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ABSTRACT 

Fluctuation theory Is concerned with the study of extreme values 
of sums of Independent,  arbitrary-valued random variables.    Simple 
but powerful combinatorial methods due chiefly to E.  S. Andersen, 
F. Spitzer,  and W.   Feller have recently provided an easy method of 
attack on these problems.    However,  operations research models are 
concerned with fluctuations of various economic returns which are 
earned at random points in time,  and whose Increments are corre- 
lated with the Interval since the last payoff.    Our generalization 
considers the fluctuations of a cumulative reward process,  defined 
on an underlying renewal process.    Most of  the classical results 
carry through.  Including Welner-Hopf type  factorization,  an 
Andersen-Pollaczek-Spltzer type Identity,  and certain Waldlan- 
Pollaczek results.    As applications, we find the distribution of 
the maximum return over a mixed Index-epoch horizon, and show how 
certain general results for the GI/G/1 queue follow directly from 
the various three-dimensional ladder distributions. 



FLUCTUATIONS OF A RENEWAL-REWARD PROCESS 

by 

William S.   Jewell 

1.     INTRODUCTION 

Fluctuation theory is concerned with  the extreme values of the sums 

n 
(1) p    = 0  ;   p     =    J    E. (n -  1,2,   ...) 

i-1 

where the £,  are independent random variables with common distribution Q .  In 

the case where the £  are nonnegative, we have a simple problem in renewal theory, 

However, when arbitrary values of the £;  are allowed, the theory becomes more 

difficult; it is only recently that simple, but powerful, combinatorial methods, 

developed by E. S. Andersen [1,2,3], and extended and simplified by F. Spitzer 

[17,18,19,20], and W. Feller [9], have been discovered for the general case. Read- 

able summaries of this modern approach and more detailed references may be found in 

Chapters 12 and 18 of [8], [14], and Chapter 6 of [16]. 

An interesting generalization results if one thinks of the p  in (1) as a 

cumulative,  or reward  process, "earned" at epochs  in discrete time, n - 1,2, ...; 

we then allow these reward epochs to take on a random nature by associating them 

with the epochs of a renewal process.    Thus, our generalization is the study of the 

fluctuations of a reward process imbedded in a renewal process. 

Let the underlying renewal process consist of nonnegative intervals (T,} , 

(i ■ 1,2, ...) , with common distribution A ; then, the location of the n  epoch 

is at 

* th 
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n 

(2) ^ " 0 ;   'n "    ^    Ti (n ' 1»2»   •••) 

and the total reward accumulated to that point  Is defined as: 

(3) Po-0 P^J^^V 

At times between these epochs, the total reward remains constant at Its last previous 

value, I.e., we define: 

0 n(t) = 0 

C4) p(t) = p    =/ ,  (t > 0) 
,KtJ  » n(t) 

I      C.(T.)   n(t) > 0 
1=1 

with 

(5) n(t) = sup (k | f < t) 

as  the number of epochs  In     [0,t]   .     A typical realization of    p(t)     Is shown In 

Figure 1. 

Intuitively we may think of    E.  (i  )     as  an Interval reward,  possibly dependent 

on    T    , whlcn Is "earned" at the end of  Interval    i  ;  p(t)     Is then  the total reward 

earned in     [0,t]   .     For this generalization,  we must specify the joint distribution, 

(6) Q(t;y)  = P^ 1 t  ;   ^ 1 y) 
/   i  =  1,2.   ...\ 

>—oo    <    v    <    "•00    ' 

whose marginal distributions are A(t)  and Q(y) .  (We assume A(0) < 1 , 

P{C = 0} < 1 , and Q(t;y) Is an honest distribution.) 

Since the imbedded reward process    {p = p(i )} Is the same as the fluctuation 
n n 

process of  (1),   I.e.,   Interval rewards are  Independent  from epoch to epoch,  much of 
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FIGURE  1.    TYPICAL REALIZATION OF A (CUMULATIVE)  REWARD PROCESS, 

DEFINED OVER AN UNDERLYING RENEWAL PROCESS. 
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the simplicity of the original model Is retained. However» the addition of the 

rerewal process  (t } as a "random clock" leads naturally, as we shall see, to more 

complex fluctuation models, particularly In queuelng theory. 

The process p(t) could also be thought of as a two-dimensional random walk 

(p , t )  In which the second component can only Increase.  However, this generality 

will not be needed In what follows. 

2.  THE IMBEDDED RENEWAL PROCESS; LADDER POINTS 

The key to analysis of fluctuation processes lies In a concept first used by 

D. Blackwell [7]: the  ladder point.     A (strict ascending) ladder point is said to 

occur at index n and epoch j  iff r n 

(7) p(fn)   > p(t) (0  < t  <  in)     ; 

the ladder process obtained by connecting the ladder points in the obvious way is 

then an upper envelope, or maximum,  to the process    p(t)   ,   (see Figure 2).    The 

origin is sometimes considered as a zero      ladder point. 

We distinguish three ladder variables in Figure 2:    the index at which the 

record value took place;  the epoch associated with that index;   and the height of 

that record value.     For the first   (strict ascending)  ladder point, we have: 

(8) 
(1) an index    v-  ■ min {n|p(t)>0}>0, 

(11)       an epoch    <|),  ■  J      i 0 » 
and 1 

(ill)     a height    ^ a P^i) " Pv    > 0 . 

with joint distribution 

(9) 
/n - 1,2,   ...\ 

F(n,t;y)  - P{v    -n,4.£t;A<_y}     .      I0<_t<"      I 
■L 1 1 \0 < y < »     / 
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FIGURE  2.    REWARD PROCESS SHOV^ING  (STRICT ASCENDING)   LADDER POINTS AND LADDER 

PROCESS,   (STRICT ASCENDING)   LADDER INDICES, EPOCHS, AND HEIGHTS. 



It follows from the definitions and Figure 2 that the distributions of all  the 

ladder variables could be calculated from (9), since the ladder points constitute 

an imbadded (three-dimensional)  renewal process,  in which each new record value 

occurs "from scratch," starting at the previous value; i.e., the triplet  (v,,4). ;A ) 

is independent and identically distributed for all    i  « 1,2, ... An obvious, but 

important, identity relates the transform of the distribution of the r      ladder 

point to that of the first ladder point: 

{(v1+v2+...+vr)  -s(<()1+(J)2+...+(t,r) -p(X1+A2+...+Ar)) 
z 'e «e > ■ 

= \E<z    e   e   (   •    (r = 1'2. •••) 

We shall henceforth drop the index when discussing an arbitrary triplet  (v,4);X) , 

In the most interesting cases, the ladder process is defective,  i.e., at some 

index, further record values cease to occur; the probability of this occuring is the 
00 

defect,    1 - \    FCn,»;«») . 
n»! 

By weakening, reversing, or weakening and reversing the inequality in (7), 

four different ladder processes can be obtained.  To distinguish between them, we 

shall use four different superscripts on the variables and on the corresponding 

distribution F : 

(i)   strict ascending  (>) , F , (A > 0) 

(ii)  weak ascending    (>.) , F®, (A®>.0) 
(11) 

(iii)    strict descending    (<)   ,  F    ,   (A    < 0) 

(iv)      weak descending (<.)   ,  F®,   (A®£0) 

Note the different  regions of definition for the ladder height. 

We shall see  that the processes   (i)  and  (iv),  or   (ii)  and (iii)  are,   in a 

certain sense,  duals of each other;   of course the distinction between (i)  and  (ii), 

T—*- 



or (111) and (Iv) vanishes when Q Is continuous. A defective weak process Implies 

a defective strong one, and vice versa; however, not both the ascending and the 

descending processes can be defective. 

3.  DUALITY; THE REFLECTION PRINCIPLE 

Determination of explicit forms for the ladder distributions depends on two 

fundamental principles.  The first of these, whose proof Is trivial. Is: 

The Reflection Principle 

Consider any realization    (T ,C1;T2,f; ;...;T ,C ) of a 

reward proaeee, for some fixed   n t  and defim an "image" 

(12) process by taking the variables in the reverse sequence 

(T ,C ;T _1,5 ,;.. ,;T1,€.) . Any event defined>by reali- 

zations of the original process has the same probabiuzty as 

the corresponding event defined by the image process. 

The term reflection principle  arises from the fact that the Image process Is the one 

seen by someone who "stands" on the point  (p ,J )  of Figure 1, and reverses the 

orientation of both axes.  (The rewards also appear as If earned at the beginning 

of the interval, but this Is unimportant.) 

Figure 3 shows an Important application of the reflection principle to prove: 

P{p  > Pn ,  . P„ > P„ o Pn > P1  J 0 < Pn < y » I« < t} "  /n - 1 9      V n   n-i   n   n—z      n   1      n—    n—     /n"±,z,,.,\ 
(13) [ 0 < y < »  I 

- Pfp. > 0 , p > 0 p , > 0 ; 0 < p < y ; , < t}    \ 0 < t < »  / 
i      t. n-i n —    n — 

The left hand side of (13) is the probability that n is the Index of some  ladder 

point whose epoch is less than or equal to t , and whose height is less than or 

equal to y . This Is the three-dimensional analogue of the renewal function, M , 

(mean counting function) of classical renewal theory, so we set 

(14) M+(n,t;y) - LHS of (13) 
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FIGURE  3.     CORRESPONDING REALIZATIONS  OF ORIGINAL AND IMAGE 

REWARD PROCESSES»   SHOWING ORIGINAL LADDER POINTS. 



Define  three-fold transforms: 

00 00 

m+(S.S;p)  =    I    zn    fa8'    f e^ d^ vM+(n.t;y) 
n=l        J J+ ,:,y 

o o 

00 00 

(15)     f+(3.S;p)  =    I    zn   fe-St    fePy dj    F+(n.t;y)  = E{2V
SVPA}     ; 

n-1   J J+ L'y 

o o 

then from (10), and the fact that n must be the first or  the second or  the .... 

ladder point: 

+   +    +2    +3        f+ (16) m - r + (fV + (f ) + ... - ^r  . 
1-f 

in the appropriate region of the complex space (3,8,p) , analogous to the usual 

one-dimensional result in renewal theory. 

The right hand side of (13), on the other hand, is a measure for the n  epoch 

(not necessarily a ladder epoch), with i <^ t and p .1 y t for a process which 

has yet to reach its first weak descending ladder point  (excluding the origin) — 

i.e., has yet to go nonpositive  (excluding [0,i ]) . Thus: 

Piv^-l^^t} - Q(t;0+} 

P{\>®»n+l;4)Qt} -    /       /       Q(t-u;x)d^ xM+(n,u;x) (n - 2,3, ...) 

U"0  X"0 

Similar duality relationships exist between F  and M^ , etc. 

4.  DECOMPOSITION OF DUAL PROCESSES 

With this dual interpretation of M , its complete form, and that of the dual 

first-passage (weak descending ladder) distribution F^ , can be expressed in 
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recursion relations in terms of the joint distribution    Q  .     From the definitions; 

(18) M+(l.t;y)   - Q(t;y)  - Q(t;0) /o < t  < " 

t 00 

0   <   y    <   oo 

in = 1,2,3,   .. .i 

(19)      M+(n+l,t;y)  -     /       /       [Q(t-u;y-x)  - Q(t-u;-x) ]d^xM+(ntu;x) 
//. 
u^o    x=o 

which can be built up recursively.  For the nonpositive values of y , we have 

simply 

(20) FÖ(l,t;y) = Q(t;y) / 

I 0  <_t  < " 
|_oo < y <^ 0 

t.  > \n = 1,2,3, .. 
©^n ..„. -  /    /   n/._ _^ J      M+/ 

//. 
(21) Fw(n+l,t;y) =  /   /   Q(t-u;y-x) dU)XM (n,u;x) 

u=o x=o 

Because of the nonoverlapping ranges of    M      and    Fw ,  except  for the continuation 

(22) F^n.tjy)   = F^n.t^)   ,   (y>0) 

there is no ambiguity if  (18)  -  (21)   are written together as: 

(23) M+(l,t;y)  + F^(l,t;y)  - Q(t;y) / 
I 0 <_ t < <» 
I —oo    <   v   <   +00 

t oo I -^ 
+ ft f       f 2      + \ n =  1,2,   ... 

(24) M+(n+l,t;y)  + F^(n+l,t;y)  '11       Q(t-u;y-x)  dU)XM (n,u;x)    x 

u=o    x=o 

Setting t«00 gives the usual representation of an ordinary fluctuation process [8]. 

Taking the transform of (23) - (24), using definitions similar to (15) and 

(25) 

00 oo 

,(8,p) - yV8t fePy  d^QUjy) = E{e-"-P5)  , 
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we obtain the neater result: 

(26) m (3,s;p) + f M2,e;p) - 2q(e;p) [1-hn (3,s;p)] 

or 

[l+m (s,s;p)] [l-3q(8;p)] - 1-f M3,e;p) 

from which the special cases can be easily deduced. 

By setting    z -  [l/q(sjp)]     in  (26)   or  (28)   (which operation can be justified, 

see   [8]), we obtain a generalization of Wald'e Identity: 

{tef-^-px! 
which clearly holds for all  types of ladder points (11). 

5.  WIENER-HOPF FACTORIZATION 

If (16) is substituted in (26) we obtain the striking result 

(28) [l-f+(2,8;p)] [1-f %,e;p)] - l-2q(ejp) . 

that is. 

This decomposition of the honest distribution    Q    into two distributions,     F      and 

F ^ , one of which may be defective, is a Wiener-Hopf faotorization;  in many simple 

cases of interest,  such as rational transforms, the factorization can be performed 

explicitly,  using knowledge of  the regions of analyticity in the complex p-plane 

which follow from the different  domains of definition of    F      and    F^.     (See  [8], 

[15]|  and   [16]  for examples of  factorization.) 

The asymmetry in (28)  can be removed by defining a distribution of first 

return to the origin as the limit of    y t o"    of    F^(n,t;y)   , viz: 
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F^(n.t) - P{^-n,((>®<t} - P{p1>0,p2>0 Vl^^n'0'fn~t} " 

(29) 

= P{p1<0,p2<0, .... Pn.j^^IPn"0.«^^ • 

Taking transforms and using the obvious: 

(30) (l+m^) = il+nß)   (1-hn")  , 

the symmetric form of (28) Is obtained 

(31) [l-f+] [l-f'] [l-f®] = 1 - 3q  ; 

this distinction vanishes when Q(y) is continuous. 

6.  THE CYCLIC PERMUTATION PRINCIPLE: THE EXPLICIT FACTORIZATION IDENTITY 

The second basic combinatorial result is based upon the n possible cyclic 

permutations of the reward structure. 

Define the event: 

n = 1,2, ... 
t >_ 0 
y > 0 ) 

(32)     £  (n,t;y) = {n is the r1    ladder index;  t <t;p <y}  • | t j^ 0 

Then: 

Cyalic Permutation Principle 

00 

(33) ^H*    1 t ;  0  < pn < y} -    J    ^ Pi«? (n,t;y)} 
r-1 

Proof: 

The proof of (33) follows exactly a proof of Feller for the case t»00 , y»00 

([8], p. 395). Q.E.D. 

The first probability in (33) is governed by the n-fold convolution of Q , 

and the probability on the RHS is the r-fold convolution of F . Hence, taking 

transforms over the appropriate range: 
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ÜO 00 

n=i n    J J+ z>y r=l r 

= -lin[l-f+(z,s;p)]     , 

we obtain an explioit factorization of   (28) 

jjf^l^<,r^ 
(34) f+(2.s;p)  = 1-e 

Various  factorizations  of this  type were  first obtained by Andersen,   Pollaczek, 

and Spitzer,  so it is perhaps appropriate to refer to (34)  as an Andereen-Pollaozek- 

Spitzer Factorization Identity,     (See discussion in  [21]  and   [6],)- 

By analogy with previous results,   (34)  becomes an omnibus  formula for all 

first-passage distributions according to the  following scheme: 

00 

O 

00 

(35) + 

o. 

/ 
fO- 

o 

+ 
o 

-/ 
—00 

-f 
showing the appropriate range of y-integration. 
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In fact, 

r +-i oo co o 

[l-f+]     [1-fö] 
0 

e 

n 

o     —"o 
y»^ 

-I^[q(8.p)]
n 

= e = l-2q(s,p) 

which provides independent verification of (28).  Or, conversely, taking logarithms 

of (26), expanding 8,n[l-3q(s,p) ] in powers of z  , and factoring in the complex 

p-plane will provide independent verification of the identity (34). 

It should be noted that integration with respect to t does not require 

factorization in the above sense, 

7.  CLASSIFICATION OF BEHAVIOR 

Because the reward process defined on the indices of the epochs is Just the 

classic random walk in ^  , the basic classification scheme for these fluctuation 

processes still must hold, with some slight modification in the case where the 

interval between epochs has infinite mean.  We summarize these known results below, 

for completeness. 

Assume for the moment that F^ is an honest distribution; from (34), or (20) 

(21): 

(36) E{ v^ 
1-F+ 

(37) E{»©|. ^T) 

1-F+ 
00 

and 

(38) EU^=^ 
1-F+ 
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with 

Similar relationships hold between any dual pairs of ladder processes. Note that 

(38) is meaningless unless £{£;} <_ 0 , and that all means except possibly (38) are 

infinite if F  is honest. 

On the other hand, from (34) - (35) 

+     -S+ 
(39) F^ = 1-e 

00 

with 

00 oo 

(40) S+ = I   ^ [l-QnV;0)] = I   ^P{Pn>0}  . 
n=l n«l 

and similarly for F^ , which implies 

(41) S® = I - P{p <0} L,  n        n— n=l 

must diverge if    F^   is honest. 

Note that mean ladder epochs and heights may be infinite,   in the honest cases, 

if    E{T}    or    EU)     is  infinite. 

Additionally,   if both ladder distributions are honest,  it  follows that    E{£}  = 0 

(and vice versa),   and then all ladder epochs and indices  are infinite.     For the mean 

ladder heights,   however,  differentiating  (28) gives the well-known result: 

(42) E{X+}  •   E{-X0}  - -MsVU)     , 

so that the mean ladder heights  are both  finite,   if the variance of    ^    is  finite. 



xo 

In fact, using the Central Limit Theorem and a Tauberian theorem on (34), one can 
! 

show the following explicit  result,  due to Spitzer  (see   [8]): 

(43) EU+J^    Mä^.   E{r)..    /Vllie-C©    _ 

where    C      is  the conditionally convergent  series 

(44) c+ =    J    - [P{p  >0}-h]   = -C0= -I    - [P{p  <0}-h] ,  u n -,  n n— 
n=l n=l 

Summarizing these results for the dual pair {F ,F^} , we have the classifi- 

cation scheme shown  in Figure 4. 

8.     FURTHER IDENTITIES 

If a ladder distribution is honest, and the required moments are finite, then 

continued manipulation of (26) will produce the following "Waldian" identities for 

the moments of  the  record values: 

//Cv E{v} = 1+E{total number of  ladder points 
(45) r sdual 

in the dual  ladder process}  = e 

(46) EU)  «  E{T}   •   E{v} 

(47) EU}  =  EU}   •   E{v} 

(48) VU}  =  2E{T}   •   E{vX}  + E{v}   •   V{T}  -   [E(T)]
2

E{V
2
} 

(49) V{A}  =  2EU}   •   E{v$] + E{v}   •   V{U  -   [E(0]2E{v2} 

(50) 
E{4)A}   =  EU}   •   E{vA}  + E{T}   •   E{v(()}  + E{v}   •   EUT}   - 

E{v}   •  E{T}   •  EU}   -  E{T}   •   EU)   '  E{v2}     , 
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etc.  (46) and (47) may be contrasted with the expressions for the means of the 

ordinary values (see, for example, [11]) 

(51) E{j } = E{T} • n , 
n 

and 

(52) E{p } = EU) • n 
n 

or 

(53) lim £Mtli = ÜÜ (53) lim   t     E{T}  . 

9. EXTREME VALUES 

As an example of other random variables in a fluctuation process which are of 

interest, consider the extreme  values of reward attained during some fixed horizon. 

For instance, the maximum over* the mixed horizon    (N;T) , e   , is defined as: 
IN J i 

From Figure 2, we see that this extremum process is just the upper envelope created 

by the strict ascending ladder points, including the origin, which occur in  [0,N] 

and    [0,T] . 

Defining 

(55) K ■ the first index at which the maximum in (54) is attained 

we have 

(56) J = the first epoch at which the maximum in (54) is attained 

and the identity eM _ E p 
N;T   K 



iy 

From first principles: 

/0 1 k 1 N 

E  (k,t;y|N;T)  = P{K=k, j <t.;p  <y|N;T} I ^ ± t  <_ T 
(57) . * * 4- |0<y<» 

=   [1-F   (N-k;T-t;")][6,    l(t)l(y)+M  (kft;y)]     ,   IN  - 0,1,2,   ... 
K0 \0   <_ T _! ~ 

with    6      =1,6,     = 0   (k+o)   ,   and    l(t)     as  the unit step, oo ko v   '   '   ' r 

Using  (10)   and  (34),   the  five-fold transform of  (57)  is: 

e  (zts;p\w;q)  "    I    W     I  e        E\2 e        e        )dT 
N=O     y ( I 

OO 00 
(58) oo      n 

V    w         / -at     /       ri    n -st -py1J2    nn*.      x 

"^    n"      / e          /        ^        e      e      ]  t yQ    (  ;y) 

n=l           •' J    +                                    *y 

t=o y=o 

q\\ - W\ 

from which many previously known special  cases  can be derived.     (See,   for example. 

Chanter 6,   [16]   or Chapter 18,   [8].) 

In particular, we mention the generalization of well-known formulas  for the 

mean index,  epoch,  and value of the maximum attained in    (N;T)   : 

(59) E{<   |   N;T} =    I       / /d*    Qn#(t; 

M. T m 

n«l "f •    +      »^ 

N 

(60) E{f^ | N;T} '   I  t   J   *   J     < „Q""(t;y) 
t"o y-o 

(61) E{p N:T,'nIi"  /  /+
ydt./*<tiy)  • K n» i • 

t-o      y-o 
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Because  of its  Intimate relationship with the strict  ascending ladder process» 

the maximum process also drifts off to    + ^ ,  as    N    and    T    Increase without   limit, 

unless    E[0   < 0   .     In this case    K    Is  finite, with probability one,  and we have 

simply: 

00 CO 

I       -8J     -VD    I n-1        /        •      + 
<3  e (62) E^e     ^e"^^- -  ^    y=0 

(N-OO%T-<»;E{C}<0) .  E{K|»,00}  IS finite, but the magnitudes of E{ J I00,00}  and 

E{p I",00} depend upon further assumption about Q .  By comparison with (34) and 

(39), we also see that In the Infinite-horizon case: 

(63) E+(klt;y|«»j") - [1-F^] [6kol(t)l(y)+M
+(k,t;y) ]  , 

which could have been predicted from first principles. 

Another  Interesting case occurs If    Q(t,y)     is symmetric about    yo    for all 

values of    t   .    Then, by direct summation of  (62),  the Index and epoch of  the 

maximum have  the transform: 

,,.. +, |       v vl-it?a((?)  
(64) e (z%s\o\w\q)   -     ...     :—/T   .    , ^ \ *       '   '^ q(l-w) Jl-wza(s+q) 

where    a(ä)   ■ E{e       }   .    No finite maximum exists for this oscillating case as    N 

and    T -•■ o» .     However,  the normalized variables 

(65) a - ^        ; ß - — 

have a Joint  density whose mass lias entirely along the  line    a ■ ß  (0<a<l)   .     The 

marginal distribution of either    a    or    ß    is: 

(66) P{a <_ x} - - sin'/x 0 1 x 1 i    » 



21 

the aro-sine  taw so well-beloved of Feller   [8].     Similar results hold  for  the 

joint distribution of  the maximum and    n , ,     ,  or the joint  distribution pmin  [N,n(T)] 

of  the maximum and minimum  in     (N;T)     (see   [8]   and   [16]  for corresponding  results 

in ordinary fluctuation theory.) 

10.     GI/G/1 

To  illustrate an application of  renewal-reward  fluctuations,  consider  the 

GI/G/1 queue.    It  is a well-known result  from queueing theory that,  if  customers 

numbered     0,1,2,   ...     arrive at  epochs    T    = OJT.JT.+T.,   ...     and have service 

th 
times    a   »O-.o»,   ....   then  the delay in queue of the n      austomer%    6     ,   is given 

by the recursion relationship: 

6    =  0 
(67) 0 + 

6n =   [6n-l + Vl " Tn]       * n = ^^   •" 

where  [x] = max (x,o) , and it is assumed there were no customers present at the 

th   ,  . 
zero  arrival. 

If we identify the rewards of the fluctuation process as: 

^n = 0 

(68) 
?n = Vl - Tn '    n" l>2*   '" 

n 
then we see that    p    »    /^    C.     is identical with    6      as long as    6      stays positive: 

i-0 
If 

(69) 7T®(n)  - max |v®+ v©+  ...  v ® < nl 
j  "  0.1 nl 0 ■L ^ ) 

is the last weak descending  ladder index   (including zero),  then,   in general, 

(70) 6     - p    - p   n 
n        n        71 ©(n) 
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(See Chapter 6, [8], and Chapter 4, [15].) 

For a GI/G/1 queueing process which begins with no customers present at the 

zero  arrival, define: 

v ■ the number of customers served in a busy period 

ß » the duration of a busy period 
(71) 

Y ■ the duration of a busy cycle 
and 

\   -  Y-8 = the duration of an idle period 

Then it follows directly from the above observations that: 

e V -  V 

(72) 

if  the reward structure is chosen from (68)(~    means  "equal in distribution").     If 

the underlying renewal process  (2)  is then chosen to be  identical with the queueing 

arrival process,  then: 

(73) 
ß   ~  ((. - +  X 0      , 

and we can use previous results, especially the appropriate form of (34) - (35). 

If 

P{a It}- S(t)  ; 
(74) 

P{T  It}« A(t)  ; 

then the appropriate form of    Q    is given by: 

/i = 0,1.2,   ... \ 
I t1oJ 
\i - 1,2,   ... / 

(75) Q(y.t)   =    /s(y+u)   dA(u)     ,        ("t > Q ' "l 
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or, using lower-case letters for densities: 

dl  .Q(y,t) = s(y+t) a(t) dydt 

and 

(76) dj; .Qn*(y.t) = sn*(y+t) an*(t) dydt    (n = 1,2, ...) 

over the appropriate range. 

Substituting in (34) - (35): 

-I    f     fe-^-P^  dAn#(t) fe'Py  dSn#(y) 
n=l    •' J 

(77) E{2 e  'e r } " 1-e , 

which is implicit in a slightly more general formula due to Kingman ([12], p.351). 

From the definition  ß ■ y-\   , an alternate form of (77) is obtained: 

t 

-I f      f^  dAn#(t)  /■e-(s+P)y dSn#(y) 

(78) E{2V
sße+P1} - 1-e      0 

Let 

(79) p    - P{p > 0} -  / [l-Sn#(t)]dAn#(t)  . J n     n 

Then for the busy cycle to be a recurrent event, i.e., for the busy period to 

terminate with probability one, F^ must be an honest distribution. 

(80) EU) - E{o} - E{T} < 0 or f^ 1 1 

is the usual queueing criterion; from (41), we see that an alternate criterion is: 
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oo 

(81) I    i [1-p 1 oo 

, n ' rn'' 
n=l 

From (78) and (79) follow the well-known results: 

E{v} = e 

(82) 

«I   n    n 

E{v} = e11"1 ;     E{ß}  - E{v}   •   E{o}     ;     E{y} » E{v}   ■   E{T}     ; 

:{v2} - E{v}h   I   Pn+ i]    ; etc. 

Other results can be expressed in terms of  the    p     ,   or incomplete integral forms 

of   (79),   [10]. 

To obtain information about customer delay,   let: 

delay in queue of  the  last customer whose 
(83) 6(N;T) - 6 ,       ,  .       = index is less than or equal to    N  ,  and 

* J whose arrival epoch is  less than or equal 
to    T  . 

Then,  by a direct  application of the reflection principle it  follows  from  (70) 

that 

(84) 6(N;T)   ~  e^T 

if  the correspondence  (75)   is  followed.     Direct  results then can be obtained from 

(58)  -   (63).    K    and     i       in   (55) and  (56) are then the index and arrival epoch of 

of  the last customer in  (83),  measured from the beginning of the busy period in 

progress. 

If  conditions   (80)  are satisfied with a strict  inequality,   then a stationary 

delay distribut:   n exists as    N -♦■ «>    and    T ->• «  ,  given by the appropriate  form 

of   (62): 
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(85)    E^Ke     lKe"p6>-^ye 

oo oo 

I   I.     fe-(s-p)t dAn*(t)     r-py dSn.(y) 

!1      n-1 n       J J 

"  EhH 

Or,  substitution of   (63)   into (18)   -  (19)   gives a Wiener-Hopf  integral equation 

which is  a  generalization of a  famous  result  due to Lindley   [13]# 

11.     AN  EXTENSION 

It should be clear from the development  that the addition of  the renewal 

"random clock" created very little additional labor,  since keeping  track of  the 

{x   }    was unrelated  to  the decomposition which was made on the     ^C.}   • 

Similarly,   one may generalize these  results to include an  r-dimensional vector 

with components: 

(86) 

with distribution 

ri ' \Ti,Ti Ti/ (i -  1.2,   ...) 

(87) Q(t;y) - Pd^t;^} 
/  i -  1,2,   ...\ 
(   t>_Q 
\ -oo    <    y    <    +oo       / 

In fact,   the components of the    {T  }    do not have to be nonnegative if the 

fluctuations of  the     {ij}    are not under  investigation,  i.e.,   if only    {p  }    is 

decomposed into dual ladder processes. 

Almost all of  the previous development  carries through with obvious modifi- 

cation;  in particular,   if r-dimensional vectors of "epochs,"    4  »  and transform 

variables,    8  ,  are defined in the obvious way,  then  (3A)  becomes: 

(88)      E{3V
a,*e"PA}  -  1-e 

-ivff-f^ hsW'^-A 
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with  the range  of  integration    Y    being  chosen  for the appropriate  ladder process, 

and    T    being chosen from the appropriate  domain of the     ^T.}   . 

Exploitation of   (88)  would appear to hold much promise for  further results in 

queueing theory.     Formal justification of  the manipulations necessary could be made 

by appealing to powerful operator identities  in Banach Algebra developed by Wendel 

[22,23]  and Baxter   i4,5,6]. 
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