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ABSTRACT

This report summarizes the current level of understanding of the performance of arrays
of real radiators. The extent and nature of the effects of mutual coupling (element pat-
tern distortion, element impedance variation with scan angle, and polarization varia-
tionwith scanangie) in array antennas are investigated for avariety of array geometries
and for several types of radiating elements. Both finite and infinite arrays of regu-
lerly spaced, uniformly illuminated, and progressively phased elements are consid-
ered. The effects of coupling on unequally spaced arrays, arrays with coupled feed
networks, and circularly polarized arrays are also discussed. Finally, the results of
a study of the effects of coupling on the radiation patterns of multiple-beam optical-
type antennas are presented. Although most of the numerical results are based on
thin, dipole radiating elements with and without ground planes (the dipole without a
ground plane is the exact dual of an array of slots in a ground plane), both theoretical
and experimental investigations of the sensitivity of the results to the element type are
included. Emphasis is placed on the results of various analyses and their implications
to the array designer. The derivationsof some of the more important resultsare briefly

outlined, but in most instances, only the relevant conclusions are given.
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FOREWORD

The primary objective ot this report is to provide the working engineer with a knowledge
of the =ffects of mutual coupling on array performance — what the effects are and how serious
they are. The theory and the necessary analytical tools for reproducing and extending the
results are outlined and referenced, but the emphasis is on results; i.e., to what extent do
the properties of an array depend on the kind of radiating elements used and the way they

are excited?

The report thus has shortcomings that would be of interest to the well-rounded engineer: it

1,2 that have not yet proven of practicalvalue, and it

ignores certain very fundamental results
ignores entirely the question of how to measure experimentally the effects discussed.?’"5 Al-
though the purpose of this report is tutorial, many of the results are appearing here for the

first time.

The origins of this report can be traced to 1961 when one of the authors prepared noteson
array antenna theory for a summer course in "Elements of High Powered Radar Design" at
M.I.T. In 1963, the revised notes were issued as a treatise on array theory.6 At that time,
the author was dissatisfied with the state of knowledge on mutual coupling; subsequently, both
authors of the present report have devoted a great deal of time trying to improve the under-
standing of such phencmena., They were also fortunate to establish and maintain person-to-
person communication with many others who have become interested in this area and whose
names appear frequently in the references. As a result of these efforts, significant progress

was made which thoroughly outdated the chapter onmutual coupling in Ref. 6 in justafew years.

The motivation for this updating of the authors' writings on mutual coupling research is due to
Professor Curt Levis, Director of the Ohio State University Antenna Laboratory. Athis invi-
tation, the authors gave lectures during the summers of 1965 and 1966 as part of the Univer-
sity's curriculum on "Recent Advances in Antenna and Scattering Theory." The 1965 course
notes formed the original draft for this report. For the 1966 course, the notes underwent a

major revision. Since that time, only a few corrections have b2en made.

The authors are indeb.:d to Professor Levis for the inspiration to write this report and for
permission to publish it as a Lincoln Laboratory Technical Report. They are also apprecia-
tive of those who supported the work at Lincoln Laboratory, namely, the U.S. Air Force
and, more recently, the Advanced Research Projects Agency. The authors especially thank
Lt. Colonel John C. Toomay who was program directer at ARPA and who has encouraged broad
research of this type, insisting that the results be written in a manner intelligible tc those not

specializing in the field.

It would be impossible to list all those whose research contributed to the body of knowledge
described in this repcrt. The references do this to some extent, but do not give credit to the
engineer whose experimental work is not publishedin the openliterature. In this category, the
authors especially acknowledge the contributions of L. Schwartzmann of Sperry Gyroscope
Company and R. Tang of Hughes Aircraft Company whose observations and experiments have
been helpful in verifying and extending the theory of mutual coupling effects.

For the interested reader, theauthors recommend Microwave Scanning Antennas — Vel. II: Ar-

ray Theoryand Practice, R.C. Hansen, editor (Academic Press, New York, 1966). Chapters

2 thrcugh 4 by A. A. Oliner and R.G. Malech cover much the same materizal as this report but

from a somewhat different viewpoint in some cascs.

vii Preceding Page Blank



MUTUAL COUPLING IN ARRAY ANTENNAS

I. INTRODUCTION
A. Qualitative Explanation of Coupling Effects

It is intrinsic to the nature of antennas that when two antennas are in proximity and one is
transmitting, the second will receive some of the transmitted energy, with the amount depend-
ent on their separation and relative orientation. Even if both antennas are transmitting, they
will simultaneously receive part of each other's transmitted energy. Furthermore, antennas
rescatter a portion of any incident wave and thus act like small transmitters even when they are
nominally only receiving. The result is that energy interchange between a particular element
of an array and a remote point occurs not only by the direct path, but also indirectly via scat-
tering from the other antennas of the array. This effect is a manifestation of the "mutual cou-
pling" that exists between array antennas. It is not usually a negligible effect and complicates
the design of such antennas.

Before attempting a quantitative examination of coupling effects, let us elaborate on the
foregoing physical picture by examining (1) elements of a transmitting array and (2) elements
of a receiving array (which may, in fact, be the same array at a different time).

1. Coupling in Transmitting Arrays

Imagine the two antennas shown in Fig.1 as being two of many in an array. The g=nerator
attached to antenna n sets up a wave traveling from the generator toward the antenna indicated
by the arrow labeled (0) in the figure. Part of this energy is radiated directly into space (1),

while a part is coupled to the other antennas of the array — in this particular case, to antenna m.

The field incident upon antenna m causes current flow in that antenna which reradiates some of
the received energy (3) and also launches a wave toward the generator of antenna m (4). Of the
energy rescattered (3), some is reradiated directly into space and some in turn couples again to
other elements, and so forth. If antenna m is also being excited by its own generator, the en-
ergy rescattered from antenna m due to the generator excitation of antenna n adds vectorially
to the energy from generator m, altering the amplitude and phase of apparent excitation of an-
tenna m in a manner dependent on the output of generator n.

Thus, the total contribution to the far-field pattern of a particular element

in the array depends not only on the excitation furnished by its own generator

(the direct excitation), but also on the total parasitic excitation, which de-

pends on the couplings from and the excitation of the other generators.

The wave which is traveling toward the generator (4) of antenna m adds to any reflection

from that antenna because of mismatch between the generator and the antenna. For the case of
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principal interest here, in which the element excitations are coherent, the wave (4) due to gen-
erator n differs from the reflected wave in antenna m because of its own generator mismatch
only in phase and amplitude; exactly how depends on the coupling betweern the two antennas and
the complex amplitude of the output of generator n, The net effect of the vector sum of these
two waves to an observer looking at antenna m from its generator is the same as if the imped-
ance of antenna m were changing as a function of the excitation and location of antenna n, In
fact, it is common pracvice to model this effect of coupling on such arrays as a change in the ap-
parent driving impedance of the elements (this change is often termed the "mutual impedance
variation").

While not entirely without its confusing aspects, the concept of a changing driving imped-
ance is useful. For example, for a particular set of element excitations and locations in an ar-
ray, the generator impedance that is optimum for each element (in the sense of maximizing the
radiated power) would be a "match" to an impedance at the antenna terminals that would set up a
reflected wave numerically equal in phase and amplitude to the backward traveling waves induced
because of the coupling. Such a generator achieves maximum power transfer in an array, even
though it is not the impedance which is a match to what one would measure looking into a single
antenna without the other antenuas excited.T Since the coupled waves depend on the excitation as
well as the placement of the other antennas, the impedance selected is optimum only for that set
of conditions. Thus we arrive at one of the principal aggravations of coupling in arrays whose
element excitations are varied (such as in electronic scanning arrays):

The generator impedance that would maximize the array radiation efficiency
(gain) varies with the array excitation.

2. Coupling in Kcceiving Arrays

Figure 2 illustrates the coupling paths for a receiving array in which the receivers are rep-
resented as passive loads. Again, the figure depicts two elements of a large number assumed
to be present in an array.

Assume that there is a plane wave incident as indicated by the arrows labeled (0) from a
direction such that the incident wave will strike antenna m first. The field incident on antenna
m causes current to flow on this antenna which launches a wave into its feed (1) and also rescat-
ters some of the energy into space (2) and into adjacent antennas (3). The rescattered wave from
antenna m (3) adds vectorially at antenna n to the wave directly incident from space.

t In order to minimize confusion, we adopt the following terminology :

(a) Antenna impedance: the impedance looking into a single isolated element.

(b) Passive driving impedance: the impedance looking into an element of an
array with all other elements in place and passively terminated (in their
nomal generator internal impedances, unless otherwise specified).

(c) Active driving impedance: the impedance looking into an element of an
array with all other antennas in place and excited (excitation must be

specified).

Since impedance (b) is of minor importance and in most practical cases differs only slightly from (o), the term
"driving impedance" alone will be understood to refer to the active driving impedance.




Thus the total input energy to each antenna from the incident wave is the
vector sum of the waves coming in directly from space as well as those
coupled parasitically from the other antennas: it is dependent on the rel-
ative location of all the elements in the array.

Since the relative amount of energy absorbed and energy reradiated from any antenna de-
pends on its match to its terrinating impedance, the total input energy to each antenna depends
on the terminating impedances of all the other antennas. In fact, for maximum extraction of
energy from the passing wave, we would like to choose the terminating impedance of the elements
in such a manner that we minimize the total energy backscattered into space (2). Consequently,
we should actually mismatch the receiver relative to the artenna impedance in order to set up a
reflecti.n from the receiver back to the antenna (4) to cancel the wave that would have been re-
scattered had the receiver been matched to the actual impedance of each antenna:

The proper impedance depends on the placement and excitation of the other
elements. In fact, the optimum receiver input impedance is precisely the
same as the optimum generator impedance for the same array for trans- 1
mitting energy in the same direction.
This fact follows directly from the principle of reciprocity. It can be inferred directly, although
it is by no means a simple exercise.

It should now be evident that mutual coupling plays an important role in the performance of
array antennas. It may not be so evident that understanding and coping with its effects can be {
reduced to a reasonable problem. The remainder of this section is devoted to a detailed anail- 1
ysis of the ways in which mutual coupling depends on the design parameters of the array and its

elements.

B. Effects of Mutual Coupling on Array Performance

The exact extent and nature of the effects of coupling on array performance depend on (1)
the type of antenna and its design parameters, (2) the relative placement of the elements in the
array, (3) the type of feed used to excite the elements and the design parameters thereof, and
(4) the range of relative excitations employed (the scan volume of the array). In the following
subsections, we will examine quantitatively the extent of these effects and their dependence on

0 (o} [ 3] - -

the factors mentioned, Before doing su, however, let us point out the practical consequences
of tunese effects. These fall into two classes: (1) those effects which arise from the apparent
variation in element driving impedance and (2) those which arise from the multipath nature of
the route followed by the energy from each generator to the far field or from the incident wave

to each receiver. These cause distortion of the array far-field pattern.
1. Impedance Variation and Its Subsidiary Effects on Equipment

The apparent variation in element impedance generally leads to a variation in array effi-
ciency, since it is a practical impossibility to match the element driving impedance for all con-
ditions of excitation, In addition, the apparent mismatch produces precisely the same effects as
a real mismatch on such auxiliary equipment as receivers, transmitters, and transmission lines.
Specifically, it can contribute to increasing the noise figure of the receivers and distort the re-
ceiver transfer coefficient in both phase and amplitude (leading in severe cases to receiver in-
stability). On transmission, the transmitter transfer characteristic ‘:an be similarly altered.
Also, on transmission, there are the possibilities of voltage breakdown and overheating in the
transmitter output lines due to standing waves, and degradec transmitter output due to detuning.



2. Pattern Variation Effects

The multipath route the energy follows because of mutual coupling causes the patterns of
arrays to differ from those that would be predicted on the basis of simple theory using noninter-
acting elements. In very large regular arrays (those in which the elements are placed at regular
intervals on a grid and which have a sufficient number of elements so that edge effects can be ig-
nored), the usual pattern distortion effect is a simple scaling up and down of the relative amplitude
of the patterns while preserving the relative pattern shape. However, for irregular arrays or for
small regular arrays with dominating edge effects, the relative pattern differs aubstant;ally, in
ways which are often quite compliceted, from the pattern computed ignoring coupling effects.

In antennas with elements that can support more than one orthogonal sense of polarization,
it is possible for the coupling to excite the polarization sense which is not directly excited by the
generators, thus causing depolarization of the signal.

Both the change in polarization and the change in efficiency due to mismatch effects cause
the gain of the array to change as a function of the relative excitation of the elements; for ex~
ample, the gain varies with scen angle (eiement-to-element phasing) in phase-scanned arrays.

II. COUPLING IN INFINITE REGULAR ARRAYS

As an aid to analysis and understanding, it is helpful to analyze an idealized array which,
although a strict physical impossibility, is close enough to the real world to provide directly use-
ful answers in many cases of practical importance, and insight into others.

A. Infinite Array Concept and Its Utility

The most useful idealized array model for coupling studies is usually referred to simply as
an "infinite array." This means an array with (1) all elements placed at regular intervals either
in a straight line or on a flat surface of infinite extent, (2) all elements identical, (3) the ampli~
tude of element excitation equal from one element to another (uniform amplitude illumination),
and (4) the relative phasings of the elements differing at most by a term which is linear in two
orthogonal directions across the array. Mathematically, if the array lies in the x-y plane of a
coordinate system such as that of Fig. 3 (centering one element for convenience), the elements

COLUMN O

Fig. 3. Generalized plonar array geometry .
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are located at the intersections of a rectangular gridT with spacings Dx and D_. Thus, it is con-
venient to represent elements by a double set of indices, so that the mnth element is located at
X = me, y= nDy. The element excitations differ only by a phase term

¢mn = ma +nf

where a and f are the row and column phase inrcrements.

The utility of this model is in the simplifications that it permiis in mathematically modeling
and analyzing the coupling in an array. As will be seen, the behavior of such an infinite array
describes fairly accurately the behavior of most of the elements of modest to large arrays that
are either on flat surfaces or shallowly curved surfaces with a smoothly varying amplitude and
phase taper.

The nature of the behavior of the element driving impedance as a function of scan angle is
eagily assessed in an infinite array. For an antenna which is fed by a single-mode transmission
line, we can write the terminal voitage of any one antenna in terms of the current flowing in the
others by simultaneous equations of the form

Voon = ()

mn Z Zmn' pqlpq

where the equation defines Z pq as the ratio of the terminal voltage at antenna mn due to a
unity current flowing in antenna pq when all other antenna currents are zero. Hence, the zmn Pq

are termed "mutual impedances" when the indices mn and pq are different. The driving imped-

ance of the mnth antenna is, by definition,
Vv
ZD - Inm . (2)
nm nm
. ) :
= Z . (3)
nm, pq
m n nm

But the regularity of the array and its excitation requires that

= Jipa+q8)
Iq Io€ . (4)
If we consider the central element for notational simplicity, we have
= i(pa+qB) 5
zpla.B) = 1 Y 2oy oq® (5)
mn

which makes apparent the fact that the driving irnpedance for such an array is simply the vector
sum of Z and the so-called "phased mutual impedances" resulting from the excitation cf the

00, 00

other antennas. The term zoo 0o 18 the impedance looking into the central element with all others

open-circuited so that the current at their feed points is zero. If so terminating the antennas
causes the current to be zero everywhere on the element (as would be true for thin, gap-fed di-
poles and slots, if the reference point is effectively at the gap), then setting I q° 0 is physically
equivalent to removing the pq element, and Zoo, oo 18 numerically the impedance of a single iso-

lated element. In most practical cases, it is very nearly the same. We will investigate the be-
havior of the mutual impedances further in Sec. IIl.

t The practical and important case of a trianguiar grid can be analyzed by vacating every other site of a rec-
tangular grid.
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Since Eq. (5) was obtained without reference to the feed system supplying the element excita-
tions, we can state categorically that in any infinite planar array of single-mode elements, the
driving impedance is given by a two-dimensional Fourier series in the phasing constants. The
coefficients of the series are the complex mutual impedances between elements. The ramifica-
tions of this result will be explored more 1iully kzlow,

A second virtue of the infinite array model is that its periodic nature allows us to ....ack
boundary value problems by use of Fourier series (see for example the discusegion of the grating-
lobe series in Sec. II-D),

Finally, since the impedance behavior of an antenna in an infinite array of single-mode ele-
ments does not depend on the details of the circuit feeding the array, we can, by this artifice, sep-
arate the discussion of the intrinsic properties of antenna elements from the more complex prob-
lems of the interaction between the elements and the feeds. For a finite or irregular array, we

cannot in general discuss antenna impedance as an isolated factor,

B. Other Useful Idealizations

Several other idealizations which are commonly used are: (1) The concept of a "single-mode
antenna element": an element whose boundary conditions are such that any current that flows has
to conform to a single unique spatial distribution. The infinitesimally thin haif-wavelength dipole
and the thin resonant slot are classical examples of this type of element. (An open waveguide
which has substantial excitation of higher order modes at the mouth is not of this type.; (2) The
concept of an "invisible feed." This idealized feed does not perturb the current distribution on
the antenna and has no coupling to the other antennas nor te cother feeds, nor does it cause any
rescattering. (3) If the elements are above a ground plane, the grouud plane is assumed to be
infinite in extent and to have infinite conductivity.

C. Resistive Sheet Problein

The fundamental nature of the mutual coupling problem (or, more precisely, one of its ram-
ifications — the change in impedance of an array with scan angle) is illustrated by examining the
behavior of the reflection coefficient of a thin resistive sheet of infinite extent backed by an open
ci.rcui!:7 80 that there are no fields transmitted through the sheet [see Fig. 4(a)].

The boundary condition imposed by such a sheet is that for z = 0, for all x and y, the ratio
of the total tangential electric field to the total tangential magnetic field be numerically equal to
the surface impedance of the sheet. We choose the surface resistivity of the sheet to be that of
free space: ¢ = 120rohms, so that the sheet is an exact match for a normally incident wave.

If we now move the source through an angle GE from the normal in the y-z plane of Fig. 4(b),
we can express the spatial dependence of the incident and reflected plane waves as

i, i .
= E_ exp[—jk(y 8in OE + z cos GE)]

E o]

where E ; has a tangential component

=i

R |
Eo tang = Eo cos eE

7 As pointed ou? in Ref. 7, the opsn circuit is not realizable, navertheless the mode! is useful os we shall see.
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Fig. 4. Resistive theet reflection geometry:
b) {0) incident wave situations, (b) E-plane scan
reflection, (¢) H-plane scan reflection.
(c)

and
i_ =i . .
= Ho exp [~jk(y sin GE + 2 cos GE)]
where
=i |
Hotang = H,

For the reflected wave, we have

EF - E, exp|[-jk(y sin © -z cose )

A - ﬁ: exp [~jk(y sin er — z cos er)]
with
r _ @l r S
Eo tang E, cos6, , I’io tang H,

Applying the boundary condition at z = 0 gives




e R A el

r :
E; cos OE exp [- jky sineE] + Eo cos er exp [- jky ainer] . e f

i . r
H, exp {—jky sin GE] -~ H exp [~ jky sin er]
For each wave, we also have

i r
E E
s =2 r__o
H-e and Ho ;

giving
E, (cos ®p — 1) exp[~jky 8in®L] + E_ (cos ©, + 1) exp[—jky sin@_] =0 . ?

This equation can obviously have a solution independent of y only if GE = _er. Making this sub-
stitution and solving for the voltage reflection coefficient gives

r
i 1 —-—cos®O

FE = i = TT———E- (6)
cos 6
E E
o
or
(¢]
_ 2 E
I‘E =tan” 5= . (7)

By analogy to the transmission-line formula for the normalized load impedance r in terms of

the reflection coefficient

-

—r-
I"r#-i

the sheet represents an impedance to the wave that varies as

1
(8)

Te = Cos GE

For scan in the H-plane, the assumed direction of E-field of Fig. 4(c) leads to

cos O, —1

T = __._H__ (9)
H cos eH + 1
¢
e /
= —tanz —Zﬂ (10)
and
Py = cosGH . (11)

Thus, even for such a simple situation as a wave impinging on a resistive sheet, there is a
change in the apparent impedance that the sheet presents to the wave as a function of scan angle.

The practical importance of this result becomes apparent if we assume that the resistive
sheet represents the limiting case of an array of infinitesimal dipoles with infinitesimal inter-
element spacings. It ie logical to expect on this basis that the reflection coefficient behavior
represented by the sheet would be an extreme case. It might also seem logical that extremely
dense packing of elements would represent maximum impedance variation; however, comparison
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indicates the opposite is true. The resistive sheet impedance variation appears to represent a

lower bound on impedance variation with scan.
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Fig. 5. Reflecticn coefficient magnitude vs principal plane scan angle.

For example, Fig. 5 compares the computed variation in reflection coefficient magnitude

for arrays of half-wavelength dipoles for various spacings D and various heights s above a
(The curves for

ground plane with the reflection coefficient behavior of the resistive sheet,
wider spacings are discontinued at the angies where major lobes of the array are equally dis-

posed about broadside; the behavior just retraces the curve from that point.) Note that the re-

flection coefficient for a given scan angle in the principal plane becomes monotonically better
As a confirmation, computations of the impedance

as the elements are brought closer together,
behavior for a central element of a large array of short dipoles without a ground plane for Dx

D, = 0.1A are also shown. It is apparent that the approximation to the impedance variation of

the resistive sheet is quite good.
The second important consideration is the base from which this change takes place; in the
figure, this is the impedance which matches the array at broadside. What the figure does not

show is that for the very closely spaced short dipoles, the absolute impedance — particularly

the reactive part — has become exceedingly large, although the change in immpedance is quite

small. All the data presented assume the generator impedance is matched to the element driving
impedance when the array is phased for broadside reception or transmission. To do so, it is
If this reactance is large compared to

necessary to tune out the broadside driving reactance.
the resistive part, the tuning is extremely critical; such is the case for short dipoles stacked

close together.

t The height s in Fig. 5 is the one that minimizes the mismatch in the principal planes of scan.
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D. Grating-Lobe Series and Its Significance

The periodic nature of the infinite array permits a very general analysis of the impedance-
vs-scan behavior of various elements. By expressing the power radiated and the power stored
in the vicinity of the array in terms of the current or field distribution on a typical element, the
complete impedance behavior as a function of inter-element phasing can be described. The re-
sult, although in the form of an infinite series, is not only a useful computational tool for ele-
ments with known current distributions, but also furnishes insight into the properties of elements
that affect their irnpedance behavior,

Pioneering in the anralysis of infinite arrays was done by Wheeler8 and Edelberg and C)lim':r,9
but Stark10 gave the first definite exposition of the complete series. Both Wheeler“ and Pat'ad12
have written on the physical interpretation of the result, and Rhodes13 has given an elegant der-
ivation of a related expression for single elements. The derivation is straightforward, but will
only be sketched here. It is based on the fact that from an expression for the total power flow
(both real and reactive) outward from a typical cell of an infinite array at the array face, the
driving impedance the cell presents to a single-mode transmission line can be calculated and
shown to be related to the element pattern,

To illustrate, let us consider an array of elements on a rectangular grid. The elements
are assumed to be identical metallic conductors of infinite conductivity with a known surface
current density distribution in the y-direction, K_(x, y).T The surface current density is identi-
cal from cell to cell, except that the relative phase of the current at the center of the mnth cell
is exp[-j(ma + np)]. Thus, the total surface current density distribution can be expressed as

a doubly infinite series:
K(x,y) = g > K, (x - mD,,y ~nD_) exp[-j(ma + ng)] (12)
mn

where €, is the y-directed unit vector. Note that K(x, y) is not a periodic function; however, the
product K(x, y) exp [j(ax/Dx + py/Dy)] is periodic and can be expanded in a two-dimensional Fourier
series. The result is that the normalized current density can be written as

Bud) -z T VK, (a.8) expl=ilk, x +k )]
inc P q pq P q

where we have defined

+ 2
kx = O'__E___EI (138.)

P X
k = E_B_z_l” (13b)
y
p y
and
k, =/k:—k: —k; : (13c)
Pq p Yq

1 Only the requirement of identical elements is necessary; the other restrictions are for convenience and can be
removed.
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The definition of k7 is included for later reference, and k o is the free-space propagation con-

2

stant, koZ < wop e By the usual procedure, the Fourier coefficients are found to be

o
Dx/z Dy/?. K (x,y)
1
K, {(a,8)= %5 S S —Y—— explitk, x + k_ y)]l dxdy . (14)
Yoq PxP Y-p /2 Y-p /2 linc Yq

If we now apply Maxwell's equations to the free-space region in front of the array, we obtain
expressions for the electric and magnetic fields in space in terms of the surface current density
at the aperture. The electromagnetic fields in space must be periodic in the same sense as the
surface current density and, in fact, must be an infinite set of propagating or attenuating plane
waves. For the electric and magnetic fields tangenticl to the aperture plane, we have

K, («a,8)
y
H (x,y.2) =} L —B3— expl-itk,_x+k _y+k 2 (15a)
P g p Yq Pa
(kg —kl)K, (a,B)
Ey(x,¥,2) = =32 3 Pd exp(-jtk, x+k y+k_z)] (15D)
o 2 » Yp Zpq
P q pq

where ¢ = ,po/co is the intrinsic impedance of free space.

It should be noted that the wave equation for the free-space region defines an infinite spec-
trum of plane waves. Each plane wave is associated with a "propagation vector® with compo-
nents k X’ ky, and kz. In general, these components can be complex, but for this case, k X and
k_are constrained to be real, while kz is positive real or negative imaginary such that the wave

equation will be satisfied:

2 2

2 2 2
kx-ky ’ k™ =w'n €

2
kz‘ko—

Physically, for k’ + k ; < k2, we can identify the k's with the angles of Fig. 3:

k =k_8in© cos ¢

X o

k =k 8in®© sing¢

y o

k =k _cos® . (16)
0

z

In this notation, for example, the far field of a typical element with normaliz:d current density

[Ky(x, y)/lmc] ey is

1 - (;ﬁ)z SDx/Z SD)/Z w explilk,x + k y)] dxdy

-Dx/Z -Dy/Z inc

where Iinc is the total incident current in a cell. The usual pattern in ¢ and 6 coordinates is
obtained by substitution of Eqs.(16) into this result. Note that the Fourier components of the

current density are related to the far-field pattern of an element when k: + kZ < koz. Although

we cannot associate the plane waves that have k:' + ky2 > koZ with the element radiation pattern,
they still have significance because they correspond to stored energy in the aperture.

It is also worth noting that the discrete, periodic boundary condition defined by the aperture
of the array causes the radiated power to be confined to a discrete set of directions in kxky-space.

12




In the above notation, this means that the variables kx and ky take on only the discrete set of
values k. and k_ for every beam-pointing angle specified by the element phasings, a and 8.

q
This contrasts with the situation for finite, planar apertures where kx and ky are continuous

variables,

If the normal component of the Poynting vector, —EyH;:, is integrated over one cell in the
aperture plane, we obtain an expression for the complex radiated power per element. The ele-
ment driving impedance is related to the radiated power and is given by

2 2
pp, 2 2 (ky—ky)
. X Y 2
Zp@ @ =t L Y ) —— K, @pl® . (17)
o p:—eo q:-oo qu Pq

Observe that the numerator in the p = q = 0 term is just the power pattern of an element of the

array when (oz/Dx)2 + (ﬁ/Dy)2 < k:’.

1. Physical Interpretation of the Series

k , a\ndkz ,

Pq
note that we can write the array factor of a uniformly illuminated array with phase constants a

To grasp the significance of the "directions" specified by the factors kx ,
and B8 as

Ak, ko) = Y ) explj(ma + np)] exp [-i(k,mD, + k,nD,)]
m n

As it stands, A is a function of two variables kx and ky that can range from —« to +%, [t will

have maxima at points "in k-space" where
(kxDx —a) = pen

(kyDy B) = q2n

or, referring to Eq. (17), at all values of kx and ky satisfying

k =kx . p =0, %, £2,,

k_ =k ’ q=0,=*1,%2,,

- -

That is, the infinite array generates a "nest" of delta functions in k-space on a regular grid as

indicated in one dimension in Fig. 6(a). The delta functions inside

2, .2 _ .2 .
ke + ky = ko
correspond to grating lobes in visible space, the remainder to lobes in "invisible space." i
Consequently, we have a physical interpretation of each term of Eq. (17): the pq term cor- &
o

responds in amplitude to the element "power pattern" [Fig. 6(b)] of a typical element in the "di-
rection" k_ , k_ divided by the z-direction "propagation" constant [Fig.6(c)]. For kx and k

p
in real space, the z-direction propagation constant is real and that term of the series contributes

only to the real part of the impedance, If kx and ky are large enough to make kz imaginary,

p Pq
that entire term will be imaginary and will contribute only to the reactance.

An important observation about the symmetry of the driving impedance variation with

scan follows from the fact that substitution of —a and —8 into Eqs, (13) for kx and ky changes
p q
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Fig. 6. Factors of grating~lobe series (one dimensional): (a) scanning
array of delta functions, (b) element pattern, (c) 1/k_ factor, (d) re-
sulting contributions to series for ZD(O). x

kxp - —kx(_p), etc, Since we sum over all p and g, the signs of p and g are unimportant.
Further, since Ky q(ar,ﬁ) is multiplied by its complex conjugate in Eq. (17), the sign ZD(a,B)
is invariant to changes in sign of k,  and k_ ; hence,
p 9
ZD(G.B) = ZD(—G.B) = Zple,=B) = Z(-a,-B) (18)

for an element in an infinite array. Thus, in the following examples, we will only examine the
behavior of ZD(a, B) for positive a and 8.

2. Some Qualitative Inferences from the Series

The effect of scanning the beam on the driving impedance of the element thus depends on the
change of the sum of the contributions of the individual grating lobes as the nest of grating lobes
is scanned in k-space. For examrle, the effect of a grating lobe crossing the boundary between
real and imaginary space depends markedly on the behavior of the element pattern at that bound-
ary, since 1/kz = o, Unless the element pattern has a null in that direction, a discontinuity in
impedance occurs as the grating lobe crosses over this boundary, and abruptly changes its con-
tribution from reactance to resistance or vice versa.

The limiting cases of the effect of element spacing on the element impedance variation can
be easily assessed from the grating-lobe series. In the limiting case, as the spacing approaches
zero, the grating lobes recede toward infinity. As the elements shrink to accommodate the spac-
ing, the current density becomes a constant for all cells, and the element power pattern, the
numerator in the summation of Eq. (17), is just the "obliquity factor," 1 — kvz/k:'. The pq term

of the scries thus has the following asymptotic behavior for large kx and k'y (small Dx and Dy)
P q

—j)k._ along the k_ axis
2 2 J
kg — Yq y
—9
T—-R —— - .
o zpq T‘-i_ along the kx axis

p
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and consequently the reactance becomes very large due to the impulses at large values of ky.

However, the varlation in impedance due to the lobes other than p = q = 0 tends to zero, since

the amount of phase differential ,B/Dy between elements required to steer a beam to a given

angle is constant and, therefore,

i - 27

Dh-r?o ky * D
x q y

which is independent of element phasing. Only the impedance contribution of the p = q = 0 term

varies, and the fractional variation in RD is seen from Eq. (17) to be

_Bple, By _ginfe sin e
- RD(O,O) - cos ©

r

For E-plane scan, ¢ = 7/2 and

rE = cos 6

while for H-plane scan, ¢ = 0 and

x.H * Cos©

in agreement with Egs. (8) and (11) for the resistive sheet and the trend indicated by the examples
of Fig. 5, if account is taken of the fact that Eqs. (8) and (11) are for the impedance looking into
the array from space. The above results are for the impedance looking out. The normalized
impedance is thus inverted.

For widely separated elements of small active area, the grating-lobe series indicates ex-
actly what intuition suggests: as the element separation increases, the impulses move very close
together so that many are in visible space, and scanning the array merely moves some out of
visible space and others into it, with a net result of little impedance variation with scan. Of
course, as a consequence, there are also numerous lobes in the actual spatial pattern in visible
space, as indicated in Fig. 7, with resulting loss of sensitivity and potential directional ambiguity.
SHORT (D), WIDELY SPACED
(D>0) ELEMENT PATTERN

UNIFORMLY ILLUMINATED
ELEMENT OF WIDTH D

-t o
-

sin ¢

Fig. 7. Effect of element size on array pattems: (P
(a) element pattern, (b) array factor for element
spacing D, (c) far=field pottern.

sasbiabsnitladssasaansslions

L tin ¢
E?'x o/ o/ /A

— ELEMENT WNIDTHD
(c) === SHORT (0') ELEMENT

15




Of more practical interest for elements with widely separated centers is the case in which
the elements arc themselves directive, One way to achieve this is to have the current distribu-
tion occupy most of the space between the elements, such as using parabolic reflectors. The
pattern result is indicoted in Fig. 7: using more of the allotted space improves the suppression
of the grating lobes. In the limit, as we fill all allotted space with a uniform current distribu-
tion, the pattern grating lobes are completely suppressed when the Leam is pointed at broadside.
However, they are only partially suppressed as the beam is scanned. The same thing is taking
place in the grating-lobe series; the wide center-to-center element spacing places m.ay of the
nest of impulses in visible space, but these are suppressed to a degree which depends on the

extent to which the apertur = is filled.
3. Additions to the Basic Séries

Several interesting and useful additions can be made in the basic grating-lobe-series for-
mulation. First, as Stark has pointed out, the modification of Eq.(17) that must be made to ac-
comrnodate elements above an infinite, perfectly conducting ground plane consists of the addition
of a factor dependent on the element-to-ground-plane spacings:

2 2
o (k0 -k, )

[
D_D

_ X 3 _'q 2 _ i

zp =t Y Y L et IRy, @alt (1 -explizk, s} (19)
o - iz o0 z P4 pq
p===* g= pa
This additional factor is of no small importance, since it goes to zero whenever kz = 0 in the
pq

denoninator. The effect on impedance variation is pronounced, as we shall see,

The grating-lobe series is also adaptable to any regular grid of elements (e.g., triangular),
It is only necessary to set the relative spacings and placement of the nest of impulses to cor-
respond to the grid shape and spacing.

The series can also be used to infer the approximate average (with respect to position in the
array) impedance behavior of the elements of small arrays of identical elements. The infinite
array assumption in the derivation is responsible for two aspects of the resulls of Eqs. (17) and

(19):

(a) Justification for assuming that all elements have the same impedance
and known relative amplitvde and phase weighting (see Sec. [[-A). There-
fore, the impedance of any particular element is simply related to the
variation in radiated and stored power of the entire array.

(b) The sampling functions (the nest of delta functions of Fig. 6) have infinites-
imal width.

Thus, to apply the grating-lob« series to-small arrays, we must be willing to settle for an approx-
imate averate behavior of the elements (approximate, since we still assume in the derivation
that the relative amplitudes and phases of the elements are known, which actually depend on the
relative impedances). [f we accept this shortcoming, the effect of the small array is to replace
the delta functions with sampling functions of a width equal to the array beamwidth. The net ef-
fect is that a reasonable qualitative assessiment of the small array imipedance variation can be
obtained from that of the infinite array by averaging the infinite array data over a beamwidth of
the small array.

Finally, the series can be extended to include arrays of crossed-~dipole pairs with or with-
out ground planes. Since the orthogonal dipoles are radiatively coupled to each other at nearly
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all scan angles, the analysis of thig type of array is more complicated. That is, the radiative
coupling will influence the relative currents on the dipoles of every pair with the result that the
type of feed network behind every dipole pair must be included in the analysis. The problem can

still be formulated in rather general terms for arbitrary three- or four-port feed networks behind

every dipoie pair; however, we must completely specify the parameters (scattering matrix, for
example) of the feed network before valid numerical results can be obtained. In the analysis of
this type of array, we must consider the polarization properties of the transmitted waves, the
impedance variation at the input port (or ports) of the feed network for a dipole pair, and the

power dissipated in the feed network or its terminatior..

E. Dependence of Eiement Impedance on Element and Array Design Parameters

In this section, we present results of the dependence of the element driving impedance
ZD(a, B) on the pointing direction of the main beam of the array. We first examine in a planar
array context the extent to which the impedance variation can be expected to depend on element
type and spacing and other design details. We then examine the difference in behavior in linear
arrays, including a brief examination of the frequency dependence of the driving impedance.

1. Planar Array Impedance Behavior

To make the data more directly useful for design, we will discuss ZD for planar arrays as
a function of the scan angles in each of three planes through array broadside., The symbols GE,
OH, and GD will be used to define the angle of the beam from broadside in the E-plane, H-plane,
and "diagonal (D)" plane (45° from both E and H), respectively. If the elements are polarized in
the y-direction, we can make the correspondence between o, 8, and OE' BH, and GD by

—Z1er
o === sin GH ’ H-plane scan

-2rDD

g = —A—_I sin®n ,  E-plane scan
2 2
—9’7 + —é-z = %1 sine, D-plane scan
D D
X Yy

The data presented were computed from Egs. (17) and (19), as appropriate, nsing a digital
computer to sum several hundred terms. To provide a crude assessment of the dependence of
impedance variation on element type, three significantly different current distributions within

a cell were examined:

{1) An idealized short dipole; infinitesimal diameter, effective length 0.1,
(2) An idealized half-wavelength dipole; infinitesimal diameter, K_(y) =
K, cos ry/ A, y

(3) A uniform current sheet filling the entire Dx by Dy cell,

Models (1) and (2) represent idealized models of both dipoles and their complement, slots in an
infinite ground plane. Muodel (3) is a crude but tractable model of the dual of an open-waveguide
radiator. It has recently been demonstrated experimentally that model (2) accurately predicts
the behavior of real dipole amz'aysM even for lengths not particularly close to a half wavelength.
Some experimental data on open waveguide array behavior are presented later.
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Fig. 8. Normalized impedance vs scan angle in E-,
H-, and D-planes for a typical element of an array
of short dipoles (L=0.1)); Dx= Dy = 0.55\.
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Fig. 9. Nommalized impedance vs scan angle in E-,
H-, and D-planes for a tvpical element of an array
of \/2 dipoles; Dx = DY = 0.55\.
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We fi;h compare the impedance behavior of these three modele in a common configura-
tion - & planar a €8y with elements on a 0.55A square grid {maximum scan without grating lobes:
55° in E- and H-planee) We then examine the modification of the dipole behavior when a ground
plane is used. The effecthf element spacing and grid shape on impedance variation is assessed
for dipoles above ground, am} zhe interplay between element spacing and ground plane height is
examined as an indication of the’ éxtent to which the designer can optimize performance. The
behavior of linear arrays is bmeﬁy éxamined and compared with planar array behavior. Finally,
we present an example of the frequency dependence of the driving impedance.

For uniform presentation of the data in "8 useful form, Z vs angle is displayed on Smith
charts (see Fig.8). We present normalized Zﬁx;,\i.e.. for ZD(G) = RD(e) + jxD(e),

Z,(0) = jXp(0)

Zp®hnorm * R, (0) (20)

where 0 refers to the value of ZD when the beam is pointed at broadside. While not the only
choice of interest, there are three reasons for this format:
(a) It displays the impedance variation as it would occur if the array were

matched at broadside — a condition that maximizes gain (but does not
minimize impedance variation).

(b) It makes the results easier to correlate with experimental measure-
menty; the effects of any actual matching networks in the antenna are
accounted for by normalizing, except for an arbitrary rotation of the
Smith chart.

(c) In some cases, the gratmg-lobe series does not converge to a unique
ZD. but does converge to a unique value of [ZD(G) - JXD(O)]/RD(O)

To aid the reader, for model (2), which is used for comparison of different array configurations,
we will include ZD(O) and also the impedance of & single isolated element (above a ground plane
if appropriate), z, (see Fig.9).t

2. Comparison of Element Types

Figure 8 shows the behavior of a typical element of an array of short dipoles (SD) [for short
slots, interchange E for H and impedance for admittance]. The most striking fact is the supe-
riority of the behavior in the E-plane over the other planes. Unfortunately, the E-plane is atyp-
ical, since the factor (k: - k;' ) has a zero in the E-plane at the same angle as the zero of kz in
the denominator of Eq. (17). Fgor all other scans, the impedance goes to the edge of the Smith
chart whenever

(a) A grating lobe comes into visible space, which occurs at 55° in the
H-plane, or
(b) The main lobe is scanned out of visible space, which occurs at 90° in
the D-plane.
The E- and H-plane curves are discontinued at 65°. This angle physically corresponds to a
grating lobe at —65° (symmetrically disposed relative to the main beam), so that further scanning
is equivalent to scanning the main beam in from 65°; the curve retraces itself.

If we adopt as an arbitrary criterion a tolerable VSWR of 3:1, we can scan to about 47° in
the H-plane, about 79° in the D-plane, and anywhere in the E-plane; for a 2:1{ VSWR, 40° in H,
76° in D, and anywhere in E.

t For wide scan angles, a match to Zg very nearly minimizes the mismaich with scan, but at o loss in broodside
goin with respect to @ match to ZD(O).
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—=O==  THEORETICAL (dipole array)
—=X=— EXPERIMENTAL {open waveguide orray)

Fig. 10. Normmalized impedancs vs scan angle in Fig. 11. Comparison of measured impedance voriation

E-, H~-, ond D-plones for a typical element of an of a central elementina 10 X 10 open-waveguide array

array of uniformly illuminated cells; D =D = with that computed for the same element in ar identical

0.55)\, x Y array of \/2 dipoles without ground plane; Dx = D7 =
0.6\

Bre-wniy]

Fig. 12. Normalized impadance vs scan angle in Fig. 13. Nomalized impedance v scan angle in
E-, H-, and D-planes for a typical element of an €-, H-, and D-planes for a typical element of an
array of short dipoles (L= 0. 1)) mounted 0.25) array of \/2 dipoles mounted 0. 25 A above ground
above ground plane; D_ = Dy =0,55\ plune; D= Dy =0.55\
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For a half-wavelength dipole (HD), as indicated in Fig. 9, the behavior is qualitatively quite
similar, suggesting that the dipole length is of secondary importance. For a 3:1 VSWR, we can
scan to about 45° in H, 79° in D, and anywhere in E; for a 2:4 VSWR, about 40° in H, 77° in
D, and 50° in E.

The "open-waveguide" (OWGD) dual model shows a still greater E-plane variation than either
dipole, but is again qualitatively similar (an observation made more obvious by comparing the
OWGD dual model results of Fig. 10 with Fig. 9 rotated about 45° ccw). For a 3:1 VSWR, we can
scan about 51° in H, about 75° in D, and about 35° in E; for a 2:1 VSWR, about 42° in H, 45°
in D, and about 28° in E.

These results are summarized in Table I.

TABLE |

IMPEDANCE BEHAVIOR OF ELEMENTS
WITHOUT GROUND PLANES

Element Type
VSWR Scon Plane sD HD owGD
E - - 35
3:1 H 47 45 51
D 79 79 75
E - 50 28
2:1 H 40 40 42
D 76 77 45

Since the OWGD dual model is crude, its apparent inferiority should not be taken too seri-
ously. To reinforce this point of view, Fig. 11 shows a comparison of experimentally determined
Zn for a finite (10 X 10) array of open-waveguide radiators with computations for a similar
(10 X 10) array of half-wavelength dipoles without a ground plane. In this case, the impedance
variation of the element in the waveguide array is seen to be slightly less than that for the same
element in the dipole array for scan in the waveguide E-plane (the H-plane for dipoles). For
scan in the waveguide H- and D~planes, however, the results for the two arrays are within the
limits set by experimental tolerances. Similar results were obtained for other elements in thia
particular array and for waveguide and dipole arrays with different inter-element spacings
(D, = 0.6A, D_ = 0.3). The obvious conclusion is that the impedance behavior of an element in

a waveguide array can be predicted reasonably well by computations on a similar array of dipoles.

The addition of a ground plane under the dipoles has a marked effect on the impedance be-
havior as shown in Figs. 12 and 13 for the short and half-wavelength dipoles. Physically, the
addition of the ground plane below an electric dipole prevents the dipole from radiating along
the ground plane; hence, in the language of the grating-lobe series of Eq. (19), the ground plane
factor, { — exp [~ jZkzs], approaches zero as kz - 0, so that the impedance is continuous when a
grating lobe becomes visible. Also, if an element can radiate in the direction of the other ele-
ments, a grating lobe directed toward the other elements will cause them to absorb as much
power as they radiate, bringing about a unity reflection coefficient.
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The diagonal plane scan still causes the reflection coefficient to reach a magnitude of unity,
since the beam can be scanned out of visible space without a grating lobe coming into visible
space, thus suppressing all radiation (for an infinite array).

For the elements mounted a quarter-wavelength above ground, the allowable scand for 3:1
and 2:1 VSWR's are as shown in Table II.

TABLE NI
IMPEDANCE BEHAVIOR OF ELEMENTS
WITH GROUND PLANES

Element Type

V SWR Scan Plane sD HD
E 55 50

3:1 H 50 50
D 62 62

E 45 40

2:1 H 40 40
D 52 50

The differences between the short- and half-wavelength dipole array results are not significant,
particularly in view of the ability to alter the impedance behavior somewhat by varying s, as we
shall see,

In summary, the most striking difference in impedance behavior of the elements investigated
is brought about by suppressing the ability of an element to radiate in the direction ol other ele-
ments. For dipoles and some similar elements, this can be easily accomplished by placing them
above a ground plane. Note, however, that slots or open waveguides in a ground plane do radi-
ate along the ground plane and hence are analogous in behavior to a dipole without a ground plane
(the thin slot in a ground plane is the exact dual of the dipole without a ground plane).

Even this difference in behavior is only important for scan angles near grating-lobe forma-
tion. It is evident from Tables | and II that if the usual element spacing criterion of allowing a
grating lobe to appear marginally is used to design the array, eiements such as dipoles would
give vastly superior (but still poor) VSWR performance at extreme scans if placed above a ground
plane, If, however, the element spacing is chosen to constrain the maximum VSWR to a reason-
able value, there appears to be little difference between the elements, and other considerations
(e.g., mechanical convenience) should dictate the choice. Note, however, that such a criterion
results in a much smaller allowable scan volume for a given element grid spacing.

To illustrate the extent to which detailed design parameters may affect impedance behavior,
we will explore the interlocking effects of two parameters of an array of dipoles above ground,
We will also examine the effect of the height of the dipole above ground, s, on the maximum
VSWR which occurs for a specified scan volume. In particular, we will choose a 40° cone-
shaped scan volume and examine elements on a square grid (suggested by the symmetry of the
scan volume) and a triangular grid.

A plot of maximum VSWR as a function of ground plane spacing is shown in Fig. 14 for E-
and H-plane scans of two square-grid arrays. From this figure, it is apparent that the maximum

22




——-’5

oot W PRI ot 4

[

SCAN TO 40°; MATCH AT BROADSIOE

\ ~—¢—=— D,*D,r0.82
\ Q= Dyt Oy ¢ 062

Fig. 14. VSWR at 6., vs ground plane specing g
for large, square-grid arrays of \/2 dipoles.

20
S
B."; D/x = 0.5 *
e
10 A A 1
[+ 0.1 0.2 0.3 04

s/)

E-plane mismatch becomes very large and the n.sximum H-plane mismatch becomes monoton-
ically smaller as the ground plane spacing is decreased. Thus, for every inter-element spac-
ing, there is an optimum ground plane spacing which equalizes the maximum mismatch in the
principal planes of scan for a specified scan volume.

A similar set of computations for planar arrays with the elements on an equilateral trian-
gular grid is shown in Fig. 15 for a scan of 40°. Qualitatively, the results are quite similar to
those for the square-grid planar arrays. In particular, for every inter-element spacing, there
is an optimum element-to-ground-plane spacing which minimizes the maximum mismatch (as-
suming a match at broadside) incurred for a conical scan volume,

Figure 16 shows a plot of impedance variation with scan angle for a triangular-grid array
mounted at the optimum height above the ground plane (compare with Fig. 13 for the square-grid
array).

A cursory examination of the data for square-grid and triangular-grid arrays with approx-
imately egual areas per element indicates that the triangular-grid array may be preferable on
the basis of impedance variation, although the difference is slight. Further, the comparison is
not direct, since the two arrays have somewhat different spatial coverages.

For all the linear- and planar-array configurations, it is seen that for optimum ground
plane spacing for a given volume coverage, an array with elements more closely apaced than
required by grating-lobe considerations will exhibit less impedance variation than one which
just satisfics the scan volume requirement: this is, of course, obtained at the expense of a
larger number of elements to realize the same gain and beamwidth.

3. Linear Array Impedance Behavior

For a planar array with different scan requirements in the x- and y-directions, an additional
design parameter {s the choice of element alignment with the x- and y-axes. This is most evi~
dent in what we might view as an extremely degenerate case: a linear (one-dimensional) array.
Furthermore, linear arrays are obviously of interest in their own right. Consequently, we will
briefly examine the difference in impedance behavior, using arrays of dipoles above ground for
illustration.
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Fig. 17. Normalized impedance vs scan angle
for typical elements in lorge, linear arrays of
N2 dipolesmounted 0.25 A above ground planes;
D=0.6)
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The relative impedance variation with scan angle is shown in Fig, 17 for a linear array of
dipoles spaced 0.6 A on centers, 0.25A above a ground plane for three orientations of the dipoles
relative to the direction of the array. Observe that nearly pure resistance variation with scan
angle is obtained when the dipoles are mounted collinearly, while for parallel dipoles, the varia-
tion is mainly reactive. Also note that the mismatch at the maximum scan angle is approximately
the same for all three dipole orientations. Unfortunately, neither of these results applies for all
ground plane and inter-element spacings; that is, the above choice of array parameters gives
unique results and is presented merely to emphasize the different impedance behavior to be antic-
ipated as a function of polarization in a linear array.

In Fig. 18, array performance is assessed as a function of inter-element and ground plane
spacings (assuming a match at broadside) by giving the VSWR incurred at the maximum scan
angle as a function of the spacings. From this figure, it is readily evident that a greater im-
pedance variation with scan angle is exhibited by arrays of collinear dipoles for most ground
plane spacings. The variation of maximum VSWR with ground plane spacing (up to 8 = 0.251) is
seen to be small for arrays of parallel and 45° -echelon dipoles.

If the frequency is now allowed to vary over a 20-percent band for an array with D = 0.6 A
and 8 = 0.25A, the impedance variation with scan angle at band center and at the band edges is as
shown in Fig. 19. Results are given for collinear dipole and parallel dipole arrays. The fact
that the impedance variation at the band edges is not substantially greater than at band center
indicates that some other component (or components) in the feed network will probably limit the
system bandwidth more than the antenna. (It is also interesting to observe that the Smith chart
impedance plots for the parallel dipole and collinear dipole arrays remain approximately orthog-
onal as the frequency is varied.)

II. COUPLING IN REGULAR AND IRREGULAR FINITE ARRAYS

Intuitively, we would expect that the infinite array result discussed in the preceding section
would accurately describe the impedance behavior to be expected for elements imbedded in even
an irregular finite array, as long as the elements in the neighborhood of an element in question
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provide a uniform environment; i.e., the element is not near the edge of the array and, if the
array is irregular in spacing, the departure from regularity is small over a region of several
elements. If this statement is to be useful, we must, of course, have quantitative data on the
degree to which elements in nonuniform surroundings depart from the infinite array prediction.
We shall see that this departure depernds on the element details, the location of the cther ele-
ments, and the feed network that is used to excite the elements.

Furthermore, we are now in a position to discuss the effects of coupling on array patterns
(the patterns of infinite arrays are singularly uninteresting). Here again the nature of the ele-
ment feed is important. For independently fed elements (separate excitation or an isolating
feed network such as a well-matched corporate feed using four-port junctions), we can arrive
at some very general results; for feed networks which allow element interaction through the
feed, we can only outline a method of analysis and present some representative results for a

few specific cases.
A. Methods of Analysis

Since the grating-lobe series can only supply an average (in the sense explained in Sec. I1I-D-3)
element impedance behavior in a finite array, the first problem is to characterize the array (in-
cluding mutual coupling) in a form suitable for mathematical analysis. This can be done by taking
advantage of the well-known fact that the terminal currents and voltages of the elements in an ar-
ray can be represented by circuit equations as Eq. (1), which is repeated here for reference:

Vin = & Zmn, pa'pq [Bq- (1]

Since there are N antennas, there will be N equations of the form of Eq. (1). This is analogous
to the case of an N terminal-pair network. The set of equations can be written in the matrix

form
V)= [Z]1] (21)

where V] and I] are N element column matrices, and [Z] is an N X N impedance matrix.

We could equally well relate Imn toV pq by an admittance matrix (inverse of [Z]) or relate
incident and reflected waves by a scattering matrix. Of these, the scattering matrix is the
easiest to measure in practice because it involves only a measurement of the power (magnitude
and phase) coupled to antenna n when antenna m is driven with unit power. Measurements of
impedance or admittance coefficients are generally much more difficult because they involve
either open-circuit voltages or short-circuit currents.

None of the matrices is easy to compute theoretically for most types of array elements, be-
cause electromagnetic scattering (including multiple scattering), as well as induction and static
field coupling, must be included in the computation of a single coefficient. However, dipoles of
any length with infinitesimal diameters can be handled :«nalytically by the irduced emf method
for computing mutual irnpedances.15 The admittance and scattering matrices can then be com-
puted from the impedance matrix. Figure 20 shows the behavior of the mutual impedances be-
tween A/2 dipoles 0.25A above ground as a function of relative position. Further data for dipoles
and slots are given by Kraus. 15

The second important part of the analysis of finite arrays is then the characterization of the
network feeding the antennas. These feed systeme can take any one of several forms, e.g., the
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serial feed of Fig. 21. Basically, they can be divided into two categories: irndependent (isolating)
feeds and nonisolating feeds. An independent feed is one in which the feed to an antenna in the
erray is not influenced by the behavior of the remainder of the feed system except through radia-
tion coupling between antennas. Examples of independent feeds are those constructed with direc-
tiounal couplers and those using circulators or isolators behind each antenna. A nonisolating feed,
on the other hand, is one which does not meet the above criteria, that is, a feed network in which
there is internal cross-coupling within the structure.

The independent source problem can most easily be analyzed d:rvectly from the impedince
matrix by representing the sources as N independent generators with open-circuit voltages °n

and iinpedances Zg , a& indicated by the equivalent circuit of Fig. 22, The open-circuit voltages
n

are assumed to have independently controllable amplitudes and phases. The terminal currents
and voltages on the antennas are then related to the source parameters by

Vn=en—-ZgnIn , n=12_..N

or, in matrix form,

Vi=el-[2.] " 1) (22)

where [Z g] is an N x N diagonal matrix with the diagonal terms given by the N generator imped-
ances of the sources. When Eq. (22) is substituted in Eq. (1), we have

e = {[Z) + (Z} - 11 . (23)

Since the antenna currents are unknown, the impedance matrix, modified by the addition of the
generator impedances to the antenna self-impedances, must be inverted to obtain an admittance
matrix (Y] relating the antenna currents to the generator voltages

I=(Ylel . (24)

Once the currents have been computed for a particular set of drive voltages (a particular
beam-pointing angle), it is a simple matter to compute the element driving impedance for any
one of the antennas from

e

(¢.0) = 72 -2

Z
m m €m

D (25)

It should be recalled that for infinite arrays, we can rewrite Eq. (5) in terms of polar angles
(see Fig.3) as

szw,e) =z, + ) oz
P.q#¥m,n

X exp {~jk(D,(m — p) 8in© cos ¢ + Dy(n - q) 8in O sin ¢)} (26)

mn, pq

where we generalize to a particular location x = me. y = nD_ for the element i1 question. From
this equation, we have an alternate method to the grating-lobe series for computing the active im-
pedance of an element in a very large, regular, uniformly illuminated array without resorting to
a matrix inversion.

This approximation has been found to be extremely good for the center element in a large
dipole array above a ground plane (the approximation is not as good when the ground plane is
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absent). In fact, the active impedance of the center element in a 65 (collinear) X 149 (parallel)
array (with a ground plane) agrees within 0.1 percent with that of an infinite array, except near
endfire. For this reason, we often use the 65 X 149 array results instead of the corresponding
(and nearly identical) infinite array resuits.

Nonisolating feeds can be represented by an (N+M) X (N + M) scattering matrix [SF]' where
N is the number of antenna ports and M is the number of input ports. This scattering matrix can
be written in partitioned form as

F | _.F
844 1 842

R (27
521 { 85,

where § " is an M X M matrix which represents the input mismatches and cross-couplings among;
the input lines, §z 4 is an N X M matrix representing the coupling from the input poris to the an-
tenna ports (the antenna illumination under matched conditions), and §;‘z is an N X N matrix giving
the output mismatches (looking back at the feed) and the output cross-couplings among the feed
lines. When only reciprocal devices are used in constructing the feed, S 5 will pe just the trans-
pose of ﬁz % Alsc, the feed scattering matrix will be unitary (the inverse of [SF] is given by the
transpose-conjugate of {SF]), if the cornponents in the feed are lossless,

Thus, for a particular feed network, the characteristics of the components which comprise
the network can be combined to obtain a scattering matrix in the form of Eq. (27). Specific ex-
emples are treated in Sec.III-C. in general, we can state that the performance of these non-
isolating feed systems is quite sensitive to the design parameters of the network (principally line
lengths) because of multiple reflections within the structure. These reflection- can add vectori-
ally at the various poris to give either very good or very poor array illumination depending on the
particular design of the network.

20 log'ol Asin §)]

4 sin Eo

=y,

Fig. 23. Typiccl array function showing spurious lobes for | ATs |=0
for an array ur'ng three-port junctions.

The phase shifters used in the composite system (antennas, feed network, and phase shifters)
can also have a strong influence on the array illumination. For example, when reciprocal phase
shifters are used, the part of the wave reflected from an antenna that is reflected back to the an-
tenna by the feed network generates a spurious beam in a different direction, resulting in a high
sidelobe in the array pattem.“’ as indicated in Fig.23. Quantitatively, for any feed with reflec-
tiori coefficient I A looking into the antennas and I‘B looking into the feed (see Fig. 21), the illu-
mination coefficients are related to the original coefficients a exp [—jnkD 8in©) by
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ay=a, ), (-1)3,rp)% exp(-jnkDi2q + 1) sin®] . (28)
Q=0
Thus, for a reflection coeificient product of magnitude 0.4, the resultant far-field pattern would
be approximately as shown in Fig. 23 for a phase shift setting corresponding to a three-beamwidth
pointing angle from broadside. On the other hand, when nonreciprocal phase shifters are used,
the re-reflected waves arrive back at the antennas with the same relative phase shifts as the pri-

mary waves and hence, to a first order, only affect the amplitude (gain) of the array pattern.

B. Arrays Fed by Independent Sources

In this section, we examine some small-array configurations to determine (1) the correlation
of finite and infinite array element impedance and element gain properties and (2) the magnitude
and extent of edge effects in small arrays.

i. Impedance Behavior of Linearly Polarized Arrays

For these investigations, we will restrict ourselves to 7 X 9 and 9 X 11 arrays. (The im-
pedance matrix for a 9 X 11 array is the largest wiich can be conveniently handled within the core
storage of an IBM 7094 digital computer.) The geometry and element numbering system we will
adopt for a 9 X 11 rectangular-grid array are shown in Fig. 24. Alternate rows of the array are
offset by D x/ 2 to obtain the triangular-grid array discussed later.

The impedance variation with scan angle for the center element of a 7 X 9 array of A/2 dipole
radiators above a ground plane (Dx = Dy = 0.5A, 8 = 0.25A) is shown in Fig. 25. One set of curves
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Fig. 24. Geometry and element numbering.system Fig. 25. Comparison of impedance variation of the
for a 9 X 11 element array configuration (element center element in a 7 X 9 array of \/2 dipoles with
50 is the center eloment for this array). that of an infinite array.
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gives the results for the exact, matrix inversion sclution, wliile another set gives the results
obtained with the approximation of Eq. (26). Both sets of curves are then compared witk the
impedance variation of a large array (65 x 149) with the same geometry. It is evident that the
7 X 9 array results (both exact and approximate) agree reasonably well with the large-array
results in all three scan planes (the difference in the magnitudes of the 7 X 9 array impedance
and the large-array impedance at a particular scan angle is less than 14 percent). Near broad-
side, the small-array impedances exhibit rather unusual behavior, while at larger acan angles,
they tend to oscillate around the values for a large array. An increase in array aize to 9 x 11
results in a somewhat better approximation to an infinite array, but the deviations in the magni-
tude cf the impedance compared to the large array are still of the order of 10 percent. A still
better approximation to the infinite array impedance variation can be found by taking the geo-
metric mean of the 7 X 9 and 9 X 11 impedances at each of the scan angles.

Similar results are observed when the arrays have triangular grids as shown in Fig. 26. In
thie figure, the impedance variation with scan angle of a central element of a 9 X 11 equilateral
triangular-grid array (D = 0.6 A, 8 = 0.25) is compared to that of a corresponding infinite array
for three scan planes. Again it is found that the error in approximating the impedance behavior
of & large array by a small array is only about 10 percent. The small-array impedance varia-
tion oscillates around that of an infinite array which is again just typical of the behavior expected
when a function is approximated by a truncated Fourier series.

The small-array behavior differs more markedly from that of an infinite array when the
ground plane is removed, as eviderced by Fig. 27 where the impedance variation of the center
element in 7 X 9 and 9 X {1 arrays is compared. It is clear from the very poor correlation
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Fig. 26. Comparison of impedance voriation of the Fig. 27. Comparison of impedance variation of the
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grid orray of \/2 dipoles with that of an infinite rays of \/2 dipoles without ground planes.
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between the two array impedance variations that small arrays of dipoles without a ground plane
or slots in a ground plane are not very useful for predicting the performance of large arrays.

As discussed above, the impedance variation (magnitude) with scun angle for the center ele-
ment (No. 50 of Fig. 24) of a 9 X {1 square-grid array agrees within about 10 percent with the
values for an infinite array. For the impedance variation with scan angle of an interior, non-
center element, there is still reasonably good agreement with an infinite array, even though
there may be substantial asymmetry in a given scan plane: for a particular scan plane speci-
fied by ¢ = ¢i' the impedance variation with scan angle © for one direction of scan from broad-
side will differ from that when the beam is scanned in the opposite direction ZDm( ¢ + 7 6) #*

Zmei, 0),

The situation is considerably worse when the elements are on the edges of the array as
shown in Fig. 28 for the element (46) in the middle of the edge where the dipoles are parallel, and
in Fig. 29 for the element (5) in the center of the edge where the dipoles are collinear. In these
figures, it is observed that the correlation of the impedance variation with that for an infinite ar-
ray is very poor. In addition, there is considerable asymmetry as evidenced by the fact that

ZD (¢ it ©) differs markedly (in magnitude and phase) from ZD Mi' ©). Note that the array
m m
is symmetrical about element 46 for H-plane scan, and therefore no asymmetry is observed in

the H-plane impedance variation with scan angle, as shown in Fig. 28. Similarly, the array is
symmetrical about element 5 for E-plane scan.

From these rasults, we conclude that for a 9 X 11 (or smaller) array, there is, sirictly
speaking, no typical element; that is, every element has a different immpedance variation with
scan angle. However, for dipoles above ground, the center element and the edge effects com-
puted or measured for the small array would give a reasonable indication of those to be expected
in a large array. For dipoles without a ground plane, slots in a ground plane or open waveguides,
the 9 x 11 array gives only rough qualitative estimates of large-array behavior.

2. Pattern Behavior of Regular Linearly Polarized Arrays

Since we can model the excitation of a typical element of an independently fed array by a
circuit such as that of Fig. 22, we can conceptually turn on each generator of the array individ-
ually, with the others turned off (em = 0, m #n). When the generators are shut off, all passive
elements are effectively terminated in an impedance Z_. With only e # 0, a current in will
flow past some reference point on antenna n, directly exciting antenna n and parasitically ex-
citing the rest of the array through mutual coupling. A measurement of the far field under these
conditions produces some relative field strength which we will call T n( ¢,0), since it is due to
the nth element generator. The experiment can be repeated for each element, and the far field
can be found by taking the vector sum of the individual element contributions, properly weighted
by a phase term dependent on the element location

F(¢.0) = LT (4,0) i exp[jks,, - ¥ (29)
n
where & R is a unit vector in the direction of the observation point, and b‘n is a vector from the
origin to the nth element location. For completely arbitrary distributions of elements, little
more can be said. However, for the important case in which (a) the array is large compared to
the region over which element interaction is strong so that edge efrects can be neglected, (b) the
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elements and their generator impedances are nominally identical, and (c) the elements are reg-

ularly spaced on a ﬂat' surface so that all interior elements "see" the same interaction environ-
ment, the pattern of each element, measured as indicated above, will be essentially the same as
the pattern of any other element. We can then factor Eq. (29) and write

F(¢,0) = T(¢,©) )i explikp, - Epl (30)
n

where T{¢, ©) is a typical fn((p, e).

The factor f{¢, ©) multiplying the summation in Eq. (30) is the pattern of a typical (central)
element in the presence of all the other elemenis when they are terminated in the impedance from
which they are nominally excited, and is usually referred to as the "element factor." The in of
Eq. (30) represents the current flow in the nth element due solely to the excitation of its own gen-
erator. For all elements (neglecting edge effects), in is related to e, of Fig. 22 by the same pro-
portionality independent of the other element excitations, and we could replace in by e, in Eq. (30),
except for a scale factor which is the passive element driving impedance.

The practical significance of this development lies in the fact that the summation of Eq. (30)
is exactly the array factor of an array of isotropic radiators, the properties of which have been
extensively discussed. The element factor contains essentially all the pattern effects of the ele-
ment type and the interaction between elements. The pattern of the entire array when only one
element is excited and the others terminated is much broader than the pattern when the entire ar-
ray is excited; hence, (¢, ©) is a function whose variation with angle is slow compared to any
reasonably directive array factor in large arrays. The patterns are qualitatively similar to those
of Fig.30. The element factor acts as a window of varying degrees of opaqueness through which
the array factor "looks." We can qualitatively conclude that under normal circumstances, in large
arrays, the element i ctor structure will have little effect on the relative structure of the main
beam and close-in sidelobes of a large array. However, in arrays in which the beam is scanned
by element phasing, the absolute strength of the pattern will be varied with angle to conform to
the element factor weighting, since the scanning moves the array factor in space while the element
factor is stationary, as indicated by Fig. 30.

For elements in which mutual impedances can be analytically determined, the computation
of the element factor is straightforward. Perhaps more important, in the frequent case of ele-
ments for which computational formulas do not exist, the element factor can be determined ex-
perimentally by building an array only large enough to render edge effects negligible on the pat-
tern of the central element. Finally, we can alsc rationalize some generally valid, quantitative
conclusions about element factor shapes.

Of course, if the antenna elements are separated far enough so that the interactions are neg-
ligible, the Tn(d), ©) become the patterns of isolated elements (which are given in the literature
for a wide variety of radiators). However, only when the elements are separated by distances
that are much greater than their largest dimension is it safe for us to assume that interaction
effects are negligible. Unfortunately, achieving freedom from interaction in this way results in
spacing the elements sufficiently far apart that several grating lobes of the array factor appear
in visible space, as indicated in Sec.II-D.

t The modification for large, regularly spaced arrays on curved surfoces with large radii of curvature (compared
to N is tedious, but not conceptually difficult,
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broodside): (a) array factor, (b) element gain function, (c) resulting pattern.

The more interesting case for many array applications is that of closely spaced elements ~
in particular, the case of only slightly directive elements spaced less than a wavelength on cen-
ters. Here some element factor shapes can be inferred from a consideration of the gain and
directivity variation of electronically scanned arrays.

The array gein G is a measure of efficiency of the array in using all the energy available,
and involves questions of array impedance matching and ohmic losses. Although mismatch ef-
fects are not always included as a factor in the gain of an antenna, they will be included in this
discussion. Such effects are taken into account by defining the gain as the ratio of power density
per unit solid angle at the peak of the main beam to the power density that would be achieved by
radiating all the available power isotropu;ally.T For a large, flat, equally spaced array of iden-
tical radiators, it is a simple matter to determine the gain as a function of acan angle in terms
of the element factor shape.

The power density per unit solid angle is

2

Pié,.©,) = |BI%1s 0|2

L e
n

where B is an angle invariant factor, the value of which will be seen to be immaterial. The
power available from each generator, assuming that the equivalent circuit of Fig. 22 applies, is

t The IEEE Standards defines gain as relative to the total power into the antenna, ignoring unmatched effects.
The definition of gain used herein thus differs from the standard definition by the factor | ~ |T'| 2,
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|e | /4Rg, where Rg = R (Z ), and we assume all element drives have the same impedance.

Hence, the total power avaxlable to the array is T ]e I /4Rg from which it follows that the gain
of an array is n

Izzel2

Gl 0,) = (47) IBIZ4R £(8,, 0,)1°
: e,

Note that if we drive only one element in the array, the gain of that element is given by
8¢, 0,) = (4m) 4R, |B| % |16 _, 0 )|
o' o g o "o :
Further, if e, * 1, for all n, then
[z e |?
n

2
Z e,
n B

where N is the number of elements in the array. For arbitrary taper, we can define a taper
efficiency n by

2
[z el
N

=nN
z lc:|—z
n

Comparison of the relationships for G, g, and n N gives the simple result
G(op,0) =g(¢,9)nN . (31)

The factor g(¢, ©) is referred to as the "element gain functiun," and its gpatial variation with the
beam -pointing angles ¢ and 6 is |T(e, 0)| Z. Equation (31) is the quantitative statement of the
fact that the element factor acts as a weighting function on the field strength of the array. It is
easily established that the directivity of a planar array of Na active radiators with no visible
grating lobes is

NB
U(B) = 41 —2 & cos © (32)
A

[

where © is the angle from the arruy broadside direction, and a is the area allotted to each ele-
ment. For independently excited ri.diators with no ohmic loss, which can support only a single
polarization, the array directivity wid gain as defined herein can differ only as the result of mis-
match losses. These losses can be taken into account, in terms of the voltage reflection coeffi-
cient I'(¢, ©) seen when looking into a ty:ical element when the entire array is excited, by writing

Glo, ©) = U(B) (1 ~ |T(g, &),

Substitution cf Eq. (32) into this expression sheds some light on the element factor behavior to
be expected as a function of element spacing:

g, 0) = 4r ;‘z cos® (1-|T(¢,0)]3) . (33)
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We can now draw some inferences about the general nature of the gain function shapes to be ex-

pected in planar arrays .T

The only place the type cf radiator enters the above expresasion is implicitly in I'(¢, 6). Re-
gardless of the type of radiator, we can choose the generator impedance to match the element
at some angle of scan of our choice. If, for the sake of illustration (and maximum broadside
gain), we match the elements when the array is phased for a broadside beam, we can make the
following generalization about the element pattern for small (less than a wavelength in dimension)
elements from Eq. (33). As we space the elements farther apart, the value of g(0, 0) can be made
to increase directly with the area per elemen. if the proper generator impedance is chosen for
each spacing. However, as the element spacing is increased, the angles at which grating lobes
become visible decrease. At these angles, the array directivity must drop rapidly by approxi-
mately 3 db, and the gain function must behave in a similar fashion (we are not matched at these
angles, so only approximate statements are justified). That the element pattern does behave
in such a manner has been verified analytically for some elements and experimentally for many
others. Figure 31 shows element patterns of the center element of an array of dipoles without
a ground plane for various spacings on a square element grid, and Fig. 32 shows similar data for
dipoles 0.25 A above a ground plane. The figures illustrate the effects stated.

If the elements are not matched to maximize g(0, 0) for each spacing, the result is a decrease
in broadside gain and, usually, a slight increase in the width of the element factor main lobe. For
example, a corivenient generator impedance choice from a practical standpoint is to match the im-
pedance of a single isolated antenna (with ground plane, if used). Indeed, Eq. (5) indicates that
for an essentially infinite array scanned over all phasings (including those producing grating

lobes), the average driving impedance is just

m
S‘S‘ Zp(e, B) dadg = Zoo, 00 (34)

-

which is essentially the same as the irnpedance of an isolated element for many practical types.
Consequently, this choice comes cl~se to minimizing the maximum impedance variation, and will
usually produce a match at frome scan angle other than broadside. The reaulting element gain
function is usually "saddle-shaped" as indicated in Fig. 33,

For arrays on curved surfaces, if the curvature is shallow compared to the extent over which
appreciable coupling takes place, the element gain function shape relative to each element's own
broadside angle will be similar to those of an equivalently spaced planar array. Thus, even
though Eq. (30) fails to apply, the element patterns can usually be taken into account in a straight-
forward and relatively simple manner.

The element gain function concept has both practical and fundamental significance. It is a
practical way to assess the gain-vs-scan-angle performance of a large array by using a small
or modest array without the requirement of a complex feed system. We need only construct an
array large enough so that the central element "sees" negligible edge effects (how large in each
dimension depends on the rate of decay of coupling for the particular element in the direction in

t Equation (31) applies also to linear arrays; hence, o dependence anclogous to Eq. (33) of the gain function of
an element in a linear array on element spacing can be made (see Fig. 43), but the result is complicated by the
fact that the variation of array gain with scan angle depends on the element pattern in *he plane orthogona! to

the array.
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question, as elaborated on previously). All elements are then terminated except the central
element, and a pattern is taken. Experiments in design parameters can be conducter on & lim~
ited model.

There is also a connection between the shape of the element gain function and the complex
driving impedance of the elem«ents.‘8 For example, note that in an essentially infinite array for
which the elements have a voltage refleciion coefficient behavior I'(¢, 8), the current into an
element at scan angle ¢,0 is 1 -~ I'(¢,0). Furthermore, the shape of the element gain function
can be used to demonstrate a fundamental limitation on the average reflected power over all
phasings, applicable to any e:lement.1

3. Gain, Polarization, and Impedance Properties of Independently Fed
Circularly Polarized Arrays

An additional effect of element interaction on array patterns is found in arrays of elements
which can suppor: more than one polarization. The gencral effect of the coupling is to cause the
array polarization to vary with scan angle in a manner dependent on all the factors that enter in-
to the determination of coupling effects: element type, feed circuit details, and element grid
shape and spacing.

To illustrate these effects, we present in this section some results of an analysis of arrays
of elements made of crossed dipoles., In particular, we examine arrays of such elements driven
through a2 hybrid pewer divider as indicated in Fig. 34, so that the elements can be considered
independently excited. In such a case, an element gain function for a dipole pair in the array
can be defined in the same manner as for linearly polarized arrays in the previous section. How-
ever, there are contributions to the gain function from both co-directed and orthogonally directed
dipoles, and hence the gain function must be defined relative to some polarization vector F};:

g(¢,0,5) = g (&, - 5 £(9,0) [1 - T *(, 0)]
o]

L oY y 2
‘J‘ep . ey) f/(¢,@) 1 -T (¢,0))] (35)

for an interior clement of a large array, where fixex
directed elements, and l"x(¢, 6) is the reflection coefficient looking into those elements, and
simuliriy for the y-directed elemenis. It is readily shown that for an infinite, regularly spaced
array above a ground plane, the broadside gain relative to a right—circular sampling polariza-

is the vector element pattern of the x-

tion vecior is

) - 4y B
g(0,0,€ %) = 4r 5

A
when all dipoles are matched to the feed hybrid at broadside [R0 = Rl;‘(o, 0) = Rg(o. G)), a result
expected on the basis of directivity considerations.

From Egq. (35), it is possible to derive expressions for the gain relative to right-circular,
left-circular, or any arbitrary linear sampling polarization vector at any scan angle. These
relations can then be used to determine the characteristics (ellipticity, tilt angle, left- and
right-circular gain, etc.) of the wave transmitted in any direction.

In order to assess the effects »f an array environment on the dipole gain and iranpedance, we
first consider an isolated dipole pair. The polarization of the transmitted wave at various points
ir apace is the characteristic of importance for the isolated element. A typical power pattern as
would be measured by a spinning, linearly polirized receiving dipole is shown in Fig. 35 for a
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dipole pair above an infinite ground plane. Also shown are the maximum and minimum bounds
of the corresponding pattern Ior a crossed-dipole pair at any point in space,

When seven elements are arvanged in a linear array (no ground plane), the polarization
characteristic of the gain function for the center element is as shown in Fig. 36 for a cut in the
direction of the array when the dipoles are matched to the feed circuit at broadside and the fourth
port of the hybrid (Fig. 34) is terminated in a matched load. Note that the array environment has
substantially changed the gain from that of an isolated element, with the result that nearly circu-
lar polarization is obtained at a scan angle of 45°, while at broadside the polarization ellipse
axial ratio (max. gain/min. gain) is about 3db. (This is similar to the results observed by
Parad and Kreutel19 for a seven-element hexagonal array of circular waveguides.) The polari-
zation characteristic can be improved orly slightly by rotating the elemments 45° as demonstrated
by the dashed curves in Fig. 36. Note that the polarization of the transmitted wave at broadside
is elliptical even with the dipoles rotated.

As a final result, we consider the center element of a 13 X 13 square-grid array above a
ground plane. A principal plane (¢ = 0°) gain pattern as would be measured by a spinning, re-
ceiving dipole when the elements are matched for broadside radiation and the fourth port is ter-
minated is shown in Fig.37. For this array, perfect, right-circular polarization is obtained at
broadside even in the presence of mutual coupling. This is a consequence of the complete sym-
metry of the array about the center element. The polarization properties in other planes of
scan for this array are shown in Fig. 38, where the polarization ellipse axial ratio variation with
scan angle for both an isolated dipole pair and the center dipole pair in the 13 X 13 array is plotted.
Note that the array environment can substantially alter the polarization of the transmitted wave
(as compared to that of an isolated dipole pair) and can in fact improve the circularity of the ra-
diated wave for optirnum ground plane spacing (s = 0.25 A for D, =D_= 0.6 A). Since the center
element of the 13 x 13 array "sees" an environment which is approximately the same as that seen
by an element in an infinite array, the polarization results given in Fig. 38 should be quite indic-
ative of large-array polarization variation with scan angle to be expected from an array of

30 -
$so0° $:0
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Fig. 38. Polarization ellipse axiul ratia: (a) isolated element, (b) center element in 13X 13 array.
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cross-polarized elements fed by a hybrid. In addition, the input impedance variation with scan
angle at port 1 of Fig. 34 and the power dissipated (relative to the power available from the
source) in the orthogonal port termination, as shown in Figs. 39 and 40, should be within approx-
imately 10 percent of that which would be observed in a very large array.

From the above results, it is evident that mutual coupling effects can substantially alter the
characteristics (gain, impedance, and polarization variation with scan angle) of a circularly po-
larized element when it is placed in an array environment. However, it is also clear that a prop-
erly designed array of hybrid-fed, crossed-dipole pairs will give good performance for moder-
ate scan angles (emax =~ 40°), Observe that the characteristics of an element in an array depend
on the array geometry for both linearly polarized and circularly polarized dipole arrays; for ex-
ample, there is an optimum height above the ground plane for every inter-element spacing. It
is also worth noting that the input impedance as seen by a source driving an element in an array
varies somewhat less with scan angle for crossed-dipole arrays (compared to linearly polarized
arrays), particularly in the reactive part,

It should be stressed that these results are dependent on the circuit used toobtain the two or-
thogonal excitations. For example, if the fourth port of the hybrid were left open-circuited, the

power dissipated in that port when itis terminated (Fig. 40) would be reradiated instead of absorbed.

Examination of the phases involved shcws that such radiation is of the opposite sense circular po-
larization to that desired, resulting in greater depolarization than indicated by Figs. 36-38. In
fact, it has been pointed out’9 that to minimize depolarization effects due to coupling in more than
one polarization, it is necessary to provide a matched load to all polarizations, even if orly one
is desired. For example, in an array designed solely to radiate one sense of circular polari-
zation, & load must be provided to the other sense to minimize depolarization.

4, Pattern Behavior of [rregular Arrays

The possibility of shaping the far-field patterns of arrays with equal amplitude excitation
by unequally spacing the elements has been extensively studied, but almost exclusively under the
assumption that the effect of the mutual coupling between the elements can be ignored.f There
is experimental and theoretical evidence,zo however, that the effect of coupling on the patterns
of such arrays is not generally negligible. For example, Fig. 41 compares the pattern of an
unequally spaced array of (.?:alejsZi as computed ignoring coupling, and as computed assuming
the array to be constructed of parallel short dipoles 0.25 A above ground, indeperidently fed by
sources of the type shown in Fig. 22, with Z ¢ chosen to match the impedance of an isolated dipole
0.25 A above ground. The patterns shown are for a broadside beam; the relative pattern (most
notably, the near-in sidelobe ratio) also varies with scan angle in the presence of coupling as
indicated by the corresponding patterns of Fig. 42.

The necessity for including coupling in pattern computations for unequally spaced arrays is
in marked contrast to the fact that the effects of coupling can safely be ignored in relative pat-
tern computations for large equally spaced arrays. This latter simplification is, of course, due
to the fact that for regular arrays large enough to ignore edge effects, all elements in the array
"gee" the same coupling environment and, hence, have the same input impedance.

Th:re are only two cases in which it is certain that the effects of such coupling on the shape
of the pattern are negligible. First, these effects can ceriainly be ignored when the elements

t See Ref. 21 for o recent biblicgraphy.
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are fed by ideal constant-current generators so that their excitation is independent of their im-
pedance. However, such generators are hard to find. Second, coupling can obviously be ignored
when essentially all elements of an array are widely separated compared to the aperture area of
such ~n element. This is not usually an acceptable solution in practical arrays, since unequal
spacing allows control of the sidelobes commensurate with that of an equally spaced, amplitude
tapered array only over a limited angle about the main beam. This region is out to an angle
approximately equal to that at which a grating lobe would form for an equally spaced array with
spacing equal to the average spacing ﬁn of an unequally spaced array; that is, to an angle ¢ 1

from the main beam given by
. 1
1 +sin|£,]| =
1 D n7 A

Beyond this region, the sidelobes tend to be more or less random with an average relative side-
lobe level given by the reciprocal of the number of elements. Thus, control over a sizeable
fraction of visible space requires that the average spacing between the elements be less than a
wavelength., For such spacing, coupling effects are certainly not negligible.

A practical model for the excitation circuit of a typical array of independently fed elements
was indicated in Fig.22. Since it is both desirable and common to attempt to control only the
open-circuit voltages of the generators of such circuits (rather than the currents which depend
on the mutual coupling), we will assume that these voltages have been chosen to be equal in mag-
= e exp - jkzn gin¢ o] for a desired

(36)

nitude and progressively phased for beam pointing; i.e., e,
pointing angle go. for elements located at points z, along a line. In the absence of coupling, the

array factor would then simply be proportional to

e
A = 55 L explikz (sing —sinf )] . (37
g “a

We have seen in Fig. 41 that the agreement between the array factor as given by Eq. (37) and
the array factor as computed for practical arrays including coupling is quite poor, particularly
in the sidelobe region near the main beam. The reason is not hard to find.

As pointed out in Sec.IlI-B-2, the contribution of an element to the far field at any angle is
proportional to the pattern of that element at that angle when the element is excited in the pres-
ence of the remainder of the elements, the latter passively terminated in Z . The shape of such
patterns in equally spaced arrays depends rnarkedly on the spacing between the element and its
neighbor. Figure 43 shows the general behavior of the patterns of parallel dipoles 0 25 above
ground in a linear array as a function of element spacing (the behavior of other elements in a
linear array shows a similar trend). An approximate model for the dependence of the element
gain function on the spacing between elements of & linear arrayt and the observation angle ¢ is

(38)

2 D/a 2
1) " ~ s5157%0 + Tem D] | fet®)l

where [x] indicates the largest integer in x, and Ite(e)lz is the power pattern of an isolated ele-
ment. The denominator appeara complicated, but merely represents the number of grating lobes

t For planar arrays, the variation is with the area aflotted the elements rather thon with the length. The following
arguments are applicable to such arrays with this change in dependence.
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in visible space for an array with spacing D and pointing angle £. Figure 43 compares this
model with the accurately computed element patterns, and the agreement is generally good.

This agreement suggests that the patterns of unequally spaced arrays including coupling may
be well approximated, if the change in spacing is a slowly varying function of position, by a sim-
ilar funiction for the contribution of each element. Under this assumption, the array factor is

given by
D /A 1/2 _ .
A = ) iy [D_/x(1 + | sin £])) exp[jkz,(sin§ —sint,)) (39)
n
n
where Dn is the spacing allotted the nth element
Zn41 " %n-1

Dp=—"7——

In Fig. 44, we show an array pattern computed with the use of the approximation of Eq.(39)
as compared with the computed parallel dipole array pattern of Fig. 41. The comparison with
the curve of Fig. 41 that includes mutual coupling effects indicates that the approximation is
quite good. A further simplification is suggested by the observation that the coupling princi-
pally affects the sidelobes near the main beam and has little effect on the far-out lobes. This
suggests that substituting the pointing angle ¢ o in place of ¢ in the denominator of Eq. (39} would
be an acceptable approximation; i.e.,

Dn/ A 1/2
A(g) = Z 1+ [Dn/A(i +Tsin§ol)]

n

exp [jkzn(sin ¢ —sin 50)1 . (40)

Array factors computed using Eq. (40) compare reasonably well with those computed using Eq. (39).

C. Coupling Effects in Arrays with Nonisolating Feeds

When a finite array is fed by a reactive network, several effects can occur in addition to the
gain and impedance variations discussed above. In particular, there are problems associated
with multiple reflections, phase shifter properties, resonance phenomena, and bandwidth. Some
of these problems will be discussed in this section for both reactive corporate feeds and reactive
series feeds., The corporate feed that we consider is constructed with three-port (reactive) junc-
tions, as shown schematically in Fig. 45 for a 1:8 power divider.

The scattering matrix for a 1:?.K (=N) reactive corporate feed using 3-db junctions can be
obtained by following a wave through the structure when only one port is excited with all others
properly terminated. Part of such an incident wave will be reflected back to the driven port by
the junctions, while the remainder will continue through the structure to the other ports. The
amplitude and phase of a wave out of a particular port will then be the corresponding scattering
coefficient when the input wave has unit amplitude and zerv phagse. For example, consider a
unit wave incident on an output port of the 1:8 divider: at the first junction, half the incident
wave will be reflected back to the driven port and will arrive with (—Zkl‘—t) phase shift, and
similarly for the other reflections. The wave returned to the driven port for this case can be

shown to be

— 3 expl-jzke,] {1+ exp[-j2ke,) + exp [—j2k(t, + 13)])
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For the general case of a corporate feed with K levels of power division (1:2K.power divider),
the self-scattering term at each output port S o is

K n

1 _ 1 .

8, = —3 expl-j2kt,] {1 + Z —ZTI':I exp [—J?.k Z ‘m] . (41)
n=2 m=2

The scattering coefficients for waves coupled from the driven output port to the other output ports
are

m

1 1 .

SZn-i = —z-— exp [—JZk E ] 1- STh exp [-—]Zk Z ‘p] (42)
ms= n+1 p=n+1

where 2n — 1 is the minimum number of junctions encountered in traversing the feed from the

ith output port to the jth output port. (Note that n ranges from one to K, giving only K distinct

cross-coupling terms. Also, for n = K, the summation term in brackets is zero.) This leaves

just the forward coupling from ‘he input port to each of the output ports:

K
Sg = 27K/2 oo [—jk 2 lm] : (43)
m=1
It is readily evident from the above results that the scattering matrix for this type of feed
is strongly dependent on the electrical lengths of the junctionas. For example, the self-scattering
term can vary in amplitude from a minimum value of i/i.'K (for ¢ 2" A/4 and ‘n = A/2. n>2) up
to a maximum value of 1 — 1/2:K (for ln = A2, n 2> 2). The other scattering coefficients have

similar variations ranging from t/ 2K up to
4 1
ISpnal =21 - ;- (44)

Also observe -hat
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8, — So = e.xp[—jZk!i]

which means that minimum self-reflection occurs when the first-order cross-coupling i8 max-
imum and vice versa. These limiting values for the scattering coefficients indicate that the
scattering matrix can vary substantially as the frequency is varied over a moderate range when
practical line lengths are used. This indicates that there will be a bandwidth limitation to any
practical corporate feed system.

With the feed scattering matrix thus defined, a relatively straightforward computation will
solve for the overali performance of the antenna plus feed network system for a specified set of
parameters. These computations, although conceptually quite simple, are very lengthy even
with a high-speed digital computer because inversions of two large matrices are involved at
each scan angle. For exact calculations, computer storage limits us to relatively small arrays
(~ 64 elements); however, the approximete techniques discussed above can be successfully used
to golve for the performance of a few elements in an array which is very large in one dimension.

For example, we have examined the behavior of the c2nter row of 32 elements in a 32 X 65
dipole array driven by 65 identical, uncoupled,T reactive corporate feeds. When reciprocal
phase shifters are used, reflection sidelobes can result as the beam is steered from broadside,
as previously discussed. Figure 46 shows an example of these multiple reflection effects for a
square-grid array with inter-element spacings of 0.6A and mounted 9.25A above a ground plane.
Note that the reflection lobes in this case are very high because of relatively large antenna mis-
matches; for smaller angles of scan, the mismatches and, hence, the reflection lobes are de-
creased. If nonreciprocal phase shifters are used in this same array, the reflection lobes are
essentially eliminated as indicated in Fig. 47.

We have also analyzed an 8 X 8 square-grid dipole array with each row of the array fed by
a 1:8 reactive corporate feed. For this study, the array had an inter-element spacing of 0.6\
and no ground plane was used. An array of this size exhibits substantial edge effect when driven
with independent sources; however, when properly designed reactive corporate feeds (1 17 /] 2=
Lq= 2.25A in this case) are used, the currents in any row are constrained to have nearly identical
amplitudes by the feed network as demonstrated by the top curve in Fig. 48,

This is a direct consequence of a property of lossless three-port junctions with output arm
lengths an odd multiple of a quarter-wavelength long: the amplitudes of the currents in the two
finite, nonzero loads terminating the output lines are in a constant ratio (unity for 3 -db junctions)
independent of the values of the loads. Unfortunately, this result only applies for a discrete set
of line lengths and/or a discrete set of frequencies. For example, a 5-percent decrease in the
operatir.g frequency of the feed described above results in the array illumination shown in the

botiom curve of the figure,

When this array is scanned by nonreciprocal phase shifterst to point a beam at © = 45°,
¢ = 45°, the current distribution scross half the array at f = 0.95 fo is as shown in the up-
per part of Fig.49. The current distribution at broadside is also shown in the figure, from
which it is readily seen that scanning the array to point a beam off broadside can substan-
tially alter the array illumination. On the other hand, if the array is operated at the center
frequency, this statement does not apply, as demonstrated by the dashed curve of Fig. 50.

t That is, the 65 reactive feeds can be considered as isolated from one another, as would be the case if each
reactive feed were fed by its own source or by a well-matched hybrid corporate feed.

t The phase shifters were assumod to be digital with a smallest phase increment of 45°,
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This figure also shows the current distributions which result when analog reciprocal phase shift-
ers and an independent (hybrid) source feed are used. Note that the use of reciprocal phase
shifters results in a very poor array illuminatior tape ~ and, as previously discussed, can cause
very high reflection sidelobes when the beam is scanied off broadsid:. Also observe that reac-
tive feed networks with nonreciprocal phase shifters can give an a:ray illumination superior to
that obtained with independent sources over a small band of frequencies.

IV. EFFECTS OF MUTUAL COUPLING ON RADIATION PATTERNS

OF MULTIPLE-BEAM OPTICAL-TYPE ANTENNAS

There are several techniques for the realization of simultaneous multiple beams irom an-
tennas, with perhaps the oldest being the use of multiple feeds in conjunction with an optical-
type antcnna, such as a reflector or a lens. For example, Fig. 51 illustrates a two-dimensional
version of such an antenna — a Luneburg lens fed by multiple sources.

The multiple-feed problem has a precise counterpart in the itheory of large arrays, and
knowledge about the effect of coupling on the performance of large linear and planar arrays can
be applied directly and easily to this problem. To illustrate, let us analyze the two-dimensional
{cylindrical) Luneburg lens system of Fig. 51 (i.e., the figure is assumed to extend to z = i),

Consider the arrangement of Fig. 52. The lens is fed by a single feed which produces an
electric field per unit current into the feed of e(v), where v is the angle measured from the phase
center of the feed (we assume it has one). The lens performs a linear transformation on e(v) to
produce a secondary illumination E(y).T For example, if the cylindrical lens is designed so that
the feed phase centers are on the lens surface, geometrical optics will show that

By) = —Llpr .y siny . (45)
(po cos v)

The far field at a range R is then determined to within a phase factor by22

p
E(¢) = Txi-x © E(y) exp[jky sin¢] dy (46)

o

where k = 2n/A,
The actual form of the transformation is of little consequence to the argument, however.

It suffices for now to use as a starting point the statement that energizing a single, isolated feed
at a location corresponding to the n = 0 position of Fig. 54 produces an equiphase illumination
along the aperture plane of Eo(y) per unit feed current.

If the single feed is moved to a new position ~ say, the nth of Fig. 51 — the aperture plane
moves around the lens through an angle nD/ Po radians, as illustrated by Fig.53. The phase
front is tilted by nD/ Po radians relative to the y-axis, and the phase center of the aperture plane
has moved fromx = R_, y = 0, tox = P, cO8 nD/po, y = p, sin nD/po. Obviously, if nD/po <<,
the displacernent of the phase center in the x-direction becomes negligible. while the y displace-
ment approaches nD. However, if p o>> A, as assumed, most of the pattern structure of interest
will lie near ¢ = 0 of Fig. 52, and the y-offset of the phase center will have little effect on close-

in sidelobe levels.

t The dimensions on e(v) and E(y) differ, so that squoring each and dividing by the intrinsic impedonce of free
space produces watts per unit solid angle and watts per unit surface area, respectively.
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Ag a result of the foregoing approximationa, the change in the apertuce illumination on a
line parallel to the y-axis that results from meving the feed appears as simply a change in phase

front slope
. . Dy
En(y) = Eo(y) exp [Jkn .p_o ] (47)

when viewed at small angiles from broadside.

Returning to the multiple-feed configuration of Fig. 51, if we excite feed 0 with, for example,
a voltage generator of operni~circuit voltage Vo as in Fig. 54(a), and terminate the other feeds as
in Fig. 54(b), then the current in the nth feed is just

1=V Y (48)

where Yno is the mutual admittance between feeds n and 0 (a function of the feed types, feed
placements, and Z _ and Zt of Fig. 54). The total illumination along a line parallel to the y-axis
Et(y) is then

N
E = ), LE®
n=-N
which, by Eqgs. (47) and (48), gives'
E/(y) = E(y) V, D Y o exp[jknD RL(J] ) (49)
n=-N

Thus for a large (po >> A) optical system, the far field in the region near the main beam will be
the Fourier transform of Eq. (49), where Eo(y) is the aperture illumination per unit current into
the feed that would result from a single feed placed on the x-axis.

Equation (49) can be put explicitly in the form of the primary feed illumination. The effect
of the optical system on a single point source feed is to transform the feed primary pattern — say,
eo(u), where v is the angle from the x-axis as indicated in Fig. 52 — into Eo(y) by some linear
transformation, which we will denote as an operation L

E(y) = L e(v) . (50)

For example, for a surface-focused Luneburg lens, the transformation is given by Eq. (45). The
exact form of the transformation ig not of immediate consequence here, only the fact that it is

1 The purist may object to the implicit assumption that the pattern which results from a feed being driven at its
terminals and the some feed being porasitically excited is necessarily the same. This assumption, which was
used to simplify notation, is not really necessary to the argument,
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linear, which allows us to transform both sides of Eq. (49) to give

N
ev)=e )V, ), Y__ exp[jknD sinv] (51)
n=-N

where we have used y = Pe sinv in the exponent as appropriate to the Luneburg lens, since the
phase slope in Eqs. (47) and (49) was derived for this configuration.
The physical interpretation of et(u) is that eo(v) of Eq. (51) is the pattern of one element of

a linear array taken in the presence of the remainder of the elements when they are passively
terminated, i.e., the "element pattern"” of Sec.III-B, if there are enough feeds on either side of
the element in question to assume an infinite number. The results are directly applicable to
three-dimensional optical feeds as in Fig. 55, with the planar array gain function used for feeds
arrayed as in the figure.

Thus the conclusion of the analysis is that a multiple feed in an optical system

will radiate a pattern whese shape close to the main beam is given by trans-

forming the pattern of one feed in the presence of the other feeds when they
are terminated in the impedance normally used.

This conclusion is based on the following approximations:

(a) Py >> A, and therefore geometrical optics is valid.

(b) The lens is large enough so that the feed assembly (or the extent of the
feed over which elements couple appreciably) is small enougk for the
curvature to be negligible.

(c}) The array is large enough so that the main beam and sidelobe region of
interest is of small angular extent, since for angles very far from the
line through the excited feed (the x-axis of Fig. 51 if feed 0 is excited),
the difference in phase center locations of the aperture planes for the
various feeds is not neg.igible in the direction of interest.

In substance, these approximations amount to a restriction to very large (narrow-beam) systems.
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