
><
(X

8 8
CO

1 w
vO .-1
vO HH E
es
H i-i

8S«
PL] LU L~

KSD-TK-titi- 330 MTR-285

r*~~'—) CZ: 1 ESD ACCESSION pST
ESTJ Call No. V 54885

, c TCr ,,.r ...BINÄt'!REPORT - JOINT AFLC/ESD/MITR$Qny Na
SCIENTIFIC a »L- . ,,,r1 —

(LSU). BüluUtfG UU
I v ADVANCED DATA MANAGEMENT (ADAM) EXPERIMENT
!

J— <*—Z~ cys.

FEBRUARY 1967

B. F. Char

A. C. Foreman

Prepared for

DEPUTY FOR ENGINEERING AND TECHNOLOGY
COMPUTER PROGRAMMING DIVISION

ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

•

Distribution of this document is unlimited.

Project 503F

Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract AF19(628)-5165

This document may be reproduced to satisfy official
needs of U.S. Government agencies. No other repro-
duction authorized except with permission of Hq.
Electronic Systems Division, ATTN: ESTI.

When US Government drawings, specifications, or
other data are used for any purpose other than a
definitely related government procurement operation,
the government thereby incurs no responsibility
nor any obligation whatsoever, and the fact that the
government may have formulated, furnished, or in
any way supplied the said drawings, specifications,
or other data is not to be regarded by implication
or otherwise, as in any manner licensing the holder
or any other person or corporation, or conveying
any rights or permission to manufacture, use, or sell
any patented invention that may in any way be related
thereto.

Do not return this copy. Retain or destroy.

KSD-TR-66- 330 MTR-285

FINAL REPORT - JOINT AFLC/ESD/MITRE

ADVANCED DATA MANAGEMENT (ADAM) EXPERIMENT

FEBRUARY 1967

B. F. Char

A, C. Foreman

Prepared for

DEPUTY FOR ENGINEERING AND TECHNOLOGY
COMPUTER PROGRAMMING DIVISION

ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

Distribution of this document is unlimited.

Project 503F

Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract AF19(628)-5165

FOREWORD

The authors wish to express their appreciation for the support
given to the experiment by the Air Force Logistics Command (AFLC)
ADAM Users Group. In particular, we wish to acknowledge the
contribution of the Section V, the part including User Reactions,
by Donald Simmons, the AFLC Project Monitor.

The authors also wish to thank Otto Beebe and John Penney of
the MITRE Corporation^ Information Processing Department for
their many contributions to this report.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved.

>ATTT. C. nATFNTTMF TR U PAUL G. GALENTINE, JR.
Colonel, USAF
Deputy for Command Systems

11

ABSTRACT

This final report describes the components of the Joint
AFLC/ESD/MITRE Advanced Data Management Experiment (ADAM) and
the process of implementation. The objective of the experiment
was to determine the applicability of Generalized Data Manage-
ment Systems such as ADAM to management information problems as
found in AFLC. Observations concerning this applicability are
given from two user viewpoints: programmer-user and the appli-
cation or mission-oriented user.

iii

TABLE OF CONTENTS

SECTION II

SECTION III

LIST OF ILLUSTRATIONS

SECTION I INTRODUCTION
BACKGROUND INFORMATION
DESCRIPTION OF THE ADAM SYSTEM
SELECTION OF DATA SYSTEM

ANALYSIS OF THE DATA BASE

ADAM-BASED REQUIREMENTS SYSTEM
GENERAL DESCRIPTION
DATA-BASE SUBSETS
PREPROCESSING
FILE GENERATION
COMPUTATIONS
REMOTE OPERATION

SECTION IV IMPLEMENTING THE ADAM-BASED
REQUIREMENTS SYSTEM
DEVELOPMENT OF GENERALIZED PROGRAMS
PREPROCESSING PROCEDURES
FILE GENERATION
COMPUTATIONS
REMOTE OPERATIONS
USER AIDS
DOCUMENTATION
SPECIAL ROUTINES

SECTION V USING THE ADAM-BASED REQUIREMENTS
SYSTEM
USER REACTIONS

Execution of the Experiment
Type of Queries

Page

vi

1
1
5
6

13

17
17
18
21
24
24
27

30
31
32
37
42
46
48
49
51

52
52
52
54

User Observations and Reacti ons 63
Summary Recommendations 80
Achievement of Objectives 82
Conclusions 83

USAGE ESTIMATES 85

SECTION VI CONCLUSION

V

87

TABLE OF CONTENTS (Continued)

APPENDIX I

APPENDIX II

APPENDIX III

APPENDIX IV

APPENDIX V

APPENDIX VI

REFERENCES

BIBLIOGRAPHY

DESCRIPTION OF IBM 7030 AND 7080
COMPUTER CONFIGURATIONS

BACKGROUND INFORMATION CONCERNING
SOFTWARE

DATA BASE FILE SIZES

PROPERTIES OF D041 FILES

PROCEDURE FOR FILE GENERATION

PREPROCESSING PROCEDURES

page

90

92

95

100

105

111

114

116

vi

LIST OF ILLUSTRATIONS

Figure Page

1 Processing of 66-2 Master Files 22

Table

LIST OF TABLES

I Total 67-1 Data Base Volume 13

II File Sizes and File Generation Times 20

III Summary of DISKSORT Use 34

IV Usage of Remote Operations 86

vii

SECTION I

INTRODUCTION

BACKGROUND INFORMATION

One of the problems in any rapidly advancing technological

field is translating concepts developed in a laboratory environ-

ment into a useful operational application. This is especially

true in computer programming technology. The purpose of the

project described in this report is to bridge the gap between

concept development and application for one such programming con-

cept, Generalized Data Management.

The generalized data management concept is a result of the

observation that many of the functions performed by command or

management information systems are common to a large majority of

the systems of that class. Thus, if routines can be written that

are general enough to perform these common functions, then the

programmer can concentrate almost exclusively on the functions

that are peculiar to his problem. One method of obtaining genera-

lity is to keep data completely divorced from the routines, and

treat all problem-peculiar aspects of the function as data.

More background material concerning the concept of using a

computer to reduce the complexity of the computer programmer's

task is contained in Appendix II, for the benefit of the non-

programmer.

Several systems based on the generalized data management

concept have been built for use in a laboratory. For example,

the Advanced Data Management (ADAM) System was designed and pro-

grammed by The MITRE Corporation for use as an information system

design tool.

More sophisticated systems based on the genBralized data

management concept and other ideas have been proposed, but have

not received approval. A major criticism of these proposed systems

has been the lack of a firm technical foundation. Although ADAM

and other generalized data management systems were nearing com-

pletion when this project was proposed, they had not been tested

on a problem from the field.

Because the generalized data management corcept had not

been field-tested, the Joint ESD/MITRE/AFLC Advanced Data Manage-

ment Experiment was proposed with the following objectives:

(a) to demonstrate the generalized data

management concept and isolate specific

areas for improvement;

(b) to educate users in the potential of that

concept; and

(c) to provide AFLC with a testbed on which to

try out new system and policy level ideas

prior to consideration for implementation

in the field.

The approach taken to accomplish these objectives was to

select an existing management information system and reprogram it

on an ADAM base. The ADAM system was selected from generalized

data management systems because it and its deveLopers were avail-

able to the Electronic Systems Division (ESD) ii the ESD/MITRE

Systems Design Laboratory.

The Air Force Logistics Command (AFLC) was asked to join ESD

in the experiment for several reasons:

(a) AFLC is the largest user of electronic data

processing in the federal gcvernment.

(b) ESD had established a good working relation-

ship with several offices at AFLC through pre-

vious work; and

(c) AFLC had several large scale management infor-

mation systems that were technically suitable

for the experiment.

Meetings were held at HQ AFLC during December 1964 and

January 1965 to select a data system to use as a problem for the

test and to plan the experiment. Representatives of the Elec-

tronic Systems Division, The MITRE Corporation, and the Logistics

Command participated in the discussions.

The Category I and IIR Consumption Item Requirements

Computation (D041) System, described later, was selected for the

test. Based on the information gathered at these meetings, a

plan was prepared by ESD and MITRE and presented to Major General

J. W. O'Neill, Commander, Electronic Systems Division. General

O'Neill approved the project and work began on 1 April 1965«

More information concerning the initial plans for the experiment

is contained in Reference 1.

The initial portion of the project was primarily concerned

with learning about the D041 system. Documentation on the system

was supplemented by a complete set of the D041 master file mag-

netic tapes. These tapes, received in June 1965, were analyzed

to determine the information necessary to design the file struc-

tures for the ADAM-based Requirements System. This data base

analysis activity was followed by a detailed study of the pro-

cedures used in the computational portion of the D041 system.

This effort was aided by obtaining a set of input, inter-

mediate and output computer tapes in August 1965 for studying

the relationships between input and output data.

Based on these two study efforts, a program design was formu-

lated, and work began to construct an ADAM-based Requirements

Computation System.

An initial version of the ADAM-based Requirements System was

completed early in December 1965. This initial system contained

very few of the procedures used to compute requirements and a

small subset of the data base. The information retrieval capa-

bility was available via the FABLE query language. Six members

of the AFLC-ADAM users group visited the Systems Design Labora-

tory to exercise the initial ADAM-based Requirements System and

offer suggestions for future versions.

An updated data base (from the FY 67-1 requirements compu-

tation) was received in April 1966. Several new subsets of the

data base were generated for experimentation during the period of

use by the AFLC users group.

On 1 April 1966, a remote query station consisting of a tele-

type and high-speed printer was installed at HQ AFLC, Wright-

Patterson AFB, Ohio, so that more AFLC personnel could make use

of the system in an on-line mode of operation. ^FLC personnel

were trained in the use of the remote station and the FABLE

query language so that they could use the system directly. MITRE

personnel assisted in formulating the more complex queries. The

reactions of the users of the system are detailed in Section V.

The remote station remained at HQ AFLC through August 1966. The

experiment was completed on 31 August 1966.

DESCRIPTION OF THE ADAM SYSTEM

Before proceeding further, an explanation of the ADAM system

is in order. ADAM is an integrated set of generalized computer

programs designed to perform common and management data process-

ing functions. It was implemented by The MITRE Corporation on

the IBM 7030 (STRETCH) computer in the ESD/MITRE Systems Design

Laboratory. It is a design tool to be used by management infor-

mation system designers to construct functional prototypes of

proposed information systems so that tests may be performed before

writing the specifications for the operational system.

A few of the common functions provided for in the ADAM

system are:

(a) Data base generation - describing and

entering data into the system;

(b) Data base searching and analysis - re-

trieving data from the system and per-

forming computations with it;

(c) Input message processing - recognizing

and translating interpretively messages

entered on-line and controlling the

performance of the tasks described by the

message;

(d) Report generating, formatting, and display-

controlling the output of information to the

appropriate typewriter, printer, or cathode-

ray tube display in the appropriate format;

and

(e) Providing for special processing routines -

interfacing with problem-specific routines

written in assembly or compiler languages.

All data and problem specific information are stored in the

computer's memory using a hierarchical ordering scheme known as a

file, and are completely divorced from the programs. Related

entities called objects are grouped together in files and are

described by properties.

The concept of generality is extended to the translator it-

self. New languages may be introduced to the ADAM system by

describing the syntax and semantics (the rules for translation)

of the language to the translator. At present, several languages

have been described to the translator. The FABLE language pro-

vides a data retrieval and computation capability. The Initial

File Generation Language (1FGL) allows the programmer to incorpo-

rate data bases into the ADAM system. Assembly language routines

may be added by providing interface instructions using the DAMSEL

compiler language. A restricted set of FORTRAN statements may be

used to construct routines if the COMFORT postprocessor is used

to provide the link to the ADAM system.

The ADAM system is designed to operate most effectively in

an on-line mode. This implies that the necessary hardware

(printers, input typewriters, cathode-ray tube displays, etc.)

are available. Appendix I contains a comparison of the hardware

configuration of the IBM 7030 at MITRE and of the IBM 7080 used

by the Air Force Logistics Command. More information concerning

the ADAM System itself may be obtained by consulting the list of

references.

SELECTION OF DATA SYSTEM

Now that the ADAM System has been discussed, the AFLC data

system that was selected as a test application will be explained.

The Category I and IIR Consumption Item Requirements Computation

(D041) System develops information for Logistics Command managers

concerning the quantities of spare parts required to support Air

Force weapon systems during the next five years. These forecasted

quantities are developed from historical usage data and the pro-

jected use of the weapon systems. The requirements thus computed

are balanced against existing and projected assets of the stock item

to determine if the Air Force will be over- or understocked. Buy

orders may be initiated or repair schedules adjusted if an under-

stocked position is indicated. On the other hand, procurement

contracts may be terminated in situations where the Air Force will

be overstocked in a particular item. The costs of buy requirements

and the dollar value of projected stock overages are reported by the

system.

D041 System was programmed at HQ AFLC for the IBM 7080 computer.

The complete program is run every three months at each of the Air

Material Areas (AMAs) for the Category I and IIR items (items which

may be returned to a depot for repair) in the inventory, and each

AMA manages between 2,000 and 20,000 of them. Each item has an

average of approximately 2,000 characters of information associated

with it in the data base for a total of 170 million characters. The

D041 system programs contain a total of approximately 125,000 instruc-

tions segmented into many different runs. The system is run in a

serial batch-processing mode using 20 high-speed tape drives. It re-

quires approximately 12 hours of 7080 computer time at each AMA. The

IBM 1401 D041 report printing time for all of AFLC is 129 hours.

Thus, the system used as a test problem during the experiment is a

large one.

The D041 System is divided into several subsystems or modules.

Each of these modules and the output products will be described brief-

ly after the inputs to the system are listed.

(a) Inputs: The D041 receives input data from several

other data systems and accepts manually inserted

data from the item managers. A few of the types of

input data are listed below:

(1) Stock Balance and Consumption Report lists

usage data (the number of parts repaired or

condemned, etc.) for each item for particular

periods of time (called base periods) and

the quantity of stock on hand as of a

specific cutoff date.

(2) The Due-In-Asset Report lists quantities

of stock items scheduled for delivery

during a specified time period from out-

side sources such as under procurement

contracts.

(3) Past Programs specifies the activity level

(e.g., number of flying hours) during the

base periods of the applications (e.g.,

weapon system) that the items are used on.

(4) War Readiness Material lists quantities

of stock allocated for war reserve pur-

poses.

(5) Project Programs lists planned activity

levels of the application weapon systems

during future time periods.

(6) Additive Assets, Requirements, and

Factor Estimates are data that cannot

be computed by the System from other

inputs and must be entered by the item

manager.

(7) Recovery and Condemnation Data lists

data concerning number of items repaired

or declared beyond repair during the

base periods.

(b) Program Modules: The D041 System is composed of

six separate modules that are run sequentially

(with some feedback during recycling). A brief

description of each follows:

(1) The data edit and file maintenance

module is the input interface between

the D041 System and other data systems

and between the D041 System and the item

manager. All data received are checked

for errors according to established

criteria. If inconsistencies are found,

the data are printed for review by the

item manager. The manager must supply

(estimate in some cases) all elements

of data that cannot be obtained from

other sources, and he many override

certain other elements of data. After

the inconsistencies are eliminated, the

master files are updated to incorporate

the new data and delete obsolete data.

(2) The past program module develops a time-

phased measure of the activity level dur-

ing the most recent 30 months of the

application for which the stock items are

components. An example of a past program

quantity is the number of hours flown by

B-52s during a particular base period

month. These quantities are developed

from data supplied by HQ AFLC and certain

other specified AMAs. The AMA and HQ AFLC

data are merged and maintained in the D041

System master files.

(3) The factors module computes the appli-

cable rates for various types of factors

which individually are computed for each

of several different types of usage data

(e.g., base repair, depot condemnations,

etc.) by dividing the usage quantities for

a base period by the appropriate base

period past program. These factors are

then checked for compatibility and print-

ed for review by the item manager. The

item manager may override the computed

factors by submitting new ones for a

recycle through the initial modules of

the system. The manager-entered factors

will be used during the then current

requirements computation, but will not

be retained for use in future quarterly

computations.

10

(4) The future program module is similar to

the past program module except for the

time period involved. The future pro-

gram predicts the activity level of

applications for the succeeding five

years. These future program quantities

are based on projections made by HQ

Air Force.

(5) The requirements computation module

computes the gross and net quantities of

stock items necessary to support the

application during the succeeding five

years. The gross quantities are time-

phased and are computed by multiplying

the forecasted factors by the time-

phased future program after suitable

interpolation has been accomplished.

Separate requirements are listed for each

type of usage. The net requirements are

produced by successively subtracting the

the time-phased assets from the individ-

ual requirements according to the pri-

ority of the requirement. Thus, pro-

jected stock overages or shortages are

determined. Dollar values of these pro-

jected overages and shortages are also

computed.

(6) The Requirements Inventory Analysis Re-

port (RIAR) module summarizes and re-

groups the information produced by the

requirements computation module.

11

Other information helpful in deciding

appropriate buy, scheduling, or contract

termination actions is also produced.

(c) Output Products. The Requirements Inventory Analy-

sis Report (RIAR) produced by the final module of

the D041 System is the most important output of the

system. However, there are approximately 50 other

printed reports produced at various stages in the

system that are used for validity checks, auditing,

cross-referencing and various logistics manage-

ment purposes. Many of the reports are similar,

differing only in the format or sorting key.

The remainder of this report documents the building and use

of the ADAM-based Requirements System. Section II reports on the

data base analysis effort. Section III contains a description of

the ADAM-based Requirements System. Section IV discusses the pro-

cess of data base preparation and the characteristics of the ADAM

System that the MITRE personnel implementing the ADAM-based Re-

quirements System found useful or in need of improvement. Section

V is written by the user of the ADAM-based Requirements System

and contains comments concerning good and bad features with sugges-

tions for improvements. The final section contains the conclusions

that the authors feel can be derived from their experiences during

the course of the experiment.

12

SECTION II

ANALYSIS OF THE DATA BASE

Each Air Material Area (AMA) has responsibility for a set of

inventory items and maintains its own data base. When the AMAs'

seven data bases are combined and the overlapping information

removed, the resulting total is extremely large. Table I shows that,

for the 67-1 data, the total was approximately 164 million charac-

ters. It was not feasible, nor even desirable, to incorporate the

entire data base into the ADAM-based experiment. Instead, a subset

of the data base would be used. The composition of the subset

was to be specified after the D041 data base was analyzed.

* 67-1 is an abbreviation for the first quarter of fiscal year

1967 and represents the D041 Computational cycle for that time,

Table I

Total 67-1 Data Base Volume

All AMA

File Name No. of Physical
Tape Records

No. of Characters
Per File

(in millions)

Percent
of Total

Past Program 1378 3.9 2.38

Future Program 987 2.9 1.77

Item Past Program 8274 24.7 15.09

Application 2607 7.8 4.77

Index 680 2.0 1.22

Asset/Usage 31420 92.4 56.44

Technical Data 10181 30.0 18.33

TOTALS 163.7 100.00

13

The most important characteristics of the data base had to

be isolated, extracted, and studied for the purpose of obtaining

meaningful subsets. That is, a subset must be representative of

the complete set and independent of other subsets. The data ele-

ments and formats of the master files were given in AFLCM 300-4

"Category I and IIR Consumption Items Requirements Computation

System;" but actual file characteristics, e.g., tape formats or

volume estimates, were not given. Neither the definition nor rela-

tive significance of the data elements were stated explicitly in

that or any other available documentation.

To obtain specific answers, several special purpose data re-

duction routines were written. These routines performed three

major functions; to print tapes in specific formats; to tally on

various properties in files; and to correlate property values be-

tween two different files. These routines are briefly summarized

below:

(1) Technical Data File Data Reduction:

The design of the tape file is based

on a unit record; for items with data

exceeding the fixed record length, more

than one record is required. This routine

recognizes an entity and tabulates the

number of records and number of applica-

tions per item.

14

(2) Future Program Data Reduction:

This routine produces a tally of the

number of applications and the fre-

quencies of different values of

Service Code, Cost Category,

Record Identity, and Type Program.

(3) Asset/Usage Data Reduction:

This routine produces tallies and

frequency distributions based on

Master Stock Number (MSN), Actual

Stock Number, and Record Type«

(4) General Purpose Data Reduction:

Based on any property in any file,

frequency distributions of logical

records per primary value and of

values in secondary, tertiary,...

fields are produced.

(5) Future Program Print:

The routine produces output in two

parts. The first part contains the

first 120 characters of all records,

the second contains the last 80 of

all records.

(6) Past Program Print:

The output of this routine occurs in three

parts. The first section prints the first

100 characters, the second shows the next 70,

and the third shows the last 90 characters.

15

(7) Application and Past Program Compare:

This routine determines which and how many

of the application numbers on the Application

file appear on the Past Program file.

(8) Application and Future Program Compare:

This routine functions similar to (7)

using the Future Program file.

(9) Past and Future Programs Compare:

By considering the application number and

Program Code, this routine tallies items

common to the two files.

The information obtained by operating the named programs on

sample data and 66-2 data* was instrumental in determining the

criteria for extracting a subset of the data base. The final pro-

cedure consisted of finding all items related to the specified

application(s) and is fully described in References 2 through 5.

The data reduction programs also provided vital information for

determining the file design within ADAM. Some design considerations

were the merging of the Tech Data and Asset Usage files; the sepa-

ration of the Assets section from the Usage section in the Asset/

Usage file; the reorientation from stock number to application

number as the primary focus of the system. The final file organiza-

tion is also described in References 2 through 5.

*66-2 represents the second quarter of fiscal year 1966.

16

SECTION III

ADAM-BASED REQUIREMENTS SYSTEM

GENERAL DESCRIPTION

Early in the design phase, the ADAM-based requirements compu-

tation accepted several functional constraints which served as a

frame of reference for the general goals and design of the system« [6]

One constraint was that both the data base structure and computational

components remain essentially unchanged so that qualitative compar-

isons might be made. Another condition was that the computational

functions be modular and so written that experimentation on individ-

ual modules would be feasible. To achieve this flexibility, all

computations were implemented using FABLE, the ADAM query language.

One capability in the final system was not provided.

Reference 6 outlines that the Item RIAR data would be made available

for querying as a substitute for being able to perform the compu-

tations for all members of a subset. In concept, this additional

file would have been generated without problem. However, an Item

RIAR file would have had to be kept separate from all other files

in the system so as not to invade those temporary files needed by

the compute functions. Because the raw data needed special process-

ing not allowed for in the normal preprocessing procedure, there

were not enough resources to convert the data and generate the file.

The on-line, remote operations required explicit procedures.

These procedures and/or functions which were needed to support the

remote operation are presented later in this section.

17

DATA-BASE SUBSETS

Three different subsets of the 66-2 data were selected and pro-

duced as files within the ADAM context. Although the selection of

the subset members was made arbitrarily, it was done with the aim of

obtaining a representative sample of the application-stock number

combinations in the data base. These three subsets are fully des-

cribed. [2,3,4,5J Since the source data from which the subsets

were derived changed during the project's life cycle, many subsets

were started but never completed.

Seven distinct subsets of the 67-1 data were selected and

specified by the AFLC Users Group. In three cases, a method for

detecting items peculiar to a family of applications was given, but

because of speed improvements and space savings attained by ADAM,

total and complete subsets could be generated. The remaining four

subsets were specified by particular values of the Federal Supply

Classification (FSC) and the Material Management Code (MMC). These

subsets are summarized below:

(1) B52

AH items, both common and peculiar, were

selected by means of the application tree

algorithm described earlier. The particular

names which were used to perform the sub-

setting operation were:

B52, B52A, B52R , B52C , B52D , B52E , B52F ,

B52G, B52H, B52T

(2) F4 and RF4

All common and peculiar items were selected

using the same application tree program. The

particular members of this family were:

18

F4, F4B, F4C, F4D , F4E, F4T, RF4C.

(3) C130, C135, KC135, C141

All common and peculiar items were extracted

from the full data base by use of the appli-

cation tree program. The family members of

this subset originate from:

C130, C130A, C130B, C130C, C130D, C130E,

C130H, C130T, C135, C135A, C135B, C135F, C135T,

C141, C141A, C141T, KC135A, KC135B, EC135A,

EC135C, EC135G, EC135H, EC135J, EC135K, EC135L,

HC130E, HC130H, NC130B, NC130E, RC130A, RC135A,

RC135B, RC135C, RC135D, RC135E. This subset was

nicknamed CARGO.

(4) FSC 1270 and 1280 represent fire control items

from WRAMA. Without use of the application

tree algorithm, items and their immediate

applications were selected when the FSC value

was 1270 or 1280. This subset is named

FSC12.

(5) FSC 5821, 5841, and 6615 encompass bomb navi-

gation, communications and instruments from

WRAMA and MAAMA. Those items and their

immediate applications whose FSC value was

5821, 5841, or 6615 were selected. This sub-

sot is named FSC58.

(6) FSC 1650 and 1680 represent miscellaneous

accessories from OCAMA and SAAMA. Items and

their immediate applications were selected

when the FSC value was 1650 or 1680.

L9

(7)

This subset is known as FSC16.

MMC

When the MMC was PD, PH, PJ, or PL, items and

their immediate applications were selected with-

out use of the application tree algorithm.

When all the above seven subsets were near completion, in-

cluding the file maintenance function itemized later, some of the

AFLC users requested a subset based on the F105 weapon system family.

By specifying F105, F105B, F105D, F105F, F105T, and RF105D, a com-

plete and independent subset was obtained by use of the application

tree program.

Because internal storage space constituted one reason for work-

ing with data base subsets, the ultimate sizes are presented in

Table II. The sizes of the 66-2 subsets are reproduced [2] so that

comparisons with the 67-1 subsets may be made.

Table II

File Sizes and File Generation Times

66-2 DATA

Subset Input Volume
(Physical Records)

Total Size
(Arcs)*

Generation Time
(Minutes)

F106 1831 952 433

10 Application 1830 897 376

26 Application 3702 1771 1065

67-1 DATA

MMC 1550 1264 203

FSC12 2954 1801 287

B52 4324 2506 390

F4 1473 83ft 138

F105 1212 870 142

* An arc on disk storage consist s of 512 64-bit words.

20

Appendix III contains detailed information. In terms of number

of objects (about 1200 items), the F106 subset from 66-2 is of

comparable size to the F105 subset from 67-1 data. The B52 subset

with 3324 objects may be contrasted with 2362 objects of the 26

Application subset.

PREPROCESSING

Each of eight AMA's contributed eight master tapes of 66-2

data to the total D041 data base. All tapes required multistep

processing before the data base was ready for file generation in

ADAM. Certain generalized routines were already available, and the

rest of the needed programs had to be designed and written.

The overall procedure is shown in Figure 1, and Appendix VI

gives a more detailed picture. The overall process consisted of

copying all tapes received from the AMA's; sorting and merging all

eight AMA versions of every master file; removing redundant records

from the combined files; operating the two components of the sub-

setting algorithm; extracting the chosen members of the subset

from each of the master files; and preprocessing each subsetted

file in preparation for file generation. In the case of the TECH-

DATA file, an extra step was needed to combine data from three

different files.

21

8 MASTER
FILES FROM 8 AMA's -i TAPER

SWISH

-TECH DATA
-ASSET/USAGE
-MASTER IDENTITY
-PAST PROGRAM
-FUTURE PROGRAM

ELIMINATE
DUPLICATES

SWISH

SWISH

ELIMINATE

DUPLICATES

TAPE
COMPARE

E
ORIGINAL

SUBSET LIST

 HALL AMAj

APPLICATION

SUBSET

PREPROCESSOR

CD

o"
I

ADAM FILE
GENERATION

Figure 1 . Processing of 66-2 Master Files

22

All processing steps may be categorized into those which were

required to obtain a subset and which permitted the data to conform

to the file generation language rules. Copying tapes was an obvious

step. Both sorting and preprocessing were mandatory for a proper

interface with ADAM. All other program functions were for the pur-

pose of obtaining a subset.

After the preprocessing procedure was designed for the 66-2

data set, several unanticipated constraints were imposed: the sub-

setting algorithm was to be augmented; the master files changed sub-

stantially in format and content; and the number of different mas-

ter files and their identities differed for this version of the data

base. Originally9once the 66-2 data base was processed, the ADAM-

based experiment might incorporate file updates and maintenance.

When the decision was made not to include file maintenance, pre-

processing of another total data base was mandatory. For all the

above reasons, the preprocessing procedure needed several altera-

tions .

Overall, the 67-1 data preparation is still much the same, but

the program elements which comprise the total procedure are

different. Tapes arriving from the AMA's were copied as before.

An extra step was required when it was discovered that several

logical files resided on the same physical reel and that these

files were not separated in the conventional manner by tape marks.

Then every master file was sorted and merged across the AMA's.

Special programs were required to eliminate records which were

judged redundant after the first file was generated. Once the sub-

set had been determined, the appropriate members had to be extrac-

ted from each of the all-AMA master files. These subsets were then

preprocessed for file generation in ADAM.

23

Although the subsetting algorithm [2J was still the recommended

method for obtaining a complete and independent subset, AFLC re-

quested other ways of extracting a data base subset. The users were

interested in basing a subset on certain values of particular proper-

ties in the files. In particular, the properties were Material

Management Code, Budget Code, and Federal Supply Classification. In

view of this, a program was built which could accept several values

of any property to select a subset.

FILE GENERATION

The Initial File Generation Language (IFGL) is one of the user

languages provided by the ADAM system. By use of IFGL both the

eventual structure of the file and the raw data characteristics may

be described. The whole file description written in IFGL was con-

sidered a message to be translated and processed by ADAM. One IFGL

message per D041 file component was written. The final file com-

ponents were Past Program, Future Program, Asset/Usage, Technical

Data, and Applications. The structure of these files is described

in Reference 2, as are the IFGL messages which were used to generate

the files for both the 66-2 and 67-1 versions. The actual imple-

mentation is described later in Section IV under File Generation.

The properties which comprise each file are listed in Appendix IV.

COMPUTATIONS

For purposes of computing future requirements of inventory

items, a base period is defined, usually as a 24-month period end-

ing three months prior to the asset cutoff date. Past program data

and certain usage data are collected for the base period on a

master-stock-number basis. These 24-month accumulations are used

to calculate factors. The factors are used in the requirements cal-

culation, in conjunction with future program data and current asset

data, to estimate future requirements.

24

Certain of the factors may optionally be entered by the item manager

rather than calculated. There are four basic steps in the computa-

tion of factors:

(1) The item manager must enter forecast values

for four of the factors.

(2) The manager-entered, forecast factors are used

to calculate forecast values for Base Repairable

Generations, Base NRTS (not repairable this

station) , and Base Condemnations from the base-

period values of these three quantities.

(3) The system uses the base-period and adjusted

base-period values listed in (2) plus base-

period values of the Past Program, Depot

Condemnations, and Depot Repairable Generations

to calculate the remaining factors. Four of

the factors are rates of failure or repair per

unit of program; and the remaining factors are

percentages used to calculate certain future

requirements and assets.

(4) For each master stock number, the results

of the factor computations are printed.

Material requirements on a quarterly basis for each master stock

number are computed for a nominal five-year period. In general, at

the time the requirements computation is begun, a current value and

three forecast values must be available for each type of factor.

Essentially, an average of adjacent factors is used to compute a

more accurate requirement for the year bounded by these two factors.

Additional inputs to the requirements computation are:

25

(1) future program data (MRS, OFM, IRAN, Military

Assistance Program) which are converted to

Item Future Program using all final applica-

tions of the item;

(2) technical data consisting of repair cycle days,

negotiated base and depot stock levels, and

unit prices;

(3) dated quarterly values for those assets which

are not computed by using factors; and

(4) additive requirements entered by the item

manager.

The first task of the gross and net compute function is to cal-

culate the total gross Air Force requirement, which basically is com-

posed of three elements:

(1) materiel to satisfy various stock-level

needs;

(2) materiel to replace condemned materiel; and

(3) additive and war reserve requirements.

MAP requirements are determined separately from those of the Air

Force, since Air Force requirements must be fulfilled before satis-

fying those of MAP.

Five classes of assets are aggregated and applied separately

as offsets against the requirements. Air Force and MAP over and

short positions are computed at each level by applying a class of

assets against the requirements. The asset classes are applied in

the following order: serviceable assets; base repairs; TOC; depot

repairs; and on-order assets.

26

Following computation of the fifth Air Force/MAP over and

short positions, various non-time-phased quantities are calculated.

Buy, termination, and excess quantities and dollar values are de-

termined using results from the earlier calculations. Various world-

wide, depot, and distribution levels are then calculated.

The requirements computation also produces a file containing

basic data which in turn is used to produce the Requirements Inven-

tory Analysis Reports (RIAR).

Complete descriptions of all computations comprising the

ADAM-based system are given in References 7, 8, and 9.

REMOTE OPERATION

In order to test the performance of ADAM through the reactions

of an actual user, input-output devices were installed at AFLC

Headquarters in Dayton, Ohio, which would provide a direct connection

to the 7030 Computer at MITRE through regular telephone lines.

This provided AFLC with the capability of direct, on-line querying

of any one of their subsets residing in ADAM. The Remote Operation

consisted of the following segments:

(1) installation and checkout of remote

equipment;

(2) training of the users in the fundamentals

of ADAM, FABLE, remote equipment procedure

and minor maintenance; and

(3) administering and monitoring of the on-

line remote computer time.

The Remote Equipment was specified to consist of a modified

Stromberg Carlson 3070 high speed printer and a model 35 ASR even

parity teletype with data phone.

27

The equipment was installed by 1 April 1966; the SC 3070 printer

was provided and installed by MITRE, while the installation of the

teletype was performed by Ohio Bell Telephone. However, the tele-

type provided by Ohio Bell Telephone was a converted TWX machine

with odd parity and was not compatible with the 7030 adapter.

This delayed the successful operation of the remote station by

four days and required a modification of the adapter. The re-

quested model was finally installed 9 May 1966 and the necessary

remodification of the adapter was made.

A short course on the maintenance of the SC 3070 printer and

the 35 ASR teletype was given to project personnel who then trained

the users at AFLC. The instruction of AFLC personnel in the prin-

ciples of ADAM and FABLE took place over a two-week period at

Dayton. Several classes were held in which FABLE was discussed in

the form of lectures. It was then recommended that prospective

users of the system should contact the visiting MITRE personnel on

an individual basis with their particular questions and problems.

It should be noted here that, during the second week of the

instructions, the Remote Station was fully operational and was on-

line one hour daily.

All remote runs were monitored and the set-up controlled by

MITRE at MITRE Command Post B. "Control" means the preparation

of the card deck with the associated selection of the subset.

To perform effective monitoring, at least two SC 3070 print-

ers and two INVAC typewriters had to be present in the configura-

tion. One printer was used to monitor all incoming messages from

all devices; the second printer monitored the messages going to

the remote printer. The need for two typewriters is due to the

fact that one should be used only to receive control messages such

as AUTO RESTART BEGUN. This message could be lost if it were sent

28

to that typewriter while it was in input mode. While the devices

listed above establish the minimum configuration, the addition of

further units usually increased the effectiveness of monitoring.

In order to test the operational readiness of the remote devices,

the Equipment Checkout program (ECO) was operated before the ADAM-

based system was loaded. This routine and a full description of its

capabilities are reported in Reference 10.

29

SECTION IV

IMPLEMENTING THE ADAM-BASED REQUIREMENTS SYSTEM

The implementation of the ADAM/AFLC experiment encompassed

several large areas of endeavor. The major segments are identified

and discussed. In particular, some of the procedural or mechani-

cal difficulties, whether related to data preparation or on-line

operation, are reported. ADAM characteristics which were not

necessarily suited to the application are identified. In general,

the section is devoted to describing the total process of

implementation.

Preprocessing of AFLC data both to produce the appropriate

data base and to force compatibility with ADAM represented a

large portion of the total project effort, e.g., to program and

checkout all special purpose programs required 17 man-months.

The development of computer programs and processing procedure is

described. This subsection is distinct from any critique on

ADAM characteristics or concepts represented by such a system.

The general structure of ADAM allowed certain tasks to be

performed extremely well. The concept of independent tasks,

the existence of routines in files, the independence of data bases

from the system - all these elements were very useful for such

tasks as generalized retrieval. Some of the generalized capa-

bilities provided by ADAM were either not utilized or fully taxed

by the construction of the ADAM-based D041. For example, ADAM

provides random access mechanisms, whereas efficient D041 opera-

tion required serial processing of large amounts of data; or

routines could be written and stored in files whereas the im-

plementation was actually accomplished in the query language,

FABLE. The particular capabilities used in implementing the ex-

periment are delineated in the subsections on file generation and

maintenance, the computations, user aids, and special routines.

30

DEVELOPMENT OF GENERALIZED PROGRAMS

The 66-2 processing procedure required multiple passes over the

same data in order to obtain the all-AMA files. Since these multiple

passes were conceptually unnecessary, a generalized sort/merge program

could be designed and contain an input and/or output processor which

could perform such functions as removing duplicate information and

padding out variable length records to constant size. The benefit

would occur not only in decreased 7030 time but also in turnaround and

thus elapsed time.

It was also concluded that SWISH, a generalized sort program ,

was not ideally suited for sorting AFLC data in bulk. Further,

separate merge capability had been used without a sort. With the

goals of saving 7030 and elapsed time, enlarging the capacity of a

logical file, and providing a separate merge function, a new sort/

merge program system was designed and implemented. The sort seg-
** fill

ment is known as DISKSORT and the merge segment as MERGE. l J

For the 66-2 data, SWISH was used to sort and merge the data

from all the AMA's. Because of certain volume limitations, all the

items could not be combined into a larger logical file. DISKSORT

was used to process the 67-1 data. The design and implementation

of the DISKSORT/MERGE and associated checkout programs required

about 11 man-months. The results were rewarding. Some timing

summaries are compared below for approximately equal volume per

file type. Each quantity is the sum of all the runs which produced

the final output, thereby reflecting the need for segmenting.

* STREAM System Manual, SR-114.

** DISKSORT will be described in a forthcoming report by J. B. Glore

31

DISKSORT
(MIN)

SWISH
(MIN)

Past Program

Future Program

Item Past Program

Application

Index

Asset/Usage

Technical Data

6 55

6 79

23 258

9 75

2 Not applicable

30 628

23 379

PREPROCESSING PROCEDURES

Each of seven AMA's sent four sets of master tapes to comprise

the total 67-1 Version of the D041 data base. The four master

files, as identified by the AFLC designation were: C5A (multiple

logical files containing stock numbers, application numbers, and

part numbers); C5E (a single logical file, Asset/Usage); FIB

(a single logical file, Technical Data); and J3A (multiple logi-

cal files of past program, future program, and item past program).

B8A and C6A were sent by each AMA but were not used in the genera-

tion of the ADAM-based files.

32

The single file tapes, C5E and FIB, were copied by TAPER, a

generalized tape handling program,* on the 7030 whenever possible;

otherwise, the IBM lalO was used when the 7030 detected too many

parity errors. Since the various logical files on the C5A and J3A

needed breaking out, the program SPLIT was written to perform

this function and to accomplish the duplication in the same run.

At this point, 49 (seven master files from each of seven AMA's)

logical reels of tape existed.

Each file needed to be sorted and merged across the AMA's. As

indicated previously, the duplicate records were to be removed in

the output processor of the DISKSORT and/or MERGE. Table III shows

the required sort keys.

It was expected that there would be a high frequency of re-

dundancies in the past and future program and application files

and that the occurrence of duplication on the remaining files

would be possible but far less probable. The expectations were

realized when the past and future program and application files

were each combined across the AMA's to fit a single reel. The in-

dex files portion was also reduced to a single reel. Although the

remaining files each required multiple reels, each could be

treated as a single logical file.

Duplication of data still existed even after the generation

of the first set of ADAM files. In the case of Past Program, out-

dated information had to be removed. For the Future Program, some

records contained a headquarters code which had to be ignored in

order to remove duplicates. Thus, the two files were processed by

the programs PURF and PURP. At that point, there existed all-AMA

files for these distinct master files: Past Program, Future Program,

Application, Index, Item Past Program, Technical Data, and Asset/
Usage.
* 7030 Facility Manual, SR-76, pp. 315-322.1.
** All preprocessing programs are described in Reference 10.

The specific program design, coding, and checkout required about
20 man-months.

33

Table III

Summary of Disksort Use

Item
Past Future Past Asset/ Tech

File Name Program Program Program Application Index Usage Data

Item Length or

Range (Characters) 260 210 230 60 70 110-210 470-590

Blocking Factor 11 14 13 50 42 14 5

Number of Keys 3 3 2 2 2 2 1

Name (Primary) Appl.No. Appl.No. MSN Appl.No. Current SIS MSN MSN

Positions 4-18 4-18 10-24 10-24 25-39 10-24 10-24

Name Type Type Appl.No. MSN MSN Red.Type

Positions 20 20 25-39 26-40 10-24 41

Name Serv Code Serv Code

Positions 19 19

Volume (No. of Physical

Records.)

Initial 1551 1620 9732 2734 1085 32,249 10,912

Final 1378 987 827^ 2607 680 31,420 10,181

No. of Segments 1 1 1 1 1 5 3

The method for obtaining complete, independent, and meaning-

ful subsets was described in Reference 2. The programs which per-

form the subsetting algorithm are TPCMP67 and ATREE. Modifications

to these programs which were needed for the 67-1 data base consisted

of input/output format handling changes. The augmentation of the

subsetting capability as required by the AFLC subset specifica-

tions was implemented in a program named SELECT. Each of the seven

subsets defined previously traveled one of two routes through

the set of programs.

DISKSORT —- TPCMP67 —- ATREE -DISKSORT

SELECT

B52

F4

CARGO

F105

FSC12

FSC16

FSC58

MMC

Either route yielded two products: a subset of the applica-

tion file and a key tape for extracting the subsets from the

other master files. Each of the all-AMA files, except the appli-

cation file, was passed against a key tape by the program SUBSET.

Thus, the production of a single subset required seven separate

SUBSET operations using a key tape. It had been considered that

this particular function of extracting the actual subset from

the master files might be accomplished within ADAM. The method

would have consisted of generating the whole of each file separate-

ly, saving each file on tape; generating the required object roll

from the key tape and, at file generation time, passing the total

file against the object roll thereby doing the selection. These

schemes were not feasible because of memory size limitations.

35

As can be seen in Appendix VI, the TECHDATA file was the only

one which was immediately acceptable by ADAM. The rest of the

files required further processing by the PREP program, and in the

case of the application file, by program ANNEX. The major

functions performed by PREP are summarized by master files below.

o o < O o CO H s fa e <
X

£ fa E fa fa
CO CO U fa Q

D < CO fa fa 2 fa fa < H < i-i

Repeating group terminator

insertion X X X X X

Shifting fields of data X X X

Removal of all zero fields X

Removal of leading and

terminal zero fields X X

Aggregation of data across

actual stock numbers X

The functions which ANNEX performed consisted of recovering

time-phased data from the Item Past Program file, correlating

this data with the Past Program file, and recording the results

in abbreviated form on the Application file. The ANNEX opera-

tions prepared the major data deviation of the ADAM-based file

structure from that of D041.

Appendix VI shows the overall procedure. Note that the por-

tion to the left of the dotted line represents those steps which

need be performed only once for each set of data received from

the AMA's. The right-hand portion must be done for each subset.

36

FILE GENERATION

The sets of files for the subsets of AFLC 66-2 data were

large, and it was anticipated that the 67-1 subsets would be even

larger. Storage space was one consideration. File generation

time could also be prohibitive. For the assumed confinement of

subset size to 4000 to 5000 stock numbers, the space problem was

solved when the maximum allowable disk space was doubled to 4096

arcs. By way of file design, space was saved in two ways. Stock

number and application number relationships in the 66-2 data base

were given in both the TECHDATA and APPL files; for the 67-1

data only the APPL file contained that information. The second

way of conserving space consisted of aggregating the data in the

ASSETUSG file across the actual (current) stock numbers.

Appendix III gives explicit data about file sizes within the

ADAM environment. Add to each total about 600 arcs which is the

space required for the ADAM system itself under normal circum-

stances. In performing the D041 compute functions, several

temporary files are required. These computations were performed

on three items in the F105 subset, and the space used was

measured: 31 arcs for data and 14 arcs for rolls. The 45-arc

total is simply a sample of the additional storage space needed.

A major modification to the file generation process within

ADAM was implemented between the receipts of 66-2 and 67-1 data.

Not only did this change realize a time savings ratio of up to

five to one but also, since the data volume to file generation

time relationship was linear, made the estimation of required

computer time possible. The file generation times are given in

Table II.

37

For the major reason of providing economical cross-file

referencing, certain properties used the object roll of other

files during file generation. A prescribed order was necessary

for generating the six files which comprise a subset. FUTPROG,

PASTPROG, and ASSETUSG files could theoretically be generated in

any order, but were created in that order by convention. The

TECHDATA file was generated next; a property was created that used

the object roll of the ASSETUSG file. The APPL file was next and

contained properties which used the object rolls of all preceding

files. The INDEX file, containing a property which used the

object roll of the APPL file, was generated last. Below, OR means

"object roll."

File Name Property Name Roll Usage

FUTPROG

PASTPROG

ASSETUSG

TECHDATA

APPL

INDEX

MSNAU

MSNAU

MSNTD

APPLNO

APNOPP

APNOFP

MSNAP

MSNIN

Not Applicable

OR of ASSETUSG

OR of ASSETUSG

OR of TECHDATA

OR of APPL

OR of PASTPROG

OR of FUTPROG

OR of APPL

OR of INDEX

An additional file was generated at the request of AFLC

users who required inventory and usage information by actual

stock number. This ASUS file was almost identical to the

ASSETUSG file. The property names were the same but there were

some structural differences. The time-phased data had not been

38

summed across actual stock numbers. Other files did not reference

its object roll. The actual stock number was used as the object

name, and the master stock number (MSNAP) was a main level property

cross-referenced to the APPL file. If such a file were needed

permanently in the data base, it would be merged with the infor-

mation contained in the INDEX file.

Whenever feasible, the most current version of the Produc-

tion ADAM System (PAS) was used for file generation. The genera-

ted files themselves became independent from the generating

system as soon as they were saved on tape. The reason for using

the most current PAS, then, was solely to take advantage of all

improvements on and corrections to ADAM. The components of any

current PAS were the latest PAS tape, a standard card deck, and

insertions to this deck composed of modifications. The one

special ingredient of the operational setup consisted of a con-

version routine, AFLCON, which converted zone bits of a six-bit

byte into an algebraic sign for integers and floating point

numbers.

For any one subset, each file type had to be generated as a

separate job in the prescribed order. Procedures exist and were

used successfully to generate multiple files in sequence. The

advantages in multiple generations were the computer time saved

in not having to restore already generated files,and the turn-

around time (e.g., 24 hours) by submitting only a single job deck

to the IBM 7030 queue. The disadvantage of a multiple generation

was the complexity of the deck setup for mounting new raw data

tapes and new scratch tapes for saving.

Except for the FUTPROG file,which was the first file into a

data base, the generation of each file type required that all the

predecessors to be restored onto disk. For example, the tape con-

taining FUTPROG and PASTPROG was restored before the file ASSETUSG

39

was generated. At the completion of a file generation, all files up

to that point were saved twice on two separate tapes. In the case of

the B52 and CARGO subsets, the whole set of files would not physically

fit on a single reel of tape. This fact required that the APPL file

be saved separately. The procedure sheets for the F4, F105, B52,

MMC, and FSC12 subsets are reproduced in Appendix V.

Once all six files comprising a subset have been generated,

there are still further operations to be performed so that the

files will be as current and clean as possible. All of these

operations can be performed with FABLE as the file maintenance

language. Certain special routines were written to speed up

processing. The particular FABLE statements are enumerated and

their function described below.

(1) Messages which add values to the roll PROP:

(a) FOR ASSETUSG. ADD VALUES M,N,0,P,Q,R ,S ,T ,U ,

V,W,L TO ADDAS NAME.

(b) FOR FUTPROG. ADD VALUES 1,2,3,4,6,7,9 TO

FUTOFM PC.

(c) FOR TECHDATA. ADD VALUES L, LM TO MRLC.

(2) Messages which set certain numeric properties to

constant values:

(d) FOR TECHDATA. SLBOFM LQ 0 AND (ERRC EQ T

CHANGE SLBOFM TO 30 OR CHANGE

SLBOFM TO 8).

(e) FOR TECHDATA. SLDOFM LQ 0 AND (ERRC EQ T

CHANGE SLDOFM TO 30 OR CHANGE

SLDOFM TO 15).

(f) FOR TECHDATA. SLAA LQ 0 AND (ERRC EQ T

CHANGE SLAA TO 60 OR

40

CHANGE SLAA TO 30) .

(g) FOR TECHDATA. SLOH LQ 0 CHANGE SLOH TO 30.

(h) FOR TECHDATA. CHANGE ACUTYR TO 66,

ACUTMO TO 9.

(3) Messages which delete certain zero-valued repetitions:

(i) FOR ASSETUSG. IF UQUANT EQ 0 DELETE

REPETITION UQ.

(j) FOR APPL. IF FYR EQ 0 DELETE REPETITION

ITEMPP.

(4) A set of messages which can eliminate redundant

repetitions in the APPL file and provides a count of

redundancies per object.

(k) LET MATCH MEAN (APPLNO EQ A APPLNO AND PSC

EQ A PSC AND PPC EQ A PPC AND QPA EQ A QPA

AND PASTPC EQ A PASTPC AND FUTPC EQ A FUTPC

AND ERRC EQ A ERRC) FOR ALL USING RESCAN.

(1) LET A MEAN (APPL (MS)) FOR ALL.

(m) FOR APPL. NOT ELSE, SAVE JMS« = OBJECT

NAME, APPLNO, PSC, PPC, QPA, PASTPC, FUTPC,

ERRC, 'X' OF APPLNOG = 0. NAME TEST.

(n) FOR APPL ALTER TEST. ADD OBJECT MS =

OBJECT NAME, APPLNOG (APPLNO= APPLNO, PSC =

PSC, PPC = PPC, QPA = QPA, PASTPC = PASTPC,

FUTPC = FUTPC, ERRC = ERRC, X = 0).

(o) FOR TEST. FOR APPL (MS) APPLNOG. ANY

(MATCH CHANGE X TO X + 1).

(p) FOR TEST ALTER APPL (MS). FOR APPLNOG. ANY

(MATCH AND X GR 1 DELETE REPETITION APPLNOG)

41

(q) FOR TEST. TALLY FOR X, EQ 0$1$5. PRINT

FORMAT TALLY TALLY.

(5) Message which transfers the price from TECHDATA TO

ASSETUSG for each object:

(r) FOR TECHDATA ALTER ASSETUSG (MSNAU).

CHANGE PRICE TO PRICE.

For extremely large files, this message can

be very time-consuming. A special ADAM

routine was written and may now be triggered

by the message: DO JAN ().

(6) Messages which operate a special ADAM routine and recover

the space formerly occupied by now-NULL data:

(s) DO REPCO (ASSETUSG, 0) .

(t) DO REPCO (APPL, 0).

(7) Messages which serve as checks that the files were

generated and cleaned before making the subset

available to the remote operation:

(u) LASTNOBJ filename no. of objects

(v) FOR filename. ELSE UNTIL 2, PRINT ALL.

(w) DO MELD

:s ().'
These operate routines

(x) DO POINTS (). ' , . ,
which output informa-

tion about file sizes.

COMPUTATIONS

A summary of the D041 compute function appeared in Section

II, and the products of the ADAM-based implementation are docu-

mented in References 12 and 13. A representative sample of the

capabilities of the ADAM-based system is reported in Reference 14.

42

The relevant elements of a discussion on such an implemen-

tation process have to do with the particular language and the

eventual execution time on the central processing unit. One

capability of ADAM allowed the user to program in a lower level

language those functions not suited to a message language. For

this project, the decision was made to forego that capability in

favor of FABLE whenever possible. Due to the trial and error

method required to emulate the D041 function, the flexibility

of the FABLE language reduced that impact of uncertainty.

Although specific dimensions are not isolated in this section,

some commentary on language and processing time is pertinent.

Although the FABLE language is extremely powerful, at least

sufficiently powerful to perform the D041 computation, there are

several drawbacks in its use. By design, it is a language which

is oriented to a single task, is independent of other messages,

and is translated each time. These characteristics, for this

application, were the source of some difficulties, and because

of them, many sections of the computation had to be written in

an unconventional and sometimes simplified form. To implement

the computation, the individual queries had to be strung to-

gether to form a program. This program was compiled every time

and contained only internal query looping.

If used properly, FABLE can perform almost all programming

tasks a lower level language can perform. Subroutines may be

created using string substitutions with parameters and nesting.

Files may be indexed, specified objects may be addressed, and by

use of cross-file referencing, tabular matching may be per-

formed. Essentially, FABLE lacks the ability for intertask

branching and off-line assembly to make it a really useful

programming tool.

43

Because the FABLE language can use nearly all of the features of

ADAM, only two independent DAMSEL routines were needed to per-

form specific tasks (i.e., a square root function and a simpli-

fied query-calling program) for this application.

FABLE, in its entirety, is an extremely difficult language

to learn, and its use can confuse even the most experienced user.

Its use as a simple retrieval language can be hampered by this

complex structure. The nonfamiliar ADAM user has much difficulty

in grasping the use of this language. To make it a more under-

standable retrieval language, it needs only to be simplified in

both verbiage and syntax.

Execution time of the computations showed that translation

was the most time-consuming of all operations. If a query took

one minute to complete, usually 55 to 58 seconds were for trans-

lation and 2 to 5 seconds for processing. The actual processor

time for most queries was small compared to the translation and

control procedure time. In running the computations on less than

4 or 5 objects, the overhead time consumption by the translator

was high; but as the number of objects increased, the computation

time was used up more for processing than translation. This

implies that the most efficient way to run the system would be

for many objects at one time. However, the total time becomes

prohibitive for very many objects.

Although in concept any number of stock numbers could be

used for a computation, the other limitation has to do with

hardware and not software. If the 7030 had unlimited core and

disk space, then the computation could be performed for any

number of stock numbers. In reality, however, the ultimate limi-

tation was based on computer time.

44

Individual query execution times are given in Reference 12,

However, some timing figures for the Gross and Net Computations

section are summarized as follows:

Execution Time (in minutes)

No. of Stock
Numbers Translator Processor Output

2

32

21.75

21.75

4 33

44.25

2.50

9.16

While the operation of the set of computations was time-

consuming, relatively little effort was required to code and

checkout the ADAM-based programs--about five man-months.

These FABLE routines replicated the factors, requirements, and

RIAR computations of D041, which segment consists of approxi-

mately 15,000 symbolic language (AUTOCODER) instructions.

No specific experiments to speed up execution time by

using DAMSEL were conducted. On page 42, the routine JAN was

mentioned. This routine performed in five minutes a function

which required 40 minutes. It took advantage of the serial

structure of the file.

ADAM provides a standard format suitable for all output

devices. Should this standard format be unsuitable for a par-

ticular application, ADAM also provides an output formatting

language. This language and its associated macros proved

flexible and effective. PPCONV was the only lower level language
[16]

program required to produce all desired output formats.

Although the particular device for which the format was being de-

signed was irrelevant, most of the D041 formats were geared to

the SC3070 since that was part of the remote configuration.

45

REMOTE OPERATIONS

The modifications to any software for operation with a

remote high speed printer and teletype were relatively minor.

Some changes to the Master Control Program (MCP) were needed to
**

adapt the system to the teletype. The ADAM system required only

that a new device be defined. These changes were all ready by

1 April 1966.

Related to mandatory changes to software were changes to

install some desirable capabilities. The most important addi-

tion was made to allow monitoring of the remote operations on

equipment in Command Post B. The slaving of like devices, e.g.,

the remote SC3070 to a near SC3070, was trivial due to the

design of the relevant portions of ADAM. In contrast, the

slaving of a nonteletype to the remote teletype presented some

software problems. When these were solved, another near SC3070

acted as monitor for the remote teletype. However, in no way

were messages from Dayton intercepted and edited before they were

accepted into the system. The monitoring capability had no con-

trol functions until after messages were entered. At that, the

only function the monitoring personnel could perform on a message

from the remote station would be cancellation.

Another user aid consisted of message numbering, that is, the

assignment of an identification number to a query. If a message

were rejected by the system, its number enabled the user to

relate the diagnostic to the transgressing input query.

The second major aspect of remote operation concerns the

equipment. The configuration has been described earlier and was

well suited to the goals of the experiment. Once the initial

installation and checkout problems were solved, the remote equip-

ment performed extremely well. The successful operation of the

* MCP is the operating system for the IBM 7030.

** See Reference 18.
46

ECO program increased the probability of reliable equipment

operation.

The remote operation encountered problems with near equip-

ment, rather than with the remote equipment. Each problem occurred

only infrequently; but in aggregation, the problems were significant.

Twice there were no display consoles (and thus no INVAC typewriters);

many times there have been only two out of four complete units avail-

able. The SC3070's tended to produce illegible output. The type-

writers were subject to character misinterpretation on input and

produced occasionally scrambled or garbled printed output.

Under certain conditions, a vital communication link between

AFLC users in Dayton and project personnel at SDL was missing.

If the ADAM system was lost through either program or machine

failure, no relatively fast way of communication existed.

Voice connection is initiated by the remote station and not the

command post, so no legal way existed for the command post to

communicate with the remote station. Also, it was apparent that

to keep the voice line open through the entire run would be un-

necessary and at times ineffectual since communicants normally

did not remain at the phone at all times. A great help would

have been some capability such as a teletype hardware feature

similar to the "HERE IS" key which, if depressed at the command

post, would send a set of characters to the remote teletype

instructing them to resume voice communication. This "alarm

button" would have been very useful at many times during the

remote running period.

After the initial two weeks of remote operation, the AFLC job

was run as a foreground job allowing short background jobs to be run

at the same time. Only one procedural change was made to release

47

tape units for use by the background jobs. One unit of measure con-

sists of the number of background jobs operated; these figures are

available. The total job time quantities are not available. In

general, there was a decrease in the number of background jobs ex-

ecuted as the remote operation grew older. During May and June, the

daily average was two, while during July the average was one per day.

One reason was that the user's mechanical familiarity with the tele-

type increased, coupled with the fact that MCP originally did not

buffer that type of input. . The second reason was that the user's

increasing knowledge of FABLE allowed for entering more sophisitcated

queries faster.

USER AIDS

Only certain capabilities and deficiencies are mentioned in

this report. The relative ease of normal on-line and remote

operation testifies to the fact that the overall ADAM system has

a wealth of user aids. The items mentioned here pertain to the

most difficult mode of operation — debugging.

Query numbering was one debugging aid. But its vital necessity

arose from the lack of meaningful error messages. The present

system has relatively few error messages, and these are so general

that the only aid they give the user is the fact that there is an

error somewhere in his message. The error returns provide limited

help to the experienced ADAM user; but in the case of AFLC per-

sonnel who are relatively unfamiliar with the ADAM mechanisms,

the error messages provide, in many cases, no real help. What is

needed is more error messages which are more meaningful and lack

ambiguity.

48

The utility messages are recognized by the "$" which is

always the first character, and internally are characterized by

the fact that they bypass the translator. Certain of these

messages have proven extremely useful for debugging. The most

frequently used ones and the purpose of their use are listed

below. The precise formats are not necessarily shown.

$EXPAND
$CONTRACT

Erases and rewrites fixed routines
in order to get more core space.

$TIME

$WHICH

$TELL

$RECOVER
$END

$UNLOAD
$MOUNT
$SYSTEM
$RESYSTEM

Returns time of day and, since it
is a bypass message, assures the
user that the system is still
running.

Returns the message number of the
message being processed.

Enables one device to transmit a
message to another device.

Ends the current task and initiates
an automatic restart or starts a
new task.

These are various functions which
are used when new subsets are de-
sired or a restart tape must be
saved.

DOCUMENTATION

For the effective implementation of this experiment, it was

mandatory that project personnel become both problem-oriented and

indoctrinated in the workings of ADAM. The textbook terminology

relevant to inventory control and management was readily available.

However, like any organization, AFLC employed a hybrid set of

terms and phrases which differed from normal usage (e.g., slippage,

stratification, extrapolation). Had a document been available to

49

explain these terms fully, ambiguities would have been minimized and

the orientation period shorter.

There was the major task of learning how D041 operated and

why D041 performed its various subfunctions. It was important

that the basic operating philosophy behind the theoretical prin-

ciples of D041 be known since the experiment was meant to dupli-

cate D041's intent, not the whole computer system. Yet these

principles needed to be stated at a level detailed enough for

design purposes (e.g., not in terms of Department of Defense

directives). At the other extreme, there existed very detailed

program descriptions and system operating instructions. It was

even necessary to read machine (AUTOCODER) listings to obtain a

working knowledge of D041.

At the time of this writing, documentation on ADAM exists

which is user oriented. [l5] During the period when the experi-

ment was being implemented, such literature was not available.

What did exist were internal reports directed at programmers con-

structing the ADAM system itself. These reports, then, were

excessively detailed for the user. IFGL was described in a manual

which came closest to being a user's guide. In contrast, FABLE

was not well described except in terms of syntax diagrams. FABLE

is a complex and powerful language, and it was one of the goals of

the project to write everything in FABLE for flexibility. The

power of FABLE could not always be demonstrated using spontaneous

queries. Although some project personnel became well versed via

trial and error techniques, without adequate guides the impart-

ing of this knowledge to users not co-located was difficult.

50

SPECIAL ROUTINES

During the implementation phase of the project, it was

necessary to write several routines at a language level lower than

FABLE or IFGL.

AFLCON was written for use during file generation. Its

function was to convert the algebraic sign of integers and float-

ing point numbers from a sign overpunch in the units position to

a sign byte. A detailed description is found in Reference 16.

PPCONV was written for use in output formatting. Purely

for aesthetic reasons, it allows proper handling of repetitions. [l6J

APOWER is an exponentiation routine which was converted to

an ADAM environment. The FABLE syntax was designed to handle

exponentiation, but the capability was not ready. [l6]

DEWALL was written to facilitate entering the computational

queries and thus prevent mechanical and procedural mishaps. [l2J

51

SECTION V

USING THE ADAM-BASED REQUIREMENTS SYSTEM

Use of the ADAM-based requirements system was accomplished

by means of the remote operations described in previous sections.

The User Reaction part of this section was written and submitted

for this final report by the AFLC Users Group and is reproduced

intact. The Usage Estimates part gives some average estimates of

ADAM-based requirements system usage.

USER REACTIONS

Execution of the Experiment

Plans were developed for the installation of a remote station

at Hq AFLC. Initially, the plans called for the training of all

committee members in the use of the remote equipment, the FABLE

language, and the ADAM system so that each person could write his

own queries and make interrogations of the system ,using the remote

equipment. This portion of the test was to determine how mission

personnel would fare as their own programmers and operators.

Although a number of attempts were made by most members of the

committee at writing their own queries, they were successful at

only the simplest queries, and then quite often made mistakes of

punctuation or in typing. In nearly all cases, the mission per-

sonnel were inclined to turn their more complex queries over to

a committee member who was a programmer and had mastered the FABLE

language and remote equipment to a greater degree.

After several attempts to encourage other members of the com-

mittee to prepare their own queries met with failure, plans were

changed to correspond to the reality of the situation. That is,

52

some mission personnel, as a matter of principle, did not believe

that it should be their function to learn a programming language, and

others who would try did not have the time and/or patience to master

the intricacies of the language and equipment, and became discouraged

after repeated failure in attempting to use the English-like syntax

query language.

The new plans called for the other committee members to feed

their queries to the programmer-members. The queries were written

in either straight English narrative or preferably in English narra-

tive with all references to data in terms of the abbreviations used

in the ADAM system. This approach worked reasonably well, but occa-

sionally a backlog of work occurred, sometimes from the sheer volume

but often because the programmers-members were stumped as to how to

state a query. Quite often we were obliged to call upon our MITRE

associates to "bail us out." At times, they would have to tell us

it would be very difficult to write or too time-consuming to process.

Many of the queries which the mission personnel asked required data

not available in the ADAM D041 files. Both of the latter situations

caused a reduction in the number of active users and in the number

of queries submitted.

Other than the above-mentioned difficulties, the experiment

progressed satisfactorily with the queries submitted by the committee

members being converted to the FABLE language, keypunched on paper

tape and processed by one or two committee members. The equipment

at the AFLC remote site, which consisted of a S-C 3070 printer and

a Bell System Teletypewriter (35ASR), gave a good performance within

its design limitations, and very little difficulty was experienced

with it.

53

Type of Queries

Queries submitted by AFLC users will be categorized into two major

groups. The groupings are: by the purpose of query, i.e., whether it

was submitted from a D041 system user or mission viewpoint, or a tech-

nical or data management viewpoint.

A. Listed below are those queries of interest from a

D041 system users or mission viewpoint. A number of

queries of this type that were attempted are listed

regardless of whether they were successfully pro-

cessed in the ADAM system. An indication made by

the user as to the degree of success and to what it

was attributed is also given.

1. The first subgroup contains those queries which

were used for simulation or extraction of data

for determining requirements policies and pro-

cedures. About five percent of all queries

processed during the experiment were of this

type.

(a) A number of queries were processed that

simply extract data that could be used in

making policy decisions related to the

requirements techniques. As an example

the base stock level methodology was ex-

amined by determining items separately for

category I and II, the number of items that

have computed base stock levels, and the

number of those items requiring manual

adjustments to the computed quantities.

54

(b) Initially, a feature was provided

which allowed the production of a

requirements computation similar to

that performed by the D041 system, but

on an item basis (that is, one item

was computed through factors, require-

ments and the RIAR before the next item

was commenced) rather than in a batch

processing mode. Later, this was

changed to a multiple item mode at

considerable expense in MITRE time

and manpower resourcesfin that study-

ing and understanding the AFLC D041

system and then developing FABLE rou-

tines that provided a similar cap-

ability were required. Flexibility

and ease of manipulation of the pro-

cessing and calculations that com-

prised the requirements computation

were provided in the belief that

they would provide a tool with which

to simulate and test requirements pol-

icy and procedures. As potentially

useful as these capabilities were,

they were used only several times.

The inability to use them effectively

was attributed to the fact that most

operational problems involve infor-

mation that is not totally avail-

able from the D041 data base; in such

cases, no complete or meaningful test-

ing or simulation of the problem was

55

possible. A second situation that

was quite prevalent was that, for

those problems which could be suc-

cessfully run, there were no overall

management criteria available at the

level of the results to determine if

the new values obtained were better

or worse than those currently used.

Cc) A third and larger group of potential

queries were of a type that required

computations over large segments of

the subsets and preferably over the

total subsets. Planned use of the

system included summarizing dollar

information for a complete subset.

Examples are:

1. Adjust safety levels of all

items in a subset and analyze

the impact on gross require-

ments and net buy requirements,

2. Adjust standard repair cycle

for each item in a subset and

do same type analysis as above,

The degree of success of these

queries was nil because the length

of time required to compute require-

ments for a subset was prohibitive.

56

Because of this, plans were made and

data were provided to place the RIAR

files from the AFLC D04l system in

the ADAM system. Because of several

delays, this feature was not imple-

mented. Even though it would have

reduced some of the required compu-

tation time, it would still have been

prohibitive timewise to process these

types of queries. However, they were

of the type that could have been very

useful tools in making policy deci-

sions. Data had been extracted from

another AFLC system, H023 (the RIAR

data bank to use as "bench mark"

information with which to check the

results of these queries. Another

simulation exercise of considerable

interest, which would have required

changing certain factors (due to de-

ployment, etc(, recomputing require-

ments, buy, retention and disposal,

MRS, etc., was planned. Again, be-

cause a large number of items were

involved, excessive computer time

would have been involved in running

the simulation so it was not attempted,

57

The requirements computation routine

was considerably improved during the

experiment by reducing the transla-

tion and processing of one stock-

numbered item from forty minutes to

twenty minutes. Another great im-

provement allowed repetitive looping

through the routine without requiring

retranslation each time. The time

required to loop through the routine

was reduced to about one minute for

each additional stock-numbered item.

(2) The second major subgroup of user queries

are those used for extracting data and per-

forming calculations and summarizations for

analysis and operational purposes. These

queries made up about 40 percent of the total

for the experiment. This area of the ex-

periment was relatively more successful than

that which obtained data for policy decisions,

in that a greater number of this type query

was submitted and a larger percent of them

was able to be successfully processed.

58

(a) An example of an interesting and use-

ful application was the extraction of

certain forecast data fields to deter-

mine if the AMAs had adjusted the re-

quirements data to allow for unusual

deployment conditions in the South-

east Asia (SEA) buildup. The queries

associated with this application were

successfully structured and processed,

but only after several attempts. In-

consistent results were initially pro-

duced by using the logical operators

greater-than-or-equal-to (GQ) and

less-than-or-equal-to (LQ) which in-

clude null values as well as those

that were expected to fall in the

indicated ranges of values.

(b) The limiting factors of being unable

to summarize large groups of items

and not being able to consider data

beyond the D041 data base stymied

the use of many potentially useful

queries. Examples of queries that

were not acceptable because of a lack

of information are:

1. How many issues were made to

a particular base?

2. How many issues were made for

war reserve material (WRM)?

59

(c) Special product listings which se-

lected necessary data from the Tech-

data and Asset/Usage files were ob-

tained by having MITRE process queries

overnight and off-line. The listings

were requested for all items in the

F subset, and an F105 subset was

established at AFLC's request pri-

marily for the purpose of obtaining

this special list although the subset

was useful for other purposes. The

purpose of the lists was to determine

if certain items could be maintained

effectively at the base level. This

was determined by considering the

NRTS rate, price, depot repair code,

cost category code, along with sev-

eral other properties.

(d) In order to test the credibility of

the data obtained from the ADAM ver-

sion of D041, a whole class of items,

FSC 6720, was printed from the tech-
4

data file of the F subset. Among the

properties retrieved for each item was

that of net buy quantity (NETBUY).

The retrieved data which showed no NET-

BUY was compared to data provided by

the AMAs which showed that a NETBUY had

been computed for each item. Further

checking into the problem did not un-

ravel it; the AMA claimed their re-

cords were correct and had been the

60

ones provided to MITRE. On the other

hand, MITRE insisted they had built

their files using all, and only all,

the data provided by the AMAs. Be-

cause of a lack of resources to check

into this inconsistency further, a

reasonable question as to the validity

of some of the output products was

raised .

(e) An example of a type of query which

had partial success at being answered

is: Find the dollar value of usage

data (reparable generations and ship-

ments) . This query was tried early in

the experiment before the price was in-

corporated in the Asset/Usage file.

At that time, only partial success was

achieved because of the complexity and

time consumption necessitated by cross-

file referencing. However, after this

query had been brought to our attention,

it was attempted again, this time with-

out the necessity for cross-file refer-

encing, since the price had also been

incorporated in the Asset/Usage file in

the FY 67-1 data base.

(f) A fairly comprehensive series of queries

was developed and run against all the

available subsets of data by personnel

associated with the AFRAMs evaluation

61

group. The objective was to get sta-

tistical distribution of item character-

istics (demand rates, percent of base

repair, NRTS, condemnation, etc.) by

category within each available subset.

The results of the queries were generally successful. Re-

ports containing information from several files were so

difficult to achieve because of the constraints of cross-

file referencing and 300 character messages, that what

should have been one report was often ten separate listings.

Most queries were tallies and were normally processed against

individual files. To circumvent the problems of cross-file

referencing during the analysis, it was proposed that the

properties of interest from all the files be combined into

one file. This would cause an initial work-load of consider-

able proportions, but in the long run would probably be the

most efficient approach.

B. A large number of queries that ranged from the extremely

simple to the very complex were written to test, explore,

and probe the FABLE language and the ADAM system. They

were primarily submitted by committee members with a tech-

nical interest in computers and software. It is estimated

that about 55 percent of all queries submitted during the

experiment were of this type. Many of the technical ob-

servations below were from queries that were originally

submitted by mission committee members. A large number

of the situations discovered and investigated were as often

by accident as by design. Sometimes a query would be de-

signed for one purpose; but through an error an unexpected

result or interesting avenue of investigation would open.

As a result of these queries, many observations were made

concerning the characteristics of the ADAM system and the

FABLE language.

Use Observations and Reactions

This section contains observations on the system, how certain

features met our needs and how other features were desired. Along

with our likes and dislikes are suggestions for improvements.

A. For the FABLE language, the following are observations.

(1) The basic FABLE language was easy to understand

and use. The simple retrieval query consists of

three parts: the 'for* statement which opens

files and selects objects from the files, the

boolean statement in which arithmetic oper-

ations and logical selection can be performed,

and the output statement which allows the re-

sults to be saved for future processing, or

displayed or printed on various types of out-

put devices in a selected format. Some users

were able to learn and write simple working

queries in 20 minutes. However, as more com-

plex queries were attempted, adequate documen-

tation to cover the multitude of rules for all

possible situations was not available. The

rules were unknown to the user and only after

several attempts would the requirement or rule

become apparent. By monitoring our efforts,

MITRE personnel would often be able to set us

straight after viewing the results on their

monitor station. An example of this was the

discovery that floating point numbers could

not be compared for equality but had to be

tested for being between two limits or in a

range of values.

63

(2) The most complex problems dealt with involved

cross-file referencing (relating data in two or

more files) for a large number of items. There

was a large number of other type queries that

seemed quite complex at the time they were

attempted, but much of this was due to the lack

of operational or working level documentation

of the FABLE language. A problem that contrib-

uted to the complexity was the lack of a stan-

dardized or consistent approach in the construc-

tion of statements, and the use of punctuation

and keywords.

(a) Cross-file referencing provides an

ability to relate data in two or more

files. This function was of utmost

importance because five files of data

were involved in the experiment and

many of the queries required data

for two or more files. Developing

queries for relating data in more

than two files was very difficult.

For this reason, when multiple files

were involved in solving a problem,

they were handled two at a time^which

was cumbersome for the user. The

execution time for one or several ob-

jects was reasonable. However, many

practical problems required relating

data for a complete subset. In fact,

the predominant type of query was one

which required summarization over a

large number of items or a whole subset.

64

In this situation, the feature is

completely inadequate because the pro-

cessing time for a typical problem was

estimated to run into several hours

or more. Another limitation caused

by this feature was the inability to

produce an output report that related

data from several files. As an ex-

ample, instead of one concise report

that showed the complete picture,

four separate products were prepared

that did not provide the desired data

relationships. It is highly recom-

mended that an efficient method to re-

late data in different files be in-

corporated in future systems.

(b) The lack of standardization in con-

struction of statements and in the use

of punctuation and keywords made lan-

guage difficult to learn and use.

Although the items mentioned in this

section are not individually of great

consequence, cumulatively they do

lend difficulty to the use of the

language.

1. It is believed that the se-

lection of system keywords

could have been more meaning-

ful. A case in point is the use

of the keyword "all" in several

different contexts. It is used

65

in string substitution in the

following context, "LET DATE

MEAN (31 AUGUST 1966) FOR ALL

USING RESCAN". Here "ALL" re-

fers to all input/output de-

vices. In the retrieval

statement "FOR TECHDATA

16306762128, PRINT ALL.", "ALL"

refers to all properties in

the techdata property list.

Another use of "ALL" is "FOR

ASSETUSG 16101829917. ALL

(ATYPE SAFETY LEVEL LS 10

CHANGE ATYPE SAFETY LEVEL TO

10)", which causes stepping

through all repetitions until

the boolean is evaluated as

false. The use of "NOT ELSE"

to create a null file is another

example of words with unusual

and special meanings. An ex-

ample of its use is, "FOR TECH-

DATA. NOT ELSE, SAVE ALL.

NAME NEWFILE." A portion of

the TALLY PRINT statement is

redundant in that it must be

written as " PRINT TALLY

TALLY iJ

2. The statement of some queries

required awkward construction.

For instance, the "UNTIL" fea-

ture which limits output only

66

and is not functionally re-

lated to the boolean clause,

is connected to the boolean

clause, but is separated by

a comma from the output phrase

to which it applies. When

data is sorted in conjunction

with a query, the sort is per-

formed before the printing, yet

the print statement precedes

the sort phrase.

3. The requirement to use commas

to separate certain items such

as objects and properties and

the requirement that they not

be used to separate other items

such as device names was confus-

ing. The requirement for a

comma preceding an output state-

ment, and the requirement for

no comma before a change phrase,

was confusing in that one or

the other of the two phrases

can occupy the same position in

the construction of a query.

4. It is recommended that unique

and meaningful system keywords

be selected and that consis-

tent punctuation and construc-

tion be used.

67

(c) A fair amount of confusion resulted

before the characteristics of floating

point representation were understood.

As an example, several attempts to find

values known to be in a file ended in

failure when it was found that an

"equal" test was not valid and that a

range test then had to be performed.

The method the system uses in handling

floating point numbers caused confus-

ing results in a number of test calcu-

lations that were run. Another idio-

syncrasy was the erratic placement of

the decimal point in the scientific

notation of numbers. Under various

circumstances, it would be placed

either to the left or right of the

first significant digit. Although not

an error, it would be good practice to

place the decimal consistently to the

right of the first significant digit

to aid in the readability of the num-

bers and reduce reading errors. It is

recommended that the problems associ-

ated with converting and using floating

point numbers be resolved before using

in an operational management system.

It is believed that most managers would

prefer to use regular numbers rather

than scientific notation because they

are accustomed to the regular numbers

and find them easier to work with.

68

(d) The solution of a number of the prob-

lems submitted became complex because

of the sheer magnitude of the number of

queries involved to obtain a solution.

It was common to have from four to six

queries or more to obtain a problem

solution. Several problems were not

even attempted because of the excess-

ive amount of work that would have been

involved. The use of the string sub-

stitution feature, which allows one

keyword to replace a longer phrase or

statement, was useful in reducing the

number of queries and otherwise sim-

plifying and making them more readable.

The teletype constraint of 300 charac-

ter messages limited the amount of in-

formation that could be placed in one

substitution. However, the basic dif-

ficulty was caused by the necessity for

a linear lay-out of the problem, which

is inherent to the system. By not

being able to use recursive routines

to set up a small problem and loop

through it automatically, a tremendous

amount of time was required to set up

counters and files and individual in-

structions that reference all the data

individually. It is recommended that

some method be found to allow recursive

looping through a shorter routine.

69

(3) A number of desirable features were incorporated

in the FABLE language.

(a) The wide range of functions allowed

data in the ADAM files to be retrieved,

changed, and deleted. New data was

added and new files were defined in

terms of an existing one and created.

Types of information that are repeated

over a number of times for one object

were handled easily by the use of the

"repeating group." The boolean ex-

pressions allowed complex logical fil-

ters to be constructed. As mentioned

before, string substitutions were very

useful. Although not used much, the

synonym capability would be very use-

ful in an operational system.

(b) A macro instruction capability was

provided with the language that per-

mitted a variety of interesting quer-

ies without the necessity for learning

a great deal about the intricacies of

the FABLE language. These instructions

were used by only inserting the re-

quired parameters. The routines that

were developed to compute factors,

requirements and RIAR data were of this

type. Other examples of macro func-

tions are TALLY, POWER and SQUARE ROOT.

Of these, the tally function was the

most used by far. Because of its flex-

ibility, it has replaced several of the

70

previously used macros, and was fre-

quently used in lieu of preparing a

FABLE statement. It provides for

summarizing the number of times each

property value appeared in the data

individually or in combination with

another property value. Logical oper-

ators were used in the tally to group

numerical values into ranges. A

shorthand method of defining the ranges

was provided by allowing for the start-

ing value, the increment, and ending

value. This made it easier and faster

to use. Although the tally function

was very useful, it had several lim-

itations. Because of its ability to

tally on only 25 values, it could not

be used to solve several mission quer-

ies. One of these queries required

tallying on 300 values. Another lim-

itation was that logical values could

not be tested for other than equal

and unequal conditions. Quite often

situations arose in which it would be

necessary to tally a number of proper-

ties over the same range of values.

The tally function can only handle one

property at a time. This reduces the

power of the function, particularly

when the tally is used in conjunction

with a complex boolean statement. In

one situation, instead of one query,

71

eight tallies and associated booleans

were required. This nearly caused

writer's cramps. It is recommended

that the limitations mentioned above

be removed from the tally function

and that similar constraints be re-

moved from other functions. This

would make a system much easier to use.

(c) Documentation of the FABLE language

was very good from an academic view-

point. Several reports on the basic

language provided adequate details

for training purposes but had in-

adequate details from an operational

viewpoint, in that many rules of struc-

ture and punctuation of statements

and the detailed functions of a state-

ment were not included in this docu-

mentation. Those functions that have

limited uses should be given a title

that describes these limitations. A

set of operating documents that indi-

cates what happens under all conditions

should be provided. The conditions

that cause errors should be shown with

the error and how it can be corrected

if possible. Also the conditions that

cause a system failure should be docu-

mented. Without this documentation,

a person could easily forget some of

72

the conditions that would cause a

failure and thereby unintentionally

contribute to causing one.

B. A number of queries run during the experiment gave an in-

sight into some ADAM characteristics. The most significant

of these are discussed below.

(1) Although there was no special attempt to measure

precisely the efficiency of translation and ex-

ecution of queries, observations indicated that

in a gross manner the translation time is quite

large in comparison to execution time. For in-

stance, one routine that took 20 minutes to

translate ran in about one minute. Another

routine that took six minutes to translate ran

in 15 seconds. It is doubtful that an operation-

al system could afford to translate and retrans-

late each query. Once a query has been trans-

lated, it should be placed in a routine library

if there is a reasonable chance it could be used

again.

(2) The lack of a checkpoint restart feature is a

serious problem,particularly in light of the

many things which cause a system failure. Al-

though a restart feature is provided, it is

essentially a tape load that starts the system

over. It does not provide for saving string

substitutions or changes to the data base, so

every time a system failure occurred, consider-

able processing time was lost. A checkpoint

restart is needed.

73

(3) The input priority scheduling feature was

found to be inconvenient. All queries were

placed in a queue on a first-come, first-serve

basis until the queue of some items was full,

after which additional queries were lost. As

a minimum, a message should notify the user

that the queue is full. Preferably, the in-

put message storage area should be large enough

so that a user would not have to concern him-

self with the system not being able to accept

his input. Also, it would be very desirable to

have a priority query that could take its place

at the head of the queue for immediate process-

ing.

(4) Error messages should be accurate. Specific

error messages are generated for conditions

that require a general statement of an error.

A good deal of confusion resulted when users

got specific messages which they took literally.

For instance, one error message stated "a comma

was missing''1 when obviously there was none miss-

ing. The error message should be stated in gen-

eral way unless a specific error has been de-

tected.

(5) The separate definitions and characteristics of

logical, floating point, and integer values

place excessive restrictions on the use of the

system. For instance, it would have been de-

sirable to have been able to compare logical

values on other than equal/unequal. There are

certain restrictions on the use of the tally

74

function and floating point numbers which limit

their full potential. A system designed for

user flexibility should allow any meaningful

operation on all types of data.

(6) The inability to nest file definitions causes

a necessity for redundant storage of each part

that is to be defined. Storage space could be

saved if nested file definitions were accepted.

(7) Below are some observations concerning the re-

mote station equipment and operation.

(a) There is a need for status indicators

at the remote station to show the cur-

rent status of the equipment (central

processor), software system (ADAM),

and the data or telephone lines. Sev-

eral times the sytem or equipment

failed or the lines were out, but the

problems were unknown to the remote

user who kept trying to input more

queries.

(b) Sometimes, based upon receiving the

results of a query, it is unnecessary

to process another one already in the

input stack. For this reason, it

would be desirable to be able to de-

lete queries from the stack.

(c) The message number and a message

trail could be typed out in all cir-

cumstances for checking purposes,

and the complete message provided

upon request.

75

(d) It was sometimes difficult to relate

answers to the appropriate query

otherwise identify the product. To

alleviate this, all output infor-

mation should have the date and time

prepared, a title, the subset in-

volved, the requestor's name, and

and identification number relating an

answer to the query that generated it.

(e) The capacity for making changes and

corrections to queries being keyed

into the system would be necessary

in an operating system. Considerable

time is lost in starting queries over

when the error is not detected when it

was made. A method of using a grid

of lines and columns with the necessary

equipment and software could allow one

to identify the position of the error

so that it could be located and cor-

rected even after it had been input to

the input stack.

(f) A method is needed for terminating

output functions on the printer. If

a query is mistakenly written which

produces such a volume of output that

it would take 20 minutes or even sev-

eral hours, there is no recourse to

waiting for the printing except to

stop the job and restart. Several

times during the experiment the run

76

had to be terminated to stop printing.

(g) The necessity for knowing the objects

in a roll before querying them is an

inconvenience. When an object is not

in a roll, a message indicating a null

value would be more appropriate than

an error message.

C. Just about everyone on the ADAM committee initially agreed

to the desirability of the objectives of a user-programmed, on-line

system. Some thought that it was redundant even to test the tech-

nique and that a need for a similar, but more advanced, operating

system existed and should be obtained. It was pointed out that,

although the objectives were without question desirable, the pur-

pose was to find if they would work in the AFLC environment, and

to evaluate the ADAM implementation of the technique. This was the

approach taken and below is a summarization of the users1 evaluation.

(1) An ability to obtain an answer to a query in a

short time frame was the single most impressive

aspect of the system for many of the users.

Because of previously mentioned problems, only

rather simple queries were answered in a time

span representative of on-line operation, but

even those that took longer, several days to a

week, were faster than any other method that

could have been used to get the data, if it

could have been obtained at all by other means.

Having the ability to acquire data quickly as

it is needed is a prime requisite for any new

system design approach. It was generally

agreed by committee members that a reaction

time of 24 hours would be adequate for most

77

system responses, but that a priority response

of an hour or preferably less would be desir-

able in some situations.

(2) At first, it seemed desirable to have the users

program or state their own queries in the FABLE

language. However, it was found that the mis-

sion personnel were not inclined to use the

language to structure queries. Although it is

an English-like syntax language, the rules of

syntax are much more restrictive than natural

English. In reality, FABLE is a programming

language. Even though it is a high-level lan-

guage, there are a number of precise rules to

be remembered, as there will be with any lan-

guage in the foreseeable future. The mission

personnel preferred not to learn them, but to

allow professional programmers to do the job.

To effectively utilize the system, it was

found that a user must be more proficient than

could normally be expected of him. Therefore,

from an efficiency viewpoint, it was desirable

to have a highly trained programmer translate

the problem into the FABLE language and operate

the remote equipment.

(3) It was found that many mission personnel, even

though they are experts in their respective

areas, are not good system analysts, in that

they would not state the problem precisely

enough even in English to get the solution they

intended. This lends more weight to the argument

for having an intermediary who is an expert

78

analyst programmer between the ultimate user

and the system.

(4) A considerable amount of time can be spent even

by a person reasonably familiar with the query

language. As an example, an hour could be

spent formulating the problem solution in Eng-

lish. An hour or more could be spent in con-

verting this into FABLE. Then another half-

hour could be spent keypunching an instruction

tape. If a considerable amount of summarization

and cross-file referencing is involved, the

query can run from 20 minutes to several hours.

(5) Through the use of string substitutions, normal

English-looking statements can be built. On a

test basis, some of these were prepared. But

because it is human nature to take a shortcut,

practically all statements written by both AFLC

and MITRE personnel were so highly abbreviated

that they looked as unintelligible to the unin-

itiated as any other programming language. The

same is true of COBOL; it appears nearly hopeless

to try to get people to write a fully intelligible

statement. What is needed possibly is a method

by which the user inputs a highly abbreviated

form; but for documentation and recording of the

results the system outputs a full English-like

statement. Some aspects of this are already in

ADAM in that when a macro-type routine or string

substitution is used, a full statement of the

routine or statement is printed on the output.

This would have to also be extended to data

79

properties,file names,and certain key words

to have really readable product.

Summary Recommendations

A. A composite list of the detailed recommendations are given

below:

(1) The cross-file referencing function should be

made more efficient.

(2) Unique and meaningful system keywords and con-

sistent punctuation and construction should be

used throughout the language.

(3) A method to allow looping through a shorter

routine should be developed in lieu of laying

a long problem out in a linear fashion.

(4) Limitations on certain functions that allow

them to handle only one object at a time should

be removed. Likewise, limitations on the var-

ious types of data should be removed so as to

allow any meaningful operation on all data.

(5) Detailed operational documentation is required.

This should include conditions that cause errors

and system failure, as well as error correction

routines.

(6) If possible, translation time should be reduced.

In any case, the translated queries that have

a chance of being used again should be saved.

(7) A checkpoint restart would be needed in an

operational system.

(8) Error messages should be stated accurately.

80

(9) Method is needed for terminating output.

(10) A provision for a method of relating answers to

the appropriate query should be made.

(11) In an operational system, the ability to correct

queries after they had been input to the system

would be desirable.

B. Projecting some requirements for a new operational design,

it was evident from this experiment that a large majority

of the queries required computations and summarizations

over an entire subset of data. For the simple direct

queries addressed to data in only one file, acceptable

retrieval times from several seconds to several minutes

were registered. When a query, that would be of a rel-

atively common type in an operational system, required

data from several files, the complexity of the queries

increased appreciably, but the execution time became ex-

tremely prohibitive, resulting in processing times of

twenty minutes to estimates of several hours. The above

tests were small indeed compared to what is being envis-

ioned for AFLC's next major system design effort. The

average of 2000 items in a subset makes it about one forty-

second as large as the total D041 data base. The integrated

system design being planned incorporates many systems

and their data. This could add a total of 10 times the

volume of the D041 system alone. That would amount to

over 400 times the data in the subsets used in the experi-

ment and would require several billion characters of mass

storage to put all of it on-line at one time. What would

likely be more practical is a combination of tape and disk

files. What is needed is a detailed concept of operation,

and design features for a system that can handle a problem

81

of this magnitude. It would likely contain both serial and

random processing features and many of the generalized data

management characteristics, if it can be effectively adapted

to handle problems of this magnitude.

C. It is recommended that organizations with resources, talent,

and inclination attack the problem of improving the oper-

ating characteristics of generalized data management and

its supporting techniques of on-line time-sharing, remote

operation for extremely large data bases of the order

mentioned above.

D. It is recommended that the AFLC data management organization

proceed with definite plans to study and convert or other-

wise acquire new state-of-the-art techniques that would be

applicable to AFLC's special requirement of extremely

large data bases.

E. The mission planners should be aware of these new tech-

niques and plan, when applicable, for their inclusion in

systems they redesign.

Achievement of Objectives

A. The first objective, "test, verify, and demonstrate the

technology of the ADAM system", was an ESD/MITRE objective

and was fulfilled through performing the experiment.

B. "Refining the ADAM technique" was entirely an ESD/MITRE

objective; however, AFLC personnel contributed to its

achievement by providing observations and recommendations

on the system to ESD/MITRE.

C. "Determining the potentialities and deficiencies of gen-

eralized data management" was an objective of ESD/MITRE

and will be covered in their comments. A similar objec-

tive for AFLC is stated in D. from a different viewpoint.

82

D. The main AFLC objective was to determine if the ADAM

technique is applicable to AFLC logistic systems. The

detailed and summary recommendations contain many obser-

vations which indicate to what extent the technique is

applicable; therefore, this objective has been achieved.

Conclusions

The concept of generalized data management has been examined

in detail from a user viewpoint through this experiment. Some of

the techniques are in such a state of development that they could

be used in AFLC systems. The large volume of data in AFLC files

makes the operating efficiency of a system of prime importance©

Because a generalized system by nature is less efficient than one

of specific design, it will be necessary to build large integrated

systems using specific design criteria and to set the bounds or

framework within which flexible generalized functions can be used

efficiently.

Some specific conclusions are:

A. At the operating level, it highly desirable to have a

capability to obtain data when needed. The requirement

for response time will vary from one situation to another.

However, for working continuity, at least a twenty-four

hour response time is needed. Although some would like

immediate response of a few seconds for certain appli-

cations, there would normally be very few situation in

which an hours response would not be adequate. This cri-

terion would not require a complete on-line approach but

would allow a combination of serial and random on-line

processing.

83

B. A raft of problems plagued the use of English-like

customer-oriented, syntax language by mission personnel.

The language still requires a formal structure that must be

learned, and is quite complex when all of its features are

used. It takes a fair amount of time to convert an Eng-

lish statement of the problem into FABLE, and it is near-

ly impossible to get people to write full English state-

ments that are understandable to someone else. The Eng-

lish-like syntax language has potential for use by

specialists, but does not seem too promising for the

"man-of-the-street."

C. The overhead cost of a generalized system like ADAM is

high; but through judicious selection and design, some

of its more important benefits could be incorporated in

an operating system at reasonable costs.

D. It was found that programming time varied considerably

from one application to another, depending on whether the

particular problem used efficient or inefficient features

of ADAM. When efficient features were used, its general-

ized nature provided a solution much faster than could be

obtained by conventional programming methods. However,

when the nature of the problem required the use of in-

efficient features, it was estimated to take as long or

longer than conventional programming methods.

E. The experiment has given AFLC personnel an opportunity to

examine in detail the concepts and actual operation of

many state-of-the-art techniques. Some of these are:

generalized data management, on-line, time-sharing, remote

station operation using an English-like user syntax lang-

uage. Having this experience puts us in a much better

position for designing improved systems. By comparing the

84

results of the experiment to the objectives, the experi-

ment was viewed as a success. However, the final measure

of success will be achieved if the detailed comments or

summary recommendations derived from them help guide

someone in designing and developing a better system.

USAGE ESTIMATES

In order to provide the reader with an order of magnitude,

some usage figures were collected and are presented here. Al-

though the duration of the whole experiment might be considered a

learning period, no figures are given for April 1966 because it

might be considered an indoctrination period. At the time of

writing, August figures were not available and are only estimates.

From 1 April 1966 until the switchover to 67-1 data bases, the

F106 subset was used almost exclusively, mostly due to its conven-

ient size. As each new 67-1 subset became available, it was used

until the next was ready. Ultimately, the most frequently used

subsets were those based on B52, F4, and F105.

Table IV presents the volume usage of the remote operation.

The first line figures do not include equipment checkout operation.

They do include startup and abnormal reload time. The volume figures

do not include ADAM utility messages such as $TELL or $TIME. The

last line figures represent queries which did not end by error

returns from the ADAM system.

85

Table IV

Usage of Remote Operations

MAY JUNE JULY AUGUST

Number of hours of ADAM operation 14.6 12.4 21.3 12

Number of days 19 16 20 7

Average no. of queries per hour 43 43 47 50-55

Average no. of queries from
AFLC per hour 25 17 31 40-45

Percentage successful AFLC
queries 64 69 70 85-90

Based on sample data collection, some estimates are available

about the type of queries generated by AFLC. Only the successful

ones were categorized. These classifications are broad and make no

attempt to relate the queries to the mission.

Type Percent of Successful Dayton Queries

Retrieval

String Substitution
and Execution

Macro-queries

Computation

40

45

10

5

86

SECTION VI

CONCLUSION

The project objectives listed in the Introduction to this re-

port were attained at varying levels of accomplishment and with

varying degrees of success. The generalized data management con-

cept was demonstrated in an operational-type application. Specific

areas of the generalized data management concept were identified for

consideration in future implementations of the concept. Users were

introduced to and educated in the concept's potential, although

there were fewer active on-line users than had been anticipated.

Finally, the ADAM-based Requirements System did serve as a vehicle

for testing certain logistics management methods, even though many

policies could not be tested because of limitations on data base

contents or size and/or machine processing times.

Measuring the degree of success in reaching the latter two

goals is discussed in Section V. In attempting to fulfill the

first two goals, the following general observations are made,

based on the experiences gained by the designers, programmers,

and users of the ADAM-based Requirements System. Some appear to

be obvious to experienced programmers, and the experiment merely

served to verify them.

Programming techniques based on the generalized data manage-

ment concept can be useful when properly applied in an operational

environment such as exists at the Air Force Logistics Command. In

particular, the most useful portions of the generalized concept

as exercised by the users were:

87

(a) the capability of describing and

introducing new data bases to the

computer system comparatively easily

and quickly;

(b) the capability of extracting infor-

mation from the data base; and

(c) the capability of performing relative-

ly simply computations and tallies on

selected portions of the data bases.

Certain generalized data management techniques as implemented

in ADAM, such as random-access to data and an on-line, interpretive

mode of operation, cannot completely replace serial batch-processing

techniques in large scale management information systems such as

exist at AFLC in the near future. In particular, data systems which

are required to produce voluminous reports based on computations

involving a high percentage of the data elements in a large data

base should be programmed using serial, batch-processing techniques

because of the relative efficiency of these techniques in terms of

computer-processing time.

In view of the above conclusions, future designers of manage-

ment information systems should consider implementing the applicable

portions of the generalized data management concept with provisions

for using batch-processing techniques on the common files in a com-

patible fashion.

User personnel with programming experience find that a higher

order, near-English computer language such as FABLE is relatively

easy to use provided the constraints are well documented.

Nonprogrammer-users such as are in the mission elements at AFLC are

not used to express their ideas following such rigid rules and,

88

therefore, have trouble in learning to write other than the most

trivial queries. Furthermore, some of the nonprogrammer-users

believe that it should not be a part of their job to write queries,

no matter how simple the language may be. Thus, systems should not

be designed with the expectation that the ultimate user of the

product will do his own programming unless its languages are easy

to use by having it especially tailored in the vocabulary and

function of the application needs, or the class of users is limited

to programmers or personnel readily adaptable to such programming

tasks. Further work in developing systems that are easy to use

is needed.

Specifying and collecting the most suitable raw data and de-

termining the appropriate level of aggregation is difficult, but

it is a crucial part of designing effective experimental or oper-

ational management information systems. Thus, this area should

not be neglected. Efforts should be made to obtain the best data

for the job rather than just accepting that which is readily

available.

89

APPENDIX 1

DESCRIPTION OF IBM 7030 AND IBM 7080 COMPUTER CONFIGURATIONS

The table on page 90 describes the IBM 7030 configuration

at the ESD/MITRE System Design Laboratory and the IBM 7080

configuration used by AFLC.

90

DESCRIPTION OF IBM 7030 AND IBM 7080 COMPUTER CONFIGURATIONS

IBM 7030 IBM 7080

Core Memory Size 65,546 words (64-bit-520,000
characters (8-bit))

160,000 characters

Input/Output Basic Exchange - 16 channels 3 Banks for Central Storage (0,1,3)
3 Channels for 12 Tape Drives 2 Banks for Communications (2,4)
4 Channels Printer Bank 2-4 Channels to 2 Tape Control

Card Reader Units 7621

Card Punch Bank 4 - Up to 6 Channels to IBM 7908

Operator Console Data Channel

7 Channels for Teletype and Phone 7908 Data Channel, in conjunction

Lines with Bank 4, provides up to 6

1 Channel for Display (cathode-ray) additional 1/0 Channels. Two of

consoles these are high speed channels.

1 Channel for Stromberg-Carlson
Printers

Tape Drives 12 729 Mod IV 20 729 Mod VI
Density Options 200 or 556 cpi 200,556,800 cpi

Speed: 112.5 ips

Disk 32 Million Characters (8-bit) or
4 Million 64-bit words
Rotation Time - 33 millisec.
Transfer Time - 4 microsec.

APPENDIX II

BACKGROUND INFORMATION CONCERNING SOFTWARE

One of the biggest problems associated with the automation of

management information gathering and decision making processes is the

inherent inflexibility of the programs used to describe the processes

to the computer. The procedures must be described following a rigid

set of rules that are difficult to learn and apply. The bookkeeping

problems associated with the application of the rules increase rapidly

as the number of instructions in the computer program increases. Thus,

the costs of creating and changing large computer programs are high,

and many of the capabilities of the computer are not exploited.

The technique used by computer programmers to reduce the complex-

ity of the programming problem is to use the computer to do much of

the dogwork necessary to adapt a statement of the problem solution

procedures to the machine. Computer programs written for the purpose

of aiding programmers in this manner are known as software. (The term

software is often used to describe all computer programs and documen-

tation, but this is not the connotation implied here.)

Software exists at many different levels of sophistication and

generally addresses specific classes of problems. For example, trans-

lators, the computer programs used to convert statements of procedures

expressed in a language convenient for the programmer to a form usable

by the machine, can be broadly categorized according to their sophis-

tication as assemblers, compilers, or interpreters.

Assemblers produce only one machine-language instruction for

each programming (source) language instruction, but handle the

92

bookkeeping required to assign specific addresses in the computer's

memory for the program and data elements. Because of the one-to-one

correspondence between the source and machine languages, all of the

capabilities of the computer are still available to the assembly-

language programmer, but he must use considerable diligence and

skill in constructing nontrivial programs.

The compiler produces more than one machine-language instruc-

tion for most source-language instructions. Programmers find that

compiler languages are easier to use and to learn to use than

assembly languages. However, the languages that are easiest to

use tend to offer the least versatility to the programmers.

Furthermore, the machine language instructions (object code)

produced by a compiler are often inefficient in their use of the

computer's memory and in the computer time required to run the

program.

Because of the lack of versatility of compilers, they gen-

erally are designed to handle a specific class of problems best.

FORTRAN, for instance, addresses scientific and engineering type

problems that could be described in a language similar to algebra.

Another compiler language, COBOL, is designed to handle business

data processing problems.

The interpreter is similar to a compiler in that the ratio

of object code to source language is greater than one. However,

it differs in its mode of operation. A compiler produces all of

the machine code required by the program before the problem program

starts to run. An interpreter, on the other hand, causes each

independent block of the machine-language instructions produced

to be run before translating the next block. Thus, interpreters

are used in on-line systems such as in command and control

93

applications where it is important for the programmer or operator

to be able to interact with the system by observing intermediate

results and making required changes as the program is being executed.

There are other types of software available to aid programmers,

These include executive and monitor routines to handle the control

and scheduling of jobs for the appropriate components of the com-

puter in processing a program, and debugging routines to aid in

finding program errors. When executives, monitors, interpreters

or compilers, debugging routines, etc., are combined in an inte-

grated system, the result is often called a programming system.

Large scale management information systems are among the

most costly to program and reprogram. Because the Air Force has

built and is building many such systems, a reduction in the costs

of producing and modifying such systems is very desirable. The

development of programming systems based on a concept known as

generalized data management is a step in that direction. Two

existing systems based on that concept are the Advanced Data

Management (ADAM) System developed by the MITRE Corporation,and

the LUCID System developed by the System Development Corporation.

More information on these systems and the generalized data manage-

ment concept is contained in Reference 17.

94

In

APPENDIX III

DATA BASE FILE SIZES

67-1 File Sizes

F4 FUTPROG PASTPROG ASSETUSG TECHDATA APPL 1 TOTALS

No. of Objects 218 169 1378 1389 1386

|Max. Object Size Cares) 1 1 1 1 4

File Size (arcs) 43 32 .179 362 145

Rolls Size (arcs) 5 5 19 21 22

Roll PROP (arcs) 3

Total Size (arcs) 48 37 198 383 167 836

Input Volume (no. Reds) 53 44 805 279 292 1473

File Generation Time (min.) 9 7 91 31 138

Processor Time (min.) 4 3 31 48 23 109

F105 FUTPROG PASTPROG ASSETUSG TECHDATA APPL TOTALS

|No. of Objects 305 254 503 1149 1136

Max. Object Size (arcs) 1 1 1 1 8

File Size (arcs) 61 48 154 299 247

Rolls Size (arcs) 6 5 8 19 20

Roll PROP (arcs) 3

Total Size (arcs) 67 53 162 318 267 867

Input Volume (no. Reds) 95 67 412 231 407 1212

File Generation Time (min.) 9 8 81 44 142

|Processor Time (min.) 5 4 25 42 36 1 112

to

FSC12 FUTPROG PASTPROG ASSETUSG TECHDATA APPL TOTALS

No. of Objects 0 94 2763 2848 2839

1 Max. Object Size (arcs)

File Size (arcs)

Rolls Size (arcs)

Roll PROP (arcs)

Total Size (arcs)

1

2

2

4

1

19

4

23

1

714

36

750

1

741

38

779

1

206

37

243

2

1801

Input Volume (no. Reds) 0 24 1907 570 453 2954

File Generation Time (min.)

Processor Time (min.)

3

0

5

4

122

115

109

94

48

32

287

245

MMC FUTPROG PASTPROG ASSETUSG TECHDATA APPL TOTALS

No. of Objects 268 96 627 2520 2456

Max. Object Size (arcs)

File Size (arcs)

Rolls Size (arcs)

Roll PROP (arcs)

Total Size (arcs)

1

36

6

42

1

22

4

26

1

164

11

175

1

656

34

690

3

294

34

328

3

1264

Input Volume (no. Reds) 54 32 459 506 499 1550

File Generation Time (min.)

Processor Time (min.)

6

4

6

2

32

27

113

100

46

36

203

169

o
-J

B52 FUTPROG PASTPROG ASSETUSG TECHDATA APPL TOTALS]

No. of Objects 403 260 3313 3324 3308

Max. Object Size (arcs) 1 1 1 1 4

File Size (arcs) 68 48 895 864 481

Rolls Size (arcs) 7 6 42 44 46

Roll PROP (arcs) 3

Total Size (arcs) 75 54 937 908 529 2506

Input Volume (no. Reds) 91 69 2373 666 1125 4324

File Generation Time (min.) 9 8 153 121 99 390

Processor Time (min.) 7 5 141 105 82 340

66-2 File Sizes

00

F106 FUTPROG PASTPR0G ASSETUSG TECHDATA APPL TOTALS

No. of Objects 204 209 1227 1226 419

File Size (arcs

Rolls Size (arcs)

Roll PROP

Total F106 File (arcs)

40

5

45

117

5

122

388

17

405

299

22

321

37

19

56

881

68

3

952

No. of Physical Records

File Generation Time (min.)

Processor Time (min.)

57

14

9

126

25

21

1017

142

136

481

184

175

150

69

59

1831

433

10 APPLICATION FUTPROG PASTPR0G ASSETUSG TECHDATA APPL TOTALS
i

No. of Objects 201 215 771 773 453

File Size (arcs)

Rolls Size (arcs)

Roll PROP

Total 10 Application File

40

5

45

119

5

124

365

12

377

259

17

276

57

15

72

840

54

3

897

No. of Physical Records

File Generation Time (min.)

Processor Time (min.)

58

10

8

129

27

22

860

131

126

542

136

124

241

71

62

1830

375

vO

26 APPLICATION FUTPROG PASTPROG ASSETUSG TECHDATA APPL TOTALS

No. of Objects 238 246 2365 2362 453

File Size (arcs)

Rolls Size (arcs)

Roll PROP

Total 26 Application File

43

5

48

129

5

134

767

31

798

670

38

708

50

30

80

1659

109

3

1771

No. of Physical Records

File Generation Time (min.)

Processor Time (min.)

63

10

7

143

27

24

2034

285

275

1255

559

544

207

184

168

3702

1065

APPENDIX IV

PROPERTIES OF C041 FILES

PROP NAVE TYPE DESCRIPTION
PROP

OBJECT NAME APPLICATION
SERV L SERVICE CODF
RCniD L RECORD ICENTITY
PC 1 PROGRAM CODE
PRODOCUM R PROGRAM DOCUMENT
nivf.n i. HFACQUARTFRS CODE
l Y« i BEGIN YEAR
HOT« 1 BEGIN QUARTER
AMA t HOME AMA
KFTFNT I RETENTION
FUATE I FUTURE DATE
FOUANT I FUTURE PROGRAM QUARTERLY QUANTITY
AASE&V l. AIRBORNE ALERT SERVICE CODE

1 10 L AIRBORNE ALERT RECORC ICENTITY
A A PC L AIRBORNE ALERT PROGRAM CODE
CHSTCAT I COST CATEGORY
AADOCUM P AIRBORNE ALERT PROGRAM DOCUMFNT
Hocn 1 HEADQUARTERS COCE
1 TG6 I LFAOTIME QUANTITY 6 WO.
SLRC6 I STK LEVEL/RFPAIR CYCLE 6 MC.
i ro^ I LEACTIME QUANTITY 9 MO.
StRC* T

1 STK LEVEL/REPAIR CYCLF 9 MO.

LTQ12 1 LPAOTIME QUANTITY 12 MO.
SLRC12 I STK LEVEL/REPAIR CYCLE 12 MO.
CYCDAT I CYCLE DATA

RG LEVEL FILE
NAHE NAME

FUTPROG
FUTCFM i FUTPROG
FUTCFM 1 FUTPROG
FUTCFM I FUTPRÖG
FUTCFM 1 FUTPROG
FUTCFM 1 FUTPROG
FUTCFM 1 FUTP-'OG
FUTOFM 1 FUTPROG
FUTCFM 1 FUTPROG
FUTCFM. I FUTP 'ÜG
CO 2 FUTP'OG
CQ 2 FUTPROG
FUTAA 1 FUTPROG
FUTAA I FÜTP OG
FUTAA I FUTPROG
FUTAA I FUTPROG
FUTAA 1 FUTPROG
FUTAA 1 FUTPROG
FUTAA 1 FUTPROG
FUTAA 1 FUTFKOG
FUTAA ! FUTPROG
FUTAA 1 FUTPROG
FUTAA I FUTPROG
FUTAA 1 FUTPROG
FUTAA I FUTPK0G

OBJECT NAVF MASTER STOCK NUMPER
M S N T D L MASTER STOCK NUMEER TECFDATA
"SNAU I MASTER STOCK NUMBER ASSET USAGE
APPLNO L APPLICATION NUMBER
APNPPP 1 APPLICATION NUMBER IN PASTPRCG
APNCF P L APPLICATION NUMBER IN" FUTPROG
PSC L PROGRAM SELFCT CODE
'^STRICT 1 PROGRAM RESTRICTION COPE
NFWFLAG L NEW/CHANGED APPLICATION FLAG
gpA I QUANTITY PER APPLICATION
-ASTPC F PAST APPLICATION PERCENT
FUTPC F FUTURE APPLICATION PERCENT
F.RRC L ERRC
DOC 1 CEFERRED DISPOSAL CPßE
f YK I FACTOR YEAR
F MO I FACTOR MONTH
V.PFACTCR F GPA TIMES PASTPC

APPLNOG
APPLNCG
APPLNCG
APPLNCG
APPLNCG
APPLNCG
APPLNOG
APPLNOG
APPLNCG
APPLNCG
APPLNCG
ITtKPP
ITEKPP
ITEHPP

APFL
M APPL
M APPL
1 APPL
I APPL
1 APPl
1 APPL
1 APPl
1 APPL
1 APPL
1 APPL
1 APPL
1 APPl
1 APPl
2 APPl
2 APPl
2 APPL

100

OBJECT NAME
PRICE
ACCT
CYCLEYG
SBOA
SCCNT
BUA
ÜUA
CUA
TOCA
WORKA
kRMA
SAFETY
DOTH
SINTRAN
UINTRAN
SAOn
UADD
RPTNO
NAME
ZERCTAL
UHYR
URMO
UFYR
UFMC
UOUANT
UYR

NAME
ABYR
ABMO
BALANCE
ADQUANT
AYR
AMO
ÜATE
ASOEP
ASCCNUS
ASCS
ASCONT
ASWRM
SXAAÜ
UXAAO

MASTER STOCK NUMBER
F PRICE
L ACCCUNT CODE
I CYCLE DATE YEAR
I SERVICEABLE BASE OEPCT ASSETS
I SERVICEABLE CCNTRACTCR
I UNSERVICEABLE ASSETS BASE
I UNSERVICEABLE ASSETS TEPOT
I UNSERVICEABLE ASSETS CCNTRACTOR
I TCC ASSETS
I WCRK ORDER ASSETS
I WRM ASSETS
I SAFFTY LEVEL
I DUE CUT TO MAINTENANCE
I INTRANSIT SERVICEABLE ASSETS
I INTRANSIT UNSERVICEABLE ASSETS
I ACDITIVE SERVICEABLE ASSETS
I ACDITIVE UNSERVICEABLE ASSETS
I NUMBER OF BASES REPORTING
RECCRD IDENTITY P-I

I ZERC TALLY MOS
I USAGE BEGIN YEAR
I LSAGF BFGIN MCNTH
I USAGE END YFAR
I USAGE END MCNTH
I USAGE QUANTITY
I USAGE YEAR
I USAGE HPfcTH

RECCRÜ ICENTITY L-V«
I ACDITIVf BEGIN YEAR
I ADDITIVE BEGIN MCNTH
I BALANCE
I ADDITIVE QUANTITY
I ADDITIVE YEAR
I ACDITIVE MONTH
I CYCLE DATE YEAR, QTR
I DEPCT
I CCNLS BASE
I OVERSEAS BASE
I CCNTRACTOR
I WAR READINESS MATERIAL
I SERVICEABLE EXCESS ASSETS DISPCSAELE
I UNSERVICEABLE EXCESS ASSETS CISPCSABLF

N ASSETUSG
M ASSETUSG

ATYPE 1 ASSETUSG
ATYPE 1 ASSETUSG
ATYPE 1 ASSFTUSC
ATYPE 1 ASSFTUSC
ATYPE 1 ASSETUSG
ATYPF 1 ASSETUSG
ATYPE I ASSETUSG
ATYPE 1 ASSFTUSC
öTYPE 1 ASSETUSG
ATYPE 1 ASSETUSG
ATYPE I ASSETUSG
ATYPE I ASSFTUSC
ATYPE 1 ASSETUSG
ATYPE 1 ASSETUSG
ATYPE 1 ASSETUSG
ATYPE 1 ASSETUSG
ATYPE 1 ASSETUSG
USAGE 1 ASSETUSG
USAGE 1 ASSETUSG
USAGE 1 ASSETUSG
USAGF I ASSETUSG
USAGE 1 ASSETUSG
USAGE I ASSETUSG
UQ ? ASSFTUSG
UC ? ASSETUSG
UQ ? ASSTTUSG
ACCAS 1 ASSETUSG
ADDAS 1 ASSETUSG
ADDAS 1 ASSETUSG
ADDAS 1 ASSETUSG
ACC 2 ASSFTUSG
ACC ? ASSETUSG
ADC 7 ASSFTUSG
ZTYPE 1 ASSETUSG
ZTYPE t ASSETUSG
ZTYPE 1 ASSETUSG
ZTYPF 1 ASSETUSG
ZTYPE i ASSFTUSC
7TYPE 1 ASSFTUSG
ZTYPE 1 ASSETUSG
ZTYPE 1 ASSETUSG

OBJECT NAME
RCDCODE L
SERV L
PC L
OBYR I
OBMG I
OEYR I
OEMC I
NZBYR I
NZBMO I
NZEYR I
NZEMO I
HUUANT I

APPLICATION
RECORD CODE
SERVICE COCF
PROGRAM, CODE
BEGIN YEAR ORIGINAL
BEGIN MONTH ORIGINAL
END YEAR ORIGINAL
END MCNTH ORIGINAL
BEGIN YEAR MCCIFIED
BEGIN MCNTH MODIFIED
END YEAR MOCIFIEC
END MCNTH MODIFIED
PAST PROGRAM MCNTHLY QUANTITY

PASTPPOC
PPOUANT 1 PASTPROG
PPOUANT I PASTPPOG
PPOUANT 1 PASTPROG
PPOUANT 1 PASTPPOG
PPOUANT 1 PASTPPOC
PPOUANT I PASTPPOG
PPOUANT 1 PASTPPOG
PPQUANT 1 PASTPROG
PPQUANT 1 PASTPROG
PPQUANT 1 PASTPROG
PPQUANT 1 PASTPROG
MOC ? PASTPROG

101

ORJFCT NAME MASTER STOCK NUMBER TECHOATA
MSNAU L MASTER STOCK NUMBER M TECHDATA
MMC L MATERIEL MGMT CCDE M TECHOATA
FSC I FEDERAL SUPPLY CLASSIFICATION M TECHOATA
MGR L MANAGER DESIGNATOR M TECHOATA
NÜCOMPLTE L NO COMPUTE CODE M TECHDATA
PRICE F UNIT PRICE Ml TECHDATA
ESC I tCUlPMENT SPECIALIST CODE M TECHDATA
ITFMNAME R ITEM. NAME Ml TFCHDATA
ERRC L EXPENDABILITY REPAIR RECOVERABILITY CODE Ml TFCHDATA
ISSUNIT L UNIT OF ISSUE M TECHDATA
NCWITEM L NEW ITFM COTE M TECHDATA
CICnut L CCNTINGFNCY/INSURANCE CCDE M TECHUATA
CILFVEL I CCNTINGFNCY/INSURANCE LEVEL M TFCHDATA
LTADM I LEACTIMF ADMINISTRATIVE M TFCHDATA
I.TPPOÜ I LFACTIMF PRODUCTION M TFCHDATA
DASFRC I BASF REPAIR CYCLE M TECHDATA
DEPORC I DEPCT REPAIR CYCLE M TECHDATA
MRLC L MAINTENANCE RFPAIR LEVEL CODE M TFCHDATA
JMjDPRnG I BUDGET PROGRAM M TFCHHATA
vsSD I WEAPON SYSTEM DESIGNATOR Ml TFCHDATA
BUDCODE L BUDGET CODE Ml TECHDATA
AASC L AIRBORNE ALERT STORAGE CODE Ml TFCHDATA
PSC L PROGRAM SFLFCT CCDE M| TECHDATA
PPC t. PAST PROGRAM, PERCENT Ml TFCHDATA
PRINTX L PRINT EXCEPTION CODE Ml TtCHUATA
THC L TCC CODE M TFCHDATA
TOD« f TCTAL DEMAND RATE CURRENT YR M TECHDATA
THOSE L TCTAL DEMAND RATE CURRENT YR ESTIMAT CD M| TECHDATA
TPDR1 F TCTAL DEMJANC RATE 1ST FORECAST YR M TFCHDATA
TnOREL L TCTAL DEMAND RATE 1ST FORECAST YR ESTIMAT CD Ml TECHDATA
TODR2 F TCTAL DEMAND RATE 2NC FCRECAST YR M TFCHDATA
TODRE2 L TOTAL DEMAND RATE 2MC FORECAST YR ESTIMAT CD M TECHDATA
TODR3 F TCTAL DEMAMO RATE 3RC FCRFCAST YR MI TECHDATA
TODRE3 L TCTAL DEMANC RATE 3RD FCRFCAST YR ESTIMAT CC M TECHDATA
BRG F BASF REP GEM PERCENT CURRFNT Ml TFCHDATA
BRG1 F BASE REP GEN PERCENT 1ST FORECAST M TFCHDATA
RRG2 F BASE REP GFN PERCENT 2NC FORECAST M TFCHDATA
BRG3 H BASB RFP GFN PERCENT 3RC FORECAST M TFCHDATA
BPSDCS F BASE PROCESSED PFRCFM CURRENT M TECHDATA
BPROCS1 F BASE PROCESSED PERCENT 1ST FCRECAST M TECHDATA
BP-40CS2 F BASE PROCESSED PERCENT 2ND FCRECAST M TFCHDATA
BPROCS3 F BASE PROCESSED PERCENT' 3RD FORECAST M\ TECHDATA
OPS L OPSOLETE COTE M TFCHDATA
UDC L DISPOSAL DEFERRAL CCCE M TFCHDATA
DOFMD F DEPOT OFM DEMAND RATE CURRENT M| TECHOATA
DHFMDE L CFPOT OFM DTMAND RATE CURRENT ESTIMATF CODE Mt TECHDATA
DDFMD1 F CFPCT OFM DEMAND RATE 1ST FORECAST Ml TFCHDATA
DOFMDE1 L DEPOT OFM DFMAND RATE 1ST FORECAST ESTIMATF M TECHDATA
DOFMD2 F DEPOT OFM OEMAND RATE 2ND FORECAST M TECHDATA
DPFMDE2 L DEPOT OFM DEMAND RATE 2NÜ FORECAST FSTIMATE Ml TECHDATA
DOFM03 F DEPQT OFM DFMAND RATE 3RD FORECAST M< TFCHDATA
DOFMDE3 L DEPOT OFM DFMAND RATF 3RD FORECAST FSTIMATE Ml TECHDATA
BNRTS F BASE NRTS PERCENT CURRENT M TECHDATA
BMRTSE L BASE NRTS PERCENT CURRENT ESTIMATED CODE M TECHDATA
BNRTS1 F BASE NRTS PFRCENT 1ST FCRECAST M TECHDATA
BNRTS2 F BASE NRTS PERCENT 2ND FORECAST M TECHDATA
BNRTS3 F BASE NRTS PERCENT 3RO FORECAST Ml TECHDATA
IPANWOR F IRAN WEAROUT PERCENT CURRENT M TFCHDATA
IRANWOR1 F IRAN WEAROUT PERCENT 1ST FORECAST M TECHDATA
IRANWOR2 F IRAN WEAROUT PERCENT 2NC FORECAST Ml TECHDATA
IRANWOR3 r IRAN WEAROUT PERCENT 3RC FORECAST Ml TECHDATA
PROCUR L PROCUREMENT METHOO COOE Ml TECHDATA

102

OFMRR
OFMBRl
OFMRR2
GFMRR3
BCCND
BCONOF
BCONOi
BCCND?
BCCNÜ3
EOHWOR
EOHWORL
EOHWOR2
EOHWOR3
WOR
WORE
WOR1
WPRFl
WOR?
WORE2
WOR3
WORE3
DOHCOND
DOHCONDE
OOHCOND1
DOHCCNC?
DnHCON03
MRSWOR
MRSWORl
MRSWCR2
MRSWOR3
TODRZ
TPORZE
DOFMD7
DOFMDZE
WPR7
WOR7E
OFMBRZ
ZRGYRS
BCONDZ
BCDNOZE
DOHCONDZ
DOHCONDZE
BNRTSZ
BNRTSZE
ASNCTR
OBSCTR
BPBRG
BPBCCNO
BPBRTS
BPBNRTS
BPDREP
BPDOHC
BPPAST
RRG6
RRGI2
RC0ND6
RCCN012
RRTS6
RRTS12
RNRTS6
RNRTS12
RDCCN06
ROC ,,:Oi2
SLPOFH

F
F
F
F
F
L
F
F
F
F
F
F
F
F
L
F
L
F
L
F
L
F
L
F
F
F
f
F
F
F
F
L
F
L
F
L
F
I
F
L
F
L
F
L
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

PASF
BASE
BASF
RASE

OFM
OFM
OFM
OFM
BASE
BASE
BASE
BASE
BASE
ENGINE
ENGINE

REPAIR
REPAIR
REPAIR
REPAIR

CONDEMNATIONS
CONDEMNATIONS
CONDEMNATIONS
CONDEMNATIONS
CONDEMNATIONS

OVERHAUL
OVERHAUL

RATE CURRENT
RATE 1ST FORECAST
RATE 2ND FORECAST
PATF 3RD FORECAST

PERCENT CURRENT
PERCENT
PERCENT
PERCENT
PERCENT

WEAROUT PERCENT
WEAROUT PERCENT

CURRENT ESTIMATE
1ST FORECAST
2ND FORECAST
3RC FCRECAST

ENGINE OVERHAUL WEAROUT
ENGINE OVERHAUL WFAROUT
WEAROUT RATE CURRENT
WEAROUT RATE
WEAROUT RATE
WFAROUT RATE
WEARCUT RATE
WtARQUT RATE
WFAROUT RATE
WEAROUT RATE
DEPOT OVERHAUL
DEPOT OVERHAUL
DEPOT OVERHAUL
TEPOT OVERHAUL
DEPOT OVERHAUL
MRS WEARCUT
MRS WEARCUT

PERCENT
PERCENT

CURRENT .
1ST FCRECAST
2ND FORECAST
3RD FORECAST

1ST
2ND
2ND
3RD
3RD

CURRENT
1ST FORECAST

FORECAST
FORECAST
FORECAST
FORECAST
FORECAST

CCNDEMN
CCNDEMN
CCNDEMN
CONDEMN
CTNOEMN

PERCENT
PERCENT

ESTIMATED CODE

ESTIMATED CODE

ESTIMATED CODE

ESTIMATED
PERCENT
PERCENT
PERCENT
PERCENT
PERCENT

CURRENT
1ST FCRECAST

CODE
CURRENT
CURRENT ESTIM
1ST FORECAST

FCRECAST
FORECAST

2NO
3RC

ESTIMATEC CCDF

ESTIMATED CODE

MRS WEARCUT PERCEN1 2ND FORECAST
MRS WEARCUT PERCENT 3RD FORECAST
TOTAL OFM» DEMlANC RATE
TCTAL OFM DEMAND RATE
DEPOT OFM DEMAND RATE
DEPOT OFM DEMAND RATE
WEARCUT RATE
WEARCUT RATF FSTIMATED CODE
OEM BASE REPAIR RATE
NUMBER YEARS ZERO REP GENS
BASE CONDONATION PERCENT
BASE CONDEMNATION PERCENT ESTIMATED CCDE
DEPOT OVERHAUL CONDEMNATION PERCENT
DEPOT OVERHAUL CONDEMN PERCENT ESTIMATED
BASE NRTS PERCENT
BASE NRTS PERCENT ESTIMATED CODE
TCTAL NUMBER CURRENT STOCK NUMBERS
TCTAL NUMBER CURRENT STOCK NUMBERS OBSOLETE
BASE PERIOD BASE REPARAPLE GENERATION

PERIOD BASF CONDEMNATIONS
PERIOO RASE RTS
PERIOD BASE NRTS
PERIOD DEPOT REPAIREC
PERIOD DEPOT OVERHAUL CCNCEMNATION
PERIOD PAST PROGRAM
REPARABLE GENERATION 6 MONTHS
REPARAPLE GENERATION 12 MONTHS

BASF
BASF
BASE
BASE
BASE
BASE
RIAR
RIAR
RIAR
RIAR
RIAR
RIAR
RIAR
RIAR
RIAR
RIAR
STOCK

CONDEMNATION 6 MONTHS
CONDEMNATION 12 MONTHS
RTS 6 WNTHS
RTS 12 KCNTHS
NRTS * MONTHS
NRTS 12 MONTHS
CEPCT CCNDEMNATICN 6
DEPOT CCNDEMNATICN 12
LEVEL BASE OFM

MONTHS
MCNTHS

M TECHUATA
M TECHDATA
M TECHDATA
M TECHOATA
M TECHOATA
M TFCHOATA
M TFCHOATA
M TECHDATA
M TECHDATA
M TECHDATA
M TECHOATA
Ml TECHUATA
M TECHOATA
M TECHOATA
M TECHOATA
M TFCHDATA
M TECHDATA
M TECHOATA
M TECHDATA
M TECHOATA
N TECHDATA
M TFCHOATA
M TECHDATA
M TFCHDATA
M TFCHOATA

TECHDATA
TECHOATA

M TECHDATA
M TECHOATA
M TECHOATA

TECHUATA
TFCHOATA

Ml TECHDATA
M TECHOATA
M TECHUATA
n TECHOATA
M TECHUATA
M TECHDATA
M TECHDATA
M TECHDATA
M| TECHOATA
M TECHDATA
M TECHDATA
M TECHOATA
M TECHDATA
M TECHOATA
M TECHOATA
M TFCHDATA
M TECHDATA
h TECHDATA
M TECHDATA
M TFCHDATA
M TECHDATA
M TECHOATA
M TECHOATA
M TECHDATA
M TECHOATA
M TECHOATA

TECHUATA
TECHDATA
TECHDATA

M TECHDATA
M TECHOATA
M| TECHDATA

H
M

M
M
M

103

stnrfN
SIAA
SLCH
^h SI
ST OHRS
NhT.JUY
NJRIRAN

NJRMRS
IRANNJRR
I KANN.IRR I
IRANNJRR7
I k A N N J R R 3
ri HNJRR
JEHHN IRR !
I- HHNJRR2
EPHNJRR 1
MRSNJRR
MRSNJRR1
MRSNJRR2
HRSNJRR3
i '.L i'YR
ACLTMO

NBSLi
m s i. 2
NRSL3

NRSL5
■■ ISl .6

NBSL7
h» S I 8

SL9
MJSt 10
IÖLS11
MRLS12
N 0 L S13
TARRG1
TARRG2
TARRG3
TARRTS1
iAGRTS2
IAH&TS3
TA6CCNC1
TABC0N02
T AgCONftl
CYR
CMO

SY-<
SMO
SPAN

I STOCK LFVFL OEPOT OFM
I STOCK LEVEL AIRBORNE ALERT
I STOCK LFVEL OVERHAUL
I OFPOT 0/H FLOATING STK LEVEL
I STANDARD DIRECT PRODUCTION HOURS
I NET BUY QUANTITY
F NON-JOB ROUTED PERCENT IRAN
F NON-JOB ROUTED PERCENT ENGINE OVERHAUL
F NON-JOB ROUTED PERCENT MRS
F IRAN NOM JOB ROUTED REPLACE RATE CURRENT
F IRAN NON JOB ROUTED REPLACE RATE 1ST FCRECST
F IRAN NON JOR ROUTFD REPLACE RATE 2NC FOPFCST
F IRAN NON JOB ROUTED REPLACE RATE 3RC FORECST
F ECH NON JOB ROUTED REPLACE RATE CURRENT
F ECH NON JOB ROUTED REPLACE RATE LST FCRECST
F ECU NON JOB ROUTED REPLACE RATE 2ND FCRECST
F tC» NON JOB ROUTED REPLACE RATE 3RD FORECST
F MRS NON JOB ROUTED REPLACE RATE CURRENT
F MRS NON JOB ROUTED REPLACE RATF 1ST FOPCAST
F MRS NON JOB ROUTED REPLACE RATE 2ND FORCAST
F MRS NCN JOB ROUTFD REPLACE RATE 3RD FORCAST
I START DATE YEAR
I START DATE MCNTh
I NEGOTIATED BASE STK LEVEL 1ST CUARTFR
I NcGCTIATFP BASE STK LEVEL 2ND QUARTER
I NEGOTIATED BASE STK LEVEL 3RD QUARTER
I NEGCTIATED BASE STK LEVEL 4TF QUARTER
I NEGOTIATED BASE STK LEVEL 5TH QUARTER
I NEGOTIATED BASE STK LEVEL 6TH QUARTER
I NEGCTIATED EASE STK LEVEL 7TH QUARTER
I NEGCTIATED BASESTK LEVEL 8TH QUARTER
I NEGOTIATED BASE STK LFVEL 9TH QUARTER
I NEGCTIATED BASE STK LEVEL 10TH QUARTER
I NEGCTIATED BASE STK LEVEL 11TH QUARTER
I NEGCTIATED BASF STK LEVEL 12TH QUARTER
I NEGCTIATED BASE STK LEVEL 13TH QUARTER
F TEMPORARY STORAGE BUFFER
F TEMPCRAPY STCRAGE DUFFER
F TEMPORARY STCRAGE BUFFER
F TEMPORARY STCRAGE BUFFER
F TEMPORARY STCRAGE BUFFER
F TEMPCRAPY STCRAGE BUFFER
F TEMPORARY STORAGE BUFFER
F TEMPGRARY STORAGE BUFFFR
F TEMPORARY STORAGE BUFFER
I CURRENT YEAR TEMPORARY
I CURRENT MONTH TEMPORARY
I START YEAR TEMPORARY
I START *CNTH TEMPORARY
I NUMBER OF YEARS TEMPORARY

M TFCHDATA
M TECHDATA
M TFCHDATA
M TFCHDATA
M TECHUATA
M TECHDATA
M TFCHDATA
M TECHDATA
M TECHDATA
M TFCHDATA
M TECHDATA
Ml TECHDATA

n TECHDATA
Mi TECHDATA

M TECHDATA
Mi TECHDATA
N TFCHDATA
M TECHDATA
M TECHDATA
M TECHDATA
M TECHDATA
M TECHDATA
M TFCHDATA
M TECHDATA
M TECHDATA
M TFCHDATA
M TECHDATA
M TFCHDATA
n TECHDATA
M TECHDATA
M TFCHDATA
M TECHDATA
M TECHOATA
M TECHDATA
M TECHDATA
M TECHOATA
H TECHDATA
M TECHDATA
M TECHDATA
M TECHDATA
M TECHDATA
n TECHDATA
M TECHDATA
M TECHDATA
M TECHDATA
Ml TECHDATA
M TFCHDATA
M TECHDATA
M TECHDATA
M TECHDATA

F=FLOATING
I=INTEGER
L=LOCICAL
R = RAW

M=MAIN
l=REPEATING GROUP LEVEL l
2=REPEATING GROUP LEVEL 2

104

APPENDIX V

PROCEDURE FOR FILE GENERATION

[IB-20,484 |

O

FUTURE PROGRAM

REEL! *DL9I2

FILE GENERATION

FUTPROG

DATE: 6/13/66

TIMING: 00:09:29

FUTPROG

REELS: *D2I56

#D2I49

PAST PROGRAM

REEL:*2234

ASSET/USAGE

REEL.# DI30I

FILE GENERATION

PASTPROG

DATE: 6/14/66

TIMING: 00:08:28

PASTPROG

+ FUTPROG

REELS:* DL905

DL667

TECHDATA

REEL: # DL87I

FILE GENERATION

ASSETUSG

DATE: 6/2 2/66

TIMING: 02:32:44

ASSETUSG

¥ ...+ FUTPROG

REELS: *DLI32

* DI789

FILE GENERATION

TECHDATA

DATE: 6/24/66

TIMING: 02:01:09

TECHDATA

+ .. .+ FUTPROG

REELS: #D 1065

* DI278

APPLICATION

REEL* DI803

FILE GENERATION

APPL

DATE: 7/26/66

TIMING: 01:39:18

APPL

+...+FUTPROG

REELS: /-DLOI6
#VDL7I4

/DL306
*\.DL57I

FILE CLEANING

DATE COMPLETED: 8/9/66

TOTAL TIME: 02: 29:31

REELS: /"D2III
W LDI853

/-DI360
* V-DI079

I IB-20.465~

O
0>

FUTURE PROGRAM

REEL! # DI880

!
FILE GENERATION

FUTPROG

DATE: 6/11/66

TIMING: 00:08:49

< '

FUTPROG

REELS: #DLI07

#D2M9

PAST PROGRAM

REEL#D2287

ASSET/USAGE

REEL#D2473

FILE GENERATION

PASTPROG

DATE: 8/8/66

TIMING: 00:07:05

TECH DATA

REEL:*DLI47

PASTPROG

+ FUTPROG

REELS: # D2035

* DL848

FILE GENERATION

ASSETUSG

DATE:a/IO/66
PROCESSOR
TIMING:00:3I: 17

ASSETUSG

+ ...+ FUTPROG

REELS: # D23II

4f DL3I5

FILE GENERATION

TECHDATA

DATE: 8/10/66
PROCESSOR
TIMING. 00:47:38

TECHDATA

+ ...+ FUTPROG

REELS: *DL988

#■ Dll I 9

FILE CLEANING

DATE COMPLETE0:8/12/66
TOTAL TIME 00:53:57

REELS: # D2278

DL73I

APPLICATION

REEL#DL579

FILE GENERATION

APPL

DATE: 8/11/66

TIMING: 00:31:13

APPL

+...+ FUTPROG

REELS:# DL256

* DI645

j IB-20,486 j

O

FUTURE PROGRAM

REEL: #DII58

FILE GENERATION

FUTPROG

DATE; 7/22/66

TIMING: 0: 08:48

FUTPROG

REELS: ♦DL02I

DI937

PAST PROGRAM

REEL #DL035

FILE GENERATION

PASTPROG

DATE:8/IO/66

TIMING: 0:07:30

PASTPROG

+ FUTPROG

REELS:* DI797

* DLI26

ASSET/USAGE

REEL:*DI2I3

TECHDATA

REEL!* DL564

01:21:00

FILE GENERATION

ASSETUSG

DATE: 8/11/66
PROCESSOR
TIMING:00:24:59

ASSETUSG

-I- .. + FUT PROG

REELS: *DL265

*DL427

FILE GENERATION

TECHDATA

DATE:8/ II /66
PROCESSOR
TIMING:00:42:25

TEC HD ATA

+...+ FUTPROG

REELS: #DL333

♦ D2227

APPLICATION

REEL#-DI984

FILE GENERATION

APPL

DATE: 8/13766

TIMING: 00:43:45

APPL

+...+ FUTPROG

REELS» D237I

D2328

FILE CLEANING

DATE COMPLETED:8/13/66
TOTAL TIME:00:37:48

REELS: # DL9I5

DI64I

1 IB-20,487 I

O
00

FUTURE PROGRAM

REEL: # NONE

RLE GENERATION

FUTPROG

DATE: 5/28/66

TIMING: 00:03:04

FUTPROG

(NULL)

REELS: # DL769

DLI75

PAST PROGRAM

REEL:#DL437

FILE GENERATION

PASTPROG

DATE: 5/31/66

TIMING: 00:04:43

PASTPROG

+ FUTPROG

REELS: # D24I5

DI3I0

ASSET/USAGE

REEL:*D226I

FILE GENERATION

ASSETUSG

DATE: 6/16/66

TIMING: 02:01:33

ASSETUSG

+ ... + FUTPROG

REELS:*DI66I

*D2326

TECHDATA

REEL:# DL502

FILE GENERATION

TECH DATA

DATE:6/l8/66

TIMING:0I:48:36

TECHDATA

+. .. + FUTPROG

REELS: #DI469

»DI269

APPLICATION

REEL:#DI02I

FILE GENERATION

APPL

DATE:6/30/66

TIMING:00:47:4I

APPL

•H..+ FUTPROG

REELS* DI207

DL864

FILE CLEANING

DATE COMPLETED: 7/1 3/66

TOTAL TIME:0I:50:33

REELS: # DL904

D2226

I IB-20,488

O

FUTURE PROGRAM

REEL! #01725

i 1

FILE GENERATION

FUTPROG

DATE: 6/10/66

TIMING: 00:06:24

1 »

FUTPROG

RE ELS: # D2339

DL697

—

PAST PROGRAM

REEL:#D2094

FILE GENERATION

PASTPROG

DATE: 6/11/66

TIMING: 00:06:22

PASTPROG

+ FUTPROG

REELS.# DL408

D2283

ASSET/USAGE

REEL:#DLI97

11

FILE GENERATION

ASSETUSG

DATE:6/14/66

TIMING: 00i3l:56

H

ASSETUSG

+ .. . + FUTPROG

REELS: #D2376

#D200I

TECHDATA

REEL:# DL597

FILE GENERATION

TECHDATA

DATE: 6/14/66

TIMING:0I:53:04

TECHDATA

+...+ FUTPROG

REELS: #DL350

♦ DI50I

APPLICATION

REEL:#D2208

FILE GENERATION

APPL

DATE: 7/21/66

TIMING:00:46:27

APPL

+...+ FUTPROG

REELS'* DL206

DI675

FILE CLEANING

DATE COMPLETED:8/9/66

TOTAL TIME: 00:46:13

REELS: # DI88I

DI085

APPENDIX VI PREPROCESSING PROCEDURES

o"

TAPER

PAST PROG

SWISH
ALL AMA PAST

PROG
ELMDUP SUBSET PREP

SWISH
3 AMA ITEM

PAST
SUBSET

/ \
TAPER

ITEM PAST
/ , SWISH

3 AMA ITEM
PAST

SUBSET
s __.. L ELMDUP

\ /
SWISH

\ /

/ / *
SWISH

2 AMA ITEM
PAST

SUBSET
/ /

/ /
////

/ / SWISH

3 AMA TD
////

SUBSET

/ / / ////
/ ill/ r 1 i

TAPER

8 TD FILES
/ . SWISH

3 AMA TD

III /
SUBSET ELMDUP PREP ANNEX

S

T
A

R
T

\
 -a 5WISM

ADAM

FILE
GEN

\ III! / }
SWISH

2 AMA TD III/ '* SUBSET

u III///
/ 1111 / ^ ̂

TAPER

8 APPL FILES

SWISH
8 APPL FILES
SORT + MERGE

BY MSN

ELMDUP

MSN

SWISH
ALL AMA

BY AN
TPCOMP APPTRE

SWISH
ALL AMA
SUBSET
AN

ELMDUP PREP

WW
SWISH

3 AMA A/U

SUBSET

A/U (3) ww'
/ \

TAPER

8A/U FILES
/ . SWISH

3 AMA A/U

SUBSET

A/U(3)
\ SWISH ELMDUP PREP

\ / \ /
SWISH

2 AMA A/U
\ ^ r

SUBSET

A/U(2) \ \

TAPER
MSTR IDENT

FILES

SWISH
ALL AMA

MSTR IDENT
ELMDUP

SUBSET

ID (6)

TAPER
FUT PROG

SWISH
ALL AMA
FUT PROG

ELMDUP
SUBSET

FUT PROG
PREP

111/112

OJ

^gÖÄ^y^ÄpER

/iTEMRIAR \ _f
V L9A y-j TAPER

REFERENCES

1. A.C. Foreman, "Advanced Data Management Experiment," IEEE
Transactions in Aerospace and Electronic Systems, AES-2,
January 1966, 115-120.

2. F. Cataldo and B. F. Char, "Data Base Analysis," The MITRE
Corporation, Bedford, Massachusetts, MTR-55, 12 November 1965.

3. B. F. Char, "Data Base Analysis," The MITRE Corporation,
Bedford, Massachusetts, MTR-55, Supp. 1, 27 December 1965.

4. A. J. Nickelson, "Data Base Analysis," The MITRE Corporation,
Bedford, Massachusetts, MTR-55, Supp. 2, 4 February 1966.

5. A. J. Nickelson, "Data Base Analysis," The MITRE Corporation,
Bedford, Massachusetts, MTR-55, Supp. 3, August 1966.

6. B. F. Char, "General Program Design for ADAM-Based AFLC D041
System," The MITRE Corporation, Bedford, Massachuetts, MTR-77,
3 January 1966.

7. 0. W. Beebe, "Factor Computations for the ADAM-Based AFLC D041
System," The MITRE Corporation, Bedford, Massachusetts, MTR-137,
Rev. 1, 11 July 1966.

8. J. C. Penney, "Requirements Computation for the ADAM-Based AFLC
D041 System," The MITRE Corporation, Bedford, Massachusetts,
MTR-168, Rev. 1, 6 July 1966.

9. 0. W. Beebe, "Requirements Inventory Analysis Report (RIAR),
Computations for the ADAM-Based AFLC D041 Systems," The MITRE
Corporation, Bedford, Massachusetts, MTR-238, 11 July 1966.

10. S. Bramson, "AFLC Remote Equipment Checkout program," The MITRE
Corporation, Bedford, Massachusetts, MTR-243, 11 July 1966.

11. I. Beilin, "MERGE," The MITRE Corporation, Bedford, Massachusetts,
MTR-271, August 1966.

12. O.W. Beebe and J. C. Penney, "Implementation of ADAM-AFLC
Experiment--Phase II," The MITRE Corporation, Bedford,
Massachusetts, MTR-262, 15 August 1966.

114

REFERENCES (Concl'd)

13. 0. W. Beebe, B. F. Char, and J. C. Penney, "Implementation of
ADAM-AFLC Experiment--Phase I," The MITRE Corporation, Bedford,
Massachusetts, MTR-109, 24 January 1966.

14. J. C. Penney, "ADAM/AFLC Demonstration," The MITRE Corporation,
Bedford, Massachusetts, MTR-272, August 1966.

15. ADAM Project, "Guide to the ADAM System," The MITRE Corporation,
Bedford, Massachusetts, MTR-268, 8 August 1966.

16. S. Bramson, "AFLCON, PPCONV, APOWER Routines for Project 5030,"
The MITRE Corporation, Bedford, Massachusetts, MTR-257,
25 July 1966.

17. T. L. Connors, "ADAM: A Generalized Data Management System,"
The MITRE Corporation, Bedford, Massachusetts, MTP-29, August 1966,

18. R. Conrod, "MCP Modifications to Support Project 503," The
MITRE Corporation, MTR-315, 28 October 1966.

115

BIBLIOGRAPHY

Cataldo, F., "Decision on Equipment Augmentation," The MITRE
Corporation, Bedford, Massachusetts, MTR-62, 15 November 1965.

Computer Associates, Inc., Wakefield, Massachusetts, and EDS,
AFSC, USAF, Hanscom Air Force Base, Bedford, Massachusetts,
"Advanced Planning Developments: A Survey," ESD-TR-65-171,
February 1965.

Nickelson, A. J., "Routines for Processing AFLC Data," The
MITRE Corporation, Bedford, Massachusetts, MTR-270, August 1966,

116

UNCLASSIFIED

Security Classification

DOCUMENT CONTROL DATA • WD
(Security claetiticatlon ot titte, body ot abetract and indexing mnnotmtion muii fa« entered when the ovrell report te elaeeliled)

1 ORIGINATING ACT|\/|TY (Corporate author)

The MITRE Corporation

Bedford, Massachusetts

2«. REPORT SECURITY CLASSIFICATION

Unclassified
2b GROUP

3 REPORT TITLE

Final Report-Joint AFLC/ESD/MITRE Advanced Data Management (ADAM) Experiment

4 DESCRIPTIVE NOTES (Type of report and inctueive datee)

N/A
5 AUTHORfS; (Laet name, liret name, initial)

Char, Beverly F.

Foreman, Ailing C.

6 REPORT DATE

February 1967
la. TOTAL NO. OF PAGES

123
7b. NO. OF REFS

20
8«. CONTRACT OR GRANT NO.

AF - 19(628)5128
b. PROJECT NO.

503F

9«. ORIGINATOR'S REPORT NUMBERfSj

ESD-TR-66-330

9b. OTHER REPORT uo(S) (Any other numbere that may be aeelgned
thie report)

MTR-285

10. AVAILABILITY/LIMITATION NOTICES

Distribution of this document is unlimited.

11. SUPPLEMENTARY NOTES

N/A

12. SPONSORING MILITARY ACTIVITY Deputy for En-
jgineering and Technology, Computer Program-
tiling Division, Electronic Systems Division,
iL.G.Hanscom Field, Bedford. Massachusetts.

13 ABSTRACT

This final report describes the components of the Joint AFLC/ESD/MITRE
Advanced Data Management Experiment (ADAM) and the process of implementation.
The objective of the experiment was to determine the applicability of General-
ized Data Management Systems such as ADAM to management information problems
as found in AFLC. Observations concerning this applicability are given from
two user viewpoints: programmer-user and the application or mission-oriented

user.

DD ,5fflL 1473 UNCLASSIFIED
Security Classification

UNCLASSIFIED
Security Classification

KEY WORDS
LINK A LINK B LINK C

Data Management

On-line

Retrieval

Query

ADAM

Logistics

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address
of the contractor, subcontractor, grantee, Department of De-
fense activity or other organization (corporate author) issuing
the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the over-
all security classification of the report. Indicate whether
"Restricted Data" is included. Marking is to be in accord-
ance with appropriate security regulations.

26. GROUP: Automatic downgrading is specified in DoD Di-
rective 5200.10 and Armed Forces Industrial Manual. Enter
the group number. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4 as author-
ized.

3. REPORT TITLE: Enter the complete report title in all
capital letters. Titles in all cases should be unclassified.
If a meaningful title cannot be selected without classifica-
tion, show title classification in all capitals in parenthesis
immediately following the title.
4. DESCRIPTIVE NOTES: If appropriate, enter the type of
report, e.g., interim, progress, summary, annual, or final.
Give the inclusive dates when a specific reporting period is
covered.

5. AUTHOR(S): Enter the name(s) of authors) as shown on
or in the report. Entei last name, first name, middle initial.
If military, show rank and branch of service. The name of
the principal «.athor is an absolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day,
month, year; or month, year. If more than one date appears
on the report, use date of publication.
la. TOTAL NUMBER OF PAGES: The total page count
should follow normal pagination procedures, i.e., enter the
number of pages containing information.
76. NUMBER OF REFERENCES: Enter the total number of
references cited in the report.
8a. CONTRACT OR GRANT NUMBER: If appropriate, enter
the applicable number of the contract or grant under which
the report was written.
86, 8c, & 8d. PROJECT NUMBER: Enter the appropriate
military department identification, such as project number,
subproject number, system numbers, task number, etc.

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the offi-
cial report number by which the document will be identified
and controlled by the originating activity. This number must
be unique to this report.
96. OTHER REPORT NUMBER(S): If the report has been
assigned any other report numbers (either by the originator
or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any lim-
itations on further dissemination of the report, other than those

imposed by security classification, using standard statements
such as:

(1) "Qualified requesters may obtain copies of this
report from DDC "

(2) "Foreign announcement and dissemination of this
report by DDC is not authorized."

(3) "U. S. Government agencies may obtain copies of
this report directly from DDC. Other qualified DDC
users shall request through

(4) "U. S. military agencies may obtain copies of this
report directly from DDC Other qualified users
shall request through

(5) "All distribution of this report is controlled. Qual-
ified DDC users shall request through

If the report has been furnished tc the Office of Technical
Services, Department of Commerce, for sale to the public, indi-
cate this fact and enter the price, if known.

11. SUPPLEMENTARY NOTES:
tory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of
the departmental project office or laboratory sponsoring (pay-
ing for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual
summary of the document indicative of the report, even though
it may also appear elsewhere in the body of the technical re-
port. If additional space is required, a continuation sheet shall
be attached.

It is highly desirable that the abstract of classified reports
be unclassified. Each paragraph of the abstract shall end with
an indication of the military security classification of the in-
formation in the paragraph, represented as (TS). (S), (C), or (U).

Use for additional explana-

There is no limitation en the length of the abstract. How-
ever, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms
or short phrases that characterize a report and may be used as
index entries for cataloging the report. Key words must be
selected so that no security classification is required. Identi-
fiers, such as equipment model designation, trade name, military
project code name, geographic location, may be used as key
words but will be followed by an indication of technical con-
text. The assignment of links, rules, and weights is optional.

GPO 886-551 UNCLASSIFIED

Security Classification

»

* ' ,

