Project MAC
Progress Report lll
July 1965 to

July 1966

ARCRIVE GOPY

[t . W W
Wi, . 8 e, P —_—

Massachusetts Institute of Technology
Project MAC
545 Technology Square
Cambridge, Massachusetts
02139

Work reported herein was supported by Project MAC, an M.I.T. research
program sponsored by the Advanced Research Projects Agency, Department
of Defense, under Office of Naval Research Contract Number Nonr-4102(01).
The primary support for some of this work came from the M.I.T. depart-
ments and laboratories participating in Project MAC, whose research pro-
grams are, in turn, sponsored by various government and private agencies.

This support is acknowledged by specific mention of agency and contract

numher.in the appropriate sections

\.‘;‘(gg %
€. L 0 ;
b Do e &
= 2 I ="
-]
<= L] -
=3 = 2
e & M .o
= & S e
=
g K = = |
& 3 A
s =
S 3 82
(773 =E ﬂ'é
] . =
m 2 =
e S
I =3 0 |
>

in part, is permitted for any pur-

Reproduction of this report, in whole or
Distribution of this document is

pose of the United States Government,

unlimited.

Government contractors may obtain copies of this Progress Report, and all
Project MAC Technical Reports listed in Appendix D, from the Defense

Document Service Center, Cameron Station,

Documentation Center,
Orders will be expedited from DDC if placed

Alexandria, Virginia 22314.
bw your librarian, or some other person authorized to request documents.

Other U. S. citizens and organizations rnay obtain copies of the above items
from the Clearinghouse for Federal Scientific and Technical Information

(CFSTI), Sills Building, 5285 Port Royal Road, Springfield, Virginia 22151.

E: Ty

-

s

i s ettt
T s . et s b 0 e -

— e e . e i i . i i o S

BLANK PAG

ADMINISTRATION AND SERVICES
ARTIFICIAL INTELLIGENCE

BIOLOGY DEPARTMENT

CIVIL ENGINEERING DEPARTMENT
COMPUTATION STRUCTURES
COMPUTER OPERATION

+*~ COMPUTER SYSTEM RESEARCH

[y

1 ELEC’I;RONIC SYSTEMS LAﬁORATOfRY

RN LIBRARY RESEARCH

Rl e b LINCOLN LABORATORY
MAN-MACHINE COMMUNICATION

NON-M.L T, USERS

RESEARCH LABORATORY OF ELECTRONICS
SCHOOL OF ENGINEERING

SCHOOL OF HUMANITIES AND SOCIAL SCIENCES

SCHOOL OF SCIENCE

SLOAN SCHOOL OF MANAGEMENT

N

i TABLE OF CONTENTS

List of Illustrations

Personnel
PREFACE

ADMINISTRATION AND SERVICES

Administrative Facilities and System Management
A. The Basic Approach and External Appearance
B. The User Viewpoint
C. The Group Supervisor Viewpoint
D. The Central System-Administration Viewpoint
E

Security

ARTIFICIAL INTELLIGENCE
An Autonomous Manipulator System

A. Computer and Relatec Hardware

B. Special Input Devices

C. Special Output Devices

D. Programming

E. Vision/Maripulation Experiments
Unrecuvgnizable Sets of Numbers
Linearly Unrecognizable Patterns
CONVERT: A Pattern-Driven Manipulation Language
POLYBRICK: Parallelpiped Pattern Recognition
PDP-6 Display Subroutines
Nonlinear Optimization Applied to Checkers
The Automata Theorist's Helper
A Syntax-Based Score-Reading Program
Computer Processing of Musical Data

Some Experiments in Computer Composition of Tonal Music
ADEPT: A Heuristic Program for Proving Theorems of Group Theory

LISP Maintenance

Manipulation of Algebraic Expressions

Computer Experiments in Finite Algebra

PILOT: A Step Toward Man-Computer Symbiosis
MNn-Line CTSS Instruction

xi

1 = O O b L =

TABLE OF CONTENTS (continued)

BIOLOGY
Molecular Model Building

CIVIL ENGINEERING DEPARTMENT
Structural Design Language

Construction Cost Estimating and Accounting
Critical Path Scheduling

Stability Analysis by Limiting Equilibrium
Automatic Flow-net Design

Settlement Problem-Oriented Language

COMPUTATION STRUCTURES
A General Purpose Macrogenerator
Research in the Theory of Automata

A. Testing and Generating Infinite Sequences by a Finite
Automaton

Finite-State Infinite Games
Techniques for Manipulating Regular Expressions
The Loop Complexity of Regular Events

MY oW

. Parenthesis Grammer
F. On Non-Counting Regular Events
Repeatable Multiprocess Computation
Memory Allocation in Multiprogrammed Computers
Digital Logic Simulation
Development of the PDP-1-X Multiuser System
Waveform Processing
A Table-Driven Compiler Generator
A Table-Driven Syntactic Analyzer
Scheduling and Resource Allocation
Fact Retrieval by Finite-Set Theoretic Models
Automatic Flowcharting
Implementation of a Flowchart Compiler
FLOW-DEBUG: An On-Line Graphical Debugging Aid
Manipulation of Approximating Functions on a Graphical Display
Braille Translation and Interactive Information Retrieval

A Teaching-Machine Simulator

iii

39
41

47
49
50
51
52
53
93

95
57
58

58
58
59
59
59
60
61
63
66
67
70
71
72
73
74
76
1
80
82
83
87

lv TABLE OF CONTENTS (continued)

COMPUTER OPERATION 89
Operation of the 7094 Time-Sharing System 91
Operation of the GE 635 92
COMPUTER SYSTEM RESEARCH 93
The Transition from CTSS to MULTICS 95
A. CTSS Maintenance 95
B. CTSS Documentation 97
C. MULTICS Design Philosophies 97
D. MULTICS Software Development 99
E. MULTICS Implementation 100
Selected Topics in Computation 102
ELECTRONIC SYSTEMS LABORATORY 103
Introduction 105
Display Systems Research 107
A. ESL Display Console 107
B. Display Buffer Computer 109
C. Investigation of DDA Rotation Matrix 112
D. Low-Cost Dataphone-Driven Graphic Display 115
E. Improved Display Technology 119
Computer-Aided Design Project 126
A. The AED-1 Processor 127
B. The CADET System 131
C. AED Cooperative Program 132
D. Display Interface Programming 133
Computer-Aided Electronic Circuit Design 135
A. CIRCAL (Circuit Analysis Programs) 135
B. Digital-System Simulation 136
€. Curve-Drawing Remote Display 139
D. AEDNET - A Simulator for Nonlinear Electronic Circuits 141
Aerospace Computer Analysis and Synthesis 146

Simulation Studies of Strapped-Down Navigation Systems 148

TABLE OF CONTENTS (continued)

LIBRARY RESEARCH
The Technical Information Project

Reconstruction of the TIP Programs

Search Procedures Based on Relatedness Between Documents

Formatting Qutput Files Within the TIP System

A TIP On-Line System Dictionary

System-Initiated Response from TIP

Sorting and Inventorying of Large Files

Processing of Serials and Journals

A List Structure for Storing Dictionary Information

Creation of a First-Cast Thesaurus from TIP Files

LINCOLN LABORATORY

On-Line Data Storage and Retrieval

On-Line Experimentation

Compilation for the Digital Differential Analyzer

MAN-MACHINE COMMUNICATION

Introduction

A Teaching Script for ELIZA

Man-Machine Natural-Language Communication
A. Diagnosis and Display of Misunderstanding
B. Elaboration of the Diagnosis Study
C. Effects of Communication on Verbal Behavior
D. Teaching Studies
E. Phychological Reaction Studies

Time-Sharing the General Inquirer

NON-M, 1. T. USERS

Interactive Social Psychology Experiments
Generalized Desk Calculator

FAMOUS: An On-Line Algebraic Manipulator

149
151
153
155
156
157
157
158
158
159
159

161
163
164
164

165
167
167
168
168
169
169
170
170
172

175
177
179
184

vi TABLE OF CONTENTS (continued)

RESEARCH LABORATORY OF ELECTRONICS
Introduction

Grapheme-to-Phoneme Translation of English
Cognitive Information Processing

A Far Infrared Plasma Physics Experiment
Analysis of Speech

Experiments Using a Larynx Model

Dynamic Articulatory Modeling of Speech Production
Testing of Phonological Rules

Beam-Plasma Ion Heating by Beam Modulation
Plasma Instabilities at Cyclotron Harmonics

A Model of a Beam Plasma Discharge
Higher-Order Trapped Light-Beam Solutions
Plasma Dispersion Relations with Infinite Roots
Studying Polynomizls on the ESL Display Console
Programming Support and Development

Sorting of Personnel Records

Sequential Decoding with Coherent Detection
Simulation of Sequential Decoding Systems

SCHOOL OF ENGINEERING
Project Intrex

A. The Augmented Catalog

B. Text Access
The MAP System
The TREC System
Optimization Methods Applied to Ship Design
General Arrangements in Ship Design
Computer-Aided Room Arrangements
Two-Dimensional Stress Analysis
Three-Dimensional Stress Analysis

Stability of a Viscoelastic Surface Subject to Rolling Contact

General Plastic Stress-Strain Analysis
The Equilibrium Problem Solver
Identification of Nonlinear Dynamic Systems

185
187
187
189
190
192
194
196
198
199
199
201
202
204
205
205
206
206
207

209
211
211
212
213
215
217
219
220
223
224
225
226
221
229

S

i ———

TABLE OF CONTENTS (continued)

Conformal Mapping of Free-Streamline Flow
The ENPORT System for Dynamic System Simulation

Analysis of Networks of Wavelike Transmission Elements

Symbol Manipulation and Evaluation for Engineering

SCHOOL OF HUMANITIES AND SOCIAL SCIENCES
The CONCOM Project
Turkish Social Systems Analysis

A. Urban-Rural Comparisons

B. Attitude Changes
Statistical Analysis of the Turkish Survey
Analysis of Turkish Voting Trends
Sociometric Analysis of Venezuelan Elites
Social Backgrounds of Political Elites
Social Science and Data Archives
The VENELITE Project
Social Science Surveys and Models
Investment Planning and Integer Programming
Dynamic Stability of Currency Systems

SCHOOL OF SCIENCE

Laboratory for Nuclear Science

On-Line Meteorological Experiments
Unsteady-State Growth Rates of Micro-organisms

SLOAN SCHOOL OF MANAGEMENT

Priority Scheduling

On-Line Simulation

The OPS-3 System

Compilation in the OPS-3 System

Model Testing

Optimization by Iterative Search

Stockmarket Analysis

Computerized Micro-Analytic Simulation

Solution of Multi-Dimensional 0/1 Knapsack Problems

vii

230
230
231
232

233
235
235
236
236
231
238
238
239
239
240
242
242
243

245
247
248
249

251
253
253
254
254
255
256
2517
258
258

.

RN o ST

viii TABLE OF CONTENTS (continued)

Console-Operated Statistical Routines
Gathering Social Science Data

An Extended On-Line Experiment
Information Utility Service Costs and Prices
General Diagnostic Processes

Large-Scale Interactive Simulation
Synchronization of Traffic Signals
Marketing Model Construction

Industrial Dynamics

The DYNAMO System

APPENDICES

A - Project MAC Memoranda

B - M.L.T. Theses

C - External Publication

D - Project MAC Technical Reports

AUTHOR INDEX

259
259
260
260
261
262
263
263
264
264

267
268
2717
285

289

LIST OF ILLUSTRATIONS ix

Figure Page
1 Modified AMF ""Versatran'" Arm 14
2 "Lobster-Claw' Arm Mechanism 15
3 Parallelepiped Patterns 23
4 Examples of MELGEN Melodies 31
5 Simplified On-Line CTSS Instruction 37
6 Displays of Myoglobin Molecule Structure 42

Display of Lyzozyme Molecule Structure 44

Display of Cytochrome C Moelcule Structure 44

9 A Simulated Flowchart Input 78

10 Flowchart Compiler Qutput Listing 79
11 The FLOW-DEBUG On-Line System 81
12 Computer-Driven Braille Output Device 84
13 Display Buffer Computer between ESL Display

Console and Project MAC 7094 111
14 Final Design of Threshold Adder for DDA

Rotation Matrix 114
15 Typical Storage-Tube Displays from Breadboard

Low-Cost Dataphone-Driven Console 118
16 Typical ESL Console Displays Transmitted over

an IR Link to a Slave Oscilloscope 121
17 Displays on a TV Scan-Conversion Image-

Maintaining System 123
18 Phases of the AED-1 Processor 128
19 Automobile Silhouette on the Curve-Drawing Remote

Display 142
20 An Example of the use of AEDNET 145
21 Response of a Simulated Digitally Controlled

Accelerometer 147
22 Project TIP Data-Reduction Subsystem 153

23 Project TIP Data-Retrieval Subsystem 154

Figure
24
25
26
27

28
29
30
31

32

LIST OF ILLUSTRATIONS

Project TACT Remote MAC/ESL Display Terminal
TACT Display of el (-200 = 4 = 200)

TACT Display of Differential Equations

Project TACT Remote Culler-Fried Display Terminal

A Simple Electromechanical Parallel-to-Serial
Converter

Coordinate System for Specifying Overall Vocal-
Tract Configuration

Display of Midsagittal Section of Modeled Vocal
Mechanism

Dispersion Diagrams Showing Slow-wave Relationistic
Instabilities and Electrostatic Instabilities

Acceleration of a Test Particle and Beam Sheet
Velocity vs. Distance

Page

180
181
182
183

191

193

197

200

203

Administration

Prof. R. M. Fano

R.

S.
A
G
D
C
G
J.
K.
J.
M.
S
D
J
S
p
F

- Director
G. Mills

- Assistant Director

S. Alexander

. E. Amstutz

. W. Angell

. M. B. Baumann
. A. Berg

. D. Bernard

M. Beshers
Biemann
M. Biggs

Blum

. C. Brown
. C. Carroll
. G. Charney
. A. Coons
. H. Cootner
. J. Corbatd

PERSONNEL
TO JULY 1, 1966

Xi

Committee On

Information Processing

Prof.
Dean
Prof.
Prof.
Prof.
Dean
Prof.
Prof.

P. M. Morse, Chairman
G. S. Brown

)
R.

Elias

M. Fano

R. I. Hulsizer, Jr.
W. Johnson
C. L. Miller

H.

C.

F. J. Overhage

Dean J. B. Wiesner

Academic Staff

J. DaSilva
J. B. Dennis

G. H. Dietz
. M. Evan
Evans, Jr.
M. Fano

E. Farrar

. R. Fey

W. Fife

M. Flood
W. Forrester
. D. Getty

. Greenberger
. Halle

F. Hansen

X ESEUESOD P E > R

~ =

. L. Dertouzos

C Do~ 0o@n3Ex O » Mo

. A. Haus

. C. Hennie
. M. Hershdorfer
. N. Howard
. A. Huffman
. Y. Kain

. Kaplow

. Kuh

. W. Lambe
. B. Lee, Jr.
. Levinthal

D. C. Little

. L. Liu
. D. Logcher
. G. Marquis

. Martin

xii

Academic Staff (continued)

S. J. Mason K. F. Reinschmidt A. Toomre

F. A. McClintock J. F. Reintjes D. E. Troxel

R. McNaughton E. B. Roberts J. R. Walton

H. S. Mickley A. L. Samuel J. Waelbroeck

C. L. Miller R. L. Schiffman H. M. Weingartner
M. L. Minsky L. D. Smullin, J. Weizenbaum

J. V. Oldfield K. N. Stevens W. L. White

C. F. J. Overhage T. G. Stockham, Jr. R. V. Whitman
H. M. Paynter G. M. Sturman J. B. Wiesner

P. L. Penfield A. K. Susskind J. M. Wozencraft
J. W. Poduska H. M. Teager H. J. Zimmerman
I. d. Pool

Research Associates, Instructors and Lecturers

G. W. Angell M. M. Jones J. A. Saltzer
L. N. Beckreck F. r¥. Lee R. L. Schiffman
D. G. Bobrow A. Leon H. M. Schneider
J. W. Brackett W. H. Linder C. R. Sprague
T. H. Crystal J. R. Miller, III C. Strachey

E. P. C. Fernando D. N. Ness J. M. Sussman
A. T. Foster S. A. Papert C. V. Swanson
E. L. Glaser A. L. Pugh, III R. A. Walter
G. A. Gorry, Jr. D. Roos

W. L. Henke R. L. Rosenberg

COAPWYUPEIHANIZONOEASCEZAROER 0@ @A P

. Armenti
Asselin
Bartels
Beller
Benton
Bex
Bigelow
. Bjerstedt

. Bonham
Brammer
Brooks
. Cabral
Campbell
Casey
Cheek

WP e ®EE2 oy EEROTS

. E. Child

Clancy

A. Crisman

. A. Cushing
. M. Daggett

C. Daley
Daniels
Dempsey
DePrisco
Dole
Dunten
Edwards
Fay

G. Feldmann

“ =T em

. M. Fratar

. Garman

Non-Academic Research Staff

ROpEmEmpRRPEmIPErYgORRER"ERDERSCRTREAIARD

V. Goodman
P. Gord

. Gosper

. Gottlieb

. Graham
Grondstra
Gronemann
Gunn
Guttmann
Haig
Haring

. Hennemann
. Hennemann
Hills

W ao®OQOQP»mEZR QS

. M. Homburger

R. Jensen

A. Johanson
H. Johnson
Y. Johnson
Katzenelson
W. Kernighan

. M. Kessler

K. Knudsen
Kugel

T. Ladd
Lamport
Leopold
D. Levin
Malhotra
Marceau
J. Martin

xiii

W. D. Mathews
E. M. Mattison
W. D. Maurer

P. McCrensky

S. D. McIntosh

V. E. McLoud

S. Menger

F. Miller

G. Mills

I. Morris

G. Murray, Jr.
M. Nacamuli
C. Nelson

. R. Noftsker
F. Nolan

P. Odland

. A. Padlipsky
A. C. Parisot
. M. Pennell
Pitidis-Poutous
B. Polansky
Quisenberry
Rappaport

M. Reed

C. River

L. Rosenbtaum
¢ |

J

. Ross

TPU O EEIEMTHENEN S EAREZRER

. Samson
R. A. Sayers
G. C. Schroeder

. Saltalamacchia

xiv

DU RMEUTY O

PERECYS>m M NS> U@

G. Selfridge
J. Shea

M. Sheehan
E. Smith
Soares

. V. Solomita
Sordillo

L. South

L. Ackley
Barovich

J. Berger
M. Bousquet
Forte

H. Johnson
. L. Johnson
H. Jones

0. Ladson
Luccio

S. Lynn

K. Mills

V. Oldfield
E. Oppert
H. Porter
Silver

L. Stambler
B. Wise

Non-Academic Research Staff (continued)

J. W. Spall D. B. Wagner

N. C. Spencer J. F. Walsh

G. Spielman J. E. Ward

R. H. Stotz D. R. Widrig, Jr.
W. D. Stratton B. L. Wolman
M. K. Thompson C. Wylie

D. E. Thornhill
T. H. Van Vleck

Resident Guests

System Development Corp.

I. B. M. Corporation

Boeing Company

French Government

Yale University

National Security Agency
Ford Motcr Company
McDonnell Aircraft Corp.
UNIVAC Division, Sperry Rand
Olivetti & Company

North American Aviation, Inc.
Dow Chemical Company
University of Edinburgh
National Security Agency
Chevron Research Company
MITRE Corporation

U.S. Weather Bureau

IIT Research Institute

I. E. Sutherland
R. W. Taylor

R. A. Kirsch

R. Des Maisons

R. R. Fenichel
I. Hazel

M. C. Hennemann

A. G. Oettinger
S. M. Pizer

A. S. Priver
A. Ruyle

P. J. Stone

K. Winiecki

S. Lorch
M. T. McGuire

G. C. Quarton

J. McCarthy

Xv

Non-M. I. T. Users

ARPA - Department of Defense
ARPA - Department of Defense

Bureau of Standards

Harvard University
Harvard University
Harvard University
Harvard University
Harvard University
Harvard University
Harvard University
Harvard University
Harvard University

Harvard University
Massachusetts General Hospital
Massachusetts General Hospital

Massachusetts General Hospital

Stanford University

xvi

W. A. Bailey
R. R. Bartsch
P. Berman
W. T. Beyer
R. J. Bobrow
J. R. Brach

A. A. Bushkin
D. Chase

P. Clermont

L. O. Craft

L. C. Erdmann
D. S. Evans

R. C. Feldman
S. Geffner

H. L. Graham
A. D. Griffith
A. Guzmin

E. J. Hall

T. P. Hart

B. J. Huffman

E. G. Hurst, Jr.
E. L. lvie

T. J. R. Johnson

Research Assistants

A.

R. Kessler
V. Koen
N. Kogan

. Krakauer

F. Kramer

. R. Kusse
. B. Lapin

. I. Levin

L. Linderman

. C. Ling

Lipner

B
J.
L
Js
B
R
M
J.
G
S.
F. L. Luconi
A.
H
H
w
L
R
J:
L
R
A
G

W. MacEwan

. S. Magnuski

. S. Marcus

. A. Martin

. F. McPherson, III
. L. Miller

Moses

. M. Norton
. P. Parmelee
. Pawlikowski

. Piotrowski

me'UF*EF*MOOér*SDUt’J>;ﬂPJ'UL"9!"

Plotkin
Rodriguez
Rotenberg
Santos, Jr.

. Schlumff

. Selesnick

o

. Setnick
. H. Sibley
. Somekh

L. Strong

. C. Teague, Jr.

. Teitelman

W. Therrien

. C. Tillman, Jr.
. C. Van Horn, Jr.

W. Weber

. Weinberger

I. Weiner

. A. Wieselmann
. U, Wilde
. D. Wright

. Yourdon

o e — izt

“ESE@MENDURSDTYEY S SR U

M. Alanko

. M. Auslander
. H. Bloom
. Brody

R. Brown

. B. Clark

A. Davis

. J. Denning
. Diephuis

L. Doane

. Edelberg

D. Falconer
L. Flamm
Fluhr

C. Free

C. Gammill

. L. Gentry

Gertz

. M. Gold

Golden

Other Gr

aduate Students

OFr S ZSN"EAPYUEgEY SRS S

Haccoun

L. Hawk

E. Hlavac, Jr.
. Inglis

Ishii

L. Jones

A. Kendrick
Kwok

. A. Lieberman

T. Llewellyn-Jones

E. Marks
McElroy

I. Meltzer

F. Meyfarth
H. Morris, Jr.
P. Negroponte
Rockart

L. Roos, Jr.
D. Y. Ryu

[

L PO O EHDOS =2 MEU0»C0 00X

xvii

G. Schwartz
S. Schwenk, Jr.

. L. Seitz

. L. Selwyn

. W. Slawson
. H. Slosberg
. Soltero

. J. Spahn

E. Spencer
Sukonick

L. Suseman
N. Taubmann
T'sou

M. Wallace
N. Wallace
A. Walpert
Wright

Zucker

. Zwick

xviii

OSHP 20 sEmE

T EMHAREUQ

C. Albertson
L. Anderson

. L. Bass

Bos

R. Cohler

E. Davidow

A. Dvorak, Jr.
L. Fields
Griffel

. Bennett

D. Blum
J. Cole

Andrews
Borsini
Brenner
Carley
Dattilo

A. Degan

. 'Dickie

J. Porcaro

Undergraduates

R. Haber
F. Hickey
S. Kidd

T. Knight

A. N. Kramer
D. A. Lasher
K. W. MacLean
S. T. Mooallem
L. H. Morton

Technical Assistants

R. Fidler
R. Greenblatt
J. T. Holloway

Operating Staff

. Ferguson
. G. Hart
. McGillivary

. Moore

C

R

J

R. McNamara
R

S. Nelson

F

. Noseworthy

Technicians

R.

J

G
T
C
S.
G
S

B
B

C.
A.

M
R
J.
D
R
E

J.

E, Raffo

. S. Roe
. L. Rosen

. P. Skinner
. R. Smith
W. Smoliar

. J. Sussman

. A, Ward

. M, Wolk

. Zimmermann

. M. Parks
H. Willson
W. Wilson

. Pagliarulo

. Parker

Payson
. Peaslee

. Poole

. Reardon
W. Waclawski

Xix

Administrative and Supporting Staff

C. S. Alles G. Gulledge D. Rain

N. H. Arold A. Handelman C. L. Robinson
M. E. Baker D. L. Jones J. Robinson

T. Bergeron D. Kontrimus D. C. Scanlon
A. W. Bowen T. Liotta E. L. Schneider
S. Buell L. Martin R. Slosberg

J. M. Constantine E. G. Moore J. Wallen

B. L. Cullen W. Needre P. Wester

K. Day S. A. O'Leary R. M. Yunetz
F. H. Dilworth J. E. Pinella

D. J. Dolan

XX

PREFACE

Project MAC wasorganized at the Massachusetts Institute of Technology
in the spring of 1963 for the purpose of conducting a research and develop-
ment program on Machine-Aided Cognition and Multiple-Access Computer
systems. It operates under contract with the Office of Naval Research,
acting on behalf of the Advanced Research Projects Agency of the Depart-

mert of Defense.

The broad goal of Project MAC is the experimental investigation of new
ways in which on-line use of computers can aid people in their individual
intellectual work; whether research, engineering design, management, or
education. One envisions an intimate collaboration between man and com-
puter system in theform of a real-time dialogue where both parties contrib-
ute their best capabilities. Thus, an essential part of the research effort is
the evolutionary development of a large, multiple-access computer system
that is easily and independently accessible to a large number of people, and
truly responsive to their individual needs. The MAC computer system is a
first step in this direction and is the result of research initiated several

years ago at the M. . T. Computation Center.

Project MAC was organized in the form of an interdepartmental, inter-
laboratory '"project' to encourage widespread participation from the M. 1. T.
community. Such widespread participation is essential to the broad, long-
term project goals for three main reasons: exploring the usefulness of on-
line use of computers in a variety of fields, providing a realistic community
of users for evaluating the operation of the MAC computer system, and en-
couraging the development cf new programming and other computer tech-

niques in an effort to meet specific needs.

Faculty, research staff, and students from fourteen academic depart-
ments and four interdepartmental research laboratoriesare participating in
Project MAC. For reporting purposes, they are divided into seventeen
groups, whose names correspond in many cases to those of M. I. T. schools,
departments and research laboratories. Some of the groups deal with re-

search topics that fall under the heading of compute. sciences; others with

research topics which, while contributing in a substantive way to the goals
of Project MAC, are primarily motivated by objectives outside the computer
field.

The purpose of this Progress Reportis to outline the broad spectrum of
research being carried out as part of Project MAC. Internal memoranda of
Project MAC are listed in Appendix A, and MAC-related theses are listed
in Appendix B. Some of the research is cosponsored by other governmental
and private agencies, and its results are described in journal articles and
reports emanating from the various M.I. T. departments and laboratories
participating in Project MAC. Such publications are listed in Appendix C of
the report. Project MAC Technical Reports are listed in Appendix D.

Robert M. Fano

Cambridge, Massachusetts

BLANK PAGE

ADMINISTRATION AND SERVICES

Administrative Facilities and System Management

A,

moouu

The Basic Approach and External Appearance
The User Viewpoint

The Group Supervisor Viewpoint

The Central System-Administration Viewpoint

Security

o

ADMINISTRATION AND SERVICES

Academic Staff

R. M. Fano - Director

Non-Academic Research Staff

R. G. Mills - Assistant Director

Administrative Staff

M. L. Cabral
J. A. Gunn

M. M. Homburger
A. J. Saltalamacchia
T. H. Van Vleck

—— —

-

ADMINISTRATION AND SERVICES 3

Administrative Facilities and System Management - Richard G. Mills
and Thomas H. Van Vleck

This is a report on the general nature and state of development of
various programming tools that aid in the management of the Project MAC
IBM 7094 Compatible Time-Sharing System (CTSS). The set of programs
which will be described are referred to collectively as the ''administrative
subsystem''. It is entirely proper to consider the subsystem as part of CTSS,
even though most of the programs are in the same class as any other user-
generated programs. That is, they do not involve specially privileged
interaction with the supervisor or other parts of the central facilities of
CTSS, with one significant exception: some problem numbers under which
the various subsystem programs operate are granted extraordinary privi-
leges, in the sense described in Section AG.7.03 of the CTSS manual. *

In this general description, it is not possible to cover all of the details
of program operation and interaction with the central system. In particular,
it will not be possible to trace through the full complexity of the security

structure surrounding critical files of the administrative subsystem.

One additional general comment is in order. The subsystem described
here is only partially the result of a careful desigr: effort. Much of it has
grown in ad hoc fashion, and many aspects of its structure are influenced by
vestiges and artifacts of the past. It is important to note that, because there
is minimum dependence upon any particular features of the central system,
other subsystems with totally different exterior aspects could be implemented
as easily as the present one. In fact, were CTSS expected to have a longer
life, there might be sufficient motivation to refine the present system. How-

ever, very likely what is described here is essentially the final version.

*The Compatible Time-Sharing System: A Programmer's Guide, Second
Edition, The M.I.T. Press, Cambridge, Mass., August 1965 (Library of
Congress No. 65-25206)

4 ADMINISTRATION AND SERVICES

A. THE BASIC APPROACH AND EXTERNAL APPEARANCE

The general system-administration point of view is that CTSS offers two
primary resources: secondary storage space and processor time. System
access is recognized as a resource rather indirectly, and other attributes,
such as responsiveness, which might be viewed as resources, are not

controlled directly.

The process of adding a user to the system consists of giving him an
identity which the system can recognize (a problem-number /programmer-
number pair) and a secure means for the system to challenge and receive
authentication of this identity (a "password" scheme). The new user may
then be issued certain of the system's resources in the form of quotas of
secondary-storage space and processor time; he may also be assigned other
attributes relative to his particular use of the system. All of this informa-
tion is conveyed to the system in the form of a multi-field record, which is
inserted in a particular CTSS file containing one such record for each author-

ized user.

This "'resource-allocation file", together with a small set of commands
whose use is restricted to the system administrator, constitutes the entire
interface between the administrative subsystem and the core supervisor of
CTSS.

The LOGIN command is the guardian of access to the system; it decides
whether a user attempting to enter may do so, on the basis of information in
the resource-allocation file, and communicates time allotments and user

privileges for the individual to the A-core supervisor.

The scheduling algorithm in A-core accounts for processor usage and
prevents a user from exceeding his time allotments. The file system is

responsible for keeping a user from using too much secondary storage.

ADMINISTRATION AND SERVICES 5

The "external' administrative subsystem serves to facilitate and organize
manipulation of information in the resource-allocation file, and periodically
initiate certain operations related to both resource-allocation file updating
and reporting of system-resource consumption. The external administrative
subsystem consists of about 25 special-purpose '"'saved' files and commands,
which involve about 10, 000 to 15,000 words of code.

B. THE USER VIEWPOINT

Users see a reasonably simple system. They are uniquely assigned, for
system-administrator purposes, to one of about eighteen "groups'. The user
is admitted to the system by the action of a group supervisor and is allotted
a quota of system resources. In general, secondary-storage quotas are
assigned for relatively long periods; processor-time quotas are adjusted
more frequently. Also, time quotas are assigned in units of processor min-

utes per month, so a user's quota is refreshed on the first of each month.

Both time and storage quotas are subdivided. Users may be allotted
space on drum, disk, or magnetic tape (no drum space is available for
normal users). Processor time quotas are subdivided among five numbered

"shifts''. These are defined as follows:

Shift 1: 0800 - 1700 For period beginning 0800 Monday and
ending 0800 Saturday.
Shift 2: 1700 - 2400
Shift 3: 0000 - 0800
Shift 4: 0800 Saturday to 0800 Monday
Shift 5: Foreground-Initiated Background (FIB), described
in CTSS Manual Section AH. 1.03.

A user may be allotted time in any or all shifts. If he consumes his
allotment on a given shift, the system automatically logs him out, and he
must wait until the beginning of a shift in which he has resources remaining

before he is permitted to log in again. He can make a reguest to his group

6 ADMINISTRATION AND SERVICES

supervisor for an adjustment in his allotments, and the group supervisor
may, at his own discretion, choose to do so. As previously mentioned, time
quotas are valid for an arbitrarily-selected accounting period of one month;
thus, to refresh a user's time allotment, the 'time used'' accumulations are

automatically reset to zero at the end of the month.

C. THE GROUP SUPERVISOR VIEWPOINT

Group supervisors see a bit more of the structure of the administrative
subsystem. First, each supervisor is assigned a special problem number
for maintaining a "'group allocation file' (GAF) containing his distribution of
a block of computer resources, which he has been allotted by the central
administration for further subdivision. For this purpose, he has access to
a few special-purpose programs, the most important of which is the so-
called ALOCAT command. ALOCAT is a special-purpose editor tailored to
the job of maintaining GAF's. It contains convenient features for summing
allocated resources, notifying the group supervisor if he has exceeded the
limit of his block, etc. ALOCAT is designed to be highly interactive and
informatijve; it is designed for the group supervisor who knows little and

cares less about details of using CTSS.

The functions delegated to a group supervisor are as follows: 1) he may
add or delete users; 2) he may allot resources of secondary-storage space
and processor time, within the overall limit of the block allotment to his
group; 3) he may change the password of a user; and 4) he may influence
the probability that a user will be permitted to log in. In particular, for
demonstrations and other special purposes he can give a user absolute assur-

ance of permission to log in.

After a group supervisor has altered the privileges or resources of some
of his users, he executes a command which notifies the central section of the
administrative subsystem of his changes. Once each day, in an operation
colloquially referred to as "turning the crank', the central section takes note

of all such requests and makes the indicated adjustments in the resource

-

ADMINISTRATION AND SERVICES 7

allocation file, thus effecting the change requested by the group supervisor.
This operation is now done automatically once each day by the FIB facility.

D. THE CENTRAL SYSTEM-ADMINISTRATION VIEWPOINT

With day-to-day resource-allocation problems handled by group super-
visors, the central administration need only be involved with rather infre-
quent adjustments of the block allotments to groups, and maintenance and
operation of the various elements of the system-administration subsystem.
For example, this is the level where responsibility rests for assuring that
group-supervisor-initiated changes are made in the resource allocation file
regularly and correctly.

In addition, the daily, weekly, and monthly reporting of resource con-
sumption is automatically performed at this level. The central administra-
tion is also in a position to do special monitoring of any aspects of the system

performance.

E. SECURITY

The issue of system security is a vital one in the context of a future
information public utility. In CTSS, security is still an important issue, but
the emphasis is slightly different. For example, it is extremely important
that a user be severely impeded, if not completely thwarted, in any attempt
to take contro! of the computer away from the CTSS supervisor. On the
other hand, the issue of user-to-user file security, although important, is
less critical. From a purely human point of view it is desirable to assure
each user that other users cannot access his personal files without his per-
mission; but, in fact, very few users have files whose absolute security must

be maintained at any cost.

It is much more important to increase the difficulty of unauthorized
consumption of a user's precious processor-time resources. This has the
curious effect of enormously upgrading the importance of file-system secur-

ity. The reason, obviously, is that a particular file within the normal CTSS

8 ADMINISTRATION AND SERVICES

file system contains the resource allotments and passwords of all users.
Penetration of the security of this file could severely compromise the ability

of various administrative levels to control system resources.

As might be expected in a community like M.1. T., over the years there
have been attempts -- some quite successful -- to penetrate the various
security bars which have been erected from time to time in the evolving sys-
tem. No earnest attempt to defraud the administration has been discovered;
most of these activities were undertaken by sophomores (in fact or in temper-
ament) who were interested in demonstrating their ability to do anything
advertised as difficult, and, in some cases, their general contempt for
authority. There have been a few unthinking pranks and a few ventings of
frustration which caused serious and deplorable interference with other

system users, but these have been rare.

It is an interesting commentary on the psychology of the M.I. T. sophomore
(again, both in fact and in temperament) that the amount of (detected) probing
of system security has diminished considerably since '"The Management"
pointed out that penetration for frivolous purposes is quite possible but some-
what anti-social, and penetration for fraudulent or destructive purposes is
also possible but so undesirable as to warrant punishment if detected. Those
very few individuals whose actions have caused major interference with the

using community have either departed or assumed a more social attitude.

ARTIFICIAL INTELLIGENCE

An Autonomous Manipulator System

Computer and Related Hardware
Special Input Devices
Special Output Devices

Programming

P o>

Vision/Manipulation Experiments

Unrecognizable Sets of Numbers
Linearly Unrecognizable Patterns
CONVERT: A Pattern-Driven Manipulation Language
POLYBRICK: Parallelpiped Pattern Recognition
PDP-6 Display Subroutines
Nonlinear Optimization Applied to Checkers
The Automata Theorist's Helper
A Syntax-Based Score-Reading Program
Computer Processing of Musical Data
Some Experiments in Computer Composition of Tonal Music
ADEPT: A Heuristic Program for Proving Theorems of Group Theory
LISP Maintenance
Manipulation of Algebraic Expressions
Computer Experiments in Finite Algebra
PILOT: A Step Toward Man-Computer Symbiosis
On-Line CTSS Instruction

10

SmYU U

HErrvmowsw

Blum
G. Bobrow

K. Beller

. E. Brammer
. E. Eastlake

J. Edwards
P. Gord

- R. Gosper

Baecker

. Bennett

H. Bloom
D. Blum
J. Bobrow
Geffner
K. Griffith
Guzman
P. Hart

L. Jones

ARTIFICIAL INTELLIGENCE

Academic Staff

M. L. Minsky A. L. Samuel
S. A. Papert

Non-Academic Research Staff

R. Greenblatt P. Samson
W. H. Henneman 0. G. Selfridge
J. T. Hnlloway D. Sordillo
L. Lamport R. L. South
W. D. Maurer G. Spiclman
W. R. Noftsker
Research Assistant and other Students

T. Knight A. W. Slawson
L. J. Krakauer C. R. Smith
M. 1. Levin S. W. Smoliar
S. M. Libman M. J. Spahn
W. A. Martin J. Sukonick
J. Moses G. 2. Sussman
L. M. Norton W. Teitelman
A. Reed J. M. Wallace
J. S. Roe
G. L. Rosen

Guests_

Forte - Yale University
Silver - MITRE Corporation

ARTIFICIAL INTELLIGENCE 11

An Automomous Manipulator System - Marvin L. Minsky

Qur goal is to develop techniques of machine perception, motor control,
and coordination that are applicable to performing real-world tasks of object-
recognition and manipulation. A suitable mechanism will then be able to
assemble simple mechanical devices according to goal-directed (rather than
programmed) instructions (e. g., disassemble an object on a table, or con-
struct an object described by a drawing). Our aim is to have a computer-
controlled system accept a relatively uncomplicated command and, without
human assistance, locate, grasp, and assemble parts of a simple

mechanical device.

The problem is difficult, but in an engineering sense rather than a
theoretical one -- it is complex and intricate, rather than intellectually
baffling. Numerous attempts that tested specific schemes for ""pattern-
recognition' have failed, because no isolated special-purpose technique can
solve a problem that needs a large-scale system -- not because of a lack
of efficient techniques. A machine that can "'see' will need all the re-

sources generated by advances in Artificial Intelligence and programming.

The principal parts of the autonomous manipulator system are a
general-purpose digital computer, its input and output devices, and its
programs. Only a large, general-purpose computer can deal with the in-
tricacies of the processes involved and, as the mechanisms of the systems
become clearer, certain components may become candidate. for special-
purpose-hardware treatment. For the present, though, it is important to
retain flexibility for research, even at the cost of a serious loss of real-

time speed.

12 ARTIFICIAL INTELLIGENCE

The system needs visual and tactile input devices capable of unusual
discrimination ability. We are developing a series of new devices to meet
this need. A number of more conventional input devices are also warranted
for kinesthetic feedback. These requirements have necessitated the design
and construction of a versatile array of input devices and channels. The
output system also demands a variety of output channels -- to the motor

organs for motion, and to the human users for monitoring and dispiay.

Finally, and most important, the system needs computer programs.
They must deal with analysis of the visual (and tactile) scene; coordinate
the motor actions; and provide its internal information storage, planning,

and general goal-directed problem-solving activity.

In order to press toward our goals, we have had to build a number of
tools which were not readily available. We have had to design and construct
computer and related hardware, set up support facilities, develop systems
and support programs, perform experiments, and analyze and document
results. One might characterize the project's work from August 1965 through

April 1966 as a tool-building phase.

Although some tools are not yet complete, we are now able to begin
serious study of the most difficult problem facing the project: The analysis
of real-world three-dimensional scenes. This problem will occupy most of
our attention for an indefinite period. Because programming for increased
dexterity in manipulation (and for the interpretation of goal-directed
commands) is better understood, it is less difficult. However, a consider-

able amount of work still is necessary in this area.

A brief summary is presented to sketch the present status of the main

portions of the project.

ARTIFICIAL INTELLIGENCE 13

A. COMPUTER AND RELATED HARDWARE

The system is based on a DEC PDP-6 computer and related devices.
With this is associated an assortment of tapes, printers, memories, input-
output channels, and CRT displays. Unique to the manipulator project are a
number of special interface connections for the devices described next. Be-
cause of the unusual size and complexity of the programming systems in-
volved, a very large and fast core memory (218 words of 40 bits; 2. 5-

microsecond cycle-time) is to be added during the summer of 1966.

B. SPECIAL INPUT DEVICES

The sensory equipment includes two visual-input devices: TVA, a
vidicon television camera, and the more precise '"VB, an image-dissecior
device for controlled-scan analysis. Currently in use is a continuous-
position-and-pressure-detecting tactile sensor, based on a time-domain
reflectometer. For position sensing, there are a variety of inputs from
the hand and arm. A more versatile system has been designed and is under

construction.

C. SPECIAL OUTPUT DEVICES

The manipulator, shown in Figure 1, consists of a hydraulically-powered,
electrically-controlled industrial arm, and a hand with five degrees of freedom
(but with only a simple gripping ability). The arm was built and given to us by
the American Machine and Foun<ry Company, and is sufficient for our pres-
ent simple goals. More versatile hands and arms are being developed to be

available when programming is able to cope with more intricate manipulation.

A new arm, almost completed, is shown in Figure 2. This arm, speci-
fically designed for the project, will be less massive and more versatile than
previous designs. Its two main parts are a shoulder and an arm. The
shoulder is a strong but slim stand, that terminates in a two-axis rotation
joint (not shown in these pictures). The arm is a modular jointed system.

Each section consists of a long tetrahedral '"bone" with two hydraulic-cylinder

ARTIFICIAL INTELLIGENCE

1. Modified AMF '"Versatran' Arm

ARTIFICIAL INTELLIGENCE

Figure 2. 'Lobster-Claw" Arm Mechanism

16 ARTIFICIAL INTELLIGENCE

"biceps'". With four sections, the system resembles a tentacle (or really
a lobster arm) rather than a humanoid or industrial-type arm. Since it is
important that the "hand" bz able to reach any poirt in a portion of space

from any direction, this requires at least six axes, in addition to grasping.

D. PROGRAMMING

Programs have been developed to read selected parts of the visual
scene, analyse them for parts of polygonal objects, and then transform them
to real-world coordinates. The present programs are still rudimentary,

and their extension is vital to the project.

On the output side, we have programs that handle the rather complicated
relations between arm-control signals and the resulting movements, and
programs are being developed for better Hand-Eye coordination. There
remain non-trivial problems of controiling motion through a cluttered space

without dangerous or destructive consequences.

For planning and control of the overall activity of the machine, we are
taking into account texture and color, as well as object boundaries and the
like. The system will be able to partition a scene into objective regions,
combine these regions into proposed objects, and finally represent this
collection of pseudo-objects as an abstract model of the objects and back-

ground in real space.

A program already completed and documented can do somethiag of this
nature -- given an isometric two-dimensional drawing, it constructs an
abstract three-dimensional model of a scene composed of rectangular objects.
(See Guzman's report, elsewhere in this section.) Extensions to this pro-
gram are under way. A first-generation system for seeing should be in

operation this fall, resulting from the merger of the above-mentioned systems.

B e

ARTIFICIAL INTELLIGENCE 17

E. VISION/MANIPULATION EXPERIMENTS

Two experimental demonstrations have been completed -- "ball catching"
and ""cube handling". Their primary purpose was to consolidate all points in
the project's development. Each experiment requires all equipment in the
project to work smoothly at one time: and close coordination between staff

members who develop the parts is necessary.

""Ball catching' is the interception by the hand, under TVA visual tracking,
of a thrown ball. The visual problem is simple -- the target is a small,
moving, high-contrast object, and no analysis of its geometric form is
necessary. This was to check out the many new programs and devices in-

volved.

"Cube handling'" requires visual and tactile location of a cube on a table
and picking it up. This demonstration checked out the next stage of com-

plexity of the visual-analysis system.

The next experimental demonstration -~ building a specified structure
from various objects piled on a table (using visual feedback) -- will be the

first to require a truly complex visual system.

18 ARTIFICIAL INTELLIGENCE

Unrecognizable Sets of Numbers -- Marvin L. Minsky and Seymour A. Papert

Let A be some set of positive integers written in binary notation. It
is natural to ask what kind of computing ma chine could recognize the set
in the sense of deciding whether a given binary sequence represents a number
belonging to A. The technique described in this note enables one to show
that certain sets cannot be recognized by finite-state automata (i.e., these
sets are not "'regular"). The essential idea is this: Let « A (n) be the number
of members of A less than the integer n. We show that the asymptotic
behavior oan(n) is subject to severe restraints if A is regular. These
constraints are violated by many important natural numerical sets whose
distribution functions can be calculated, at least asymptotically. These
include the set P of prime numbers for which «_(n)~ n/log n for large n,
the set of integers A(k) of the form nk, for whicph "A(k)(n)N allK and many
others. The technique cannot, however, yield a decision procedure for
regularity, since for every infinite regular set A there is a non-regular
set A' for which |nA(n) -7 A,(n)|5 1, so that the asympatotic behaviors of

the two distribution functions are essentially identical.

A remarkable set of equivalence theorems has been investigated
recently by S. A. Papert and R. McNaughton. (See McNaughton, this re-
port.) Consider the class of "extended' regular expressions obtained by

adding not and and to the or, star, and concatentation of the Kleene

Algebra. It is easily shown that to obtain not in the McCulloch-Pitts
formulation, we do not require anything more than a loop around a single
cell. So, if we confine ourselves to extended regular expressions that
contain no stars, we can obtain McCulloch-Pitts nets that have only single-
cell loops of this kind. It can be shown that the converse is true -- that
nets with only this kind of loop can be described by ''star-free" extended

regular expressions.

It turns out that machines of this class cannot "count' cyclically (i.e.,

they cannot even determine whether the number of ONE'S in the input is

ARTIFICIAL INTELLIGENCE 19

even or odd). A more general definition ot ''non-counting' would be: a
regular set E in a ''non-counting set", if there exists a number n such that
for all strings U,V, and W, and all positive integers p, if U v' W is in E,
then so is U V''"P w.

It was first shown that any star-free E is non-counting: the converse,
which is also true, was more difficult to show. This theorem points toward
a connection between the formulations we have been considering and a
rather different way of looking at machines -- namely, the approach

through semi-groups.

In the semi-group formulation, one thinks of a machine as having a
set of states, which are transformed into one another by the input signals.
From the group-theory point of view, the existence of permutation in-
duced by a signal on some of the states means that there is a subgroup
in the semigroup of transformations (on the states) generated by the input
signals. The important theorem here is that a machine that is
"permutation-free'", in this sense, is also a star-free machine, and vice-
versa. It turns out that this is equivalent to the class of machines that

can be constructed out of the ""unit automata' of Krohn and Rhodes.

Finally, there is a connection with the predicate calculus. Consider
an alphabet X = {xl. . .xr} . For each i we define the propositional
function Fi(t) which asserts that the t- input is X, Let ti’ t2. .. tS be a
set of integral valued variables and let P be the class of expressions
defined by:

(a) Fi (tj) gP foralli, j

(b) t <t EPforalli, k

(c) Any proposition form in members of P is in P

(d) I AEPand A contains the free variable t;, then (ti)A and

(Bti)A are in P.

Let Po be the set of members of P with no free variables. Then P0 de-

fines the class of words on X which satisfies it.

20 ARTIFICIAL INTELLIGENCE

A regular set E is in L if it can be defined as the set of words satisfying
a predicate calculus expression, PO, as defined above. The class L is the
"L-languages' of McNaughton and these also turn out to be equivalent to the
star-free machines. (See Minsky, Appendix C.)

Linearly Unrecognizable Patterns - Marvin L. Minsky and Seymour A. Papert

We have succeeded in clarifying, to a certain extent, the enormously
confused situation with regard to the usefulness of perceptron-like, pattern-
recognition devices. This theory is widely-regarded as the first clear step
toward theoretical understanding of the range and limitations of these de-
vices. We include here an abstract of a paper to be published in the Pro-
ceedings ¢i the American Mathematical Society's 1966 Symposium on

Applied Mathematics, and also as a MAC technical report.

"Pattern Recognition", in the context of computational techniques,
generally refers to the construction of algorithms to imitate functions of
the human visual system. We have been studying its most elementary
problem: given "Figures' as subsets of points of a quantized Euclidean
plane; decision procedures for membership of mathematically defined

classes, or "patterns" (i.e., triangles or connected figures) are considered.
H

Vast numbers of published papers have described ad hoc experiments
using various decision procedures. The majority use linear discriminant
functions, either explicitly or implicitly. Our first aim is to provide a
rational measure of the complexity of patterns with respect to such
algorithms. This leads to a mathematical explication of appropriate sense
~f "local property": convexity and triangularity are local in that the cor-
responding decision procedures can be expressed linearly in terms of
functions of small numbers of points. Fairly elaborate mathematical
arguments are necessary to prove that connectivity is not local in this sense,

and (perhaps surprisingly) that the disjunction and conjunction of local

properties are not necessarily local. These results are closely related to

ARTIFICIAL INTELLIGENCE 21

the more general (and more urgent) problem of constructing a mathematical
theory to formalize the intuitive distinction between ''serial” and ''parallel"
computation. Although we have not, so far, been able to find the proper
general concept, we have analyzed some special cases that seem instructive
and that show parallel computation is not as universally powerful as some
are tempted to believe. We also deduced some incidental corollaries
relevant to the theory of ""learning machines" (such as perceptrons). In
particular, we qualify the well-know perceptron-convergence theorem:

the time needed for convergence, and the size of the coefficients, can
become so large that it would be easier and better to store the entire set

of figures used to "'teach' the machine. Qur results are not all negative:
we have described some perceptron algorithms for properties which

might have appeared to be beyond this scope, and we describe a remarkably

economical serial algorithm for connectivity.

CONVERT: A Pattern-Driven Manipulation Language - Adolfo Guzman

CONVERT is a programming language, resembling COMIT and
SNOBOL, which is applicable to problems conveniently described by trans-
formation rules . By this we mean that patterns may be prescribed, each
being associated with a skeleton, so that a series of such pairs may be
searched until a pattern is found which matches an expression to be trans-
formed. The conditions for a match are governed by a code, which also
allows subexpressions to be identified and eventually substituted into the
corresponding skeleton. The advantages of the language are that: it allows
one to apply transformation rules to lists and arrays as easily as strings;
both patterns and skeletons may be defined recursively; and, consequently,
the programs may be stated quite concisely. Design of the language was
done at the Instituto Politecnico Nacional of I\I/Iexico. (See Guzmz;n,

Appendix C.)

22 ARTIFICIAL INTELLIGENCE

An interpreter for CONVERT, imbedded in LISP, has been constructed
and runs in the Project MAC 7094. Experimentation with the interpreter
and with programs written in the language suggested several changes,
which are described in some detail in a recent memo. (See MAC-M-305,

Appendix A.)

An improved version of the processor runs in the PDP-6 of the
Artificial Intelligence Group, and care has been taken to assure com-
patibility of both the 7094 and PDP-6 versions of CONVERT.

POLYBRICK: Parallelepiped Pattern Recognition - Adolfo Guzman

Given a particular class of objects, an interesting problem in pattern
recognition consists of the identification, selection, and description of
those objects from any others present in a picture or drawing, which may
often contain partially hidden bodies. In addition, we want the recognition
of such objects to be substantially independent of their position, orientation,

or size.

POLYBRICK is a program which finds the three-dimensional parallel-
epipeds (solids limited by six planes, parallel two-by~two) present in a
picture, such as Figure 3. Input data is the picture in an idealized, two-
dimensional, symbolic form; that is, a connection matrix plus the two-
dimensional coordinates of its points. No noise or perspective deforma-
tion is assumed, but "'extraneous'" (i.e., non-parallelepiped) objects are

allowed.

For Figure 3, the program has to determine the number and location
of all cubes. POLYBRICK's answer to this example is:
(CUBE 1 is HG) (CUBE2isUV STK)
(CUBE 3 is XW) (CUBE4is AY C BD)
(CUBESis P MNQ)

23

ARTIFICIAL INTELLIGENCE

sulajyed padidajarrered

‘g 9an3ty

<=0

4+

+=\J

I:UN_

24 ARTIFICIAL INTELLIGENCE

The program has been successfully tested with a variety of pictures,
but its answers to optical illusions are somewhat objectionable. A recent
memo discusses the method used in some detail and, in the light of its
successes and failures, a more general method is proposed. (See MAC-M-
308, Appendix A.) The program itself is written in CONVERT, a pattern-

driven symbolic manipulation language. (See Guzmz'm, Appendix C.)

PDP-6 Display Subroutines - Elaine Gord

I have been working on a display program for the PDP - 6 in connection
with the intelligent automata project. At present this program will display
n (integer) transparent cubes, any of which can be rotated around any of

three axes and/or moved anywhere on the face of the scope.

I am currently debugging the subroutines which will also construct
tetrahedra and octahedra, remove all hidden lines, and cause the display

to be seen in perspective.

Nonlinear Optimization Applied tc Checkers - Arnold K. Griffith

Checkerboard positions are characterized by quintuples of parameter
values. Each parameter takes on only a small number of values, so that
there are only a finite number of possible quintuples. Each quintuple is
assigned an index indicating position strength. Plausible board positions
are derived from tabulared games of checker masters. Positions resulting
from moves actually made in a game are considered strong: those re-
sulting from possible alternative moves are considered weak. The index
assigned to a particular quintuple is determinec from the relative number
of strong and weak positions characterized by the quintuple. A more de-
tailed description of this scoring technique is given in a recent memo.

(See MAC-M-299, Appendix A.)

ARTIFICIAL INTELLIGENCE 25

An extension of this technique, not described in the above-mentioned
memo, has bieen partially explored. Twenty-seven parameters, grouped in
sets of three, are used to describe a board position. An index is assigned
to each possible triplet of values of a set of parameters. Thus, nine such
indices are associated with such a given board position. These indices
take on only a small number of values, and are themselves grouped in sets
of three. The above process is repeated, with triplets of indices taking
the place of triplets of parameter values. This gives a board position

three more indices, which are added to give a strength evaluation.

The quintuplet procedure was extensively tested on actual checker
game positions. It could correctly identify the strongest position from
a set of alternatives about twenty-five percent of the time. It proved to
be superior to the linear-weighting technique employed by Samuel for

the same purpose.*

The Automata Theorist's Helper - William H. Henneman

I have written a set of functions in LISP, for both the time-shared 7094
and the PDP-6, which allow a user to construct examples of finite-state

automata and investigate several aspects of their structure.

The finite-state automata may be represented by either a flow table or
a regular expression, whichever is more convenient. Presently, there

are functions available to do the following things:

*A. L. Samuel, "some Studies in Machine Learning Using the Game of
Checkers', IBM Journal of Research and Development, July 1959, pp. 211-229

26 ARTIFICIAL INTELLIGENCE

1. Calculate the derivative of a given regular expression with respect
to a finite regular set;

2. Construct the state graph of a machine from its regular expression
representation;

3. Construct a regular expression to represent the machine from its
state-graph representation;

4. Calculate the semigroup of the machine;
Find all non-trivial subgroups of a semigroup;

6. Tell whether a given group is cyclic, abelian, a direct product,
a sub-direct product, etc.;

7. Construct the lattice of ideals in a semigroup;

8. Construct the Krohn-Rhodes decomposition of an automaton
into series-parallel connections of pure group and reset

machines.

A Syntax-Based Score-Reading Program - Allen Forte

As part of a larger research project in musical structure, a program
has been written which ""reads" scores encoded in an input language (designed
by Stefan Bauer-Mengelberg) isomorphic to music notation. The program is
believed to be the first of its kind.

From a small number of parsing rules, the program derives complex
configurations, each of which is associated with a set of reference points in
a numerical representation of a time-continnum. The logical structure of
the program is such that only the defined classes of events are represented

in the output.

Because the basis of the program is syntatic (in the sense that parsing
operations are performed on formal structures in the input string), many ex-

tensions and refinements can be made without excessive difficulty.

ARTIFICIAL INTELLIGENCE 217

The program can be applied to any music which can be represented in
the input language. At present, however, it constitutes the first stage in
developing a set of analytic tools for the study of so-called atonal music
(the corpus of a revolutionary and little understood music, which has

exerted a decisive influence upon contemporary practice of the art).

The program and the approach to automatic data-structuring may be
of interest to linguists or to scholars in other fields concerned with basic
studies of complex structures produced by human beings. (This research

will soon be a Project MAC Technical Report.)

Computer Processing of Musical Data - Peter Samson

A PDP-6 computer program is being developed to aid composers and
other persons involved in the creation and processing of music. When the
program, named BIG, is completed it will have two kinds of routines:
those to input and output music in both human-oriented and machine-
oriented forms; and those to edit and analyze pieces of music in the

computer.

These routines are at the command of the user through the PDP-6 on-
line Teletype. The user types in a language whose words, including com-
mands, modifiers, and names of the musical objects in memory, are stored
in an internal dictionary, which the user may augment. For each word typed
in, the command processor finds best and second-best matches in the
dictionary, and computes a '"score' for each match. If the best match is
perfect, or if its score is above a certain threshold and a certain margin
above the second-best score, then the first dictionary entry is assumed.
Otherwise, the word is printed out as ambiguous and the command is not
performed. This scheme has proved its worth in practice, since rearly
every mistake in typing has been corrected by the command processor, and

no mistake has been corrected erroneously.

28 ARTIFICIAL INTELLIGENCE

The input and output routines handle the following forms and media:
organ keyboard input, electronic organ output, six-voice square wave output
(externally filtered), four-voice complex-wave output (weighted sum of
harmonics), punched-paper-tape input (in language derived from musical
notation), DECtape input and output, and musical scores on the display
scope. Alsvu, a composing routine written by Stephen Smoliar is treated as
an input function by BIG. All of these features are debugged and in use,
except for the organ output whose hardware is not yet completed, and the

musical score display, which is an integral part of the editing functions.

Some of the editing commands will have close analogs in text-editing
programs: searching for a given string of notes, proceeding to a numbered
measure or line, and inserting and deleting material. Others will resemble
operations in symbolic-manipulation systems: pattern matching and re-
lacement, naming of subexpressions, and copying and .rearranging portions.
And some will perform operations unique to music: for example, transposi-
tion, part doubling, and perhaps simple harmonizing. At each step of the

editing, the user will get feedback in the form of a scope diaplay.

Svstem editing features have not yet been written, and development of
the system is momentarily dormant, because currently active portions fill
the 16, 000-word PDP-6 core memory. Work on BIG will resume when

additional memory arrives in July, 1966.

ARTIFICIAL INTELLIGENCE 29

Some Experiments in Computer Composition of Tonal Music - Stephen W.

Smoliar

For approximately one year, I have been conducting experiments with the
MAC PDP-6 in an attempt to write a program which will generate tonal
melodies. The current results to date consists of a program, described
below, which, according to Allen Forte, simulates with a fair degree of
authenticity the modal forms of twelfth-century plainsong. Spontaneous
results from this program are accessible through BIG, Peter Samson's

program for computer processing of musical data.

The program, named MELGEN, produces melodies using the tetrachord
as the fundamental melodic element. A tetrachord is a diatonic progression
of four tones within the interval of a perfect fourth; the stem ''chord" does
not imply that these four tones are to be sounded together, it merely refers
to the set of those four tones. MELGEN employs major tetrachords, such

as are found in the first four tones of any major scale: e.g., C-D - E - F.

The current copy of MELGEN produces four-measure melodies in 4/4
and 6/8 meter, and eight-measure melodies in 2/4 and 3/4 meter. The
rhythmic pattern for a single measure is determined by probability tables,
which allow for rhythmic variety, but are strongly biased against complex
syncopations. This pattern may be repeated through several measures in
the melody. The corresponding melodic notes for a measure of rhythm are
selected totally at random; however, since the domain of selection is re-
stricted to the major tetrachord, the results are fairly conventional.
Adjustments are included so that the melody ends on a strong rhythmic
beat, and the first and last notes are the uppermost tone of the tetrachord
w.hich, from music theory, turns out to be the principal tone (or tonic) of
the tetrachord. When a rhythmic pattern is repeated, the corresponding
melodic pattern may either be repeated or altered in one of five ways:

1) Each note may be raised one scale degree, if the result remains within

the domain of the tetrachord; 2) Each note riay be lowered one scale

30 ARTIFICIAL INTELLIGENCE

degree, if the result remains within the domain of the tetrachord; 3) The
melody may be rewritten in retrograde, i.e., backwards; 4) The melody
may be rewritten in inversion, i.e., the first and fourth tones are swapped
and the second and third tones are swapped; 5) The melody may be rewritten
in retrograde-inversion, i.e., reversed melody with tone swapping. When a
new rhythmic pattern is introduced, the old one is discarded and a new
measure of melody is written. Examples of the original MELGEN are

shown in Figure 4.

Attempts were made to have MELGEN produce several phrases in the
above manner using different tetrachords, but the results tended to be long,
rambling, and musically uninteresting. Currently, the tetrachord approach
is being abandoned in favor of a theory involving chords of simple harmonic
progressions; this may tend to produce memodies which are tonal rather

than modal.

ADEPT: A Heuristic Program for Proving Theorems of Group Theory -

Lewis M. Norton

A program, named ADEPT (él_)istinctly Empirical Prover of Theorems),
has successfully proved almost 100 theorems from the abstract theory of
groups, and a number of heuristics have been tested using it. Numerous
insights have been gained about the difficulties of attempting to prove group-

theoretic facts by computer.

An executive routine has been written which uses the basic program to
establish isomorphisms. There is a subroutine which, given two sets as
input, generates a canonical map between them (if possible), and then the
executive calls for proofs that this map is well-defined, homomorphic, onto,
and one-to-one. In this way, a proof that A/B~ (A/C)/(B/C) has been
obtained using about six minutes of CTSS computer time. This is the most
impressive result obtained by the system. It is assumed by the executive that
the problem is well-posed; in fact, ADEPT can and has proved the justifying
result that if B is normal in A, the factorgroup B/C is normal in A/C.

T R | T — e

ARTIFICIAL INTELLIGENCE

[\ o} ™S — 1 .
ma F—J_J_—P—H::j_}“_—‘F—f—i
P S I td

174 "
Sttt s :
N\ 1

9
%é

4 H—J_W

\Y'/

\ Y

b fot
"1‘
I kfn
[
|
[W
| SEN
°-
«
L

Figure 4. Examples of MELGEN Melodies

31

32 ARTIFICIAL INTELLIGENCE

ADEPT has been written using a fresh viewpoint. It does not start with
a particular logical system or so-called "complete' proof procedure, as did
much previous work in theorem-proving. Instead, possible procedures which
a student might use have been considered, in an attempt to encode these
methods and heuristics into an algorithm which can be run on a computer
and appear to have some degree of "awareness'' of where it is in a proof.
The result is a program which: 1) is not logically complete, 2) enables the
computer to produce proofs for theorems of greater complexity than those
done by any previous programs reported in the literature, and 3) constructs
proofs which are often quite like those which a student would give (i. e., the

development of the proof progresses in a ""reasonable" manner).

This research, also yeported in Project MAC Progress Report I, is
near completion, and will soon be presented in a doctoral dissertation and

as a Project MAC Technical Report.

LISP Maintenance - Joel Moses

We have written a new version of the LISP system for Project MAC.
The new version provides additional data storage and several new functions
and constants. The 1/0 capabilities, EXCISE. the error comments, and
several routines have been improved. Much irrelevant code and many bugs

have all been removed.

Source decks and BCD listings of the new version are available. The
decks are organized to ease the job of assembling private LISP systems in
which unneeded features are absent. For instance, without reassembling, a
user can create a private LISP system in which the data storage space has
been arbitrarily allotted among binary program space, the push-down list,
full wordspace, and free storage. (See MAC M-296, Appendix A.)

ARTIFICIAL INTELLIGENCE 33

Manipulation Of Algebraic Expressions - Joel Moses

In a recent paper, we present and evaluate a symbolic method, due to
L. H. Williams, * for solving systems of polynomial equatiuns. The method
was found to be very effective for small systems, where it yielded all
solutions, without the need for initial estimates. However, by itself, the
method appears inappropriate for solving large systems of equations, due
to explosive growth in the intermedi~te equations, and the hazards which
arise when coefficients are truncated. The paper also contains a discussion
of recent results of Daniel Richardson, showing the recursive unsolvability

of the symbolic integration and matching problem. (See Moses, Appendix C.)

We have also "/ritten a program which is capable of integrating ail but
two of the problems solved by Slagle's Symbolic éutomatic_ly_’r_egration
(SAINT) program. In contrast to SAINT, it is a pureiy algorithmic program
and has frequently achieved running times that are two or three orders of
magnitude faster than SAINT.

The program uses a routine, for matching algebraic expressions, which
is capable of performing the necessary pattern recognition to transform the

equation

asin2 (b) + acos2) + e =a+e

A new heuristic for integration, used in the program, is called the
EDucated GuEss (EDGE) heuristic. It is claimed that this heuristic, with the
aid of a few algorithms, is capable of solving all the problems unsolved by
the basic program. The heuristic is an extension of the method of integration
by parts. It makes guesses as to the form of the integral, obtains the
integral by differentiating the form, and codes the relations between the
derivation and the intergral. (See MAC-M-310, Appendix A.)

* L. H. Williams, "Algebra of Polynomials in Several Variables for a
Digital Computer", Journal of the Association of Computing Machinery
(January 1962), vol. 9, pp. 29-40

34

ARTIFICIAL INTELLIGENCE

Computer Experiments in Finite Algebra - W. Douglas Maurer

The computer system described in Progress Report II, has been more

than doubled in volume. It was presented at the April 1966 Symposium on

Symbolic and Algebraic Manipulation in Washington, D. C., and will be

documented in the August 1966 issue of the Communications of the ACM.

Among the capabilities which have been added are:

i,

Input and output of single tables to a remote console or to the

memory in S-expression format;

Input and output of table files to the disk memory in S-expression

format;

A routine which determines, for any two semigroups, whether they
are isomorphic, and if so, constructs an isomorphism (revised and

shortened);

Input and output of polynomiais, product and quotient of polynomials,
a divisibility test for polynomials, and an irreducibility test for

polynomials of degree 5 or less;

Input and output of permutations and sets of permutations; generation
of semigroups of permutations from sets of permutations, and of
the Cayley table of a semigroup of permutations; input of a state

graph as a set of permutations of the states;

Adding a zero or unit to a semigroup, or constructing left or right
coset maps of a group, or determining whether a semigroup has a
zero, or how many idempotents it has, or how many elements it has

of a specific order;

Dynamic loading and unloading of routine directories, and automatic

introduction of new entries in a routine directory;

Dynamic loading of routines when and only when requested, and ad-
justment of memory size for data by reassembly of a single 20-

instruction FAP program.

ARTIFICIAL INTELLIGENCE 35

Two major developments are incomplete, although well under way, at
this writing. The first is an inferential compiler, which accepts a source
language of mathematical statements and proceeds to compile code to verify
the statements over a file of special cases. This has been coded, but has
been found impractical within the confines of the April 1966 system (ALGEBRA
II). The second is a complete revision of this system, to be known as
ALGEBRA III. It is being coded in AED, rather than MAD, and features
list processing, the ability to handle rings and fields, dynamic loading and
unloading of routines, the ability to handle several routine directories, and
a greater profusion of data types (each of which has a type number that fnay
be referenced by routines). As this is written, 26 AED routines have been

written to handle 30 separate functions.

PILOT: A Step Toward Man-Computer Symbiosis* - Warren Teitelman 9

PILOT is a programming system constructed in LISP. It is designed to
facilitate the development of programs by easing the familiar sequence:
write some code, run the program, make some changes, write some more
code, run the program again, etc. As a program becomes more complex,
making these changes becomes harder and harder because the implications

of changes are harder to anticipate.

In the PILOT system, the computer plays an active role in this evolution-
ary process by providing the means whereby changes can be effected im-
mediately, and in ways that seem natural to the user. The user of PILOT
feels that he is giving advice, or making suggestions, to the computer about
the operation of his programs, and that the system then performs the work
necessary. The PILOT system is thus an interface between the user and his
program, monitoring both the requests of the user and the operation of his

program.

* This research will soon be a Project MAC Technical Report

36 ARTIFICIAL INTELLIGENCE

The user may easily modify the PILOT system itself by giving it advice
about its own operation. This allows him to develop his own language and
to shift gradually onto PILOT the burden of performing routine but increasingly
complicated tasks. In this way, he can concentrate on the conceptual diffi-
culties in the original problem, rather than on the niggling tasks of editing,
rewriting, or adding to his programs.

PILOT is a first step toward computer systems that will help man to
formulate problems in the same way they now help him to solve them. Ex-
perience with it supports the claim that such "symbiotic systems' allow the
programmer to attack and solve more difficult problems. (See Teitelman,

Appendix B.)

On-Line CTSS Instruction - Oliver G. Selfridge and J. Anthony Gunn

An initial system has been designed and constructed to aid a naive user
in acquiring practice in using CTSS at Project MAC. The user is guided
through a number of primitive CTSS Commands with appropriate responses;
including login, logout, listf. printf, ttpeek, and others. Then he is led into
the first steps of using these commands in the context of running and editing

simple arithmetic programs.

We believe such a system should be used, ideally, in conjunction with a
beginner's manual; that is, one written with the naive user in mind. At
present, there is no specific user's manual for CTSS on Project MAC, though
some sections of the Programmer's Guide are very relevant and useful, such
as Section AA. 2,

We believe that the techniques being explored here are a set of the most
natural ways to use time-sharing for on-line instruction. The chief idea is
to give the user experience in using the system, while protecting him from
his errors and explaining how to correct them, so that he can learn as fast
as possible how to proceed on his own. Figure 5 is a small piece of a

sample session.

ARTIFICIAL INTELLIGENCE

r loglna

W_1739.6
tT%PE YOUR LAST NAME PLEASE
*HIT THE CARRIAGE RETURN AFTERWARDS

gunn
«THANK YOU

LOGIN PLEASE.
READY.

login t666 pupil
«YOU HAVE TYPED YOUR NAME OR PROGRAMHMER NUMBER WRONG.
«THE SYSTEM WOULD TYPE

W 1740.2

Password

«BUT WHATEVER YOU TYFED THEN, |T WOULD SAY
7666 PUPIL NOT FOUNO IN DIRECTORY.
LOGIN COMMANO INCORRECT.

R 1,250+.950

«YOU MUST START LOGGING IN ALL OVER AGAIN.
«TYPE EXACTLY -
login t263 gunn

LOGIN PLEASE.
READY,

login t263 gunn
W 1740.9
Password
T0263 4278 LOGGED IN 09/07/66 1741.0 FROM 20C00E

LAST LOGOUT WAS 08/2?6/66 1712.4
R 3.033+.516

*SUPPOSE YOU HAO TYPEO THE WORO 'LOGIN' WRONG,BY TYPING, SAY,
*THE SYSTEM HOULO HAVE SAID -
LOGIN PLEASE.
READY.
*ANO YOU WOULD HAVE HAD TO LOGIN ALL OVER AGAIN

*SUPPOSING YOU HAD TYPED YOUR PASSWDRD WRONG.
«THE SYSTEM WOULD HAVE REPLIED -
PASSWORD NOT FOUNO IN DIRECTORY.
LOGIN COMMAND INCORRECT.
R 1.383+.716
«ANO YOU WNULO HAVE HAD TD LOGIN ALL OVER AGAIN

«NOW LOGIN AGAIN AS YOU 01D BEFORE

Figure 5. Simplified On-Line CTSS Instruction

'LGIN'

-

317

S

40 BIOLOG

Academic Staff

r——

C. Levinthal

Non-Academic Research Staff

H. G. Murray, Jr. S. A, Ward

Research Assistants and Gther Students

W. Brody A. Pawlikowski M. Zwick

J. L. Sussman

Guests

Robert Langridge - Harvard University
Andrew W. MacEwan - Children's Hospital Medical Center

BIOLOGY 41

Molecular Model Building - Cyrus Levinthal

During the past year, our work on molecular model building had two
objectives. First, we have been developing the programs to make them
more affective and more convenient. And second, we have been using the
programs in their present state in attempts to predict the three-dimensional
arrangement of the atoms in a protein from the known chemical composition
of the molecules. We are using known molecular structures, such as
myoglobin and lysozyme, as the basis for a set of construction rules.
Though the system is programmed to keep track of known forces between the
atoms within a single molecule, the interaction between various parts of the
structure and the surrounding water are put in among this set of rules which
the investigator should follow as he manipulates the structure. However,
the program is designed in such a way that a user sees his error on the
oscilloscope display whenever he violates one of the established rules. The
investigator can use the information he obtains from the oscilloscope screen
to decide how the structure should be changed, and by means of simple tele-

typewriter commands he can produce changes in the computer program.

In general, we have used our ability to interact with the computer program
to simulate the process of building molecule models by hand. However, the
computer-aided system has many advantages over any system of mechanical
model building. We can combine the advantages of each of the various types
of mechanical models, as well as the ability to visualize any internal part of
the structure and its relationship to the whole molecule. For example,
Figure 6 shows a sequence of myoglobin displays; each more detailed than
the last. The (a) frame show the central heme group, and the backbone
structure with every ninth atom connected. The (b) frame shows the same
structure, this time connecting every third atom in the backbone. The star-
shaped cluster at the left of the frame is an end view of the backbone
following an a-helix, And the (c) frame shows approximately one-fifth of
the myoglobin molecule, as a (5A°) cube around the heme group. This last
frame is obtained by pointing the light pen of the ESL Display Console at the

heme structure and requesting the computer to display this region in detail.

42

(c) 5 A’ volume around heme group

Figure 6. Displays of a Myoglobin Molecule Structure

BIOLOGY

BIOLOGY 43

One histidine side chain (a pentagonal shape and its connectors to the
backbone) is shown binding the heme group on the left, while the other histi-
dine (right side of the picture) is available for binding. The central region
is shown in full detail, while the periphery of the display contains less detail.
[We are indebted to J. C. Kendrew and H. Watson for the coordinate data
from which this structure is displayed.] Figure 7 isa simplified lysozyme
melecule display, showing a cleft (bottom of the picture) where ar enzyme
which acts on a substrate molecule would fit. The stor-like configuration at
the top of the figure is an axial view of an a-helical portion of the lysozyme
backbone. [We are indebted to Prof. D. C. Phillips of Oxford University,
England, for the coordinate data from which this structure is displayed.]

Whenever any procedure for altering the structure has been tested by
means of manually introduced changes, it is then possible to alter the
program so that the computer can carry out the sequence of changes auto-
matically. The basic program guarantees that we satisfy all of the chemical
constraints, as well as any rules which have been obtained from chemical or
structural studies with other molecules. The system for model building is
being extended so that we can also study the interactions between molecules

of a crystal, and between an enzyme molecule and its substrate.

In addition to the alterations and expansions of the system, we are using
the present version as an aid in attempts to predict a three-dimensional
structure of a protein from its known chemical composition. This work is

being done with the protein cytochrome C, a relatively small protein for

which there is a vast amount of chemical data available from many laboratories.

We have tried to make use of the differences and the similarities which have
been observed when this molecule is extracted from different animals. The
sum total of all of this information, as well as the information which results
from chemical alterations of the structure, allows the formulation of a large
number of rules which any three-dimensional model of this structure niust
satisfy. Using these rules we have obtained a tentative prediction for the

structure of the molecule, but we do not as yet know whether the set of rules

s

44

BIOLOGY

Figure 7. Display of a Lyzozyme Molecule Structure

Figure 8. Display of a Cytochrome C Molecule Structure

BIOLOGY 45

used is sufficient to make our model unique. Figure 8 is a guess at the
possible structure of cytochrome C, showing a different display method. The
myoglobin was shown as an entire molecule and as a detailed axea around a
particular atom: the cytochrome C is shown in a linear display, from amino
acid 3 through 33, with special-interest hydrophobic aminc acids numbered
and labeled. This display shows approximately one-third of the molecule,
with the backbone wrapped around the heme group. The backbone is in an

a -helix configuration, except in the vicinity of the heme group, and no side
chains are displayed. The final test of our predictions must rely on the
X-ray crystallographic work which is currently being done or. this molecule
by Dr. Richard Dickerson and his collaborators at the California Institute of
Technology.

We are also trying to utilize "incomplete' crystallographic information
(intensities without phases) advantageously. Standard X-ray methods make
no assumptions about protein stereochemistry until the final stages of
structure sclution; we do, 1owever, know a great deal zbout the configurations
of groups of atoms in proteins, particularly when they occur in large sub-
structures (such as alpha helices) in advance of any such solution. It may be
possible to solve for the positions of these large groups in the unit cell
without phase information. This would provide further limiting constraints
on our model-building efforts and may be a useful supplement to standard

crystallographic techniques.

Since our procedure still involves a large amount of manual manipulation
Ly the operator, we cannot use the structures of the few known proteins as
tests for our procedures of predicting an unknown structure. All of the
rules we impose must, of course, be consistent with the known structures,
but the only way of establishing the validity of these rules for predictive
purposes is to make the prediction and then see if it is verified by further

experimental work.

e e e e e o aE

' BLANK PAGE

CIVIL ENGINEERING DEPARTMENT

Structural Design Language
Construction Cost Estimating and Accounting
Critical Path Scheduling
Stability Analysis by Limiting Equilibrium
Automatic Flow-net Design

Settlement Problem-Oriented Language

47

D. Beltran-Maldonado

J. M. Biggs

F. F. Brotchie

A. G. H. Dietz

A. M. Hershdorfer

K. Hoeg

Non-Academic Research Staff

Academic Staff

]
w
R.
w
F
K

J.

W. Lambe
. H. Linder
D. Logcher
. M. Pecknold, III

. E. Perkins
. F. Reinschmidt

M. Roesset

R. V. Goodman

Research Assistants and other Students

. Asselin

. Bailey

. Beckreck
. Bodhe

. Brach

. Daniels

™ E
QO & <« 2 5 om

. Feldman

@ E®LSEE >

J. i'errante
Fidler

J. Hall

C. Jordan
Lipner
. K. MacLean

. J. McKenna

RN N

Roos
. Schiffman

. Sturman

. Walter
Walton

L
M
M. Sussman
A
R.
V. Whitman

. M. Hodnick

McPhail

A. Rionda, Jr.
. A. Schlumff

. Schumacker
G. Schwartz

W. Weber

. C. Teague, Jr.

7

—a 1T T il

CIVIL ENGINEERING DEPARTMENT 49

Structural Design Language - J. Melvin Biggs, Robert D. Logcher,
Richard V. Goodman, Gerald M, Sturman, Edward J. Hall, Ankoor J. Bodhe,
Shing C. Chan, Augustin J. Ferrante

The initial development of the STRUctural Design Language (STRUDL)
was accomplished during fiscal year 1964-65 and was covered in Progress
Report II. This development is also being sponsored by the M. L T. Inter-

American Program in Civil Engineering.

STRUDL is a large-scale computer system designed to aid a structural
engineer throughout the design process. Its most important characteristic
is a high degree of man-machine interaction, and complete flexibility of use,
which is accomplished by a modular structure. This structure consists of a
large number of subroutines, each representing an operation within the
engineering design process, which may be called by the user in any order

and executed within any constraints that have been momentarily imposed.

During the past year, the initial version of STRUDL has been extended
and improved. Of primary importance is an extension of the dynamic
memory allocator, to permit reorganization using secondary storage as a
logical extension of core. This permits the solution of much larger prob-
lems than was previously possible. Data retrieval capabilities have also
been expanded: a single function has been developed to process data by
reading a disc file, which contains information concerning the location of

the data requested.

The PRELIMINARY ANALYSIS command has been fully implemented,
and enables an engineer to make an approximate analysis of a structure,
based on behavioral assumptions which are input at the console. The sub-
command PORTAL has also been designed and fully implemented, and con-
tains a standard set of assumptions commonly used for the approximate

analysis of building frames subjected to horizontal loads.

50 CIVIL ENGINEERING DEPARTMENT

Of considerable significance is the past year's experience gained in the
practical use of a computer-aided design system. During this time, STRUDL
has been used by students and staff for practical engineering purposes, and
has also been used for classroom demonstrations of engineering design
procedures. In addition, demonstrations have been given to practicing engi-
neers and their reactions have been recorded. All of this experience has
reinforced the previously held opinion that flexible, comprehensive design
systems, operating in the time-sharing mode, produce a decided increase
in the design capability of an individual engineer. It appears certain that

this concept will have a profound influence on the practice of engineering.

Construction Cost Estimating and Accounting - Robert L. Daniels

I have been attempting to consolidate many of the routine activities per-
formed by the office staff of a construction company into an integrated time-
shared computer system. The main effort was expended on construction
estimating and accounting. The system uses, as its building blocks, a set
of accounts that are normally encountered in building construction. With the
use of speciaily designed "time and materials-instalied" reports, the system
creates and maintains a basic set of cost and time information which is used
in pricing and scheduling future work. An important influence in the design
of the cost library, where the set cost and time information is stored, has
been the storage of data useful in the Critical Path Method (CPM) of sched-
uling. As a useful by-product of the accumulation of information necessary
for estimating and scheduling, daily and weekly payroll calculations are
issued. Also, the accounting of moneys spent is kept and output at the user's

request.

The system is immune to changes in labor rates, as it only maintains
crew composition and production rates in some relevant quantity for each of
the construction accounts. No attempt was made to include pricing of ma-

terials and equipment on the initial system. Estimating is done through input

CIVIL ENGINEERING DEPARTMENT 51

of dimensions of the various components of the building. Quantities are

computed and stored in the accounts for summation at a later time.

As an estimating tool, the system is an interacting "'partner' of the
estimator, performing his computations and bookkeeping and keeping him
informed of all relevant information developed since the start of the job at
hand. The capability for estimating of alternatives has been included. Much
work will have to be done before the system becomes operational.

(See Daniels, Appendix B.)

Critical Path Method Scheduling - Thomas H. Asselin and Robert C. Feldman

An extension to the Critical Path Method (CPM) system, the "CPM Bar
Chart", was developed during the reporting period. This graphic CPM
schedule combines advantages of two project-scheduling techniques, the bar

chart and CPM.

A CPM Bar Ch' rt can be generated in either of two modes. In the time-
sharing mode, the Civil Engineering Systems Laboratory IBM 1620 computer
is used as a remote terminal to the Project MAC IBM 7094 computer. After
the early start, early finish, and late finish of each project activity have
been calculated by the IBM 7094, the user can request the plotting of a
CPM Bar Chart on either the Calcomp Plotter Model 565 or the Gerber
Verifier Plotter, both of which can be operated on-line with the IBM 1620
computer. The batch-processing mode allows independent calculation of the
scheduling times, which are then input on cards to the IBM 1620. The CPM
Bar Chart is then generated in the same manner as in the time-sharing mode.

(See Asselin, Appendix C.)

Research during the past year has resulted in the development of a
heuristic technique which allows the use of linear convex and non-convex

activity time-cost curves in dynamic network scheduling. The technique is

52 CIVIL ENGINEERING DEPARTMENT

designed as a substitute for the present dynamic network-analysis capabil-
ities of the Critial Path Method, which are not directly applicable to this

more general problem.

A number of computer programs have been developed to implement
this approach. They provide the capability to perform dynamic network
analysis, plot project time-cost curves on the 1050 console, and present
scheduling information as desired by the user. Advantage has been taken
of the man-machine interaction made possible by a time-shared computer.
Thus the user can exercise his judgement at each stage of the solution

process. (See Feldman, Appendix C.)

Stability Analysis by Limiting Equilibrium - William A. Bailey

STABLE (§_tability Analysis By Limiting Equilibrium) is a system
designed to perform stability analyses of natural or man-made earth slopes.
The user is essentially unrestricted in describing the slope geometry,

ground water pressures, and properties of soil comprising the slope.

In limiting-equilibrium analysis, a failure mechanism is assumed and
a set of forces computed that will satisfy the equations of static equilibrium.
In general, the number of unknowns exceeds the number of available
equations and additional assumptions have to be made to proceed with the
stability analysis. A simplified method, which gives good results for cir-
cular slip lines, has been suggested by Dr. A. W. Bishop of the University
of London and is included in STABLE. Since the set of assumptions used
is built into the method, this part of the system is suited for batch process-
ing.

More sophisticated procedures of analysis allow a more general failure
mechanism to be investigated and provide both control of and a means of
ascertaining the influence of the various assumptions made in the analysis.
Dr. N. R. Morgenstern of the University of London has recently developed
a method to make the slope stability analysis more general, and these

CIVIL ENGINEERING DEPARTMENT 53

considerations are incorporated in STABLE. Since this part of the system
is designed to allow the user to modify the analysis as a consequence of
information gleaned from preliminary computations, this part of STABLE is

ideally suited for time-sharing.

STABLE has been used extensively as a teaching aid in soil engineering.

Automatic Flow-net Design - Robert McPhail

In the design and analysis of any earth slope, it is essential that the soil
engineer be in a position to predict the ground water seepage pattern and the
resulting pore water pressures. The time-sharing system under Project
MAC has been used to supplement the classroom discussion of these topics

in a course in soil engineering.

Settlement Problem-Oriented Language - Robert L. Schiffman, Jane C. Jordan,
and Richard A. Schlumf{f

The Settlement Problem-Oriented Language (SEPOL) is a system designed
to calculate, via time sharing, the magnitude and progress of settlement of
an earth mass when the soil surface is subjected to a specified loading.
During this reporting period several new capabilities have been added to the
previous system, SEPOL I (§oil Engineering Eroblem-g_riented _I:anguage).
The present system allows a wider choice of loading types and load configu-
rations, a detailed analysis of the resulting subsoil stresses, and calculations

for progress of settlement for a multilayered soil profile.

COMPUTATION STRUCTURES

A General Purpose Macrogenerator
Research in the Theory of Automata
Repeatable Multiprocess Computation
Memory Allocation in Multiprogrammed Computers
Digital Logic Simulation
Development of the PDP-1-X Multiuser System
Waveform Processing
A Table-Driven Compiler Generator
A Table-Driven Syntactic Analyzer
Scheduling and Resource Allocation
Fact Retrieval by Finite-Set Theoretic Models
Automatic Flowcharting
Implementation of a Flowchart Compiler
FLOW-DEBUG: An On-Line Graphical Debugging Aid
Manipulation of Approximating Functions on a Graphical Display
Braille Translation and Interactive Information Retrieval
A Teaching-Machine Simulator

55

T

56

J. B. Dennis
J. J. Donovan

D.
E.
R.

W. Fife
L. Glaser
M. Gray

Research Assistants and other Students

COMPUTATION STRUCTURES

Academic Staff

Hennie, III
Huff man
Kain

Lee, Jr.
Liu

Qo™
R >0

W. T. Beyer

NE 0@

Buckles

J. Burnett
A. Bushkin
H. Campbell
D. Y. Chang
E. Davidow
J. Denning

. D. Falconer
. C. Gammill
Hellman

A. Lasher
F. Ledgard
L. Luconi
S. Magnuski
E.

mE s m U E® D

Marks

E. G. Manning
D. Martin

R. McNaughton
(Visiting)

T. G. Stockham, Jr.
J. M. Wozencraft

L. J. Rotenberg

H. S. Schwenk, Jr,
T. P. Skinner

A. A, Smith

E. C. Van Horn, Jr.
E. Westerfield

D. U. Wilde

S. Zucker

e g

COMPUTATION STRUCTURES 57

A General Purpose Macrogenerator - Christopher Strachey

A macrogenerator, developed in England, has been implemented on CTSS
and is available as the public file command GPM. This command is described
in Section AJ. 2.02 of the CTSS Programmer's Guide. The program is de-
scribed in detail in '"The General Purpose Macrogenerator', The Computer
Journal, October 1965, Vol. 8, No. 3, pp. 225-241; the abstract of which is
reproduced below.

"The macrogenerator described in this paper is a symboi string proc-
essor, both its input and its output being strings of symbols. It operates by
a form of substitution which is completely general in its application in that
it is allowed anywhere. The result is a powerful system including such
features as recursive functions and conditional expressions which can be
implemented with very few instructions.

"Part 1 describes the operation of the macrogenerator and gives some
indication of how it has been used at Cambridge. Part 2 contains a suffi-
ciently detailed account of its implementation to make it a relatively simple
task to transfer it to any suitable computer.

"Part 2 describes in some detail an implementation of the gereral pur-
pose macrogenerator described in Part 1. The implementation js based on
the use of a single stack and is described both as a series of transformations
on the state of the stack, and by a CPL program. Various error checking
features are described which greatly simplify the discovery of errors in
macro programs. ‘'

58 COMPUTATION STRUCTURES

Research in the Theory of Automata - Rohert McNaughton

During the last year, research in this area has resulted in several
informal memoranda and drafts. The following is a summary of this written
material. Research in this field is not planned for 1966-1967 at Project MAC.

A. TESTING AND GENERATING INFINITE SEQUENCES BY A FINITE
AUTOMATON

This paper, originally an informal memorandum, has been published in
Information and Control (vol. 9, no. 5, Oct. 1966, pp. 521-530). Given that an
w-event is a set of infinite sequences, the paper defines "regular w-event" in

terms of state graphs. It then proves an analogue to the so-called Kleene-

Myhill theorem, to the effect that an w-event is finite-state if and only if it

is regular.
B. FINITE-STATE INFINITE GAMES

This writing was distributed as Computation Structures Memo No. 14 in
September, 1965. An infinite game consists of two players playing to infinity,
while a finite-state game is one where there are only a finite number of
states or configurations possible. A deterministic game is one in which the
two contestants play in turn, each with full knowledge of the past history of
the game. The winning and losing conditions of a finite-state infinite game
are defined in terms of states occurring infinitely often as a resuit of the
play. The paper sets out to prove that, in any deterministic finite-state
infinite game, one of the players has a winning strategy, and such a strategy
is a finite-state strategy. Thus, if what the paper claims to prove is true,
it will follow that for any such game there is a finite automaton (having, in
general, more states than the number of states of the game itself) that plays
one of the two sides and always wins. Recently, a fallacy in my proof was
discovered by Mr. Lawrence Landweber, a student of Professor J. R. Buchi
of Purdue University. The error is deep, and I have not yet been able to

patch it up. The concepts of this paper are intimately relaied to those of A.

COMPUTATION STRUCTURES 59

C. TECHNIQUES FOR MANIPULATING REGULAR EXPRESSIONS

This paper was issued as Computation Structures Memo No. 10, November,

1965, and will also appear in the Proceedings of the Conference on Systems

and Computer Science at the University of Western Ontario, London, Canada,

September 1966. Various ways of proving equality of regular expressions

are described in detail: proof of conversion to state graphs, proof by reparsing,
proof by axiomatic method, and proof by manipulating transition graphs. The
transition-graph method is most fruitful in situations where one does know
exactly which two regular expressions are to be proved equal; such as, when
one is given a regular expression and told to find a certain property equal to

it. Several difficult examples of proof by transition graphs are given.

D. THE LOOP COMPLEXITY OF REGULAR EVENTS

Released as Computation Structures Memo No. 18, January 1966, this
paper will also appear in the Proceedings of the 1966 Symposium on Logic,
Computability and Automata, Rome, New York. The loop complexity of a
regular event is defined as the smallest star height of all restricted regular

expressions representing the event. ('Restricted' mecans that operator signs
for intersection, complementation, and set difference may not occur.) This
paper contains results that make it possible to ascertain the loop complexity
of certain events. The general problem of finding an algorithm to ascertain
the loop complexity of an event remains open. The main technique involves

the use of transition graphs.

E. PARENTHESIS GRAMMERS

Written as Computation Structures Memo No. 23, March, 1966, this paper
has been submitted for publication in the Journal of the A.C.M. A parenthesis

grammar is context-free, and every rule is of the form A —(Q), where

is a non-empty string and contains no parentheses. The language of a paren-
thesis grammar turns out to be very visibly structured and unambiguous. The
main result of this paper is showing that the equivalence problem for such
grammars is soluable: there is an algorithm for determining whether two

60 COMPUTATION STRUCTURES

given grammars generate the same language. The algorithm and the proof
are quite non-trivial. As such, it is the only example of an equivalence
problem having a non-trivial affirmative solution, and hence it is an interest-
ing case history for those interested in equivalence problems in general. The
paper leaves several interesting problems still open: e.g., the equivalence
problems for certain classes of grammars only slightly more general than

parenthesis grammars.

F. ON NON-COUNTING REGULAR EVENTS

Written in collaboration with S. A, Papert, draft material for several
sections of this paper have been completed. A table of contents for the en-

visioned paper is as follows:

Introduction

Characterization in Extended Regular-expression Language
Fundan:entals of Algebraic Theory of Machines

Monoid Characterization of Non-counting Events

Symbolic Logic Characterization

Nerve Net Characterization

Decomposition Theory for Group-free Events

.G)QOU'I&WNH
e e e e e e e

L, L, andL

©
.

Possible Directions for Future Research

The paper concerns itself with a certain subclass of the class of regular
events: the paper as a whole will show that there are several characteriza-
tions (2, 4, 5, and 6, above) by proving that these are equivalent. We have
decided the term 'non-counting" is preferable (for this subclass) to the
term "topological', which we had previously used. Briefly, a non-counting
regular event is one whose reduced state graph contains no loop that counts
any word modulo m, for m = 2. (Two helpful alternative definitions: an
event expressible as a regular expression containing free use of all the
Boolean operators, but with star [denoting closure, or iteration] ; an event

whose semigroup has no non-trivial subgroups.)

COMPUTATION STRUCTURES 61

At present we have draft material for the first six sections of the paper.
The first two sections were written during the previous year and must be
extensively revised: sections 3-6 have been written quitc recently. Towards
the end of the contract year, we discovered a flaw in our proof of Section 7,

which we intend to work on during the months ahead.

Repeatable Multiprocess Computation* - Earl C. Van Horn

When a multiple-access computing system executes a program for an
individual user, the system appears to the user to have certain characteris-
tics; these characteristics are conveniently discussed as the properties of a
virtual, or apparent computer. The present research seeks to help system
designers answer the question, '"What kind of virtual computer should be
provided to a user ?'" In particular, I have assumed that certain character-
istics are desirable in a virtual computer, and I have attempted to show that
it is both possible and feasible for a system to provide a virtual computer

having these characteristics.

It is assumed that a virtual computer should be able to execute a multi-
process program. A typical multiprocess program directs virtual arithmetic
units and virtual data channels to cooperate; i. e., to communicate by both

writing into and reading from shared data quantities.

It is also assumed that a virtual computer should maintain a certain
relationship between the initial computation state a user specifies and the
output symbols produced during a computation begun from this initial state.
When a user specifies an initial computation state, he specifies three kinds
of information: 1) a multiprocess program, 2) an initial state word for each
virtual processing unit whose activity the program directs, and 3) input data

to be read during the program's execution.

*This Ph. D. research will soon be available as a Project MAC Technical Report.

62 COMPUTATION STRUCTURES

The relationship desired between initial computation state and output
symbols is expressed in the form of two virtual computer characteristics.
The first characteristic is output-functionality, which means that each out-
put symbol produced by the virtual computer during a computation should be
a function only of the virtual computer's initial computation state, and not
of events that occur because the host computing system is simultaneously
providing virtual computers to other users. The second desirable virtual
computer characteristic is limit definiteness, which means that the number
of output symbols produced by each output device of the virtual computer
should similarly be a function only of the virtual computer’'s initial computa-
tion state, provided the user does not prematurely terminate the virtual

computer's activity.

In contemporary virtual computers that execute multiprocess programs,
skillful programming is usually required to obtain output functionality and
limit definiteness, because the reiative sequencing of the executions of
several virtual processing units is usually affected by the scheduling
strategy of tl.e host computing system, and so is usually a function of other
factors in addition to the virtual computer's initial computation state. The
present research seeks a way of designing a virtual computer so that output
functionality and limit definiteness are properties, not of a program, but of
the virtual computer itself; i. e., so that these two characteristics prevail for
every initial computation state, and hence regardless of programming mis-

takes or improper input data.

A method has been discovered for achieving output functionality and
limit definiteness in a virtual computer, and a proof has been constructed
showing that this method does, in fact, achieve these two characteristics.
It appears that a virtual computer whose design is based on this methliod can

be both implemented and programmed at reasonable cost.

The nature of the method can be understood using the following analogy.
Suppose a particular shared data quantity, (which might be a segment of

data) has associated with it a "rubber band". Whenever a processing unit

COMPUTATION STRUCTURES 63

holds the rubber band, the unit may read the quantity. If a processing unit
does not "hold'" the band, and attempts to read the quantity, the unit ceases
operation until it does hold the band. In order to write into the quantity, a
processing unit must be the only unit holding the rubbci band. A processing
unit holding the band, may not only read, and perhaps write, the quantity,
but in addition it may execute an instruction that causes some other process-
ing unit to hold the rubber band; and the first unit may also execute an

instruction that causes itself to let go of the rubber band.

The above rules are valid for each shared data quantity, separately.
The actual method that has been studied is somewhat more general, in that
it allows processing units to have several ""holds" on any rubber band, or
several ''negative holds'". By considering every data quantity, and each
processing unit state word, to be a shared quantity, rules have also been
formulated to govern the execution of forks, quits, creation and deletion of

segments, and changes in segment length.

Memory Allocation In Muitiprogrammed Computers - Peter J. Denning

Preliminary investigations into the problem of dynamic allocation of
core storage have been conducted. The problem is: what policy should be
used to decide which information is to occupy core memory at any given
time, especially when the demand for memory exceeds the supply? Before
outlining the proposed policy, we must state briefly the context in which our

ideas have evolved.

We suppose that the computing system under consideration is multi-
programmed. The data pertinent to each computation is divided into
"segments'’, each segment into ""pages'. A segment is defined by the pro-
grammer in some manner which appears logicai to him. A pageisa
constant-length set of memory words; it is used as the unit of allocation,
storage, and transmission of information by the system; it is invisible to
the programmer. It is apparent that memory allocation policies should be

concerned with pages rather than segments, since the page is a unit natural

64 COMPUTATION STRUCTURES

to the system hardware. Consequently, the policies we consider fall under
the heading of '"page-turning'. One danger in page-turning is that, if im-
properly done, it could result in such heavy traffic of pages in and out of
memory that the system would become congested. On the other hand, if
properly done, page-turning can assure: more efficient operation by per-
mitting only pages in current use to occuny memory. The current trend of
multiprogrammed systems toward a "Computer Utility" is resulting in com-
putations about which no prior information regarding dynamic memory
requirements is available. This means that the system is forced to base

allocation decisions only on the behavior of a computation.

One important behavioral aspect of a computation at any given time is

its "Working Set of Information'. Roughly speaking, this is the minimum

amount of data that must be present in main memory to permit efficient
operation of a process. It is the set of pages that a process is currently
referencing. If the system knew at every time what the working set of each
process was, it could insuvre that the working set was loaded pnefore any
processor was assigned to that process. The problem, then, is to measure
dynamically the pages belonging to a process working set. A simple method
for doing this is to use a sampling interval, T, equal to the swap-in time of
a page. All pages referenced by a process during T are assumed to be in
the working set and must be loaded before a processor is assigned to that
process. Any pages belonging to a process, but not referenced during the
most recent sampling interval, are assumed to have fallen out of the working
set for that process, and inay be moved from main memory. T is measurcd
in process time (for example, memory cycles used by the given process) so
that process suspensions for page faults (I/O waits) or other system inter-
rupts do not result in erroneously small measurements of the working set.
Information regarding page use can be kept in the descriptors for each
segment, so working set measurements do not require excessive house-

keeping.

i T

COMPUTATION STRUCTURES 65

In order to minimize page traffic two tliings are necessary:

1. Keeping the total system working set (the union of the individual
working sets) within specified bounds, so that the total demand

for core will not be excessive;

2. Choose for removal from core those pages least likely to be used
in the near future. (Such pages belong to processes low in the
Ready List.)

It should be clear that whenever a page is referenced, a corresponding
nuse bit'" can be set. These bits are reset by the system every T seconds,
as described. Whenever pages must be removed from core, only the
descriptors of processes low on the Ready List must be consulted. When-
ever a process is about to be run, the "working-set' pages are compared
with "in-core" pages; the process is not allowed to run until any discrepan-

cies are resolved.

As a basis for comparison a probabilistic model was constructed, and
was used to predict the page traffic into core for each of the following

policies:
1. Delete at random;

9. Delete the oldest unused page, that js, the one which has been

unreferenced for the longest time;

3. Use the Ferranti ATLAS scheme to detect and predict page-use

cycles;

4. Detect Working Sets.

Schemes (1), (2), and (4) require comparable bookkeeping, while (3) uses
considerably more. (In the ATLAS computer the computation involved in the
allocation decision required almost a full swap time. } For typical para-
meters, scheme (2) was about twice as efficient as (1); (3) and (4) were an
order of magnitude better. Scheme (3) has an additional defect: it will nct

66 COMPUTATION STRUCTURES

work, for example, on list-structure programs which do not display any
particular page-use patterns. Detection of Working Sets will work for any
process which does not change working-set size too rapidly with respect to

the sampling interval. Inasmuch as the optimum page-removal decision

used information regarding processes in the Ready List, an intimate
relationship between Scheduling and Allocation has been uncovered. (See
Denning, Appendix B; MAC-TR-21, Appendix D; and Project MAC Computation
Structures Group Memo No. 24, March 1966.)

Digital Logic Simulation* - Donald L. Smith

A data structure has been developed for describing complex digital
systems for purposes of simulation, design evolution, and logic verification.
The principle criteria used in formulating the data structure were: 1) speed
of simulation for large systems having asynchronous timing, 2) provision for
incremental design changes without regeneration of the entire data structure,
3) ability to fully detect timing hazards if this is desired by the designer.

The basic elements of the data structure represent flip-flops, combina-
tional logic blocks, delays, and events. These elements are tied together in
a list structure that facilitates alterations and makes efficient simulation
possible. The simulation algorithm queues future events according to their
time of occurrence, and evaluates a combinational level only when its value

is needed and may have changed since last evaluated.

The proposed data structure is viewed as the basis for a digital logic
design system that would be implemented on a time-shared computer, and
would include a conversational design translator as well as the simulator

and logic checking aids.

* See Smith, Donald L., Models and Data Structures for Digital Logic
Simnulation, M. I. T, Department of Electrical Engineering, M.S. Thesis,
June 1966 (soon to be a Project MAC Technical Report).

COMPUTATION STRUCTURES 67

Development of the PDP-1-X Multiuser System - Jack B. Dennis and
Leo J. Rotenberg

Expericiice obtained operating the PDP-1 time-sharing system, at the
M. I. T. Research Laboratory of Electronics, together with experience at
Project MAC, has taught us much about desirable properties of time-shared
computer systems, or, in general terms, multiprogrammed computer
systems. Features of a Multiprogrammed Computer System, (MCS) are
generally evident in the services that an object program may obtain from

the system by giving commands that we call meta-instructions. From work

done at Project MAC, Dennis and Van Horn have published a set of meta-
instructions and defined their meaning in terms of a program structure felt
to be particularly suitable for an MCS. Their principal ideas concern
parallel processing, relations among computations, and the organization
and manipulation of directories of files, etc., retained by the system on
behalf of its users. (See MAC-TR-23, Appendix D.)

With the purpose of providing a realization of many of these ideas, a
new multiprogramming executive system has been designed around the
Digital Equipment Corporation PDP-1 computer, donated to the Department
of Electrical Engineering in 1961. The new system involves hardware
additions and modifications, as well as preparation of a new executive pro-
gram. The modified machine will be called the PDP-1-X. The more

important services provided by this system are:

1. File Memory

The PDP-1-X will include a file memory system capable of
storing information on miniature tape units (DECtape), so that a
user may retrieve programs and data by command from his con-
sole. Consistent with the informal way in which this system is
operated, a user will ordinarily bring a tape containing his pro-
grams with him and mount it on a free unit at the beginning of a

session of use, and take an updated tape with him when he leaves.

68

COMPUTATION STRUCTURES

Parallel programming

We have found the notion of process to be more fundamental to
the design of an MCS than the concept of program. A process is
the sequential execution of the steps of a procedure. One process
may, by means of a fork meta-instruction create a second process,
which is thought of as running concurrently with the first. The use
of a join meta-instruction allows a process to test whether two or
more asynchronous activities have been completed. Execution of a
quit meta-instruction terminates a process. The fork, join, and
quit meta-instructions form one set of primitive operations for
parallel programming. In the PDP-1-X, use of these primitives to
control concurrent input/output activity replaces the interrupt

feature that serves this function on most present machines.

Computations

We use the term computation to mean a group of processes
that collectively accomplish a computing task. Each computaticn
runs on behalf of a user of the system and has an associated sphere
of protection that determines what files, services, or directories
the processes of the computation are allowed to access or use. In
our revised system, the sphere of protection is established by a

64-entry program reference list through which the processes of the

computation execute input/output operations, gain access to direct-
ories and files, and obtain other services provided by the executive
system. A primary computation will be able to run a second
computation under its surveillance. This is a valuable asset in
program debugging; it allows a programraing system running as an
object computation to monitor a second object computation under
test, without the danger of being disabled if the test process should

run wild or address incorrectlv.

COMPUTATION STRUCTURES 69

4. Directory Structure

The system design includes a hierarchical directory structure.
Each item in a directory associates an alphanumeric name with a

pointer to a file, an input/output function, an entry point giving

access to some system service, or a directory giving further
associations of names with pointers. Processes may reference
items in a subtree of the directory lattice by specifying a downward
path from a directory that is accessible through the capability list

of the computation. A system user's root directory is always

accessible through the capability list of a computation operating on
his behalf. By means of meta-instructions (similar to those defined
in MAC-TR-23), processes will be able to share files in a rather

flexible way.

The most important innovation of this system is the provision of environ-
ment in which parallel programming may be used and developed. Most
functions of the executive program are performed by executive processes,
scheduled without preferential treatment, that run concurrently with user
processes and use the parallel programming facilities for control of input/

output functions.

Because of our emphasis and reliance on parallel programming, it is
essential that the use of these features involve minimal cost in processing
time. For this reason, specially designed process-scheduling hardware is
being built into the PDP-1-X, so that a particularly fast implementation of
the fork and quit primitives is obtained. There is little bookkeeping to be
done by the executive when switching control between processes, and we
anticipate switching times in the range of 200 to 300 microseconds. (See

also, L. J. Rotenberg, Proposal: An implementation of an Almosi-Segmented

Multiprogrammed Computer System for the PDP-1, Project MAC Computa-

tion Structures Group Memo No. 19.)

70 COMPUTATION STRUCTURES

Waveform Processing - Thomas G. Stockham, Jr.

A study of fast-Fourier-transform techniques has resulted in an
algorithm for effecting fast convolution and correlation. This work con-
stitutes a major breakthrough in the computation of lagged-products and
has had a profound effect upon the cost and character of computations re-

quiring such calculation.

Signal filtering and spectral analysis are processes which play central
roles in waveform processing; but they use computer time extravagantly,
since they involve the summation of lagged products. The recently dis-
closed Cooley-Tukey method for evaluating Fourier series has been applied
to relieve this drawback. If N is the number of lagged products to be summed
and M is the number of lags to be considered, computation is effected in time

T
fas
factor that depends on the nature of the basic interactive step, the efficiency

¢ 5 K1 M(log2 N + C), provided M2N. The term K1 is a proportionality

of the programming language, and the speed of the computing maching. C is
a small overhead factor which accounts for data movement and indexing.

Normally, the time required is T K, (M x N). In one realization,

standard -

K1 has been measured to be 2. 6 KZ' Computation times for various N, and
quantitative measures of the relative accuracy of the method, are presented

in a recently published paper. (See Stockham, Appendix C.)

A program has been completed by H. Ledgard to allow 2 user of the ESL
display console to sketch functions having a prescribed analytic form. This
algorithm allows the user to approximate an arbitrary numeric series with
segments of smooth curves that can be selected from a broad class. (See

Ledgard, this section, and also Appendix B.)

COMPUTATION STRUCTURES 71

A Table-Driven Compiler Generator - Chung L. Liu and Gabriel D. Y. Chang

Generality has been our primary design criterion, since we do not
intend to provide users with a generalized compiler-generator system, but
rather to provide an environment within which users can freely design and
produce their own compilers. We, therefore, do not limit the users to
specific ways of doing syntax analysis, or doing storage allocation, or pro-
ducing binary programs in our system. What we do provide are mechanisms
which we believe are general enough for users to build compilers in their

own ways.

The system is divided into three parts; a syntax analyzer, a table-
processing package, and an assembler. The syntax analyzer accepts input
strings of a source program, recognizes various syntactic types, transmits
information to tables in the table-manipulation package (which will be used
for storage-allocation purposes), and emits macros that can be interpreted
by the assembler. The table-processing package accepts information from
the syntax analyzer and puts it into tables. These tables are processed
(sorted, merged, and so on) and used for allocating storage space. Utilizing
information from the table-processing package, the assembler accepts informa-
tion from the syntax analyzer and puts it into tables. These tables are
processed (sorted, merged, and so on) and used for allocating storage space.
Utilizing information from the table-processing package of the object machines,
the assembler interprets the macros generated by the syntax analyzer and

translates them into machine codes.

So that 2 minimum amount of reprogramming will be necessary when we
move the system to another computer, most of the compiler system is

written in the MAD language.

The table-processing package and the assembler of the table-driven
compiler system have been designed and implemented, and two input
languages were designed. The Table Declaration and Manipulation Language
is used to declare both the number of tables and the formats of the tables

72 COMPUTATION STRUCTURES

which will be used by the compiler. The language is also used to declare
how these tables should be manipulated (sorted, merged and so on) after
they are set up. The Macro Interpretation Language is used to specify how
the macros (generated by the syntax analyzer) should be interpreted, for the
assembler to generate machine codes. (See Chang, Appendix B.)

A Table-Driven Syntactic Analyzcr - Richard E. Marks

Many special-purpose computer languages have been developed: there
are languages for civil engineering problems (COGO), business problems
(COBOL), list-structure processing (COMIT and LISP), as well as a large
number of general-purpose, scientific-algebraic languages. The purpose of
this research was to develop part of a computer-software system which,
given a set of appropriate instructions, could translate many languages into

the proper machine code for any computer.

This software device is, in a very real sense, a computer. It contains
a set of relatively general subroutines which, when called in thc proper
order and when given the proper arguments, can perform virtually all of the
tasks necessary te translate one language into another. This software de-
vice also contains a number of instruction tables which co'.tain an encodement
of a sequence of calls to these subroutines and on encodement of the argu-
ments to use with these calls. The set of subroutines corresponds to the
instruction set of a computer, and the instruction tables correspond to the
machine instructions. When performing language translations, it is these
instruction tables which contain an encodement of the algorithm used to

translate the source language into the target language.

Normally, this device is used to translate a problem-oriented computer
language into machine code for some computer: however, it could also be
used to translate a description of the compilation process (written in some
suitable language) into instruction tables (machine code) for itself. Thus
this device, besides being used as a compiler in the normal sense, could be

used as a compiler for compilers.

ol

COMPUTATION STRUCTURES 73

Compilers are written in a compiler generation language (CGL). Any
CGL and the compiler it produces would most likely be designed to optimally
utilize some synlactic-analysis technique. CGL's could be described by a
third language -- the bootstrap language -- so that different CGL's, designed
for different analysis techniques, could be implemented. This compiler-
generator system consists of three basic sections; with a control section and
interface routines to allow the three sections to interact. These three
sections are a table processor, a syntactic analyzer, and a code-generator.
The code generator produces machine code from the output of the syntactic

analyzer.

The syntactic analyzer, which includes a lexical-analysis mechanism,
was the subject of a thesis. Basically, the syntactic analyzer operates on
an input string and produces some contaxt-free structure, such as a tree
representation of the input structure; the analyzer consists of thirteen
routines, which require 3400 locations of 7094 storage, and the instruction

tables, which require 12,000 locations of storage. (See Marks, Appendix B.)

Scheduling and Resource Allocation - Dennis W. Fife

Since January, 1966, a part-time research effort has been spent on the
scheduling and resource allocation function of time-shared computers that
have the g =2ral characterisiics of MULTICS. The function may be struct-

ured in four parts:

techniques for controlling user demand on
the system, such as restricting the
number of logged-in users;

1. System load control

2. Scheduling - an algorithm for computing the priority
and quantum assignment for each process
in the ready list;

3. Memory load control - an algorithm for determining if an un-
loaded ready process is eligible to be
loaded and executed by a processor;

74 COMPUTATION STRUCTURES

4, Page-Turning - an algorithm for determining the physical
pages to be reclaimed in order to satisfy needs
for free core space.

The objective has been to gain insight as to the form these algorithms
should take. Behind this effort has been the viewpoint that this objective is
best obtained through simulation, analysis, and optimization of stochastic

models of the queueing phenomena in the system.

The algorithm for scheduling and memory load control has been of par-
ticular interest, since its primary influence is on the effectiveness of multi-
programming. An appropriate algorithm should utilize observations of the
characteristics which describe memory usage for the processes being
scheduled. For example, if it were true that page faults in a process were
independent of the number of pages the process had in core, then memory
loading ought to depend simply on the number of processes already loaded.
But here the algorithm is not trivial, even though the basic assumption is a

gross simplification.

This rudimentary example points out the need to develop some character-
ization of the memory usage of processes. Without a model to guide the
choice of algorithms, one may as well use the most easily implemented
technique and hope for success. The model must ultimately correlate with
monitored behavior of processes in the operating system, but preliminary
analyses of the consequences of various models will help develop insight in

anticipation of the operational system. (See Fife, Appendix C.)

‘Fact Retrieval by Finite-Set Theoretic Models - Robert C. Gammill

An experimental list-processing language, called the Set Theoretic
Language (STL), was embedded in MAD. The primitive operations of this
language are very similar to those of SLIP, and were coded in FAP. The
actual form of the lists is similar to LISP.

COMPUTATION STRUCTURES 75

The purpose of the language is for fact retrieval and manipulation. The
system builds up a structure which represents a finite model from set theory.
Each list of the structure points not only to its own sublists, but to all lists of
which it is a sublist. Each such list represents a set and its relations to the

other sets of the model.

The structure is built using the basic operation ASSERT followed by a
sequence of closed sentences of the form <a,b,...,c> . The model
represents tiie meaning of the set of assertions given. Information can be
collected from ‘he model using the ANSWER operation. This operation
produces answers to a cequence of open or closed questions (sentences). At
the present time, only direct answers can be found. It is planned to develop
a proof rechanism so that answers may be arawn from relations between
relations of tiie mode!. This will allow questions to be answered even though

the answer has not been explicitly included in the assertions.

Finite-set theoretic models, of the type built by this system, are
extremely useful in representing factual information. This type of informa-
tion, not normally well-suited to computer manipulation, is non-algorithmic
in character, and is usually listed in directories, tables, charts, or graphs.
Particular examples of information which is handled well by finite-set

theoretic models are:

1. Relationships between people and real-world objects (eg., direct-
ories, business information, and family trees) (See MAC-TR-2,
Appendix D.)

2. Relationships between the objects of a complex computer system,
such as CTSS (objects being programs, commands, files, formats,
links, etc.);

3. Relationships between graphical objects, as in computer-aided
design. *

* Sutherland, Ivan E., SKETCHPAD: A Man-Machine Graphical Communica-
tion Svstem, Lincoln Laboratory Technical Report-296

76 COMPUTATION STRUCTURES

The SIR and SKETCHPAD computer systems, designed at M.I.T., used
finite models as their foundation. SKETCHPAD used a ring structure
mechanism, and SIR used the property lists of LISP. The Set Theoretic
Language is an attempt to provide a more consistent and theoretically lucid

means for describing such models.

Automatic Flowcharting - Daniel U. Wilde

A comparison of the properties of non-modifying and seif-modifying
programs leads to the definition of "independent'" and ''dependent"’
instructions. If a program is non-modifyving, the set of all possible out-
comes for each instruction is a function of the instruction itself and is
independent of all other program instructions. For example, an absolute
transfer instruction is ""independent', because all of its outcomes are

determined by the instruction itself. On the other hand, a tagged transfer

instruction is "dependent", because its outcomes depend not only on the
contents of its index register, but also on the instructions and data which

affected that register.

Because non-modifying programs contain only "independent” instructions,
such programs can be analyzed by a straightforward, two-step analysis
procedure. First, program control flow is detected; then the control flow
is used to determine program data flow (information processing). However,
a self-modifying program can also contain "dependent’ instructions, and its
control flow and data flow exhibit cyclic interaction. This cyclic interaction
suggests use of an iterative or relaxation analysis technique. The initial
step in the relaxation procedure determines a first approximation to control
flow; the second step then finds a first approximation to data flow. These

two steps are repeated recursively until a steady-state condition is reached.

Algorithms for implementing the first iteration have been developed and
written. These algorithms are capable of analyzing programs which modify
both control and processing instructions during execution. In addition, data

structures have been devised which permit the construction of functional

o

COMPUTATION STRUCTURES 1

expressions for the data flow (infor mation processing). These latter
algorithms have been used to produce flowcharts of self-modifying programs
for test cases. (See Wilde, Appendix B.)

Implementation of a Flowchart Compiler - Eric C. Westerfeld

This work is an implementation of the 1965 Masters Thesis '""Flowchart
Compiler Using Teager Board Input'. The mechanism translates a simulated
input from a Teager Board or Rand Tablet (of the text characters and locations,
the lines of flow, and the process boxes of the flowchart), and produces hard

copy output that is a correct MAD program in flow and context.

Major features of the implementation are those of a network form of list-
structure processing in the various stages of translation which include:

1. Flow of boxes and lines;

2. Text in a box, in algebraic format of exponents and subscripts;

5. Card images, associated with the lines and text in the boxes.
The steps involved in the implementation are:

1. Connecting the flow of boxes and lines;

2. Processing the characters (in arbitrary algebraic form) into card

images that are compatible with the MAD compiler;

3. Producing groupings of generated MAD coding for a ''clean"

program output, with as few redundancies in transfers and labels

as possible.

The scope of this implementation was by choice 'imited to MAD. Future
usage can allow a special language, and applications in any field using graphic
representation of ideas. Figures 9 and 10 are a simulated input flowchart and

the resultant MAD program.

78

COMPUTATION STRUCTURES

EXTERNAL FUNCTION (A,B,C)
DIMENSION Y(5), L(5)

ENTRY TO MAIN —]

l%

WHENEVER A+B+C .E.O /'y
TRANSFER TO ALPHA
OR WHENEVER A-B-C .G.0
TRANSFER TO BETA
OTHERWISE
TRANSFER TO GAMMA
END OF CONDITIONAL

' ' '

ALPHA BETA GAMMA

‘ ‘

A=A+l T B=B+1

READ DATA > |=A(B:

A, = SQRT. AB)
* N p—-—i

A| F X YN + LM

PRINT RESULTS X

END OF FUNCTION

Figure 9. A Simulated Flowchart Input

COMPUTATION STRUCTURES

printf flwcht mad

W 1508.5

00100 EXTERNAL FUNCTION (A,B,C)
00200 DIMENSION (5),L (5)

00300 ENTRY TO MAIN

00400 000003

00500 WHENEVER A+B+C .E. 0
00600 TRANSFER TO ALPHA

00700 OR WHENEVER A-B-C .G. 0
01000 TRANSFER TO BETA

01100 OTHERWISE

01200 TRANSFER TO ‘GAMMA
01300 END OF CONDITIONAL
01400 ALPHA

01500 READ DATA

01600 000025

01700 | =A(C) .P. (B)

02000 A (I) = SQRT. (A .P. (B))
02100 A (1) =X*Y (N) £ L (M) M .P. (N)
02200 PRINT RESULTS X

02300 TRANSFER TO 000025

02400 BETA

02500 A=A+l

02600 000021 TRANSFER TO 000025

02700 GAMMA

03000 B=8+]1

03100 TRANSFER TO 000021

03200 END OF FUNCTION

R .933 4+ .450

Figure 10. Flowchart Compiler Output Listing

79

80 COMPUTATION STRUCTURES

FLOW-DEBUG: An On-Line Graphical Debugging Aid - Thomas P. Skinner

With increased man-machine interaction, provided by such large-scale
time-sharing installations as Project MAC, interactive debugging aids be-
com~ quite useful. Most of these aids fail ir one major respect; they do not
provide detailed information while the program is executing. The user
merely has access to information at stratigically placed points of program

interruption.

The increased popularity of graphic display terminals has suggested
investigation into the area of graphical debugging. During the past year, the
author developed an experimental system for CTSS utilizing the ESL Display
Console. This system, known as FLOW-DEBUG, enables a user to obtain
run-time information in the form of a flow chart, so that he can obtain an
object-time flow chart of his program. This allows immediate error

detection without requiring repetitive program execution.

FLOW-DEBUG is an entire system, but it works as a command to the
existing debugging system known as FAP-DEBUG. The flow-chart sub-
system shares symbolic information with FAP-DEBUG, so a user may
proceed as usual and introduce FLOW-DEBUG as he sees fit. The error-

detection system consists of three major parts, which are shown in Figure 11:

1. The INTERPRETER, which runs the program under test and records

any rupture in the normal flow;

2. The FLOWMAP string processor, which takes the information from
the interpreter and builds a list-structured representation of the
program's topology;

3. The MAP routine which takes the list-structured topology and forms
the actuzl display.

The interpreter, which is machine dependent, was written in FAP. The
remainder of the FLOW-DEBUG package is written in the AED-0 language
and will require minimum reprogramming for future implementations. The

s e B .

COMPUTATION STRUCTURFS

FAP-DEBUG K\

\
AN
\
AN
\
N\
\\ PROGRAM
1 BEING
[/] TESTED
/
FLOW-DEBUG y,
SUPERVISOR
/
/
/
Vd
h /
' V4 \‘
/ FLOWMAP
INTERPRETER ¥/ (creates
list structure)
MAP
(creates

‘ the display)

Figure 11. The FLOW-DEBUG On-Line System

82 COMPUTATION STRUCTURES

display routine is also dependent on the particular display used, but only
simple operations, such as line and circle constructs, were used and these

subroutines could quite easily be programmed for any display.

While the display obtained was not ideal, the system worked extremely
well, considering the limited amount of programming time invested.
(See Skinner, Appendix B.)

Manipulation of Approximating Functions on a Graphical Display -
Henry F. Ledgard

This work has explored the development of a computer program to pro-
vide for the specification and immediate display of piecewise approximating
functions through the ESL display facility. A method has been developed

for:

1. setting of adjusting points through which an approximating function

must pass,
2. setting or adjusting the number of approximating function parts, and

3. setting or adjusting the number of domains of the piecewise approxi-

mating segments;
while at the same time

1. maintaining restrictions on the value of approximating function or its

derivative,

2. minimizing the error in the last-mean-square sense.

To allow the manipulation and display of functions when no approximation
is involved, the method is extended to cases where the function is completely
specified by restrictions on its values.

The created program supplements the basic method with the facility to:

1. specify graphically the s‘andard function parts which comprise the

approximant, and

COMPUTATION STRUCTURES 83

2. combine the functions generated under the operations of addition,

subtraction, multiplication, and division.

The resultant system allows a user to generate and manipulate a large

class of functions through graphical communication. (See Ledgard, Appendix B.)

Braille Translation and Interactive Information Retrieval - Henry S. Magnuski

This work can be divided into two major projects. The first is com-
pletion of the on-line Braille translation system, and the second deals with

interactive information retrieval.

During the Fall term, finishing touches were put on a system which
makes computer-translated text available to the blind. A PDP-8, coupled to
the Braille equivalent of a teletype machine (Figurc 12), has been used to
translate English text into Grade I and Grade I Braille. The translation of
English text into Grade I Braille is fairly straightforward, and, with few
exceptions such as inserting the sign of a numeral before a string of numbers,
simply requires the transliteration of English text characters to their Braille
equivalent. Grade IO Braille is much more complex, however, and contains
many contractions and special rules. The output Brailler generates eight

cells per second and produces 38-cell lines of text.

In September of 1965, both the Grade II translation program and the
embossing mechanism itself had been completed. The main problems
encountered were in the electronics interface equipment between the PDP-8
and the Brailler. The purpose of the interface equipment is to accept em-
bossing commands from the computer and control the mechanical motions of
the Brailler so that the embossing is done properly. After the equipment
was checked for proper operation, a variety of test and maintenance programs
were written to insurc correct functioning of the machine. The Brailler is

now capable of embossing 10 to 15 characters per second.

COMPUTATICON STRUCTURES

84

90143 IndInQO SITEIg UIATI(] -I93ndwo)

RAREEUIE |

COMPUTATION STRUCTURES 85

In order to make the Compatible Time-Sharing System ivailable to the
blind, a program was written which would accept teleiype characters from
the PDP-8's Dataphone and turn the characters into Grade I Braille. In this
application the PDP-8 acts as a small satellite processor, taking the normal
output from the 7094 and converting it to a form suitable for blind users of
the system. Future plans for the Brailler include the installation of a
Braille keyboard, and coding some of the Grade II translation program. (See

Magnuski, Appendix C.)

Since January, time has beea devoted almost entirely to a study of in-
formation-retrieval that is basc¢d on active man-machine communications.
This work is centered on the idva that man can be very useful in guiding coin-

puters to do information retrieval.

Information searching with an active participant can be accomplished
several ways. One of the simplest of these is to present a man with a
hierarchy of directories of the information, and then let him work his way
through the directories until he finds a desired document. This type of
search can be done quite easily using a graphic display device and a light pen:
as the user makes appropriate selections in his search, he comes closer and
closer to the article he is searching for until it finally appears in its full
text on the screen. Another method of doing an active search, which is
especially suitable when the information being searched has a structure of
its own, is through use of an "information structure diagram' which relates
a document name to its contents and presents the information in a two-

dimensional drawing.

Both of these types of information retrieval require the use of a remote-
access computer and a display console. Although they have been rather
expensive, time-shared computers and graphic display equipment are now
becoming less costly, and the possibility of widespread use of infcrmation
retrieval and display consoles is increasing. In order to establish how such
consoles might be used, a system incorporating the above techniques, and

86 COMPUTATION STRUCTURES

others, was simulated on the PDP-8 with a DEC 338 display. The 338 is a
very-high-resolution display, and can support over 1000 flicker-free
characters simultaneously. The character generator provided both upper

and lower case characters, plus many special graphics. Data for the simula-

tion came from documents describing the MULTICS time-sharing system.

The two main purposes of the simulation were: 1) to outline the needs of
users of the MULTICS information system, and 2) t. design a set of commands

and console operating techniques which would service these needs.

A set of '"Page Independent" commands were specified, which are valid
no matter where a user is situated in the information-directory hierarchy;
and a set of '"Page Dependent'" commands were specified, which change with
each scene being viewed. These commands allow the searcher to jump from
one directory to another, '"leaf' through documents, browse, and conveniently

find his way through the information available to him.

1his approach to information retrieval shows promise, since it does not
rely on lengthy searches by the computer, and allows a man to use the best
of his own abilities in retrieving a desired document. (See Magnuski,

Appendix B.)

COMPUTATION STRUCTURES 87

A Teaching-Machine Simulator - Wendell T. Beyer

While developing a preliminary teaching machine simulator, I wrote
three subsystems of independent interest. These subsystems were: a
dynamic storage allocation system, for use by MAD programs; a rudimentary
character-string-processing language, embedded in MAD; and a program for

simulating the action of a BCD file-editing program, such as EDL.

The long-term goal of my project was to construct a program which
would teach a novice to use CTSS. Since I had no previous experience with
teaching machines, I began by considering the limited problem of teaching
a novice to use EDL, one of the BCD file-editing programs.

As part of the teaching process, the student was to have complete con-
trol of an EDL-like program. Rather than use EDL and real disk files for
this purpose, I constructed a subroutine which sirulated the action of EDL
on BCD ''files" stored in core memory. This method had a threefold
advantage. First, no time was spent reading and writing files, since all
files were stored internally. Second, closer supervision of the student's
operation of "EDL" was possible. Third, the teaching machine script was
stored in simulated BCD files, and this storage made possible dvnamic

editing of the script during the course of an instructional session.

I next designed a simple language for writing teaching machine scripts
and constructed a program to implement the scripts. The teaching program
was operating by the end of the reporting period, but is still undergoing many
changes.

90

L. A. Bezry

w
M
R

HOEPRRPODO

. R. Bjerstedt
. M. Daggett

. A. DePrisco

Andrews
Borsini
Brandon

Brenner

. Carley
. Cerrato

Cohan
Dardis
Dattilo

COMPUTER OPERATION

Non-Academic Research Staff

M. G. Gottlieb
L. P. Odland

M. Padlipsky

D. Shea

Operating Staff

poe)

. A, Degan

. Dickie

. Ferguson
G. Hart
McGillivary
. McNamara

. Moore

» W e O R

Nelson

M.

J.

T.

SHASaET 2B

V. Solomita
W. Spall
H. Van Vleck

Noseworthy

. Pagliarulo

Parker

Payson

. Peaslee

Poole
Reardon
W. Waclawski

COMPUTER OPERATION 91

Operation of the 7094 Time-Sharing System - Richard G. Mills and
Thomas H. Van Vleck

With the installation and shakedown of the so-called DAEMON file-
system backup facility, the operation of the 7094 time-sharing system (CTSS)
has settled down to a straight-forward, 24-hour-per-day routine. CTSS has
been the only regular system run on the computer for well over a year, with
the exception of about ten hours per week of scheduled maintenance. Also
for about a vear the system has been quite heavily loaded, particularly
during the day and evening shifts, and lately the heavy-load pericd has been
observed to extend into the first hour or two of the midnight-to-8:00 A. M.
shift. Weekend use of the system is now becoming heavy during the after-
noon and early evening, with very early morning use (2:00 to 6:00 A. M.)
still light.

Reliability of the 7094 hardware has been acceptable. The disk, which
is so critical to system operation, has been unexpectedly reliable. However,
when there is disk trouble it is usually severe; on three separate occasions
we have experienced scoring of recording surfaces which required shutdowns
of several days. An interruption of CTSS service to this extent is considered

catastrophic.

During the year 1 July 1965 to 30 June 1966, 4785 hours of system
time were "charged' to users; of which 3505 hours* represent remote-
terminal use. (The other use was batch-processing ""background".) These
figures represent, respectively, 55 percent and 40 percent of the 8, 760

hours in a year.

*At a conservatively estimated ratio of 20 hours of ""logged-in" time to
1 hour of charged time, this represents some 70, 000 console-hours and,
presumably, 70,000 man hours!

92 COMPUTER OPERATION

Operation of the GE 635 - Richard G. Mills and Thomas H. Van Vleck

The GE 635 computer*, which went on rent October 18, 1965, is being
used for the single purpose of development and checkout of the GE 645
MULTICS system. One aspect of this use involves the so-called "6.36 sys-
tem', under which certain users of the 7094 CTSS can prepare an input tape
to the GECOS operating system on a 7094 tape drive. This tape, which
usually involves a test run using the 645 simulator, is manually carried to
the 635 and run, and the resulting output tape is carried back to the 7094
where it is loaded into the user's CTSS file space on the disk. The user may
then use special-purpose debugging tuols to evaluate the results of his run.
Another major aspect of the use of the 635 is the so-called "6. 45 system",
in which card decks are input to GECOS for running under the 645 simulator,

and output is produced on the 645 printer.

After a rather long period of unsatisfactory reliability, the 635 hardware

and GECOS operating-system software are now operating satisfactorily.

*The machine referred to here as a 635 differs from the GE product-line 635
in that it has prototype core-memory units whose cycle time is approximately
1. 6 microseconds instead of 1.0 microsecond for the standard 635. In all
other respects, it is a standard product-line machine.

COMPUTER SYSTEM RESEARCH

The Transition from CTSS to MULTICS

m o ow?r

CTSS Maintenance

CTSS Documentation

MULTICS Design Philosophies
MULTICS Software Development
MULTICS Implementation

Selected Topics in Computation

93

94 COMPUTER SYSTEM RESEARCH

Academic Staff

F. J. Corbat§ E. L. Glaser J. H. Saltzer
. Evans, Jr. J. W. Poduska C. Strachey

2>

Non-Academic Research Staff

M. J. Bailey R. M. Graham G. G. Schroeder
M. E. Child H. C. Haig P. E. Smith
G. Clancy B. W. Kernighan M. K. Thompson
P. A. Crisman C. Marceau T. H. Van Vleck
C. A. Cushing N. I. Morris L. Varian
R. C. Daley M. Padlipsky D. Wagner
S. D. Dunten E. Quisenberry D. R. Widrig, Jr.
D. J. Edwards R. Rappaport
C. Garman S. L. Rosenbaum

Research Assistants and other Students
H. Magnuski B. D. Wessler

Development of the MULTICS system is being carried out with the cooperation
of the research staff of the Bell Telephone Laboratories and the General

Electric Company.

—

COMPUTER SYSTEM RESEARCH 95

The Transition from ©TSS to MULTICS - F. J. Ccrbatd

A. CTSS MAINTENANCE

During the reporting period, the group's primary effort has been shifted
from maintaining the Compatible Time-Sharing System (CTSS) to developing
the MULTiplexed Information and Computing Service (MULTICS). The final
major activity on the development of CTSS was completion of a new file sys-
tem which has allowed increased flexibility; enabling users to simultanecusly
read files as well as "link" to each others files. The file system was finally
installed during August and September of 1965. The file system was difficult
to install, not only because of the considerable magnitudc of programming
required, but also because almost all commands had to be modified. In ad-
dition, it was necessary to write special programs for dumping and reloading
the disc, and salvaging the disc in the event of system mishaps (i. e., making
the disk syntax correct); requesting the retrieval of files which had been re-
moved from the disc; and programming for the standard input and output of
information to and from the disc file. The final step required to make the
new file system complete was addition of the DAEMON program for incre-
mentally dumping a user's newly created files whenever he has logged out.
This system, which is now completely installed, obviates the periodic total
dump which was formerly required. Furthermore, the DAEMON should pre-
vent file losses from being catastrophic when a system mishaps occurs, inas-
much as the backup is more closely tailored to user behavior than was the

old system.

As would be expected with an evolving and maturing system, there are
numerous new commands, and improvements have been made to old com-
mands. Some of these changes are for improved administration of the 8y s-
tem, such as upgrading of the LOGIN command, and proper record keeping
of the console identification of each user, the system identification, and each
user's last LOGOUT time. Another added administrative command is
TTPEEK, which allows a user to inspect both the allotments and usage of

his central processor time, as well as his disc, drum, and tape records.

96 COMPUTER SYSTEM RESEARCH

Other changes have included the introduction of a MAIL command, which
allows users to send notes to other users, on-line, to be deposited in in-
dividual "mailboxes' within each user's file directory. This feature has
rapidly become a standard communication technique within the system. A
further change in the command system has been the production of special
commands to produce smooth operation of the RUNCOM command, which
allows sequences of commands to be treated as macro-comrmands. RUNCOM
has turned out to be one of the most powerful additions to the CTSS system,
since it essentially allows users to arbitrarily create new commands of

great complexity.

Inclusion of magnetic tape operation from foreground consoles within
the time-sharing system has been another important step within the past
period. Tape usage has turned out to be a valuable service, although out
of necessity it must remain limited as there are not that many tape devices
compared to users of the system. This feature has been a key factor in

providing remote access to the simulation system for the GE 645.

A long-awaited feature of the time-sharing system has been the ability
to leave Foreground-Initiated Background (FIB) jobs to be run in the absence
of the user. In other words, the benefits of batch processing are flexibly
brought to a time-sharing user such that he is able to disassociate himself
from operating a well-behaved program. The FIB system has not only been
useful as an extension of the system for time-sharing users, but has been
of great assistance in implementating various automatic-accounting proce-
dures; wherein programs ''go to sleep' for periodic times and are subse-
quently reawakened to do various administration chores during intervals

varying from minutes to weeks.

Additionally, there are restricted classes of users who are only able
to utilize a subset of commands, and various changes and modifications have
been made to improve and tighten system security against both accidents and

vandalism.

e

COMPUTER SYSTEM RESEARCH 97

B. CTSS DOCUMENTATION

In the area of documentation, one problem has been that as system size
and complexity has grown, responsibility for maintenance has become more
diffusely distributed: it has been more and more important to develop a
systematic approach to maintenance. Shifting the maintenance staff away
from CTSS was a fitting opportunity to draw up an inventory of the system
components. This inventory consisted of an itemization of the modules in:
1) the main supervisor, 2) the command system, 3) the library system of
subroutines, and 4) the auxiliary programs required to continue to operate
the system (e. g., the Salvager, etc.). This inventory of the system has
allowed responsibility to be sensibly delegated, and has been valuable as a

check list when changes to the system have been contemplated.

The second edition of the CTSS Programmer's Guide was published at

the beginning of this period in looseleaf form for easy maintenance. Further-
more, an up-to-date version of the manual is maintained on-line in CTSS
using the TYPSET program, so that users may examine this copy from

their consoles for last-minute changes. (See Crisman, Appendix C.)

C. MULTICS DESIGN PHILOSOPHIES

The primary efforts of the Multics workers were aimed at determina-
tion of final system hardware specifications, and the design and develop-
ment of system software. Inherent in both of these efforts was the under-
lying requirement that all work ont.. project be thoroughly documented.
Thus, a large body of reports and manual sections have been built up during

the past year.

Multics is a joint effort of Project MAC, Bell Telephone Laboratories,
and the General Electric Company. its basic design philosophies were for-
mally presented in a series of six papers, by representatives of all three
organizatiors, at the 1965 Fall Joint Computer Conference. In their paper,
"Introduction and Overview of the Multics System", F. J. Corbaté of M.L.T.,
and V. A, Vyssotsky of BTL described important features of the new system:

98 COMPUTER SYS TEM RESEARCH

"The overall design goal of the Multics system is to create a

computing system which is capable of comprehensively meeting
almost all of the present and near future requirements of a large-
computer-service installation. Itis not expected that the initial
system, although useful, will reach the objective; rather, the
system will evolve with time in a general framework which permits
continual growth to meet unknown future requirements. Use of the
PL/I language will allow major system software changes to be
developed on a schedule separate from that of hardware changes ...
It is expected that the Multics system will be ... available for
implementation on any equipment with suitable characteristics . .. -

Some of the important hardware features of the Multicg system were
also reported in this paper. They include: two-dimensional addressing
(segments); 'paged'' memory; execute-only segments, which have particularly
important applications for service bureaus and other applicatiors where a
program is to be executed but not read; a _G_eneral _I_nput/Q_utput gontroller
(GIOC) which removes much of the input/output responsibility from the cen-
tral processor, and, at the same time, makes the use of different input/
output devices more flexible from the point-of-view of the programmer; and
a full 128-character ASCII code. Another major hardware feature inherent
in the basic design of the Multics system is the high level of system relia-
bility that may be achieved. This is partly due to the fact that, because
there will generally be more than one of each major component, a failure
in any one component will not disable the entire system. This feature will
also provide for more flexible maintenance, since the system can be parti-

tioned into two distinct systems.

In addition to the paper already mentioned, five other papers presented
at the conference were: "System Design of a Computer for Time-Sharing
Applications'’, by E. L. Glaser of M.1.T., and J. F. Couleur and
G. A. Oliver, both of G. E.; "Structure of the Multics Supervisor', by
V. A. Vyssotsky of BTL, and F. J. Corbatd and R. M. Graham, both of
M.1L.T.; "A General Purpose File System for Secondary Storage'' by
R. C. Daley of M. L T., and P. G. Neuman of BTL; "Communications and
Input/Output Switching in a Multiplexed Computing System'’, by J. F. Ossanna,
L. E. Mikus, and S. D. Dunten, of BTL, G. E., and M.LT., respectively;

COMPUTER SYSTEM RESEARCH 99

and "Some Thoughts about the Social Implications of Accessible Computing",
by E. E. David, Jr., of BTL, and R. M. Fano of M.L. T. (See Proceedings

of the 1965 Fall Joint Computer Conference; Spartan Press; Washington, D.C.;
pp. 185-247.)

D. MULTICS SOFTWARE DEVELOPMENT

Development of the software system has centered in four major areas,
the first of which was development of a first design for the File System which
is used to store segments. This generalized version of the file system used
in CTSS introduces a hierarchial file structure which permits reterencing
to any number of levels. The system of links and permissions has been
made more general, with linkage permission being associated directly with
a permitted file. In addition, the file system incorporates such additional
considerations as selective levels of user privacy, ease of data movement,
and a backup mechanism which is readily-available in the event of either

user error or system malfunction.

The design for the Central Traffic Controller was documented in a Ph. D.
dissertation by J. H. Saltzer. (See Saltzer, Appendix B.) In his abstract,
the author briefly describes his scheme for handling many users simultane-

ously:

"The scheme is based upon a distributed supervisor which may
be different for different users. The processor multiplexing method
provides smooth inter-process communication, treatment of input/
output control as a special case of inter-process communication,
and provision for a user to specify parallel processing or simultane-
ous input/output without interrupt logic. By treatment of processors
in an anonymous pool, smooth and automatic scaling of system
capacity is obtained as more processors and more users are added.
The basic design has intrinsic overhead in processor time and
memory space which remains proportional to the amount of useful
work the system does under extremes of system scaling and loading.
The design is not limited to a specific harcware implementation; it
is intended to have wide application to multiplexed, multiple-processor
computer systems. "’

A third area of development involved I/O software for the previously
mentioned General Input/Output Controller. The 1/0 system incorporates

100 COMPUTER SYSTEM RESEARCH

guch features as stream switching, where the internal program may accept

input and generate output without concern for the specific 1/0 device being

used (indeed, these devices may be switched during the execution of a process);

a standard character set, with both standard internal codes, external
graphics, and a standard escape character, all irrespective of the parti-
cular I/0O device being used; and a canonical string, where all strings of
characters that look alike are represented alike within the system (this con-
cept has been partially implemented within the context editor TYPSET in
CTSS, but has now been made a standard pa:t of the Multics I/O system).

The fourth key area of effort has been directed toward development of
a command system. This includes a functional command language, similar
in philosophy to CTSS. One feature of the command language is that many of
the elaborate details need not be learned by the user if they are not needed in
his particular work. In structure, the command-language interpreter is a
system for calling upon a large library of subroutines to actually execute
individual commands. Because of this, commands may be called and exe-

cuted at any level; from a user console or within a running program.

As mentioned earlier, thorough documentation is an important part of
the research effort in the Multics project. Consequently, details of the com-
mand language and other components of the system have pee:. assembled in

the Multics System Programmer's Manual. This document is being con-

stantly changed, updated, and added to. A basic groundrule is the standard

engineering practice that all software subsystems must be thoroughly designed,

and implementation plans specified, before actual coding begins. We expect
that this procedure will result in better integration and more effective opera-

tion of the resultant system than would otherwise occCur.

E. MULTICS IMPLEMENTATION

To implement and debug the Multics system in a reasonable amount of
time after it has been designed, a parallel tool-building effort has been car-

ried out by various members of the three organizations involved. A GE 635

R . s

COMPUTER SYSTEM RESEARCH 101

was delivered in July 1965 and was operating one month later. The following

tools have been implemented:

1.

A compiler for a subset of PL/I (called EPL for ""Early PL")
in CTSS;

An editing and input program (EDA) in CTSS using the Multics
standard 128 ASCII characters which are typed in using appro-
priate escape conventions;

A program (merge-edit) in CTSS which writes a magnetic tape
on the IBM 7094, in a format which is acceptable as an input
tape for the GE 635 monitor (GECOS);

An assembly program for the GE 645 which runs in GECOS;
A program which simulates the GE 645 and runs in GECOS;

A program running in GECOS which loads a Multics process
and starts simulation;

A collection of procedures (written in GE 645 assembly language)
which provide the minimum services neccssary to execute a
Multics process;

A program to write on magnetic tape, the simulated GE 645
memory (when the simulated process terminates), and the
results of any assemblies, in a format suitable for the CTSS
disk editor;

An on-line, symbolic, interactive program in CTSS (GEBUG)
which is used to examine the contents of the simulated GE 645
memory after it has been returned from the GE 635.

This complex of tools allows a system programmer to input, edit, compile,

assemble, execute, and examine the results of a Multics process from any

remote console attached to CTSS.

First units ol the GE 645 were scheduled for September 1966 delivery.

The simulation and debugging system just described will be used on the

GE 645 until such time as the first version of Multics can stand by itself.
It is expected that this will be in mid-1967.

o —

102 COMPUTER SYSTEM RESEARCH

Selected Topics in Computation - John W. Poduska

The effect ¢ paging on computer execution times has been investigated
by the writer and an undergraduate, David Chase. A simulator written for
a small computer (the DDP-24) was run on the 7094 under CTSS, and to this
simulator was added an associative-paging capability using a round-robin
replacement scheme. A number of tests were then made, executing various

test programs under simulation. (See Chase, Appendix B.)

The total results can be summarized briefly by stating that reloads of

the associative memory occur less frequently than one might suppose. For

example, a Fortran IV compiler was simulated under the following conditions:

Memory Size 8192 words, fully used
Page Size 256 words
Sticky Register 4

A 20-statement test program was compiled in about 300,000 memory cycles
and required about 14,000 associative memory reloads. In other words,
fewer than one-in-21 memory references required a load of the associative

store -- smaller than a five percent overhead.

Two other small topics were investigaced. First, a set of primitive
list-processing subroutines was written in a package called MLPL (Mad
List-Processing Eanguage). These programs were written for a dual pur-
pose: 1) to provide a primative alternate to SLIP, and 2) to provide a very
efficient list-processing structure for system programs. (See MAC-M-303,

Appendix A.)

Finally, the problem of table organization, searching, and sorting was
being investigated primarily for classroom use: a tutorial paper on the
problem was generated. (See MAC-M-302, Appendix A.)

e

103

ELECTRONIC SYSTEMS LABORATORY

Introduction
Display Systems Research

ESL Display Console

Display Buffer Computer

Investigation of DDA Rotation Matrix
Low-Cost Dataphone-Driven Graphic Display

moawX

Improved Display Technology
Computer-Aided Design Project

A. The AED-1 Processor

B. The CADET System

C. AED Cooperative Program

D. Display Interface Programming

Computer-Aided Electronic Circuit Design

A. CIRCAL (Circuit Analysis Programs)
B. Digital-System Simulation
C. Curve-Drawing Remote Display

D. AEDNET - A Simulator for Nonlinear
Electronic Circuits

Aerospace Computer Analysis and Synthesis

Simulation Studies of Strapped-Down Navigation Systems

104

ELECTRONICS SYSTEMS LABORATORY

Academic Staff

J. r. Reintjes M. L. Dertouzos A. K. Susskind
L. A. Gould J. V. Oldfield (visiting)
Non-Academic Research Staff
R. J. Bigelow J. Katzenelson D. T. Ross
T. B. Cheek P. T. Ladd R. H. Stotz
C. G. Feldmann R. O. Ladson W. D. Stratton
J. W. Grondstra R. B. Lapin D. E. Thornhill
U. F. Gronemann H. D. Levin J. F. Walsh
E. G. Guttmann J. A. C. Parisot J. E. Ward
D. R. Haring R. B. Polansky B. L. Wolman
F. B. Hills J. M. Reed C. Wylie
Research Assistants and other Students
L. O. Craft W. Inglis P. J. Santos, Jr.
T. Cruise B. K. Levitt D. H. Slosberg
R. Diephuis G. C. Ling C. N. Taubman
M. Edelberg A. Malhotra C. W. Therrien
D. S. Evans W. H. Matthews G. A. Walpert
J. Gertz J. 1. Meltzer Y. D. Willems
H. L. Graham J. E. Rodriguez
Guests
S. I. Ackley - System Development Corp. R. O. Ladson - UNIVAC Div., Sperry Rand
D. Barovich - LB.M. Corporation F. Luccio - Olivetti & Co.
A, J. Berger - Boeing Company R. S. Lynn - North American Aviation
L. M. Bousquet - French Government A. K. Mills - Dow Chemical Co,
H. J. Cilke - Sandia Corporation J. V. Oldfield - University of Edinburgh
W. L, Johnson - Ford Motor Company J. H. Porter - Chevron Research Co,
J. H. Jones - McDonnell Aircraft Corp. R. B. Wise - UIT Research Institute

i g

ELECTRONICS SYSTEMS LABORATORY 105

Introduction - J. Francis Reintjes

The Project MAC time-sharing computer system continues to stimulate
the research activities of a substantial number of faculty, staff, and graduate
students of the Electronic Systems Laboratory. A large segment of the
Laboratory's research is motivated by staff interest in using time- sharing
machines for on-line engineering design. Electrical-network design and the
manipulation of graphical data pertinent to mechanical design have been ex-
plored through use of the MAC facility.

The pressing need for transient visual display of design informat n,
such as that<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>