independent partition function (see Fig. 2), it is also a region

in which the occupation numbers become independent of the partition function.

This may be seen by noting that Re and N' will be independent of NN

and using Eq. (2.1) to eliminate NN from the appropriate form of
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Eq. (2.2), to obtain

N + e 1 kT)- 31 2 P/P g exp[- (l4.548-AXl-Ei)/kT) (III.1)
NNi (Q )NeN+ 112.N 0

59

A similar result has been independently obtained by Hochstim. The value

of iN is exactly linear in 'iet)N under these conditions and the influ-

ence of inaccuracies in (Qet)N can be interpreted by saying that although

we may not know accurately the total number of atoms present -- because we

do not know whether to count highly excited states as bound or free -- once

having decided to treat a particular state as bound we can calculate the

associated occupation numbers with reasonable accuracy.

The solution of the system of equations consisting of the first four

ionization equations, Eq. (IV.12) to (IV.15) plus the two conservation equa-

tions, Eqs. (IV.16) and (IV.17) was obtained by iterative calculations on

an IBM 360 computor using both exact and approximate expressions for (Qet)N

and (Qet ) N The approximate expressions consist of a fixed number of the

terms listed in Appendix II while the "exact' calculations are described in

Section 2.2.

The composition predicted by tiie "exact" theory is shown on Figs. 4-7.

Figures 15, 16 and 17 display some of the errors incurred by using vacuum

ionization energies and the following truncated partition functions for N

and N+

(Qet N = 4+ 10 exp(- 2.384/kT) + 6 exp(- 3.575) (1II.2)

( et)+÷= 9 + 5 exp(- 1.899/kT) + exp(- 4.053/kT) + 5 exp(- S.8uO/kT).(MI.3)

Figure 15 shows the error in electron number density which for mass densities

less than 1 atmosphere are within 15%. Because the overall charge must be
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zero, the total density of positive charges must equal the electron density

and does not need to be considered further. The density of atoms suffers

the worst errors, as is to be expected, and Fig. 16 shows that these can be

two or three orders of magnitude; N+ is only seriously in error when mul-

tiple ionization dominates (Fig. 17).

The error in the occupation numbers for various approximations is

shown in Figs. .8-20. rigure 18 is based on the 3-term partition function

of Eq. (111.2) and vacuum ionization potentials. The maximum error occurs

when the atoms are 60%-70% ionized which means that it moves towards higher

densities as the temperature rises, and it grows from A% at 1.0 eV to over

60% at 3 eV. For densities less than 1 atmosphere, the error is less than

40%. Figure 19 shows the errors caused entirely by the partition function

(the calculations plotted on Fig. 19 used correctly depressed ionization

energies but the simple 3-term partition function of Eq. (111.2)).

The fact that the errors are worst at high densities and that the

partition function and ionization errors are both in the same direction sug-

gests that one may be able to reduce the errors and perhaps compensate for

the he4vily reduced ionization energy at high densities by truncating the

partition function slightly above the exact hbgh-density cut-off. Figurt 20

shows the results of such a procedure where the cut-off point of the atomic

partition function was chosen to be the true cut-off for densities slightly

less than atmospheric. This gives rise to a 13-term partition function of

the form

10 (1(2 (2)2
Qt 9 ( 41) exp(- E M T) + 1 42) exp(- E1 ()T)

e zl i ul

(3) (3)/kT)€ [ exp(- E ~ fT. (111.4)
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The partition function of N was left in its apprcximate, 4-term form.

The maximum error can be seen from Fig. 20 to have been reduced to 20%.

However, the choice of cut-off turns out to be critical since use of the

true cut-off corresponding to 10-1 atmospheres increases the high density

error to -50%. It also turns out that severe errors can occur in the

occupation numbers of N+ when the atomic partition functioa is

overestimated.

In conclusion, an approximate partition function based on a small

number of low-lying energy levels gives occupation numbers and charged

particle densities to an accuracy of about 50% provided the densities are

less than atmospheric. In many cases, this will be an acceptable approxi-

mation. However, attempting to reduce the inaccuracies by raising the

cut-off point of the partition function introduces uncontrolled errors and

does not seem to be a fruitful approach.
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APPENDIX IV. An Iterative Procedure for the Solution of the Mass Action and

Conservation equations

At high tmperatures, a diatomic gas A2 will undergo dissociation,

A2 + 2A, (IV.l)

ionization of the molecules,

A2 A2 + e-, (IV.2)

(where z denotes the number of positive charges on the molecular ion) and

ionization of the atoms,

AZ-1 6 A + e (IV.3)

The corresponding equations of mass action can be obtained from Eq. (2.2) by

identifying the symbols, inserting the standard approximation

(Q) S= (Otr)s(Oint)S and evaluating (Q1)S. The resulting equations are,

for dissociation:

(NA) 2  T mAkT 3/2 [(Q D/kT

-2 N hA2 A etA D (IV.4)

2 2

where D is the dissociation energy, mA is the mass of an atom of A

and (0 1)A is the electronic partition function of A; for molecular

ionization:
N z Ne (int) Az 2w mekT 3/2 XAZ'1
A2  2 e__2

NQ 2 x 2 exp( -h-- (IV.5)
A Z- nA 2Z1h

2

2v m 3/1
where subscript e denotes electrons and the value of h2( e is

3.03 ; 1021 eV 3/2 cm 3 and for atomic ionization:
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SN e AZ 2 2w m kT 3/2 exp( /kT). (IV.6)
NAZ-1 (0e )Az.1 h2 A

Note that it is possible to reorganize the sets of equations (IV.4), (IV.5)

and (IV.6) so that molecular ions are not regarded as being produced by

ionization but instead tlated as dissociating according to an equation

similar to Eq. (IV.4); this is exactly equivalent to the present treatment

and the further inclusion of dissociation relations for molecular ions

would introduce redundant equations.

The conservation equations for mass and charge are

2z z
a a

2 1 N N za N 0(V
zaO A 2  z3O A 0 (IV.?)

and

za 2Za
I ZNA + 1 0N z a Ne (IV.8)

Z81 A zal A2

where N is constant and is the number of atomic nuclei per unit volume
O

and %a is the atomic nusmber of A. If a method of evaluating the parti-

tion functions is adopted, the set of equations (IV.4) to (IV.8) can be

solved by iteration.

In the case of nitrogen, the only molecular ionization process of

importance is the reaction

N2 *N 2 e (IV.9)

and further it can easily be checked that for kT c 3 eV and 0/0 0 10-6
O
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the fifth and higher ions never contribute more than 1% of the total

particle density and can be ignored. We theefore may truncate the summa-

tions in Fqs. (IV.7) and (IV.S) after z x 1 for molecules and z a 4 for

atoms; in addition we have to consider one equation of type (IV.5) and four

of type (IV,6).

Taking account of the simplifications discussed above, the explicit

form of equations (IVA') to (IV.8) for nitrogen may be written as

N N ,e (Q ie

N(2 2

0) 2= K2 a 0.81 X 108 O (Qnt N2 (kT) 3 1 2 (O!°0 V)1 exp(- 9.56/kT)(IV.11)

2tN

ii+ ie(e)N

, + K3  112.4 (Qe N (+T) 3 / 2 (0/0 )-1 exp[-(l4.5.8-AXM)/kT]

N N et N (IV.12)

- a K x 112.4 N Wk)3/2 (0/0°)'. exp[-(29.605-hy 2 )/kT)

NN+ 
(IV.13)

Ni ++ (Q)e ++ )/

5e ( ei 1X+

- • K5 £ 112. N (kW) 3 2 (0/0 exp(-(47.463-Ax 3)/kT)
Nat N (IV.14)

iN*+** e (Qeg)
,,. - K6 a 112. (Q09) +++ W (k 03/2(0/ 0o- exp[-C/4:.45-AX )IkT]

It +++ N(-, V.15)
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2•4 + + 2N •N N iN+ iN N iN+ + (IV.16)

N + iN + 2N + 3N + 0 N (IV.17)

2

where the tilde denotes a particle density non-dimensionalized by N0 , the

total number of nuclei present and AXz is the ionization depression of

Eq. (2.7). The reductions in ionization energites, (Qo*)N and (et)

are all density dependent and depend for their evaluation on a previous

solution of the mass action equations, as has been described earlier; in

this appemdix, however we regard them as given and describe the iterative

solution of Eqs. (IV.1O) to (IV.l"/).

The solution of this set of equations Is made considerably easier by

the fact that at most two, and frequently only one, of the species are such

more abundant than the others, this can be seen as follows. For i - 2 we

have K K" , consiler first the case where few uncharged particles are

present so that I < a 4 then, If N is a a-times ionized particle

p N +oN z K s+2

and the species Na° and a for which X +2 is nearest to unity

will dominate since

N "for aZZ .23z zol -- o
N

and

N (N for a z - I
N1 ° N ao0
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by virtue of the values of K . In the case where there are a significant

number of uncharged particles present, N ' N and it again turns out
N+

that the species for which Kz+ 2  is near unity will dominate, N + can
N2

never be important however, since although K1 can be unity, implying

+ at ai4the same time K2 > 1 so that iN <4 ( N) 2 . The

2
criteria for picking the dominant equation are not critical since although

it can happen that Kz+1 c< I and K9 >l 1 such that K i+C X 1 (i.e.

N N .1 a NNx-3) at the same time Nz-2 >2 NNZ.1 S N z_3 and either equa-

tion will give the dominant species z-2 . A detailed consideration of the

equations leads to the following criteria for the dominant equation

K w3 - 1, Eq. QIV.11) is dominant
2 3 -

K2 3 3 3 and K K, <_ 1, Eq. (IV.12) is dominant;

K K3 1 1 and K4K 5 1 4, Eq. (IV.13) is dominant;

KNK '4 and K K6 < 9, Eq. (IV.i4) is dominant

and

K5 K6 3 9, Eq. (IV.15) is dominant.

Sin•ce we have one dominant equation which fcr given conditions we can

identify, we can solve the set of equations by an iterative process organ-

ized as follows. Suppose, first, that the dominant equation is one of

Eqs, (IV.12) to (IV.I5). It therefore has the form
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- s K (IV.l8)

Nz

and Eqs. (IV.16) and (IV.17) may be written

z + izI a - cl (IV.c9)

and

ziz + (z÷z) z+1 e M Nc2 (IV.20)

respectively where z 1, 0 and Ncl, Nc2 are the termis in Eqs. (IV.16) and

(IV.17) not individually exhibited in Eqs. (IV.19) and (IV.20) and are

rvgarded as small corrections. Eliminating Nz+1 from Eq. (IV.20) the

equations can be written in the form

"z+1 " "A z (IV.21)

B 8-N B -A + (IV.22)

where

A 1 1 - cl (IV.23)

B I (z+l)A + Nc 2  (IV.24)

If we retard A and B as known, Eqs. (IV.18), (IV.21) and (IV.22)

may be easily solved. From the resultinpg values of Nz. N 1  and N, the

particle densities of the remainf'ng specie; may be calculated by Eq. (IV.lO)

and the four subsidiary equations out of (IV.11) to (IV.15), corrected values

of Ncl and Nc2 can then be calculated and a higher approximation to the
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to the dominant species obtained. Checks show that if the i-eration is

continued until Ncl is within 0.5% then all species are within 0.05%. If,

now, the donmnant e'uat.on is Eq. (IV.ll),a similar procedure can be used

although the equations are slightly different in detail. We have

(R )2
N-- K (IV.25)

- 2'
NN2

and

N A 2NN (IV.26)

where

A -Ncl - (2N,+ + N N ÷ N + NN+++ + N N..) (IV.27)

2

This iterative procedure is rapidly convergent and has been programmed as

a FORTRAN subroutine.
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