

ļ

6ð

WAL TR 405/2-15

SCREENING AND SELECTION OF CANDIDATE SHEET ALLOYS

Final Report, Part II

by

D. B. Hunter

December 1966

TITANIUM METALS CORPORATION OF AMERICA 233 Broadway New York, New York

Contract DA-30-069-ORD-3743

Distribution of This Document is Unlimited

ARCHIVE COPY

U. S. ARMY MATERIALS RESEARCH AGENGY WATERTOWK, HASSACHUSETTS 02172

Best Available Copy

Filing Subject:

Alloys, titanium

WAL TR 405/2-15

SCREENING AND SELECTION OF CANDIDATE SHEET ALLOYS

Final Report, Part II

by

D. B. Hunter

December 1966

TITANJUM METALS CORPORATION OF AMERICA 233 Broadway New York, New York

Contract DA-30-059-ORD-3743

Distribution of This Document is Unlimited

U. S. ARMY MATERIALS RESEARCH AGENCY WATERTOWN, MASSACHUSETTS 02172

ABSTRACT

Research under this contract was divided into four stages: Phase I, a screening of stable beta base alloys using sheet produced from ½ pound ingots; Phase II, the addition of elements to selected stable beta bases to bring about precipitation hardening; Phase III, the evaluation of the most promising of the Phase II alloys, using sheet produced from 30 pound ingots; and Phase IV the evaluation of mill-produced sheet from a 500 pound ingot of the best alloy from Phase III. Phases I to III are covered in this Final Report, Part 2.

Phase I research consisted of addition of eutectoid form ing elements Fe, Cr and Mn to bases Ti 17V-3A1, Ti 8Mo-8V-3A1 and Ti 15Mo-3A1, to produce stable beta bases. From the 39 alloys so produced, three alloys were selected as being suitable bases for addition of elements designed to bring about precipita tion hardening: Ti 17V 10Cr 3A1, Ti-8Mo 8V-7.5Fe-3A1 and Ti 15Mo-5Fe-3A1. These alloys did not undergo a strength increase of more than 10% after aging for 8 hours at 900F in the solution treated condition and therefore were regarded as stable

Phase II work consisted of additions of Cu Co, Ni, Si Fe, Be, Si and rare earths to the above bases in increasing amounts to bring about precipitation hardening. However, the fabrication properties of such alloys deteriorated before enough of the above elements could be added to bring about precipitation hardening. As an exception, addition of 0.5 1%Si to Ti 17V 10Cr-SAl followed by water quenching from solution temperatures of around 2000F and aging at 1150 1250F, produced Vickers hardness increases of up to 100 points upon aging without visible micro structural change. Although precipitation hardening of a stable beta alloy was thus achieved, grain growth and embrittlement were encountered because of the high temperatures required to dissolve the silicide.

Because of these findings, Phase III work was redirected toward development of two other types of alloy: a moderate strength stable beta alloy, and a high strength metastable beta alloy hardenable by alpha precipitation. Two stable beta alloys, Ti-17V-10Mn-3A1 and Ti-8Mo-8V-6Fe-3A1, and two metastable beta alloys, Ti-17V-4Fe-3A1 and Ti 8Mo-8V-2Fe-3A1 were evaluated. However, the stable beta alloys had brittle welds, and work on these was discontinued. They were replaced by "stabilized" alloys, metastable alloys aged at 1100-1200F to suppress the maximum aging response and reach a strength plateau. Four such alloys Ti 8Mo 8V-5Co-3A1, Ti 17V-7.5Co 3A1, Ti-17V 2Fe-2Co 3A1 and Ti 8Mo 8V 2Fe 3A1 were evaluated in this condition, of which the last was found to be best. This same alloy also proved to be best of the high strength metastable beta candidates. On a basis of smooth and notched tensile properties at room temperature and 600F, creep stability and stress corrosion resistance, Ti 8Mo-8V-2Fe 3A1 was selected for mill production and evaluation under Phase IV. (Phase IV is covered by Part 1 of this Final Report.)

INTRODUCTION

This final report has been prepared by personnel of Henderson Technical Laboratories of the Titanium Metals Corporation of America, Henderson, Nevada, covering research and development of beta titanium sheet alloys in accordance with terms of United States Army Contract DA-30-069-ORD-3743 sponsored by the Army Materials Research Agency, Watertown, Massachusetts, and under the technical supervision of Mr. S. V. Arnold.

The original objective of this contracted program was development of a stable beta sheet alloy hardenable by compound precipitation. Part II of the final report, which follows, sets forth (1) the philosophy of this alloy development as it affected screening criteria, (2) the experimental sequence which was followed, (3) results which were obtained in test and evaluation of various candidate alloys, and (4) reasons for selecting metastable alloy Ti-8Mo-8V-2Fe-3Al for further development. Part I of the final report details such further development of this alloy to establish mill processing procedures and provide design data information. It was also planned that the developmental alloy(s) be (1) amenable to state-of-the-art melting, conversion and fabrication practices and (2) comparable in cost to competitive titanium-based compositions. Accordingly, screening criteria were established for reference throughout the program.

It was desired that any new alloy developed should have a basic ingot cost of not more than about ten percent greater than Ti-13V-11Cr-3A1. This of necessity excluded addition of certain elements which might otherwise have seemed promising additions from the metallurgical standpoint. For example, the systems of Ti with Au, Ag and U; might seem to offer possibilities for inducing precipitation hardening, but because of the cost of these elements, they were not used. Similarly, all alloys should be meltable by normal techniques, that is by consumable-electrode vacuum-arc double melting without excessive loss of alloying elements by volatilization or formation of high density inclusions.

In all phases of the contact, producibility and fabrication qualities of the alloys were of prime importance. All test compositions were hot rolled to a certain gage (usually 0.080inch), then given a substantial cold reduction to attain the final gage, (usually 0.050-inch). In this process those alloys which possessed marginal rollability were detected as edge cracking tended to occur. Fabrication properties, such as weldability and bendability, were also evaluated.

Pursuant to the above aims and considerations, this program was divided into four phases: Phase I consisted of a survey of alloy limits necessary to assure a stable beta base composition. using various combinations of beta isomorphous and beta eutectoid elements that reject compound sluggishly. Phase II dealt with the addition of various elements to selected stable beta alloys, with the object of bringing about hardening by compound precipita-In these first two phases, one-half pound button ingots tion. were employed. Although compound precipitation hardening was achieved in Phase II, it was not found possible to overcome the attendant embrittlement. Phase III effort employing 30-1b. ingots was therefore expanded in scope to develop (1) a work-hardenable (non-heat treatable) stable beta alloy and (2) an improved metastable beta alloy based on the Phase I results. Ultimately, a metastable composition was developed during Phase III, which

BACKGROUND AND PHILOSOPHY OF APPROACH

1

Commercial alpha beta alloys, such as Ti 6A1-4V, and metastable beta alloys, such as Ti 13V-11Cr-3A1, are hardened only by making use of the allotropic transformation, that is, by precipitation of beta from alpha prime, or by rejection of alpha phase from metastable beta. However, thus far no titanium alloys have been developed analogous-to the precipitation hardenable stainless steels, or nickel based super alloys which are hardened by co herent precipitation of intermetallic compounds.

Several attempts have been made to develop such a class of titanium alloys, but these have been confined to using commercially pure titanium or complex alpha titanium alloys as base materials. Ti 2Cu is an example of an alloy where hardening has been achieved by taking advantage of the decreasing solubility of Cu in alpha titanium⁽¹⁾ and relatively excellent short-time strengths to 1000F have been achieved through additions of Cu to a complexed Ti-Al-Zr base.⁽²⁾ However, these alloys show little promise of displacing either the conventional high strength metastable beta or creepresistant alpha alloys at higher temperatures.

This program was originally based on the premise that it should be possible to select a relatively strong, ductile and stable solid-solution-strengthened beta titanium base alloy to which selected amounts of eutectoid or compound forming elements could be added so that, on suitable heat-treatment, combinations of strength and useful ductility would be produced by aging at moderate temperatures to promote precipitation hardening.

"Stability" for the base alloy was arbitrarily defined as complete retention of beta in a 2 inch thick plate on cooling in still air from 1350F solution temperature. Such stability was intended to simplify heat treatment by obviating the need to quench from solution temperature.

⁽¹⁾ M. K. McQuillan, U. S. Patent No. 2,977,251.

⁽²⁾ R. F. Burnfust and H. Margolin, "Development of Active-Eutectoid and Alloys", WADC Technical Report 58 328, October 1958.

It was also planned that the developmental alloy(s) be (1) amenable to state-of-the-art melting, conversion and fabrication practices and (2) comparable in cost to competitive titanium-baced compositions. Accordingly, screening criteria were established for reference throughout the program.

It was desired that any new alloy developed should have a basic ingot cost of not more than about ten percent greater than Ti-13V-11Cr-3A1. This of necessity excluded addition of certain elements which might otherwise have seemed promising additions from the metallurgical standpoint. For example, the systems of Ti with Au, Ag and U; might seem to offer possibilities for inducing precipitation hardening, but because of the cost of these elements, they were not used. Similarly, all alloys should be meltable / normal techniques, that is by consumable-electrode vacuum-arc double melting without excessive loss of alloying elements by volatilization or formation of high density inclusions.

In all phases of the contact, producibility and fabrication qualities of the alloys were of prime importance. All test compositions were hot rolled to a certain gage (usually 0.080inch), then given a substantial cold reduction to attain the finalgage, (usually 0.050-inch). In this process those alloys which possessed marginal rollability were detected as edge cracking tended to occur. Fabrication properties, such as weldability and bendability, were also evaluated.

Pursuant to the above aims and considerations, this program was divided into four phases. Phase I consisted of a survey of alloy limits necessary to assure a stable beta base composition, using various combinations of beta isomorphous and beta eutectoid elements that reject compound sluggishly. Phase II dealt with the addition of various elements to selected stable beta alloys, with the object of bringing about hardening by compound precipita-In these first two phases, one-half pound button ingots tion. were employed. Although compound precipitation hardening was achdeved in Phase II, it was not found possible to overcome the attendant embrittlement. Phase III effort employing 30-15, ingots was therefore expanded in scope to develop (1) a work-hardenable (non-heat treatable) stable beta alloy and (2) an improved metastable beta alloy based on the Phase I results. Ultimately, a metastable composition was developed during Phase III, which

could also be "stabilized" by suitable heat treatment. This composition, Ti-8Mo-8V-2Fe-3Al, as more fully evaluated in Phase IV, which consisted of the conversion of a 500-pound ingot to plate and sheet using standard mill processing, and the evaluation of plate and sheet products. The Phase IV effort is reported in Part I of this final report.

MATERIALS

Major alloying additions of normal purity were used in formulating the experimental base alloys melted during Phase I of this program. The analyses of these additions are listed in Table I.

Standard A.S T.M. methods of analysis were employed.⁽¹⁾ No analyses of hardening agents, added in Phase II, were performed.

PROCEDURES

Melting

For button melts of 250 gm size, compacts of nominal composition (additions weighed to 0.1 gram) were pressed in a 2 inch circular die, under a 50 ton pressure, from blended alloy components. Compacting pressure was about 31,800 psi. Vanadium was added as a master alloy with aluminum. Inasmuch as aluminum was to be added to each alloy, this method represented a convenient and economical procedure. Molybdenum was added in two ways: (1) as a low melting master alloy with aluminum, and (2) where necessary, as a fine elemental powder. The technical problem of alloying titanium with a material of considerably higher melting point was thus obviated. Otherwise, elemental alloy additions were used.

The compacts were then arc melted under an atmosphere of gettered argon with an inert tungsten electrode on a water cooled copper hearth. Suitable precautions were taken so that button

⁽¹⁾ Am rican Society for Testing & Materials, ASTM Methods for Chamical Analysis of Metals, Philadelphia, 1964 Edition.

melts were not contaminated with volatile constituents or residues from buttons previously in the furnace. All buttons were turned over and remelted several times in order that each would be homo geneous. Analyses of selected Fhase I alloys are given in Table II.

All ingots were vacuum melted by the consumable electrode vacuum arc melting process. For primary melting compacts of blended titanium sponge and alloying material were welded together and consumably melted into a copper heat sink crucible. The primary ingots were then lathe turned, welded together (for ingots of more than 10-pound final weight) and arc melted the second time into a copper crucible. After melting, the ingots were sampled for analyses at top, middle and bottom positions. The average analyses are reported in Table III, but for acceptance all three analyses were taken into consideration.

Fabrication

Buttons used in Phases I and II were hot rolled at 1750F (except where otherwise noted) to 0.080-inch thickness on a twohigh Waterbury Farrell rolling mill with roll diameters of 8-inches. Each alloy was reheated to temperature between passes. Upon reaching hot rolled gage, the sheets were allowed to cool and the surfaces were then conditioned by sandblasting and pickling in a solution of 35% HNO_3 -5% HF-balance water. Each sheet was then cold rolled to 0.050 inch.

Ingots in the 10-30 pound range (Phase III) were processed by forging at 2,000F to 3"x3"xlength; slices 1-inch thick were then cut from this billet after cropping off ends, and these slices were hot rolled at 1750F into 0.080-inch sheets These sheets were cold rolled to 0.050-inch, with the exception of sheets used in welding studies which were rolled to 0.060-inch. Warm rolling, where required, was done at 500F.

Heat Treatment

All solution treatments up to 1850F and aging treatments were carried out in air in an air recirculating furnace having a tolerance to $\pm 15F$. For solution temperatures above 1850F an electric muffle furnace was used. During this contract, three different cooling rates after solution treatment were used: Plate cocl, air cool and water quench. For plate cooling, samples were held between two titanium plates, each plate being 6-inch square and 1-inch thick. About 30 minutes were required for the specimen blank within the sandwich to reach temperature. After holding at temperature for the required time (15 minutes), the assemblage was removed from the furnace and allowed to cool in air on a laboratory rack. After about 20 minutes on the rack, the specimen blanks had cooled to 700F. This cooling rate was used in Phase I to simulate cooling rates to be expected in production of 2-inch plate. Figure 1 illustrates the cooling rate at the center of a 2"x6"x 6" plate observed between 1400-700F, compared with that in the center of a titanium sandwich 6-inch square, 2-inches thick. By suitable control of draft conditions, the specimen cooling rates were readily controllable within the limits shown. Figure 1 represents duplicate runs, and the initial temperatures observed were used to calibrate the furnace temperature controller during subsequent heat treatments.

In air cooling, samples were pulled out of the furnace and allowed to cool in air while lying on an asbestos surface. Sam ples so cooled were separated on the surface to assist in producing a uniform cooling rate. For air quenching to a given temperature, which was used on certain alloys in Phase II, after being in one furnace for the desired length of time, samples were pulled out of this furnace and held in air until their color matched that of a second furnace, and they were then inserted into that furnace.

In water quenching, samples were pulled straight out of the furnace into a bucket of cold water.

Mechanical Testing Procedures

For all of Phase I and II work, tensile specimens were machined from sheet blanks 4 inches long and 9/16-inch wide. A drawing of the tensile sample is shown in Figure 2. In Phase I work, samples were cut parallel to the rolling direction, but in all subsequent work, all tensile samples were cut transverse to the rolling direction. For evaluation of ingots in Phase III, a larger tensile specimen of a similar general configuration was used, so that total elongation was measured over a 2 inch gage length.

. .

. .

In preparing a sheet tensile specimen for test, the thickness and width were measured to the nearest 0.001 inch and the

-9-

cross sectional area was reported as the minimum product of thickness and width obtainable along the length of the specimen. The gage length of the sheet specimen was then coated with layout dye and markings 0.1-inch apart were lightly scribed along the gage length of the specimen.

With this preparation the specimen was placed in a 60,000 pound Riehle screw-type testing machine. An extensometer was attached and testing proceeded, using a paced strain rate of 0.005inch per inch per minute through 0.2% offset yield strain. Beyond the yield point, the strain rate was increased to 0.05-inch per inch per minute to rupture. Stress-strain curves were obtained through about 2% total strain. Beyond 2% strain only stress was recorded.

After a specimen was broken, it was carefully fitted to gether so that measurements of ductility could be obtained.

Local elongation was obtained by determining the percent change in length of the two adjacent scribed spaces which included the fracture. Uniform elongation was calculated from the length change over those four adjoining scribed spaces lying farthest removed in the gage length from the fracture. Total elongation was obtained by determining the percent change in length over all ten spaces or full gage length.

Samples for notch tensile testing were machined to the configuration shown in Figure 3.

Creep stability tests were performed upon samples having the same configuration as Figure 2. Creep tests were carried out in CR 12 Richle frames. After creep exposure, the amount of deformation was measured by means of a travelling microscope using hardness impressions for reference. Samples were then tensile tested at room temperature.

Impact tests upon sheet samples were carried out using laminated Charp V samples as shown in Figure 4. Samples of sheet were bolted together at each end, to give the approximate width of a standard Charpy V impact sample, the whole laminate was then machined to a configuration similar to that of a Charpy V sample before testing. For correlation purposes, actual test values were adjusted to conform with those which would have been obtained from a standard specimen on the basis of relative areas.

Rend tests were performed on samples of sheet generally 3/4-inch wide, and 6-inches long. While the width to length ratio of samples varied, no samples having a sample width of less than ten times sheet gage were used.

Bend and tensile tests upon welded samples were carried out on samples machined to the configurations shown in Figure 5.

Hardness tests were carried out on a standard Vickers hardness machine, using a 10 Kg load. At least three, and normally five, impressions were made on each sample, and the average of these taken for the hardness reading.

Determination of hot rolling pressures was made using a 2-hi Birdsboro Mill with 22-inch face rolls fifteen-inches in diameter. Roll separating force was measured by two SR-4 load cells which have a capacity of 150,000 pounds on each screw. Load results were read from a high speed Sanborn Recorder. Samples of starting gage 0.8-inch were given six passes through the mill, the opening being reduced for each successive pass, mill openings were 0.60, 0.45, 0.30, 0.20, 0.10 and 0.04-inches for passes 1-6 respectively. A mill speed of 200 ft/min. was employed.

For determination of cold rolling pressure tests, samples with a starting gage of 0.13-inch were rolled using a 2-High Stannat Mill with rolls of 8 inches in diameter and 10-inch face. Roll separating force was measured by SR-4 type load cells, signals from which were fed to a high speed recorder. To compensate for slight differences in the starting gage, the initial mill opening was set at 10% below the thickness of the panel to be rolled. A series of four passes was made at this initial setting; the opening was then decreased 0.01-inch and a second series of four passes made. A third and final series was taken after decreasing the mill opening by another 0.01-inch.

Metallography

For metallographic examination, bakelite mounted samples were ground on silicon carbide papers of increasing fineness to 600 grit, and then electropolished at 20 volts using a solution containing 600 mls methanol, 60 mls of perchloric acid, 360 mls butyl cellosolve, and 2 mls of solvent "X". Samples were etched in a solution of 1% HF in saturated oxalic acid.

Density Determinations

These were carried out upon sand blasted and pickled portions of sheet, which were weighed in air and then in deaerated water. A precision balance capable of weighing to 0.1 milligram was employed. The precision of densities obtained this way was better than 0.01 gm/cc.

Oxidation Resistance

In Phase I work, the "total weight loss" method was employed. For this, sheet samples 1-inch square were weighed before testing, then given 2 hours exposure in an open crucible at the selected temperatures; after cooling, samples were sandblasted to remove oxide, then again weighed. Results were deter mined as grams of weight lost per square centimeter of surface. In subsequent work, to attain more uniform results, the method of "total weight gain" was used. For this, weighed samples were exposed in covered crucibles containing holes to permit access of air, and were again weighed after exposure.

Analytical Techniques

Standard A.S.T.M. methods were used for all analyses of experimental alloy compositions.

Stress Corrosion Tests

These were carried out during Phase III of the contract Samples 3"x½"wide x gage were bent around a die to produce free bend samples of known radii These bends ranged from 2T to 9T, depending upon the heat-treatment of the alloys Samples were then coated with a saturated salt solution, air-dried, then exposed for two hours at 800F in still air. Samples were then removed and the salt washed off with water, and examined under a low power lens, they were then flattened out During this flattening operation, samples most susceptible to stresscorrosion broke. All samples were then examined again under a low power lens, and finally sections through the fracture were subjected to metallographic examination.

X-Ray Diffraction Studies

For X-ray examinations carried out in this work, 1-inch square pieces of sheet were given appropriate heat treatments. They were then mounted and polished on a series of silicon carbide papers of increasing fineness and then electropolished using a solution containing 600 mls methanol, 360 mls butyl cellosolve, 60 mls of perchloric acid, and 2 mls of Solvent "X". Samples were X-rayed using a Norelco 12045 diffractometer, employing Cu K α radiation with a nickel filter at 40 KV and 20 Ma, using a special device to rotate the sheet specimens about the sheet normal.

Welding Methods

Weldability tests were first performed upon hand welded specimens, but for all subsequent work, machine-welded samples were used.

Hand-welding was performed using the tungsten arc inert gas shielded process, without filler; argon was used for the inert gas and copper back-up plates were used as a heat sink. All specimens from hand welded blanks were machined, one specimen from each blank; beads were not ground flush with the base metal. Sheet gage was 0.050-inch. Welding was carried out using a current of 60 amps at 10 volts; speed of welding was 8 inches/minute.

Machine welding was carried out using 0.060-inch gage sheet which was welded together, without filler, in a welding machine at a speed of 20 inches/minute. Welding current was 100-150 amps at 9 volts, using an electrode of 2% thoriated tungsten, 3/32-inch diameter, using argon as the inert gas for protection. Welds were ground flush before testing of all tensile samples.

PHASE I: SCREENING BASE ALLOYS

To establish a stable beta base to which subsequent addition of compound forming elements might be made, it was deemed desirable to employ only beta-isomorphous elements which do not form compounds with titanium. However, all such elements are relatively weak beta stabilizers and large amounts would be required. For example, the amounts of Mo, V, Cb and Ta which would be required to metain the beta phase upon water quenching are: (1)

Element	Amount Required (Wt %)	Amount Required (Acomic 7)
Мо	11	6
V	15	15
СЪ	36	22,5
Ta	40	15

Considerably larger percentages would be required for a beta alloy which would be phase stable upon cooling in air in practical section sizes. This would render such alloys excessively dense.

For the above reasons, the relatively strong beta stabilizing elements Cr, Mn and Fe, which form the beta eutectoid type of phase diagram with titanium, were used in Phase I, in conjunction with Mo and V, singly or together. In addition, all compositions were formulated with 3% Al, since Al tends to suppress the formation of the brittle omega phase in beta titanium alloys. Use of Al also means decreased density, price reductions when Al-V master alloys can be used in formulation, and improved melting assimilation of Mo when added as an Al-Mo master alloy.

Unfortunately, little is known regarding the phase relationships throughout quaternary alloys such as Ti-Mo Cr-Al, or Ti-V Fe Al. Even the ternary diagrams such as Ti-Cr-V

ţ

⁽¹⁾ DMIC Report No. 136A, "The Effects of Alloying Elements in Titanium".

are not determined. However, from the Ti-Cr-Mo beta surface isotherms shown in Figure 6, it is possible to choose a Mo composition which will allow the formation of TiCr_g through beta eutectoid decomposition at reduced temperatures. (1) By the use of tie lines and analogy with the Ti Cr Mo diagram, the beta surface isotherms were constructed for the Ti Cr-V system, Figure 7. From these figures, Mo and V levels were chosen such that the eutectoid decomposition would occur at about 1000F (550C) so that beta would be retained during air cooling of thick sections. It is not known how the Mn and Fe eutectoid compositions or temperatures move with V and Mo additions, but by analogy with the foregoing, one would expect that the eutectoid temperature would lower and the composition would shift to lower values with increasing V or Mo.

Based on the foregoing, Cr was added to Ti-17V-3A1, Ti-8Mo-8V-3A1 and Ti-15Mo-3A1 base alloys in 2.5 wt. % increments calculated to bracket the eutectoid compositions and to explore the effect of additions at higher levels. To simplify comparisons, Mn was added in the same amounts. As Fe is known to be a stronger beta stabilizer than either Cr or Mn, it was added in lesser amounts. In this way, Phase I compositions were derived. The resulting alloys were then screened by room temperature tensile testing for marginal stability with respect to hypoeutectoid decomposition to alpha, and hypereutectoid decomposition by compound precipitation.

RESULTS

Processing

In general, alloys were hot rolled to 0,080 inch sheet at 1700F without trouble, though shight edge cracking was noted in alloys of all three bases containing more than 10% Cr. During cold rolling from 0.080 to 0.050 inch more cracking occurred. This was mainly confined to those alloys containing the higher percentages of Fe, Cr and Mn, the severity of cracking being

(1) Ibid, Page 200.

greatest with Fe and least with Mn. The presence of Mo in the base alloy aggravated this effect. Appearance of the sheet after hot and cold rolling is shown in Figures 8a to 8c. No difficulties were encountered during heat treatment or specimen preparation.

Tensile Properties

Tensile properties of all Phase I alloys are given in Tables IV to VI. All alloys tested were found to be mechanically stable, that is, the yield to ultimate strength ratio was above 0.90, Table VII. Mechanical instability in beta alloys is shown by an extreme ability to work harden, there being in such alloys a large difference between yield and ultimate strengths. This behavior is characteristic of marginally stable beta titanium alloys.

The trends of solution treated yield strengths with composition are summarized in Table VIII. Yield strength generally increased with Mo content in the base materials, although this difference tended to decrease as the amount of Cr, Mn or Fe increased. Fe was the most potent solid-solution strengthener while Cr was the least. This difference corresponds with the relative position of these elements in the periodic table, the element farthest removed from Ti having the greater strengthening effect.

Table IX gives the ratios of aged to solution treated strength for the Phase I alloys. Those alloys containing the lesser amounts of Fe, Cr and Mn strengthened considerably on aging at 900F for 8 hours. These alloys were not considered further in this phase of the contract as only thermally stable base compositions were sought, and alloys showing a strength increase exceeding 10% of the solution treated strength were arbitrarily classified as thermally unstable.

From evaluation of rolling behavior and tensile test results, the least amount of Fe. Cr or Mn necessary to stabilize the bases, and the most that could be tolerated from a processing standpoint, were determined as follows:

Base Material	Minimum Stabilizing Addition (To Nearest 2.5%)	Maximum Amount For Rollability (To Nearest 2.5%)
Dase Material	(10 Nealest 2. JA)	(10 Mealest 2.5%)
Ti -17V-3A1	10 .0Cr	12.5Cr
	7-, 5Mn	10.0Mn
	7.5Fe	7.5 F e
T1-8Mc-8V-3A1	7.5Cr	10.0Cr
	7.5Mn	10.0Mn
	5.0Fe	7.5Fe
Ti-15Mo-3A1	5,0Cr	10.0Cr
	5.0Mn	10.0Mn
	5.0Fe	5.0Fe

The limits for Fe are rather narrower than for the other two elements. The onset of poor cold-rollability with increasing alloy content may be related to probable changes in transition temperature of the B.C.C. beta structure. Warm rolling instead of cold rolling was found to improve the fabrication properties of marginal alloys.

There was no evidence of precipitation hardening upon aging the hypereutectoid group of alloys. Such alloys, after aging, did not show any marked increase in strength over that of the solutionized material.

Modulus values were estimated from stress-strain curves and are summarized for two conditions of heat treatment in Tables X and XI. In the solution treated condition, the elastic moduli consistently increased with the Mo content of the base, and with additions of beta eutectoid elements. On a direct weight percent basis. Fe exhibited the greatest effect on modulus, and Cr the least. Similar relationships are apparent for the alloys in the aged condition, though the compositional effects are much less pronounced.

Ductility trends with compositional variation are shown in Tables XII and XIII. Total elongation values at first cended to increase with the amount of beta stabilization; then, with further increase in alloying content, fell abruptly to lower values.

-17-

Metallography

Metallographic examination of the alloys was undertaken to determine the recrystallization temperature and beta transes for solution treatment purposes. Samples which had been previously hot rolled to 0.080 inch gage, then cold rolled to 0.050 inch gage were used Figure 9 illustrates extensive slip and elongated grains typical of the as-rolled condition. Occasionally extensive cracking was observed, mostly in alloys containing the greater amounts of alloying elements. Usually, after heat treating for $\frac{1}{2}$ -hour at 1250F a precipitate was present in the grain boundaries, as in Figure 10, which gradually dissolved on heating at temperatures of 1450F and above. **Recrystallization** began at 1350F. Some grain growth was evident in many alloys at 1550F Exceptions to these generalizations were the 15% Mo alloys containing 12.5 and 15% Mn, in which little precipitate appeared at any temperature This lack of precipitate may be caused by the sluggish eutectoid reaction of Mn

Examination revealed that a good correlation existed between the tensile properties and microstructures of these alloys. Figure 11 shows Ti 15Mo 7.5Mn-3Al after solution treatment, and Figure 12 shows the same alloy solution treated and aged. This alloy had a solution treated yield strength of 141 Kpsi, and an aged yield strength of 143 Kpsi, with 25% elongation both before and after aging, and was therefore regarded as stable. The two photomicrographs indicate that little precipitate appeared upon aging. By contrast, Ti-17V-2.5Fe-3Al, a thermally unstable alloy, solution treated had a yield strength of 115 Kpsi with 15% elongation, and an aged yield strength of 135 Kpsi with 67 elongation. Comparison of Figures 13 and 14 shows a darkening of grains after aging in this alloy that is characteristic of alpha precipitation.

Oxidation Studies

1

These tests were carried out at five temperatures, samples being given two hours exposure. Tests were carried out in open crucibles, using a still air electric furnace and sheec samples 1-inch square. Results were determined as grams of weight lost per square centimeter after sandblasting, and are listed in Table XIV, being shown graphically in Figures 15 to 17. The greatest loss in weight was found among alloys in the 17%V group, and the least among the 15%Mo group. In all cases additions of Cr to these alloys reduced the amount of oxidation.

Densii Determinations

Densities of the Phase I alloys ranged from 0.171 to 0.191 lbs/cu. in. and are listed in Table XV.

Analytical Determinations

To check button analyses against target compositions and assure that no unusual formulation difficulties would be encountered in melting of alloys selected for Phase II, selected alloys were analyzed. Results in Table II show that with exceptions of Fe and Mn contents, all values are close to those calculated. Some loss of Mn is normal due to its volatility.

SELECTION OF ALLOYS FOR PHASE II

Selection of the base alloys for Phase II was made on a basis of stability, fabrication and tensile properties, with other factors such as density, ease of melting and cost also taken into account Using these criteria three alloys were selected from ten most promising alloys Table XVI

> Ti-8Mo-8V 7 5Fe 3A1 Ti-17V-10Cr 3A1 Ti-15Mo-5Fe 3A1

Each base composition was represented in the three alloys chosen to uncover the relative advantages of each system

The Ti-8Mo-8V 7 5Fe 3A1 allow had a vield strength of over 160 Apsi, total elongation over 20%, a uniform elongation of 10%, density of 0.180 lbs/cu in., fair oxidation re sistance, but borderline cold rollability. Although some cracking of the material did occur during rolling, this was not too serious and the sheet had the smoothly rounded outline characteristic of these allows with good fabricability. During analysis of the material it was found that the Fe content was $\frac{1}{2}$ % higher than planned, which no doubt contributed to the rolling problem. This alloy from the all-around point of view was the best stable alloy developed during Phase I.

Ti 17V 10Cr 3Al had a yield strength of 135 Kpsi, total elongation over 14%, uniform elongation of 10%, good rolling properties, a density similar to Ti 13V 11Cr-3Al (0.175 lbs/ cu. in.) and fair oxidation resistance. This alloy, though not having the strength of some of the other alloys in the 17%V group, had greater ductility.

Ti-15Mo 5Fe 3Al had a yield strength of 140 Kpsi, total elongation of almost 20%, uniform elongation of at least 10%, a density of 0.183 lbs/cu. in., and good oxidation resistance. It was judged to be the best representative from the 15% Mo group, having a good combination of strength and uniform elonga tion (though a lower strength/weight ratio than alloys in the other two groups).

Selection of Precipitation-Hardening Elements

"Precipitation hardening" as a means of strengthening titanium alloys is presently used in several commercial alloys; well known amongst them are Ti-6A1 4V and Ti-13V-11Cr-3A1. Hardening occurs by precipitation of beta from martensitic alpha, or by rejection of alpha from metastable beta. The purpose of this phase of the contract was to explore a third method of precipitation-hardening: precipitation of an intermetallic compound or a phase other than alpha from a stable beta solid solution.

A literature survey was therefore undertaken of the alloying elements having retrograde solid solubilities in beta Ti. A list of the elements considered, with their atomic size factors, solubilities in alpha and beta titanium, electronegativity, valency, and type of intermetallic compound formed is given in Table XVII. The relationships of the atomic size factors and electronegativities to the solubilities of the elements in alpha and beta titanium are shown graphically in Figures 18 and 19. Also included in the table is the respective cost, in dollars/pound, of each element, and; based on this figure, the maximum amount which could be added without raising the cost of the alloy more than 10%. The figures are relative to the time the study began

Alloying elements may be divided into beta-eutectoid, compound formers, and peritectoid categories. They are considered next under these headings in discussing the reasons for their acceptance or rejection.

Elements Forming Beta Eutectoids

A group of beta eutectoid elements that have extensive beta titanium solubility (but restricted solubility in alpha) are: Cu, Ag, Fe, Cr, Mn, Co, U, Ni, Au, Bi, Pb, and Tl. Cu has a large solubility in beta titanium, with a retrograde beta/TigCu solvus curve. Cu stabilized beta titanium decomposes actively, that is, beta eutectoidal decomposition kinetics are quite fast compared with those of Fe or Mn stabilized beta. The premise was made that, if eutectoid decomposition is rapid, then Ti₂Cu ought to be rejected actively and cause hardening as material is aged below the solvus. This element was selected in preference to either Ag and Au on cost grounds. Large amounts of Fe, Cr and Mn were found to cause rollability problems in Phase I without commensurate increases in hardenability. They were therefore not considered further as hardening agents.

U has a high density and is relatively costly. However, Ni and Co are cheap, readily available, and have medium densities. These two elements were also selected for use in Phase II.

The other three elements, Bi, Pb and Tl, were considered unsuitable becau e of their high volatility. Bi and Tl boil below the melting point of titanium and the boiling point of rb is only slightly higher.

Elements Forming Compounds

These are elements with limited solubility in both alpha and beta titanium and which form compounds. The rather similar elements Si and Ge form isomorphous compounds Ti_sSi_s and Ti_sGe_s. Ge has the greater solubility in Ti, but, on account of its limited availability, was considered to be a less desirable hardening agent than Si. Si has a maximum solubility of about 0.4% in alpha, and about 3% in beta. Both Si and Ge were employed in Phase II work.

Use of the element In was ruled out because of its high price, and the large amount needed for any potential hardening.

The Ti Be system is largely unknown; however, Be lowers the melting point of Ti. On the possibility that a favorable retrograde solvus might exist, Be was also included in the list of hardening agents for Phase II.

Peritectoid Elements

The solubility of the rare earths in Ti is limited, mainly because of their low electronegativity values and relative size factors. The only phases co-existing in the Ti-rare earth phase diagrams are the respective terminal solid solutions. However, because of retrograde solubilities in the beta phase, they were

-22-

considered potential hardening agents. Owing to the complexity of the alloys employed in this program, compounds of the rare earths, as with Al, might also form the basis for precipitation hardening. On these grounds, misch metal (a mixture of rare earths high in Ce) was selected for evaluation as a hardening agent, along with pure Nd, which has a higher melting point.

Selection of Levels

The elements selected for use as hardening agents in Phase II were thus Cu, Ni, Co, Si, Ge. Be, misch metal and Nd. To bracket the eutectoid compositions, Cu, Ni and Co were first added to base compositions in quantities of 1, 3 and 5% with later ad justments as required. Si, Ge and Be were first added in lesser amounts: 0.5, 1 and 2% of Si and Be, and 2% or Ge. Misch metal and Nd were added in amounts of 1, 2 and 3% to bracket the minimum beta solubilities.

The above elements were added to the base alloys selected from Phase I: Ti 17V-10Cr 3A1, Ti-8Mo 8V 7.5Fe-3A1, and Ti-15Mo-5Fe 3A1. Ingots weighing some 250 grams each were melted, there being eighty-six resulting alloys.

Rollability Screening of Phase II Alloys

Practical work on Phase II was begun by melting and rolling the above one-half pound ingots to sheet. The ingots were break down rolled at 1750F and hot rolled to 0.080-inch gage, then sand blasted and pickled, and cold rolled to 0.050-inch gage. The initial pass of hot rolling was a 5% or less reduction, and each subsequent pass did not exceed a 10% reduction.

All alloys containing misch metal and Nd, and most of those with Be, cracked up during hot rolling. In addition, all samples containing 5% Ni, Co and Cu, with the exception of Ti-17V-10Cr-3Al-5Cu, also cracked up on rolling. In general, the hot rolling performance of the alloys grew progressively worse with increasing "hardener" as well as Mo content. Results of rolling are given in Table XVIII and examples of the sheet produced are shown in Figures 20 to 23.

. .

. .

Several ways to overcome the hot shortness of the alloys containing misch metal were tried. As the solubility of the rare earths in the beta phase is alleged to be greater at higher temperatures, an attempt was made to hot roll the alloys at 2100F, but they again cracked on the first pass. The rolling temperature was then lowered to 1400F, below the melting point of Ce (1470F), with no improvement in the results. Nd melts at 1880F, but alloys containing it behaved similarly in rolling. The rare earths were therefore not used further in this project.

Results with alloys containing Be were little better. Reduction of the Be content to 0.1, 0.2 and 0.3% (below the original 0.5 - 2% range) was undertaken, but; with the exception of alloys with the Ti-17V-10Cr-3Al base, cracking again took place on hot rolling. However, small specimens of sheet were salvaged and heat treated to determine any hardening response.

As Phase I results had shown large additions of Fe led to poor rolling characteristics, the Fe and Cr contents of the base alloys were reduced, in the supposition that by so doing the tolerance of the base alloy for Cu, Ni and Co would be increased. The Fe content of Ti-15Mo-5Fe-3Al was reduced to 3 and 2% and that of Ti 8Mo-8V-7.5Fe-3Al, to 5 and 4%. The Cr content of Ti-17V-10Cr-3Al was cut back to 8 and 7%. The "hardener" contents remained the same. Hot rolling performances improved only slightly. Alloys containing Cu showed greater hot rollability than those with Ni or Co.

Several other alloys, which had been hot rolled satisfactorily to 0.080-inch gage, cracked during cold rolling to 0.050inch gage. Usually the cracks extended inwards from the sides of the sheet. Figure 21 shows examples of sheet, containing equal amounts of Cu, Ni, and Co, which were rated as good, poor and fair rolling quality respectively. Figure 21 also shows typical behavior of alloys containing Be; about 0.3% is the maximum tolerated. Figure 23 is characteristic of alloys containing rare earths; disintegration on the first pass of hot rolling was consistently observed.

In summation of rollability screening tests. sheet produced from eleven alloys was good; fifteen alloys produced fair sheet, and twenty five alloys gave poor sheet. Thirty-five alloys were so hot short as to be unworkable.

The hot shortness of alloys containing Ni, Co, Nd and Be was studied metallographically, Figure 24. Specimens in the as-rolled condition showed cracks occuring along grain boundaries at which there were fine, almost continuous, networks of second phase in all but the alloys containing Be. These latter alloys evidently contained grain boundary eutestic that caused hot shortness.

Heat Treatment Response of Alloys

Five heat treatments were used in screening aging response of the experimental alloy sheet:

- Solution treatment at 1350F for ½ hour, plate cooled, aged at 950F for various times;
- (2) Solution treated as above, and aged at 1050F for various times;
- (3) Solution treated at 1500F for ½ hour, "plate cooled", aged at 850F for various times;
- (4) Solution treated at 1350F for $\frac{1}{2}$ hour, quenched, aged at 950F for various times;
- (5) Aged at 850F directly from the cold-rolled condition.

The response of various types of alloys as indicated by hardness* and tensile properties will now be discussed.

Results of the first evaluations are contained in Tables XIX to XXVII. Additions forming beta eutectoids generally suppressed, rather than enhanced, aging response, indicating increased beta stabilization without useful precipitation of compound. Although Cu additions seemed to provide some response, it was not enough to be of interest within the rollability limits. These generalizations seemed to hold for all combinations of heat treat ment and for all bases containing beta eutectoid additions.

^{*} Values were obtained with a Vickers hardness tester using a 10 Kg load, as previously described.

At this point, the proportions of beta eutectoid elements in the alloys were increased, in the hope of inducing precipitation hardening. Two main approaches were used: first, increasing Cu at the expense of the non-hardening elements in the base alloys, and second, adding Ni at the expense of Cr. As with the earlier results, increasing Cu degraded rollability, particularly in the presence of Mo, see Table XXVIII. The alloys containing increased Ni content could not be rolled to sheet and no further work was done with these alloys.

Tensile properties were determined for those high Cu alloys which could be rolled to good sheet. Results in Table XXIX show the alloys have low solution treated ductility and, though high strengths were attained by a few compositions on aging, these materials were exceedingly brittle. Metallographic studies showed that alpha precipitation accompanied aging in all alloys. Because of this, and the embrittlement tendency, Cu containing alloys were not pursued further.

At this point, attention turned to the possibility that the active eutectoid elements Ni and Co might produce precipitation hardening in the beta alloys containing only beta eutectoid additions. Preliminary rolling studies of ½ pound ingots proved that hypereutectoid binary alloys containing up to 10Ni or 13Co could be hot rolled to sheet. Five percent of each of Fe and Mn was therefore added to the Ti-Ni and Ti-Co alloys at two levels of Ni and Co to provide increased beta stabilization. The alloys could be hot rolled readily, but cold rolled only with difficulty. Primary compound existed in all hot rolled alloys. After solutionizing the compound, the alloys exhibited the aging responses illustrated in Table XXX.

The Ni containing alloys aged up at least 100 VHN in minutes without a significant metallographic change. Such rapid hardness changes suggest omega formation. In any case, alpha appeared upon overaging. Since eutectic melting also occurred in most alloys at the 1750 or 1850F temperatures required to achieve solution, these alloys were not studied further.

The alloys containing Si did not respond to the heat treatments shown in Tables XIX to XXVII. However, metallographic study showed that not all silicides were dissolved at the solution temperatures employed. Additional & pound ingots were therefore prepared to more systematically study the solvus and aging parameters.

-26-

The effects of Si additions on the tensile properties of Ti-17V-10Cr-3Al are shown in Table XXXI. Strengths are good and ductility is useful up to at least 0.5% Si.

The aging responses of alloys containing 0.5 and 1% Si are shown in Table XXXII. All silicides were dissolved at the solution temperatures used. An aging response of about 80 VHN was achieved in the 1% Si alloy after quenching and aging at 1050 - 1150F. Since no metallographic changes could be associated with the response, the hardening phenomenon was presumed to be true precipitation hardening.

Silicide hardening, however, seemed to be quite rapid as the data in Table XXXIII shows. Plate cooling, instead of water quenching, from solution temperature caused as-solution-treated hardness to increase 30 VHN with a consequent decrease in aging response.

In any case, the specimens solution treated and quenched from 1950 or 2050F were hopelessly brittle. Since extensive grain growth occurred during solutionizing, the cause of the brittleness was not immediately clear. The next experiments, therefore, studied the aging mechanism as well as the effects of grain growth.

• •

. .

- -

...

••

ł

Ti 17V 10Cr-3Al-1Si and the same alloy with Si (as a control) were chosen for the mechanism study. X ray diffraction techniques were used to follow the solutionizing and aging phenomena. The results are given in Table XXXIV. The alloys were solution treated both above and below the silicide solvus illustrated in Figure 25 and aged at 1250F so that any phases coming out would be coarse enough to detect.

The X ray diffraction data confirmed metallographic interpretations of the silicide solvus. Ti Si was identified after a 1750F solution treatment, but only beta was present after quenching from 2050F. Aging after a 2050F solution treatment produced both alpha and Ti Si diffraction peaks. Aging also caused the beta defraction peaks tobroaden, indicative of lattice strain, and low angle scattering to increase. Lattice strain was the only feature observed in this study that might reduce ductility.

The grain growth aspect of the situation was approached in three ways:

-27-

- (1) By solutionizing at 2050F and down quenching to progressively lower temperatures for times of ½ and 15 minutes, then quench and aging to ambicat temperatures. (This was intended to show whether step quench sequence could minimize the embrittlement while maintaining aging response.)
- (2) By quenching from 2050F directly off the hot rolls to minimize grain growth.
- (3) By varying the solution time so as to minimize grain growth.

Results of these experiments are given in Tables XXXV and XXXVI.

Conclusions derived are that step quenching destroys the silicide contribution to the aging response. The same is true for quenching off the rolls, even though bend tests on as-quenched material implied reasonably fine grain size. Since longer solution times and higher solution temperatures also decreased tensile ductility, see Table XXXVI, grain size undoubtedly contributed substantially to the brittleness, though solid solution of Si and silicide distribution were also important.

In view of the shallow depth of hardening, together with difficulties attending effective solution treatment, Si additions were not pursued further. It should be mentioned again, however, that compound precipitation hardening was achieved in this portion of the contract.

Ge proved to be an ineffective hardener as the data in Table XXXVII shows. The 20-30 VHN increase is assignable entirely to alpha hardening.

The use of Be produced results similar to those from Ge, though their alloying behaviors are quite different. Data shown in Table XXXVIII is also explainable on the basis of alpha hardening. Neither Ge nor Be were studied further.

PHASE II SCREENING OF POTENTIAL NON-AGEABLE STABLE BETA ALLOYS AND AGEABLE METASTABLE BETA ALLOYS

At this point in the program the scope of the contract was expanded to include development of medium strength, formable stable beta alloys as well as conventionally metastable beta alloys ageable by alpha precipitation. The stable beta target was a formable and weldable alloy which would possess a strength ratio of approximately 8 x 10^5 inches as delivered from the mill (thereby obviating problems of heat treatment for the manufacturer). The metas able beta target was an alloy which would:

- Be low in strength and readily formable as solution treated;
- (2) Age to a strength/density ratio of 1 x 10^b inches with useable ductility;
- (3) Be capable of developing strong and ductile fusion welds and;
- (4) Insofar as possible be superior to the com mercial metastable beta alloy, Ti-13V 11Cr-3A1.

Toward that end, a number of Phase II alloys displaying stable behavior were tensile tested. Alloys selected were those from which better sheet was produced in rollability screening. Results given in Tables XXXIX to XLI show that quite respectable combinations of strength and ductility were found among the alloys. Exploring the stability of these alloys, by aging for 8 hours at 950F, indicated that many underwent little change in either strength or ductility. Base alloys containing Mn, Fe or Co additions displayed the most attractive properties. Bend tests performed on selected alloys also confirmed that formability of most could be judged excellent, Table XLII even after "aging" at 950F for 8 hours.

Based on the above findings, and additional data obtained in Phase I (Tables IV to XIII), Ti-17V-(10-12)Mn 3A1 and Ti-8Mo-8V-(6-7)Fe-3A1 were selected for Phase III study. Because certain Phase II alloys containing Co had shown high ductility, further investigation of this additive was planned under Phase III.

ì

Phase I work had also shown that base alloys containing less than about 5% Fe, Cr or Mn displayed a marked aging response after aging for 8 hours at 900F. Several could be aged to strength/ weight ratios exceeding $1,000,000^{-1}$ inches. These alloys were therefore examined with regard to producing an ageable beta alloy hardening by alpha precipitation. It was observed that samples containing Fe showed the greatest amount of ductility consistent with a high aging response. On this basis, Ti 17V (1.5-4)Fe-3A1 and Ti-8Mo 8V (1-3)Fe-3A1 were selected for Phase III study as ageable beta alloys.

PHACE III - EVALUATION OF STABLE AND METASTABLE BETA SHEET ALLOYS

The foregoing work indicated that the prospects of develop ing a useful precipitation-hardened stable beta alloy, analogous to the stainless steels, were remote. However, as previously described in the conclusion of the Phase IT work, two other types of alloy showed promise: (1) Non hardening stable beta alloys; (2) Metastable beta alloys hardening by means of conventional alpha precipitation. These alloy types were therefore evaluated in Phase III.

In both Phase I and II work, suble both alloys were developed which possessed reasonable fibrication preperties and had strength/ weight ratios exceeding $800,000^{-1}$. From that work, two stable beta alloy ranges were selected for study. Ti-8Mo-8V-(6-7)Fe-3A1 and Ti-17V-(10-12)Mn-3A1. Both committions gave annealed tensile strengths of 160 Kpsi, YS/UTS rulies of 0.9 or higher, uniform elongations of 10%, and elastic moduli exceeding $16.0x10^{-6}1b/in^2$. Optimization of these compositions based on fabrication and tensile properties was planned. Partial or complete substitution of Co for Fo was found to improve uniform elongation in Phase II work, so ostensibly stable beta compositions containing Co, with and without Fe, were also evaluated in Phase III.

Also Phase I alloys containing less than 5% additions of Cr. Mn, or Fe displayed marked strengthening after aging for 8 hours at 900F. Several could be aged to strength/weight ratios exceeding 1,000,000 inch⁻¹. The greatest amount of ductility, consistent with high aging response, was found in those alloys containing small amounts of Fe. Ti-17V-(1.5-4)Fe-3Al and Ti 8Mo-8V-(1-3)Fe-3Al were selected on that basis for Phase III study of metastable alloys. Because of potential ductility improvements, three metastable alloys containing Co were also selected for evaluation.

The evaluation of the stable beta alloys will be discussed first, followed by the metastable, or ageable, alloys.

-31-

Stable Beta Sheet Allcys

(a) Optimization of Compositional Range

One half pound button ingots of Ti-&Mc 8V-6Fe-3A1, Ti 8Mo 8V-7Fe-3A1, Ti 17V-11Mn-3A1 and Ti-17V-12Mn-3A1 were used in this evaluation. Alloys were hot rolled at 1750F to 0.080-inch gage sheet, sandblasted and pickled, then cold rolled to 0.050inch gage. However, during the cold rolling of Ti-8Mo 8V-6Fe-3A1, edge cracking occurred. The remaining sheet of this composition and all Ti-8Mo 8V 7Fe-3A1 sheet were therefore rolled at 250F, which greatly reduced edge cracking. Examples of sheet after cold rolling are shown in Figure 26.

Tensile, bend and impact data were obtained from each alloy; tensile samples were either solution treated (1450Fhr-AC) or solution treated and aged (1450F-hr AC+990F 8hrs-AC). Tensile results are listed in Table XLIII. These indicate that increasing the Fe or Mn contents respectively of both alloys by 1% produced an increase in ultimate tensile strength of about 5 Kpsi, with a slightly higher gain in yield strength. No change in strength upon aging was found; however, bend data showed that a drop in the bendability of Ti-17V-12Mn-3A1 occurred, Table XLIV. Uniform elongation was erratic in all alloys, but local elongation was 30 - 50%.

Metallographic examination of Ti-17V-(11-12)Mn-3A1 did not reveal any microstructural change upon aging, but Ti-8Mo-8V-(6 7) Fe-3A1 displayed a thickening of some grain boundaries after aging. Examination of sections through broken bend samples failed to reveal any evidence that this led to intergranular rather than transgranular fracture.

Laminated impact specimens from an experimental alloy sheet were tested in both solution treated (1450F ½hr-AC) and in aged conditions (1450F-½hr-AC+900F-8hrs-AC). The specimen configuration was illustrated in Figure 4; dimensions of the laminate were similar to those of a Charpy V notch impact sample. Actual test values were adjusted to conform with those which would have been obtained from a standard specimen Samples were tested at -80F, room temperature and 300F. Results of tests are listed in Table XLV. In both annealed and aged conditions a sharp decline in impact strength with decreasing temperature was found, characteristic of BCC crystal structures. For example, at -80F Ti-17V 11Mn-3A1 in the solution treated condition had an impact value of only 2.25 ft/1bs, which rose to 14.75 ft/1bs at room temperature, and to 28 ft/1bs at 300F. Similar results were found on the other three alloys; aging generally decreased impact values. In both groups of alloys, lower impact values at -80F and room temperature resulted with increase in the total beta content of the alloys.

The tensile, bend and impact data thus indicated that the lower percentages of Fe or Mn are preferable. Inasmuch as previous Phase I data indicated that Ti-17V-10Mn-3A1 was also a stable composition, this alloy was selected for further study over Ti-17V-11Mn-3A1 as a conservative measure.

(b) Evaluation of Ti-3Mo-8V-6Fe-3A1 and Ti 17V-10Mn-3A1

Thirty-pound ingots were used to evaluate the properties of these two alloys. Analyses are listed in Table III. Forging to 1½-inch thick slabs was carried out at 2100F. No unusual difficulties were encountered. The slabs were rolled to 0.8inch thick plate at 2100F, for determination of hot rolling pressures. In this test the commercial Ti-13V-11Cr-3A1 composition was used as a control. The techniques used in these tests are described in "Materials and Procedures".

Hot rolling pressures were obtained for all three alloys, using initial rolling temperatures of 2100 and 2250F. Panels were heated for 45 minutes before rolling. Results are given in Table XLVI, and shown graphically in Figure 27. Ti-17V-10Mn-3A1 and Ti-8Mo-8V-6Fe-3A1 were no more difficult to hot roll at 2100F than Ti-13V-11Cr-3A1, and were somewhat easier to hot roll at 2250F than that alloy.

Cold rolling pressure tests were then made; details of this are also described in the "Materials and Procedures" section. Results are listed in Table XLVII. Both alloys had a similar resistance to cold rolling and both were somewhat more difficult to deform than Ti-13V-11Cr-3A1. This no doubt reflects the higher strengths of these stable beta alloys. Reductions were not as heavy as planned because roll separating forces in several passes exceeded the 300,000 pounds rated capacity of the mill.

- 33-
Mechanical properties were next determined on the alloys, samples being solution annealed for $\frac{1}{2}$ hour at 1450F. Room temp erature and 600F notched tensile properties, and 600F smooth tensile properties, creep stability tests, oxidation characteristics, stress corrosion resistance, and weldability were assessed.

A notched configuration of $K_t = 8$ was used for all notched tensile tests. Results, Table XLVIII, indicate that both alloys had NTS/UTS ratios above unity, and that Ti-17V-10Mn-3A1 had slightly higher notch strengths. There was little difference in the 600F tensile properties of the alloys; yield strengths of 106-116 Kpsi were found Thus about 75% of their room temperature yield strength was retained at 600F, Table XLIX.

Creep stability tests were performed at 600F for 150 hours, using loads of 90% of the yield stress at 600F. Creep deformations of around 0.2% resulted, Table L. After creep exposure, samples were tensile tested at room temperature. Compared to the unexposed specimens there were decreases in both local and uniform elongation accompanied by considerable increases in strength.

Oxidation studies were performed on samples of sheet exposed for 2 hours at 1500F; details of the method employed (total weight gain) are described in "Materials and Procedures". Table LI shows that Ti-17V 10Mn-3A1 had the lowest weight gain of the two alloys under these conditions, 0.0104 gms/sq.cm. of sheet surface.

To determine the relative susceptibilities of the two stable beta alloys to stress corrosion, samples of each alloy were subjected to unrestrained bend tests. This method is described under "Materials and Procedures". Results are given in Table LIL. Low power optical examination of the broken surfaces revealed that Ti-8Mo-8V-6Fe-3Al was the more resistant alloy.

Welded tensile and bend samples of Ti-17V-10Mn-3A1 and Ti-8Mo-8V-6Fe-3A1 were prepared using methods described under "Materials and Procedures". Tensile results in Table LIII show that these alloys broke before reaching yield stress. Metallographic examination of the alloys failed to reveal any reason for this. Excellent bend radii were found with the base metal, but welded samples were also brittle in bending, Table LIV. Weldments aged 500 hours at 650F were also brittle.

This lack of weldability constituted a major impedement to the further development of these stable beta alloys. Work on them was therefore discontinued while efforts continued in other directions.

(c) Use of Co in Stable Beta Sheet Alloys

In the course of earlier work it was found that substitution of an equivalent weight percent of Co for Fe produced ageable beta alloys having annealed yield strengths of up to 150 Kpsi. Because such alloys might be weldable in an overaged or "stabilized" condition, they were evaluated as possible equivalents for stable beta compositions.

Tensile tests of Phase II alloys suggested that use of Co produced good strengths and increased uniform elongation. To further explore this, three alloys of potentially stable beta compositions were formulated as $\frac{1}{2}$ pound button ingots: Ti 17V-7.5Co 3A1, Ti 8Mo 8V-5Co-3A1 and Ti 8Mo 8V 4Fe-4Co 3A1. Fabri cation to sheet by hot and cold rolling methods identical to those employed for Phase I and II alloys, showed that Ti-8Mo-8V-4Fe-3A1 had marginal rollability. Room temperature tensile tests, carried out in both the solution treated and aged conditions, showed that only Ti-8Mo-8V 4Fe-4Co-3A1 behaved as a stable beta alloy; the other two alloys displayed strength increases upon aging, Table LV.

Since stability after solution annealing was not achieved in a rollable alloy, attention was turned toward the possibility of overaging these alloys at temperatures sufficiently high to suppress any aging response at potential exposure temperatures. Ti-17V-7.5Co-3Al was used to assess this possibility. Specimens were solution treated 15 minutes at 1350F, air cooled, then aged at 1100F for times of up to 16 hours. Results are shown in Table LVI. Aging at 1100F for 16 hours produced only a 13 point hardness increase that was accompanied by precipitation of coarse alpha phase in the microstructure. In this condition the alloy could behave in a manner similar to an otherwise stable beta composition. Tensile tests of Ti-17V-7.5Co-3Al solution treated and aged at 1100F for 10 and 30 minutes, and 16 hours, were then made. These results confirm the hardness findings in that there was no significant change in strength after aging for 10 or 30 minutes, and only a small strength increase after aging for 16 hours at 1100F, Table LVI. A sharp rise in uniform elongation upon aging for short times appeared to be a useful feature of the treatment. "Stabilization" was thus established in an alloy at yield strength levels on the order of 150 Kpsi.

This technique was then used on the other Phase III alloys then candidates for selection as high strength metastable beta alloys. Samples of Ti-8Mo-8V-5Co-3A1, Ti 17V 7.5Co 3A1, Ti-8Mo-8V-2Fe-3A1 and Ti-17V-2Fe-2Co-3A1 were solution treated for 10 minutes at 1500F, air cooled, and then aged at 950, 1000, 1100 and 1250F for 8 hours to determine proper "stabilization" treatments. Minimum bend radii determinations showed that after aging for 8 hours at 1100F, all alloys, except possibly Ti 17V-7.5Co-3A1, could pass a 3T bend, Table LVII. A stabilization treatment of 1100F for 8 hours thus allowed adequate formability. With this encouraging result, additional mechanical property tests were carried out.

Tensile and notched tensile test results listed in Tables LVII to LIX show Ti 17V-7.5Co-3A1 and Ti-8Mo-8V-5Co-3A1 were the stronger alloys at both room temperature and 600F. However, they had low room temperature NTS/UTS ratios of 0.78 and 0.66 respectively. By contrast, Ti-8Mo-8V-2Fe-3A1 and Ti-17V-2Fe 2Co-3A1 had somewhat lower smooth tensile strengths, but notch tensile properties ratios of 1.16 and 1.07 at room temperature respectively. At 600F the NTS/UTS ratio of all four alloys exceeded unity. These results are probably indicative of transition behavior in the high r Co alloys.

Creep stability tests, Table LX, showed that the higher Co alloys were rather unstable, judging by ductility retained after 600F-150 hour creep exposures. In sharp contrast, Ti-8Mo-8V-2Fe-3A1 and Ti-17V-2Fe-2Co-3A1 exhibited good ductility after 150 hours exposure. Ti 8Mo-8V-2Fe-3A1 was the only alloy providing good stability after 500 hours exposure. The Co containing alloys were thus not sufficiently promising to be considered for further scale-up. Their instability may well be related to rejection of compound. The stable beta alloys evaluated in this contract proved quite capable of reaching annealed yield strengths on the order of 150 Kpsi with good ductility, but rollability, weldability and/or stability were not adequate. Since the metastable beta alloy Ti 8Mo 8V-2Fe 3Al could be "stabilized" to exhibit sub statially the same strength levels without compromising other properties, the stable beta alloys were not considered for Phase IV evaluation.

The next section discusses the further development of metastable beta alloys.

Metastable Beta Sheet Alloys

(a) Optimization of Composition

In Phase I studies, Ti 17V 2.5Fe 3A1 and Ti 8Mo 8V 2.5Fe 3A1 gave particularly good combinations of aged strengths and ductility, Tables IV and V. In order to optimize further their Fe content, four alloys, Ti-17V-1.5Fe-3A1, Ti 17V-4Fe-3A1, Ti-8Mo-8V-1Fe-3A1 and Ti-8Mo-8V-3Fe-3A1 were melted as 30-pound ingots, processed to sheet, and evaluated for aging response by hardness and room temperature tensile tests, Tables LXI and LXII. From these results, Ti 17V 4Fe 3A1 gave better aged ductility than did Ti 17V 1.5Fe-3A1 and was evaluated further. Higher Fe had slowed aging response of Ti 8Mo-8V-1Fe 3A1, but increased uniform ductility. The Fe level in this alloy was optimized at 2%. ⁽¹⁾ Ti-17V-4Fe-3A1 and Ti-8Mo-8V-2Fe-3A1 were then given more extensive property evaluations.

The effects of various aging times and temperatures on the room temperature tensile properties of each of the selected alloys were then determined. Results, Tables LXIII and LXIV, show that both alloys had solution treated yield strengths of about 120 Kpsi, but that Ti 8Mo 8V-2Fe-3Al had a faster aging response in a given time at all aging temperatures employed

 ⁽¹⁾ Results of compositional variations on Ti-8Mo 8V-2Fe-3A1, varying the amount of Fe, Al and O are included in Tables A4 and A5 in the Appendix to the Final Report, Part 1

For example, after aging for 8 hours at 900F, the yield strengths of Ti-8Mo-8V-2Fe-3Al and Ti-17V-4Fe-3Al were 180 and 148 Kpsi respectively. Ti 8Mo-8V-2Fe-3Al also appeared to have somewhat higher uniform elongations at yield strengths of 185 Kpsi and above.

To obtain a correlation between room temperature tensile properties and Vickers hardness of these two alloys, hardness results were obtained from broken tensile specimens and were used to calculate a linear regression line for each alloy. Vickers hardness was plotted as the independent variable, and ultimate tensile strength as the dependent variable*. For Ti 8Mo 8V 2Fe 3Al the relationship between Vickers hardness and ultimate tensile strength was expressed by the following equation:

UTS = (Vickers hardness x 613) - 48,500;

and for Ti-17V-4Fe-3A1:

UTS = (Vickers hardness x 621) - 44,360,

where UTS is given in Kpsi. The slopes of these plots are practically identical, Figures 28 and 29, so that 17 Vickers points are equivalent to 10,000 Kpsi. Confidence limits of 95% were also plotted on Figures 28 and 29; the degree of scatter being much smaller with Ti-8Mo-8V-2Fe-3A1.

Both alloys thus seemed to be contenders for scale-up in Phase IV. However, since Co seemed to promise improved tensile ductility from Phase II studies, the potential of Co was studied in three additional ageable beta alloys melted for that purpose. Toward this end, Co was substituted for Fe in alloys Ti-17V-4Fe 3A1 and Ti-8Mo-8V-2Fe-3A1. The alloys were: Ti-17V-7.5Co 3A1, Ti-8Mo-8V-5Co-3A1 and Ti-17V 2Fe 2Co-3A1. The first two of these were also evaluated as "stabilized" beta alloys, discussed in the previous section. The above three alloys were evaluated as ageable beta alloys, using hardness data and tensile properties to develop heat treatments. Hardness response to aging is shown

^{*} The method for calculation is given by Brownlee, "Industria! Experimentation".

in Tables LXV to LXVII. As shown in Tables LXVIII to LXX, partial or complete substitution of Co for Fe did not confirm earlier Phase II results, in that uniform elongation was not improved. Aged tensile properties, however, were generally good. Substitution of Co for Fe increased the aging response, thus suggesting that Co was a weaker beta stabilizer than Fe.

Other generalizations are: (1) aging response becomes more rapid with increasing aging temperature; (2) the strengths of the alloys do not decrease with overaging up to 24 hours; (3) aging temperatures above 900F result in lower fully aged strengths. Ti 17V-2Fe-2Co-3A1, containing less Co, exhibited generally better strength/cuctility combinations.

Results of 600F smooth tensile tests, Table LXXI, show that Ti-17V 7.5Co-3Al retained most strength at 600F, and Ti 8Mo-8V 5Co-3Al retained the least. The former displayed a yield strength/density ratio of 1x10⁶ inches. Percentages of room temperature yield strength retained at 600F varied from 73 -88%, depending upon the alloy and heat treatment condition, Table LXXII. The tensile properties of Co containing alloys at this temperature looked rather good in contrast to their room temperature data. Again, this may be due to a type of transition behavior.

Notched tensile tests at room temperature and 600F using a notch configuration of $K_t = 8$, were performed on the five alloys. Results, Table LXXIII, show that in room temperature tests Ti SMo-8V 2Fe 3A1 and Ti 17V-4Fe 3A1 had superior NTS/UTS ratios, varying from 0.72 - 1.01. At 600F, Ti-8Mo 8V-2Fe 3A1 was the superior alloy with ratios of 1 10. Evidently, the use of Co tends to increase notch sensitivity in these alloys.

All five alloys were creep stability tested in two aged conditions (900F for 8 or 24 hours). Exposures were 600F for 150 and 500 hours at 90% of the 600F yield stress. Results, Table LXXIV, indicate that, although Ti 8Mo 8V 5Co-3Al had the lowest amounts of creep deformation after either exposure time, it lost ductility after the 500 hour exposure. Ti 8Mo 8V 2Fe-3Al provided the best combination of creep resistance and subsequent ductility. These results confirm earlier results from studies of "stabilized" alloys in the previous section. Hot salt stress corrosion tests, carried out as described in "Materials and Procedures", indicated that Ti-8Mo-8V-2Fe-3A1 and Ti-17V-4Fe-3A1 were the most resistant to hot salt stress corrosion, Table LXXV. The results are good enough to establish an order of merit, but cannot be considered quantitative.

Tests for oxidation resistance, Table LXXVI, showed that Ti-8Mo 8V-2Fe-3Al and Ti-8Mo-8V-5Co 3Al had the lowest weight gains after exposure in open crucibles at 1500F for 2 hours. This is consistent with earlier results indicating the Ti-8Mo-8V-3Al base to be more oxidation resistant than the Ti 17V-3Al base.

Room temperature tensile tests were performed on welded specimens of Ti-8Mo-8V-2Fe-3A1, Ti-8Mo-8V-5Co-3A1 and Ti-17V-7.5Co-3A1, Table LXXVII. Ti-8Mo-8V-2Fe-3A1 displayed a good combination of strength and ductility.

Selection of Ageable Beta Alloy for Phase IV

Pertinent properties of the five candidate alloys have been summarized for easy comparison in Table LXXVIII. Ti-8Mo-8V-2Fe-3A1 produced the best all-around combination of properties and was selected for Phase IV scale-up and evaluation. Phase IV consisted of the melting and processing to plate and sheet of a 500-pound ingot of Ti-8Mo-8V 2Fe-3A1, using standard mill production equipment and techniques. Both plate and sheet products were evaluated, not only by tests as described herein, but also by additional techniques to determine such properties as K_{ic}, notch fatigue life, and a quantitative measure of stress corrosion resistance. Part I of this Final Report covers the Phase IV evaluation of Ti-8Mo-8V-2Fe-3A1.

	Other Elements	9.771. 0.109C1						0.06T1	0.0012r*, 99.7Co*	<pre><0.01W*, 0.02N1* 0.003Cu*, 0.034S* 60T1</pre>
	51 2		0.27 0.001*	1 3 1 1 1 1 5	8 8 9 9 9 9	*70.0	0.34	0.14	0.002*	8 8 8 8 8
	0 14	0.022	0.001+	0.009	0.017	0.022+	0.1 ⁻ 0.027	0.026	0.034*	8 9 9 9
8 2	2 2	0.007	0.513	8 6 1 1	0.005	0.014*	0.055	0.008	8 5 7 8	•
Analyses of Materials Used in Formulation of Alloys	40	0.072	0.005*	0.044	0.178	0.020*	0.181	0.059	0.073	40
Formulati	4 X		8 8 8 1 8 1 8 1 8 1	9 8 9 9	9.66	1 1 1 1		1 1 1 3	*	1
Used in	2 C F	8 6 8 9	1 1 9 6 8 9 9 9 1 7	8 4 8 1	8 8 9 9	* £.66		8 9 8 8 8	8 8 8 8	
la terials	4 4	0.085	0.01 0.001*	0.016	8 8 8 8	0.038*	99+* 0.34	0.17	0.02*	8 8 8 8
lyses of 1	х н Х	3 8 8 8	99.8*	1.76	8 8 8 8	* 2 1 1 3	8 · · 7 · 8 7 · 8 8 · 8 8 · 8	47.08	8 8 8 8	6 9 8 8
	> 14 <	4 8 8	₹ 5 ₹ 8 ₹ 8	8 8 8 8	8 4 8	8 7 5 8	84.2	1 8 1 2	4 4 8 8	8 6 6
	× .	8 9 - 4 9 - 4 9 - 4 9 - 4 9 - 4 9 - 4 9 - 4 9 - 4 9 - 4 9 - 4 9 - 4 9 -	1 6.66	0.001*	1 1 1 1 1 1 1	9 2 2 3	13.4	52.3	8 8 9 8	1 4 1 1
	Mater (a)	TI Sponge 117 B.H.N.	Mu Powder Kio Micron	Mo Powder >40 Micron	- 10 Mesh	ur Powder -10 Meets 8- Millio	re mails V/Al Master Alloy	Mo/Al Paster Alloy C Brider		TiO _s Powder

*Suppliers Analysis.

TABLE I

Analyses of Materials Used in Formulation

TABLE II

Analyses of Selection Phase I Buttons

Η×	0133		7900.	0200.
ZY	.024	610	110	110.
940	0.119	001.0	0.117	0.144
40	.026	.022	.026	.026
4 41	3.27	3.27	3.06	2.89
ž r	1 1 1 5	8 5 8	1 0 0 0	6.98
4 Fe	1 8 8	8.0	5.8	8 9 1
> ۲	16.9	8.06	8 8 8 8	1 7 7 9
Mo K	8	7.84	15.0	15.2
4 Cr	9.75	8 8 3 8	9 # 8 8	8 5 8 8
Heat. No.	T3322	T3307	T3315	T3318
Alloy	T1-17V-10C3A.	Ti-8V-8Mo-7.5Fe-3A1	T1-15Mo-5Fe-3A1	Ti-15Mo-7.5Mn-3A1

H	1
H	E
н	
	1
6	L
-	L
- 67	
_ ≦	
-	1

Analyses of Ingots Used in Phase III

10.3 2.12 0.100 8.03 8.24 2.99 5.96 16.7 3.22 3.91 7.66 7.88 2.97 1.88 7 17 7.36 2.46 1.72
8.24 2.99 16.7 3.22 7.88 2.97
16.7 3.22 7.88 2.97 7.36 2.46
7.88 2.97
1 36 2 46
7.45 3.47
8.08 2.25
8.53 3.50
15.5 2.55
16.3 3.41
18.3 2.46
19.0 3.60
16.6 3.13
17.9 3.19
7.96 3.07
8.09 2.87
16.95 3.07
8.26 2.95
17.1 2.91
17.15 3.11

siti
C III
en o
11 Be
-17V-3A
41-17 d.
Lth S
78 W
A110
20
n snd
Cr. Kn
ofC
lea
pert
ž
usile Pro
t Te
re Sheet Ten
ture
om Temperature S
koom Tempera
Room

ton

Heat		:		Teu	Tensile Froperties	erties		Elastic
No.	Composition	Heat Treatment(1)	UTS Kput	0.27 vS Kpa1	Local E1. Z	Jeff. El. 7	Total E1. Z(2)	Modulus 10-6ps1
T3320	Ti-17V-SCr-3A1	1350F-15M-SG	121	115	35	7.5	15	ŝ
=	=		119	114	25	ŝ	11	
=	80 87	** +9007-8Hr-AC	186	169	10	2.5	'n	٠
2	2		185	168	Ś	2.5	.	15.8
T3321	T1-17V-7.5Cr-3A1	1350F-15M-SC	131	124	25	2.5	15	14.9
=	=	24	130	120	25	•	17	14.2
2	=	" + 900°-8Hr-AC		136	20	ሆ፣	σ	•
Ξ	2			137	15	7.5	10	15.2
T3322	T1-17V-10Cr-3A1	1350F-15M-SC	140	131	35	52	25	14.8
=	E	=	138	131	35	17.5	22	15.4
Ξ	=	" +900F-8Hr-AC		136	25	•	14	•
=	=	-		136	35	20	23	15.6
T3495	T1-17V-12.5Cr-3A1	1350F-15M-SC	158	149	20	12 5	14	16.4
=	=	=	152	148	Ś	2.5	m	è.
=	=	" +900F-8Hr-AC	157	1.50	15	2.5	i~	16.8
1	=	••	161	148	25	12.5	15	٠
T3496	T1-17V-15Cr-3A1	1350F-15M-SC	167	160	Ś	2.5	e	16.9
2	=		166	159	S	2.5	'n	16.5
=	=	" +900F-8HE-AC	168	161	Ś	0	64	
:	=		169	158	10	Ś	٢	16.9
T3326	T1-17V-5Mn-3A1	1350F-15M-SC	124	122	35	2	13	14.1
=	=	2	126	121	35	•	13	۳.
=		" +900F-EHr-AC	185	169	10	2.5	61	•
:	Ξ	11 11	184	166	10	ŝ	7	15.7
T3327	T1-17V-7.5Mn-3A1	1350F-15M-SC	138	133	40	ŝ	1/	15.6
1	-		139	135	35	12.5	20	
=	Ξ	" +900F-8Hr-AC	157	145	15	7.5	10	(c) [9[
8	Ŧ	19 B1	151	140	20	7.5	12	15.3

TABLE IV

ب

nt inued)	
IV (Coi	
TABLE	

Voat				Ten	Tensile Properties	ertles		Elastic
No.	Composition	Heat Treatment (1)	UTS Kps1	0.2 7 75 Kpsi	Local El. 7	Unif. El. 7	Total E1. 7(2)	Modulus 10 ⁻⁶ ps1
T3328	T1-17V-10Mn-3A1	1350F-15M-SC	152	145	40	7.5	19	15 7(5)
: =	: :		151	145	35	• •		•
: :	: :	" +900F-8Hr-AC	156	149	20	10	16	•
	:	6.6	157	148	20	12.5	13	16.2
T3501	fi-17V-12.5Mn-3A1	1350F-15M-SC	171	168	10	ŝ	9	17 6
: :	: :		171	168	10	2.5	6	•
11	: =	" +900F-8Hr-AC	179	163	10	ŝ	7	16.9
			180	172	10	۱ŋ	7	•
T3502	T1-17V-15Mn-3A1	1350F-15M-SC	128	1 1 1	0	a	c	17 0
: :	: :		113	1	0	00		• 7
2		" + 900F-8Hr-AC	74	1 6 1	0	0	0	17.9
1	:	44 44	86	1	0	0	0	
T3323	T1-17V-2.5Fe-3A1	1350F-15M-SC	120	114	35	7.5	15	12.2
16	: :		121	116	35		16	13.0
:	: :	" +900F-8Hr-AC	197	184	15	ŝ	-	16.2
			201	187	10	2.5	ŝ	15.8
13324	T1-1/V-5Fe-3A1 	1350F-15M-SC	135	132	45	10	21	14.6
:	: =		133	130	40	7.5	16	
ţ	: =		180	163	15	Ś	7	
	:	-	186	169	15	ŝ	ŝ	16.2(4)
T3325	T1-17V-7.5Fe-3A1	1350F-15M-SC	155	152	40	ŗ	21	5 71
: 2	E :	2	154	151	45	7.5	19	16.7
	: :	" +900F-8Hr-AC	162	153	30	7.5	13	15.3
			761	152	30	Ś	12	16.1 ⁽⁵⁾

M=minutes; SC=slow (plate)cooled; Hr=hour; AC=air cooled. Total elongation is % in 1-inch. Broke on scribe mark. Broke on extensometer mark. Broke outside gage length.

ටිලිලිලිලි

.

. . .

g	ł
1t10	
Bodi	
Con	
Base	
341	
-V8-	
8Mo-	
T1-	
ritth	
976 1	
A116	
Pe	
and	
ų	
Сr,	
B of	
tle	
oper	
e Pr	
sile	
Ter	
Sheet	
emperature	
mpe 1	
a Te	
Roc	

1				Ten	Tensile Properties	erties		Elastic
Heat No.	Composition	Heat Treatment(1)	UTS Kpat	0.227S Kp81	Local E1. X	Unif. El. X	Total El. X(2)	Modulus 10-6ps1
T3302	T1-8V-8Mo-5Cr-3A1	1350 F-15M-SC	127 126	122	40 35	21	20 18	14.4 14.1
= =	= =	¹⁸ + 900 F- 8H x -AC 11 11	164 158	149	39 n	2.5	1.4 0	14.6 15.5(3)
T3303	T1-8V-8Mo-7.5C+ 3A1 1350F-15M-SC	1350F-15M-SC	131	127	30	א אין נאי	12	14.9 14 8
5 7		" 900F-8HE-AC	145	135	រដង	12.5	113	
1.3304 "	TL-8V-8M0-10C-3A1 "	1350F-15M-SC "	141 142	134	35 46	17.5 10	24 18	. 6
2 5	= =	" +900F-8Hr-AC	151	141	22	7.5	16	
T3497 "	T1-8V-8Mo-12.5Cr- 3A1 "	1350F-15M-SC "	159 160	153 154	15 15	ທາ	~ ~	16.5 17.2
::	2 2	" +900F-8Hr-AC	160 162	155 156	10	2.5 0	5 Q	17.1
T 34 98 "	Ti-8V-8Mo-15Cr- 3Al "	1350 <i>P</i> -15M-SC	156 167	158 158	ν'n	2.5 0	۳ ۵	17.4 17.2
= =	2 2	" +900 F-8 Hr-AC	166 170	166 163	0 50	0 2.5	0 M	17.5 17.1
T3308 "	T1-8V-8Mo-5Mn-3A1 "	1350F-15M-SC "	133 129	130 125	40 25	7.5	14 15	14.9 14.1(3)
2 5	2 2	" +900F-8Hr-AC	159	151	ŝ	0.5	4 4	15.9 15.3(4)
13309 "	T1-8V-8Mo-7.5Mn- 3A1 "	1350F-15M-SC "	139	137 138	45 35	20.5	27 15	16.5 15.8
= =	= =	" +900 F-8Hr-AC " "	144	139	35	• •	15 18	

TABLE V

Continued)	
TABLE V	

				Ten	sile Prop	Properties		Elastic
Heat No.	Composition	Heat Treatment ⁽¹⁾	UTS Kps1	0.2%YS Loca Kpsi El.	Local El. 7.	Unif. El. %	Total El. 7(2)	Modulus 10-6ps1
T3310	Tf-8V-8Mo-10Mn-3A1	1350F-15M-SC	1.52	151	10	2.5	4	16.9
-		12	153	152	35	7.5	15	17.3
:	-	" +900F-8Hr-AC	153	153	35	2.5	14	18.4
=	=		154	154	25	2.5	11	18.0(3)
T3505	T1-8V-8Mo-12.5Mn-3A1	1350F-15M-SC	711		C	c	c	
=		L L				<u>ہ</u> د		
:	=	11 - 0005 0H- AC	1 2 5) 	0	> 0	20	
Ξ	Ξ	14 - 7006 1	128	t 1 7 9 1 6	00	00	50	1/.4 18.0
T3504	T1-8V-8Mo-15Mn-3A1	1350F-15M-SC						(2)
i	K							=
: :	::	" +900F-8Hr-AC						Ξ
:	:	2						=
T3305	T1-8V-3Mo-2.5Fe-3A1	1350F-15M-SC	129	125	20	ŝ	6	12.9
E	**		130	125	30	15	19	13.0
= :		" +900F-8Hr-AC	192	180	Ś	•	4	$15.7^{(3)}$
=			134	183	ŝ	2.5	ŝ	17.0
T3306	T1-8V-8Mo-5Fe-3A1	1350F-15M-SC	140	138	40	10	20	15.9
2	=		142	138	40	17.5	22	•
=	•	" +900F-8Hr-AC	154	147	25	15	18	15.7
=	:	11 11	150	144	25	7.5	12	
T3307	T1-8V-8Mo-7.5Fe-3A1	1350F-15M-SC	159	156	0 †	7.5	15	16.3
=	=	=	159	157	40	20.5	25	15.9
=	=	" +900F-8Hr-AC	163	162	40	17.5	21	16.6
=	=	11 11	161	160	40	17.5	24	16.6
		- For St. Second and St.						

M=minutes; SC=slow (plate) cooled; Hr=hour; AC=air cooled. Total elongation is % in 1-inch. Broke outside gage length. Surface flaw in specimen. Sheet of poor quality - not tested.

66666

IΛ	
TABLE	

Ì

÷

:

Room Temperature Sheet Tensile Properties of Cr. Mn and Fe Alloys with Ti-15Mo-3Al Base Composition

					Te	Tensile Properties	perties		Elastic
Heat No.	Composition	Heat Treat	eatment(1)	UTS Kps1	0. 27YS Kps1	Local El. Z	Unif. El. Z	Total E1. Z (2)	Modylus 10 ⁻⁶ psi
T3311	T1-15Mo-5Cr-3A1	1350F-15M-SC	ğ	126 124	123 120	35	12.5	19 17	15.2 14.7
:	-	:	+900F-8Hr-AC	135	128	35	,	18	15.1
=	E	=	Ξ	134	127	35	7.5	15	
T3312	T1-15Mo-7.5Cr-3A1	1350F-15M-SC	ũ	132	129	35	10	20	16.8
=	=	=		132	129	25	10	15	16.2
:	=	=	+900P-8Hr-AC	134	130	35	12.5	19	16.1
=	Ξ	2	Ξ	135	131	45	22.5	23	
T3313	T1-15Mo-10Cr-3A1	1350F-15M-SC	ÿ	146	139	35	12.5	20	16.5
=	=	Ξ		148	142	35	15	21	17.4
=	13	=	+900F-8Hr-4C	143	138	35	10	17	16.6
=	=		=	145	139	35	15	22	16.9
T3499	T1-15Mo-12.5Cr-3A1	1350F-15M-SC	ç	158	150	15	7.5	10	16.8
:	=	=		161	155	15	10	11	17.1
:	=	:	+900F-8Hr-AC	159	153	Ś	2.5	4	17.0
:	Ŧ	=	=	159	152	10	7.5	ø	17.0
T3500	T1-15Mo-15Cr-3A1	1350P-15M-SC	ũ	165	158	'n	2.5	Ś	17.7
Ŧ		Ξ		167	160	Ś	2.5	4	17.7
:	=		+900F-8Hr-AC	165	159	'n	0	7	•
:	-	=	=	165	160	Ś	2.5	ĉ	17.9
T3317	T1-15M0-5Mn-3A1	1350F-15M-SC	ÿ	132	130	35	10	19	15.0
Ξ	=	=		132	130	35	7.5	11	
:	=	Ξ	+ 900F-8Hr-AC	148	141	25	7.5	13	18.1
=	2	Ξ	=	145	140	25	2.5	13	
T3318	T1-15Mo-7.5Mn-3A1	1350F-15M-SC	ũ	142	141	45		30	16.5
=	=	=		143	141	40	12.5	22	٠
2	=	Ξ	+ 900F-8Hr-AC	144	14	45	15	22	٠
2	-	2	=	142	142	45	20	28	16.5

÷

led)
ntin
U U
V 311
3

			,	Ten	sile Prop	erties		Elastic
Heat No.	Composition	Heat Treatment(1)	UTS Kps f	0. 2 7 YS Kps1	0.27YS Local Unif Kpsi El.7 El.	Unif. El. Z	Total El. 7	Modulus 10 ⁻⁶ ps1
T3319	T1-15Mo-15Mn-3A1	1350F-15M-SC	155	154	25	ŝ	16	17.4
:	Ξ	=	1,60	160	10	7.5	10	18.0
:	:	" + 900F-8Hr-AC	155	155	10	ŝ	7	18.1
Ξ	=	11 11	153	152	S	0	1	17.2
T3505	T1-15Mo-12.5Mn-3A1	1350F-15M-SC	62	5 1 1	0	0	0	1 1 1
	=	2	11	1 1 8	0	0	0	18.5
=	=	" +96, F-8Hr-AC	92	F 1 7	0	0	0	
	-		133	8 9 1	0	0	0	18.5
T3506	T1-15Mo-15Mn-3A1	1350F-15M-SC						(3)
Ξ	**	" +900F-8Hr-AC						
a	2							=
T3314	T1-15Mo-2,5Fe-3A1	1350F-15M-SC	148	143	30	7.5	13	16.2
=	2	11	145	137	15	7.5	13	14.8
Ξ	=	" +900F-8Hr-AC	200	200	Ś	0	1	$15.7^{(4)}$
=	E	-	201	190	Ś	0	7	17.1
T3315	T1-15Mo-5Fe-3A1	1350F-15M-SC	149	147	35	7.5	19	16.6
:	Ξ	11	147	145	40	7.5	18	15.6(4)
:	2	" +900F-8Hr-AC	143	143	45	10	19	15.8
=	••	-	145	142	45	12.5	23	15,8
T3316	T1-15Mo-7.5Pe-3A1	1350F-15M-SC	150	(1)	Ś	0	Ч	18.1 ⁽⁴⁾
2	5		65	ŧ ŧ ŧ	Ś	0	0	18.3
2	=	" +900F-8Hr-AC	74	8 9 8	Ś	0	0	17.6(4)
=	=	14	76	\$ 8 8	0	0	0	18.2

M-minutes; S.C.=slow (plate) cocled; Hr-hours; AC-sir cooled. Total elongation is X in 1-inch. Sheet of poor quality - not tested. Broke outside gage length.

3333

TABLE VII

	Base Composition						
Eutectoid Addition	T1-17V-3A1	T1-8Mo-8V-3A1	T1-15Mo-3A1				
5Cr	0.955	0.965	0.975				
7.5Cr	0.935	0.950	0.980				
10Cr	0.945	0.950	0.955				
12.5Cr	0.950	0.955	0.955				
15Cr	0.975	0.950	0.915				
5Mn	0.975	0.975	0.985				
7.5Mn	0.970	0.990	0.990				
10Mn	0.965	0.995	0.995				
12.5Mn	0.980						
15Mn							
2.5Fe	0.955	0.965	0.955				
5Fe	0.980	0.980	0.985				
7.5Fe	0.980	0.995					

YIELD TO U.T.S. RATIOS OF ALLOYS IN THE SOLUTION TREATED CONDITION

TABLE VIII

SOLUTION TREATED YIELD STRENGTHS AS A FUNCTION OF COMPOSITION

	Base Composition						
Eutectoid Addition	T1-17V-3A1	T1-8Mo-8V-3A1	T1-15Mo-3A1				
	<u> </u>	Kpsi	<u> </u>				
5Cr	114	122	121				
7.5Cr	122	126	129				
10Cr	131	134	140				
12.5Cr	148	153	152				
15Cr	160	158	159				
5Mn	121	127	130				
7.5Mn	134	137	141				
10Mn	145	151	157				
12.5Mn	168						
15Mn							
2.5Fe	115	125	140				
5Fe	131	138	147				
7.5Fe	151	156					

4

-

TABLE IX

		Base Composition	
Eutectoid Addition	T1-17V-3A1	<u>T1-8M0-8V-3A1</u>	T1-15Mo-3A1
5.0~	1.47	1.22	1.05
5Cr			
7.5Cr	1.11	1.06	1.01
10Cr	1.04	1.05	1.01
12.5Cr	1.00	1.01	1.00
15Cr	1.00	1.04	1.00
5Mn	1.38	1.14	1.08
7.5Mn	1.06	1.01	1.01
10Mn	1.02	1.01	0.98
12.5Mn	1.05	-	-
15Mn	-	-	-
2.5Fe	1.61	1.45	1.39
5Fe	1.27	1.05	0.97
7.5Fe	1.01	1.03	-

AGED TO SOLUTION TREATED STRENGTH RATIOS AS FUNCTIONS OF COMPOSITION

TABLE X

ELASTIC MODULUS VALUES OF THE VARIOUS ALLOYS IN THE SOLUTION TREATED CONDITION⁽¹⁾

	Base Composition							
Eutectoid Addition	T1-17V-3A1	T1-8Mo-8V-3A1.	T1-15Mo-3A1					
	Kpsi	Kpsi	Kpsi					
5Cr	13.7	14.2	14.9					
7.5Cr	14.5	14.8	16.5					
10Cr	15.1	16.0	16.7					
12.5Cr	16.2	16.8	16.9					
15Cr	16.7	17.3	17.7					
5Mn	14.2	14.5	15.0					
7.5Mm	15.6	16.1	16.2					
10Mn	16.3	17.1	17.7					
12.5Mn	17.7	-	18.5					
15Mn	18.5	-	-					
2.5Fe	12.6	12.9	15.5					
5Fe	14.3	15.3	16.1					
7.5Fe	16.4	16.1	18.2					

(1) Modulus values expressed as $'E' \times 10^{-6}$ psi.

TABLE XI

ELASTIC MODULUS VALUES OF THE VARIOUS ALLOYS IN THE AGED CONDITION (1)

	Base Comproition						
Eutectoid Addition	<u>T1-17V-3A1</u>	T1-8M0-8V-3A1	<u>T1-15Mo-241</u>				
5Cr	15.9	15.0	14.8				
7.5Cr	15.5	15.3	16.2				
10Cr	16.6	15.5	16.7				
12.5Cr	16.6	17.1	17.0				
15Cr	16.7	17.3	17.8				
5Mn	15.9	15.6	17.0				
7.5Mn	15.8	15.8	16.5				
10Mn	16.3	18.2	17.6				
12.5MN	17.0	17.7	17.6				
15Mn	17.9	-	-				
2.5Fe	16.5	16.3	16.4				
5Fe	15.9	15.7	15.8				
7.5Fe	15.7	16.6	17.9				

(1) Modulus values expressed as $'E'x10^{-6}psi$.

TABLE XII

DUPLICATE TOTAL ELONGATION VALUES FOR ALLOYS IN THE SOLUTION TREATED CONDITION*

	Base Composition					
Eutectoid Addition	Ti-17V-3A1		T1-8M0-8V-3A1 %			10-3A1
5Cr	11	15	18	20	17	19
7.5Cr	15	17	12	13	15	20
10Cr	22	25	18	24	20	21
12.5Cr	14	3	7	7	10	11
15Cr	3	3	3	2	3	4
5Mn	13	13	14	15	11	19
7 5Mn	17	20	15	27	22	30
lu M n	19	26	4	15	10	16
12.5Mn	6	9	0	0	5	7.5
15 M n	0	0	-	-	-	-
2.5Fe	15	16	9	19	13	13
5 F e	16	21	20	22	18	19
7.5Fe	15	19	15	25	1	0

~ 、

* Total elongation over 1.00-inch gage length.

TABLE XIII

		n				
Eutectoid Addition	TI-17V-3A1 TI-8Mo- 7 7		Mo-8V-3A1 Z	aposition -8V-3A1 Ti-15Mo-3A 7 T		
5Cr	3	5	2	4	15	1.8
7.5Cr	9	10	10	13	19	23
10Cr	14	23	14	16	17	22
12.5Cr	7	15	5	2	4	8
15Cr	2	7	0	3	2	3
5 M n	3	7	1	4	13	13
7.5Mn	10	12	15	18	22	28
10Mn	13	16	11	14	1	7
12.5Mn	7	7	0	0	Õ	Ò
15Mn	0	0	-	-	-	-
2.5Fe	5	7	3	4	1	9
5Fe	7	8	12	18	19	23
7.5Fe	12	13	21	24	Ő	0

i

DUPLICATE TOTAL ELONGATION VALUES FOR PHASE I ALLOYS IN THE SOLUTION-TREATED & AGED CONDITION*

* Total elongation over a 1.00-inch gage length.

TABLE XIV OXIDATION RESISTANCE OF SELECTED FRASE I ALLOTS

÷

1

Wt. Loss Gms/aq cm .00044 .00113 .0046 .0092 .0157	.00106 .00347 .00368 .00368 .00358	.00096 .0021 .0110 .0242	.0010 .00298 .0172 .0277	.00029 .00217 .0065 	.00089 .00234 .0016 .0124
Total Wt. Loss (Gma) .0115 .0293 .1163 .2380 .4063	.0274 .0924 .0954 .2333	.0248 .0543 .2842 .6251	.0258 .0773 .4457 .5862 	.0076 .0562 .1678 	.0231 .0605 .0414 .3214
Wt.After Sand- Blest (Gms) 4.3467 4.2093 4.2073 4.0073 3.9729	4.3122 4.3508 4.3778 4.2571 3.9726	4.4427 4.1075 3.7446 <u>1</u> /	4.2152 4.3488 4.0235 3.9734 <u>1</u> /	4.5193 4.5822 4.3736 <u>1</u> /	4.2717 4.2209 4.1536 3.8847 4.0270
Gain (Gas) (0071 (0195 (0719 (1357 (2375	.0068 .0135 .0516 .0546 .1200	.0096 .0363 .1376 .1741	.0103 .0474 .2153 .1666	.0061 .0351 .0676 .7676 1.6084	.0057 .0130 .0267 .0385 .0244
Wt.After Exposure 4.3653 4.2581 4.4006 4.3810 4.6167	4.3464 4.34667 4.5548 4.5558 4.4987	4.4771 4.4256 4.5293 4.5438 4.6808	4.2513 4.4735 4.6845 4.7262 4.9704	4 5330 4.6735 4.5474 5.4270 6.2034	4. 3005 4. 2944 4. 2217 4. 2446 4. 3670
Scart ing Wt. (Oms) 4. 3582 4. 2386 4. 3287 4. 3792	4.3396 4.4532 4.4732 4.4732 4.3787	4,4675 4,3893 4,3917 4,3697 4,3697	4.2410 4.4561 4.4692 4.5596 4.4539	4.5369 4.5384 4.5414 4.5594	4.2948 4.2814 4.1950 4.3446
Time (Hrs) 2 ::					
Expraure Temp(*F) 1200 1400 1600 1800 2000	1200 1400 1600 2000 2000	L 200 1 400 2 000 2 000 2 000	1200 1400 1500 2000 2000	1200 1400 1600 2000	1200 1400 1600 2600
Heat Ailoy No. 13303 T1-8V-8Mc-7. SCr-3Al	13304 T1-8V-8Mo-7 JCr-3AL	T] 306 T 1 - 9V- dMo- 5Fe- 3A I U U U U U U U U U U U U U U U U U U U	T3307 T1-8V-8Mo-7, 5Fe-3Al	T3310 T1-8V-8Ho-10Hh-3A1	T3311 T1-15Mo-5Cr-3A1

-

 $\frac{1}{2}$ Sample disintegrated in blast.

TABLE XIV (continued)

.

Total Wt. We After Sand-OX IDATION RESISTANCE OF SELECTED PHASE I ALLOYS 2 1 ċ

	11000	89120	00110 00148 00225 2075	.00116 .00357 .0085 .0192 .0150	.00213 .00302 .0070 .0169 .0158
Total Wt. Loss (Gms) .0416 .0287 .0805 .1770 .3607	.0491 .1058 	.0135 .0312 .0961 .2078	.0284 .0382 .0582 .1945	.0301 .0924 .2211 .4959 .3871	.0551 .0781 .1812 .4366
We.After Sand- Blase (Oms) 4.3523 4.3285 4.3285 4.1211	4.5648 4.4894 4.3637 1/ <u>1</u> /	4.3045 4.2153 4.0701 <u>1</u> /	4.6088 4.5604 4.3972 <u>1</u> /	4.0066 4.0527 3.9690 3.7615 3.7615	4.2411 4.3142 4.1977 3.8948 3.8915
6 tn 3ns) 0049 22/ 27/	.0047 .0192 .0499 .0533	.0061 .0214 .0578 .27 .1571	.0051 .0150 .0065 .0460 .3011	.0150 0469 .1376 .2158	0089 0289 0965 1152 2/
Wt.After Exposure 4.3988 4.4345 4.4829 4.4829 4.4829	4.6186 4.5124 4.5805 4.9325 5.1011	4.3241 4.3587 4.3587 4.3587 4.3587 4.3587	4.6423 4.6136 4.6311 4.8317 4.8703	.250	4.3051 4.4212 4.4466 4.0098
Starting Mt. (Oms) 4.3939 4.4090 4.4090 4.4818	4.6139 4.5952 4.8792 4.8792 4.6644	4.3180 4.2465 4.3009 4.2779 4.1796	4.6372 4.6346 4.5466 4.5457 4.5457 4.5592	4.0367 4.1451 4.1901 4.0351 4.1486	4.2962 4.3923 4.3789 4.3314
T (me (Hrs) 2 1			:::::		
Exposure Temp(F) 1200 1400 1800 1800 2000	111100 1600 1800 2000 2000	1200 1600 1800 2000	1200 1200 1800 2000	1200 1400 1800 2000	1200 1400 1600 2000
Hear Ailoy No. 71-15Ma-10Cr-3AI	[33]6 T1-15Ma-7.5Fe-3Al	T3317 T2-15MG SM1-3AL	ד],ון דנ-ו5אט-ן0אח-3Al """"""""""""""""""""""""""""""""""""	T3321 T2-17V-7,5Cr-3A1	T3322 T1-17V-10Cr-3A1

1/ Sample disincegrated in blast. $\frac{1}{2}$ Oxide lost due to draft.

 TABLE XIV (continued)

 OXIDATION RESISTANCE OF SELECTED PHASE I ALLATS

Wt. LOSS Gas/sc cm .00279 .0082	.00035 .00035 .0176 .0365	.00062 .00277 .0171 .0245
Total W Loss (Gms) .0721 .2110 .7357	.0091 .1210 .4549 .4543	.0160 .0743 .4425 .6331
Wt.After Sand- Blast (Gms) 4.3296 4.1160 1/ 3.5003	$\begin{array}{c} 4.1321 \\ 4.0701 \\ 3.5961 \\ 3.3327 \\ \underline{1}/ \end{array}$	$\begin{array}{c} 4.2421 \\ 4.2651 \\ 3.7224 \\ 3.6146 \\ \underline{1} \end{array}$
Cain (Gai) (Gus) -0132 -0721 -4667 -9826		
Wt.After Exposure 4.3635 4.3991 4.7492 5.3271 4.7785	4.1509 4.2937 4.3271 4.4970 4.5795	4.2683 4.3206 4.4156 4.4156
Starting Wt. (Gms) 4.3503 4.3270 4.2825 4.2360	4.1412 4.1911 4.0510 4.1770 4.1770	4.2581 4.3394 4.1645 4.2477 4.1564
T lme (Hrs) 2 3		
Exposure <u>Temp(*F)</u> 1200 1400 1600 1800 2000	1200 1400 1600 2000	1200 1400 1600 2000
Heat No. T3325 T1-17V-7.5Fe-3AI	T3327 T4-17V-7, SMm-3A1	172-2011-1/1-11 026-1

10-11 - 1**40** - 10-10 - 10-

....

 $\frac{1}{2}$ Sample disintegrate. in blast. $\frac{2}{2}$ Oxide lost due to draft.

TABLE XV

DENSITIES OF SELECTED PHASE I ALLOYS

*

.

. .

- -

<u>Heat No.</u>	Alloy	<u>Densities</u> <u>No. 1 N</u>		rage /In ³
Т3302	T1-8Mo-8V-5Cr-3A1	4.879 4	.879 0.1	763
T3498	""" 15Cr "			843
T3305	" " " 2.5Fe "			754
T3307	" " " 7.5Fe "			807
T3308	" " " 5Mn "			774
T3504	"" "15Mn "			876
т3320	T1-17V-5Cr-3A1	4.751 4	.749 0.1	717
T3496	""" 15Cr "			794
T3323	" " 2.5Fe "			.707
T3325	" " 7.5Fe "			760
T3326	" " 5Mn "			726
T3502	" " 15Mn "			823
T3311	T1-15Mo-5Cr-3A1	5.023 5	.023 0.1	815
T3500	15Cr "			888
T3314	" " 2.5Fe "			.795
T3316	" " 7.5Fe "			858
T3317	" " 5Mn "	•••••	• • • • • • •	.817
T3502	" " 15Mn "			912

Ti-13V-11Cr-3A1 - 0.176 lbs/cu.in.

Pure Ti - .163 lbs/cu.in.

TABLE XVI

- --

.....

an an constant graphs

A COMPARISON OF THE TEN MOST PROMISING ALLOYS FOUND IN PHASE I

Alloy	UTS Psi	Yield Psi	Uniform Elong. 7	Total Elong. %	Rolling Properties	Density Lbs/In ³	Oxidation Resistance
T1-17V-10Mn~3A1	155	150	10+	12+	Good	$0.1774^{1/2}$	Fatr
Ti-17V-7.5Fe-3A1	160	150	9	12	Fair	0.1760	Fair
T1-17V-10Cr-3A1	145	135	10	14+	Good	0.1755 <u>1</u> /	Fair
T1-8Mo-8V-7.5Fe-3A1	160	160	17	20+	Fair	0.1807	Fair
Ti-8Mo-8V-5Fe-3A1	150	145	10	12+	Good	0.1780 <u>1</u> /	Fair
T1-8Mo-8V-10Cr-3A1	145	140	10	15	Fair	0.18031/	Goođ
Ti-8Mo-8V-10Mn-3A1	150	150	2.5	11+	Good	0.1825 <u>1</u> /	Fair
Ti-15Mo-7.5Mn-3A1	140	140	17	20+	Good	$0.1864\frac{1}{2}$	Good
Ti-15Mo-5Fe-3A1	145	142	10	21	Good	0.1826 <u>1</u> /	pood
Ti-15Mo-10Cr-3A1	144	139	12	20	Fair	0.1852 <u>1</u> /	Good
) 	1 1 1 1	1 1 1 1	1 2 1 1	1 1 1 1 1		
Ti-13V-11Cr-3A1 (annealed) (aged)	125 190	120 170			부 1 *~ 1 단 1 王 1 1		Fair Fair
All above Phase I alloy	alloys tested	ed after	aging for 8	hours at	0	7 7 8 8 8	1 1 1 1

.....

-

 $\frac{1}{2}$ density.

Element Crystal Size Alloy Chemical Electro- A Ag F.C.C. -2.0 A 1 1.9 1.9 Au F.C.C. -2.0 A 1 1.9 1.9 Be C.P.H. -23.0 A 3 2.4 6 Bit R.O.M.H. -23.0 A 3 2.4 6 Co C.P.H. -23.0 A 3 2.4 6 Co C.P.H. -12.0 A 3 2.4 6 Co C.P.H. -12.0 A 3 1.1 1.9 Co C.P.H. -12.0 A 3 1.1 2 Co C.P.H. -12.0 A 2 1.9 1.9 Co C.P.H. +22.5 C 3 1.1 2 1.1 2 1.1 2 1.1 2 1.1 2 4 1.1 1.2	1 Electro- Alpha Beta Compou 1.9 14 24 Ti _s Ag Compou 1.9 14 24 Ti _s Ag 1.3 2.4 6.6 42 Ti _s Ag 1.9 1.9 14 24 Ti _s Ag 1.1 1.9 1.5 0.17 1.2 TiBea 1.9 1.5 33 Ti _s Bi 1.1 1.9 1.5 33 Ti _s Bi 1.1 1.8 1 17 Ti _s Co 1.1 1.9 1.5 33 Ti _s Bi 1.1 1.8 1 1.7 Ti _s Co 1.1 1.1 1.9 0.5 100 Ti _s Co 1.1	Ind Hardener Type Cost(\$/1b) F.C.C. 13.3 Tetragonal 510.0 ? 62.0 ? 62.0 ? 510.0 ? 510.0 ? 62.0 ? 510.0 ? 62.0 ? 1.57 F.C.C. 1.19 F.C.C. 0.30. B.C.C. 0.30. 275.0	Not Raising Cost of Alloy More Than 107 3.5 0.09 0.82 23.1 23.1 33.6 43.8 100 100 0.12 0.30
R. C. C. -2.0 > -2.0 > -2.0 > -2.0 > -2.0 > -2.0 > > 1.9<	14 24 T1_3Ag 6.6 42 T1_3Ag 0.17 1? T1_3Bg 0.17 1? T1_3Bi 0.33 4 Nome 1 17 T1_5Co 0.33 4 Nome 1 17 T1_5Co 0.33 0.37 4 0.5 100 T1_5Co 0.37 0.37 T1_5Cu 0.37 0.37 Nome 4 12 T1_5Gu		Than 10% 3.5 0.09 0.82 0.82 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.
F.C.C2.0 F.C.C2.0 F.C.C2.0 F.C.C2.0 F.C.C2.0 F.C.C2.0 F.C.C2.0 F.C.C2.0 F.C.C2.0 F.C.C2.0 F.C.C12.0 F.C.C115.0 F.C.C113.	.4 24 T1 ₃ Ag .5 6.6 42 T1 Au .9 1.5 33 T1 Be .1 1? 1? T1 Be .1 1? 1? T1 Be .1 1? 1? T1 Be .1 1.7 1? T1 Be .1 1.7 1? T1 Be .1 0.3? 4 None .6 0.5 100 T1 Cu .6 0.3? 0.3? None .8 0.3? 0.3? None .8 0.3? 12 T1 Gu		3.5 0.09 0.82 23.1 23.6 33.6 43.8 43.8 43.8 100 0.12 0.12 0.30
F.G.G. -20.0 A 3 C.P.H. -23.0 A 3 R.hombohedra1+23.8 A 3,5 11.9 R.C.G. +22.0 C -15.0 A 3 R.C.G. +22.0 C A 3,5 11.9 R.C.G. -113.0 A 2 3,5 11.9 R.C.G. -113.0 A 2 11.9 2.4 B.G.G. -113.0 A 3 11.1 3.5 11.1 B.G.G. -113.0 A 3 11.1 3.5 11.1 Diamond -5.4 B 4 11.8 11.9 11.9 11.9 C.P.H. +22.5 C 3 11.1 2.4 11.3 2.4 Diamond -5.4 B 4 2.4 3 11.1 3 2.4 C.P.H. +2.4 C 3 11.3 2.4 11.3 2.4 11.3 2.4 C.P.H. +17.0 A 2.4 A 2.4	.4 6.6 42 Ti Au .5 0.1? 1? TiBe .9 1.5 33 Ti Be .8 1 1.7 33 Ti Bi .8 1 1.7 1.6 .6 0.5 100 Ti Co .8 2.1 17 Ti Co .8 0.2 25 Ti Fe .8 0.3? 0.3? None .8 4 12 Ti Go	al 51 51 51 51 51	0.09 0.09 23.1 23.6 33.6 43.8 43.8 43.8 100 0.12 0.12 0.30
C.F.H. -23.0 A 23,5 1.9 Rhombohedral+23.8 A 3,5 1.19 Rhombohedral+23.8 A 3,5 1.19 R.C.C. +22.0 C 7.23.0 A 3,5 B.C.C. -113.0 A 2,5 1.9 B.C.C. -113.0 A 2,5 1.9 B.C.C. -112.7 A 2,5 1.19 B.C.C. -112.7 A 2,5 1.19 B.C.C. -112.7 A 2,5 1.19 Diamond -5.4 B 4 1.19 C.P.H. +22.5 C 3 1.19 Diamond -5.4 B 4 1.18 C.P.H. +22.5 C 3 1.19 C.P.H. +24.5 C 3 1.12 C.P.H. -17.0 A 2,4 1.18 Diamond -20.5 A 2,4 1.18 C.P.H. +17.0 A 2,4 1.18 Diamond	 5 0.17 42 11 Au 9 1.5 33 T1 Bi 1 0.3? 4 None 8 1 1.7 11 Cu 6 0.5 100 T1Cr 9 2.1 17 T1 Cu 8 0.2 25 T1Fe 8 4 12 12 T1 Gu 		0.09 0.82 23.1 2.1 2.1 33.6 43.8 43.8 43.8 100 0.12 0.12 0.30
Rhombohedral+23.8 A 3,5 119 F.C.C. +22.0 C 3,5 119 B.C.C. -15.0 A 3,5 119 B.C.C. -13.0 A 3 111 B.C.C. -13.0 A 3 1118 C.P.H. +22.5 C 3 1118 C.P.H. +22.5 C 3 1118 C.P.H. +22.5 C 3 1118 C.P.H. +24.5 C 3 111 C.P.H. -150.0 A 2,4 11.8 P.Gubic -115.0 A 2,4 11.8 C.P.H. -17.0 A 2,4 11.8 C.P.H. -17.0 A <td>9 1.17 1186 1 1.5 33 71,86 8 1 17 71,86 6 0.5 100 71,60 9 2.1 17 71,60 8 0.3? 25 100 8 0.3? 0.3? 117 8 0.3? 0.3? 1166 1 0.3? 0.3? 1166 1 0.3? 12 71,60</td> <td>41 2 6</td> <td>23.1 23.1 23.6 33.6 43.8 43.8 100 100 0.12 0.12 0.30</td>	9 1.17 1186 1 1.5 33 71,86 8 1 17 71,86 6 0.5 100 71,60 9 2.1 17 71,60 8 0.3? 25 100 8 0.3? 0.3? 117 8 0.3? 0.3? 1166 1 0.3? 0.3? 1166 1 0.3? 12 71,60	41 2 6	23.1 23.1 23.6 33.6 43.8 43.8 100 100 0.12 0.12 0.30
F.C.C. +22.0 C +22.0 C B.C.C. -15.0 A 2 11.1 B.C.C. -13.0 A 3 11.1 B.C.C. -13.0 A 3 11.2 B.C.C. -12.7 A 3 11.3 C.P.H. +22.5 C 3 11.3 C.P.H. +22.5 C 3 11.3 C.P.H. +22.5 C 3 11.3 C.P.H. +28.0 C 3 11.3 C.P.H. +28.0 C 3 11.3 C.P.H. +24.5 C 3 11.3 F.C.C. +19.0 A A 4 11.8 Outhor -115.0 A A 4 4 11.8 C.P.H. +17.0 A 2,4 11.8 11.8 <td>1 0.3 4 None 8 1 17 14 6 0.5 100 71 9 2.1 17 71 9 2.1 17 71 8 0.2 25 71 8 0.3 0.3 None 1 0.3 0.3 15 1 0.3 None</td> <td>2 23 23 12 1</td> <td>23.02 23.1 2.1 33.6 43.8 43.8 43.8 100 0.12 0.12 0.30</td>	1 0.3 4 None 8 1 17 14 6 0.5 100 71 9 2.1 17 71 9 2.1 17 71 8 0.2 25 71 8 0.3 0.3 None 1 0.3 0.3 15 1 0.3 None	2 23 23 12 1	23.02 23.1 2.1 33.6 43.8 43.8 43.8 100 0.12 0.12 0.30
C.P.H15.0 A 2 B.C.C13.0 A 2 B.C.C13.0 A 2 B.C.C13.0 A 2 B.C.C12.7 A 2 B.C.C12.7 A 2 Cubic -5.4 B 4 4 Cubic -5.4 B 4 4 F.C.T. +7.0 A 3 C.P.H. +28.0 A 3 C.P.H. +28.0 A 2,4 C.P.H. +24.5 C 3 F.C.C15.0 A 2,4 Cubic -20.5 A 2,4 Cubic -20.5 A 2,4 Cubic -15.0 A 4 2,4 Cubic -15.0 A 4 2,4 C.P.H17.0 A 2,4 C.P.H.	1 0.3? 4 None 8 1 17 17 6 0.5 100 Ticc 9 2.1 17 Ticc 8 0.2 25 Ticc 1 0.3? 0.3? None 1 0.3? None 1	237 23	2.1 2.1 2.1 4.3.8 4.3.8 100 0.12 0.12 0.30
B.C.C13.0 F.C.C13.0 B.C.C13.0 B.C.C12.7 B.C.C12.7 B.C.C13.0 C.P.H. +22.5 Cubic F.C.T. +7.0 C.P.H. +28.0 C.P.H. +28.0 C.P.H. +28.0 C.P.H. +28.0 C.P.H. +28.0 C.P.H. +24.5 C.P.H. +24.5 C.P.H. +24.5 C.P.H. +19.0 A 2,4 1.18 1	6 1 17 T1 C0 6 0.5 100 T1Cr 9 2.1 17 T1 Cu 8 0.2 25 T1Fe 1 0.3? Nome 8 4 12 T1 Ge	27	5.1 33.6 43.8 100 100 0.12 0.30
F.C.C12.7 B.C.C12.7 B.C.C13.0 C.P.H. +22.5 Cubic F.C.T. +7.0 C.P.H. +22.5 Cubic F.C.T. +7.0 C.P.H. +28.0 C.P.H. +24.5 C.P.H. +24.5 C.P.H. +24.5 C.P.H. +24.5 C.P.H. +24.5 C.P.H. +24.5 C.P.H. +19.0 A 2,4 1.18	9 0.5 100 TIGr 9 2.1 17 TI_Cu 8 0.2 25 TIFe 1 0.3? 0.3? Nome 8 4 12 TI_Ge	27	43.8 43.8 100 1100 0.12 0.30
B.C.C13.0 A 3 C.P.H. +22.5 C 3 Diamond -5.4 B 4 4 F.C.T. +7.0 A 3 C.P.H. +28.0 A 3 C.P.H. +28.0 C 3 C.P.H. +24.5 C 3 F.C.C15.0 A 2,4 Cubic -24 A 2,4 C.P.H. +24.5 C 3 F.C.C. +19.0 A 2,4 Diamond -20.5 A 2,4 Diamond -20.5 A 2,4 I.8 11.2 1.8 Diamond C.P.H. +17.0 A 4 4 I.8 11.8 Diamond C.P.H20.5 A 4 1.1.8 Diamond C.P.H20.5 A 4 1.1.8 Diamond -20.5 A 4 4 1.1.8 Diamond -20.5 A 5 7 4 1.1.8 Diamond -20.5 A 4 4 1.1.8 Diamond -20.5 A 5 7 6 5 8 5 7 8 5 7 8 5 7 8 5 7 8 5 8 5 8 5 7 8 5 7 8 5 7 8 5 8 5	y 2.1 17 T1_Cu 8 0.2 25 T1Fe 1 0.3? 0.3? Nome 8 4 12 T1_Ge	27	100 100 0.12 0.30
G.P.H. +22.5 C.P.H. +22.5 C.P.H. Diamond -5.4 B 4 11.8 F.C.T. +7.0 A 3 11.1 Cubic C.P.H. +28.0 A 3 11.1 C.P.H. +28.0 C 3 11.7 2 C.P.H. +28.0 C 3 11.7 2 C.P.H. +28.0 C 3 11.1 2 C.P.H. +24.5 C 3 11.1 2 F.C.C. +19.0 A 2,4 11.5 2 Diamond -20.5 A 2,4 11.8 1 Ortho- -117.0 A* 4 1 1.8 0	8 0.2 25 TIFe 1 0.3? 0.3? Nome 8 4 12 TI ₅ Ge	27	100 0.12 0.30
Diamond -5.4 B 4 1.1 Cubic F.C.T. +7.0 A 3 1.1 F.C.T. +7.0 A 3 1.7 1.8 C.P.H. +28.0 C 3 1.7 1.8 C.P.H. +28.0 C 3 1.1 1.7 C.P.H. +28.0 C 3 1.1 1.1 Complex -7 to -24 A 2,4 1.5 C.P.H. +24.5 C 3 1.12 1.8 F.C.C. +19.0 A 2,4 1.8 1.8 Plaamond -20.5 A 2,4 1.8 1.8 Ottho: +17.0 A* 4 1.8 1.8	0.3? 0.3? None 4 12 Tige	27	100 0.12 0.30
Cubic F.C.T. +7.0 A 3 1.7 2 F.C.T. +7.0 A 3 1.7 2 1.1 C.P.H. +28.0 C 3 1.1 2 1.1 1.1 Complex -7 to -24 A 2,4 1.1 1.1 2 1.1 2 2 1.1 2 2 1.1 2 2 1.1 2 2 1.1 2 2 1.1 2 2 1.1 2 2 1.2 2 1.2 2 1 1.2 2 2 1.2 2 2 1 1.2 2 2 1 1.2 2 2 1 1.2 2 2 1 1.2 2 2 1 1.2 2 1 1.2 2 1 1 3 1 1.2 2 4 1 1.8 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1	4 12 TI ₅ Ge		0.12
F.C.T. +7.0 A 3 C.P.H. +28.0 C 3 Complex -7 to -24 A 2,4 1.5 Cubic -15.0 A 2,4 1.5 F.C.C. +19.0 A 2,4 1.8 P.amond -20.5 A 2,4 1.8 Diamond -20.5 A 4, 1.8 Cubic -17.0 A 4 4 1.8 Diamond -20.5 A 4 4 1.8			0.30
C.P.H. $+28.0$ Complex -7 to -24 A $2,4$ 1.5 Complex -7 to -24 A $2,4$ 1.5 C.P.H. $+24.5$ C 3 1.1 F.C.C. $+19.0$ A $2,4$ 1.8 F.C.C. $+19.0$ A $2,4$ 1.8 Diamond -20.5 A $4,4$ 1.8 Cubic C.P.H. $+17.0$ A* 4 1.8	р)		
Complex -7 to -24 A 2,4 1.1 Cubic -7 to -24 A 2,4 1.5 C.P.H. +24.5 C 3 1.2 F.C.C15.0 A 2 1.8 F.C.C. +19.0 A 2,4 1.8 Diamond -20.5 A 4,4 1.8 Cubic -20.5 A 4,4 1.8 Ortho- 1.8 /	? TILIN	D0192 18 25	-
Cubic C.P.H. +24.5 C.P.H. +24.5 F.C.C15.0 F.C.C. +19.0 Diamond -20.5 A 2,4 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	2? ? None	-	۲. ۲ ۲. ۵
C.P.H. +24.5 C 3 1.2 F.C.C15.0 A 2 1.8 F.C.C. +19.0 A 2, 4 1.8 Diamond -20.5 A 4, 4 1.8 Cubic +17.0 A* 4 1.8	0.4 35 TiMn	Tetragonal 0.37	0.19
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			TOO
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 2 27 27	360.0	Ì
d -20.5 A 4, 1.8 1 +17.0 A* 4 1.8 1	.8 0.2 12 TI _S NI		C 4
+17.0 A* 4 1.8	.8 16? 45 TI Pb	D019 0 00	77.2 1001
+17.0 A* 4 1.8	0.5 3 TI_SI	na 1	3.7 5
T.8	n		0.40
	1.8 20.5 ? ?	7 50	ŭ
homobic -7.5 A LEE ; ;	7		ы. У
	./ 3.8 100 TIU	Hexagonal 50 00	
	.3 1.0? ? Nons	4	5 + C
			0.13
Key to types of ailoy systems: A - Beta-eutectoid			
1 AC; (punoda	ŧ	he xa gona l
ı	ewent	F.C.C Face Centered cubic	cubic

TABLE XVII

PROPERTIES OF POTENTIAL PHASE II HARDENING ELEMENTS

* - System unknown; type thought most likely on basis of size factor and position in periodic table

B.C.C. - Body centered cubic F.C.T. - Face centered tetragonal

TABLE XVIII

Rolling Performance Alloy Heat No. Hot Ccld Ti-17V-10Cr-3A1-X Group T 3725 Ti - 17V - 10Cr - 3A1Good Good Ti 17V 10Cr 3A1-1Cu T-3726 Good Good T-3727 Ti-17V-10Cr 3A1 3Cu Good Good T 3728 Ti-17V-10Cr-3A1-5Cu Fair Fair T-3729 Ti 17V-10Cr-3A1-1Ni Good Good T-3730 Ti-17V-10Cr-3A1-3Ni Good Fair T-3731 Ti 17V-10Cr 3A1-5Ni Cracked 2nd Pass -Т 3732 Ti 17V-10Cr-3A1-1Co Good Fair T-3733 Ti-17V-10Cr-3A1-3Co Fair Fair T-3734 Ti-17V 10Cr 3A1-5Co Fair Poor T-3735 Ti-17V 10Cr-3A1 0.5Si Good Fair T-3736 Ti-17V-10Cr-3A1 1Si Good Fair T-3737 Ti 17V-10Cr 3A1-2Si Fair Fair Cracked 2nd Pass T-3738 Ti-17V 10Cr-3A1-0.5Be Cracked 1st Pass T-3739 Ti-17V 10Cr-3A1 1Be Ti-17V-10Cr-3A1-2Be Cracked 1st Pass 1-3740 T-3741 Ti-17V-10Cr-3A1-1Misch Metal Cracked 1st Pass T-3742 Ti 17V-10Cr-3A1 2Misch Metal Cracked 1st Pass T-3743 Ti 17V-10Cr 3A1 3Misch Metal Cracked 1st Pass ما بما MODIFICATIONS OF ALLOYS IMMEDIATELY ABOVE Gracked 1st Pass(1) T 3928 Ti 17V-10Cr-3A1 1Nd Cracked 1st Pass(2) _ _ _ T 3929 Ti-17V 10Cr-3A1-1Nd Cracked 1st Pass⁽³⁾ - - -T 3930 Ti-17V 10Cr 3A1-1Nd т 3925 Ti 17V 8Cr-3A1 3Cu Good Good T 3926 Ti 17V 8Cr 3A1-3Ni Good Good Ti 17V-8Cr 3A1 3Co Good T-3927 Good

Good

Poor

Good

Good

Good

Poor

Good

Poor

Fair

Good

Fair

Poor

ROLLING PERFORMANCE OF PHASE II ALLOYS

(1) Rolled at 1400F

Ti 17V-8Cr-3A1 5Cu

Ti 17V-7Cr-3A1 5Ni

Ti-17V-7Cr 3A1 5Co

Ti-17V 10Cr 3A1-0.1Be

Ti-17V-10Cr 3A1-0.2Be

Ti-17V 10Cr-3A1 0.3Be

T-3942

T-3943

T 3944

T-3945

T-3946

T-3947

(2) Rolled at 1750F

(3) Rolled at 2100F

LABLE XVIII(Continued)

1

_

Heat Nc	Alloy	Rolling Perfor Hot	rmance Cold
near no	CILOY		<u>C010</u>
<u>Ti 8Mo 8V-7</u>	7.5Fe-3A1 X Group		
T 3813	T1-8M0-8V-7.5Fe 3A1	Good	Fair
T 3814	Ti 8Mo-8V-7 5Fe-3Al 1Cu	Good	Fair
T - 3 815	Ti-8Mo-8V 7 5Fe-3A1-3Cu	Fair	Poor
т 3816	Ti 8Mo 8V-7 5Fe 3A1-5Cu	Cracked 2nd Pass	
Y 3817	Ti 8Mo 8V 7 5Fe-3Al 1Ni	Good	Poor
T 3818	Ti 8Mo 8V-7 5Fe-3A1 3Ni	Cracked 1st Pass	•
T 3819	Ti-8Mc 8V 7 5Fe 3Al 5Ni	Cracked 1st Pass	
т 3820	Ti 8Mc 8V 7 5Fe 3A1-1Co	Fair	Poor
T-3821	Ti-8Mo 8V-7 5Fe-3A1 3Co	Poor	Poor
т 3822	i-8Mo-8V-7,5Fe 3A1 5Co	Cracked 1st Pass	
T-3823	Ti-8Mo-8V-7.5Fe-3A1-0.5Si	Good	Poor
Т 3824	Ti-8Mo-8V-7 5Fe 3A1-1Si	Good	Poor
T-3825	Ti-8Mo-8V-7.5Fe-3A1-2Si	Fair	Poor
т 3826	Ti 8Mo-8V-7 5Fe-3A1-0.5Be	Cracked 2nd Pass	
T-3827	Ti-8Mo-8V-7.5Fe-3A1-1Be	Cracked 1st Pass	
T-3828	Ti-8Mo-8V-7 5Fe-3A1-2Be	Cracked 1st Pass	
T-3829	Ti-8Mo-8V-7 5Fe-3Al-1Mi ch Metal	Cracked 1st Pass	
T-3830	Ti-8Mo 8V-7.5Fe-3Al-2Misch Metal	Cracked 1st Pass	
т 3831	Ti-8Mo 8V 7.5Fe 3Al-3Misch Metal	Cracked 1st Pass	
	MODIFICATIONS OF ALLOYS IMMEDI	ATELY ABOVE	
T-3932	Ti-8Mo-8V 5Fe-3A1-3Cu	Good	Fair
Т 3933	Ti 8Mo-8V-4Fe-3A1-5Cu	Fair	Fair
T-3934	Ti-8Mo-8V 5Fe-3A1-3Ni	Poor	Poor
T-3935	Ti-8Mo-8V-4Fe-3A1-5Ni	Good	Poor
T-3936	Ti-8Mo-8V-5Fe-3A1-3Co	Poor	Poor
T-3937	Ti-8Mo-8V-4Fe-3A1-5Co	Poor	Poor
T 3938	Ti-8Mo-8V-7 5Fe-3A1-0 1Be	Poor	Poor
т 3939	Ti-8Mo-8V-7.5Fe-3A1-0.2Be	Cracked 2nd Pass	
T-3940	Ti-8Mo-8V-7 5Fe-3A1-0,3Be	Cracked 1st Pass	
<u>Ti-15Mo-5Fe</u>	- 3A1 X Group		
T-3874	T1-15Mo-5Fe-3A1	Good	Fair
T-3875	Ti-15Mo-5Fe-3A1-1Cu	Good	Good
T 3876	Ti-15Mo 5Fe 3A1-3Cu	Cracked 2nd Pass	
T-3877	Ti-15Mo-5Fe-3A1-5Cu	Cracked 1st Pass	
T-3878	Ti 15Mo-5Fe 3A1-1Ni	Fair	Poor
т 3870	$T_{f} = 15M_{\odot} - 5E_{\odot} - 2A + 2N_{c}$		LOOL

- - . .

- .

Cracked 1st Pass

Cracked 1st Pass

T-3877	Ti-15Mo-5Fe-3A1-5Cu
T-3878	Ti 15Mo-5Fe 3A1-1Ni
T 3879	Ti-15Mo 5Fe 3A1 3Ni
т 3880	Ti-15Mo 5Fe-3A1-5Ni

TABLE XVIII (Continued)

		Rolling Per	formance
<u>Heat No.</u>	Alloy	Hot	Cold
<u>Ti 15Mo 5Fe</u>	- 3A1-X Group, Continued		
T 3881	Ti 15Mo-5Fe-3A1 1Co	Fair	Poor
T 3882	Ti 15Mo-5Fe-3A1 3Co	Cracked st Pass	
T 3883	Ti-15Mo-5Fe-3A1-5Co	Cracked 1st Pass	
T-3884	Ti-15Mo 5Fe-3A1-0.5Si	Good	Fair
T-3887	Ti 15Mo 5Fe-3A1-1Si	Gocd	Poor
T 3886	Ti 15Mo-5Fe-3A1-2Si	Fair	Poor
T-3885	T1-15Mo-5Fe-3A1-0.5Be	Good	Poor
T-3888	Ti 15Mo-5Fe-3A1-1Be	Cracked 1st Pass	
T-3889	Ti 15Mo-5Fe-3A1-2Be	Cracked 1st Pass	
T 3890	Ti-15Mo 5Fe 3A1-1Misch Metal	Cracked 1st Pass	
T-3891	Ti-15Mo 5Fe 3A1 2Misch Metal	Cracked ist Pass	-
T [.] 3892	Ti-15Mo 5Fe 3A1 3Misch Metal	Cracked 1st Pass	

MUDIFICATIONS OF ALLOYS IMMEDIATELY ABOVE

T-3951	Ti-15Mo-3Fe-3A1-3Cu	Good	Gcod
T-3952	Ti 15Mo 2Fe 3A1-5Cu	Poor	Poor
T-3953	Ti 15Mo 3Fe-3A1-3Ni	Poor	Poor
T-3954 T-3955 T-3956 T-3957 T-3958	Ti 15Mo 2Fe-3A1-5Ni Ti-15Mo 3Fe-3A1-3Co Ti-15Mo 2Fe-3A1-5Co Ti-15Mo-5Fc-3A1-0.1Be Ti-15Mo-5Fe 3A1-0.3Be	Cracked lst Pass Fair Fair Poor Cracked 2nd Pass	Poor Poor Pocr

-- -

TABLE XIX

AGING RESPONSE OF TI-1/V-10G1-JA1-X GROUP ALLOYS AGED AT 950F AND 1050F

			Vickers	Hardness	6	
	After					Aged for
			iven Hour		مرجا أحجره كالجنبيسية فحرجتهم وعدارتهم ومحا	
Alloy	0		4	8	<u> 16 </u>	24
	202	225	2.2.7	2/1	263	270
Ti-17V-10Cr-3A1	323	325	327	344	361	379
Ti-17V-10Cr-3A1-1Cu	330	334	335	340	357	367
Ti-17V-10Cr-3Ai-3Cu	334	335	237	345	346	
Ti-17V-10Cr-3A1-5Cu	353	355	356	356	376	
Ti-17V-10Cr-3A1-1Ni	330	327	326	341	362	
Ti-17V-10Cr-3A1-3Ni	349	348	358	356	361	
Ti-17V-10Cr-3A1-1Co	334	336	345	350	371	
Ti-17V-10Cr-3A1-3Co	368	363	362	368	380	
Ti-17V-10Cr-3A1-0.5Si	346	355	354	361	377	
Ti-17V-10Cr-3A1-1Si	356	366	371	375	398	407
Ti-17V-10Cr-3A1-2Si	387	385	387	399	420	
Ti-17V-8Cr-3A1-5Cu	324	326	338	354	389	
Ti-17V-7Cr-3A1-5Ni	338	327	335	338	338	* * -
T1-177 7Cr-3A1-5Co	353	328	334	349	372	
Ti - 17V - 10Cr - 3A1 - 0.15c	312	317	293	326	351	
Ti-17V-10Cr-3A1-0.2Be	329	332	319	330	322	
Ti-17V-10Cr-3A1-0.3Be	308	313	308	313	332	
Ti-17V-8Cr-3A1-3Cu	271	248	225	247	289	
Ti-17V-8Cr-3A1-3Ni	314	274	295	311	267	
Ti - 17V - 8Cr - 3A1 - 3Co	304	319	273	305	292	
			• -			
			Aged a	t 1050F		
TI 170 100- 241	272	300	321	326	338	349
Ti-17V-10Cr-3A1	323	308			342	353
Ti-17V-10Cr-3A1-1Cu	330	323	325	337	-	
Ti-17V-10Cr-3A1-1Si	356	358	366	367	380	387

TA	В	LE	XX

HARDNESS RESPONSE OF TI-17V-10Cr-3A1-X CROUP OF ALLOYS AGED AT 850F

	After	Solution				Aged
Alloy	0	2	4	8	16	24
Ti-17V-10Cr-3A1	308	308	307	310	319	326
Ti-17V-10Cr-3A1-1Cu	307	315	314	298	315	322
T1-17V-10Cr-3A1-3Cu	313	311	312	314	308	318
Ti-17V- 10Cr-3A1-5Cu	327	332	329	308	320	338
Ti-17V-10Cr-3A1-1Ni	320	321	325	326	331	345
Ti-17V-10Cr-3A1-3N1	345	339	344	356	297	343
Ti-17V-10Cr-3A1-1Co	307	293	315	317	311	337
Ti-17V- 10 Cr-3A 1-3 C o	329	329	331	332	319	327
Ti-17V-10Cr-3A1-0.5Si	31.3	289	319	30.5	307	274
T-17V-10Cr-3A1-1Si	385	321	336	309	325	375
Ti-17V-10Cr-3A1-2Si	358	358	349	365	386	380

XXI	
E	
TAE	

AGING RESPONSE OF T1-17V-10Cr-3A1 GRGUP OF ALLOYS, QUENCHED FROM 1350F AND AGED AT 950F, OR AGED WITHOUT SOLUTION TREATMENT AT 850F

		والمحاجب والمحاجب والمحاجب والمحاجب		٧i	Vickers Hardness	1			1	
	Quenched	Quenched and Aged	For GIV	For Given Times,	Hours	Aged	Ln AS-KO Tig	As-Koiled Condition Times, Hours		FOF GIVEN
A1109	0	2	7	8	16		~1	11	×	10
T1-17V-10Cr-3A1	309	306	312	327	345	349	383	405	417	131
T1-17V-10Cr-3A1-1Cu	319	306	312	319	336	348	342	380	459	-7 -7
TL-17V-10C+-3A1-3Ca	521	319	312	317	327	363	345	376	387	413
T1-17V-10Cr-3A1-5Cu	523	336	339	342	370					
T1-17V-10Cr-3A1-1N1	317	36.9	317	327	345	354	357	107	401	2
T1-17V-16CF 3A1-3NJ	335	333	336	339	351	383	366	195	417	2 y y 1
T1-17V-10Cr-3A1-1Cc	345	نې 	319	319	336					
T1-17V-10Cr-3A1-3Co	345	333	336	342	351					
T1-17V-10Cr-3A1-0.5S1	336	333	336	348	370					
T1-17V-10C5-3A1-1S1	348	345	351	360	387	394	40I	421	e e t	* ~ 7
T1-17V-10Cr-3A1-2S1	366	370	37.3	383	412					
Ti-17V-8Cr-3A1-3Cu	306	304	314	319	339					
T1-1/V-8Cr-3A1-3N1	319	319	333	336	363					
[1-17V-8Cr-3A1 3Co	333	322	319	330	345					
T1-17V-8Cr-3A1-5Cu	314	317	327	330	366					
TL-17V-7CE-JA1-5NE	344	335	333	333	332					
T.L - 17V - 7Cr - 3A L - 5Co	357	356	356	359	380					
T1-17V-10Cr-3A1-0.18e	322	318	325	330	345					
T1-17V-10C1-3A1-0.2Be	327	329	327	333	343					
i7V-10Cr-3A1-0.3Be	336	330	330	333	342					

TABLE XXII

		Vicke Solution ged for G		ent at 13	350F 50F
Alloy	0	2	<u>_4</u>	_8_	16
Ti-8Mo-8V-7.5Fe-3A1	358	348	358	361	361
Ti-8Mo-8V-7.5Fe- 3A1-1Cu	368	368	370	368	368
Ti-8Mo-8V-7,5Fe-3A1-3Cu	370	385	383	384	386
T1-8Mo-8V-7.5Fe-3A1-1N1	373	379	379	377	373
Ti-8Mo-8V-7.5Fe-3A1-1Co	365	368	373	370	372
Ti-8Mo-8V-7.5Fe-3A1-3Co	414	408	400	399	418
Ti-8Mo-8V-7.5Fe-3A1-0.5Si	396	394	393	398	405
Ti-8Mo-8V-7.5Fe-3A1-1Si	413	418	401	407	419
Ti-8Mo-8V-7.5Fe-3A1-2Si	449	444	450	450	441
Ti-8 Mo-8V-5Fe-3A1-3Cu	331	340	352	278	285
T1-8Mo-8V-4Fe-3A1-5Cu	320	336	301	324	374
T1-8Mo-8V-5Fe-3A1-3N1	303	338	314	332	357
T1-8Mo-8V-5Fe-3A1-3Co	315	342	343	326	326
T1-8Mo-8V-4Fe-3A1-5Co	342	337	345	358	379
T1-8Mo-8V-7.5Fe-3A1-0.1Be	353	327	347	347	360
		Age	d At 10	50F	
T1-8Mo-8V-7.5Fe-3A1	356	356	362	355	358
T1-8Mo-8V-7.5Fe-3A1-1Cu	356	365	364	360	377
Ti-8Mo-8V-7.5Fe-3A1-1Si	402	401	390	403	410

AGING RESPONSE OF TI-8Mo-8V-7.5Fe-3A1 GROUP OF ALLOYS AGED AT 950F AND 1050F

TABLE XXIII

AGING RESPONSE OF T1-8Mo-8V-7.5Fe-3A1 GROUP OF ALLOYS AGED AT 850F

			Vickers Treatme Given Hou		500F and	ì
Alloy	0	2	4	8	16	24
T1-8Mo-8V-7.5Fe-3A1	348	345	341	339	340	343
Ti 8Mo-8V-7.5Fe-1Cu	337	331	353	336	354	307
Ti-8Mo-8V-7.5Fe-3Cu	358	361	363	362	366	368
Ti-8Mo-8V-7.5Fe-1Ni	347	326	326	354	353	352
T1-8Mo-8V-7.5Fe-1Co	364	347	363	350	354	360
T1-3Mo-8V-7.5Fe-3Co	390	390	375	385	384	395
Ti-8Mo-8V-7.5Fe-0.5Si	370	369	370	374	377	381
Ti-8Mo-8V-7.5Fe-1Si	392	392	396	375	389	396
Ti-8Mo-8V-7.5Fe-2Si	433	395	410	436	430	378

. .

-

TABLE XXIV

AGING RESPONSE OF TI 8Mo 8V 7.5Fe 3A1 GROUP OF ALLOYS, QUENCHED FROM 1350F AND AGED AT 950F, OR AGED WITHOUT SOLUTION TREATMENT AT 850F

			Λ	ECKE	ഗ ഹ	HARDN	ы S S			
		Quenched	hed and	4800		Aged	d in As	[Rolled Condition	ion
		For Given	en Times	s, Hours	sr.		for G	Given Ti	Times, Ho	Hours
Alloy	0	2	7	8	91		2	4	ဆ	16
i 8Mo 8V 7.	348	345	345	3/3	351	(1)	387	1	413	946
8Mo-8V-7.5Fe	354	357	351	348	354	(1)	376	380	376	390
3A 1	370	370	373	370	373	405	390	397	390	401
i-8Mc-8V-7.5Fe 3A1	357	360	360	360	365					
••••	357	360	360	357	363					
i 8Mo 8V 7.5Fe 3A1-	380	387	387	387	390					
i-8Mo	383	380	<u>(8)</u>	380	394					
TI 8Mo 8V-7.5%e-3A1 1S1	390	394	390	3 .60	402					
i 8Mo-8V 7.5Fe-3A1	429	433	417	425	4:29					
i 8Ho 8V 5Fe	348	345	342	357	354					
Ti 8Mo 8V 4Fe 3Al 5Cu	333	342	348	351	397					
i 8Mo-3V-	357	348	351	360	360					
TI 8Mo 8V 5Fe-3A1 3Co	357	360	357	357	363					
Ti-8Mo 3V 4Fe 3A1 5Co	373	363	370	~	383					
Ti-8Mo 8V 7.5Fe 3A1 0.1Be	357	357	357	354	366					

(1) Material Exhausted.

TABLE XXV

AGING RESPONSE OF T1-15M0-5Fe-3A1 GROUP OF ALLOYS AGED AT 950F AND 1050F

	After	-	rs Hardne n Treatma		350F
			Given Hou		
A11oy	0	2	4	8	16
T15Mo-5Fe-3A1	334	333	336	338	336
Ti-15Mo-5Fe-3A1-1Cu	328	339	334	342	344
T1-15Mo-5Fe-3A1-3Cu	361	358	361	360	366
Ti-15Mo-5Fe-3A1-1Ni	335	342	330	343	343
Ti-15Mo-5Fe-3A1-1Co	338	339	343	351	343
Ti-15Mo-5Fe-3A1-0.5Si	372	372	376	374	384
Ti-15Mo-5Fe-3A1-1Si	373	372	372	382	377
Ti-15 Mo-5Fe-3A1-2Si	420	4 1 2	408	400	407
Ti-15Mo-5Fe-3A1-0,5Be	371	370	365	368	376
T1-15Mo-3re-3A1-3Cu	283	304	289	302	301
Ti-15Mo-2Fe-3A1-5Cu	306	298	343	335	379
Ti-15Mo-3Fe-3A1-3N1	296	311	290	319	(1)
T1-15Mo-3Fe-3A1-3Co	340	328	299	318	356
Ti-15Mo-2Fe-3A1-5Co	326	333	327	313	325
Ti-15Mo-5Fe-3A1-0.1Be	298	306	294	318	312
		Age	ed at 10	50F	
T1-15Mo-5Fe-3 A1	328	327	327	331	353
Ti-15Mo-5Fe-3A1-1Cu	334	343	344	341	348
Ti-15Mo-5Fe-3A1-1Si	389	377	376	379	396
Ti-15Mo-5Fe-3A1-0.5Be	365	367	373	378	376

.....

(1) Sample too cracked for accurate hardness impressions. One impression only taken gave 360 D.P.N.

TA	BI	E	XX	V	I

AGING RESPONSE OF T1-15Mo-5Fe-3A1 GROUP OF ALLOYS AGED AT 850F

			-	Hardne		
	After	r Solui	tion T	reatmen	nt at	1500F
	And A	lged f	or Give	en Hour	rs at	850F
Alloy	0	2		8	16	24
Ti-15Mo-5Fe-3A1	314	318	314	312	311	316
Ti-15Mo-5Fe-3A1-1Cu	327	330	323	331	+32	331
T1-15Mo-5Fe-3A1-1N1	328	327	329	325	328	340
T1-15Mo-5Fe-3A1-1Co	341	341	3 37	330	3.31	343
Ti-15Mo-5Fe-3A1-0,5Si	351	345	344	346	643	356
Ti-15Mo-5Fe-3A1-1Si	359	360	363	364	364	366
Ti-15Mo-5Fe-3A1-2S1	395	407	410	395	394	373

...

AGING RESPONSE OF TI 15Mo-5Fe 3A1 OR A	40-5Fe ОF	A 1 GRC A GED	GROUP OF ALLOYS ED WITHOUT SOLUT	ALLOYS	T LON T	3A1 GROUP OF ALLOYS QUENCHED FROM 1350F AND AGED AT OR AGED WITHOUT SOLUTION TREATMENT AT 850F	DM 135(T AT 8	50F AND 850F	AGED A	NT 950F,
			V I C K E	KER	S H	ARDN	ESS			
	Quenched		and Aged For	l For		٩	Aged in	As	led Cr	Rolled Condition
	Given	in Times	ss, Hours	ILS			For G	Given Ti	Times, H	Hours
Alloy	0	~1	4	∞	16		5	4	∞	<u>16</u>
Ti 15Mo 5Fe 3A1	319	314	322	317	327	383	376	425	433	464
15Mo-5Fe	325	330	327	327	333	362	366	387	383	425
3A1	333	322	325	333	342	251	366	397	429	464
15Mo	342	336	333	336	339					
15Mo	357	354	357	360	376					
Ti-15Mo-5Fe-3A1-1Si	360	366	366	370	380					
15Mo-5Fe	387	394	390	390	397					
Ti 15Mo-3Fe 3A1 3Cu	321	317	323	325	353					
Ti-15Mo-2Fe-3A1 5Cu	319.	324	340	336	424					
Ti-15Mov 3Fev 3A1-3Ni	337	334	332	343	354					
Ti 15Mo-3Fe 3A1 3Co	354	344	343	349	355					
i 15Mo-2Fe-3	338	336	339	341	344					
Ti 15Mo~5Fe-3Al 0.1Be	331	324	332	329	34.2					

TABLE XXVII
TABLE XXVIII

ROLLING PERFORMANCES OF PHASE II ALLOYS WITH HIGHER ADDITIONS OF COPPER OR NICKEL

Composition	Rolling Perf	ormance
Alloys With Increased Copper Content	Hot	Cold
Ti-17V 3A1-5Cu	Good	Good
Ti 17V-3A1 7,5Cu	Good	Good
Ti-17V-3A1 10Cu	Good	Good
Ti 8Mo 8V-3A1-5Cu	Good	Good
Ti-8Mo-8V-3A1-7.5Cu	Good	Good
Ti-8Mo-8V 3A1-10Cu	Poor	Poor
Ti-6Mo-8V ·3A1-7 5Fe-3Cu	Good	Poor
Ti-6Mo-8V 3A1-7 5Fe-5Cu	Poor	Poor
Ti-4Mo-4V-3A1-4Fe-5Cu	Good	Fair
Ti 4Mo 4V 3A1-4Fe-7,5Cu	Good	Fair
Ti 4Mo-4V-3A1-4Fe-10Cu	Poor	(1)
Ti 4Mo 4V-3Al 4Fe-12,5Cu	Unworkable	.
Ti-15Mo-3A1-5Cu	Good	Good
Ti-15Mo-3A1-7.5Cu	Poor	Poor
Ti 15Mo-3A1-10Cu	Unworkable	
Ti-13Mo-3A1 5Fe-3Cu	Good	Poor
Ti 13Mo 3A1 5Fe-5Cu	Poor	Poor
Ti 11Mo 3A1 5Fe-3Cu	Good	Poor
Ti-11Mo-3A1-5Fe-5Cu	Poor	Poor
Alloys With Increased Nickel Content		
Ti 17V-5Cr 3A1-5Ni	Poor	(1)
Ti-17V 5Cr-3A1-7,5Ni	Unworkable	*==*
Ti-17V-5Cr 3A1-10Ni	Unworkable	*
Ti-17V-3 r-3A1-7, 5Ni	Unworkable	
Ti 17V-3Cr-3A1-10Ni	Unworkable	24 m
Ti-17V-3Cr 3A1 12 5Ni	Unworkable	
Ti 17V-2Cr-3A1-10Ni	Unworkable	

Unworkable - --

(1) These two samples were not cold rolled due to their poor condition

Ti-17V-2Cr-3A1-12,5Ni

XIX	
TABLE	

TENSILE PROPERTIES OF BASE ALLOYS WITH COPPER ADDITIONS

Ingot No.	Alloy	Heat Treatorint	UTS Kps i	YS 1 ps1	Local Elong.	Uniform Elong. X	Elong.	Elastic Močujus (Ex10 ⁻⁶ psi)
T-4230	Tf~17V-3A1-5Cu	1350F(15min)Plate Cool	108 107	103 102	25 35	00	9	11.2 11.2
:	Ξ	" +900F(8hrs)AC	197	4 8 4	Ś	0	0	$15.2^{(1)}$
-	z	" + 900F(8hrs)AC	210		Ś	0	0	14.5
T-4231	T1-17V-3A1-7.5Cu	1350F(15min)Place Cool	140	128	10	5.0	r (12.7
Ξ	= :		140	131	10	0 (7	12.3
I I	**	" + 900F(8hrs)AC	225	217	n c	00	00	15.7(1)
7-4232	T1-17V-3A1-10Cu		159	146	10	2.5	• •	13.6
Ξ			165	150	10	2.5	ŕ	13.6
=	=	" + 900F(8hrs)AC	216		S	0	0	16.4(1)
=	=	" +900F(8hrs)AC	277	1	S	0	0	$15.9^{(1)}$
T-4234	T1-8Mo-8V-3A1-5Cu	1350F(15min)Plate Cool	139	131	25	5.0	11	12.4
:	z		138	131	25	5.0	11	12.5
-	=	" + 900F(8hrs)AC	224	8 8 1	Ś	0	0	16.3(1)
:	=	" +900F(8hrs)AC	233	231	Ś	0	0	$16.5^{(1)}$
T-4235	T1-8Mo-8V-3A1-7.5Cu	1350F(15min)Plate Cool	161	150	Ś	2.5	m	13.6(1)
-	E	14	162	150	10	5.0	•	13.6(1)
Ξ	Ξ	" +900F(8hrs)AC	109	1 1 1	0	0	0	17.0(1)
Ξ	=	" +900F(8hrs)AC	Sample		hile machi	ning		
T-4227	T1-15Mo-3A1-5Cu	1350F(15min)Plate Cool	142		8	2.5	6	12.9
=	=	=	149	143	25	2.5	11	13.6
:	Ξ	" +900F(8hrs)AC	211	4 12 1	Ś	0	0	15.6(1)
=	=	" +900F(8hrs)AC	136	1	0	0	0	16.9(1)

(') Broke outside gage length.

Ţ

•

Ī

-`

TABLE XXX

ROLLING FERFORMANCE ANT AGING RESPONSE OF SELECTED HYPEREUTECTOID TITANIUM ALLOYS, SOLUTION TREATED AT 1750F OR 1850F AND AGED AT 900F

		몓	485 500 533 593 483 503 593 499
		∞	489 501 465 491 491 497 497 491
900F	Hours	t	498 530 495 495 495 495
\ged at		-1	489 506 536 461 470 489 419
dne ss.		1	521 539 555 422 434 433
Vickers Hardness		2	544 545 545 545 545 545 545 545 545 545
V1ck	Ites	2	576 576 526 450 450 450 450
	Minu		580 586 585 585 585 585 585 585 585 585 585
	6	> 	394 419 379 422 387 414
Solution	Treatmont	1120 100	1750F(15min)WQ(3) 1850F(15min)WQ(3) 1750F(15min)WQ(3) 1850F(15min)WQ(3) 1850F(15min)WQ(3) 1850F(15min)WQ(3)(4) 1750F(15min)WQ(3)(4) 1750F(15min)WQ(3)(4)
Performance	Hot Cold		Good Poor Good(2) (2) Poor(2) (2)
Rolling	Hot		Good
	Alloy		T1-8N1-5Fe T1-10N1-5Fe T1-8N1-5Mn T1-10N1-5Mn T1-11Co-5Fe T1-13Co-5Fe T1-13Co-5Fn T1-13Co-5Mn
Ingot	No.		15220 75221 75222 75223 75224 75225 75225 75225

£35£

1

Cracked upon stamping identification on sheet. Samples were "warm rolled" due to heating of rolls. Melting in aîloy. Primary compound present.

4

TABLE XXXI

TENSILE RESULTS ON T1-17V-10Cr-3A1 CONTAINING 01% S1 IN THREE SOLUTION TREATED AND AGED CONDITIONS

Elastic Modulus (Exl0-6psi)	13.1		14.5	14.3	13.4	13.9	14.6(1)	14.6	14.1	15.5	15.5	14.0	14.4	13.4	13.8	14.6	13.1	14.6	15.3	14.1	14.2	13.3	13.7	15.5(1)	15.0	14.4	13.5
flong. Z in 1"	16	18	19	21	24	25	۴.	9	11	4 V	, n	21	17	19.	15	18	25	80	4	80	12	9	80	10	12	14	19
Uniform Elong. 7	10.5	10. 0	7.5	12.5	12	12.5	5.0	5.0	0.5	12.5	0.0	17.5	10.0	10.0	7.5	0.01	17.5	7.5	2.5	7.5	10.0	2.5	5.0	5.0	7.5	7.5	17.5
Local Elong.	25	35	ጽ	45	50	50	10	ŝ	20	57 01	15	35	ନ	45.	40	40	50	10	10	10	20	10	15	25	8	30	20
YS Kps1	139	141	135	136	135	135	154	151	144	163 148	146	141	145	142	140	138	140	152	153	149	148	145	142	147	147	147	146
UTS Kps1	149	148	139	141	139	140	171	169	159	150	155	150	152	147	1.45	146	143	167	165	161	162	155	155	157	158	154	155
I																											
Heat Treatment	1350F(}hr)AC	=	1450F(\http://wc		1550F(\$hr)AC		1350F(\fhr)AC+950F(\text{Bhrs})AC	= -	1450F(ht)AC			1350F(\cdot hr)AC		14 50F(\$hr)AC	-	1550F(4hr)AC		1.50F(4hr)AC+950F(8hrs)AC		1450P(\fhr)AC "		1550F(3/4hr)AC "		1350F(1 4hr)AC		1450F(khr)AC	:
Alloy Heat Treatment	T1-17V-10Cr-3A1 1350F(\\$hr)AC		' 1450F(\xfhr)AC	. I	" 1550F(\frac{1}{2}hr)AC				1450F(hr)AC			T1-17V-10Cr-3A1-0.25S1 1350F(hr)AC		" 14 50F(Ahr)AC		" 1550F(\ftermaps.)AC				" 1450P(\fhr)AC "	-	" 1550F(3/4hr)AC "		T1-17V-10Cr-3x1-0.5S1 1350F(3hr)AC		" 1450F(\fhr)AC	-

(1) Broke outside gage length.

Elastic Modulus (Ex10-6psi)	13.8 13.6			14.3	•	12.9	1.61	15.2	16.0(1)	14.6	15.8	$17.2^{(1)}$	14.1(1)	14.7	14.7	16.2	14.6	15.5	• •	14.2(1)	15.0	15.0	14.6	14.9(1)	15.0	14.9	14.7	14.6
Elong. Z in 1"	51 %	; v	9	6	90	~ '	-	œ	16	6	10	۲	- t	7 i	\$	7	S	13	ບີ່ກ	9	-1	6	4	6	٣	t-	1	٣
Uniform Eiong.	10.0	2.5	5.0	•	7.5	5.0	0.0	5.0	15.0	7.5	•	5.0	2.5	۲. ۶ ۲۰۰	5.0	5.0	5.0	10.0	2.5	5.0	0	5.0	2.5	2.5	2.5	2.5	0	2.5
Local Elong. X	35 40	01	10	15	10	15	10	15	15	15	15	10	ν v		Ś	Ś	Ś	50 20	01	10	S	15	10	ŝ	s	Ś	Ś	Ś
YS Kps1	145	149	156	153	153	153	001	د ، 152	149	146	146	148	157		156	154	154	152	140	148	154	148	157	157	153	12	152	149
UTS Kps1	152	165	166	168	169	163	162	No sto 162	160	158	158	158	171	7/1	172	170	168	291 201	155	160	160	160	171	171	166	169	158	159
ent		(8hrs)AC		=	:	50P(8hrs)AC	:						F(8hrs)AC	:	:	50F(8hrs)AC	=						F(8hrs)AC	:	=	=	:	:
Heat Treatu	1550P(\hr\AC	1350F(khr)AC+950F()	1450F(\$hr)AC		1550F(3/4hr)AC+95		IJJOPP(≵hr)AC	1450F(4hr)AC	-	1550F(ዿhr)AC		1350F(\hr)AC+950F(1450F(khr)AC		1550F(3/4hr)AC+95		1350F(4hr)AC	1450F(Ahr)AC		1550P(\hr)AC	•=	1350F(hhr)AC+950F(:	14 50 7(\$hr)A C	:	1550F(3/4hr)AC	Ξ
Alloy Heat Treato	T1-17V-1, Cr-3A1-0.5S1 1550P(\$hr)AC	, fii,)	" 1450P(\$hr)AC	=	" 1550F(3/4hr)AC+95		$11 - 1/V - 10Cr - 3A1 - 0.7551 1350P(\frac{5}{2}hr)AC$	" 14 50 F (\frac{1}{2} hr) A C	=	" 1550F(Åhr)AC			" 1450F(Ahr)AC				T1-17V-10Cr-3A1-1S1 1350F(hr)AC	14 50P(Ahr)AC		" 1550P(\\http://hr)AC	-		=	" 14 507 (\$hr) AC		" 1550F(3/4hr)AC	1) Wrote Atta seen lassrt

1

TABLE XXXI (Continued)

いい 加減量 キキ男 おうぼうき どうかびまたしょう 通り 伊 エナー・チェール アンド・チ

A NUMBER OF A DAMAGE OF A DAMA

~

(1) Broke outside gage length.

TABLE XXXII

AGING RESPONSE OF T1-17V-10CT-JAI BASE ALLOY CONTAINING 0.5 AND 1.0 PERCENT SILICON ADDITIONS

		8	1 1 1	, , ,	1 1 1	1 1 1	1 1 1	1 1 1	336	320	320			! ! !	1 1 1	1	1	8	380	360	362
	S	4	1	8	1 1 1	1	1 1 1	1	327	321	321		•	8 8 8	1 1 1	1 1 7	1 1 1	•	375	376	362
	Hours	2	327	337	361	365	363	376	327	321	317	260	201	377	107	436	197	483	390	391	377
ter Agin		-	325	9% 9	356	346	366	371	331	319	310	167	700	378	403	707	456	453	388	385	374
dness Af		8	323	336	358	345	356	366	325	319	314	37.0	ŝ	370	398	391	977	459	382	385	369
Vickers Hardness After Aging		2	319	336	340	358	346	370	315	317	315	0.05	S	357	380	403	427	456	381	382	362
V1c	Minutes	~	325	335	345	364	350	369	319	320	313	F.7C	うち	355	384	390	398	445	379	373	378
	Σ	-	332	320	342	349	357	366	318	313	311	76.7	700	367	380	383	397	452	373	365	365
			340	334	337	344	333	32	316	318	317	267	まっ	363	373	363	386	446	375	362	365
		0	328									5.15	くま								
	Aging	Temp. of	650	850	950	1050	1150	1250	1 300	0501	1400	2 E 0	000	850	950	1050	1150	1250	1300	1350	0071
		A110Y	T1-17V-10Cr-3A1-0.5S1	1950 (30m 1n) MQ									11-1/A-10(L-2)-121	2050(30min)WQ							
	Ingot	No.	T5014										#C1C1								

ЗI
δI.
γ
പ
60
<
۰.

•

EFFECT OF SULUTION TREATMENT AND COOLING RATE ON THE AGING RESPONSE OF T1-17V-10Cr-3A1(0.5, 1) S1 ALLOY

,

		Index		210 210	002	300	102	110	103	202	220	310 321	
		Pha se		TI _s si,	ξ	T1_S1_	n F	D C	ปา	0 C	8	67 60	I
	T-7761 Quenched from 2050F Aged at 1250F(5mfa)	1/1 01	20	54	100	S	9 17	12 0	<u>6</u> ٤	6			
- 1S1	T-7 Quenched Aged at 1	∘ v	2.5572	2.4285	2.2464	2.1440	1.7415 1.5863	1.4775	1.2971	1.2539			
T1-17V-10Cr-3A1-1S1	762 1 from)F	°1/1			100		٢		79	ır	r		
T1-17V-	T-7762 Quenched from 2050F	о ч Р			2.2499		1.5963		1.3017	1 1273			
	T-7760 hed from 1750F	1/1 		Ś	100	Ŷ	19		51	ŝ	9		
	T-7760 Quenched from 1750F	• • P		2.4338	2.2564	£.1483	1.5978		1.3039	1.1283	1.0099		
	T-7764 Quenche ¹ from 2050F Aged at 1250F(5 min.)	1/1 	4	4	100	~		1 1	cc -	i U)			
	T- Quenche 1 Aged at 1	0 P	2.5474	2.3599	2,2467	1 7173	1.5913	1.3395	1.2980	1.1231			
T1-17V-10Cr-3A1	63 From	^{1/1}			100		8		81		Q,	16	
<u>1-1</u>	1-7763 Quenched from 2050F	° < p			2.2629		1.5993		1.3057		1.0122	0.8566	
22	from	^{1/1}			100		2U		77	7			
7 17 2	Quenched from 1750F	0 v p			2.2018		1.6019		8.5048	:.1315			

۰.

.

TABLE XXXIV

X-RAY DIFFRACTION AMALYSIS OF T1-1/V-10Cr-3A1 ALLOY WITH AND WITHOUT 1.0 PERCENT SILLCON ADDITION

Button No	Solution Treatment	<u>Vickers Har</u> No Ave	<u>Vickers Hardness (10 Kg Load)</u> Ave Ave Aved 1250F(5mfn)
Step-Quenching			8
T-5155	2050F(khr)WO	358	946
=	Transferred to 1950F. Held 30 seconds.	357	404
=	. Transferred to 1850F. Held 30 seconds.	363	605
Ξ	, Transferred to 1750F, Held 30	369	408
Ξ	. Transferred to 1550F, Held 30 seconds,	353	107
=	. Transferred to 1550F. Held 30 seconds.	355	405
Ξ	Transferred to 1450F, Held 30 seconds,	353	404
11	. Transferred to 1950F. Held 15 minutes.	366	418
z	Transferred to 1850F, Held 15 minutes,	355	421
Ξ	. Transferred to 1750F, Held 15 minutes,	353	414
Ξ), Transferred to 1650F, Held 15 minutes,	350	402
=	, Transferred to 1550F, Held 15 minutes,	364	408
te. 	to 1450F, Held 15 minutes,	357	410
Quenching Off Rolls	Rolls	acceleration of coloring	
T-6008	Proressing Treatment	(10 Kg Load)	Radius Obtainable
	Relled at 2050F to C.080-inch. WO	342	1.5T
=	Rolled at 2050F to 0.080-inch + 1250F(5 min)AC	380	i i
Ξ	2050F	343	1.01
11	1 nc h	376	

TABLE XXXV

.

AGING RESPONSE OF T1-17V-10Cr-3A1-1S1 SHEET STEP QUENCHED FROM 2050F OR QUENCHED FROM 1 AGING

۹

T-6008	Processing Treatment	(10 Kg Load)	Radíus
2	Rolled at 2050F to C.080-inch, WQ	342	
=	Rolled at 2050F to 0.080-inch + 1250F(5min)AC	380	
Ŧ	Rolled at 2050F to 0.050-inch, WQ	343	
z	Rolled at 2050F to 0.050-inch, + 1250F(5min)AC	376	

IAXXX	
TABLE	

EFFECT OF SOLUTION TEMPERATURE AND TIME ON THE TENSILE PROPERTIES OF T1-17V-10Cr-3A1

Heat 7 1350F 1350F 1350F 1950F 1950F 1950F 1950F 1950F 1950F 1950F 1950F 1950F 1950F 2050F	Alloy Heat T1-17V-10CF-3A1 1350 11950 11950 11950 </th
20 50F (30min)WQ	
	T1-17V-10Cr-3A1

(1) Sample broke outside gage length.

¢.

.

TABLE XXXVII

1

ŧ

AGING RESPONSE OF T1-1/V-10Cr-3A1-2Ge ALLOY

		2	391 384 366			Hours	2	356 348
	Hours	1	371 367 376		5	H		337 354
Vickers Hardness After Aging			101		850 AND 1250F	r Aging	8	338 369
ess Aft		8	391 397 361			ss Aftei	10	328 356
s Hardn		2	387 378 359		ED AT 6	<u>Vickers Hardness After Aging</u> Minutes	5	337
Vicker	Minutes	~	377 374 352		AND AG	Vickers H Minutes	~	342 351
	M	~	377 364 342		OM 21001		 	350 348 326
		-	367 362 341	111.	CHED FR		0	357
		0	354	TABLE XXXVIII	LOY QUEN	I	1 1	
Aging	Temp.	40	0 850 1050 1250	[]	-0.2Be AL		⊧a tment	24650F Age 24850F Age
	Solution	Treatment	2000F- z hr-40 ;; ;;		1-1/V-10CE-3A1		Heat Treatment	2100F(4hr)4Q+650F 2100F(4hr)4Q+850F 2100F(4hr)40.1250F
		Alloy	T1-17V-10Cr-3A1-2Ge " "		AULTO RESPONSE OF 11-1/V-10CE-JA1-0.2BE ALLOY QUENCHED FROM 2100F AND AGED AT 650.		Alloy	T1-17V-10Cr-3A1-0.2Be "
	ingot	NO.	T-6121 			Ingot	No.	T-5228

A.

TABLE XXXIX

•

TENSILE PROPERTIES OF T1-17V-10Cr-3A1-X STABLE BETA SHEET ALLOY CANDIDATES

Elastic Modulus (Ex10-6psi)	14.2	14.5	15.2	14.8	14.8	14.6	14.9	14.9	1.41	I4.5	14.9	15.2	14.8	14.3		15.0	14.8	14.5	15.3	14.5	14.3	14.9	15.5	15.1	14.0	14.4	14.0	14.1
Eloug.	23	21	12	13	17	. 19	. 13	12	24	23	18	17	20	20	4	Ś	19	18	18	16	21	20	18	18	24	21	æ	16
Uniform Elong. X	12.5	17.5	10.0	10.0	12.5	17.5	10.0	10.0	17.5	17.5	12.5	10.0	10.0	12.5	2.5	2.5	10.0	10.0	17.5	12.5	12.5	12.5	12.5	12.5	15.0	15.0	7.5	10.0
Local Elong. X	97	35	ନ୍ସ	20	30	ጽ	ສ	10	45	40	ନ	30	40	40	ა	10	35	35	25	ጽ	35	35	ନ	25	35	35	0	ନ
YS Kps1	130	133	141	141	134	133	141	140	141	140	144	144	151	150	155	156	137	134	139	139	140	138	143	143	133	132	136	138
UTS Kps1	142	143	160	159	145	144	156	158	148	149	155	156	157	158	162	167	146	146	157	160	151	150	157	157	143	143	151	154
Heat Treatment	1350F(\http://dc	84	" +950F(8hrs)AC	-	1350F(\http://wc	-	" +950F(8hrs)AC		1350F(\hr)AC	54	" +950F(8hrs)AC	. =	1350F(\\hr\AC		" +950F(8hrs)AC	E4 E4	1350P(\$hr)AC	=	" +950F(8hrs)AC		1350F(\hr)AC		" +950F(8hrs)AC		1350F(\$hr)AC		" +950F(8hrs)AC	64 84
Alloy Heat Treatment	T1-17V-10Cr-3A1 1350F(\fpr)AC	-	" +950F(8hrs)AC		T1-17V-10Cr-3A1-1Cu 1350F(\http://dc	5	" +950F(8hrs)AC		T1-17V-100:r-3A1-3Cu 1350P(\http://dc	Ξ	" +950F(8hrs)AC		Tf-17V-10Cr-3A1-5Cu 1350F(ht)AC	2	" +950F(8hrs)AC		T1-17V-10Cr-3A1-1M1 1350F(4hr)AC		" +950F(8hrs)AC	Ξ	T1-17V-20Cr-3A1-1Co 1350F(¼hr)AC	2	" +950F(8hrs)AC		T1-17V-8Cr-3A1-3Cu 1350F(\$hr)AC		" +950P(8hrs)AC	54 A4 A4

Elastic Modulys (Ex10 ⁻⁰ psi)	14.3	14.5	14.6	14.4	15.2	15.3	15. I	15.2	14.4	14.1	14.6	15.0	15.2	14.9	15.5	14.8	15.0	15.4	15.6	16.1	16.7	15.9	16.2	17.2	15.2	14.9	15.5	14.8
Elong. X	17	16	17	œ	24	24	19	15	କ୍ଷ	20	11	σ	23	26	9	16	F 1 1	21	12	17	22	23	12	¢	ନ୍ଧ	19	11	4
Unifore Elong. Z	5.0	5.0	12.5	7.5	12.5	12.5	12.5	12.5	7.5	7.5	5.0	5.0	15.0	17.5	5.0	10.0	1 1 5	15.0	10.0	15.0	15.0	15.0	7.5	5.0	12.5	15.0	10.0	2.5
Local Elong.	40	40	25	ŝ	45	45	35	ম	45	45	25	15	45	45	Ś	25	1 † 1	35	20	25	9 S	35	15	10	35	35	15	0
YS Kpsi	142	141	147	147	145	145	146	147	141	140	152	154	158	160	160	158	8.9	142	140	142	144	145	144	144	145	144	141	141
UTS Kpsi	152	151	161	162	さ	155	159	160	150	149	164	165	165	167	169	168	ł	150	153	153	153	L52	153	155	158	156	156	150
521		•••	•••					• •			• •	•		•					•	-					• •			
U Heat Treatment K	1350F(}hr)AC		" +950F(8hrs)AC		1350F(4hr)AC		" +950F(8hrs)AC	-	1350F(hhr)AC		" +950F(8hrs)AC		1350F(3hr)AC		" +950F(8hrs)AC		1350F(½hr)AC		" +950F(8hrs)AC		1350F(4hr)AC		" +950F(8hrs)AC		1350F(4hr)AC		" +950F(8hrs)AC	
		-	U								0	=							U							=		

TABLE XXXIX (Continued)

	TENSILE PROPERTIES OF T1-8Mo-8V-xFe-X GROUP OF STABLE BETA ALLOY CANDIDATES
	BETA
	STABLE
	6
XI	GROUP
TABLE X1	-xFe-X
	T1-8Mo-8V
	9
	PROPERTIES
	TENSILE

Ī

States and the second second

ļ		
ļ		
l		
I		
l		
ł		
1		
1		
į		
l		
1		

Elestic Modulus (Ex10 ^{-C} psi)	15.8 ⁽¹⁾	15.6(1)	16.2	15.1	15.8	15.4	15.7	18.C		16.1	16.1	14.0	14.1	15.2	14.8	13.6	14.1	15.1	14.2	15.3	15.1	16.1	15.1	15.é	15.0	16.0
Elong.	10	20	12	22	23	6	9	80		4	19	11],4	x0	6	14	13	13	0	16	14	17	26	18	15	19
Uniform Elong. Z	O																									
Local Elong.	25								-																	
YS Kps 1	159	159	160	157	162	160	159	161	on loading	165	167	147	147	149	149	151	153	163	1	161	163	162	161	162	165	163
UTS	160	162	102	162	164	162	163	162		169	170	150	150	156	156	154	156	170	84.4	167	166	167	166	166	171	170
Heat Treatment	350F(\$hr)AC		" +950F(8hrs)AC	18 AR	350F(}hr)AC		" +950P(8hrs)AC	,		" +950F(8hrs)AC	14 18	350F(\$hr)AC		" +950F(8hrs)AC		350P(Åhr)AC		" +950F(8hrs)AC		350P(\fthr)AC		" +950F(8hrs)AC	350P(Ahr)AC		" +950F(8hrs)AC	
Alloy Heat Treatment	T1-8Mo-8V-7.5Fe-3A1 1350F(\khr)AC		+950F(8h	.=	T1-6Mo-8V-7.5Pe-3A1-1Cu 1350P(\htr)AC		50P(8t	T1-8Mo-8V-7.5Fe-3A1-1Co 1350F(khr)AC		+950F(8)	,= ,	T1-8Mo-8V-5Fe-3A1-3Cu 1350F(\$hr)AC		+950F(81	,=	T1-8Mo-8V-4Fe-3A1-5Cu 1350P(4hr)AC				T1-6Mo-8V-7, 5Fe-3A1-3Cu 1350F(khr)AC		" +950F(8hrs)AC	T1-8Mo-8V-5Fe-3A1-3Co 1350F(khr)AC		" +950F(8hrs)AC	

(1) Broke outside gage length.

H
1
×
ы
~ 1
H I

1

and the

ł

. 1

1

TENSILE PROPERTIES OF T1-15Mo-3A1-X GROUP OF ALLOYS

Eleng. Elestic Modulus X (Ex10-6pei)	6 15.3	13 . 15.4	20 14.9	19 15.5	23 15.3	26 15.5	20 15.6	1 15.9	17 15.5(1)	16 $15.6^{(1)}$	16 15.7		17 15.6	21 16.1	21 I5.3	21 16.1			17 15.1	5 15.7	7 14.3(1)	19 14.2(1)	4 14.4	0 14.9	15 15.3	15.3	9 14.6	12 14.8	2 15.7
Uniform Elong. Z	2.5	2.5	12.5	15.0	12.5	22.5	15.0	0	5.0	5.0	7.5	cheet	10.0	15.0	20.0	17.5	10.0		12.5	0	0	12.5	0	0	12.5	i	7.5	7.5	8
Local Elong.	15	35	35	35	45	3	35	Ś	40	40	35	ufficient a	35	35	25	25	45	tertal	õ	ני	30	35	10	0	ନ୍ଥ	Ś	15	30	10
YS Kpa1	145	141	144	144	150	150	150	149	152	152	153	ample, insuffi	151	154				ficient ma		-	-		162					• •	
UTS Koei	146	145	151	151	153	153	155	150	154	154	158	ð	155	157	158	159	147	Insuff	160	158	150	151	171	174	160	151	165	160	205
Heat Treatment	1350F(4hr)AC	=	" +950F(8hrs)AC	-	1350F(hhr)AC		" +950F(8hrs)AC		1350F(hhr)AC		" +950F(8hrs)AC	14 44	1350F(4hr)AC		" +950F(8hrs)AC	=	1350F(5hr)AC	=	" +950F(8hrs)AC	=	1350F(5hr)AC	-	" +950F(Bhrs)AC		1350P(15min)AC	" +900F(8hrs)AC		1350F(15min)AC	II LONDY BH)AC
	T1-15Mo-5Fe-3A1 1350F(4hr)AC	=	+950F(T1-15Mo-5Fe-3A1-1Cu 1350F(5hr)AC		" +950F(8hrs)AC	•	T1-15Mo-5Fe-3A1-1N1 1350F(4hr)AC		+950F(T1-15Mo-5Fe-3A1-1Co 1350F(htr)AC		+950P(T1-15Mo-3Fe-3A1-3Cu 1350F(4hr)AC		+950F(T1-15Mo-2Fe-3A1-5Cu 1350F(hhr)AC		" +950P(Bhrs)AC		7.1-13Mo-5Fe-3A1-3Cu 1350F(15min)AC	1 + 900F		T1-11Mo-5Fe-3A1-3Cu 1350F(15min)AC	

52

(1) Broke sutside gage length.

Ţ

TABLE XLII

Te i

.

.

ROOM TEMPERATURE BEND RADII OF STABLE BETA SHEET ALLOY CANDIDATES

		Heat Tr	reatment
Ingot No.	A11oy	Annealed 1350F(hr)AC	Aged 1350F(2hr)AC+ 950F(8hrs)AC
т 3732	Ti-17V-10Cr-3A1 1Co	0.80, 1.0T	1.4, 1.7T
T-3927	Ti 17V-8Cr-3A1-3Co	0.87, 0.91T	1.5T
T-3926	Ti 17V-8Cr-3A1-3Ni	0.91, 1.1T	2.1T
T-3925	Ti-17V-8Cr-3A1-3Cu	0.65T	1.5, 2.0T
т-3942	Ti 17V 8Cr-3A1-5Cu	1.1T	3.4T
T-3945	Ti-17V-10Cr 3A1-0.1Be	0.89T	1.9, 2.7T
T-3932	Ti-8Mo-8V 5Fe 3Al-3Cu	0.73T	1.4T
T-3933	Ti-8Mo-8V-4Fe-3A1-5Cu	0.98T	3.0T
т-3936	Ti 8Mo-8V-5Fe-3A1-3Co	0.95T	>9.4T
т-3874	Ti-15Mo-5Fe-3A1	0.98T	1.3T
т 3875	Ti-15Mo-5Fe-3Al-1Cu	0.83T	1.8T

TABLE XLIII

~.

TENSILE PROPERTIES OF STABLE-BETA SHEET ALLOYS(1)

Elastic Modulus (Ex10 ⁻⁶ psi)	15.6 15.6	15.6 15.6	14.6 16.5 14.6	14.4 14.9 16.4 2.5	16.1 15.1 15.1
Total Elong. 1 in 1"	223	2092 2995	2522	5 5 7	20 16 10 ⁽²⁾
Uniform Elong. X	2.5 0 2.5	0 7.5 22.5	15.0 2.5 17.5	5.0 15.0 7.5	7.5 5.0
Local Elong.	283	6 4 4 9 N N	4 4 M 1 2 2 2 0	0 0 2 2 2 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3	50 40 25
YS Kpe1	147 148 148	149 153 157	155 146	149 149	158 153
UTS Kpet	150 149 151	151 154 158	155 155 149	151	158 155 156
Heat Treatment	1450P(\\hr +900P(\\hr Ars)AC	1450F(\{hr)AC		۲	" +900F(8hra)AC
	14	1	, in the second	14	
A110y	T1-8Mo-8V-6Fe-3A1 14	T1-8Mo-8V-7Fe-3A1 14	T1-17V-11Mn-JA1 1	T1-17V-12Mn-3A1 14	2 2

-;

-

(5) (5)

0.050-fnch gage sheet prepared from 4-pound ingots. Sample broke on gage mark - approximate figure only.

TABLE XLIV

			Heat Tr	eatment
Ingot No.	Alloy	Rolling Direction	1450F(3hr)AC	1450F(5hr)AC+ 900F(8hrs)AC
T-4837	Ti-8Mo-8V-6Fe-3A1	L T	0.77T 0.75T	1.0T 1.3T
T-4840	Ti-8Mo-8V-7Fe-3A1	L T	0.75T 1.0 T	1.0T 1.3T
T-4843	Ti-17V 11Mn 3A1	L T	0.97T 0.94T	1.5T 1.7T
T-4846	Ti-17V-12Mn-3A1	L T	1 0(2) - (2)	3.0T 4.7T

BEND RADII OF STABLE-BETA SHEET ALLOYS(1)

(1) 0.050 inch gage sheet prepared from $\frac{1}{2}$ -pound ingots.

(2) Poor Sheet Surface.

Note: 0.015-inch pickled cff sheet surface.

Indot No.	A 110 Y	Heat Treatment		Actual Impact (Ft-Iba)	Laminate Cross Section(2) Inches	Cherpy Equivalent Impect(ft-lbs)
T-4838	T1-8Mo-8V-6Fe-3A1	1450F(\$hr)AC	-80	8.0	0.390 × 0.363	R.7
Ξ	=	-	3	16.5	н Х	17.9
τ	:	-	300	28.75	0.390 × 0.363	31.0
T-5015	**	1450P(\http://www.action.action/actio	-80	3.25	18 x	3.75
=	4.8		3	7.75	17 ×	9.1
=	=	=	300	17.75	14 x	19.5
T-4841	T1-8Mo-8V-7Fe-3A1	1450F(\$hr)AC	- 80	2.25	93 ×	2.4
Ξ	••		3	12.0	× S	12.75
-	=		300	32.75	x T	35.25
T-~016	÷	1450F(4hr) C+900F(8hrs)AC	-80	3.25	15 x	3.85
Ξ	•		8	9.75	14 x	10.1
Ξ	:	н н	300	18.25	18 x	19.9
T 844	TL-17V-11Mn-3A1	1450F(hhr)AC	-80	2.0	0.392 × 0.352	2.25
Ξ	=		%	13.0	x Z	14.75
=	:		0 U U	25.25	x X	28.0
T-5017	84	1450P(hhr)AC+900P(8hrs)AC	90	2.25	17 ×	2.35
-			9	7.25	18 x	7.85
=	1	= =	300	19.0	13 ×	20.7
T-4847	T1-17V-12Mn-3A1	1450F(htr)AC	-80	1.50	95 x	1.70
:	E		3	6.50	x T	7.10
:		=	300	25.5	93 ×	28.25
T-5018	11	1450F(Ahr)AC+900F(Ahrs)AC	-80	1.50	14 x	1.67
:	=		60	3.25	0.317×0.471	3.35
:	**	-	300	19.0	× 0.	19.5

AHIMATED CHARPY V THPACT STRENGTH OF STARLE-BETA SHEET ALLOYS(1)

0.050-inch gage sheet prepared from 4-pound ingots. Standard Charpy V impact specimen cross section is 0.394-inch souare.

<u>3</u>

TABLE XL7

-

<u>g Temperature</u> 3V-11Cr-3A1 "" "" "V-10Mn-3A1 "" "" "" "" "" "" "" "" "" "	2100F 1 2 3 4 5 6 1 2 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 6 1 2 5 6 1 2 5 6 1 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 2 5 6 1 5 5 6 1 5 5 6 1 5 5 6 5 6 1 5 5 6 5 5 6 5 5 5 5 6 5 5 5 5 5 5 5 5 5 5 5 5 5	220,000 270,000 360,000 370,000 440,000 510,000 235,000 260,000 320,000 325,000 420,000 480,000 230,000 265,000 330,000 430,000	1705 1595	(<u>inch</u> 0, 1
<pre>'' 'V-10Mn-3A1 '' '' '' '' '' '' '' '' '' '' '' '' ''</pre>	2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5	270,000 360,000 370,000 440,000 510,000 235,000 260,000 320,000 325,000 420,000 230,000 230,000 265,000 330,000 330,000		
V-10Hn-3A1 	3 6 1 2 3 4 5 6 1 2 3 4 5	270,000 360,000 370,000 440,000 510,000 235,000 260,000 320,000 325,000 420,000 230,000 230,000 265,000 330,000 330,000		
/V-10Hn-3A1 	4 5 6 1 2 3 4 5 6 1 2 3 4 5	360,000 370,000 440,000 510,000 235,000 260,000 320,000 325,000 420,000 480,000 230,000 265,000 330,000 330,000		
" V-10Mn-3A1 " " " " " " " " " " " " " " " "	5 6 1 2 3 4 5 6 1 2 3 4 5	370,000 440,000 510,000 235,000 260,000 320,000 325,000 420,000 230,000 265,000 330,000 330,000		
11 V-10Mn-3A1 11 11 11 10 10 10 10 10 10 10 10 10 10	6 1 2 3 4 5 6 1 2 3 4 5	510,000 235,000 260,000 320,000 325,000 420,000 230,000 265,000 330,000 330,000		
и и и 0-8V-бРе-3А1 и и и и и	1 2 3 4 5 6 1 2 3 4 5	235,000 260,000 320,000 325,000 420,000 480,000 230,000 265,000 330,000 330,000		
и и и 0-8V-бРе-3А1 и и и и и	2 3 4 5 6 1 2 3 4 5	260,000 320,000 325,000 420,000 230,000 265,000 330,000 330,000	1595	
и 10- 8V-6Fe-3A1 11 11 11 11	3 4 5 6 1 2 3 4 5	320,000 325,000 420,000 230,000 265,000 330,000 330,000	1593	Ũ.1
" 0-8V-6Fe-3A1 " " "	4 5 6 1 2 3 4 5	325,000 420,000 230,000 265,000 330,000 330,000	1595	Ú.1
" 0-8V-6Fe-3A1 " " " "	5 6 1 2 3 4 5	420,000 480,000 230,000 265,000 330,000 330,000	1595	0.1
0-8V-6Fe-3A1 " " " "	6 1 2 3 4 5	480,000 230,000 265,000 330,000 330,000	1595	Ú.1
11 11 11 11	1 2 3 4 5	230,000 265,000 330,000 330,000	1595	Ú.1
11 11 11 11	2 3 4 5	265,000 330,000 330,000		
17 11 11	3 4 5	330,000 330,000		
11 11	4 5	330,000		
11	5			
_		490,000	1680	0.14
/-11Cr-3A1	1 2 3 4	190,000 230,000 310,000 320,000		
11	5	410,000		
-10Mn-3A1	6	480,000	1690	0.14
- 10HR- 3A [180,000		
£ 8	2 3	200,000		
11	2 4	235,000		
н	5	260,000		
**	6	350.000		
-8V-6Fe-3A1			1800	0.13
**	2			
**				
11	4	250,000		
	5			
71	6		1800	0.13
V-2707 Ti-8Mo-8V-6Fe		- 6V - 6Fe - 3A 1 1 - 2 - 3 - 4 - 4 - 5 - 6	6V-6Fe-3A1 1 155,000 2 185,000 3 240,000 4 250,000 5 340,000 6 430,000	-6V-6Fe-3A1 1 155,000 1800 2 185,000 3 240,000 3 240,000 4 250,000 4 250,000 5 340,000 6 430,000 1800

TABLE XLVI

-

-

•• • • • • • •

TABLE XLVII

COLD ROLLING PRESSURE TESTS ON STABLE-BETA ALLOYS

Total Roll Separating Force PSI	190,000 280,000	350,000 205,000	290,000 370,000 215 000	310,000
7 Reduction	1.14 0.54	2.23 0.78	0.47 1.6 0.74	0.6 1.6
Leaving Mill	0.130 0.129	0.126 0.127	0.126 0.123 0.134	0.133 7.130
Entering Mill	0.132 0.130	0,129 0.128	0.125 0.125 0.135	0.134 0.132
Pass No.	н сл ,	с у - н с	1 m	9 6
Mill Opening Inches	0.119 0.109	0.115 0.115 0.105	0.095	0.101
Alloy	T1-13V-11Cr-3A1 "	T1-17V-10Mn-3A1	" T1-8Mo-8V-6Fe-3Al	Ξ
Ingot No.	1 1 1 1 1	V-2706	" V-2707 "	E

the set

•

-

BETA SHEET ALLOYS (Ratio Notched UTS/ Unnotched UTS	1.18	1.15	1.07	1.15
SILE PROPERTIES OF STABLE Treated 1450F(\hr)AC)	Notch Tensile Strength Kpsi	177) 179) 180) 178.6 178) Average 179)	162) 168) 175) 171.4 177) Average 175)	146) 141) 143.6 144) Average	139) 141) 139.3 138) Average
<u>TENSILE PR</u> at Treated	Test OF	60 60 60 60 60 60 60 60 60 60 60 60 60 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	009 900	600 600
ACCH IEALEMAIUNE AND BOUF NUICH TENSILE PROPERTIES OF STABLE (All Heat Treated 1450F(\hr)AC)	Alloy	Ti 17V 10Mn 3A1	T18Mo8V6Fe3Al """"""""""""""""""""""""""""""""""""	Ti。17V。10Mn。3A1 " "	Tí~8Mo∞8V∞6Fe∞3A1 " "
NOON TENTE	^T ngot No	V 2706 " "	V. 2707	V. 2706 "	V 2707 "

(1) ROOM TEMPERATURE AND 600F NOTCH TENSITE PROPERT

(1) 0.050 inch gage sheet prepared from 30 - pound ingots.

TABLE XLVIII

		Modulus	(<u>Ex10-5psi)</u> 11.1 11.8 14.6 12.9(2) 13.4(2)	12.8			les Modulus 11" (Ex10-6nsi)	 0 01	12 15.9 8 15.9 16 15.6	5. 54.
		<u>1 1 1</u>	188 188 49	23			Tensile Properties Elongation, 7 11 Uniform in 1	ł	o v	
	SHEET ALLOYS ⁽¹⁾ AC)	Elongation, % Uniform	7.5 5.0 2.5	15.0		s(1)	e ruent Loca	30	40 40 40	10 20 15
	HEET A	Elon				VITOX	Subs YS Kpsi	145 157	158 147	147 151 150
	BETA S (Jhr)A	Local	55055	45		STABLE-BETA A 1450F(4h1)AC)	UTS Kps1	151 161	159	148 151 150
TABLE XLIX	PROFERTIES OF STABLE-BETA SHE (Heat Treatment 1450F(Lthr)AC)			il3 ingots.	TABLE L	1 1	Z. Def.	0.220	• • •	0.204 0.180 0.192
TAT	Treatine	YS Kps <u>i</u>	107 1110 1116 1112	113 und in	T	DATA FOR Treatment	Time	150	150	150 150
	1	UTS Kpei	119 123 125 112	from 30-pound		ILITY Heat	Stress Kpsi	100	100	66 66 66
	600F TENSIIE	}	pung	pared rface.		CREEP STAB	Temp of	 600 600	009	000 600
	600F 1	Alloy	T1-17V-10Mm-3A1 " T1-8Mo-8V-6Fe-3A1 "	1.2 0.050-inch gage sheet prepared from Samples had poor sheet surface.		-,	Alloy	T1-17V-10Mn-3A1 " "	" T1-8Mo-8V-5Fe-3A1 "	= =
		Ingot No.	V-2706 V-2707 	(1) 0.05 (2) Samp			Ingot No.	V - 27 06 "	"- 2707 "-	== (1)

à

1

۳

- .

(1) 0.050-inch gage sheet prepared from 30-pound ingots.

TABLE LI

ALLOYS
SHEET
BETA
STABLE
1) OF
BEHAVIOR ⁽
OXTDATION

	Alloy	Test lo.	Weight Semple (Cans)	Weight Unerposed Sample + Crucible (Gms)	Weight Exposed Sample + Crucible (Gms)	Weight Gein (Gms)	Weight Gain ht Gas/Sq.Cw. of Surface n Area s) (Average)
	T1-17V-10Mm-3A1 "	- N M	3.5202 3.7570 3.4833	35.0131 31.4322 31.3570	35.1492 31.5783 31.4775	0.1361 0.1461 0.1205	0.0104
V - 2707 "	T1-846-8V-6Fe-3A1 "	961	3.9677 3.7041 4.1805	35.4643 31.3860 32.0025	35.6948 31.6628 32.1990	0.2305 0.2768 0.1965	0.0182

All semples were exposed in open crucibles for 2 hours at 1500F.
 0.050-inch gage sheet.

Metallographic Exemination (250x)	Cracks visible	Cracks visible.
Reverse Bend Results and Visual Examination (9x) Unexposed control sample	prous on reverse bend. Stress corrosion cracks visible. All exposed samples broks on reverse bend.	Unexposed control sample broke on reverse bend. Some stress corrosion cracks visible. All exposed samples broke on reverse bend.
Bend Radius of Samples 1.2T		1.27
Heat Treatment 1450F- hr-AC		1450F- \ hr-AC
A1107 T1-17V-10Mn-3A1		T1-8H0-8V-6Fe-3A1
Ingot No. V- 2706		v - 2707

*

STRESS CORROSION RESISTANCE⁽¹⁾ OF T1-8Mo-8V-6Pe-3A1 AND T1-17V-10M-3A1 SHEET ALLOYS

TABLE LII

-, -

All samples bent to radius indicated and exposed for 2 hours at 800F with sait coating.
 0.050-inch gage sheet prepared from 30-pound ingots.

TABLE LITT

•

TENSILE PROPERTIES OF WELDED STABLE BETA SHEET ALLOYS

Modulus (Ex10-6psi)	13.6 13.0 14.0 12.7	14.5 14.5	14.0 13.1 16.5	14.7
longation in 0.5"	0000 0000	0 90	0000	0
Total E In 0.2 ⁿ	0000	5 v c	0000	0
YS (1) Kpa1				8 1 1
	46 87 61 113		,	
Heat Treatment 1450F(thr)AC+Weld		1450F(\htt)AC+Held "		
Alloy T1-17V-1044-3A1		T1-8Mo-8V-6Fe-3A1 "		
Ingot No. V-2706		V-2707 "		

(1) All weld specimens broke before reaching yield stress.

LIV	
ម	
TAB	

BEND TESTS OF WELDED STABLE BETA ALLOYS AND WELD STABILITY TESTS

	Minimum Bend Radius	1.2T 1.2T		Broke at 12T "		>13T >13T
amples	Processing	1450F(³ / ₁ hr)AC		1450F(ht)AC+Weld		1450F(½hr)AC+Weld exposed at 650F for 500 hrs. "
Bend Tests (1) Control (Urwelded) Samples	Alloy	T1 17V 10Mn 3A1 T1-8Mo 8V 6Fe-3A1	Welded samples	T1-17V 10Mn 3A1 T1 8Mo 8V 6Fe 3A1	(b) Weld Stability Tests	Ti 17V 10Mn 3A1 Ti 8Mo 8V-6Fe 3A1
(a) Bend (1)	Ingot No	V 2706 V 2737	(2)	V 2706 V 2707	(b) Weld	V 2706 V 2707

1

리	
ABLE	
нı	

•

Ξ	ł
COBALT	
CONTA IN ING	
VILOYS	
THREE	
90	
TENSILE PROPERTIES OF THREE ALLOYS CONTAINING COBALT ⁽¹⁾	
TENSILE	

Ingot			UTS	YS	3	Elongation, 7		Modulus
No.	Alloy	Heat Treatment	Kps1	Kps1	<u>Lcical</u>	Uniform	Total (2)	(Ex10-6ps1)
T-5435	T1-8H0-8V-5Co-3A1	1350F(15min)AC	145	144	45	12.5	24	13.4
-		1350F(15min)AC	144	142	45	12.5	22	13.7
=	=	1350F(15min)AC+900F(8hrs)AC	172	161	8	7.5	14	14.2
2	2	1350P(15min)AC+900P(8hrs)AC	176	165	25	2.5	10	15.0
:	:	1450F(15min)WQ	144	140	45	12.5	23	13.5
:	••	1450F(15min)W0+900F(8hrs)AC	162	152	35	12.5	17	14.0
=	-	1450F(15min)W0+900P(8hrs)AC	163	154	8	2.5	14	14.0
=	=	1450F(15min)W0+900P(16hrs)AC	193	178	15	7.5	11	15.2
:	-	1450P(15m1n)WQ+900P(16hrs)AC	18	179	Ś	5.0	80	15.5
=	-	1500F(10min)WQ	143	139	45	12.5	23	12.6
:	11	1 500F(10min)W0+900P(8hrs)AC	203	188	10	5.0	9	15.1
=	:	1500F(10min)W0+900F(8hrs)AC	203	188	15	2.5	6 0	15.1
:	•	1500F(10min)W0+900F(16hrs)AC	219	204	15	5.0	6	15.8
=	=	1500F(10min)WQ+900F(16hrs)AC	216	202	15	5.0	6	15.7
おお-1	T1-17V-7, 5Co-3A1	1350F(15min)AC	155	150	45	15.0	25	13.9
=	•	1350P(15min)AC	156	151	3	7.5	17	13.9
:	11	1350F(15min)AC+900F(8hrs)AC	12	176	10	5.0	11	14.7
Ľ	•	1350F(15min)AC+900P(8hrs)AC	15	177	10	7.5	æ	15.0
T-5463	T1-8Mo-8V-4Fe-3A1-4Co	1350F(15min)AC	161	159	45	17.5	24	13.8
:	84	1350P(15min)AC	160	159	45	10.0	19	13.8
=	=	1350P(15min)AC+900P(8hrs)AC	159	158	15	7.5	6	14.0
:	-	1350F(15min)AC+900P(8hrs)AC	161	161	45	15.0	22	14.2

0.050-inch gage sheet prepared from ½-pound ingots.
 In 1-inch.

(1) 0.050-inch gage sheet produced from ½-pound ingots.

÷

TABLE LVI

EFFECT OF ACING AT 1100P ON THE MECHANICAL PROPERTIES OF T1-17V-7.5Co-3A1 SHEET ALLOY(1)

TABLE LVII

BEND RADII OF "STABILIZED" METASTABLE BETA SHEET ALLOYS(1)

Tneet				Bend Rad	ius Afte	r Aging	
NO.	Alloy	Solution Treatment	0	950F 8hrs	950F 1000F 1100F 8hrs 8hrs 8hrs	1100F 8hrs	1250F 8hrs
v 2989	T1 8Mo 8V 2Fe-3A1	1500F 10mins AC	1.4T	4.2T	3.6T	2.7T	2.3Т
V 2966	T1 8Mo 8V 5Co 3A1	=	1.4T	3, 9T	3.7T	2.8T	2,5Т
V-2967	T1 17V 7.5Co 3A1	=	1.5T	5.2T	3.8T	3.7T ⁽²⁾ 2.4T	2.4T
V- 2858	Ti 17V 2Fe 2Co 3A1	Ξ	2.1T	4.8T	4.3T	3.0T	2.6T

0.050-inch gage sheet prepared from 30-pound ingots. Anomalous figure caused by poor sheet surface. (1)

4

1

TABLE LVIII

.

l

•

Sample brokm outside gage length Sample brokm in head - test finished in file grips. ££

-

TABLE LVIII (Continued)

.

Mod: 1us (<u>Ex10-6ps1</u>)	14.7 13.9 13.6(3)	14.9 14.1 14.0 15.1	14.1 13.3 14.1 12.6 13.4 13.8	13.5 13.6 13.6 14.3 13.0	12.4
Total Elong.	10 11.5 16.5 3.5	8.5 9.5 	7 9.5 16.5 14.0	13.5 15.5 10.5 11.5 11.5	11 10.3
X in 2" Uniform Elong.	7.5 8.75 6.25	3.75 5.25 6.25 3.75	3.75 3.75 4.5 13.75 13.75 15	8.75 8.75 8.75 8.75 5 6.25 7.5	~~~~
Local Elong.	÷;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	8 8 1 8 X	55 25 25 25 25 25 25 25 25 25 25 25 25 2	45 35 35 35 35 35 35 35 35 35 35 35 35 35	5.58
YS Kpei	105 101 101	201 31 : 82 5	132 132 127 128 128	136 129 103 103 103	107 107
UTS Koel	126 126 123 112	122 153 148 152	151 151 148 149	100 100 100 100 100 100 100 100 100 100	127 127
ent)F-8hra-AC	Average 100F-8hrs-AC.	Average 100F-Bhr s-A C	:rage)F-8hrs-AC	Average
eat Treatu	0 mln-∧C+ 1100 " "	A Dmins-AC+11 	aina-AC+11C	Aver atns-AC+1160F- 	× ×
Heat Treatment	1 500 7 - 10m1 n-AG+ 1 100 7 - " "	4	. .		
t Alloy Heat Treats	T1.8Mo-8V-2Fe-3A1 1500F-10mLn-AC+1100 	A T1-BMo-EV-SCo-3A1 1500F-10mins-AC+11	X'o- 34 I		:

1

(4) 0.0% fuch gage sheet prep red iron 00-pound ingots.
Note: Percentagis of room temperature yie'd strength rntained at 600F were: T1-8Mo-8V-2Fe-3A1 - 75% T1-8Mo-8V-5Co-3A1 - 78% T1-17V-7,5Co-3A1 - 78% T1-17V-2Fe-2Co-3A1 - 78%

	I'STAI	"STABILIZED" METASTABLE BETA SHEET ALLOYS''') (2)	TOYS (1)	3		
Ingot			Test Temp	STN		Ratio NTS/
No.	Alloy	Heat Treatment	oF	Kpsi	Average	UTS
V2989	Ti-8Mo-8V 2Fe 3A1	1500F 10mins AC+1100F 8hrs AC	RT	175		
=	-	=	=	173		
=	=	=	-	172	174	1.16
:	-	11	:	173		•
*	=	=	=	177		
=			600F	134		
=	••	-	18	137		
4.5	8 8	-	=	136	136	1.11
=		-	:	138		
10 Ge	=	14	8	134		
V 2900	T1~8Mo~8V~5Co_3A1	1500F~10mins~AC+1100F~8hrs~AC	RT	108		
:	1	=	£ 3	109		
:	8 3	11	31	139	117	0.66
:	8 8	11	=	121		
	14	11	5.8	110		
=	11	11	600F	154		
-	••	-	=	160		
:	11	11		160	158	1.64
4	18	Ŧ	=	1.57		
=	=	11	51	160		
V. 2967	T1-17V-7,5Co-3A1	1500F 10mins-AC+1100F 8hrs-AC	RT	128		
11	68	11	Ξ	116		
=		itre Gas	=	136	131	0.78
	5.0		1	134		
-	11	Ξ	=	139		
1	-	=	600F	161		
-		=	=	154		
=		=	=	156	157	1.04

TABLE LIX

ROOM TEMPERATUPE AND 600F NOTCH TENSILE PROPERTIES OF UST WETARTITED INCLARTING (1) (2)

Rate o NTe / UT				L. C7					L. 1(
Average			1	162					14C			
NTS Kpsi	155 157	161	160	160	801 021	1/0	139	144	140	137	139	
Test Temp OF	600F	RT :	: :	: :	: :		600F		-	-	=	
Heat Treatment	1500F lOmins AC+1100F 8hrs-AC	1500F-10mins AC+1100F 8hrs AC	: =	=	-	2		: :	= :	Ξ.	53	
Alloy	Tí 17V-7.5Co 3A1	Ti-17V 2Fe 2Co-3A1	=	11	=	11	=	=	-		-	Kt = 8 0.050-inch gage sheet
Ingot No.	V -2967	V-2971	=	• 5		=	=	Ξ	=		:	(1) Kt (2) 0.0

-

TABLE LIX (Continued)

TABLE LY

CREEP STABILITY OF "STABILIZED" METASTABLE BETA SHEET ALLOYS(1)

Treat			Cre	Creep Erposius				Sub	sequent	Subsequent Tensile Properties	Properti	69
No.	Alloy	Bat Treatment	6 6 6	Stress		94 V	SED .	, XS	Local	Uniform	Total	Modulus
V 2 98 9	Tf-880-84.27e-341		1			i			Elong	Elong.	Elong.	(Ex10-6ps1)
	TVC - 3-17 - 6 4 - 010 - 7 - 7	1200F-10mins-AC+1100F-8hrs-AC	600	93.5	150	0.000	153		1	1		
:	- 1	=	2		=	141.0	121		ר ה הי	12.5	18	14.6
65	: :	2	:	:	2		21	3		10	18	14.6
: •	E	24	:	2		0.116	151	142		10	16	14 9
5	=	88	:	: :	S.	0.160	157	142		10	16	
=	=	Ξ	: :	: :	= :	0.193	156	147		10	10	
00001			ł	:	-	0.244	156	143	35	7.5	14	15.0
0067 A	T1-8Mo-8V-5Co-3A1	Ξ	00,	•								
=	•	=	000	119	150	0.221	165	163	ſ	2 5		
:	19	: 2		:	6	0.178	171	166	n w		; (0.01
		= ;	=	E	=	0 170		35	، ۱	5	n	15.0
:	:	E	=	:	200		146	101	•	0	-	15.1
:	2	=		:) ;	2000 1100 1100		102	8	1	:	16.8(2)
	:	=	=	=	:		101	\$ 	Ś	0	7	14.5
-2000					:	0.20/	167	167	Ś	2.5	4	15.4
1067 A	T1-17V-7.5Co-3A1	E	000									
E	••	=	2	117	150	0.174	164	159	10	2.5	¥	5 71
z	11	E	: :		2	0.192	161	158	5		9 V	14.7
E		: 2	:	1	2	0.130	165	157	•	, .	D ı	14.2
:	2	: 2	5	2	200	0.513	172	121	ן וויי	C . 7		
2	r	: 1	5	I	:	0.349	167	143			 (6
		:	F	:	2	0.291	169	162	. .		ጎና	14.6
V2971	T1-17V-2Fe-2Co-3A1	÷						 	•) 	n	14.0
:	#	T	202	8.			151	136	8	7.5	13	1.7 0
:		=	; 1				121	142	2			13.0
:	54	: 2	K ;				150	139	۶ ۶	• •	* -	14.2
£	88	: 2	F 1	2	ğ		173	171	22		4 ~	14.1
:	:	: 4	2	E			181	175	j u	> <	* 4	2.41
	150-fach sees short		8	E		0.553	174	166 166	^ •	50	ا ت م	٠
(2) See	wple brok outside eac	Semple brone outside esem laneth					, ,		•	>	•	15.6

•

ALLOYS ⁽¹⁾
A SHEET
ETZ
OF METASTABLE B
Ы
RESPONSE
AGING

	950		369	368	375	339	356	366		283	305	358	361	366	371		324	378	393	371	381	396		307	303	367	366	395	406	
ise at ire, ^O F	<u>800</u>		376	440	393	390	379	402		284	300	344	393	399	412		290	373	397	413	419	428		296	299	353	403	437	445	
Response Emperature	<u>850</u> 9		331	401	410	417	428	428		285	285	303	335	420	433		279	323	405	441	454	448		288	285	304	349	424	450	
61	800		282	365	424	437	428	429		288	288	301	327	391	424		280	306	377	426	448	443		2 3 4	294	312	350	407	432	
ų d	0	266							289							279							293							
Aging Time	Hours	0	-1	2	4	80	16	24	0		2	4	80	16	24	0	-1	2	4	80	16	24	0	7	2	4	80	16	24	•
Solution	Treatment	1500F-10min WQ	2		:	=	=	=	1500F-10min WQ		=	=	=	=	Ξ	1500F-15min-WQ		Ξ	=	=	Ξ	2	1500F-15min-WQ	Ξ	:	=	-	=	=	-
	Alloy	Ti-17V-1.5Fe 3A1	Ξ	=	=	-	=	=	T1-17V-4Fe-3A1	=	=	=	=	=	-	T1-8Mo-8V 1Fe-3A1	=	=	Ξ	=	=	=	T1-8Mo-8V-3Fe 3A1	=	=	=	=	=	:	-
Button	No.	T-5056		=	=	:	=	:	T-5057	Ξ	=	:	=	=	40 P	$T \sim 5058$	Ξ	=	=	=	Ξ	=	T-5059	=	=	:	:	=	:	

(1) 0.050-inch gage sheet prepared from ½ pound ingots.

-

TABLE LXI METASTABLE BI
Ingot No.	Alloy	Heat Treatment	UTS Kps1	YS E	Local Elong. X	Uniform Elong. Z	Elong. 7 in 1"	Elestic Modulus
T-4678 "	T1-17V-1,5 Fe-3A1	1500F 10mtn)WQ		•	45	0.01		Ling The
= =		+ + + + + + + + + + + + + + + + + + +	114 187	109 175	20 20	2.5	រដេ	9.18
T-4600		:			20	0	. • •	15.4
	1 2 - 1/V - 4 Fe - 3A 1	1500F(10min)WQ			55	20.0	26	11.4
::	: :	" +900F(8hrs)AC			55 20	17.5	26 8	11.2
		:			15	2.5	ŝ	15.0(2)
1-482/	T1-8Mo-8V-1.9e-3A1	1500F(15m1n)WQ			50	2.5	14	0 73
= =	= =	" +900F(8hrs)AC			55 15	7.5 5.0	19	9.63 14 2
T-4829	T1-AMO-RU-18-				10	2.5	4	14.5
		DM(utmc1), Alvoci			22	20.0	28	10.9
Ξ	= =	" +900F(8hrs)AC	171 178 10	157	8.1.S	20.0 2.5 2.5	5 Q Q	11.2 15 3(2)
1) 0.05	(1) 0.050-inch zage sheet prenared from Lance	wred from become downed					•	

Ĩ.

0.050-inch gage sheet prepared from ½-pound ingots.
 Sample broke outside gage length.

TABLE LXII

-, -

TENSILE PROPERTIES OF METASTABLE BETA SHEET ALLOYS (1)

	HEAT V-2793
	VITOY.
	I SHEET
TABLE LXIII	TENSILE PROPERTIES OF T1-8M0-8V-2Pe-3AI SHEET ALLOY, HEAT V-2793
	0F
	PROPERTIES
	TENSILE

		STU	XS	22	Elongation, 7		Modulus
Heat	Heat Treatment	Kpal	Kpal	Local	Uniform	Z in 2 ¹¹	(Ex10-6ps1)
1500F(15min)WQ	5	123	118	65	6.25	16	10.5
Ξ		125	120	50	7.5	17	9.8
=	+800F(1.hr)AC	120	115	65	10.0	21	11.2
:	-	120	116	60	7.5	16	10.8
-	+800F(8hrs)AC	129	122	50	6.25	15	11.5
=	-	130	125	ŝ	8.75	16	11.2
2	+800F(24hrs)AC	212	193	15	2.5	4	14.4(2)
Ξ		210	190	15	2.5	3.5	14.4(2)
=	+850F(1hr)AC	121	113	60	7.5	18	11.0
2		120	117	65	15.0	23	10.8
=	+850P(8hrs)AC	170	150	ສ	2.5	æ	12.9
:	-	175	154	25	2.5	6.5	12.9
=	+850F(24hr#)AC	207	191	15	3.75	5.5	15.2
:	=	206	196	10	1.25	1	15.0(1)(2)
=	+900F(1hr)AC	122	119	60	15.0	23	11.4
=	=	122	119	60	5.0	16	11.3,,,,,
=	+900F(8hrs)AC	196	179	10	1.25	2	14.9(1)
=	2	199	182	15	2.5	7	15.1
=	+900F(16hrs)AC	197	187	25	2.5	7.5	15.1,3,
	E	193	185	15	1.25	4.5	14.6(2)
=	+900F(24hrs)AC	203	190	S	2.5	4.5	15.3(1)(2)
Ξ	2	206	192	51	2.5	9	15.7
2	+900F(32hrs)AC	196	185	15	2.5	9	15.1,2
=	E	201	195	20	2.5	4.5	14.3(2)
Ξ	+900F(64hrs)AC	198	188	15	3.75	7.5	15.1,
2	=	197	193	10	1.25	3.5	14.3(2)

Sample broke outside gage length.
 Sample broke in head - test finished in file grips.

- - +

	heat Irsatment	Kpel	Kps1	Local	Uniform	Z In 2"	(Ex10 ⁻⁶ ps1)
1500F(15min	1500F(15min)WQ+950F(1hr)AC	127	120	50	7.5	17	11.3
=	••	127	122	20	10.0	17	11.5
=	+950F(2hrs)AC	151	140	35	2.5	9.5	12.2
=		148	137	æ	2.5	80	12.1
=	+950F(4hrs)AC	185	171	15	2.5	7	14.4
=		187	175	15	2.5	7	14.8
=	+950F(6hrs)AC	187	183	25	2.5	7	14.8
=		189	178	25	2.5	7	14.7,
:	+950F(8hrs)AC	192	181	15	2.5	6.5	$14.9^{(1)}$
=	-	191	178	25	3.75	7.5	14.9
=	+950F(12hrs)AC	187	176	30	3.75	8.5	14.8
=		188	175	25	2.5	7	15.1
=	+950F(16hrs)AC	188	177	25	2.5	6.5	15.3
=	-	188	178	õ	2.5	6.5	15.2(2)
=	+950F(20hrs)AC	188	179	20	1.25	10	15.1
2	-	188	179	20	1.25	4	15.2(2)
=	+950F(24hrs)AC	193	180	15	3.75	6.5	15.2,
=	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	196	188	20	2.5	6.5	15.0(4)
=	+950F(32hrs)AC	185	174	25	2.5	6.5	15.1
=		186	174	25	2.5	7.5	15.4(2)
=	+1000F(1hr)AC	130	124	50	3.75	10	11.4
2	· · ·	135	127	40	14.4(3)	16.5	11.4
=	+1000F(2hrs)AC	169	156	35	6.25	9.5	14.3
:		166	153	8	5.0	10	13.8
:	+1000F(4hrs)AC	179	166	ନ୍ଥ	5.C	9.5	14.8
:		177	162	ጽ	6.25	9.5	14.5
=	+1000F(6hrs)AC	172	158	35	5.0	9.5	14.6
=	-	168	155	35	4.0	10	14.5

(3) Sample had double neck, resulting in inability to obtain true uniform clongation result.
(4) 0.050-inch gage sheet prepared from 30-pound ingot.

TABLE LXIII (Continued)

		STU	YS		Elongation, 7	:	Modulus
Heat T	Heat Treatment	Kps1	Kps1	Local		Z In 2 ¹¹	(Ex10-6ps1)
1500F(10m1n)WO	04	125	123	55	5.0	16	12.0
=	•	125	122	99	7.5	18	12.2
F	+800F(1hr)AC	125	123	60	11.25	17	•
z	-	123	122	55	6.25	17	
=	+800F(8hrs)AC	126	123	55	•	19	12.5
Ξ	=	126	123	8	5.0	13	12.2
=	+800F(24hrs)AC	150	142	30	0	7	13.2
=	Ξ	151	150	10	3.75	9	
=	+800F(64hrs)AC	203	188	0	0	0	14.1(1)
=	=	212	195	0	0	0	14.2(1)
=	+850F(lhr)AC	122	121	6 0	6.25	18	12.0
Ξ	-	125	123	99	2.5	16	12.6
=	+350F(8hrs)AC	128	125	10	2.5	7.5	12.6
Ξ	-	129	125	45	0	Ø	12.6
Ξ	+850F(24hr8)AC	203	189	10	0	3.5	15.1,1)
=	•	:	8	8 8 8	:	:	14.3(1)
=	+850P(64hrs)AC	195	8 5 8	1 1	1	8	14.3(1)
=	=	214	201	15	1.25	4	15.3
-	+ 900F(1hr)AC	125	123	55	6.25	16.5	12.7
:	2	122	121	55	1.25	8.5	9
=	+900F(2hrs)AC	124	123	45	7.5	16.5	12.0(1)
=	:	126	124	45	6.25	16	
=	+900F(4hrs)AC	138	130	40	8.75	13	12.8
11	-	130	124	4	2	15	12.4
=	+900F(8hrs)AC	157	144	35	6.25	11.5	13.8
:	ĩ	167	152	20	2.5	6.5	14.0,,,
	+900F(16hrs)AC	191	175	30	2.5	6.5	14.7(2)
	:	190	174	25	3.75	6.5	14.8

TENSILE PROPERTIES OF T1-17V-4Pe-3A1 SHEET ALLOY, HEAT V-2729 (3)

TABLE LXIV

Sample broke outside gage length. Sample broke in head - test finished in file grips. 0.050-inch gage share prepared from 30-pound ingot.

٠

Heat T	Heat Treatment	Kest	rs Kpai	Local	clongation, 4 Uniform	z in 2"	Modujus (Ex10 ⁻⁶ ps1)
1500F(10min)	1500F(10min)WQ+900F(24hrs)AC	200	184	25	6.25	6	15.6,,,
=	Ξ	196	•	1 1 1		t 1	15.6(1)
=	+900F(32hrs)AC	197	186	8	2.5	6.5	15.0 ⁽²⁾
=		199	184	R	5.0	8.5	15.4
Ξ	+900F(64hrs)AC	195	182	20	1.25	6.0	15.3
E	-	197	185	ន	1.25	5.0	15.7
Ξ	+950F(1hr)AC	124	122	55	6.25	15.5	12.7
	-	125	123	50	7.5	17	12.7
-	+950F(2hra)AC	126	121	ጽ	5.0	12.5	12.3
Ξ		130	L25	25	5.0	12.5	12.3
Ξ	+950F(4hrs)AC	157	1.43	25	5.0	6	13.4
=		156	143	20	3.75	7.5	13.4
:	+950F(6hrs)AC	166	151	9 7	7.5	11	13.8
2	•	160	146	82	7.5	10.5	13.4
Ξ	+950F(8hrs)AC	169	154	30	5.0	10.5	14.5
=	41	169	51	30	5.0	10.5	14.1
Ξ	+950F(16hrs)AC	184	170	8	2.5	7.5	15.1
=	•	184	169	20	5.0	9.5	14.8
Ξ	+950F(20hrs)AC	179	165	25	5.0	9.5	15.0
=	-	181	167	35	8.75	13	15.3
Ξ	+950F(24hrs)AC	182	170	35	2.5	9.5	15.5
-	+950F(25hrs)AC	181	168	35	6.25	10	15.2,3
=	+950F(32hrs)AC	185	174	R	5.0	11	14.5(2)
=		187	173	20	6.25	9.5	15.2
=	+950F(64hr#)AC	182	168	35	3.75	10.5	14.6
=	-	184	172	35	3.75	80	15.3
=	+1000F(1hr)AC	128	123	35	8.75	17	12.1
=		126	122	õ	16.25	18	12.0
=	+1000F(2hrs)AC	135	128	40	8.75	15.5	12.6
=	=	142	132	40	6.25	14	12.7
:	+1000F(4hrs)AC	155	142	25	7.5	13	13.7
=	••	159	145	ጽ	7.5	13	14.1
-	+1000F(6hrs)AC	160	147	ጽ	6.25	13	13.9
:	-	158	145	40	8.75	14	13.8
:	+1000 F (16hrs)AC	170	149	25	2.5	7	14.7
Ξ	:	174	159	45	6 75 6	y 11	1 5 1
			•	2			* .01

TABLE LAIV (Continued)

		8 9	950		362	396	405	433	440 429				ging	950	331	328	332	357	371 426	¥
		ter Agin , op	J		353	383	416	433	455 455				After A	000	329	330	336	353	165	1
	~1	Victers Hardness After Aging Temperature, ^O F	8 28		347	353	412	977	4				ilardness After Aging Temperature Or	830	335	335 225	117	105	107 107	
	ALLOY (1	ters Har Tem	800		340		351	417	411				Vickers	800	346	134	155		373	
	A1 SHEET		0	340								A1 ⁽¹⁾		0 7						
e.	T1-17V-7.5Co-3A1 SHEET ALLOY (1)	Aging Time	HOUKE	0		• <	t ac	16	24			T1-8Mo-8V-5Co-3A1(1)	Aging Time	Hours 0		4 4	r ac	16	24	
TABLE LXV	AGE HARDENING RESPONSE FOR TI-171	Solution Transfer		00-341 1500F(10m1n)WQ		-	-	= :	=	met prepared from 30 pound ingots.	TABLE LXVI	ACE HARDENING RESPONSE FOR TI-8Mo-		Co-3A1 1500P(10min)WQ	= =	=	-		-	ef ntenerad fra 30
		t Allov		1WE-02X //- 1/1 - 11 - 02	-	2	z :	= =		0.050-inch gage sheet prepared			t Allov	T1-8Mc	Ξ	Ξ :	= :	: :		(1) 0.050-inch raie sheet
		Ingot No.	U- 2920			: :	: :	:		(1)			Ingot No.	V - 2900	: :	: :	:	Ξ) ()

(1) 0.050-inch gage sheet prepared from 30-pound ingots.

*

٠

	950	287 301 339 387 389 410
	Vickers Hardmass After Aging Teaperature, or 800 850 900 0	289 297 297 408 4415 4415
(]	a Hardmaas A Teaparature. 0 850	289 301 333 420 420
0Y, V285	Ciners Ha Teap 800	286 311 349 400 413 450
HEET ALL	1	\$
Fe-2Co-3A1 S	Aging Time Hours	76887210 21
AGING RESPONSE OF TI-1/V-2Pe-2Co-3A1 SHEET ALLOY, V2858(1)	Solution Treatment 1500F(10m45)un	
VCI	Alloy T1-17V-2Fe-2Co-3A1	
	Ingot No. V 2858	

A state

IVAL TABLE

(1) 0.050-inch gage sheet prepared from 30-pound ingot.

-

•

	v-2900 ⁽ 3)
	Š.
	INGOT
IIIXXI ZIQUI	TENSILE PROPERTIES OF TI-8Mo-8V-5Cu-3AI, INGOT NO. V-2900 (3)

Heat Treatment Kpat Kpat Kpat Local 1500F(10min)WQ 134 132 60 60 +8C0F(1hr)AC 152 150 60 60 +8C0F(1hr)AC 152 150 60 60 +800F(3hrs)AC 141 139 50 60 +800F(1hr)AC 152 141 139 50 +800F(24hrs)AC 141 139 50 50 +800F(24hrs)AC 187 172 20 30 +800F(24hrs)AC 187 172 20 30 +850F(1hr)AC 187 176 30 45 +850F(24hrs)AC 187 176 30 45 +850F(24hrs)AC 181 176 30 45 +850F(24hrs)AC 184 175 45 45 +900F(1hr)AC 184 175 144 40 +900F(1hr)AC 185 176 144 40 +900F(1hrs)AC	UTS	YS		Z Elongation		Modulus
134 134 135 +8C0F(1hr)AC 152 152 +800F(8hr#)AC 151 148 +800F(8hr#)AC 141 139 +800F(16hrs)AC 141 139 +800F(16hrs)AC 168 161 +800F(16hrs)AC 187 172 +800F(24hrs)AC 183 76 +850F(4hr.)AC 181 172 +850F(4hr.)AC 151 151 +850F(4hr.)AC 151 151 +850F(4hr.)AC 151 155 +900F(1hr)AC 151 155 +900F(1hr)AC 144 175 +900F(1hr)AC 149 144 +900F(1hr)AC 155 144 +900F(1hr)AC 155 146 +900F(1hr)AC 155 146 +900F(1hr)AC 155 149 +900F(1hr)AC 155 146 +900F(1hr)AC 146 146 +900F(1hr)AC 146 146 +900F(1hr)AC 149 146 +900F(16hrs)AC 146 146 <th></th> <th>Kpat</th> <th>Local</th> <th>Uniform</th> <th>in 2-inches</th> <th>(Ex10-6ps1)</th>		Kpat	Local	Uniform	in 2-inches	(Ex10-6ps1)
<pre>+8C0F(1hr)AC 152 136 134 +800F(8hrs)AC 152 150 +800F(8hrs)AC 141 139 +800F(8hrs)AC 141 139 +800F(16hrs)AC 168 161 +800F(24hrs)AC 168 165 +850P(1hr)AC 187 172 +850P(4hrs)AC 183 176 +850P(4hrs)AC 184 175 +850P(4hrs)AC 184 175 +850P(4hrs)AC 184 175 +900F(1hr)AC 144 +900F(1hr)AC 145 144 +900F(12hrs)AC 145 +900F(16hrs)AC 161 156 +900F(16hrs)AC 161 156 +900F(12hrs)AC 161 156 +900F(16hrs)AC 175 167 +900F(16hrs)AC 161 156 +900F(12hrs)AC 175 167 +900F(12hrs)AC 175 167 +900F(12hrs)AC 175 167 +900F(16hrs)AC 176 166 178 +900F(16hrs)AC 176 176 178 +900F(16hrs)AC 176 176 178 +900F(16hrs)AC 176 176 178 +900F(16hrs)AC 176 176 178 178 178 178 178 178 178 178 178 178</pre>	134	132	80	15.0	23	12.2
152 152 152 141 141 143 144 144 139 148 147 149 139 149 139 141 139 142 139 143 147 144 172 151 151 151 151 151 151 151 155 154 144 154 144 155 156 149 144 149 144 149 144 146 144 148 175 148 175 149 144 148 146 148 144 148 156 148 160 148 160 148 176 148 176 148 176 148 160 146 160 1		134	60	16.45	22.5	12.0
C 148 147 148 147 141 139 141 139 145 139 146 139 144 135 151 155 151 155 155 155 154 144 154 155 154 144 144 175 146 156 148 175 148 175 148 175 148 156 148 155 148 155 178 155		150	60	2.5	13.5	13.8
C 141 139 139 C 168 168 168 168 161 151 151 155 155 155 155 155 155 155		147	65	2.5	17	13.2
139 136 168 161 168 161 168 172 151 172 151 151 151 151 151 151 151 151 155 176 155 155 155 156 155 156 149 176 149 176 149 176 149 176 149 176 149 160 160 166 160 166 176 166 168 176 168 176 160 166 160 166 178 1772 203 203		139	22	11,25	18.5	12.8
C 168 161 165 183 172 183 176 153 151 151 172 151 151 151 151 151 151 151 151 155 155 155 156 155 156 166 149 144 175 155 156 166 160 166 166 160 166 166 178 176 166 160 166 166 178 178 178 160 166 166 178 178 166 160 166 166 178 178 178 178 178 178 178 178 166 166 166 166 178 178 178 178 178 178 178 178 178 178 178 172		136	S	11.25	18	
165 153 183 172 183 176 151 151 151 151 151 151 151 155 155 155 155 156 155 156 155 175 155 156 144 175 155 156 149 144 149 146 149 148 160 166 160 166 178 178 178 178 160 166 160 166 166 166 178 178 203 203		161	v :	1.25	2	13.8(1)
C 187 172 183 176 183 151 151 151 151 151 151 151 155 154 155 155 156 155 175 175 155 156 175 149 175 176 149 176 144 149 148 176 149 148 176 160 160 166 178 160 166 178 178 178 203 203 203		153	30	3.75	6	12.9
183 776 181 171 151 151 151 151 151 151 151 151 151 155 155 156 160 144 149 148 149 176 149 144 149 146 149 148 160 148 160 166 176 166 178 178 178 178 178 178 160 166 166 166 178 178 203 203		172	20	1.25	6.5	13.8
144 144 144 151 151 151 151 151 151 155 155 154 155 126 175 185 175 175 185 176 176 149 144 144 160 160 166 176 160 166 178 178 166 161 160 166 178 178 166 178 178 167 178 178 160 160 166 166 178 178 172 203 203 203		176	30	1.25	Q	13.9
151 151 151 151 151 155 155 155 156 185 175 175 185 176 176 185 176 144 149 146 146 160 160 166 176 160 166 178 178 167 160 160 166 178 178 167 178 178 167 178 178 167 178 178 167 178 178 167 178 178 167 178 178 167 178 178 167 178 178 172 178 173 167 178 173 167 178 178 172 178 178 172 178 178 173 178 178 173 178 178 1		144	8	c	8	12.8
151 151 155 155 155 156 185 175 175 185 176 175 185 176 176 149 149 144 161 160 146 160 160 166 178 178 166 161 160 166 178 178 167 160 166 166 178 178 167 178 178 167 178 178 167 178 178 167 178 178 167 178 178 167 178 178 167 178 178 172 178 173 167 178 173 167 178 178 172 178 173 167 178 178 173 178 178 173 178 178 1		151	45	3.75	11.5	13.5
155 155 154 184 175 176 226 226 218 145 176 176 149 147 148 161 161 160 161 161 160 176 161 166 178 172 166 219 166 166 215 215 203 2 203 203		150	30	7.5	13.5	13.5(1)
c 184 175 185 176 176 185 176 176 149 144 149 144 160 156 176 160 176 166 176 166 178 172 178 173 178 173 178 173 167 167 c 178 178 172 167 167		154	8	6.25	13.0	13.9
c 226 176 145 176 218 149 144 144 146 144 147 148 147 160 156 166 c 176 166 166 c 178 167 c 215 203		175	ឧ	6.25	8.5	14.0
C 226 218 145 144 149 144 161 160 160 156 C 176 166 166 C 172 167 C 215 203		176	15	3.75	ø	13.9,
 145 149 149 149 148 148 147 160 160 160 160 166 166 167 0 215 203 203		218	ŝ	0	1	15.3(2)
145 149 149 149 148 161 160 156 160 156 167 167 167 167 167 11'8 172 167 167 167 11'8 203		1 5	1 1 1	F F F	± 1 1	14.7(2)
149 148 149 148 161 160 160 156 176 166 166 0 217 2 180 2 215 203		144	50	•	12.5	13.4
149 147 161 160 156 160 156 166 167 172 167 167 172 180 178 215 203		148	40	11.25	19	12.9
161 160 160 156 176 166 -72 167 92 180 1°8 172 215 203		147	50	•	20	13.0
160 156 176 166 72 167 92 180 1°8 172 215 203		160	25	1.25	9.5	13.1
176 166 72 167 92 180 1°8 172 215 203		156	15	•	11.0	13.7
.72 167 92 180 1*8 172 215 203		166	20	5.0	7	13.7
92 180 1*8 172 215 203		167	10	1.25	4	13.8
1'8 :72 215 203		180	10	1.25	ę	14.7
214 203		:72	10	0	لە	14.0,3,
		203	10	1.25	2.5	15.6(2)
*** *** <u>-</u>	=	8 8 8	+ 1 1	8 9 8	8 8	15.3(1)

335

Sample broke outside gage length. Sample broke in head, test finished in file grips. 0.050-inch gage sheet prepared from 30-pound ingot.

		UTS			Z longation		Moduļus
Heat T	Heat Treatment	Kps1	MI	Local	Uniform	in 2-Inches	<u>[Ex10-6ps1]</u>
1500F(ljmin)	1500F(12min)WQ+950F(1nr)AC	147	146	45	C	3.5	13.4
=	14	147	146	い す	0	٢	13.4
=	+950F(2hrs)AC	147	146	ନ	5.0	9.5	13.3
-		153	151	45	15.0	21.5	13.4
N.	+950F(4hrs)AC	155	153	30	8.75	15.5	13.8
=	41	156	155	ŝ	6, 25	7.5	13.7
=	+950F(8hrs)AC	179	169 1	8	2 9 8	8 8 9	$14.6^{(1)}$
z	a ta	175	172	10	1.25	44	14.3
=	+950F(16hrs)AC	201	189	20	5.0	9.5	15.5
	11	185	175	15	2.5	Q	14.4(1)
Ξ	+950F(24hrs)AC	205	192	Ś	0	1	15.7, ,,
2	11	1 1 1	1	+ + 	1	1 8 1	15.3(1)
z	+1000F(1hr)AC	153	151	30	11.25	16	13.9,
=		147	147	20	0	6	$13.6^{(1)}$
=	+1000F(2hrs)AC	153	151	25	3.75	12	13.8
=	8.8	153	150	20	2.5	7.5	13.8
=	+1000F(4hrs)AC	157	154	20	3.75	8.5	14.0
=	17 1	154	146	25	11.25	16	13.4
=	+1000F(8hrs)AC	179	167	20	7.5	9.5	14.5
=	=	181	170	35	7.5	13	14.9,,
=	+1000F(12hrs)AC	187	179	30	1.25	6.5	$15.3^{(1)}$
=		185	175	30	5.0	11	15.1
:	+1000F(16hrs)AC	198	t 1 8	1	1 1 1	1	16.3(1)
=	4 6	197	189	25	0	Ś	14,9(2)

-

TABLE LXVIII (Continued)

٠

Sample broke outside gage length. Sample broke in head, test finished in file grips. 0.050-inch gage sheet prepared from 30-pound ingot. **3**35 TABLE LXIX

I

7

TENSILE PROPERTIES OF T1-17V-7.5Co-3A1 SHEET ALLOY, INGOT NG. V-2920

		sin	YS		7. Elongation		Modulus
Heat T	Heat Treatment	Kpsi	Kpst	Loca1	Uniform	1. 2- Inches	(Ex10- ^{bps1})
1500F(10m1n)WO	00(149	147	30	1.25	5.5	12.7(1)
=		151	148	55	13.75	23	13.0,,,,,,,
	+800F(1hr)AC	154	153	5	0	1.5	13.3(1)(2)
11		153	151	20	1.25	m	13.2(1)
Ξ	+800F(8hrs)AC	192	179	10	1.25	3.5	13.8/2)
•		193	182	10	1.25	3.5	13.9/1/ (3)
=	+800F(16hrs)AC	214	211	1 † 1	ŧ 5 1	8 8	15.1(1)(1)(1)
2		224	214	S	1,25	e	15.0(4)(3)
-	+EOOF("4hrs)AC	227	223	ŝ	0	0.5	~ `
ŧ		222	218	S	0	0.5	~
=	+850F(1hr)AC	152	149	50	13.75	20	13.2(1)
=		152	148	40	5.0	10	13.5(1)
=	+850F(4hrs)AC	174	172	10	0	2.5	13.9(1)(2)
Ξ		172	168	10	0	2	13.9,4
:	+850F(8hrs)AC	184	181	20	0	2.5	14.2/1/
=	11	187	180	20	0	3.5	14.5/2/
Ξ	+850F(16hrs)AC	207	201	S	0	0.5	
=	B 13	206	200	20	0	ო	
2	+850F(24hrs)AC	229	217	10	1.25	ς	15.2(1)(7)
2		220	215	1 1 1	1	9 9 9	14.7/11/6/
Ξ	+900F(1hr)AC	152	148	20	7.5	14.5	13.4())
=	11	155	153	20	0	9	13.3(1)
=	+900F(2hrs)AC	176	172	20	0	4	
=	34	177	171	20	0	2	
=	+900F(4hrs)AC	189	180	Ś	1.25	2.5	14.1,
=	11	193	183	S	1.25	3.5	14.6(1)
	+900F(6hrs)AC	193	186	20	1.25	1.5	14.6
=		198	187	10	2.5	9	14.2/1/
=	+900F(8hrs)AC	210	199	ŝ	1.25	2.5	14,9141

ଟିଟିଡି

Sample broke outside gage length. Sample broke in head - test finished in file grips. Five uther samples given the same heat treatment, broke before reaching yield stress.

:		SLN	TABLE LX YS	LXIX (Continued) 7	ued) % Elongation		evel to be
Heat	Heat Treatment	Kps1	Kps1	Loca1	Uniform	in 2-inches	(Ex10- ⁰ Ps1)
1500F(10mi	1500F(10min)WQ+900F(8hrs)AC	202	197	'n	0	F	1/ 5(1)(2)
= :	+900F(16hrs)AC	213	203	Ś	<u>1.25</u>	4 0	•
=	=	227	216	10	0	1	15.3(2)
= :	+900F(24hrs)AC	220	207	10	3.75	4 S	15 4(1)(2)
=	2	218	207	Ś	1.25	۰ ۲	15 5(2)
-	+950F(1hr)AC	149	146	20	1. 25	س مر	5 C L L
	-	147	142	20	• i		13.5(2)
Ξ.	+950F(2hrs)AC	167	166	1	P 1		
-	=	1.68	162	Ś	1 25	7	<u> </u>
=	+950F(4hrs)AC	1.68	160	20		vr Fot	14.4
=	-	167	161	ŝ		•	
:	+950F(6hrs)AC	190	181	, IC	1 25	۰.+ د	
=	2 4	170	164	. v	•	ע קיי	, D c
2	+950F(8hrs)AC	198	196		• c		
=	=	206	190	20	1.25	ў іс	e r
=	+950F(16hrs)AC	213	198	10		יי היי	, o
=	6 B	212	199	01	1 25	ייר איר -	•
2	+950F(24hrs)AC	195	182	15	3 75	•	Ś
2	=	197	184	15	-) at	
=	+1000F(1hr)AC	162	162	ν N	0	ر م	13 A(1) (2)
=	2	157	153	Ś		•	
2	+1000F(2hrs)AC	173	167	ŝ	5.0	•	•
5	Ξ	167	160	10	0	2	
=	+1000F(4hrs)AC	189	176	10	, 1 ,	v v t	•
=	2	183	173	20	1.25	•	••
:	+1000F(8hrs)AC	190	179	ŝ	1.25) er	14.8(2)
=	=	189	6	t 9 9			~~
::	+1000F(16hrs)AC	199	06 T	10	2.5	4	
:	2	8	1 1 1	9 9 1	8 8 8	7	• •
(1) Sample	 Sample broke outside gaza length 	lenoth					•

Ξ,

Sample broke outside gage length. Sample broke in head test finished in file grips. Five other samples given the same heat treatment, broke before reaching yield stress. 0.050-inch gage sheet, prepared from 30-pound ingot. 6663

HARDNESS AND TENSILE PROPERTIES OF T1-17V-2Fe-2Co-3A1, HEAT NO. V-2858

Modulus (Ex10-⁶psi) 11.2 11.9 12.4 1n 2ⁿ 15.5 15.5 15.5 4.5 2.5 4.5 5.5 6.5 9.5 4 m 22 18 4 2 24 6.25 111.25 111.25 112.5 2.5 2.5 Elongation, Uniform 3.75 . 25 2.5 5.0 2.5 2.5 2.5 2.5 2.5 2.5 2.5 . 25 . 5 0 Loca l YS Kps1 UTS Kps1 Vickers Hardness (10Kg Load) 295 421 404 455 439 286 293 293 ----298 414 414 434 4444 432 302 302 302 302 302 414 414 420 +850F(24hrs)AC +800F(24hrs)AC + 900F(16hrs)AC +800F(8hrs)AC +850F(8hrs)AC +900F(2hrs)AC +900F(4hrs)AC + 500F(8hrs)AC +850F(1hr)AC +900F(1hr)AC +800F(1hr)AC Heat Treatment 1500F(10min)WQ : : : -= Ξ : = : . = : 2 : -

(1) Sample broke in head, test finished in file grips.

L

TABLE LXX

TABLE LXX (Continued)

Vickers

۲.

	Modulus	(Ex10-6ps1)	15.3(1)(2)	15.1(1)	12.0	12.3	12.9(2)	13.1(1)	13.9	$13.8^{(1)}$	14.7	14.7(2)	15,3(1)	15.0	15.1	15.3
		<u>1n 2''</u>	3 5 8	Ś	14.5	16	t	e	8.5	6.5	6	6.5	9.5	6	ø	11
		Uniform	:	2.5	10	12.5	0	0	6.25	4.5	6.25	2.5	5.0	5.0	2.5	6.25
		Local	2 1 1	15	30	25	20	20	20	15	20	25	30	25	25	25
	YS	Kpal	203	204	125	124	135	135	158	173	173	183	174	176	176	179
	STU	Kps1	218	220	130	129	143	144	176	175	138	187	189	190	189	193
Hardness	(10Kg	Load)	433	435	295	295	308	303	376	37.0	395	387	385	386		394
		Heat Treatment	1500F(10m1n)WQ+900F(24hrs)AC		" + 950F(lhr)AC	-	" + 450F(2hrs)AC	-	'' +950F(4hr3)AC	Ŧ	" + 450F(Bhrs)AC		" +950F(16hrs)AC	-	" +950F(24hrs)AC	-

Sample broke in head, test finished in file grips. Sample broke outside gage length. 0.050-inch gage sheet, prepared from 30-pound ingot.

3**3**5

.

-. TABLE LXXI

600F TENSILE PROPERTIES OF METASTABLE BETA SHEET ALLOYS (1)

Modulus 11 (Ex10-6ps1)	 14.4 14.8	.5 13.6 5 15.3 13.7	13.9 13.3 12.4 16.4 16.0	13.0 13.8 15.0	13.3 13.7 14.6 13.2
Elongation % in 1" cal Uniform Total	000 2.5 2.5 2.5	1.25 1.25 4.3	5.0 2.5 0 2.5 2.5 2.5 2.5 3 2.5 3 2.5 3 3	2.5 2.5 2.5 2.5 4	0.0.0.0.0 0.0.0.0 0.0.0.0 0.0.0 0.0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0.0 0.0 0 0.0 0.0 0 0.0 000000
Elongat Local	20 10 10	325°	5222vv	00000	99999
YS Kpst	140 142 142	154	131 137 129 173 173 168	(2) 120 158 154	162 172 (2) (2) 168
UTS Kpei	171 165 168	100 170 169	159 161 155 193 194	152 152 177 178	186 192 181 188 191
		υ	n	5 2	D
Heat Treatment	1500F(15m1n)WQ+900F(8hrs)AC " "	1500F(15m1n)W2+900F(24hrs)AC "	1500F(10min)WQ+900F(8hrs)AC " 1500F(10min)WQ+900F(24hrs)AC "	1500F(10mins)WQ+900F(8hrs)AC " 1500P(10mins)WQ+900F(24hrs)AC	1500F(10mins)WQ+900F(8hrs)AC "
Alloy Heat Treatment	T1-8Mo-8V-2Fe-3A1 1500F(15m1n)WQ+900F(8hrs)AC """"""""""""""""""""""""""""""""""""	" 1500F(15min)WQ+900F(24hrs)A " " "	T1-17V-2Fe-2Co-3A1 1500F(10min)WQ+900F(8hrs)AC " " " " " " 1500F(10min)WQ+900F(24hrs)A(" " " " " " " " " " " " " " " " " " "	T1-17V-4Fe-3A1 1500F(10m1ns)WQ+900F(8hrs)A " " " 1500P(10mins)WQ+900P(24hrs)	T1-17V-7, SCo-3A1 1500F(10m1ns)WQ+900F(8hra)A

0.350-fuch gage sheet prepared from 50-pound ingot.
 (2) Extensionster slipped - yisld not recorded.

• • •

Modulus ix10-6ps1)	5.3 4.0 7.7	2.4 5.0 6.3 7.7 2.7
ି କ୍ରି	1227	1465337

(Continued
IXXI
TABLE

Ingot

1

4

	শ						
1"	Total		ς μ	13	14 9	` 00	8 14
<u>ngation</u> in	ocal Uniform To	00	2.5 0	ŝ	ις η	2.5	5.5
Eloi	Local	ŝ	10	35	2 5 6	20	40 50
XS	Kpsi	184 184	184 176	122	128 126	153	160 153
STU	Kps1	197 200	208 198	136	144 142	185	184 175
	neat ireatment	1500F(10min)WQ+900F(24hrs)AC " "	-	1500F(10m1ns)WQ+900F(8hrs)AC		1500F(10mins)WQ+900F(24hrs)AC	Ξ
Allov		11-1/V-/, 500-3AI	:	T1-8M0-8V-5Co-3A1	= =	Ξ	-
No.	06061		:	V-2900		:	=

(1) 0.050-inch gage sheet prepared from 30-pound ingot.
(2) Extensometer slipped - yield not recorded.

-

AND HEAT TREATMENT	u 8	RT Yield Strength	Retained at 600F 73	84	79 76	84 80	00 77 8	60 79 81
600F, BY ALLOY	600F Yield	Strength Knei	132	1/1	155	167 182	120 156	142 154
RETAINED AT (RT Yield	Strength Kpsi	181	202 15,8	203	1 <i>3</i> 8 207	156 184	180 191
THEN STRENGTH RETAINED AT 600F, BY ALLOY AND HEAT TREATMENT		Heat Treatment	1500F(10min)WQ+900F(8hrs)AC '' +900F(24hrs)AC	1500F(l0min)WQ+900F(8hrs)AC	+900F(24hrs)AC	1)00F(10mIn)W(+900F(8hrs)AC +900F(24hrs)AC	15/0F(10min)WQ+900F(8hrs)AC '' +900F(24hrs)AC	1500F(10min)WQ+900F(8hrs)AC "+900F(24hrs)AC
		Alloy	T1-17V-2Fe-2Co-3A1	T1-8M0-8V-5C0-3A1	T1-17V-7.5Co-341		T1-17V-4Fe-3A1	T1-8Mo-8V-2Fe-3A1

.

PERCENTACES OF ROOM TEMPERATURE VIELD STRENGTH RETAINED AT 6001

TABLE LXXII

-

•

TABLE LXXIII

÷ -

•

(i) 0.050-fuch gage sheet prepared from 30-pound ingots.
 (2) Kt^{-p}

÷ ·---

	Ratio	STU/SIN	0.56	0.49		1.01			0 77	 - -		0.87			0.80
	Smooth UTS Koei		C 27	218		175			198			198			204
	Average	115		107		177.8			142.6			171.6			163.8
	NTS Kp81	(211)	110)	114)	180)	178) 176) 180)	175)	135)	135) 160)	(071 (071	167)	177) 172)	172) 170)	169) 165)	169) 165)
1nued)	Teat Temp of	RT '	: A	= =	RT	: : :	2	RT :	: : :	: 2	RT ::	: : :	: 2	RT "	
IABLE LXXIII (Continued)	Heat Treatment	1500F(10min)WO+900F(8hrs)AC	" 1500F(10min)WQ+900F(24hrs)AC		1500F(10m1n)WQ+900F(8hrs)AC	= = :		1500F(10min)W0+900F(24hrs)AC		:	1500P(10min)WQ+900P(8hrs)AC		z	1500F(10min)WQ+900F(24hrs)AC	5 2 2
	Alloy	Tf-17V-7, 5Co-3A1	T1-17V-7,5Co-3A1	Ξ	Ti-17V-4Fe-3A1			rt-1/V-4 Fe-3A 1	= =	2	T1-8Mo-8V-2Fe-3A1		=	T1.8M0-8V-2Pe-3A1 "	2 2
	Ingot No.	v - 2920	V-2920		v-2729 	= = z			: = :		- 2793	: : ;			. :

TABLE LXXIII (Continued)

٠

Ratio NTS/UTS	0.95	1.08	1.10	1.10
Smooth UTS Kps1	152	177	168	170
Average	145.2	191.0	184.0	187.6
NTS Kpei	141) 143) 148) 146) 148)	190) (191) (192) (192)	186) 184) 185) 182) 183)	189) 189) 186) 188) 186)
Test Jest or	0 9 :::::	0:::: 9	00:::: 09	00 9 9
Heat Treatment	1500F(10min)W0+900F(8hr#)AC " "	1500F(10m1n)WQ+900F(24hrs)AC " "	1500F(10m1n)WQ+900F(8hrs)AC " "	1500F(10min)WQ+900F(24hrs)AC " "
A 110 y	T1-17V-4Fe-3A1 """"""""""""""""""""""""""""""""""""	T1-17V-4Fe-3A1 	T1-8Mo-8V-2Fe-3A1 	T1-8Mo-8V-2Fe-3A1
Ingot N.).	v - 27 29 	V - 2729	V - 2793	v - 2793

TABLE LXXIII (Continued)

	Ratio NTS/NTS	1.02	0.85	1.10	0.92	0.80	0.74
	Smooth UTS Kps1	159	193	142	182	188	200
	Average	161	164	156	167	150	148
	NTS Kpa1	162) 152) 149) 167) 174)	166) 161) 165) 169)	158) 154) 156)	167) 169) 164)	153) 156) 141)	146) 148) 149)
:1mc	Test Testp OF	00° = = = =				= = =	:::
TABLE LXXIII (Continu	Heat Treatment	l500F(l0min)WQ+900F(Bhra)AC 	1500F(10min)WQ+900F(24hrs)AC " "	1500F(10min)W(+900F(8hrs)AC "	1500F(10min)WQ+900F(24hrs)AC "	1500F(10m1n)WQ+900F(8hrs)AC "	1500F(l0m1n)WQ+900F(24hrs)AC "
	Alioy	Г1-17V-2Fe-2Co-3.] н н	T1-17V-2F0-2C0-3A1	T1-8Mo-8V-5Co-3A1	T1-8M0-8V-5Co-3A1 "	1-17V-7, 5Co- 3A1	T1-17V-7.5Co-3A1
	Ingo: No.	4 - 2858 11	 2858 1 1 1 1 1 1 1 1 1 	V - 2900	4 - 2900 	V-2920 	V - 2920

BLE LXXIV	
V L	

-

CREEP STABILITY PROPERTIES OF METASTABLE BETA SHEET ALLOYS IN THE AGED CONDITION

÷

336

7 in 2-inches. Stress-Strain curve not linear. Broke outside gage length.

.

-

Modulus (Ex10-6psi)	ι	ù.	ς.	5	ς.	15.8	6.	5.		14. 3	(2)		14.3		₫.	~		15.3									
<u>fn 1"</u>	(1)0	7-76	ø	10	6	80	œ	80		7(1)	t	5	4	: .		1	5(1)	1	9	9	7	ო	e				
Elongation Uniform		6.45	2.5	7.5	5.0	2.5	2.5	2.5		3.75	2.5	0	0	1	: :	1 1 1	2.5	0	5.0	2.5	0	0	0				
7 E Local	ŭ	C7	15	15	15	15	15	20		10	Ś	Ś	10	1		÷ ; ;	15	Ś	10	10	Ś	ŝ	Ś				
YS Kpsi		184	193	161	191	198	197	199		180	179	195	182	1 1 1	1 9 1	1	204	210	211	207	220	218	189				
UTS Kpsi		200	203	202	197	208	206	205		197	199	200	202	171	F 1 1	169	220	213	215	208	221	220	216				
% Def.		1	0.331	0.327	0.324	0.531	0.484	0.520		4 1 9	0.655	0.971	0.611	2.564	1.996	2.615	6 † 	0.582	0.560	0.665	1.320	1.069	0.778				
Time Hours		1 1	150	:	:	500	=	=		1 1 1	150	=	:	500	:	2	: 1 1	150	=	:	500	:	=				
Exposure Stress Kps1			14 .	5	=	=	=	=		+ + 1	119	=	=	2	=	=	1 1 1	154	2	=	=	-	:				
Temp oF		1	600	=	=	:	11	2		; ; ;	600	:	:	-	:	:	1 1 1	600	=	:	:	=	Ξ		Ľ.		stress.
Heat Treatment	<u>T1-17V-4Fe-3A1, Ingot V-2729</u>	DA-STRA-ZUIBUS-AUDE-ZUIBUL- ZUUBU			=	-	Ξ	=	T1-1/V-2Fe-2Co-3A1, Ingot V-2858	15005.10mius-WQ+900F-8hrs-AC	=	H	11	=	=	-	1500F-10mins-WQ+900F-24hrs-AC	=	Ŧ	=	=	=	=	(1) \mathbf{Z} in 2-inches.		(3) Broke outside gage length.	Broke before reaching yield

TABLE LXXIV (Continued)

r,

۲

• *

TABLE LXXIV (Continued)

@. 9

Broke outside gage length. Broke before reaching yield stress. Broke in head - test finished in file grips.

-1

•....

Modulus (Ex10-6psi)	15.4(5) 15.5 15.8(3) 14.4(5) 16.1(3)(5) 15.9(3) 18.2(3)(5)	
"I ni	4.5(1) 3 3	
7 Elongation Local Uniform	3.75 2.5 2.5	
7, Local	10 2 1 2 1 1 0	
YS Kpsi	207 213 203 203	
UTS Kps1	218 220 216 226 226 226	
۲ Def.	0.255 0.255 0.382 0.687 0.684 0.829	
Time Hours	 	4
Exposure Stress Kps1		grips. 0-round 4:
Temp of	00::::::	stress. 1 in file ed from 3
Heat Treatment Ti-1 V-7,5Co-3A1, Ingot V-2920	150CF-:10mins-WQ+900F-24hrs-AC 	 (3) Broke outside gage length. (4) Broke before reaching yield stress. (5) Broke in bend - test finished in file grips. (6) 0.050-inch gage sheet prepared from 30-nound 4.2001.

•

TA51 3 LXXIV (Continued)

- Broke before reaching yield stress. Broke in bend test finished in file grips. 0.050-inch gage sheet prepared from 30-pound ingots.

Ingot No.	Alloy	Bend Radlus	Treatment	Result of Reverse Bending Until Flat
V - 28 58	T1-17V-2Fe-2Co-3A1	6.2T	Nore (Control)	No Cracks
=	Ŧ	5.6T	800F(2hrs), No Salt	
=	=	5.6T	i, Sal	Small Cracks
=	11	5.4T	, Salt	Small Cracks
:	E	6.2T	, Salt	
V - 28 59	T1-17V-4Fe-3A1	•	01)	No Cracks
:		6. ST	800F(2hrs), No Salt	No Cracks
2			800F(2hrs), Salt Coat	No Cracks
=		6.5T	Salt	Nn Cracks
=	84	6 5T		Few Small Cracks
V- 2860	T1-8M0-8V-2Fe-3A1	6.0T	None (Control)	No Cracks
=	54	6.0T	800F(2hrs), No Salt	No Cracks
=		-	800F(2hrs), S.It Coat	No Cracks
=	=	5.7T	800F(2hrs), Sult Coat	No Cracks
=	=	6.0T	800F(2hrs), Salt Coat	No Cracks
V-2 900	T1-8Mo-8V-5Co-3A1	5.7T	None (Control)	No Cracks
:	.	6.0T	800F(2hrs), No Salt	No Cracks
=		5.7T	(2hrs)	Sample Broke
=	Ŧ	5.8T	800F(2hrs), Selt Coat	Sample Broke
=		6.3T	, Salt	Sample Brcke
V - 2920	T1-17V-7,5Co-3A1	6.2T	(Cont	No Cracks
:	=	6.3T	800F(2hrs), No Salt	no Cracks
÷	-	5.7T	800F(2hrs), Salt Coat	Sample Broke
=	=	5.8T	800F(2hrs), Salt Coat	Sample Broke
D-3002	T1-1.3V-11Cr-3A1	5.8T	None (Control)	No Cracks
=	=	5.8T	(Zhrs), No Se	No Cracks
=	=	5.8T	(2hrs)	Numerous Small Cracks
=		5.8T	. Salt	
=	-	5.BT		

TABLE LXXV STRESS CORROSIAN TESTS ON SIX METASTABLE RETA SHEET ATTAVS(1)(2)

(1) Ti-13V-11^Cr-3Al included as control.
(2) 0.050-incn gage sheet.

• •

OXIDATION TESTS ON METASTABLE BETA SHEET ALLOYS(1)(2)

Wt. Gain Grams/Sq.Cm	0.0450 Average	0.0255 Average	0.0061 Average	0.0041 Average	0.0147 Average
Wt. Gain Grams	0.5684) 0.5595) 0.6121)	0.3389) 0.3390) 0.3082)	0.0761) 0.1003) 0.0602)	0.0887) 0.0759) 0.0566)	0.1570) 0.1739) 0.2360)
Wt. Sample + Crucible After Exposure Grans	34.9273 31.9685 31.6909	34.8696 31.0484 31.3611	34.0494 31.3085 31.2309	35.1131 32.2680 32.1278	27.8465 29.2646 32.1460
Wt. Sample + Crucible Before Exposure Grams	34.3589 31.4090 31.0788	34.5307 30.7094 31.0529	33.9733 31.2082 31.1707	35.0244 32.1921 32.0712	27.6895 29.0907 31.9100
Wt. Sample Grams	3.6530 3.7234 3.4034	3.0305 3.0223 3.2731	3.2710 3.5244 3.5167	4.3502 .5128 4.4929	3.6372 3.6962 3.7646
Test No.	464.22	ini . ¥ €1		921	9 7 F
Alloy	T1-17V-2Fe-2Co-3A1. "	Ti-17V-4Fe-3Al "	11-8Mo-8V-2Fa-3A1 " "	T1-8Mo-8V-5Co-3A1 "	T1-17V-7.5Co-3A1 "
Ingot Nc.	V-2858 "	V-2359 "	V - 2860 "	V-2 900	ν-7920

All samples were exposed in an open crucible for 2 hours at 1500F.
 0.050-inch gage sheet.

; ļ į

TABLE LXXVI

XXVII	
CABLE L	

...

.

• ...

TENSILE PROPERTIES OF MACHINE WELDED SAMPLES OF THRUE METASTABLE BETA ALLOYS⁽¹⁾

-6pst)																												
Mcdulus (Ex10-6ps1)	15.7 14.8	14.9	15.4	•	15.2	14.8	14.2	15.C	15.5	18. C	16.3	14.0	14.2	14.5	14.9	14.8	14.7	14.7	15.1	15.2	1.	•		15.7	•	15.7	15.0	
Total Elong in 1"	16 16	18	14	16	18	16	7	14.5	10	10	9	12	10	80	80	12	9	10	10	9.25	12	80	ø	4	4	2	6.25	
Total Elong. in 2"	3.5 3.5	4.5	4	4	4	3.5	•	•	2.5		7	Ś	2	7	•	3.5	•	2.5	1.5	2.25	m	2	6	1	0	0	1.25	
Uniform Elong. 7	00	0	0	0	0	o	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Elong,	35 35	40	25	90	35	45	S	30	25	25	15	25	20	15	20	25	15	20	20	20	25	20	20	Ś		47	12.5	
YS Kpst	123 122	121	126	127	126	124	121	124	136	151	136	133	133	138	140	138	139	140	139	139	146	148	143	153	1	153	149	
UTS Kps1	127 125	124	128	129	1 29	126	121	126	142	157	141	137	136	142	143	142	142	143	142	142	150	150	146	156	147	153	150	
Heat Treatment	1500F-10mins-AC+900F ^{, 1} 6hrs-AC+Weld	=	=	=	11	=	=	IVETAGE	1500F-10mins-AC+900F-16hrs-AC+Weld	2	2	-	2	2	=			-	=	Average	1500F-l0mins-AC+9C0F-6!rs-AC+Weld	14	=	=	=	2	Average	ch is annroximate width of weld
Alloy Heat Treatment	T1-8d0-8V-2Fe-3Al 1500F-10mins-AC+900F 16hrs-AC+Weld	-	н п	н 1	11		11 11	IVETAGE	T[-8Mo-8V-5Co-3A] 1500F-10mins-AC+900F-16hrs-AC+Weld	л п	2		11	-	11 11	-			н н	Average	T17V-7.5Co-3Al 1500F-10mins-AC+960F-6 ^t rs-AC+Weld	=	=	=		2 z	Average	0.060-fnch gage sheet Taboo onor 0.2-inch which is annroximate width of weld

			1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	0.176	1+5-15č	840,000	198 - 2% e	1,120,60 203 - 2% elem	1,170,0.3 207 - 3% elstr	1, 210, 600	115	0.56 107 0.49	167 182
	SX0 TT	Ti-8Mo-8V-5Co-3A		0.178	130-135	740,000	158 - 9% elong	δ90,000 176 - 3% elong	200 - 2% elong	1,120,000	87	0.54 95 0.51	125 155
	III METASTABLE BETA SHEET ALLOYS	<u>Ti-17V-2Fe-2Co-3A</u> :	C.L. C	7/1.0	071-011	685, 000	180 - 5% elong 1.050.000	190 - 5% elong 1.100 000	203 - 27 elong 1 200 000		120	130 0.59	132 171
TABLE LXXVIII	PHA SE	<u>T1-17V-4Fe-3A1</u>	c.172	120-122			148 - 87, elong 860,ŭ00	17 ⁷ - 6% elong 100,000	184 - 9% elong 1.070,600		176 1.0	143 0.72	120 156
	COMPARISON OF PROPERTIES OF	T1-8M0-8V-2Fe-3A1	0.175	118-120	680,000		180 - 47 elong 1,030,000	186 - 67 elong 1,060,000	191 - 57 elong 1,090,000		172 0.87	164 0.83	142 154
		Properties	Mersured Density las/curin	Annealed Yield Strength, Kpsi	Annealed Strength/ Weight Ratio	Aged Yield Strength, Kpsi	900F-8hrs Strength/W. fgit Ratio	MUDE-IShr. Streagth/Meigne Ratio	soff-2-hrs StreadthWeight Ratic	Room Temperature Notch Tensfie Strength (Kt=8),Kpsf	900,-Anrs Age NT5/UTS Racio	900F-24hrs Age NIS/UTS Ratio 60°F Aged Yield Strength, Kpsi	900F-8hrs Age 900F-24hrs Age

TABLE LXXVIII

.

			A 1 1 0 y		
Tropseties	T1-8Mo-8V-2Fe-3A1	T1-17V-4Fe-3A1	T1-17V-2Fe-2Co-3A1	T1-8M0-8V-5C0-3A1	11-17V-7, 3C - 11
500F Motch Tensile Strangth (K _c -8), Kpsi					
900 F- Bhrs Age NIS/UIS Ratio	18⊄ 1.10	145 0.95	158 1.02	156 1.10	150 0.80
лод F- 74ћга Адя АТЗ/ЛТS Васјо	188 1.10	191 1.08	164 0.85	167 0.92	148 0.34
Creep Defurmation at 600F 1977 of yield at 600F as load)					
aufters age 150 hrs exposure	0.29 % 0.36 %	0.49%	0.75 7. 2.39 7.	161 .0	0 . 9 2 2 5 2 2 5 0 2
400F-24hrs Age 156 hrs exposure 500 hrs exposure	0.27 7 0.40 7	0.32 7. 0.51 7	0.607 1.057	0.185 7 0.25 7	0.087.0 1817-0
Stress Corrosion Resistance (Gair Colled - Exposed 2 hr. at 600F with bend)					
Aged englaters AC (varied radius)) Good	Fair	Poor		, , , , ,
Amenled [%0F-10mtn-AC (6T radius)) Good	Cood	Good	Poct	Poor
okfutton Penevick (Gain en Artzht After 2 hrs at 1 eV, (mero q .em.)	9.0061	0.0255	0.0450	0.0041	0.0147

.

TABLE LXXVIII (Continued)

1

ļ

Safe:

NOTCHED SHEET TENSILE SPECIMEN (K+ +8)

1.44

Figure 4. Face and Side Views of Laminated Charpy V Samples Showing Samples Before and After Testing.

Dimension A = 0.505" Max. To 0.495" Min. B= A + 0.003" To A + 0.005"

Weld to Be Ground Flush Using Coolant.

BUTT WELD TRANSVERSE TENSILE SPECIMEN

FIGURE 5. WELDED TENSILE AND BEND SAMPLES.

FIGURE 6. SUMMARY OF BETA SURFACE ISOTHERMS IN THE SYSTEM TI-Cr-Mo.

FIGURE 7. ESTIMATED BETA SURFACE ISOTHERMS IN THE SYSTEM TI-Cr-V. BASED ON THE LINE CONSTRUCTION AND ANALOGY TO TI-Cr-Mo SYSTEM.
であったいたち

Ti-17V-5Cr-3A1

Ti-17V-7.5Cr-3A1

Ti-17V-10Cr-3A1

Ti-17V-12.5Cr-3Al

Ti-17V-15Cr-3Al

Figure 8A. Appearance Of Sheet After Cold Rolling.

Ti-17V-5Mn-3Al

Ti-17V-7.5Mn-3Al

Ti-17V-10Mn-3A1

Ti-17V-12, 5Mn-3A1

Ti-17V-15Mn-3A1

Figure 8A (cont'd.). Appearance of Sheet After Cold Rolling.

Figure 8A (cont'd.). Appearance Of Sheet After Cold Rolling.

Ti-8Mo-8V-12.5Cr-3A1

TI-8V-8M0-5Mn-3Al

Ti-8V-8M0-7, 5Mn-3A1

T1-0V-0010-1034n-3AL

Figure ⁶B (cont¹d.). Appearance of Sheet After Cold Rolling.

1.

÷

Ti-8Mo-8V-12, 5Mn-3A1

Ti-8Mo-8V-15Mn-3A1

T1-8V-3M0-2.5Fe-3A1

TI-8V-8Mo-5Fe-3A1

T1-3V-8M0-7, 5Fe-3A1

Figure 3B (cont'd.). Appearance of Sheet After Cold Rolling.

1

Ti-15Mo-5Cr-3Al

Ti-153#0-10Cr-3Al

Ti-15Mo-12.5Cr-3A1

TI-15Mo-15Cr-3A1

Figure °C. Appearance of Sheet After Cold Rolling.

Ti-15Mo-5Mn-3Al

Ti-15Mo-7. 5Mn-3Al

TI-15Mo-10Mn-3A1

Ti-15Mo-12. 5Mn-3A1

Ti-15Mo-15Mn-3A1

- -

i

Figure 8C (cont'd.). Appearance of Sheet After Cold Rolling.

Ti-15Mo-2.5Fe-3Al

Ti-15Mo-5Fe-3Aî

Ti-15Mo-7.5Fe-3Al

Figure 8C (cont'd.) Appearance of Sheet After Cold Rolling.

Figure 9. T-3498, Ti-8Mo-8V-15Cr-3Al As-Rolled. Slip Bands In Distorted Beta Grains. A Few Particles Of Second Phase Present.

Oxalic + Kroll Etch

Figure 10. T-3500, Ti-15Mo-15Cr-3Al. Heat Treated ½-Hour At 1250F, Ouenched. Unrecrystallized With Precipitate Mainly At Grain Boundaries.

Figure 11. T-3318, Ti-15 Mo-7. 5Mn-3Al. Annealed 15 Minutes At 1350F, Slow Cooled. 60% Recrystallized Beta With Scattered Particles Of Second Phase, Uniform Flongation 25%; Total Elongation 30%; UTS 142,000 psi.

Figure 12. T-3318, Ti-15MO-7.5Mn-3Al. Heat Treated 15 Minutes At 1350F, Slow Cooled, Plus 8 Hours Age At 900F. Little Change in Microstructure. Uniform Elongation 15%: Total Elongation 22%; UTS 144,000 psi

250X

Figure 13. T-3323, Ti-17V-2.5Fe-3Al. Annealed 15 Minutes At 1350F, Slow Cooled. Partly Recrystallized With Second Phase At Former Grain Boundaries. Uniform Elongation 7.5%: Total Flongation 15%: UTS 120,000 psi.

Oxalic + Kroll Etch

4066F

250X

- Oxalic + Krell Etch
- Figure 14. T-3323, Ti-17V-2.5Fe-3Al. Heat Treated 15 Minutes At 1350F, Slow Cooled, Flus 8 Hours Age at 900F. Heavy Precipitate (alpha + TiFe?) Within Grains. Uniform Elongation 5%; Total Elongation 7%; UTS 197,000 psi.

OXIDATION RATES FOR TI-BV-8M0-X-3AI ALLOYS AFTER 2 HOURS EXPOSURE. FIGURE 15.

. .

- -

menight Loss in 2 x 2 x 0.050 Specimen

١

OXIDATION RATES FOR TI-ITV-X-3AI ALLOYS AFTER 2 HOURS EXPOSURE. FIGURE 17.

Atomic Size Factor (% Difference in Radius)

FIGURE 18. INFLUENCE OF SIZE FACTOR ON SOLID SOLUBILITY (SUBSTITUTIONAL ALLOYING) IN TITANIUM.

FIGURE 19.

INFLUENCE OF ELECTRONEGATIVITY ON SOLID SOLUBILITY. (SUBSTITUTIONAL ALLOYING) IN TITANIUM.

<u>T-3726</u> Ti-17V-10Cr-3A1-1Cu Good Quality

T-3727 T1-17V-10Cr-3A1-3Cu Good Quality

<u>T-3728</u> Ti-17V-10Cr-3A1-5Cu Fair Quality

<u>T-3814</u> Ti-8V-8Mo-7.5Fe-3A1-1Cu Fair Quality

T-3815 Ti-8Mo-8V-7.5Fe-3A1-3Cu Poor Quality

<u>T-3816</u> T1-8Mo-8V-7.5Fe-3A1-5Cu Unworkable

Figure 20. Appearance of Experimental Titanium Alloy Sheet After Hot Rolling to 0,080-Inch Gage and Cold Rolling to 0,050-Inch Gage.

<u>T-3945</u> Ti-17V-10Cr-3Al-0.1Be Good Quality

<u>T-3946</u> T1-17V-10Cr-3A1-0.2Be Fair Quality

<u>T-3947</u> T1-17V-10Cr-3A1-0.3Be Poor Quality

<u>T-3942</u> Ti-17V-8Cr-3A1-5Cu Good Quality

<u>T-3943</u> Ti-17V-7Cr-3A1-5Ni Poor Quality

<u>I-3944</u> Ti-17V-7Cr-3A1-5Co Fair Quality

Figure 21. Appearance of Experimental Titanium Alloy Sheet After Hot Rolling to 0.080-Inch Gage and Cold Rolling to 0.050-Inch Gage.

<u>T-3875</u> Ti-15Mo-5Fe-3A1-1Cu Good Quality

<u>T-3876</u> T1-15Mo-5Fe-3A1-3Cu Poor Quality

<u>T-3877</u> Ti-15Mo-5Fe-3Al-5Cu Unworkable

<u>T-3735</u> Ti-17V-10Cr-3A1-0.5Si Fair Quality

<u>T-3736</u> Ti-17V-10Cr-3Al-1Si Fair Quality

. .

. .

. .

- -

. .

. .

۰.

. .

<u>T-3737</u> Ti-17V-10Cr-3A1-2Si Fair Quality

Figure 22. Appearance of Experimental Titanium Alloy Sheet After Hot Rolling to 0.080-Inch Gage and Cold Rolling to 0.050-Inch Gage.

Figure 23. Appearance of Experimental Titacium Alloys After Attempted Hot Rolling To Sheet.

l

150X

Oxalic+Kroll Etch

Figure 24A. [-3731, Ti-17V-10Cr-3A1-5Ni, Cracking Along Grain Boundaries During Hot Rolling.

5461

100X

Oxalic+Kroll Etch

Figure 24B. T-3882, Ti-15Mo-5Fe-3Al-3Co, Cracking Along Grain Boundaries During Hot Rolling. Considerable Forosity Also Evident In Sample.

FIGURE 25. THE TITANIUM-SILICON SYSTEM TO 3% SI WITH SUPERIMPOSED B/B+COMPOUND BOUNDARY FOR TI-17V-10Cr-3AI (0.5-1)SI ALLOYS.

T-4669 T1-8Mo-8V-6Fe-3A1

T-4670 Ti-8Mo-8V-6Fe-3A1

T-4673 T1-17V-11Mn-3A1

T-4674 Ti-17V-11Mn-3A1

T-4675 Ti-17V-12Mn-3A1

T-4676 T1-17V-12Mn-3A1

FIGURE 27. ROLL SEPARATING FORCE FOR EXPERIMENTAL STABLE BETA ALLOYS COMPARED WITH THAT OF TE-13V-11Cr-3AI, METASTABLE BETA COMMERCIAL SHEET ALLOY.

Roll Separating Force, Psi

FIGURE 28. STATISTICAL RELATIONSH:" BETWEEN VICKERS HARDNESS AND ULTIMATE TENSILE STRENGTH FOR TI-BMO-8V-2F0-3AI.

* . --

Vickers Hardness

R ____

FIGURE 29. STATISTICAL RELATIONSHIP BETWEEN VICKERS HARDNESS AND ULTIMATE TENSILE STRENGTH FOR TI-17V-4Fe-3AI.

Ultimate Tensile Strength, Psi

UNCLASSIFIED							
Security Classification		-					
DOCUMENT C (Security classification of title, body of abstract and inde	ONTROL DATA - R8	-	the overall report is classified)				
1. ORIGINATING ACTIVITY (Corporate surbor) Titanium Metals Corporation of America		24 REPORT SECURITY CLASSIFICATION					
		Unclassified					
233 Broadway New York, New York 10007		26 GROUP					
3. REPORT TITLE		1					
SCREENING AND SELECTION OF C	CANDIDATE SH	EET AI	LLOYS				
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)	······	·····					
Final Technical Report, Part II							
S. AUTHOR(S) (Lost name, first name, initial)							
Hunter, Donald B.			i				
S. REPORT DATE	74. TOTAL NO. OF P	AGES	75. NO. OF REFS				
December 1966	40		none				
DA-30-069-ORD-3743	Se ORIGINATOR'S R	EFORT NU	MEER(S)				
DA- 30-003-000-3143	WALTR	405/2-1	15				
D/A Project 59332008							
AMCMS Code 5010, 11, 8430051	Sb. OTHER REPORT Bis report)	NO(5) (An)	y other numbers that may be easigned				
<i>d</i> .							
10. AVAILABILITY/LIMITATION NOTICES							
Distribution of this document is unli	mited.						
	-						
11. SUPPLEMENTARY NOTES	17 SPONSORING MIL	TARY ACT					
	U. S. Army Materials Research Agency						
	Watertown, Massachusetts 02172						
13 ABSTRACT Research consisted of addit Mn to bases Ti-17V-3A1, Ti-8Mo-8V-			0				
bases. Three such alloys were selec		•	-				
designed to bring about precipitation l	0						
7.5Fe-3Al and Ti-15Mo-5Fe-3Al. Ad	0		-				
earths were then made to the above ba							
cipitation hardening. However, fabric	cation criteria became marginal before enou						
of the above elements could be added	to bring about p	recipit	ation hardening. As an				
exception, addition of 0.5-1%Si to Ti-							
from solution temperatures of around		÷	-				
Vickers hardness increases of up to 1	• •	0 0					
structural change. Although precipit:	U U		•				
thus achieved, grain growth and embr							
high temperatures required to dissolv							
toward development of two other types	*		8				
alloy, and a high strength metastable T_{WO} stable beta allows $T_{1-17}V = 10Mn$	•						
, -	7V-10Mn-3A1 and Ti-8Mo-8V-6Fe-3A1, and two meta- Fe-3A1 & Ti-8Mo-8V-2Fe-3A1 were evaluated. How-						
stable beta alloys, Ti-17V-4Fe-3Al & Ti-8Mo-8V-2Fe-3Al were evaluated. How- ever, the stable beta alloys had brittle welds, and work on these was discontinued							
They were replaced by "stabilized" a	-						
to suppress the maximum aging responsion alloys - Ti-8Mo-8V-5Co-3AI, Ti-17V-	onse and reach a 7.5Co-3Al, Ti-	a stren 17V-2F	gth plateau. Four such e-2Co-3Al & Ti-8Mc-				
8V-2Fe-3Al - were evaluated in this c	ondition. Ti-8M	lo-8V-2	2Fe-3Al proved to be				
best of the high strength metastable b							
	erties at room temperature and 600F, creep stability & stress						
corrosion resistance, Ti-8Mo-8V-2Fe	e-JAI was selec						
DD .5288. 1473			NCLASSIFIED				
Security Classification							

4. 17 M T A

Γ

Γ

Γ

Γ

[i

[]

Į.

UNCLASSIFIED

Ş

ţ

ſ

ang tagang sa ś.

With the state of the state of

tagangapat tala ara

Security Classification									
KEY WORDS		LINK A HOLL WT			LINKB		NK C		
··· ·		- MOUL	• • • • • • • • • • • • • • • • • • •	HOLE	WT	HOLE	+		
Alloys, titanium									
······································									
							1		
			1						
							1		
							l		
INCT	RUCTION	Į		L					
ORIGINATING ACTIVITY: Enter the name and address	1	-				••	. .		
I the contractor, subcontractor, grantee, Department of De- ense activity or other organization (comporate author) issuing		NLABILIT on further							
he report.	such as	by securit	y classif	ication, u	ising star	indard stat	lements		
a. REPORT SECURITY CLASSIFICATION: Enter the over- Il security classification of the report. Indicate whether	(1)	"Qualifie		ers may c	btain cor	ies of th	is		
Restricted Data" is included. Marking is to be in accord- nce with appropriate security regulations.	(3)	report from					a h 2 m		
b. GROUP: Automatic downgrading is specified in DoD Di-	(2)	"Foreign report by				Intion CI	(711		
ective 5200, 10 and Armed Forces Industrial Manual. Enter he group number. Also, when applicable, show that optional	(3)	"U.S.Go this repor							
rackings have been used for Group 3 and Group 4 as author- zed.		users sha			c. other	quantier			
REPORT TITLE: Enter the complete report title in all				<u></u>			"		
apital letters. Titles in all cases should be unclassified. I a meaningful title cannot be selected without classifica-	(4)	"U.S. mi report dire							
ion, show title classification in all capitals in parenthesis		shall requ					,,		
nmediately following the title. . DESCRIPTIVE NOTES: If appropriate, enter the type of	(5)	"All dist	ribution o	f this zer	ort is cor	at miled.	·		
eport, e.g., interim, progress, summary, annual, or final, live the inclusive dates when a specific reporting period is		ified DDC					40		
overed.			·						
 AUTHOR(S): Enter the name(s) of author(s) as shown on r in the report. Enter last name, first name, middle initial. 	If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indi-								
military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.	cate this fact and enter the price, if known. 11. SUPPLEMENTARY NOTES: Use for additional explanation of the second statement								
REPORT DATE: Enter the date of the report as day,	tory not				Be tor add		дрі вні н		
onth, year, or month, year. If more than one date appears in the report, use date of publication.	1	DNSORING artmental p							
. TOTAL NUMBER OF PAGES: The total page count	ing tor)	the resear	ch and de	tvelopmen	it. Includ	le adores	5 .		
hould follow normal pagination procedures, i.e., enter the unber of pages containing information.		TRACT E							
b. NUMBER OF REFERENCES. Enter the total number of		it may also appear elsewhere in the body of the technical port. If additional space is required, a continuation shee							
eferences cited in the report.	1 -	attached	, -						
a. CONTRACT OR GRANT NUMBER: If appropriate, enter a applicable number of the contract or grant under which		highly de- unclassifi							
report was written. 5. 8c, & 8d. PROJECT NUMBER: Enter the appropriate	*	n an indica Normation			-				
slitary department identification, such as project number	(C), or								
a. ORIGINATOR'S REPORT NUMBER(S): Enter the offi-	1	e is no lin e suggeste			-		一日六百日		
al report number by which the document will be identified	14 KE1	NORDS	Key wer	lu are tec	hnically	meaningf			
nd controlled by the originating activity. This number must- e unique to this report.		phrases th stries for c							
b. OTHER REPORT NUMBER(S): If the report has been ssigned any other report numbers (either b) the originator	1	shatequ				-			
ssigned any other report numbers (either b) the originator in by the sponsor), also enter this number(s).	tars pre	iest code r de hut mali	inte pro	Praphic 1	n ation, 1	may by u	erd as		
	ontext	The akk							
	optiona	ł							

i

1

]

. .___

-