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SUMMARY

This report discusses the data needed to perform radiative transfer

calculations in nonhydrogenic gases in local thermodynamic equilibrium and

presents some approximate methods for computing the radiative energy
transferred by spectral lines where the properties of the gas are uniform.

The methods currently available for calculating the cross sections of
radiative processes are described and compared. An accurate method for
calculating the species composition of nitrogen is described and the results
of such a calculation are presented. The important line broadening
mechanisms are discussed and the potentially accurate, modern theories of
line broadening are outlined. The resul*s of these theories are used to
justify approximate line profiles which are simpic enough for use in
radiative transfer calculations.

Simple approximations to the exact curves of growth of intensity are
described for lines with Doppler profiles and for lines with profiles of
a class which includes the dispersion and quasi-static forms. The concept
of the effective width of a line intensity profile is introduced and
techniques are developed for dealing with the overlapping of the intensity
profiles of small groups of closely spaced lines (as, for example, in a

multiplet).
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GENERAL INTRODUCTION AND OUTLINE OF REPORTS

The transfer of energy by raciative processes in gases has been a
subject of study for many years by astrophysicists and spectroscopists.
The aim of these workers has for the most part been to 2xamine the spec-
tral distribution of radiation and to use it to predict the internal
structure zand state of the gas from wiich the radiation emerped. More
recently, the high temperatures associated with nuclear explosions and
with the gases surrounding a space vehicle as it enters a planetary
atmosphere have lead to interest in the subject of radiative pas dynamics
which combines radiative transfer ana fluid mechanics.

In gas dynamic problems, radiation appears as a rrequency integrated
flux in the energy equatioi. Therefore, the spectral distribution of the
radiated eriergy is, in principie, not required, In practice, however, no
exact method of avoicd ap the computatior of the spectral distribution has
been devised except in the limitirg cases of optically thin and optically
thick media, A widely used approximation which avoids spectral difficul=-
ties is the “gray gas" approximation which treats the radiative properties
of the gas (specifically the absorption coefficient) as independent of
frequency. The gray gas has been the model for much of thc¢ work in radia-
tive pas dynamics but recently some progress has been made in the use of
nongray absorption coefficients,

A principal dilficulty in any attempt to approximate real absorption
coefficients is that not much is known of the relative rocles played by the
various radiating mechanisms even in simple transfer prollems and, in
particular, the importance of spectral lines is uncertain. The work pre-

sented here cxamines the radiative processes which occur in gases for the




simplest possible case, namely a pas of uniform properties in local
thermodynamic equilibrium., Since it happens that the relative importance
of the various radiative processes depends strongly on the state of the
gas and the path length, this investigation was carried out for a specific
range of conditions chosen to include those achieved by a space vehicle
reentering the earth's atmosphere,

This work is in three parts. Part 1 describes the various radiative
processes, discusses how the corresponding absorption cross sections and
occupation numhers may be calculated, presents approximate methods for
computing the radiative energy transferred by spectral lines and gives an
account of the relevant theories of line broadening.

Part 2 examines some characteristics of line radiation in a
hydrogenically distributed spectrum. Some fairly simple calculations help
to reveal the factors which determine the distribution of relative import-
ance among the stronger lines, Also presented are new methods of account-
ing for the many weak lines and an indication of their importance relative
to the strong lines,

Part 3 1is an account of the calculaticn of specific intensities in
uniform nitrogen allowing for all important radiative processes and with
particular emphasis on the lines, The data is tabulated and discussed,
the method of calculation is described and, finally, the results are

presented graphically and interpreted in detail,
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1. INTRODUCTION

The basic equation governing the transfer of radiant energy in a

nori-scattering gas in local thermodynamic equilibrium may be written
dl /ds = K (B -1) (1.1)
v v v v

where IV is the specific intensity of radiation in the direction s per
unit frequency v per unit time per unit area, B, is the Planck distribu-
tion function and Kv is the linear absorption coefficient. The quantity
KV is here defined to include stimulated emission and completely specifies
the radiative properties of the gas; this Part is concerned with the methods
of calculating Kv which are currently available for light non-hydrogenic

atoms and ions, in particular nitrogen.

1.1. The Absorption Coefficient

Absorption and emission of radiation in a gas correspond to changes in
internal energy undergone by atoms and molecules and changes in the transla-
tional energy of free electrons. Since the discussion of this Part is re-
s.. .cted to atoms and ions, the energy changes we have to consider are
exclusively electronic. Fortunately, this aspect can be separated from the
problem of finding the number of particles ii. a given state so that the ab-

sorption coefficient due to a species S can be written

K = N.. o .[1 - exp(-hv/kT .
- E si %l p(-hv/kT)] (1.2)
where Nsi is the number density of particles of species S 1in state i
(known as tne occupation number of state i), 9,3 is the cross section for
4

absorption from state i, and the factor [l - exp(-hv/k7)] accounts for

PO ——




stimulated emission. The main problem in finding the occupation numbers is
to determine the total number of particles present for each species, this is
considered in detail in Chap. 2 where plotted values ¢f the species composi-

tion of nitrogen are presented.

1.2, Absorption Cross Sections

The cross section 93 of Eq. .2) is the sum of a number of cross
sections each corresponding to an independent electronic process with initial
state i and it is usually most convenient to consider each one separately.
A sketch of a simple arrangement of electronic energy levels is shown in
Fig. 1. As can be seen from the figure, three distinct types of absorptive
transition can occur: bound-bound, bound-free (or photoionization) and
iree-free. [Free-free transitions give rise to cross sections which are con-
tinuous for all values of frequency, bound-free cross sections are zero for
frequencies below a threshold value but finite and continuous for higher
values, in contrast the cross section of a bound-bound transition is signifi-
cant only over a very smail frequency interval and can in some senses be
treated as a singularity occurring at a single frequency.

Bound-bound transitions are discussed in Chaps. 3 and 4: Chap. 3 is
concerned with the calculation of the frequency integrated line absorptior
coefficient while Chap. 4 discusses line profiles as predicted by the rele-
vant theories of line-broadening. Finally, Chap. S describes methods for

calculating the cross sections due to bound-free and free-free transitions.




2, SPECIES COMPOSITION AND OCCUPATION NUMBERS

2.1 Introduction

In a gas in local thermodynamic equilibrium the occupation number
density Nsi' of the ith energy level in a given species, S, may be

found from the Boltzmann formula

N exp(-Ei/kT)/(Q)S (Z.1)

si = BiNs

where Ns is the total number of particles of species S per unit volume,
Ei is the energy of the ith level above the species ground state, g4 is
the statistical weight of the ith state, and (Q)S is the partition funce
tion of species S, The species composition is determined by a set of mass
action equations together with species conservation and charge neutrality

conditions., In the case of a single diatomic gas, like nitrogen, the mass

action equations are ionization and dissociation equations which have the

general form

NoNgy  (Qg(Qgy _p e

Ngse Qs

(2.2)

For an ionization reaction, for example, S' 1is the electron gas and D {s
X, the ionization energy of species SS'., Since the partition functions
(Q)S. (Q)S, and {Q)SS' depend on the number densities of the various
species (except at low temperatures), their evaluation is coupled to the
solution of the mass action equations (which themselves must be solved by

an iterative procedure), It {s clear therefore that an accurate determina-
tion of the species composition is a complex problem. Section 2.2 discusses

the problem of predicting the truncation point of a partition function.
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Section 2.3 describes the calculation of species composition in the particular

case of nitrogen; the results presented here will be of use in Part 3.

2.2, Partition Functions

The partition function of species S may be written to a close approxi-

mation as the product of a translational partition function, (Q )S =

tr
2)3/2 the mass of a particle of

V(2wmskT/h (where V is the volume and m

S
species S), with an internal partition function (Qint)s which involves

the energy levels associated with the internal structure. In the case of a

diatomic molecule the internal energy levels are those of rotational, vibra-
tional and electronic excitation whereas only the electronic levels exist for
a monatomic particle. Unfortunately, the higher temperatures at which the
monatomic particles occur lead to a complication of the electronic partition
function which is discussed in the next few paragraphs.
The definition of the electronic partition function of species S is
- -Ei/kT
(Q)g= I se (2.3)
i=1
where 84 is the statistical weight of the ith energy level, Ei is its
value relative to the ground state of species S and the index i is chosen
such that Bi#l >E. It is well known that the series in Eq. (2.3) is
divergent since it represents the partition function of an atom in an un-
bounded volume of non-interacting particles. When the interactions between

particles are allowed for, the series terminates at some level, i |

max

Eq. (2.3) thus becomes




imax -Ei/kT
(Q,). = g. e (2.4)

i
At low temperatures (% 7000°K) the exponential factors in Eq. (2.4) become
so small that the summation may be truncated after a few terms and the value
of imax is not important. At higher temperatures, on the other hand, later
members of the series become important and because the energy levels tena to
a limit, x the ionization energy, the last terms in the series are frequent-
ly the dominant ones since the g; increase with i. The value of imax is
then of great impcrtance in the calculation of the partition function and
since the value of imax depends on the interaction force and the density of
interacting particles, it follows that the partition function must be density
dependent. One consequence of this density dependence is that the perfect
gas equation of state does not strictly hold (since the derivative of Q
with respect to volume is not zero) but it is shown in Appendix I that the
departure over the range of conditians considered here is negligible in the
case of hydrogen (which is the only gas which can be treated analytically).
The termination of the partition function series is interpreted as a
reduction in the number of bound states to a finite number which implies a
reduction in the ionization potential. There will therefore be a correspond-
ing change in the value of yx to be used in the mass action equation: the
vacuum ionization potential Y has to be replaced by an effe-tive ionization
potential xeff = x - 8y. This effect is additional to the influence of the
partition function o1 the species composition. The effective jonization
energy is related to the termination of the partition function by the obvious
relation Ei < Xaff

max
tum number i iv h i i
quan er n .x 1S given by the largest value of M ax satisfying the

while for hydrogen-like states, the higzhest bound

reiation




< Ax (2.5)

where PR is the Rydberg wave number constant.

The depression of the ionization potential clearly depends on the mech-
anism of interaction between the particles; at sufficiently low temperatures
the interaction will be through a Van der Waals force but at such temperatures
(except at extremely low densities) the partition function wiil be dominated
by its leading terms and the details of the cut-off point are not important.
At higher temperatures, the dominant interaction is by the electrostatic
forces of charged particles and it is with this effect that we are concerned.
The problem of the determination of Ax as produced by the interaction of
charged particles has received considerabl@* attention but as yet there does
not appear to be complete agreement on the model to be used. According to
most authors, an adaption of the theory due to Debye and Hickel for electro-
lytesl is valid in some form and over some range «f relatively low densities
and high temperatures while at high densities Unsalé's2 nearest neighbor
effect is dominant; a recent paper by Stewart and Pyatt3 presents a more
elaborate theory in which the Debye-HlUckel and nearest neighlor expressions
appear as limiting cases. Bond, Watson and Helch,“ however, sugcest that at
low densities and a low degree of ionization the Bohr radius should no:
exceed the mean distance between ;articles. These theories are discussed in
the next paragraph but it should be remarred that even the best of them are
not highly accurate since they all postulate a sharp cut-off between bound
ani free states and neglect the displacement of the higner bou:rd levels
which occurs due tc external force field:.

The Debye-Hiickel theory examines the screening effect ~f cha~zed

particles surrounding an atom. Acccerding tc this :lecry the characteristic
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distance for the reduction in the Coulomb potential is the Debye radius,

RD’ defined by

1/2
R, 2 kT (2.6)
ktez(ﬂ. + Z zzﬂz)

where Ne is the number of electrons per unit volume and Nz the numbder of
z times charged particles per unit volume. One can now eithers calculate
the polarization energies of an ion and an electron and frum them the reduc-
‘tion in ionization energy or6 treat all states whose semi-mojor axis exceeds
the Debye radius as free. These two procedures are qualitatively equivalent

but lead to results which differ by a factor of two. These are respectively
2
8x, = (z+1)e‘/R, (2.7)
and
8x, = (z#1)/2R) . (2.8)
The Debye-HUckel theory involves an averaging over charges which is only

valid if the Dedbye sphere contains a minimum number of charged particles,

according te Duclos and Canbol7 the condition is

ai—l— (2.9)
z - v Rna

""2": >

vhich i{mplies that there must be at least one sixth of a charged particle in

the Debye sphere. Cowbining Eqs. (2.5) and (2.9) gives

N+ L 22N )
LR zzu:}”2 <[z (5}) ) 12 (2.10)
z

z
N. + Z Nz e
z




ke

and since the catio (N + Z 22N )/(N ¢ Z N )<2.6 for kT < 3eV and
« - z e - 2 :

p/p° > 10-6. then Eq. (2.10) must become

Ny + { 2IN_ < 7’:— (%})3. (2.11)
It can thus be seen that the equality of Eq. (2.9) represents an upper bound
on charged particle density since the Debye volume increases more rapidly
than the charged particle density and hence the number of particles in the
Debye volume must decrease as the number in unit volume in space increases.
Ecker and Krolla agree with the Duclos and Cambel result except for a factor
of 3/4 in the limiting density. Bond, Watson 2nd Welch® on the other hand

suggest that the Debye criterion sho':ld be used provided R_ > ro the mean

D
distance between particles (not electrons), otherwise the ionization lim.it

should be derressed to the first state wl.ose Bohr radius, a ., is less than

1/3
» : (2.12)
N + [ N
2

J

r.: Since we have that

e |
"

vhere N‘ is the number density cof atoms, the condition for vaiidity of the

Debye theory becomes, inserting Eq. (2.12) into the relation Ry 2 v

4 (z.13)
R 3
D

x
+
N
x
A
L 4
sl

In contrast to Eq. (2.9) this constitutes in upper bcund on the number
of particles in the Debye sphere. As an example suppose that the first ior
“~
dominates, then since Ne z N* and all cther species are negligible, the

combination of Eqs. (2.13) and (2.8) with (2.10) gives




1 1 (kT
-;( ) (2.14)

5887 - Mo

. . o 3,5-9
which is a very small range of conditions. Most recent workers, '

however, use the Debye criterion at much lower densities than the lower limit
of Eq. (2.14)., we have to choose between the methods and, in the absence of
any direct evidence, we follow the majority and do not use the mean particle
distance criterion. The question remains as to whether the upper bound of
Eq. (2.10) is ever reached in our range cf conditions. Some numerical checks
confirm that for temperatures above 1/2 eV, Eq. (2.10) is satisfied up to
densities of at least 10 times atmospheric.

A calculation of species composition can therefore be set up as follows.
Starting with arbitrary truncation points for the partition functions, the
system of mass actior plus conservation equations are repeatedly solved and
the results from each soliution arz used to calculate the depression of ioni-
zation potential according to Debye-HlUckel theory and hence to correct the
truncation points of the partition functions. The solution of the mass
action and conservation equations for given partition functicns is itself
ar iterative procedure. A rapidly convergent scheme is presented in Appen-
dix IV. The composition calculation for nitrogen (some details of which are
discussed in the next section) has been programmed for the IBM 360 computer
and proves tc be a rapidly convergent computation (50 points take less than

3 minutes,.

2.3. The Composition of a Nitrogen Plasma

The applicaticu to nitrogen of some of the ideas of the previous section
wiil now be discussed. The results of this tection will be used in the

radiative transfer calculations of Part 3.




10

The lowering of the ionization potentials of any of the compeonients can
be significant but the higher ions have such high excited energy levels that
the truncation point of the partition functions is nct relevant under our
conditions. We therefore account for the effect in N and N (details of
the energy leveis 3ed are given in Appendix II) and include terms in the
higher ions which contribute more than 1% (see Table 2.1 for details); the
calculated partition functions of N and N are plotted in Figs. 2 and 3.
Debye-luckel theory in the form Eq. (2.7) was used since the criterion is
somewhat iess arbitrary than that of E,. (2.9).

It should be mentioned that use of an approximate partition function
was investigated and the details are given in Appendix III. It seems worth-
while to give a summary here, however. If one truncates the partition func-
tions after the first few terms, the errors in number densities of N and
8" can be considerable, but it turns out that the electron density and the
occupation numbers of the various energy levels are much more nearly correct.
The electron density is little affected because at low jorization, where it
is most sensitive to errors in (Qel)N’ either the tempera*ure is low and
therefore the cut-off point is urimportant, or the density is high and the
"exact", density-dependent truncation point is at low energy levels, i.e.,
close to the arbitrary cut-off chosen for the approximate partition function.
The cccupation numbers are insensitive to partition function berause wihere
the truncaced approximation is very badly in error. icnization is high and
the partition function cancels out between the Saha equation and the
BRoltzmann fcrmula (Eq. (2.1)), where.s at low ionization, the approximated
partition function is more nearly correct. A detailed investigation of this
approximation (Appendix III) shews that .rrors in occupation number of about

50% ran occur at the higher temperatures and densities of the range




leV < kT < 3eV¥, lO-Gatmos < ;Vpo < 1 atmos. The investigation also

revealed thdat the occupation numbers at high temperatures and low ionization
are sersitive to the cut-off point of the partition function and hence even
our density-dependent truncation point will not yield very accurate results
under these conditionms.

Finally, we consider the partition function of molecular species.
Molecular species only exist at relatively low temperatures and hence there
is no problem of truncation in the case of their partition functions. How-
ever, vibrational and rotational states also exist and are coupled to each
other and to the electronic energy levels. As demonstrated in Appendix III,
we will achieve the greatest accuracy if the partition functions used in the
equations of chemical equilibrium are the same as those used in the Bcltzmann
formula. Because of this we are restricted in our treatment of the molecu-
lar partition functicns of nitrogen to one which is consistent with the
absorption cross section material of Allenlo which we use for the radiative
propert:es of the band-systems (see Part 3). Allen's data is, as far as we
are concerned, a cross section per particle in the lower electronic state
(superscript i) of the transiticn. We therefore have to find (Ni)s‘ the
number of molecules in the lower electronic state, with reasonable accuracy.
This may be done by first solving the equations of chemical equilibrium for
the total number of molecules, Ns, using the truncated partition functions
ir the Zorm

9% .. :
Q, Jo = iél (Q,)4(Q,)g(8" g exp [-(E") /KT]

and then using the Boltzmann relation in the form

(v

i i i iy ey
o = (8)5(Q1) Q0N exp [~(E)/KTI/(Q e .

11
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The rotational and vibrational partition functions used are those given Ly

Allen,

Qi {1 - exp (-hcui/kT)]-l (2.15)

and

(Qi) kT/thi (2.16)

i i .
where Wy and Be are spectroscopic constants taken from Allen's report.
These expressions treat the molecule as a harmonic oscillator and rigid
rotor respectively. For N2 the first excited level has an energy of 6.2eV

and the summation for (Qint)N2 may be truncated after the first term, for

N; on the other hand 3 excited levels must be inciuded. Details are to be
found in Table 2.1.

The partition functions of Table 2.1 were incorporated in a computer
program tc find the particle densities in nitrogen. The mass action equa-
tions for given partition functions were solved by the iterative technique
discussed in Appendix IV, The results as functions of density and tempera-
ture are presented in Figs. 4 to 7. After these calculations were started,
a paper by Drellishak, Aeschliman and Cambelll became available; they also
use density dependent partition functions according toc Debye-Hlckel theory
but choose the cut-off according to the alternative criterion (i.e., bound
states have a semi-major axis less than the Debye radius) this gives rise to
a somewhat higher value of partition function. Bearing in mind this differ-

ence and difrerent molecular partition functions, the results of Ref. 1l

are in reasonable agreement with ours.
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TABLE 2.1

Expressions used for the partition functions of nitrogen

exp(-1.12/kT)

(Qint)N; = kT x 103{8.3u(1-exp(-0.274/kT)1"* + 18.56 (Toexp(-0.2367%T)T
* 7 R soorer |

(Qint)N2 = 4.03 x 109 x l-exp(Eg.292/kTT

(Qel)N density dependent, see Appendix II for energy levels.

(Qel)N* density dependent, see Appendix II for energy levels.

(Qel)N++ 6 + 12 exp(-7.102/kT)

(Qel)N+++ 1+ 9 exp(-8.340/kT)

(Qel)N++++= 2 + 6 exp(-10.003/kT)
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3. BOUND-BOUND TRANSITIONS

3.1. Iatroduction

Bound-bound transitions occur between discrete energy levels of the
atom. They would therefore occur at a precise value of frequency if it were
not for certain perturbations of the energy levels due primarily, in our
case, to neighboring particles. These perturbations are discussed in the
next chapter under the title "Line-Broadening' and it is sufficient to
observe here that for all cases of interest to us the resulting line width
is very small in the sense that the spectral structure of a line is on a
qQuite different scale of frequency variation than those of either the Planck
function or the continuous absorption coefficient arising from other
processes.

This difference in scale leads to two important simplifications of the
transfer problem. In the first place, the Planck function can be taken as
constant across a line and for some line profiles analytic expressions for
line intensity can be obtained (Section 3.3 discusses some reievant cases).
In the second place, although the transfer problem is highly non-linear in
absorption coefficient, an effective separation of the frequency integrated
intensity into line and continuum contributions occurs if the state of the
gas is uniform,

This second simplification can be easily demonstrated as follows. The
formal solution of the equation of radiative transfer (Eq. 1.1) in a uniform
medium with cool, transparent walis is

-

I = ! dev[l-exp(-Kvs)] (3.1)

(o]
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Now, let Kv and Kv be the absorption coefiicients due to lines and

L

continuum respectively. Then, Kv = KvL + KvC and, adding

Bv(exp(-Kst)-exp(-Kst)] to the integrand »f Eq. (3.1), we get

C

I = j dev[l-exp(-KvLs)]exp(-Kst) + J dev[l-exp(-Kst)]
0 0o

Finally, if we recognize that the term l-exp(-KvLs) is negligible compared

to the second term everywhere except in the neighborhood of the unperturbed

iine frequencies V;» We can write

I = ]I, exp(-K ..s)+ I, (3.2)
where we define
-
I, ¢ Bvij dv[l—exp(—KvLs)]
o]
and
I, = fdev[l-exp(-Kst)] .

0

This result is apparently well known.w'l3

The interpretation is that near
a line the line and continuum coefficients cach reduce the intensity associa-
ted with the othcr but the cverall effect on the continuous radiatinn is
negligible because the frequency intervals affected are very small whiie the
reduction in each line gives rise to a factor exp(-KVics).

A further simplification of iine transfer problems arises from the fact

that the value of the frequency integrated line cross section is independent

of the line profile. Because of this the cross section for a transition from
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a lower state J to an upper state J' can be written in the form

!ez

0,y ° ng £ 5LV {(3.3)

where L(v) represents the line profile defined so that L:L(v)dv = 1 and
fJJ,. the f-number, is defined in terms of the dipole matrix element of
quantum mechanics and thus depends on the wave functions of the two states
involved. It may also be interpreted as a correction to the classical solu-
tion for the energy radiated by a harmonic oscillator and for this reason it
is frequently cuiled an oscillator strength. The determination of f and
of L(v) are largely separate problems; the former is discussed in

Section 3.2, but a complete chapter (Chap. 4) is devoted to a discussion of
line profiles. The final threesections of this chapter consider solutions to
the transfer equation for lines with some common types of profiles and a

treatment of the problem of the merging of closely spaced lines as, for

example, in multiplets.

3.2, Oscillator Strengths

The oscillator strength of a line is equal to a constant times the
frequency integrated cross section as can be seen from Eq. (3.3). In
Russell-Saunders coupling {which holds for the stronger lines of most light
or medium elements), the radial and angular contributions to the matrix

. . iu
element may be separated and the oscillater strength written 1in the form

2
By Vi

JJ" 3 g

S e (3.4)

where is the statistical weight of the lower state and the remaining

&;

factors are as follows. “(./ ) 1is the relative strength of a line within
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a multiplet, it depends on inner quantum numbers J and J' and on total
angular momentum quantum numbers L and L'. Values of / (. ) have been

15 ¢ (.) 1is the relative strength of a multiplet within

compiled by Allen.
a transition array. An early paper by Goldberg16 gives tables of a related
quantity from which (") can be obtained with the aid of a normalizing
factor,l7 fortunately most of Goldberg's values have been normalized and
tabulated in the books by Allenls and Aller.18 In order to take account of
the possible parentages of - number of equivalent electrons, a further paper
by Menzel and Goldberglg is sometimes required (where Ref. 19 does not apply
see Kelly and Armstrong2o). These tabulations are convenient to use but
unfortunately they do not cover all the cases of interest and for the excep-
tions it is necessary to turn to the more general expressions obtained by
Rohrlich21 (which are also presented by Griems) and by Shore and Henzel.22
These expressions take account of the parentage of equivalent electrons and
they give both ' (/') and ‘(. ) in terms of the Racah coefficients

3,23-25 the most extensive of

which are tabulated in a number of places,
which appears to be that of Nikiforov.2u The final quantity appearing in
Eq. (3.4), o, is the radial matrix element for the jumping electron. It is
the determination of this quantity which is the main problem in f-number
calculations; r-me of the methods currently available are discussed in the
following paragraphs.

The most popular general method is that due to Bates and Damgaard26
(which is also given in detail in Griem's books). They observed that the
most significant contribution to the radial matrix element ¢ frequently
comes from a region in which the potential has almost reached its asymptotic

Coulomb orm. They therefore use hydrogenic wave functions but replace each

principal quantum number n by an effective quantum number n* determinec
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from the experimentally measured value of tne energy level. Comparison of
this method with experimental results and the predictions of more accurate
theoretical methods shows good agreement when the jumping electron is out-
side closed shells or in an excited level, but may be orders of magnitude
in error when the jumping electron is one of a number of equivalent
electrons. Griems has evaluated f-numbers using the Bates-Damgaard method
for many of the lines listed in Refs. 27 and 28. A check of his values for
some lines of NI against the re¢sults due to Kelly (see below) of more
accurate self-consistent field methods shows good agreement in the visible
and infrared, but an underestimate of approximately an order of magnitude
for the ultraviolet lines. This discrepancy is due tc the fact that ultra-
violet lines originate from particles in a low state of excitation where the
Bates and Damgaard method is least accurate. Another defect is that this
method cannot predict vaiues for transitions between states within the same
shell (which often give rise to very strong lines). Finally, a modifica-
tion to the Bates and Damgaard method which takes some account of the non-
hydrogenic form of the wave functions may be found in the paper by Burgess
and Seaton29 whose primary purpose is to develop a similar method for
bound-free transitions. This modification removes the worst inaccuracies
of the Bates and Damgaard method (naturally at the expense of greater
complication) but depends on experimental knowledge of energy levels which
is unfortunately not always available.

Nonhydrogenic wave-functions are used in the class of rmethods known as
self-consistent field approximaticns. Of these, the most wide.y used for
accurate caiculations 1is based on the wave-functions of Hartree and Tock.
It is, however, very lengthy and has orly been appiied to a few lines of a

\ ... 30 . ..l . R
few elements. Kelly nas used iU to calcuiate f-nutters for several




important lines in the ultraviolet spectra of nitroger and oxygen; these
calculations can be expected to be accurate to about 20%. Also due to

. . . .62
Kelly 1s an extensive list = of values of 0?

for nitrogen and oxygen which
he calculated using a simplification due to Slater of the Hartree-Fock
method. Thanks to these values one can calculate the oscillator strengths
for any of the important lines cf nitrogen and oxygen to within a factor of

about 2 and can reasonably expect the average accuracy of all the strong

lines to be rather better than that.

3.3. The Curve of Growth for a Single Line with Wing Profile b/(v-\.:o)‘a

It was pointed out in Section 3.1 that the equation of radiative
transfer for a line is simplified by the narrowness of the line. For a

single line Eq. (3.1) therefore becomes

I = Bv [ [l—exp(-Kvs)]dv . (3.5)

°5%

Performing the quadrature iIn Eq. (3.5) clearly requires the specification of
the function Kv(v). However, when Kvs << 1 for all v the expression

recuces to

which is a particuiar form of the welil-xnown opticaily thin limit; it shculld

3

be cliserved tnat this expression does not depend con the profile (compare

£q. (3.3)). There are 3 numter of prof les for which the intepration in
s {(5.%] e = [ : C et Fe [P T ~ -
Eq. (53.%) can e perfcrmed in ciosed form., However, we will Me concerne:

tere with the asymptetic limit of larpe path-iengtn for a particuiar c.ass

cf profiies.

19
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The normalized profile L(v) of Eq. (3.3) which we will consider has

the form

Lv) A —2 a>l

[vvgl®

for v-v >> 5. The results to be derived are not new, at least expressions
for the important cases of a = 2.0 and a = 2.5 can be found, but no
derivation appears to be available and the general form does not appear to
have been obtained before. For sufficiently large path-length, the line wili
become heavily celf-absorbed near the line center and the intensity in this

core regicn will be Bv . independent of the ccre profile, the only effective
c
part of the absorption coefficient will then have the form

-
K, = J dev x b/lv-vola
o

Kvs and taking appropriate care cf{ the

Defining the transformation z

limits we get from Eq. (3.5)

z-(l’l/a)(l_e-z)

dz 3.7)

T

1/a f
/

) b 0

The integral over z of Eq. (3.7) may he performed by parts to yiel:

- . - -
b - T ~ *
oL V. . Wxfa. . .. ==, -1/a { ~i/a -z,
I = 2 >{hs, Kdv} B [af{i-e ")z P o+ a2 e “izl  {3.5)
a } ¥ kY i i
0 o 2 o
where the first term in the square brackret 13 zercs for a > C anc the secont

term 1s a form of the <ompiete gamas function for a » 1. igeaticon {(*.n}

therefcore Leceres
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I = 2 (bs| KawA (1 -} . (3.9)
v v 4

o] 0

It now becomes convenient to define quantities w ani 1 as follows

w oz /el o yge/ta-t) (3.10)
and
T = s[.xvdv/w . (3.11)
0
Then Eé. (3.9) can be written
1/24B, = /3 (3.12)

(o]

and the corresponding form of tie optically thin result (Eq. (3.6)) is

I/?qu = /2 . (3.13)
(]

The intersection of these two cur'ss occurs at

2/ (a-1) {3.14)

26/(6-1)

For 1t > we call the line self-absorbed (or, sometimes, opticaliy

thi.x), for 1 < 2al(a-l)

we describe the line as not self-absorhed or
cpticalily thin. |

The quantity w has the dimensicns of freguency and can be interpreted
as representing %he width of the ahsorptrion coefficient profile (as we will
show, it is prezisely lhe semi-kaif-width of & dispersion profile). The
ﬁézensiohléss psrameter 1 is an QQtical depth hase¢ on an absorption cceffi-

8

L
cient |

Gkvdvlu. The reia‘.orsnip between this absorption coefficient and

that of a line with a dispersinn prefile (a = 2) is sxetched on Fig. Ba,; it
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can be seen that in this case, the value of [°dev/w is m timez the peak
cbsorption coefficient of the line, The quantgty I/Bvo has the dimensions

of fraquency and will be cailed the "effective" or "equivalent" width of the
line. From this definition it follows that the enargy transferred by a line

is .qual to the effective width of the line times the value of the Planck
intensity at the line center. When the line is self-absorbed, so that the
central part of the line is blackened out, the effective width has a fixed
relationship to the intensity profile (specifically, half the effective width

is the distance from the line center at which the spectral intensity has a

value of 1 - exp{-[I'(1l - %)]-a) times the black-body value). Figure 8b

shows the equivalent width and the spectral distribution of inteumsity for a
typical self-absorbed line. When the line is not self-absorbed, the equivalent
width is still defined as before but it is no longer meaningful as a representative
width of the intensity profile (see Fig. 8c). Finally, the ratic of effective
width to line width (i.e., absorption coefficient half-width} is I/2uB . This

1/(a-1) at the intersection point of the asymptotic

quantity has the value 2
relationships Eqs. (3.12) and (3,13).

The two cases of most interest are those of a dispersion profile, where
a = 2, and a quasi-statically broadened line, where a = 2,5, The corresponding
forms of Eqs. (3.12), (3.13) and (3.14) are to be found in Refs. 31 and 32.
Reference 31 also obtains the conplete curve of grow:h of a pure dispersion

profile and it is of interest to compare the asymptotic iorms to the exact curve.

A dispersion profile has the form

1 wdis

L = 3.
v (vev )2+w2 (3.18)
o) dis
where w_, is the semi-half-width (i.e., it is half the width of the line

dis
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where the absorption ccefficient has half its maximum value). This profile
becomes wdis/ﬂ(v-vo)2 in the wings and, using T(1/2) = v7 in Eq. (3.10),
we obtain w = Wiis®
The exact curve plctted from values given by Penner31 is shown on Fig. 9
and compared with the asymptotic resu. - :q; (3.12) and (3.13). It can be
cseen that the lire is well appruximated by its asymptotic forms, the maximum
error being about 10%. It will be seen later that in practice lines some-
times depart rrom the true dispersion profile in the core. In such cases the

asymptotes discussed here are a slightly better approximation to the correct

curve of growth than the true dispersion curve of growth is.

3.4, The Curve of Growth for a Group of Lines with Wing Profiles b/(v-vo)a

As one passes along a ray, the intensity and hence the effective width
of a line increases and, in many cases, éventually interferes with neighbor-
ing lines. This section discusses ihe effect cf this interference as it
occurs in a group of lines in a uniform gas. The method of presentation is
as follows. First, we consider a multiplet of lines with dispersion profiles
and give a simplified model of the curve of growth, we then extend this
result to a more general group of lines and finally apply the same ideas to
a group of quasi-statically broadened lines.

A multiplet is the group of all transitions between two terms. The
individuai lines therefore arise from the splitting of energy levels by the
inner quantum number, J. This splitting is so small that the Planck furnc-
tion can be taken constant across the multiplet; the multiplet, however,
cannot in general be treated as a single degenerate lire since for an impor-
tant range of conditions the individual lines are isolated from each other.

An exact treatment of the behavior of a multiplet must take into account the
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spacing and strengths of the lines and is therefore both complicated and
different for each multiplet.

We first discuss three parts of the curve of growth of a typical
multiplet. Consider a multiplet containing N lines with dispersion pro-
files, and assume that the lines each have the same half-width w but
different strengths. We define an equivalent width for the multiplet,

W= I/Bv where I 1is the total integrated ‘ntensity and B, is the Planck
intensit; at the ceater frequency of the multiplet. The equisalent width
ratio, Hr, is defined by wr 2 W2w = I/2va . Now, at low densities and

o
small path-lengths all the lines are optically thin and we may write

"r,l = Tm/2 (3.16)

where, ;or a path-length s, T is given by
N L)
r =3 7 [ K, .dv. (3.17)
W vi
=l ‘o

Usually, there will be some optically thicker condition at which &ll the
lines are self-absorbed but no significant overlapping occurs; in this case

one gets

W o=/ N T, (3.18)

where

/¥

N N '
K@) 2( ] f )2 s 1O @as
i=1 i

(o} izl

1]}
[N e b4
—
Lo Y
| S

and is a property of the multiplet, One can show without much difficulty
#
that N < N. Finally, for very large optical depths the multiplet width

will be much less than the effective line widths anc the whole proup will
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behave like a single line:

W = /T (3.20)

r,3 m

Clearly from Eqs. (3.18) and (3.20), the error in treating a multiplet as .
single line under conditions where the lines are isolated but self-absorbed
is an underestimate by a factor AEE . If the lines are very closely spaced
the group can behave like a single line as 'soon as it becomes self-absorbed
but multiplets of low-lying states invariably exhibit a considerable range of
the intermediate growth rate at conditions of interest to us. We will there-
fore consider Eqs. (3.16), (3.18) and (3.20) as holding for three major
regions Qf growth and discuss the transitions between them. A typical curve
of growth is sketched on Fig. 10,

The intersection between the curves defined by Eqs. (3.16) and (3..8)
occurs at

J,

T = 4N (3.21)
m

This intersection point corresponds to the point of change from optically
thin to optically thick behavior of an isolated line whose absorption coeffi-
cient is

N

- %
J Kdv = ] KdwN
(] i=l

Curves (3.18) and (3.20) do not intersect but curve (3.20) will start to
describe the growth somewhere in the neighborhood of the optical path length
for which the effective line width of the multiplet treated as a single line
(wa) equals the frequency spread of the multiplet, similarly, it will depar:
from the behaviur of Eq. (3.18) approximately when the effective line width

of a single line equals the average inter-line spacing of the multiplet.

|
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The behavior between these two points may vary considerably, however, as
may be seen from the following two examples.

Firstly, suppose that the lines are of uniform strength and evenly
spaced. Then the overlapping of adjacent lines will occur simultaneously,
the entire center-portion of the multiplet will be blackened out, and growth
will occur only by virtue of the wings of the two outermost lines. There
will therefore be a region of relatively slow growth until the effective
width of the inner lines exceeds the spread of the multiplet and the behavior
of Eq. (3.20) commences, this type of transition is shown on Fig. 10.

As a second example, suppose that the N lines occur in M well
separated clusters of closely spaced lines of approximately equal strength.
After the growth as isolated lines, the line centers of the M clusters will
blacken out first and the M clusters will each, as in the previous example,
have a relatively siow rate of growth until a point is reached where the
effective line widths exceed the inter-line spacing within each cluster and
the multiplet then starts to behave like M isolated lines. Finally, after
another transition region of slow growth, the multiplet will behave like a
single line. The case where M = 2 is shown on Fig. 10.

A number of multiplets of NI were examined and found to be more
closely approximated by the case of evenly spaced lines than by the case of
isolated clusters. However, the concept of isolated clusters is useful
since we will see in Part 3 that it is sometimes possible to group together
weak, adjacent multiplets. In most cases these do not ever merge to a
super-lire in our range of conditions and the model we treat is that of N
lines distributed in M non-merging clusters.

The intersection of the optically thin region with the self-absorbed

but isolated region does not depend on M, so for LI uN® we use Eq. (316).
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For T > 4N"  we treat the lines as isolated {Eq. (3.18)) vnti? w2 = D where
D is the sum of the widths of all the clusters. Then for D/N“/M5>»H2> D
the transition region of slow growth commences and the equivalent width is

approximately constant and given by

w23 = D (3.22)

From here on (W, = HQ/M*/NE > D) we treat the system as M isolated

3

clusters by means of the equation
W, o= M A (3.23)

where

1/2
1([ K,;4v) ™"/ (

(o]

I K .dv)}/? (3.24)
vl

>
ol
" o~ X

" -

i i=l

Lines with moderately highly excited upper states are subject to
quasi-static broadening, as discussed in the chapter on line broadening
(Chap. 4). They are also relatively weak and at least partially degenerate.
The ideas of this section can be applied with certain modifications. No
permanently isolated clusters exist so that the equivalent of M s unity.

The growth rate is slower {a single self-absorbed line grows as 12/5 com-

pared to the dispersion rate of 11/2) and the equations to be used are as
follows. We start by recalling from Section 3.3 the definition of equivalent

line width

= b2/3 5/3

w Z (reass)l (3.25)

where b is a constant obtained from the asymptotic form of the normalized

Holtsmark profile, L(v) ~ b/(v-vo)S/Q. The corresponding optical depth for
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a group of lines is
N - ]
tm H s.z J Kvidv/w
i=l
0
and the effective number of lines is

N * N.
N [121(J Kvidvlzlsl(izl J KVidv)2/5]5/3
0 0

Then, if

2S/a N*

we use

I = Bv tmw .
o

However, if Tm > 25/3 “

effective width

a)a/s t2/5 "

W =z 2(N m

If W < D we have

-3/5

but if W > D and W(N") < D the intensity is given by

1 = B D
v
o
and, finally, for il(ll.)-a/5 > D we have
1 = 3 wity¥®

o]

(3.26)

(3.27)

(3.28)

(3.29)

N", the expression to be used depends upon the

(3.30)

(3.31)

(3.32)
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These growth expressions have been programmed as a FORTRAN subroutine
for a general wing decay law b/(v-vo)a and will be applied in the

calculations presented in Part 3.

3.5 The Curve of Growth for Doppler Broadened Lines

This section is concerned with the radiation from Doppler broadened
lines. The approach is analogous to that of Sections 3.3 and 3.4, However,
the form of the Doppler profile causes an additional difficulty which re-
quires special treatment. First we discuss approximations to the single-
line curve of growth and then consider the treatment of groups of lines.

The broadening of a line due to the thermal motion of the radiating
particles is known as Doppler broadening and is discussed in Section 4.2,
The resulting absorption coefficient can be written in the form

(v-vo) /tn 2 2
] } (3.33)

K, = K, exp{- [

\Y W

o D

where h is the semi-half-width of a Doppler broadened line given by (see

Eq. (4.2))

(252 in 2)1/2

v
=2
c 'm
R

vy (3.34)

and Kv is the peak absorption coefficient. This peak value is related to
o
the frequency-integrated absorption coefficient by the expression

—
K =’ Kdvx /202 1 (3.35)
v v n w
Te) o D

The intensity is given by substituting the expression for Kv into Eq.

(3.5) and changing the variable of integration to x : (V*Vo) /tn 2/wD, to
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obtain
13_____:: - r (1 - expl - K, & exp(-x")]}ex. (3.36)

The above integration cannot be performed in closed form. Pcnnoral

presents a series representation of Eq., (3.36); the series is uniformly valid
but only converges reasonable rapidly at comparatively low values of optical
depth. Penner also gives a simple expression which is approximately correct
for small optical depth and an asymptotic expansion for large optical depth.
For our purposes, the approximate expression and the leading term of the

asymptotic expansion are all that are required. These are respectively,

I /in 2
—iv—s—n— /;. fD axp(-ﬁ;/?) (3037)
o]

and

Iﬁ-i-ii s 2/in v (3.38)
v "D D

where

™ is analogous to the Tt of Section 3.3 except for a coastant, (Ln 2/w)1/2

(compare Eq. (3.35)).
The curves defined by Eqs. (3.37) and (3.38) intsrsect at the point
LA * 26, 1If one uses Eq. (3.38) for 1, > 26 and Eq. (3,37) fer Ty, < 26

than the error compared to the exact curve is always within about 15%. The

exact and approximate curves are ccmpared on Fig. 1ll.




Using Egs. (3.37) and (3.38), the specific intensitv from a multiplet

of N 1lines can be written in the form

I1/in 2 _ i/2
e = R '/;‘D,m exp[-(tp'm/N) /2] (3.39)
v D
o
or
1702 o o 2/ins (3.40)
B w 2 D,m
v D
o
where
(1 )s = ]
: K .dvis =
D,m is1 Vo'l ) is1 D,i
and R1 and R, are given by the expressions
4 L :
kK, = 2> expi- » [Vt - v N1} {3.41)
1 {1 13}“ 2 p,i D~ :
and
N otat, 172
3 1 .2
R2 x ) . (3.+2)

21  n ‘D?m

By reference to Section 3.4 it can be seen that, for a dispersion profiis,

the quantities corresponding to Rl ard k. are unity and ¢+ N respect-

2
- ﬁ - - ™
ivalvy. N 1s a proverty of the multipiet. It is unfortunate that in the

Joppler broadened case, both R and éﬁ denend on the distance s and

on the line width "y

Any expressions for Rl and R? would be useful «Mich involwed oniy

a universal property of the multiplet and the optical depth for the sultinier

IDJ“' Such expressions mean that it isunnecassary to treat each ik individuaiiy.

31
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Jnfortunately, It has not proved possible to express Rl and R7 in this

way except vhere the lines are of equal strenpth. In this case, cne pets

R, 21 and R_ = N ln(tD /NY/tn ¢ (3.43)
JA

1 2 D,m’

One may also observe that in the peneral expression (3.4l) as LE o,

Rl + 1, the equal strenyth vaiue of Fq. (3.43),

In order to avoid considering the individual stremgth of each line of
a Doppler broadened multiplet, Eq. (3.43) may be used as an approximation for
lines of unequal strengths. Some checks of the accuracy of Eq. (3.43)
against actual multiplets revealed errors of 20%-30%.

The effect of overlapping intensity profiles can be treated in exactly
the same way as wvhen the lines are dispersion or quasi-statically broadened
(see Section 3.4).

We remark in closing this nection that the far wings of a real line
never have a Doppler form. However, the treratment of a line with a nrofile

formed by different broadening mechanisms depends on the relative sizes of

the associated line widths and a discussion is delayed until Section 4.7.
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*
4, LINE BROADENING

4.1 Introduction

It has been pointed out in Chap. 5 that the radiation associated with
bound-bound transitions is confined to a small interval of frequsncy but
that when self-absorption occurs, the profile L(v) plays an important role
in detemining the amount of energy transferred. This chapter considers the
problem of calculating the function L(v). It particularly deals with forms
which are simple enough to be of use in the prediction of radiative .ransfer
from the many lines of a non-hydrogenic gas. As in other sections, some of
the discussion is about nitrogen and will be applied in Part 3.

There are three mechanisms which can cause line braadening. (a) Sinre
atomic states have finite lifetimes, the uncertainty principle implies that
there must be a range of possible energies associated with each state and
hence a range of frequencies for every line' .. - phenomenon is caliied
natural broadening (or radiation dampin.. (b) Because of the Doppler effect,
the frequency of emission (or absorption) of radiation by a partic!c in
motion is shifted according to the velocity along the line of emission (or
absorption). The macroscopic result in a gas where the particles are in
thermal motion is therefoure a broadening of the line. (c) The third mech-
anism is a perturbation of the energy levels of the radiating atom resulting
from interactions witho%er particles; this is called pressure broadening.
The interactions of importance are due to the van der Waals force, the
electric field; of charged particles (called Stark broadeninp) and the coup-

iing of two similar particles (called resonance or self-broadening). Of

%
We are indebted to Professor Hans R. Griem of the University of Marvland

‘who very kindly discussed with us a3 number of points in connectinn with
he treatment of line profiles and who supplied us with references 37,
39 snd 43,
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these mechanisms, those of importance in & non-hydrogenic gas in the range of
conditions 10-5 to 1 atmosphere density and 5000 to 35000°K are Doppler,
resonance and Stark broadening, they are each discussed in greater detail

in the following sections, Stark broadening is given the greatest attention

because of its dominance and complexity.

4,2, Doppler Broadening

The theory of Doppler broadening is well established and may be found
in a number of texts ie.g., Refs, 21,33). In the absence of any other broadening
wcchanisn it involves 3 statistical average over the Doppler shifts of the
individual particles. It is therefore a purely temperature dependent effect
which prciuces a characteristic, symmetrical, narrow line with very low

wings. Analytically, the line shape is

ey (v-v )2tn 2
L(v) = L1 7n2 expl~ ° ] (4.1)
/n D wg

where Yo is the line cente~ frequency and vy is half the width at half

the peak intensity (i.e. L(votwo) = %-L(vo)) it is given by

v ”—-—-‘
o 2kT
WD el /—'— gn 2 (4.2)

where me is the mass of the radiating particle.

4.3 Resonance Broadening

Resonance broadening occurs where the radiating and perturbing particles
cre of the same type and are uncharged (since otherwise Stark broadening
would far exceed the resonance interaction). From the point of view of

classical mechanics one can consider the gas as consisting of a collection
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of oscillators which are coupled by some force (e.g. an electrostatic force),
the inte.action of the oscillators through this force results in each oscil-
lator having a spread of frequencies around its natural value. When the
oscillators have the same natural frequency, a rescnance effect greatly
strengthens the coupling force and produces & greater spreading of frequen-
cies; it is this phenomenon which is called resonance broadening. Now,
imagine the perturber in an initial state 1. If the upper state 2 of the
radiating transiiion can be reached from state . by a dipole transition,
then the perturbing atom will broaden state 2 by a resonance interaction.
Clearly this is only of importance where there are a significant number of
particles in state 1. This implies that state 1 must have a low-lying
energy level because there will only be a significant number of atoms if

the temperature is low while at low temperatures the number of excited states
is small.

Resonance broadening results in unshifted dispersion profiles,

Yres
L(v) =

(4,3)

e N Ll

2, 2
v=-v +
( O) wres

where L (the semi-half-width) may be calculated in an impact approxima-

. . 5
tion (see next section) and has the form

g 1/2 e?f
~ 2 res
Yres = 3" (g (m 2nv ) Na' (4.4)
u e" " ‘res

Here fP and By all belong to the resonance lire and are,

v
es’ ‘res’ B4
respectively, the absorption oscillator strength, the frequency, the lower

state statistical weight and the upper state statistical weight, Na is the

number of perturbing atoms per unit volume. Evaluating the constant,
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Eq. (4.4) becomes

" 8y 1/2 1 Na
wms(ev) = 0,175 = (éT;) fres WE—; (4.5)

where "L is the Loschmidt number.
It can easily be checked that for transitions from low-lying states
under conditions of low ionization this line width can be grecter than that

due to Stark breoadening (see next section).

4.4 A Brief Review of the Theory of Stark Broadening

The problem of Stark broadening (i.e. the broaderning of spectral lines
by charged particles) has received considerable attention, but until recently
the treatments were unsatisfactory in a number of important respects. Now,
however, the work of Griem, Barunger, Kolb and their co-workers has pro-
vided a general, accurate theory (see Refs. 5, 34 and papers referred to
therein). This section gives a brief description of some of the main fea-
tures of the broadening mechanism and its theoretical treatment with
particular emphasis on non-hydrogenic gases.

A detailed discussion of the Stark effect is given, for example, by
Bethe and Salpeter35 and so only a very brief description need be given here.
When an atom is subjected to an electric field, the energy levels are each
split into a number of components. If this is viewed as a perturbation prob-
lem where the expansion parameter is the field strength, then it turns out
that the first-order effect is identically zero and the magnitude of the
splitting is proportional to the square of the field strength ('quadratic
Stark effect'') except for very strong fields (where higher order effects
become important) and for energy levels which are degenerate with respect

to the orbital angular quantum number, &, where the first-order (linear)
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effect occurs and is dominant. Since hydrogen and its isoelectronic sequence
(He II, Li III, etc.) and the highly excited states of more complex atoms
are degenerate with respect to &, the linear Stark etfect governs the
splitting of the associated energy leveis; under these circumstances it
turns out that (in contrast to levels split by the quadratic Stark effect)
broadening by the slowly moving ions is important and the full apparatus

of modern line-broadening theory is required to account properly for the
complex line shapes which result (see Refs. 5 and 34).

We turn now to the theoretical treatment of line broadening through the
Stark effect. An exact analysis would proceed as follows: the field at the
radiating atom is calculated for a general sequence of perturbers with dif-
ferent -elocities and trajectories, this field is then substituted into a
quantum mechanical expression describing the transition and a statistical
average over the perturbers performed to vield the line shape. Fortunately,
in practice this procedure can be considerably simplified by the existence
of two good approximations which are asymptotically correct in the opposing
limits of interaction times which are, in one case, very much less than
(Iv-vol)-l (the impact approximation) and, in the other case, very much
greater than (]v-vol)-l (the quasi-static approximation). In the impact
approximation, corresponding to rapidly moving particles, the process is
treated as a series of discrete encounters with single particles. In the
quasi-static approximation, for slowl;-moving particles, the perturbations
on any given emitter are treated as coming from a cloud of stationary parti-
cles. In both cases, statistical averaging is necessary to achieve a
macroscopic result. Electrons, being rapidly moving, can nearly always be
treated by the impact approximation; in principle, ﬁz'v-%> sufficiently large,
electrons should be treated by the quasi-static approximation. Although

this effect is significant for some hydrogenic lines, it is of no importance
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for non~hydrogenic lines whose wings decay to a negligible level more rapidly
than the wings of hydrogenic lines (see Ref. 5, pages 92 and 93).

Ions sometimes broaden according to the impact approximation, sometimes
according to the quasi-static approximation and sometimes according to
neither limit., ~Ffortunately, the quasi-static approximation always holds for
ion perturbers in the wings of a line and where it may break down, i.e. near
the line center, electron broadening usually dominates. Indeed, the influ-
ence of ion perturbers in a non-hydrogenic gas may often be neglected
entirely without losing reasonable accuracy; this is particularly true where
the radiating particle is itself an ion, since the local density of positively
charged particles will be reduced. The linear Stark effect greatly increases
the broadening effect of ions so that the study of hydrogenic lines requires
proper accounting for both electronic and ionic broadening.

The simultaneous action of ionc and electrons is treated by a simplified
form of the exact treatment described earlier: first, the Stark splitting
due to a typical field of stationary ions is calculated, then the electron
broadening of these lines is determined from the impact approximation and,
finally, statistical averaging over the various possible field strengths is
carried out. It frequently happens that in the upper state of a transition
the electron is sc much more weakly bound than in the lower state that pertur-
bations of the lower energy level may be neglected. In general, one can say
that this is the case fer all transitions except those where the jumping
electron is one of several equivalent electrons in both states or the levels
are both broadened by the linear Stark effect.

Finally, a few words relating the older treatments of line broadening to
modern theory will prove useful in the next section. The old impact (or

collision) theory due to Lorentz, Weisskopf, Lindholm, Foley and others (see,
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for example, Aller18 for a description and references) is contained as a
special case in the modern impact approximation. The older treatment is
based on the "adiabatic" theory which treats all collisions as elastic in

the sense that only the two levels between which the system is radiating are
perturbed, this is correct only for low perturber velocities (i.e., for
electrons, at low temperatures). In addition, the older theory does not
account for the influence of overlapping lines, which may result from the
near degeneracy of the field-free spectrum or from Stark slittirg produced

by the quasi-static ion field or even from the excitation by the ion field
of nearby forbidden transitions. The current form of the quasi-static approxi-
mation is similar to the old statistical (or Holtsmark) theory except that it
improves the distribution function for the positions of the perturbing par-

ticles by accounting for their mutual interactions.

4.5 Stark Broadening of Strong, Non-hydrogeric Lines

In this section we discuss the results of Stark broadening theory as
applied to strong non-hydrogenic lines at space vehicle re-entry conditions
and with particular reference to nitrogen.

According to both the adiabatic and the general impact theories, an
isolated line has a dispersion profile, however, the shift (d) and the half-
width (w ) are different in the two theories. We recall from Section 3.3
a dispersion profile has the form

W

L(v) = % . (4.6)
(v-vo+d)2 + w?

Before discussing expressions for w, which will be our main concern
in this section (shift is of no importance in radiative transfer problems),

we first show that ion broadening may be neglected. The influence of ion
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broadening in non-hydrogenic gases appears, in part, in an asymmetric line
shape such that® one wilg decays as (v-vo)-z {as in the absence of quasi-
static broadening) while the other wing is asymptotic to (v-vo)-7/u. Before
this latter term is of the same order as the electron contributed impact
broadening, the absorption coefficient of a typical nitrogen line has
dropped to 10-5 times its peak value, as may be checked from the formulae
and tables of Griem (ref. 5, Chapter 4). The influence of ion broadening on
the core profile can also be estimated from Griem's work. Equation (4.90)
of ref, 5 is an empirical expression for line half-widths due to both elec-

trons ard ioms in terms of the half-width due to electrons alone as obtained

from the .nspection of calculated he}ium profiles. This equation is

"
Yo otal © (1 +#1.750 (1 - 0.75ﬁ]wel (4.7)

whcre a is a measure of ion broadening (absent if a = 0) and r is a
measure of the mutual interactions between the perturbing ions. Taking val-
ues of a from Tables 4-5 and 4-6 of Griem's book and estimating values of
r, one finds that the ion broadening effect on w is at worst (high densi-
ties) about 10% which is less than the estimated accuracy of the best theory.
The general impact approximation results in an analytic expression for
line width, w, (ref. 5, Eqs. 4.68, 4.79 and 4.80) which is accurate to

A
about 20% but which unfortunately requires considerable computation to

i;ﬁis claim requires a little qualification. It does not hold for some high
orbital angular quantum number states due, as discussed in the next section,
to Debye-shielding of the electrons and partial degeneracy with respect to

£ although the experimental results of Day and Griem3? for two 4f states of
NII show that, even using the worst estimate of experimental errors, the
theoretical results of ref. 5 are correct to within 35%. Another source of
uncertainty is that a number of experimenters (see Jalufka, Oertel and
Ofelt“3 and references therein) have found the theory to be in error by a
factor of 2.5 to 3.0 for AII. However, the results of Day and Griem3?
confirm an accuracy of 20% for NII.
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evaluate. In view of the other inaccuracies in radiative transfer problems
(in oscillator strengths, energy levels, etc.) such computation is not justi-
fied for our use here. However, Griem5 has evaluated w for 17 lines from
the first spectrum of nitrogen and 75 lines from the'second spectrum of
nitrogen at several temperatures covering olr range of interest; these
results, normalized by their values at 20,000°K, have been used to plot

Figs. 12 and 13. The temperature dependence of the line widths can be seen
to vary considerably, the lineswith negative slopes belong to high orbital
angular momentum upper states and are beginning to exhibit the dominance of
inelastic coilisions. As discussed earlier, Debye shielding of the electrons
(rot accounted for in Griem's calculation) may be significant for these
states and therefore the line widths may be less accurate than those of the
lower states. Note that because the broadening is assumed to be caused en-
tirely by perturtation of the upper states, Griem's results provide the
widths of more (unfortunately not many more) lines than those actually
tabulated.* Besides choosing an average temperature dependence, we also

have to obtain an expression with which to predict the line-widths not cov-
ered by Griem's calculations; a number of approximate expressions are

available in the literature and we now discuss them.

The adiabatic theory of line broadening due to upper level perturbation

gives the following result for the line half-width18
1/6
} . 12/3 (8KT:
4mw = 38.8{C, | (;;n-;- N, (4.8)

where C, is the quadratic Stark coefficient of the upper state. In its

most general form, C, is given by

ince the influence of the lower state is negiected, lines with the same
upper state shouvld have the same frequency width, however, the value for NII
tabulated in® do not all satisfy this requirement -- apparently due to
computational errors.
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y
c, = < [ A2.f . (4.9)
m 8n2he? i Y
e
or
c, em*sec™ = 1.24 x 107 T (A, em)? £ (4.20)
Y ’ ui ui

i

where the summation is over all states { to which a dipole transit.on tboth
emissive and absorptive) is allowed from the upper state u whose energy
level is being perturbed. In practice, the summation is usually dor'nated

by a few strong transitions. Substituting Eq. (4.10) into Eq. (4.8) and
evaluating the constant gives

wev=1.3x10 (] J (A, em)? fuil]2/3 (Necm'a)od'ev)lls. (4.11)
i

Griem et al38 have compared Eq. (4.11) with the general theory for several
low-lying lines of Hel and, over our temperature range, the discrepancy is
within a factor of 3. It will also be recalled that the adiabatic theory is
asymptotically correct at low temperatures. A simplified form of Eq. (4.11)

is available for a hydrogenic gas since thenu2
7 emUsec™d (4.12)

where we have included a small numerical correction pointed out by
*
Sibulkin““; n, iz the :Ifective quantum number of the upper state, Sub-

stituting this re«: . .~ 03. (4.8) one gets

L
n
w O . 48 x 10-23 ( ;) (Ne cm-a)(kT eV)l/ﬁ. (4.13)

No derivation of Eq. (4.12) is given in Ref. 42 but presumably it is obtained

by an approximate evaluation >f Eq. (4.10) for a hydrogenic spectrum and
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osciliator strengths. Since this treatment carnnot account for same-shell
transitions it is likely to be inaccurate for non-hydrogenic gases.

An analytic expression is alsc available in the opposite limit of high
temperatures where weak, inelastic collisions dominate. Barangersu together
with Stewart obtained the following expression for the width of non-hydrogenic

jon lines due to weak, inelastic collisions with electrons,

L
L
h? £(v) > .2 2 .
WS ——— N dv (b2c-1)o“.g (4.14)
W3 mg e\, v i 12!u+ls > ui™ff

where the summation is over all states 1 which can be :‘eached from the per-
turbed state u by dipole transitions, 2, max(iu,zi) and go. is the
free-free Gaunt factor for the electron transition. If we now put Reg = i,
we can perform the velocity integration and, assuming a Coulorb force law,

apply a sum rule to obtain, following Armstrong“s,

%
2 am, 1/2 n %
WS —=) (=) [5n 2 + 1 - 3¢ (2 +1)] (4.15)
6/3 m2 © kT z u u u
e
or, numerically,
n* 2 "
w eV = 0.637 x 10722 N, (kT ev)'llz{?g) [sn 2 +1 - 3t €5 e1)], (4.16)

Using an approximation due to Unsold“b it is pcssible to reduce Eq. (4.16)

still further to the result obtained by Stewart and Pyatt“v

)
h3 2!1718 1/2 (h )‘~
W= ( o Ne u (4.17)
(2xm )2 z2
e
or
-3
(n )4
wev = 3.3 x 10772 (k1 ey M (N Y ; (4.18)

z
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Note that Eq. (4.18) contains the same dependence on n: as does Eg. (4.13),
the 2z and temperature dependences are quite different, however.

From the work of Griem et al. ¢n HeISB, we expect Fq. (u4.1ll) to agree
with the more accurate results of GriemS to within a factor of 2 or 3; a
number of direct chezkson both NI and NII confirm this expectaticn and we can
also see from Figs. 12 and 13 that a temperature dependence of 71/6 is an
approximate average of the correct behavior (accurate to within 25% ®rour
temperature range). Equation (4.13) agrees with Griem's results to withir
a factor of 5 for NI but is low by a factor of approximately 40 for NII. In
contrast, Eqs. (4.16) and (4.18) overestimate the widths of NI lines by a
factor of abocut 10 and the widths of NII iines by a factor of 4, in both
cages, tre temparature dependence of Eqs. (4.16) and (4.18) is incorrect at
thege temperatures.

For low-lying lines not covered by Griem's calculétions, the best that
we can do appears to be to use the result of adiabatic theory, Eq. (4.11)
(the higher lines are treated quasi-staticaily as discussed in the next sec-
tion). Thus, we use the following exoression for the eleztron impact line

width
/
w eV = A Ne/NL (kT oV)l 6 {.19)

where NL is the Loschmidt number and A is either evaluated by ratching

Griem's results to Eq. (4.19) at 20,C00°K or obtained from the adiabatic

expression (see Eq. (4.11))

2 2/3
cm) fuill .

A=3sx1030i ] O (8.20)

L ui
i
There is one exceptional class of strong lines for which the perturba-
tion of the lower state is not negligible and sc cannot be treated bv Eqg.

(4.20), namely same-shell transitions where the jumping electron is one of
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several eguivalernt electrons in both states (which nermally give lines in

. . X . . i8,
the ultraviolet). For these lines, the adiabatic theory pives (see Aller )

- I r! 2 ¢ - 2 i
A=3sx103 (O em?s T, em?f (4.21)

- ti ui'
i b

where subscript £ denotes the lower state.

4.6 Stark Broadeninpg of Lines with Highly Excited Upper States

Lines with hiphly excited upper states (not covered by friem's results)
will be subject to linear Stark broadening. In many cases, however, tl.v
will also be either optically thin or merged into a pseudo-continuur, so that
the energy transferred is indepeident of the profile. However, calculations
carried out on hydrogen (see Part II) suggest that under some Important con-
ditions (low densities, moderate temperatures and high path lengths) lines
can be lsolated but self-absorbed up to upper quantum numbers of 10 or so.

It is debatable whether the accuracy of the overall calculation would be
significantly impaired if one were to use impact line profiles for these high
lires but, taking a cautii.s approach, this section discusses an attempt to
account for the peculiarities of these lines.

Perturbation of states with moderate to high principal quantum numbers
(n > 4 or 5) ana high orbital angular quantum numbers is complicated by
certain characteristics of these states. In the first place, L-3 coupling
starts to break dovn36 so that different selection rules operate. According

7 o 1y et : .
tc Day , however, this should have littie effect on the width. Secondivy,
“he energy levels become relativelv closely spacci. This c.ose 3paci-: kas

two effects: it increases the i~portarce c: .elastic coliisians and =

implies at least a partial degeneracy in orbitai anpular guantu: nu-her.

Inelastic coliisions are due to e.ectrons whose traiectories are relatively
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distant from the radiatirg atom. Such electrons are subject to a Debye
shielding effectas. This shieldirg is not taken into account in non-
hydrogenic electron impact theory with the result that the line broadening
is overestimated. However, the electron impact line width cannot be greater
than the electron impact line width of a corresponding line in a hydrogenic
;z,asaa’39 and we thus have an upper bound which is approached as the degen-
eracy of the levels increases. A further consequence of the degeneracy of
the states under discussion is that ion broadening becomes important in the
line wings. Very accurate calculations of profiles have been performeduo
for the strongest hydrogen lines and approximations valid for higher hydro-
gen lines are also available'l. Even the approximations (obtained by folding
a dispersion profile due to electron impacts into a quasi-static profile due
to ion fields) are too complex for us to use here. Instead we take account
only of the behavior in the line wings (this is (see next section) what we
do for the dispersion profiles but in this case the approximation is much
worse). Even the wing shape is not simple5 since there is a gradual break-
down in the validity of the impact approximation for electrons as v-v_
increases until eventually they too are described by the quasi-static theory.
When the impact approximation holds, the line wings are made up of an elez-
tron contribution which decays as (\:-vo)-2 plus an ionic contribution which

/2

whereas when the electrons broaden quasi-statically,

both contributions decay as (v-vo)-s/2. The latter is the simplest to deal

decays as (\:-\:O)-5

with and is valid at the lower temperatures. At the upper temperatures of
our range the intensity profiles of the lines will almost always merge

before the effective widths reach the pure quasi-static region but nonetheless
the most generally applicable, simple treatment appears to be to treat both
electron and ion broadening as quasi-static. The analytic expressions for

the widths of degenerate lines are obtained as described in the next paragraph.




In principle, in the theory of quasi-static broadening the interaction
between the perturbing particles should be taken into account. This effect
is small, however, for neutral radiators except at high densities and is in
any case least in the wings of the line which are caused by close, two-
particle encounters. For our purposes the Holtsmark theory of statistically
independent perturbers will be sufficiently accurate even for charged radia-
tors. The simplest form of this theory is given for a single class of
perturbers by Aller18 and by Margenau and Lewisuz. The resulting asymptotic

form may be written to conform with Grieﬁn‘as

3/2 1 1

L(v) ~ C(2mc F )
° A3 (21rAv)5/2

for large Av(=v-vo) (4.22)

where C is a constant for a given line, A is the line wavelength and F0

is the Holtsmark normal field strength given by

2/3

Fo = 2.60 zeN (4.23)

where N is thc ' "ber of perturbers (whoue charge must be z) per cubic
centimeter. If one now allows for more than one class of perturber, Eq.

(4.23) holds but Fo becomes

)2/3

F, = 2.60e (N_ + ] z N (4,24)

z
P

where N_ is the number-density of zp-times ionized particles. Thus
%

substituting Eq. (4.24) into Eq. (4.22) we get

3/2 y L 1

I R T R S S
e 5 ° zp A3 (21!1\\:)5/2

R

L(v) ~ C(5.20emc) (4.25)
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which is consistent with Griem's asymptotic result for ouasi-static broadening
by electrons and singly ionized particless. The constant C can be found
from the approximate analysis due to Gz'iem“l for Holtsmark broadening of
hydrogen-1ike lines. If one follows Griem's analysis but does not replace

the wavelength by a hydrogenic value one gets

¢ ¥ 2 (—h 32,3 (n2 . n2)¥? (4.26)
16 2 u L
zrmeeuw c

where z, is the charge on the radiating particle, n, is the upper state

quantum number and n, is the lower state quantum number. This result

L
assumes that both levels are degenerate in orbital angular quantum number

L and takes account of the perturbation of both levels. It is clear from
Griem's analysis that where the lower state is non-hydrogenic (and therefore
may be ignorcd) we may simply set n, =0 in Eq. (4.26). Combining Egs.
(4.26) and (4.25) we get

3/2 (nz_nz)3/2
L(v) = f%.(1$32 h) zr‘3/2 (v +] 2N ) -—3-—3575- (4.27)
e z, P 25" (2nav)

or, numericaily,

3/2

(n2-n2)
Lv) vt s 22 %207 2 TV (w4 ] 2N )
2, P 2" "L (ahv ev)

(4.28)

5/2

where NL is the Loschmidt number. The corresponding expression for the

line intensity is given in Section 3.3 where a width parameter is introduced,

nanely

w = b2/3 rrearsn®/3 (4.29)
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where b is related to L(v) by L(v)~» b/(v-vo)S/z. Identifying b in

Eq. (4.28) and inserting it intc Eq. (4.29) yields

- 2/3
w= AN /N + ] z N, /N) (4,30)
z P
P
where
_ -2 -1 2 .2
A= 0.691 x 10 © z (n-n¢). (4.31)
r u 2

4.7 The Relative Importance of Doppler and Stark Broadening

In this section, we first examine the curve of growth of intensity of a
line broadened simultaneously by Deppler and any dispersion profile produc-
ing effect. The important parameter is the ratio of dispersion to Doppler
half-widths which is next calculated for some typical cases in nitrogen.
Finally from these results it is demonstrated that Doppler broadening may be
neglected over a wide range of conditions.

A wideiv nused, approxiaaie expression for a line broadened simultane-

ously by the Doppler effect and a dispersion profile producing mechanism is

dt (4.32)

K =K 2'[“ exp(-t2)
v on - az + (C-t)z

where

a E'ﬁi /tn 2 , € = - ’
D D
K = /nin 2 2 mnNm
° m.c w

w is the Aigpersion semi-half-width and w_ is the Doppler semi-half-width.

D

It can easily be shown that
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1im K : lim K = m L (4.33)

are ¥ glave Y e T Wy (v-vo)2

3
3
-

which is the pure dispersion profile., The first limit, a + @, is the case
of dispersion broadening much greater than Doppler'broadening which, of
course, must be asymptotic to the pure dispersion case. The second limit,
§/a + », shows that far out in the wings of the line [(v-vo) > w]
the absorption coefficient behaves as though there were no Doppler broadening
present; this result is to be expected since the Doppler profile falls off
much more rapidly than the dispersion profile.

Since the line center is blackened out ut large optical depths, the
detailed shape of the core is then irrelevant and the asymptotic growth is
that of a pure dispersion profile with semi-half-width w, and (see Sec-

tion 3.3) the combined intensity is given by

In 2Bv° ’w I; Kds for large s. (4.34)
On the other hand for small optical depth, the intensity is independent of
the line shape and thus, if the influence of Doppler broadening is confined
to a sufficiently narrow core region, the curve of growth will be independ-
ent of the Doppler broadening. The curve of growth of a combined Doppler-
dispersion profile has been plotted by Penner31 as a function of a and
optical depth based on the Doppler part of the profile. Figure lu shows
this curve of growth transformed to an optical depth based on the dispersion
part of the profile. It can be seen that for a > 0.5, the pure dispersion
growth is followed almost exactly. For a > 0.05, the pure dispersion
curve underestimates the combined curve by at most a factor of 2 and that
only for a small range of optical depths. Values of a which we may expect

in our problem are discussed next.
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iUsine the hydropsenic aporoximation to the adiabatic result, Tq. (4.13),

and the Dopoler half-width Fq, (4,2) we pget for a,

a =26 x (n“)“ M /N, (hv eV)-l(kT eV)-lla. (+,35)
u e 1 o

Except for the ultraviolet lines, the impourtant lines of NT 1lie in the

4
frequency range 1 to 6eV with values of (nu)“ > 25, hence, for kT < 3eV
a>7175s Ne/NL.

At a density of lo'u atmospheres, Ne/NL z 2 x 10’“ and the correspondins
value of a 1is 0,015, Thus we can say that for densities preater than lo-u
atmospheres the maximum error on any line is a factor of 4 (with the excen-
tion of some ultraviolet lines where the factor can reach 8), and this will
only apply to those lines (if any) whose optical depths lie in the range
where the Doppler profile influences the radiated intensity. Txceot in the
case of very long pathe-lengths, most lines will be optically thin at low
densities and so independent of the profile shape., Even the errors in tae
ultraviolet lines are not as severe as the factor of 8 obtained ahove since
these lines are subject to resonance broadening which increases the disner-
sion half-width above the value used in Fq. (4,35). The overall errors in
neplecting Doppler broadening in NI are therefore likely to be small
compared to those arising from other sources.

The icnic lines will suffer more on account of their higher frequencies,
indeed the resonance lines of NIII are likely to be Dopnler broadened
until well into the winpgs, It was at first thought that the lines of MNITT
would not carry much enersry on account of their hipgh frequencies. However,
early results from detailed calculations (reported in Part 3) demonstrated

that a number of these lines are the dominant transfer mechanisms at hieh
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temperatures, It therefore became necessary to take accourt of the Doonler
broadening of some of the ionic lines., We do this as follows,

For a > 0,05 we isnore the Doppler effect and treat the line as a opure
dispersion line. For a < 0,05 we compute the intensity due to a pure
Doppler shape by the abproximate methods discussed in Section 3.5. Next,
we calculate the intensity accounting only for the dispersion contour.
Finally, we compare the two values of intensity and take the larser.

The treatment just described is equivalent to approximating the line
by a pure Doppler core repion followed by pure dispersion wings and nerlect-
ing the transition repgion between these two profiles.

The effect on intensity of such an approach iz shown by a dashed line
on Fig, 14 for the case of a = 5 x 10-5. It can be seen that the error in

the transition repgion is small,
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5. CONTINUUM CROSS SECTIONS

5.1 Introduction

This chapter discusses some of the methods available for calculating the
cross sections for bound-free and free-free transitions; in the calculations
reported in Part 3 molecular bands are included in the continuum but since
the method of treatment is peculiar to the band systems of nitrogen, the
discussion is deferred until Part 3. Continuous cross sections are more
readily available, in general, than those for lines, and the associated
radiation has been more extensively studied. This means that the task of
preparing data for radiative transfer calculations is much easier for the

contiruum contributions than it is for the lines.

5.2 pound-Free Cross Sections

The bound-free absorption cross section for a particle in initial state

i may be written29

- 8 !2 2 S
(o\,)1 = -:’-h—‘:-aoezhv-é-; (5.1)

where a 2 h?/uximc? is the first Bohr radius, g is the statistical
weight of the initial state and S depends on the transition probabilities
of all transitions from i to ionized states such that hv > Ii' where Ii
is the {onization energy of state i. In Eq. (5.1), hv is measured in
Rydberg units.

In Russell-Saunders coupling, the radial and ansular contributions may

be separated and the expression

S
= z'{x.' CI'L'RI'L' (5.2)
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is obtained where the primes denote the final states of the elec*ron and ion

plus electron and is the integral over the radial component of the

L'y
wave function (analogons to the o2 of Eq. (3.4)). Portunately,ti-l,L, is
generally independent of L' (Ref. S, page 109) because the integral is
dominated by the wave functions in the outer regions where the term split-
ting is small. Multiplet splitting of the ground state may also be ignored
since aven the hydrogenic decay from the photoelectric edge (which is as
1/v3 and which is more rapid than the non-hydrogenic decay) is responsible

for a change in absorption coefficient of only about 1% across a typical

multiplet width. We can therefore simplify Eq. (5.2) to

S o) o
= la
GO GLY - Ce-1 Na-1 * Cee1Mend (5.3)

where Cl, S I; cl'L" When the jumping electron is equivalent in the ini-
tial state to g-1 others a number of photoionization edges will normally
result, each corresponding to a different ion term and thus to a different
parentage of the initial state. It is then necessary to treat each parent-

age separately and apply the fractional p arentage coefficients mentioned in

Section 3.2, i.e. one gcts“8

tel

TS (5.4)

SR 2 L ' V2
$'11)) Cpy * (Fgp(a8'L))

Cpy = (F M+l ° “t-

t- AL

where (FSL(qS'L')}z is the fractional par. tage coefficient to be found

in Refs. 19 and 20. It remains therefore to calculate

ﬁ.l' =}El,(l’.n.v.l) (5.5)
and the remainder of tha section is devoted to this problem.
As in the case of line cross sections, t*e most accurate wmethod of

calculation i{s by means of self-corsistent field functions but, as mentioned
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before, such calculations are very lengthy. Fortunately thev are not so
necessary in the case of bound-free transitions owing to the widely used
and fairly accurate method of Burgece and Seaton. This method is similar
in approach to the Bates and Damgaard26 analysis of bound-bound transitions.
That is, it is a semi-empirical method based on hydrogenic wave functions.
It is, however, more complicated to a2pply than the Bates-Damgaard method
because it includes an empirical correction for the ron-hydrogenic wave
functions. A description of the method can be found in the original
paper29 and in Griem's books; a paper by Peachug is useful as an example of
its application. Several comparisons of the predictions of this method with
those ol*tained . om more exact calculations using self-consistent field
functions (see Section 3.2) and with experimental results have been per-
formed by Burgess and Seaton29 and by Armstrong and his co-uorkersus‘so.
These comparisons show that the method is accurate for the photoionizatior
of an electron which is alone }n its shell and in general gives pood agree-
ment for light, more complex systems. Tnhe method of Burgess and Seaton im-
plies a general restriction on photon energy, namely hv-Ii << z2 Rydbergs,
this restriction is not serious at the temperatures of interest in re entry
problems (< 3 eV) since it occur: at photon energies far from the maximum
of the Planck function. It is nevertleless worth recording that there
exists an approximation which is valid for high photon energies (Ref. us$,
page 76).

Seatonsl gives a formula from which D may be calculated for an

b
initial configuration 2pq (vhich corresponds to the most important trans. .
tions in nitrcgen,. It is not clear from the paper vhether Seaton's expie -
sion is obtained analytically or whether (as seems more likely) it is =

empirical fit to other calculations. Seaton suggests that, at leas: “or

positive ions, the accuracy of the formula should be within 20% an. 4
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comparison due to Johnston et al.so with more exact predictions for a
transition in NII confirms this for low photon energies.

The final method to be discussed is the hydrogenic =pproximation. The
formula for the bound-free absorption coefficient of a hydrogenic gas is

(see e.g. Ref. 33, Chap. 5)

128 m2 5 5 o143 2" .
o = o e?a? (E‘J -—;g(v,n,l) (5.6)
r3 n

where hv is measured in Rydberg units and g(v;n,t) is the Gaunt factor.
The Gaunt factor may be regarded as 3 quantum-mechanical correction factor
to the classical result. Extensive tables of Gaunt factors are available52
while Ref. 53 contains a review of approximate analytic representations;
except at high photon energies the Gaunt factor is close to unity. The val-
idity of the hydrogenic approximation is greatest at large values of n and,
for given n, for high values of orbital angular momentum. In statesof low
excitation, the core of passive electrons does not fully shield the nucleus,
and the expression {5.6) can be improved somewhat by the use of z,s an
effective charge, in place of z. z, is defined by ZZ 2 nz/l’n where
thr ionization energy In is measured in Rydbergs. When the jumping elec-
tron is initially one of a number of equ’valent electrons, the hydrogenic
approximation breaks cown completely. However, ArmstrongSq shows that the
p arentage splitting can be accounted for by the fractional parentage
coefficient {FSL(qS'L')}2 introduced earlier.

in the nitrogen calculations presented in Part 3, bound-free transitions
from the lower-lying states are represented by values of cross section calcu-
lated by Sherman and Kulander60 using the Burgess-Seaton method. The cross

sections of higher states are assumed to be hydrogenic.
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5.3 TFree-I'ree Cros=s Sections

Free-free transitions involve the change of energy of a free electron
in the field of a positive ion. When the ion is hydrogenic the following

expression holds
2
_ 16n2eb 2 Ne

= {(v,kT) {(5.7)
voff  3/3 ch (2nme)372(kT)

g 172 3 Eef
where gff(v,kT) is the free-free Gaunt factor which for temperatures of
interest to us, is close to unity over th important photon energy range
0.1 eV to 10 eV; accurate values ci Bes ar: tabulated by Karzas and
LatterSQ.

Until recently, the only theoretical treatment of free-free transitions
was for hydrogenic atoms. Now, nowever, a paper by Peach55 is available
which is an extension of the Burgess-Seaton method (see Section 5.2) to
free-free transitions. Peach's original paper applied her method to He
and compared the results tc Eq. (5.7), differences up to a factor of 2 in
both directions occur with a tendency for the hydrogenic expression to
underestimate the cross sections. Unfortunately from our point of view,
the results were not averaged over electron velocity and it appears at
least possible that this process would decrease the discrepancies. In the
past, it has been common practice to use an effective value of 22 to
account in a crude way for non-hydrogenic effects, this has the merit of
pr s=vving the analytical simplicity of Eq. (5.7).

In Part 3, the free-free cross section is calculated according to the

hydrogenic formula, Eq. (5.7). For transitions in the field of the first

ion, an effective value of 22 based on experimental evidencesl is used.
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APPENDIX I. The Influence of a Density-Dependent Partition Function on the

Thermnal Equation of State of Hydrogen

The equation of state of a gas is given by the equations6

. 3(tn Q)

Then, using the standard expressions for ‘partition functions in a gas ccnsist-
ing of hydrogen atoms, ions and electrons we get

VkT [53‘-,- (¢n(Q_,),)] (1.2)

p = (hH tN ¢ Ne)kT + N ot 'u) It

H H

which may be written as the sum of translational and electronic contributions

to the pressure,
P =D..* Py (1.3)

We see from Eq. (I.2) that the electronic partition function can affect the
value of the pressure in two wvays. In the fiwst placo It determines, through
the Saha equation, the number of particles present. The particle densities
can be accurately calculated in onr rarge cf conditions it the truncation
point of the partition function is found from Debye-Hlickel theory (see Chap. 2).
This, however, leads to the second way in which the partition function influ-
ences the pressure. The use of Cebye-Hilckel theo~y leads to a density-
dependent partition functicn and, according to Eq. (I.2), this gives rise to
a change in the thermal equation of state in the form of an additional term
vhich we call p_, in Eq. (I.3). It is this additional term which w: discuss
now.

“The terms of the hydrogenic partition function are convenientiy ordered

by the principal quantum number n and we may write
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Mhax -E /KT
n

= Z g e (I.4)

Q
el nzl n

where g, * 2n? and En = xH(l-l/nz). Following the procedure of Appendix II

we may separate Qez into two parts,

= )
Qer (Qez’low M (Qel)high (1.5)
where
%
nz-l ) -En/kT
(Q.,) z 2n‘ e (1.6)
el low n=1
and
T max
et’high = ] & 2n? e
n=n
["max -E_/XT
T mie M dn. (1.7)
%
n

#
We now choose n  such that the error in replacing En by Xy is small and

we get

-X,,/kT

v H s 3 *.3
(Qel)high =2/3 e [‘nmax) - (n)3]. (1.8)

Now since (Qel)low is independent of V, we get from Eqs. (I.2), (I.5) and

(1.8).
= NVKT 22 o A (1.9)

Where we have replaced N oax by v to emphasize that we are treating it as

a ¢outinuous variable, v is found from the Debve-Hlickel theory discussed in
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Section 2.2, Eqs. (2.6) and (2.,7), together with the hydrogenic expression for

for energy, Eq. (2.5), those combine to give

x2 1/4
ve (K 47 (1.10)
e 8weN
e
Ne 1V
Writing a for the degree of ionization so that a = N /(N #N ) = — = —
e H w* NL 2 Vo
we get
x2 1/4
ve (2 X4, (1.11)
e 8we22uNL o
so that
vy _1 1
(W)T oy v v (1.12)
Substituting Eq. (I.12) into Eq. (I.9) we find
=X,/ kT
Poy = %-NHkT vie B 1/Qqy (1.13)

Since the translational pressute due to the hydrogen atoms is given by
(pH)tr ¥ N KT, this may be written as

“X,,/kT
=1 3 H
pel '02 (pH)tr v e l/Qel» (I.l“)

Now, identifying Nax with v and comparing Eq. (I.8) we see that the

-Xy/ kT
quantity %-v3 e H is related to the high state contribution to the

partition function and we make the definition

- -xH/kT

=13 .3 *
Qzzvie & [(Qez)high + Q) (I.15)
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where
& = 273y W (1.16)
In addition we have
(pﬂ)” = i «1-0 (1.17)
Pep N + NH+ + NH l+4+a
so that Eq. (I.l4) finally becomes
Pet G 1-a (1.18)

For v to be approximately continuous as required by the derivation
of Eq. (I.18), its value has to be relatively large which implies low den-
sities which in turn implies a high degree of ionization. Equation (I.18)
shows that under these circumstances pel/ptv will be small. Numerical
checks confirm that for a > 0.85, petlptr < 0.05. The physical interpre-
tation is that there are so few atoms present that the change in their
partition function is irrelevant to the total pressure.

Where the ionization is low, v tends to be low (because the density

is usually high) and the integral approximation to (Qel) is less

high
appropriate. However, the error is probably no worse than that caused by
treating the energy levels as unperturbed (which is the only treatment
available at present). We therefore retain the integral approximation for
small values of v. Thus, Eq. (I.18) is assumed to hold but now we need

to evaluate G/Qel more carefully, replacing Q@ by its definition in

Eq. (I.15) we obtain

. (1.19)
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Numerical evaluation of Eq. (I.19) shows that pel/ptr is less than

5% for densities up to 1) 2nd temperatures up to 3eV.
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APPENDIX II. The Partition Functions of Nizpogen and its First Ion

This appendix is primarily concerned with giving details of the energy
levels and statistical weights from which the partition functions shown on
Figs. 2 and 3 were calculated. Most of the low and moderate energy levels
were obtained from the compilation of Gilmore.57 This compilation conven-
iently combines closely spaced energy levels of each electronic configu-
ration. The basic data for Gilmore's tabulation consisted of exnerimental
results listed by Moore58 supplemented with Gilmore's own estimated values.
Gilmore's work covers states with principal quantum numbers up to 8, Above
this level, Moore's values58 were taken and combined where available (the
method of combination is given in a later paragraph). Otherwise, hydrogenic
estimates asymptotic to the true ionization thresholds were made. For very
high, closely spaced energy levels integral approximations to the summed
terms were used.

The electronic partition functions were calculated from expressions of

the type

Qel = S1 + 82 + S3 + 12 + 13.

The meaning of the terms is as follows

()
max
- Q1) (1)
Sl z 121 gy exp(- Ei /kT)

and is a sum over all energy levels with n < 3. These levels are below
the lowest value to which the ionization energy is depressed in our range
of conditions. This means that the asisociated electronic energy configura-
tion of each leavel need not be distinguished and occasional further combi-

nation of Gilmore's values has been possible.
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52 and S3 are defined in a similar manner,

i(2)

max
) g§2) exp(- B§2)/kT)
i=1

tw

and

1(3)
max
) g(s) exp(- E
3 {=1 i

(3)

i

n
"

/kT).

These sums cover quantum numbers 4 < n < 10. E7:h corresponds to a differ-
ent electronic core configuration. This distinction is necessary because
for a given depression in ionization potential, A4x, the cut-off energy
(xeff = x-Ax) depends upon the ionization energs and this takes different
values according to the core configuration. A word about the values listed
in Tables II.1 and II.2 is necessary. Some of the energy levels of 52 and

83 could have been combined without sign.ficant loss of accuracy but were

indivicually specified for aesthetic reasors. The levels in question tend

to have large valuer o€ statistical weight and, when the series cut-off is in
this egion, the rartition function suffers large discontinuities as a function
of density {Lecause we neglect perturbation of the energy levels). These dis-
continuities lead to nonsmooth functivius for the particle densities. This
lack of smoothness can be avoided by including a sufficient number of terms

in the sume S, and S..

2 3
The quantities I, and I, are intezrals defined as follows
nmax
- (2) f‘ K:‘ ¢
I, % Boirg &XPL 7.0 UXT) I 2nar
11
(2) (2)

2/3 €eore exp(- E_ /kT)(n:ax - 1331)

and
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n
max

= (3) (3) 2
13 2 Bore exp(- E_ /kT) J n“dn
11
- (3) (3) 3
= 2/3 Beore exp(- E_ /kT)(nmax - 1331).
where 7(2) and g(a) are the statistical weights of the corresponding
‘core core

core configurations. I2 and I3 are therefore integrals over high states
whose energy levels are approximated by the threshold values.

Yalues of the energies and statistical weights are given for the atom
in Table I1.1 and for the first ion in Table II.2, It remains to demon-
straie the method of combining closely spaced energy levels.

For q closely spaced energy levels we require a mean energy level £

such that

-EilkT -E/kT
D ey

g (11.1)
Ry
i=1 izl

If we now write E, = EvAEi and substitute in Eq. (II.1) we oktain

-AEi/kT
? 31 ? gi (11.2)
i=] i=]

Sat if A!:i'k‘l' << 1, Eq. (I1.2) becomes

igl gL, = U (11.3)
which yields
g %L
il
£« i;‘ (11.8)
L K
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Equation (II.4) can therefore be used to combine any number of energy levels

provided only that in each case |Ei-§| << kT.




{ zi(l)
1 4
2 10
3 6
4 18
S 12
6 S
7 10
8 108
9 ac
10 66

Core statistical weights

TABLE II.1

67

Energy Levels and Statistical Weights of N

Core:

(1)
i

0

E

2.384

3.575

10.450

10.926

11.875

12.356

12.980

13.758

15.093

Ionization energies

R.

Energy Values in Electron Volts

2822p2(3p)
1(2) 51(2)

54 13.318
216 13.686
4S50 13.957
6u8 14,158
882 14.270
1152 14,335
1458 14,380

1800 14,412

(2)
core
I:‘(.2)

z 9

= 14,5481

2s22p2(iD)
gi(3) Ei(3)
160 15.u48
259 15.603
360 16.069
90 16.169

640 16.234
810 16.279

1000 16.311

(3)
€core
t£3)

= S

® 16,847
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10
11

12

Core statistical weizhts

12

39

60

221

TABLE II.2

Energy Levels and Statistical Weights of N

Core:

Ei(1)
0
1.899
4.052
5.800
11.43%
15.5u4l1
17.876
18.u4890
19,232
20,933
23.270

29.045

Ionizaition energies

Energy values in electron volts

2s22p(2p)

gi(2) Ei(2)
1€2 25,860

306 27.337
432 28,081

-8¢ 28,500
768 28.750

972 28,9uC
1200 29,068
Feane * ©

E.(.2)

s 29.612

2s52p2(“P)
)

gi(3; Ei(3)
384 32.990
600 34,537
864 35.201
1176 35,601
1536 35.861
1844 36.041
2400 36.169
one = 12
Y = 36,739
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APPENDIX III. The Approximations Involved in the Use of a Density-

Independent Partition Function

In radiative transfer calculations we require the species composition
in order to find the occupation numbers of the initial levels of the various
radiative transitions and we also require the electron and positive charge
densities to find the widths of the stark broadened lines. It turns out
that these quantities are not very sensitive to the cut-off of the partition
functions and can be calculated reasonably accurately without allowing for
the high terms of the partition functions. This appendix discusses the
effect on occupation numbers and charged particle densities of truncating
the partiticn function after a small, fixed number of terms.

The possibility of such an approximation springs from the following
observations. In the first place, at low temperatures the factor 1/kT
in the exponents of the terms of the partition functions means that the
high terms do not contribute significantly and the cut-off is unimportant
(except for its existence). (From this fact it follows that the problem is
restricted to relatively high temperatures where the gas is completely dis-
sociated and we ignore the molecular species in the remainder of the
discussion.) Secondly, excited states of multiply ionized species have
large energies with respect t.o the ground state and the corresponding con-
tritutions to the partition functions are small, the multiple ions thus tend
to be dominated by a few low-lying states and their partition functions are
consequently density independent. Checks performed a posteriori show that
we do not need to consider the problem of the exact truncation point for
any multiply ionized species in our range of conditions. Furthermore,
although (Qel) + is treated as density dependent in the accurate calcula-

N
tions, it does not vary more than a factor of 3.5 from a sum over its first
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four terms (see also Fig. 3). Thus it can be seen that only (Oel)N is
strongly dependent on density.

It follows that when few atoms are present, the electron and pos.iively
charged particle densities may be calculated reasonably accurately no mat-
ter what form of the atomic partition function is used. On the other hand,
a significant number of atoms (i.e. low ionization) will only be present if
the temperature is low or the density is high. If the temperature is low,
the terms omitted from the approximate part&tion function are negligible,
as explained previously If the density is high, there will be a large de-
pression in the ionization limit and thus the density-dependent cut-off
point will be relatively close to the low-lying, density-independent value
which will now be a better approximation. In summary, if we approximate
the atomic partition function by its first few terms, then under conditions
of low ionization, where the value of the atomic partiticn function is im-
portant, the approximation is reasonabiy good while for conditions of high
ionization, where the approximation is very poor, the charged particle
density is independent of its value.

At conditions where the ionization is low, the approximate partition
function is relatively accurate, as discussed above, we can tlierefore use
it to find the occupation numbers of the atomic states with reasonable accu-
racy. There remains, however, the problem of their calculation for higher
ionization (where the atomic radiative contribution is not necessarily
negligible). Under these conditions, a further observation is of help.
Although the region of high ionization is the region of largest error in
the density-independent partition function (see Fig. 2), it is also a region
in which the occupation numbers become independent of the partition function.
This may be seen bv noting that ﬁe ard N R will be independent of RN

N
and using Eq. (2.1) to eliminate NN from the appropriate form of
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Eq. (2.2), to obtain

-~ -~

- N+e

) -3/2
“,1 7 T,

1l
5 (kT) c/po &; expl[ - (lu.sue-Axl-Ei)/kT] (I11.1)

) 1
£ Nt

A similar result has been independently obtained by Hochstim.Sg The value

of ﬁN ig exactly linear in under these conditions and the influ-

(Qel)N
ence of inaccuracies in (Qez)N can be interpreted by saying that although
we may not know accurately the total number of atoms present -- because we
do not know whether to count highly excited states as bound or free -- once
having decided to treat a particular state as bound we can calculate the
associated occupation numbers with reasonable accuracy.

The solution of the system of equations consisting of the first four
ionization equations, Eq. (IV.12) to (IV.15) plus the two conservation equa-
tions, Eqs. (IV.16) and (IV.17) was obtained by iterative calcuvlations on
an IBM 360 computor using both exact and approximate expressions for (Q ,)

el’N

~and (Qel) . The approximate expressions consist of a fixed number of the

N
terms listed in Appendix IT while the "exact'calculations are described in
Section 2.2.
The composition predicted by the '"exact" theory is shown on Figs. u4-7,

Figures 15, 16 and 17 display some of the errors incurred by using vacuum

ionization energies and the following truncated partition functious for N

and N'
(Qez)N = 4 + 10 exp(- 2.384/kT) + 6 exp(- 3.575) (111.2)
(RQyy) ,= 9+ 5 exp(- 1.899/KT) + exp(- 4.053/kT) + 5 exp(~ 5.800/KT).(IIL3)

N
Figure 15 shows the errors in electron number density which for mass densities

less than 1 atmosphere are within 15%. Because the overall charge must be

e ———— v W
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zero, the total density of positive charges must equal the electron density
and does not need to be considered further. The density of atoms suffers
the worst errors, as is to be expected, and Fig. 16 shows that these can be
two or three orders of magnitude; N s only sericusly in error when mul-
tiple ionization dominates (Fig. 17).

The error in the occupation numbers for various approximations is
shown in Figs. 18-20. Figure 18 is based on the 3-term partition function
of Eq. (II1.2) and vacuum ionization potentials. The maximum error occurs
when the atoms are 60%-70% ionized which means that it moves towards higher
densities as the temperature rises, and it grows from 2% at 1.0 eV to over
60% at 3 eV. For densities less than 1 atmosphere, the error is less than
40%. Figure 19 shows the errors caused entirely by the partition function
(the calculations plotited on Fig. 19 used correctly depressed ionization
energies but the simple 3-term partition function of Eq. (III.2)).

The fact that the errors are worst at high densities and that the
partition function and ionization errors are both in the same direction sug-
gests that one may be able to reduce the errors and perhaps compensate for
the heavily reduced ionization energy at high densities by truncating the
partition function slightly above the exact high-density cut-off. Figure 20
shows the results of such a procedure where the cut-off point of the atomic
partition function was chosen to be the true cut-off for densities sliphtly

less than atmospheric. This gives rise to a 13-term partition function of

the form

10 2
1
Qqe * 2 gil) exp(- Eg )/kT) + Z g§2) exp(- Egz)/kT)
izl i=1
(3) (3)

* R exp(- Ei /kT). (T1T.4)
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The partition function of N* was left in its apprcximate, 4-term form.
The maximum error can be seen from Fig. 20 to have been reduced to 20%.
However, the choice of cut-off turns out to be critical since use of the
true cut-off corresponding to 10-1 atmospheres increases the high density
error to -50%. It also turns out that severe errors can occur in the
occupation numbers of N* when the atomic partition function is
overestimated.

In conclusion, an approximate partition function based on a small
number of low-lying energy levels gives occupation numbers and charged
particle densities to an accuracy of about 50% provided the densities are
less than atmospheric. In many cases, this will be an acceptable approxi-
mation. However, attempting to reduce the inaccuracies by raising the
cut-off point of the partition function introduces uncontrolled errors arnd

does not seem to be a fruitful approach.
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APPENDIX IV. An Iterative Procedure for the Solution of the Mass Action and

Conservation equations

At high temperatures, a diatomic gas A, will undergo dissociation,

2
A, T 2, (1v.1)
ionization of the molecules,
A2l a2 4 o (1v.2)
2 2 '

(where z denotes the number of positive charges on the molecular ion) and

ionization of the atoms,

AP 3A% 4 e (1v.3)

The corresponding equations of mass action can be obtained from Eq. (2.2) by
identifying the symbols, inserting the standard approximation

(Q)s z (Qtr)s(oint)s and evaluating (Ou‘)s. The resulting equations are,
for dissociation:

2 2
(NA) ] mAkT 3/2 [(Qel)A]

-D/XT
x( ) e (1v.4)
M h2 RN
2 2
where D is the dissociation eneryy, ™. is the mass of an atom of A
and (Qol)A is the electronic partition function of A; for molecular
ionization:
N z Nc (Qint) z z-1
A A (2: nekT)3/2 ( XA2 )
x x 2w (2 exp(- —— (Iv.5)
"Az-l (OinfjA:—l n? kT
2 2
2" ne 3/?
wvhere subscript e denotes electrons and the value of " ) is
h

3.03 = 102 ev’3/2 c--a; and for atomic ionization:
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NAz N (Qel)Az 2n mekT 3/2
.. e S an o coummesmee X 2 x (-‘*) exp(-x /kT)u (Iv.s)
Nob o (0  h? At

A el Az-l

Note that it is possible to reorganize the sets of equations (IV,4), (IV.5)
and (IV.6) so that molecular ions are not reparded as being produced by
ionization but instead treated as dissociating according to an equation
similar to Eq. (IV.4); this is exactly equivalent to the present treatment
and the further inclusion of dissociation relations for molecular ions
would introduce redundant equations,

The conservation equations for mass and charpe are

22 z

a a
2 } N+ [ N _sN (1v.7)
230 A2 220 A

and
zf 2;.
2N ¢+ ZzN s N (Iv.8)

zs1 A® zs) A2

2

where "o is constant and is the number of atomic nuclei per unit volume
and 2z is the atom;c number of A, If a method of evaluating the parti-
tion functions is adopted, the set of equations (IV.4) to (IV.8) can be
solved by iteration.

In the case of nitrogen, the oniy molecular ionization process of

importance is the reaction
-
N, s N_+ e (Iv.9)

-6

and further it can eas{ly be checked that for kT < 3 eV and o/o° > 10

o e e —
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the fifth and higher ions never contribute more than 1% of the total

particle density and can be ignored. We therefore may truncate the summa-

© e B o

tions in Eqs. (IV.7) and (IV.8) after z = 1 for molecules and z = 4 for
atoms; in addition we have to consider one equation of type (IV.S5) and four
of type (1V.6).

Taking account of the simplifications discussed above, the explicit

form of equations (IV.4) to (IV.8) for nitrogen may be written as

" + Ne (Qint) +
N, N2 . 372 -1
-i-— = Kl z 1124 m (xT) (o/oo) exp(- 15.6/kT) (1v.10)
N 2
2
(N,)2 [ ,). 1%
sk, 5 080 % 100 2t (k)32 (o ) exp(- 9.56/KTI(IV.ID)
"N int N2
2
f'f-::- K, = 112.4 ey (x1)%2 (070 )} expl-(14.548-ax, )/KT)
N (Iv.12)
"” ". (QOI)NQO 3/2 -1
— K, ® 112,04 (k)% (o/p,) = exp(-(29.605-8y,)/kT)
""’ ety (1v.13)
"“009 "q (001)3900 3/2 -1
— K ® 1124 (k1) (/o ) = exp(-(47.463-8x,)/kT)
"“" oLyt (IV.14)
-QNO ". (Qol)“ﬂn /

2(p/c°)“1-xp[-(r:.us-Ax“)fk'r]

X 3
x ks = 112.% m (kT)
RN (1v.15%)

N
*re
]
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M +28, +N.+N +N +N + N sl (Iv.16)
N; N2 N "0 "00 N”’ Noo#o

N +N + 22 + 3N + 4N = N (Iv.17)
"; Nt N Nttt Nt e

where the tilde denotes a particle density non-dimensionalized by "o’ the
total number of nuclei present and 8x, is the ionization depression of
Eg. (2.7). The reductions in ionization energies, (O.I)“ and (0e13“¢
are all density dependent and depend for their evaluation on a previous
solution of the mass action equations, as has been described earlier; in
this appndix, however we regard them as given and describe the iterative
solution of Eqs. (IV.10) to (IV.17),

The solution of this set of equations is made consideradbly easier by
the fact that at most two, and freguently only one, of the species are much
more abundant than the others, this can be seen as follows. For i > 2 we

have K Ki’ consider first the case where few uncharged particles are

o1 ¢
present so that 1 p: i. T then, if N* 1s & 3-times ionized particle

- ~.
N s N K
'101 'z z¢2
! s ¢
and the species N ° and N ° for which X_ *2 is nearest to unity
o

wil)l dominate since

N <¢ N for 23_:002

and
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by virtue of the values of Kz' In the case where there are a sipgnificant
number of uncharged particles present, ie N , and it again turns out
N
is near unity will dominate. N _ can
N

can be unity, implging

that the species for which K42

never be important however, since although Kl
N SN ai the same time K_>> 1 so that N, << (N.)2, The
l’ l2 2 N2 N
2
criteria for picking the dominant equation are not critical since although

it can happen that K << 1 and K > 1 such that K 21 (d.e.

1 zolxz
- N = ™ - -
N s N ) at the same time N >> N N and either equa-
":-1 "3-3 "z-z "z-l "z-S

tion will give the dominant species iz-2. A detailed consideraticn of the

A

equations leads to the following criteria for the dominant equation

K, /Ky <1, Eq. ‘IV.11) is dominant
X, /Ea >1 and K., X <1, Eq. (IV.12) is dominant;

KK, >1 and KK, <4, Eq. (Iv.13) is dominant;

KKg > » and XK. K < 9, Eq. (IV.18) is dominant

KKe > 9, Eq. (IV.15) is dominart,
Since we have one dominant equation which fcr given conditions we can
identify, we can solve the set of equations by an iterative process organ-
ized as follows. Suppose, first, that the dominant equation is one of

Eqs. (1V.12) to (IV,15). It therefore has the forw
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z¢+l 2
N

ﬂz +N .s1«N (1v.19)

ané

zNz + (zol)Nz’l s N. - ch (1v.20)

respactively where z > 0 and icl' ic2 are the terms in Eqs. (IV.16) and
(IV.17) not individually exhibited in Eqs. (IV.19) and (IV.20) and are
raegarded as small corrections. CEliminating iz*l from Eq. (IV.20) the

equations can be written in the form

N .=A-N (Iv.21)

n. 2B - Nz s B-Ae Nz’l (Iv.22)
vhere
Az1l-N (1v.23)
cl
B ¥ (z¢1)A ¢ N (IvV,28)
c?

If we regard A and B as known, Eqs. (IV,.18), (1V.21) and (IV,22)

may be easily solved. From the resulting values of ﬁz’ N and ﬁ.. the

zel
particle densities of the remaining specieg may be calculated by Eq. (IV.10)
and the four subsidiary equations out of (IV.11l) to (IV.15), corrected vzlues

of Ncl and ch can then be calculated and a higher approximation to the
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to the dominant species ohtained., Chacks show that if the i~eration is

continued until NC is within 0.5% then all species are within 0,05%., If,

1

tiow, the dominant equation is Eq. (IV.1l),a similar procedure can be used

although the equations are slightly different in detail, We have

(Ry)?
-ms:—- = K2'
N

(1Iv.25)

and
N, = A~ 2ﬁN (1IV.26)
where

) (Iv.27)

>
“
—

'

L}
—
1
Lo
N
=
+
=
+
-4
+
=i
=

+
cl + + ++ +++ et

This iterative procedure is rapidly convergent and has been programmed as

a FORTRAN subroutine,




10.

11,

81

References for Part 1

P. Debye and E. Huckel, "On the Theory of Electrolytes, I. TFreezing
Point Depression and Related Phenomena,'" Z. Physik 24, 185-206 (1923).
A, Unssld, "Zur Berechnung der Zustandsummen fir Atome und Ionen in
*inem teilweise ionisiertern Gas," Z. Astrophys. 24, 355-362 (1948).
J. C. Stewart and K, Pyatt, "Lowering of Ionization Potentials in
Plasmas," Astrophys. J. 144, 1203-1211 (1966).

J. W. Bond, K. M. Watson and J. A. Welch, Atomic Theory of Gas Dynamics,

Addison-Wesley, 1965,

H. R. Griem, Plasma Spectroscopy, McGraw-Hill, 1964,

K. S. Drellishak, C. F. Knopp and A. B. Cambel, "Partition Functions
and Thermodynamic Properties of Argon Plasmas," Phys. Fluids 6,
1280-1288 (1963).

D. P. Duclos and A. B. Cambel, "On the Effective Ionization Potential
of Atoms in the Interior of a Plasma,” Z. Naturf. 16A, 711 (1961).

G. Ecker and W. Kroll, '"Lowering of the Ionization Energy for a Plasma
in Thermodynamic Equilibrium," Phys. Fluids 6, 62-63 (1963).

S. G. Brush, "The Effect of the Interaction of Ions on their Eauili-
brium Concentration," Plasma Physics (J1. Nuc. En. Part C) 4,

287-289 (1962).

R. A. Allen, "Air Radiation Tables: Spectral Distribution Functions
for Molecular Bard Systems,'" AVCO Everett Research Laboratory Research
Report 235 (1566).

K. S. Drellishak, D. P. Aeschliman and A. B. Cambel, "Partition Func-
tions and Thermodynamic Properties of Nitrogen and Oxygen Plasmas,"

Phys. Fluids 8, 1590-1600 (19865).




82

12.

13.

1y,

15.

16,

17.

18,

19.

20,

21.

22.

23,

2“.

D. B. Olfe, "Equilibrium Emissivity Calculations for a Hydroren Plasma
at Temperatures up to 10,000°K," JL. Quant. Spectrosc. Radiat. Trans-

fer 1, 104-134 (1961).

V. S. Vorobyov and G. E. Norman, "Energy Radiated in Spectral Lines by
an Equilibrium Plasma II," Opt. Spectrosc. 17, 96-101 (1964).

E. U. Condon and G. H. Shortley, The Thecory of Atomic Spectra,

Cambridge University Press, 1935,

C. W. Allen, Astrophysical Quantities, London University Press, 1963,

L. Goldberg, "Relative Multiplet Strengths in LS Coupling," Astrophyvs.
J. 82, 1-25 (1935),

L. Goldberg, "Note on Absolute Multiplet Strengths," Astrophys. J. 84,
11-13 (1936).

L. H. Aller, Astrophysics, The Atmospheres of the Sun and Stars,

Ronald Press, 1963.

D. H. Menzel and L. Goldberg, "Multiplet Strengths for Transitions
Involving Equivalent Electrons,' Astrophys. J. 84, 1-10 (1936).

P. Kelly and B. H. Armstrong, "Fractional Parentage Coefficients for
Mixed Configurations in LS Coupling," Astrophys. J. 129, 786-793 (1959).
F. Rohrlich, "Theoretical Multiplet Strengths," Astrophys. J. 129,
Lyl -u48 (1959).

B. W. Shore and D. H. Menzel, "Generalized Tables for the Calculation
of Dipole Transition Probabilities,” Astrophys. J. Suppl. series 12,
No. 106, 187-214 (1965).

A. Simon, J. H. Vandersluis and L. C. Biedenharn, '"Tables of Racah
Coefficients," Cak Ridge National Laboratory ORNL 1679 (1954).

A. F. Nikoforov, V. B, Uvarov and Yu. I., Levitan, Tables of Racah

Coefficients, Pergamon, 1965.




25.

26,

28,

29.

30.

31.

32.

33.

u,

35.

36.

T. Ishidzu (Ed.), Tables of Racah Coefficients, Pan-Pacific Press

(Tokyo), 1960.

D. R. Bates and A. Dampaard, ''The Calculation of the Absolute
Strengths of Spectral Lines," Phil. Trans, A 242, 101-122 (1949),

C. E, Moore, "A Multiplet Table of Astrophvsical Interest," Contribu-
tions from the Princeton University Observatory No., 20 (19u45),

C. E. Moore, "Ultra-Violet Multiplet Table," N.B.S. Circular No. 488
(1950, 1952).

A. Burpess and M. J. Seaton, "A General Formula for the Calculation of
Atomic Photo-Ionization Cross Sections," Mon. Notes Roy. Astron. Soc.
120, 121-151 (1960).

P. S. Kelly, "Some Analytical Self-Consistent Field Functions and
Dipole Transition Matrix Elements for Nitrogen and Oxygzen and Their
Ions," Astrophys. J. 140, 12u7-1268 (1964).

S. S. Penner, Quantitative Spectroscopy and Gas Emissivities,

Addison-Wesley (1959).
H. R. Griem, "Wing Formulae for Stark-Broadened Hydrogen and Hydrogenic
Lines," Astrophys. Jl. 136, 422-430 (1962).

V. A. Ambartsumyan, Theoretical Astrophysice, Pergamon (1958},

M. Baranger, ''Spectral Line Broadening in Plasmas," Chap. 13 of

D. R. Bates (Ed.), Atomic and Molecular Processes, Academic Press,

1962.

H. A. Bethe ard E. E. Salpeter, Quantum lechanics of One- and Two-

Electron Atoms, Academic Press, 1957,

K.B.S. Eriksson, "Coupling of Electrons with High Orbital Angular
Momentum Illustrated by 2pnf and 2png in NII," Phys. Rev. 102, 102-

104 (1956),




84

37.

38,

39.

“OIF

41,

42,

“3.

uy,

“Sl

46,

47,

R. A. Day, "Measurement of the Stark Widths and Shifts of Nitrogen Ion
Lines," University of Maryland Department of Physics and Astronomy,
AF 19(628).269 Peport No. 4,

4. R. Griem, M. Baranger, A. C. Kolb and G. Oertel, "Stark Broadening
of Neutral Heliumm Lines in a Plasma," Phys. Rev. 125, 177-195 (1962).
R. A. Day and H. R. Griem, "Measurements of Stark Profiles of Singly
Ionized Nitrogen Lines from a T-Tube Plasma," Phys, Rev. 140,
A1129-A1132 (1965).

H. R. Griem, A. C. Kolb and K. Y. Shen, "Stark Broadening of Hydrogen
Lines in a Plasma,” Phys. Rev. 116, 4-16 (1959).

H. R. Griem, 'Stark Broadening of Higher Hydrogen and Hydrogen-Like
Lines by Electrons and Ions,” Astrophys. J. 132, 883-893 {1960).

H. Margenau and M. Lewis, "Structure of Spectral Lines from Plasmas,"
Rev. Mod. Phys. 31, 569-615 (1959).

N, W, Jalufka, G. K. Oertel and G. S. Ofelt, "Measurements of Stark
Broadening of Some Singly Ionized Argon Lines,” Phys. Rev. Let. 16,
1073 (1966).

M. Sibulkin, "Absorption and Emission Characteristics of an Ideal
Radiating Gas," Brown University Division of Engineering report
Nonr(562)35/7 (1965).

B. H. Armstrong, R. R. Johnston and P. S. Kelly, "Opacity of Hiph-
Temperature Air,” Air Force Weapons Laboratory Report AFWL-TR-65-17
{1965).

A. Unsdld, Physik der Sternatmosphiren, Springer-Verlapg. 1955.

J. C. Stewart and K. D. Pyatt, "Theoretical Study of Optical Proper-

ties,”" Air Force Weapons Center, AFSWC-TR-61-71 (1961).




us,

49,

50.

51,

52.

53.

55,

56.

85

B. H. Armstrong, "Use of Fractional Parentape Coefficients in the
Calculation of P >toelectric Cross Sections,"” Proc. hys. Soc. 74,
136-137 (1959).

. Peach, "Continuous Absorption Coefficients fer Non-Hvdrosenic
Atoms," Mon. Not. Roy. Astron. Soc. 124, 371-3e} (1962).

R. R. Johnston, B. H. Armstrong and 0. R. Platas, "The Photoioniza-
tion Contribution to the Radiation Absorption Coefficient of Air,"
J1. Quant. Spectrosc. Radiat. Transfer 5, #9-53 (1965).

M. J. Seaton, "Thermal Elastic Collision Processes,” Rev, Mod. Phys.
30, 979-989 (1958).

W. J. Karzas and R. Latter, "Electron Radiative Transitions in a
Coulomb Field," Astrophys. J. Suppl. Series 6, 167-212 (1961).

P. J. Brussaard and H. C. van der Hulst, "Approximation Formulas for
Nonrelativistic Bremsstrahlung and Average Gaunt Factors for a
Maxwellian Electron Gas,” Rev, Mod. Phys. 34, 507-520 (1962).

B. H. Armstrong, J. Sokoloff, F. W. Nicholls, D, H. Holland and

R. E. Meyerott, "Radiative Propertles of High Temperature Air,”

J. Quant. Spectrosc. Radiat. Transfer }_,1“3-16“2} (1961).

G. Peach, "A General fomula for the Calculafion of Absorption Cross
Sactions for Free-Free Transitions in the Field of Positive Ions,"”
Mon. Not. Roy. Ast’-mt;s. Soc. 130, 361-377 (196%).

W. . Vincenti at C. Nruger Introduction to Physical Gas Dynamics,

Wiley 1965,
F. k. Gilmore, "Energy Levels, Partition Functions and Fractional
Elecironic Populations for Nitrogen and Oxygen Atoms and Ions to

25,0007 K" RAND Corporation, Memorandum RN-1748-PR,




8

58.

59.

60.

6l1.

62.

C. E. Moore, "Atomic Energy Levels 1949,” NBS Circular 467 (1849).

A. R. Hochstim, "Theoretical Calculations of Thermodynamic Properties
of Air," Combustion and Prupulsion, 5th AGARD Colloquium, 1962,
Pergamon, 1963.

M. P. Sherman and J. L. Kulander, "Free-Bound Radiation from Nitrogen,
Oxygen, and Air," Space Sciences Laboratory, General Electric Co.,
R65SD15 (1965).

R. A. Allen, A. Textoris and J. Wilson, "Measurements of the Free-
Bound and Free-Free Continua of Nitrogen, Oxygen and Air," AVCO-
Everett Research Laboratory Research Report 195 (1964).

P. S. Kelly, "Transition Probabilities in Nitrogen and Oxygen

from Hartree-Fock-Slater Wave Functions,” Jl. Quant. Spectrosc.

Radjat. Transfer 4, 117-148 (1964).




ENERGY

87

FIG 10

ns np nd ns np nd
1 /
CONTINUOUS DISTRIBUTION
OF ENERGY LEVELS
\ /
- = —
—_— % =
—

/

SKETCH SHMOWING A SIMPLE ARRANGEMENT
OF ENERGY LEVELS AND ILLUSTRATING
SOME TYPICAL BOUND ~ BOUND TRANSITIONS

AV

VA

FIG 1D SKETCH SHOWING A SIMPLE ARRANGEMENT
OF ENERGY LEVELS AND 1LLUSTRATING
SOME TYPMCAL BOUND - FREE AND FREE -
FREE TRANSITIONS




0%

(Q‘ﬁ)u

' e — A Fe A '}

10°% 1073 10”4 102 1072 Ton i 10
p/p

L

F1G.2 THE ELECTRONIC PARTITION FUNCTION OF ATOMIC
NITROGEN AS A FUNCTION OF DENSITY AND
TEMPERATURE




83

1o 03

l

a
|

' 10" in' 0-¢ 16" 6‘3 |€T‘ | 12)
PP,
FIG.3 THE ELECTRONIC PARTITION FUNCTION OF THE

FIRST ION AS A FUNCTION OF DENSITY AND
TEMPERATURE




—

100 &N

[l 3

1073

0 /eu.ecmons

0} \

Jopd 3

: ] A A A i A i )

10-® T 10-¢ i0™? t0-? ! 10° o'

PP,

FIG. 4 PARTICLE DENSITIES IN A NITROGEN PLASMA
AS A FUNCTION OF DENSI!TY FOR

kT=05ev (T=5,803°K)
No=5.374 x 10" xp/pem™>, p,:1.250%10"3gm cm™>




z]z

0! ¢

10°

¥

ol

1073 ¢

073k

L]

107

0%

91

ELECTRONS

NO

i A A ] A i . )

n-’

Q-8

1073 10-¢ 193 1072 0™ 10° 10
/
o

FIG.5 PARTICLE DENSITIES IN A NITROGEN PLASMA

AS A FUNCTION OF DENSITY FOR
kT=1.0eV (T211,605°K)

Ny=5 374XIO'Sxplpocm‘s,poﬂ.ZS" ‘KIO-ng em3




92

IELECTRCNS
—————

109 |

o2

Toptl 3
Lo 3
10-3p

Topnd 8

N”’

1078}

0~8}

177

LJ

(o o

lo-’L 1 i J jl i s

10°¢ 1079 o4 1073 1072 Topl 10° 10t
p/ Po

FIG.6 PARTICLE DENSITIES IN ANITROGEN PLASMA
AS A FUNCTION OF DENSITY FOR
kT=2.0eV (T=23,211°K)

9. -3 -3 -
No=5.374x10 Xp/PoCM Po=1.250%I0 gm em




zlz

10! r

ELECTRONS
/

109

107"}

1072 -

Jod o

10-4}

T

10~8

'0-6 L

opll o

1078}

NO’* Nf#

4

/Z

y

/

107
10-¢

FIG.7 PARTICLE DENSITIES IN ANITROGEN PLASMA

10°8 1074 1073 1072 Toul 10°
P/p

144

AS A FUNCTION OF DENSITY FOR
kT=3.0eV (T= 34,816 °K)

No=5.374X10' "X/, cm ', o= 1.250XI0 gm cm

10}

93




94

L?v"'/\' _____ T———————-

v
FIG. 80 ABSORPTION COEFFICIENT FOR A LINE
WITH A DIiSPERSION PRUFILE.

T

L/8y,

- ﬂ:——_———-.——-‘
I
I

i =

Scc iy

A

14
FIG.8b EQUIVALENT WIDTH AND SPECIFIC INTENSITY
AS A FUNCTION OF FREQUENCY FOR A
TYPICAL SELF- ABSORBED LINE.

LO

1

I

i

I /avo ' |
l |

I |

I l

| |

v
FIG. 8c EQUIVALENT WIDTH AND SPECIFIC INTENSITY
AS A FUNCTION OF FREQUENCY FOR A
TYPICAL NONABSORBED LINE.




95

LARGE OPTICAL
DEPTH ASYMPTOTE

SMALL OPTICAL

CEPTH ASYMPTOTE\

10° |

2w8,

T

] 1

|o-2 1
10! 100 10' 102

T:(fﬁ(’,,d!//w)s

FIG.9 THE CURVE OF GROWTH OF A PURE
DISPERSION LINE PROFILE AND ITS
ASYMPTOTIC APPROXIMATIONS

A et . e Aot o




96

10 -
ALL LINES
M EVENLY SPACED PROPOSED
10~ GROWTH AS APPROXIMATION
10 1SOLATED
LINES
2 CLUSTERs  OROWTH AS
0? |- A SINGLE LINE
I
ZWE,O
0 |
10° p—
OPTICALLY !
THIN
|
1072 l
I
|
I
0 | | | [
lO" |(‘)-2 |0° 4~/' 10° |0‘ lO‘ 0® 10'° 102
Tm

FIG.10 A SKETCH OF POSSIBLE CURVES OF GROWTH OF A GROUP OF
LINES. (THERE IS NO SIGNIFICANCE IN THE RELATIVE POSITIONS
OF THE TRANSITIUN REGIONS ON THE Ty, SCALE)




97

10!

0 2/Tntg /M
10 -
I/In2
B"O wo J w
162 —
10-2 10-1 10° 102 102 10° 10*
TO - KPO

FIG. 11 THE CURVE OF GROWTH OF A PURE DOPPLER LINE
PROFILE AND ITS APPROXIMATE REPRESENTATIONS.




98

20

—2iI
wi23,000%)

w o NdWo

r
3'Rayte
} and 3p
(1/20,000)V% - = 4
— . -
e — — = 3619
- -t ==
- adte Z
}— 3p elecirons
and
| 3, % 4%
4p decmm{
-
1 | I N I U S N O i i L+ 1 111}
) 2 3 4 35 678910 20 30 40 50 6070809010
kT ev

FIG.12 NORMALISED LINE WIDTHS OF ELECTRON IMPACT BROADENED
PROFILES IN THE FIRST SPECTRUM OF NITROGEN.(VALUES
TAKEN FROM GRIEM &)




99

20 (1/20,000)V*
[ ad'p
adlp s.pofr d
w(T 4f'o = } laci
w(20,000°K] T =T —p = tlecirons
f elecirons S == ~ "
10— (excep? — - . 4s°P
I where - ==
St marked) | — = $tip — }'(::g:? "where
T 4as’p marked)
(3. ad'p
Sk~ :
}
o+ d'p
s,p,ord
3 slectrons /
2
1 | | o1l 11t )| L1 {1 111y
) 2 3 4 S 67189810 2 3 4 5 6§ T1T8910
kT ev

FIG 13 NORMALISED LINE WIOTHS OF ELECTRON IMPACT BROADENED
PROFILES IN THE SEE?ND SPECTRUM OF NITROGEN. (VALUES)
TAKEN FROM GRIEM®!)




100

)
‘ 10 T T
108}
D
Brp w APPROXIMATE
104} TREATMENT a

102} .
COLLISION
BROADENED
100 AND a0 >0.5 -
102 | ] { | | | 1
1072 10° 102 104 106 108 1010 1012 1034

le Ku (yo)
geo

“1G. 14 CURVES OF GROWTH OF COMBINED DOPPLER AND

DISPERSION LINE PROFILES BASED UPON THE CORRESPONDING
PURE DISPERSION PROFILE PARAMETERS.




101

e/
1078 1078 1074 1073 1072 ic™! 10° 10
i Y T T T T T
1.0 |
(Ne)apPrOX.
(Nelegxacr
09
08
o7 -

FIG.15 ERRORS IN ELECTRON DENSITY DUE TO USING VACUUM
IONISATION ENERGIES, A 3—TERM PARTITION FUNCTION
FORN AND A 4—TERM PARTITION FUNCTION FOR N*




102

{Ny)approx .
(Nylgxacr

(N.’)‘”ROX kT » 310
‘Nnlgxacr

o

107t

FIGS I16ondi7 ERRORS IN NUMBER DENSITIES OF N AND
N* DUE TO USING YACUUM IONISATION
ENERGIES, A 3-TERM PARTITION
FUNCTION FOR N AND A 4-TERM
PARTITION FUNCTION FOR N*




16

14

(Nn:lapprox.

(Ny ilexacr

13

1.1

10

103

kT =30

4 1 Lt e — L i }

10°¢

1073 10°4 103 102 T ] 10

FiIG. 18 ERRORS IN THE OCCUPATION NUMBER OF THE 1TH

ENERQGY LEVEL OF N DUE TO USING VACUUM
IONISATION ENERGIES, A 3-TERM PARTITION
FUNCTION FOR N AND A4—-TERM PARTITION
FUNCTION FORN*




104

Ny dappROX.

{Ny,iexacT

' ——S ey . . .
106 1078 1074 10”3 1072 10~ 10° 10!

F1G.1S ERRORS IN THE OCCUPATION NUMBER OF THE iTH ENERGY
LEVEL OF N DUE TO USING A 3—TERM PARTITION FUNCTION
FOR N AND A 4--TERM PARTITION FUNCTION FOR N* (THE
IONISATION ENERGIES ARE CORRECTLY DEPRESSED)




(Nn,iJarprox., . o=
— 2P0
Wnilexact

09

08 1 | 1 ) 1 1 i |
Top Tope {out 10-3 1072 10! iQo fol

P/R

F1G.20 ERRORS IN THE OCCUFATION NUMBER OF THE iITH ENERGY
LEVEL OF N DUE TO USING VACUUM IONISATION ENERGIES,
A 19-TEZM PARTITION FUNCTION FOR N AND A 4-TERM
PARTITION FUNCTION FOR N*




Security Classification

DOCUMENT CONTROL DATA - R&D

(Security claseification of title, body of abstract end indexing annotation must be entered when the overall report i clssasilied)

1. ORIGINATIN G ACTIVITY (Corporate author) 28 REPORT SECURITY CLASSIFICATION
Unclassified
Brown University, Providence, R. I. 02912 2b amour

3 REPORT VITLE

RADIATIVE TRANSFER IN A GAS OF UNIFORM PROPERTIES
IN LOCAL THERMODYNAMIC EQUILIBRIUM.
PART 1: ABSORPTION COE FFICIENTS IN NONHYDROGENIC GASES

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

5. AUTHORC(S) (Last name. iirat name, initial)

Hunt, Brian L. and Sibulkin, Merwin

6. REPORT DATE 76 TOTVAL NO. OF PAGES 75. NO. OF REPFS
December, 1966 105 62 .
8a. CONTRACT OR GRANT NO. 92 ORIGINATOR’ PORT NUMBER(S) :

Nonr 562(35)

b PROJECT NO.

Task NR 061-132

Nonr 562(35)/16

¢ Sb. OTHER REPORT NO(S,
this ,.”,J ° ofS) (Any other numbers that may be assigned

d. ARPA Project Code Number 2740

10. AVAILABILITY/LIMITATION NOTICES

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Advanced Research Projects Agency and
Office of Naval Research

13. ABSTRACT

This report discusses the data needed to perform radiative transfer
calculatiorns in nonhydrogenic gases in local thermodynamic equilibrium and
presents some approximate metheds for computing the radiative energy transferred
by spectral lines where the properties of the gas are uniform.

The methods currently available for calculating the cross sections of
radiative processes are described and compared., An accurate method for
calculating the species composition of nitrogen is described and the results
of such a calculation are presented. The important line broadening mechanisms
are discussed and the potentially accurate, mndern theories of line broadening
are outlined. The results of these theories are used tc justify approximate
line profilec which are simple enough for use in radiative transfer calculations.

Simple approximations to the exact curves of growth of intensity are
desicribed for lines with Doppler profiles and for lines with profiles of
a class which includes the dispersion and quasi-static forms. The concept
of the effective width of a line intensity profile is introduced and
techniques are developed for dealing with the overlapping of the intensity
profiles of small groups of closely spaced lines (as, for example, in a
multiplet).

DD At 1473 Unclassified

Security Classification




Security Classification

T"‘
KEY WORDS

LINK A LINK B wINK C

ROLE wT ROLE wT ROLE L4

Abscrption coefficient
Radiative transfer
Species composition

Spectral lines

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address
of the contractor, subcontractor, grantee, Department of De-
fense activity or other organization (corporate author) iasuing
the report.

2a. REPORT SECURTY CLASSIFICATION: Enter the over
a!l security classification of the revort. Indicate whether
‘‘Restricted Data” is included. Marking is to be in accord-
ance with appruprigte security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Di-
rective 5200, 10 and Armed Forces Industrial Manual. Enter
the group number. Aiso, when applinable, shaw that opticnal
markings have been used for Group 3 und Group 4 a2 author-
ized.

3. REPORT TITLE: Enter the compietc report title in all
capital lettern, Titles in all cases should be unclassified.
If a meaningful title cannot be selectad without classifica-
tion, show title classification in all capitals in parenthesis
immediately {ollowing the title,

4. DESCRIPTIVE NOTES: [f appropriate, enter che type of
report, e.g., interim, progress, summary, annual, o+ final.
Give the inclusive dates when a specitic reporting period is
covered.

5. AUTHOR(S): Enter the name(s) of suthor(s) as shown on
or in the report. Enter last name, first name, middle initial,
If military, show rank #nd branch of service., The name of
the principal aithor is an absolute minimum requirement.

6. REPORT DATZ: Enter the date of the repori as day,
month, year; or month, year. If more than one date appears
on the report, use date of publicativn.

7a. TOTAL NUMBER OF PAGES: The total page count
should follow normal pagination procedures, i.e., enter the
number of pages containing information.

7b. NUMBER OF REFERENCES: Enter thc total number of
references cited in the report.
8a. CONTRACT OR GRANT NUMBER: If sppropriate, cnter

the applicable uumber of the contract or graant under which
the report was written

8b, 8, & 8d. PROJECT. NUMBER: Enter the appropriate
military department identification, such as project number,
subproject number, system numbers, task number, etc.

9a. ORIGINATOR’S REPORT NUMBER(S): Enter the offi-
cial report number by which the document will be identified
and controlled by the originating activity. This number must
be unique to this report.

94. OTHER REPORT NUMBER(S): If the report has been
assigned any other report numbers (either by the originato:
or by the sponso:), also enter this number(s).

10. . VAILABILITY/LIMITATION NOTICES: Enter any lin-
itations on further dissemination of the report, other than those

imposed by security classification, using standard statements
such as:

(1) ““Qualified requasters may obtain copies of this
report from DDC.**

(2) “Fcreign announcement and dissemination of this
report hy DDC is wot authorized.’’

(3; *'*J. S. Government agencies may odtain copies of
this report directly from DDC. Gther qualified DDC
ugers shall request thrcugh

(2]
.

(4) *'U. S. military agencies may obtain copies of this
report directly from DDC. Other qualified users
shall request through

»

(§) *‘All distribution of this report is controlled Qual-
ified DDC users shall request through

"
+

If the report has been furnished to the Office of Technical
Services, Department of Commerce, for sale to the public, indi-
cate this fact and enter the price, if known.

1L SUPPLEMENTARY NOTES: Use for additionel explana-
tory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of
the deparimental project office or laboratory sponsoring (pay-
ing for) the research and development. Include address,

13. ABSTRACT: Enter an abstract giving & brief and factual
summary of the document indicative of the report, even though
it may also appear elcewhere in the body of the technical re-
port. If additional spuace is required, a continuation sheet shall
be attached.

It is highly desirable that the abstract of classified reports
be unclassified. Each paragraph of the gbstract shall end with
an indication of the military security classification of the in-
formation in the pa.agraph, represented as (TS). (S), (C), or (U)

There is no limitation on the length of the abstract. How-
ever, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms
or short phrases that characterize a report and may be usad ag
index entries for cataloging the report. Key worda must be
selected so that no security classification is required. ldeati-
fiets, such as equipment model designation, trade name, military
project code name, gecgraphic location, may be used as key
words but will be followed by an indication of teci'nical con-
text. The assignment of links, rules, and weights is optional.

Unclassified

Security Classification




