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ABSTRACT

This report summarizes the current level of understanding of the performance of arrays

of real radiators. The extentand nature of the effects of mutual coupling (element pat-

tern distortion, element impedance variation with scan angle, and polarization varia-

tion with scan angle) in array antennas are investigated for a variety of array geometries

and for several types of radiating elements. Both finite and infinite arrays of regu-

larly spaced, uniformly illuminated, and progressively phased elements are consid-

ered. The effects of coupling on unequally spaced arrays, arrays with coupled feed

networks, and circularly polarized arrays are also discussed. Finally, the results of

a study of the effects of coupling on the radiation patterns of multiple-beam optical-

type antennas are presented. Although most of the numerical results are based on

thin, dipole radiating elements with and without ground planes (the dipole without a

ground p!ane is the exact dual of an arrayof slots in a ground plane), both theoretical

and experimental investigations of the sensitivity of the results to the element type are

included. Emphasis is placed on the results of various analyses and their implications

to 1-he array designer. The derivations of some of the more important results are briefly

outlined, but in most instances, only the relevant conclusions are given.
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FOREWORD

The primary objective of this report is to provide the working engineer with a knowledge

of the effects of mutual coupling on array performance - what the effects are and how serious

they are. The theory and the necessary analytical tools for repro-ducing and extending the
results are outlined and referenced, but the emphasis is on results; i.e., to what extent do

the properties of an array depend on the kind of radiating elements used and the way they

are excited?

The report thus has shortcomings that would be of interest to the well-rounded engineer: it
ignores certain very fundamental results 12 that have not yet proven of practical value, and it

ignores entirely the question of how to measure experimentally the effects discussed. 3 5 Al-

though the purpose of this report is tutorial, many of the results are appearing here for the

first time.

The origins of this report can be traced to 1961 when one of the authors prepared noteson

array antenna theory for a summer course in "Elements of High Powered Radar Design" at
6

M.I.T. In 1963, the revised notes were issued as a treatise on array theory. At that time,

the author was dissatisfied with the state of knowledge on mutual coupling; subsequently, both

authors of the present report have devoted a great deal of time trying to improve the under-

standing of such phenomena. They were also fortunate to establish and maintain person-to-

person communication with many others who have become interested in this area and whose

names appear frequently in the references. As a result of these efforts, significant progress

was made which thoroughly outdated the chapter onmutual couplingin Ref. 6 in justa fewyears.

The motivation for this updating of the authors' writings on mutual coupling research is due to

Professor Curt Levis, Director of the Ohio State University Antenna Laboratory. At his invi-

tation, the authors gave lectures during the summers of 1965 and 1966 as part of the Univer-

sity's curriculum on "Recent Advances in Antenna and Scattering Theory." The 1965 course

notes formed the original draft for this report. For the 1966 course, the notes underwent a

major revision. Since that time, only a few corrections have been made.

The authors are indeb._,d to Professor Levis for the inspiration to write this report and for
permission to publish it as a Lincoln Laboratory Technical Report. They are also apprecia-

tive of those who supported the work at Lincoln Laboratory, namely, the U. S. Air Force

and, more recently, the Advanced Research Projects Agency. The authors especially thank

Lt. Colonel John C. Toomay who was program director at ARPA and who has encouraged broad

research of this type, insisting that the results be written in a manner intelligible to those not

specializing in the field.

It would be impossible to list all those whose research contributed to the body of knowledge

described in this report. The references do this to some extent, but do not give credit to the

engineer whose experimental work is not published in the open literature. In this category, the

authors especially acknowledge the contributions of L. Schwartzmann of Sperry Gyroscope

Company and R. Tang of Hughes Aircraft Company whose observations and experiments have
been helpful in verifying and extending the theory of mutual coupling effects.

For the interested reader, the authors recommend Microwave Scanning Antennas - Vol. II: Ar-

ray Theoryand Practice, R. C. Hansen, editor (Academic Press, New York, 1966). Chapters

Z through 4 by A. A. Oliner and R. G. Malech cover much the same material as this report but

from a somewhat different viewpoint in some cases.

vii Preceding Page Blank



MUTUAL COUPLING IN ARRAY ANTENNAS

I. INTRODUCTION

A. Qualitative Explanation of Coupling Effects

It is intrinsic to the nature of antennas that when two antennas are in proximity and one is

transmitting, the second will receive some of the transmitted energy, with the amount depend-

ent on their separation and relative orientation. Even if both antennas are transmitting, they

will simultaneously receive part of each other's transmitted energy. Furthermore, antennas

rescatter a portion of any incident wave and thus act like small transmitters even when they are

nominally only receiving. The result is that energy interchange between a particular element

of an array and a remote point occurs not only by the direct path, but also indirectly via scat-

tering from the other antennas of the array. This effect is a manifestation of the "mutual cou-

pling" that exists between array antennas. It is not usually a negligible effect and complicates

the design of such antennas.

Before attempting a quantitative examination of coupling effects, let us elaborate on the

foregoing physical picture by examining (1) elements of a transmitting array and (2) elements

of a receiving array (which may, in fact, be the same array at a different time).

1. Coupling in Transmitting Arrays

Imagine the two antennas shown in Fig. i as being two of many in an array. The gmnerator

attached to antenna n sets up a wave traveling from the generator toward the antenna indicated

by the arrow labeled (0) in the figure. Part of this energy is radiated directly into space (i),

while a part is coupled to the other antennas of the array - in this particular case, to antenna m.

The field incident upon antenna m causes current flow in that antenna which reradiates some of

the received energy (3) and also launches a wave toward the generator of antenna m (4). Of the

energy rescattered (3), some is reradiated directly into space and some in turn couples again to

other elements, and so forth. If antenna m is also being excited by its own generator, the en-
ergy rescattered from antenna m due to the generator excitation of antenna n adds vectorially

to the energy from generator m, altering the amplitude and phase of apparent excitation of an-

tenna m in a manner dependent on the output of generator n.

Thus, the total contribution to the far-field pattern of a particular element
in the array depends not only on the excitation furnished by its own generator
(the direct excitation), but also on the total parasitic excitation, which de-
pends on the couplings from and the excitation of the other generators.

The wave which is traveling toward the generator (4) of antenna m adds to any reflection

from that antenna because of mismatch between the generator and the antenna. For the case of

w ,•rjmr,



Fig. 1. Coupling paths from antenna nI® Itto antenna m when transmitting.
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principal interest here, in which the element excitations are coherent, the wave (4) due to gen-

erator n differs from the reflected wave in antenna m because of its own generator mismatch

only in phase and amplitude; exactly how depends on the coupling between the two antennas and

the complex amplitude of the output of generator n. The net effect of the vector sum of these

two waves to an observer looking at antenna m from its generator is the same as if the imped-

ance of antenna m were changing as a function of the excitation and location of antenna p, In

fact, it is common pracdice to model this effect of coupling on such arrays as a change in the ap-

parent driving impedance of the elements (this change is often termed the "mutual impedance

variation").

While not entirely without its confusing aspects, the concept of a changing driving imped-

ance is useful. For example, for a particular set of element excitations and locations in an ar-

ray, the generator impedance that is optimum for each element (in the sense of maximizing the

radiated power) would be a "match" to an impedance at the antenna terminals that would set up a
reflected wave numerically equal in phase and amplitude to the backward traveling waves induced

because of the coupling. Such a generator achieves maximum power transfer in an array, even

though it is not the impedance which is a match to what one would measure looking into a single

antenna without the other antemujas excited. Since the coupled waves depend on the excitation as

well as the placement of the other antennas, the impedance selected is optimum only for that set

of conditions. Thus we arrive at one of the principal aggravations of coupling in arrays whose

element excitations are varied (such as in electronic scanning arrays):

The generator impedance that would maximize the array radiation efficiency
(gain) varies with the array excitation.

2. Coupling in itcceiving Arrays

Figure 2 illustrates the coupling paths for a receiving array in which the receivers are rep-

resented as passive loads. Again, the figure depicts two elements of a large number assumed

to be present in an array.

Assume that there is a plane wave incident as indicated by the arrows labeled (0) from a

direction such that the incident wave will strike antenna m first. The field incident on antenna

m causes current to flow on this antenna which launches a wave into its feed (1) and also rescat-

ters some of the energy into space (2) and into adjacent antennas (3). The rescattered wave from

antenna m (3) adds vectorially at antenna n to the wave directly incident from space.

t In order to minimize confusion, we adopt the following terminology:

(a) Antenna impedance: the impedance looking into a single ijglatod element.

(b) Passive driving impedance: the impedance looking into an element of an
array with all other elements in place and passively terminated (in their
normal generator internal impedances, unless otherwise specified).

(c) Active driving impedance: the impedance looking into an element of an
array with all other antennas in place and excited (excitation must be
specifed).

Since impedance (b) is of minor importance and in most practical cam differs only slightly from (a), the term
"driving impedance" alone will be understood to refer to the active driving impedance.

3



Thus the total input energy to each antenna from the incident wave is the
vector sum of the waves coming in directly from space as well as those
coupled parasitically from the other antennas: it is dependent on the rel-
ative location of all the elements in the array.

Since the relative amount of energy absorbed and energy reradiated from any antenna de-

pends on its match to its terminating impedance, the total input energy to each antenna depends

on the terminating impedances of all the other antennas. In fact, for maximum extraction of

energy from the passing wave, we would like to choose the terminating impedance of the elements

in such a manner that we minimize the total energy backscattered into space (2). Consequently,

we should actually mismatch the receiver relative to the antenna impedance in order to set up a

reflectin from the receiver back to the antenna (4) to cancel the wave that would have been re-

scattered had the receiver been matched to the actual impedance of each antenna:

The proper impedance depends Dn the placement and excitation of the other
elements. In fact, the optimum receiver input impedance is precisely the
same as the optimum generator impedance for the same array for trans-
mitting energy in the same direction.

This fact follows directly from the principle of reciprocity. It can be inferred directly, although

it is by no means a simple exercise.

It should now be evident that mutual coupling plays an important role in the performance of

array antennas. It may not be so evident that understanding and coping with its effects can be

reduced to a reasonable problem. The remainder of this section is devoted to a detailed anal-

ysis of the ways in which mutual coupling depends on the design parameters of the array and its

elements.

B. Effects of Mutual Coupling on Array Performance

The exact extent and nature of the effects of coupling on array performance depend on (1)

the type of antenna and its design parameters, (2) the relative placement of the elements in the t

array, (3) the type of feed used to excite the elements and the design parameters thereof, and a

(4) the range of relative excitations employed (the scan volume of the array). In the following o

subsections, we will examine quantitatively the extent of these effects and their dependence on c

the factors mentioned. Before doing so, however, let us point out the practical consequences

of taiese effects. These fall into two classes: (1) those effects which arise from the apparent

variation in element driving impedance and (2) those which arise from the multipath nature of

the route followed by the energy from each generator to the far field or fronm the incident wave

to each receiver. These cause distortion of the array far-field pattern.

I. Impedance Variation and It's Subsidiary Effects on Equipment

The apparent variation in elemcnt impedance generally leads to a variation in array effi-

ciency, since it is a practical impossibility to match the element driving impedance for all con-

ditions of excitation. In addition, the apparent mismatch produces precisely the same effects as

a real mismatch on such auxiliary equipment as receivers, transmitters, and transmission lines.

Specifically, it can contribute to increasing the noise figure of the receivers and distort the re-

ceiver transfer coefficient in both phase and amplitude (leading in severe cases to receiver in-

stability). On transmission, the transmitter transfer characteristic "an be similarly altered.

Also, on transmission, there are the possibilities of voltage breakdown and overheating in the

transmitter output lines due to standing w.aves, and degradec transmitter output due to detuning.

4
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2. Pattern Variation Effects

The multipath route the energy follows because of mutual coupling causes the patterns of

arrays to differ from those that would be predicted on the basis of simple theory using noninter-

acting elements. In very large regular arrays (those in which the elements are placed at regular

intervals on a grid and which have a sufficient number of elements so that edge effects can be ig-

nored), the usual pattern distortion effect is a simple scaling up and down of the relative amplitude

of the patterns while preserving the relative pattern shape. However, for irregular arrays or for

small regular arrays with dominating edge effects, the -elative pattern differs substantially, in

ways which are often quite complicated, from the pattern computed ignoring coupling effects.

In antennas with elements that can support more than one orthogonal sense of polarization,

it is possible for the coupling to excite the polarization sense which is not directly excited by the

generators, thus causing depolarization of the signal.

Both the change in polarization and the change in efficiency due to mismatch effects cause

the gain of the array to change as a function of the relative excitation of the elements; for ex-

ample, the gain varies with sca. angle (element-to-element phasing) in phase-scanned arrays.

II. COUPLING IN INFINITE REGULAR ARRAYS

As an aid to analysis and understanding, it is helpful to analyze an idealized array which,

although a strict physical impossibility, is close enough to the real world to provide directly use-

ful answers in many cases of practical importance, and insight into others.

A. Infinite Array Concept and Its Utility

The most useful idealized array model for coupling studies is usually referred to simply as

an "infinite array." This means an array with (1) all elements placed at regular intervals either

in a straight line or on a flat surface of infinite extent, (2) all elements identical, (3) the ampli-

tude of element excitation equal from one element to another (uniform amplitude illumination),

and (4) the relative phasings of the elements differing at most by a term which is linear in two

orthogonal directions across the array. Mathematically, if the array lies in the x-y plane of a

coordinate system such as that of Fig. 3 (centering one element for convenience), the elements

-0l

COLUMN 0

Fig. 3. Generallzed planar array geometry.
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are located at the intersections of a rectangular gridt with spacings Dx and D y. Thus, it is con-

venient to represent elements by a double set of indices, so that the mnth element is located at

x = mDx, y = nD y. The element excitations differ only by a phase term

Omn = ma + nP

where a and P are the row and column phase increments.

The utility of this model is in the simplifications that it permits in mathematically modeling

and analyzing the coupling in an array. As will be seen, the behavior of such an infinite array

describes fairly accurately the behavior of most of the elements of modest to large arrays that

are either on flat surfaces or shallowly curved surfaces with a smoothly varying amplitude and

phase taper.

The nature of the behavior of the element driving impedance as a function of scan angle is

easily assessed in an infinite array. For an antenna which is fed by a single-mode transmission

line, we can write the terminal voltage of any one antenna in terms of the current flowing in the

others by simultaneous equations of the form

V. = Z Zmnl (t)

where the equation defines Zn, Pq as the ratio of the terminal voltage at antenna mn due to a

unity current flowing in antenna pq when all other antenna currents are zero. Hence, the Zinn, pq
are termed "mutual impedances" when the indices mn and pq are different. The driving imped-

ance of the mnth antenna is, by definition,

Vn

ZD nm (2)
Dnm Inin

I
Znni, pq Tni* (3)

m n

But the regularity of the array and its excitation requires that

Ipq = 100 ej(pa+qP) (4)

If we consider the central element for notational simplicity, we have

ZD(a, 0) = Z Z Zoo, Pq eJ(pa+qp) (5)

m n

which makes apparent the fact that the driving impedance for such an array is simply the vector

sum of Zoo, 00 and the so-called "phased mutual impedances" resulting from the excitation of the

other antennas. The term Z 0 o00 is the impedance looking into the central eliement with all others

open-circuited so that the current at their feed points is zero. If so terminating the antennas

causes the current to be zero everywhere on the element (as would be true for thin, gap-fed di-

poles and slots, if the reference point is effectively at the gap), then setting Ipq =- 0 is physically

equivalent to removing the pq element, and Zoo, 00 is numerically the impedance of a single iso-

lated element. In most practical cases, it is very nearly the same. We will investigate the be-

havior of the mutual impedances further in Sec. Ill.

t The practical and important case of a triangular grid can be analyzed by vacating every other site of a rec-
tangular grid.

6



Since Eq. (5) was obtained without reference to the feed system supplying the element excita-

tions, we can state categorically that in any infinite planar array of single-mode elements, the

driving impedance is given by a two-dimensional Fourier series in the phasing constants. The

coefficients of the series are the complex mutual impedances between elements. The ramifica-

tions of this result will be explored more iully helow.

A second virtue of the infinite array model is that its periodic nature allows us to ;,•ack

boundary value problems by use of Fourier series (see for example the discussion of the grating-

lobe series in Sec. II-D).

Finally, since the impedance behavior of an antenna in an infinite array of sizxgle-mode ele-

ments does not depend on the details of the circuit feeding the array, we can, by this artifice, sep-

arate the discussion of the intrinsic properties of antenna elements from the more complex prob-

lems of the interaction between the elements and the feeds. For a finite or irregular array, we

cannot in general discuss antenna impedance as an isolated factor.

B. Other Useful Idealizations

Several other idealizations which are commonly used are: (1) The concept of a "single-mode

antenna element": an element whose boundary conditions are such that any current that flows has

to conform to a single unique spatial distribution. The infinitesimally thin half-wavelength dipole

and the thin resonant slot are classical examples of this type of element. (An open waveguide

which has substantial excitation of higher order modes at the mouth is not of this type.) (2) The

concept of an "invisible feed." This idealized feed does not perturb the current distribution on

the antenna and has no coupling to the other antennas nor to other feeds, nor does it cause any

rescattering. (3) If the elements are above a ground plane, the groind plane is assumed to be

infinite in extent and to have infinite conductivity.

C. Resistive Sheet Problem

The fundamental nature of the mutual coupling problem (or, more precisely, one of its ram-

ifications - the change in impedance of an array with scan angle) is illustrated by examining the

behavior of the reflection coefficient of a thin resistive sheet of infinite extent backed by an open

circuit 7 so that there are no fields transmitted through the sheet [see Fig. 4(a)].t

The boundary condition imposed by such a sheet is that for z = 0, for all x and y, the ratio

of the total tangential electric field to the total tangential magnetic field be numerically equal to

the surface impedance of the sheet. We choose the surface resistivity of the sheet to be that of

free space: t = Z20irohms, so that the sheet is an exact match for a normally incident wave.

If we now move the source through an angle 6 E from the normal ir, the y-z plane of Fig. 4(b),

we can express the spatial dependence of the incident and reflected plane waves as

E E 0 exp [-jk(y sin eE + z cos 0E)

where i has a tangential component
0

Fo = E0 cosoEotang o E

TAs pointed out In FRef. 7, the open circuit Is not roolizable, nevertheless the model Is useful as we srall see.

7



RESISTIVE$ME

I .• IN x-y, PLANE

EIREI[SSTIVE[

YN\ SURACEFig. 4. Resistive theet reflection geometry,

Cc)

and

A'= 1 exp [-Jkly sin eE + Z coseOE)]

where

For the reflected wave, we have

]rfrctonr exp((-jk(y sinHer - z cose re)

]• •r exp [-jk(y sineO - z cose Or

(c r rr O

with

•or = Er case , A =-Hr
otang H r otang 0

Applyng the boundary condition at z 0 gives

8



Eo cosEexp[-Jky sinOEl + Eo cos er exp[-jky siner!
i r

H. exp [-jky sineEl - Ho exp[-Jky siner r

For each wave, we also have

E i Eor

HO = 0 and H= 0

giving

Ei (oe 1)ep[jysn0 r
E0 (cos eE - 1) exp[-jky sin EE] + E (cos er + 1) exp([-jky sin Or] 0

This equation can obviously have a solution independent of y only if eE = . r. Making this sub-

stitution and solving for the voltage reflection coefficient gives

Er I - cos E
r =+ cosE (6)

or

rI =tan 2- (7)E 2

By analogy to the transmission-line formula for the normalized load impedance r in terms of

the reflection coefficient

r +-I

the sheet represents an impedance to the wave that varies as
I

rE = coo 6E

For scan in the H-plane, the assumed direction of E-field of Fig. 4(c) leads to

cos eH - I
rH = cos eH + ( 9)

-- tan (10)

and

rH =coso (0 )

Thus, even for such a simple situation as a wave impinging on a resistive sheet, there is a
change in the apparent impedance that the sheet presents to the wave as a function of scan angle.

The practical importance of this result becomes apparent if we assume that the resistive

sheet represents the limiting case of an array of infinitesimal dipoles with infinitesimal inter-

element spacings. It is logical to expect on this basis that the reflection coefficient behavior

represented by the sheet would be an extreme case. It might also seem logical that extremely

dense packing of elements would represent maximum impedance variation; however, comparison

9



indicates the opposite is true. The resistive sheet impedance variation appears to represent a

lower bound on impedance variation with scan.

E-PLANE SCAN H-PLANE SCAN
(SHORT DIPOLES, NO (SHORT OIPOLES. NO

Oal GROUND PLANE, 01GROUND PLANE,

I I
0.24 I

0/A - 0.5 0 IrI.-toin 2 f
0.20 s/ 201 

9/ ,

- s/h 0.250

0 .6 /k - 06 0

•/A •0.187 g O/ 0.6

012 -/ 0.187

0

"".0 II

0.04 / DI .0.7 / (0/1.7
"/ s/A • 0.125 */), 0.125

0 20 40 s o 0 t0 40 so 00

ANGLE (dog) ANGLE (Cdg)

Fig. 5. Reflection coefficient magnitude vs principal plane scan angle.

For example, Fig. 5 compares the computed variation in reflection coefficient magnitude

for arrays of half-wavelength dipoles for various spacings D and various heights s above a
ground plane with the reflection coefficient behavior of the resistive sheet.t (The curves for

wider spacings are discontinued at the angles where major lobes of the array are equally dis-

posed about broadside; the behavior just retraces the curve from that point.) Note that the re-

flection coefficient for a given scan angle in the principal plane becomes monotonically better

as the elements are brought closer together. As a confirmation, computations of the impedance

behavior for a central element of a large array of short dipoles without a ground plane for D =

D = 0AX are also shown. It is apparent that the approximation to the impedance variation ofy
the resistive sheet is quite good.

The second important consideration is the base from which this change takes place; in the

figure, this is the impedance which matches the array at broadside. What the figure does not

show is that for the very closely spaced short dipoles, the absolute impedance - particularly

the reactive part - has become exceedingly large, although the change in impedance is quite

small. All the data presented assume the generator impedance is matched to the element driving

impedance when the array is phased for broadside reception or transmission. To do so, it is

necessary to tune out the broadside driving reactance. If this reactance is lRrge compared to

the resistive part, the tuning is extremely critical; such is the case for short dipoles stacked

close together.

t The height s In Fig. 5 Is the one that minimizes the mismatch in the principal planes of scan.

tO



D. Grating-Lobe Series and Its Significance

The periodic nature of the infinite array permits a very general analysis of the impedance-

vs-scan behavior of various elements. By expressing the pouer radiated and the power stored

in the vicinity of the array in terms of the current or field distribution on a typical element, the

complete impedance behavior as a function of inter-element phasing can be described. The re-

sult, although in the form of an infinite series, is not only a useful computational tool for ele-

ments with known current distributions, but also furnishes insight into the properties of elements

that affect their impedance behavior.

Pioneering in the analysis of infinite arrays was done by Wheeler 8 and Edelberg and Oliner, 9

but Stark1 0 gave the first definite exposition of the complete series. Both Wheelerit and Paradt 2

have written on the physical interpretation of the result, and Rhodes13 has given an elegant der-

ivation of a related expression for single elements. The derivation is straightforward, but will

only be sketched here. It is based on the fact that from an expression for the total power flow

(both real and reactive) outward from a typical cell of an infinite array at the array face, the

driving impedance the cell presents to a single-mode transmission line can be calculated and

shown to be related to the element pattern.

To illustrate, let us consider an array of elements on a rectangular grid. The elements
are assumed to be identical metallic conductors of infinite conductivity with a known surface

current density distribution in the y-direction, K (x, y).t The surface current density is identi-
y thcal from cell to cell, except that the relative phase of the current at the center of the mn cell

is exp [-j(mrn + np)]. Thus, the total surface current density distribution can be expressed as

a doubly infinite series:

K(x,y) = Fy K Ky(x- rDy - nDy ) exp [-j(ma + n3)] (12)

m n

where Fy is the y-directed unit vector. Note that K(x, y) is not a periodic function; however, the

product R(x, y) exp [j(ax/Dx + y/D y)] is periodic and can be expanded in a two-dimensional Fourier
series. The result is that the normalized current density can be written as

R(x,y) y =F• K (a,/3) exp[-j(k x + k y)l
inc p q pq x Yq

where we have defined

k = a-- (13a)
p x

ky =f P +1q 13b)

Y

and

k k2_ -kZ k2
kzpq 0  X y (13c)

t Only the requirement of identical elements is necessary; the other restrictions are for convenience and can be
removed.
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The definition of kz is included for later reference, and ko is the free-space propagation con-

2 2 pq
stant, W p C. By the usual procedure, the Fourier coefficients are found to be

K y(a.) = Dx/'2  D/Z K (xy) exp[j(k x x+ k y)) dxdy (14)
VD ~cp Yq

pq x y J-Dx/2 J-Dy/Z

If we now apply Maxwell's equations to the free-space region in front of the array, we obtain

expressions for the electric and magnetic fields in space in terms of the surface current density

at the aperture. The electromagnetic fields in space must be periodic in the same sense as the

surface current density and, in fact, must be an infinite set of propagating or attenuating plane

waves. For the electric and magnetic fields tangential to the aperture plane, we have
K (a B

H Xx( Y, Z) = E' z YPqi exp [-j (k x + kyq y +k zp )] (I 5a)

Pq P Zpq

2 2(ko - k )K (,)
(k p - kzKpqS01.-P) exp [-j(k x+ y+ z)] (1 5b)

yp q zpq p y, Z pq

where 1 = if-o/7o is the intrinsic impedance of free space.

It should be noted that the wave equation for the free-space region defines an infinite spec-

trum of plane waves. Each plane wave is associated with a "propagation vector" with compo-

nents kx# ky, and kz. In general, these components can be complex, but for this case, kx and

ky are constrained to be real, while kz is positive real or negative imaginary such that the wave

equation will be satisfied:

2 2 2 2 2 2kz = k 0 kz _ k , k 0 0CZ X y O oo

2 2 2
Physically, for k x + k y k 0 we can identify the k's with the angles of Fig. 3:

k = k sin8 cos

k = k sine sinOy o

k = k cose (16)
z 0

In this notation, for example, the far field of a typical element with normaliz ad current density

[Ky (x, y)/inc ey is

"-Dx/ -D/2 • exp j(kxX + kyy)] dxdy

where lInc is the total incident current in a cell. The usual pattern in 0 and e coordinates is

obtained by substitution of Eqs. (16) into this result. Note that the Fourier components of the

current density are related to the far-field pattern of an element when k 2 + k 2 4 k2 Although

2 2 2 p P Yq

we cannot associate the plane waves that have kx + k Y> k with the element radiation pattern,

they still have significance because they correspond to stored energy in the aperture.

It is also worth noting that the discrete, periodic boundary condition defined by the aperture

of the array causes the radiated power to be confined to a discrete set of directions in kxky -space.

12
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In the above notation, this means that the variables k rand k take on only the discrete set ofx y

values kx and k for every beam-pointing angle specified by the element phasings, a and .p Yq

This contrasts with the situation for finite, planar apertures where kx and ky are continuous
variables.

If the normal component of the Poynting vector, - E H *, is integrated over one cell in they x
aperture plane, we obtain an expression for the complex radiated power per element. The ele-

ment driving impedance is related to the radiated power and is given by

D GD o (k -o k)
S(,)= EK (p) (a (17)0)p=.po q=.oo kzpq pq

Observe that the numerator in the p = q = 0 term is just the power pattern of an element of the

array when (a/Dx)2 + (f/Dy)Z 2 < ko.
x y 0,

1. Physical Interpretation of the Series

To grasp the significance of the "directions" specified by the factors kx , k , and k zpq

note that we can write the array factor of a uniformly illuminated array with phase constants a

and 0 as

A(kx, ky) - exp [j(ma + nf3)] exp [-J(kxmDx + k ynD )]

m n

As it stands, A is a function of two variables k and k that can range from -- to +o. It willx y
have maxima at points "in k-space" where

(kx Dx - a) = p2i

(ky Dy- -•)=qzw

or, referring to Eq. (17), at all values of k and k satisfyingx y

kx k , p = 0, *1, *2, ...
p

k = k , q= O,*1,*2,...
y Y p

That is, the infinite array generates a "nest" of delta functions in k-space on a regular grid as

indicated in one dimension in Fig. 6(a). The delta functions inside

2 2 2=kx ky k 0

correspond to grating lobes in visible space, the remainder to lobes in "invisible space."

Consequently, we have a physical interpretation of each term of Eq. (17): the pq term cor-
responds in amplitude to the element "power pattern" (Fig. 6(b)J of a typical element in the "di-

rection" k X, kyq divided by the z-direction "propagation" constant (Fig. 6(c)]. Forkxp and kyq

in real space, the z-direction propagation constant is real and that term of the series contributes

only to the real part of the impedance. If kx and k are large enough to make k imaginary,p yq Zpq

that entire term will be imaginary and will contribute only to the reactance.

An important observation about the symmetry of the driving impedance variation with

scan follows from the fact that substitution of -a and -ft into Eqs. (13) for kxp and k changes

p q

13j



' k,
(a A(k,. ky o)-

I k,
(b) (d,) ZDis j • _ok.

ZDNk.-ZIN

Fig. 6. Factors of grating-lobe series (one dimensional): (a) scanning
army of delta functions, (b) element pattern, (c) 1/k factor, (d) re-
sulting contributions to series for ZD(O),

kxp k -x(-p), etc. Since we sum over all p and q, the signs of p and q are unimportant.

Further, since K (a, P) is multiplied by its complex conjugate in Eq. (17), the sign ZD(aa 3 )
YpqD

is invariant to changes in sign of kx and k ; hence,p Yq

ZD(cf,. ) = ZD(--C,#) = ZD((a.- 3 ) = ZD(-a•,-/) (18)

for an element irn an infinite array. Thus, in the following examples, we will only examine the

behavior of ZD(a, 3) for positive a and P.

2. Some Qualitative Inferences from the Series

The effect of scanning the beam on the driving impedance of the element thus depends on the

change of the sum of the contributions of the individual grating lobes as the nest of grating lobes

is scanned in k-space. For example, the effect of a grating lobe crossing the boundary between

real and imaginary space depends markedly on the behavior of the element pattern at that bound-

ary, since 1/kz . Unless the element pattern has a null in that direction, a discontinuity in

impedance occurs as the grating lobe crosses over this boundary, and abruptly changes its con-

tribution from reactance to resistance or vice versa.

The limiting cases of the effect of element spacing on the element impedance variation can

be easily assessed from the grating-lobe series. In the limiting case, as the spacing approaches

zero, the grating lobes recede toward infinity. As the elements shrink to accommodate the spac-

ing, the current density becomes a constant for all cells, and the element power pattern, the

numerator in the summation of Eq. (17), is just the "obliquity factor," I - kZ/ko. The pq term
of the series thus has the following asymptotic behavior for large k and k (small D and D

x p yq x y

IZ k2 -jkyq along the ky axis

o- y0 zpq along the k axis

xp

14
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and consequently the reactance becomes very large due to the impulses at large values of ky'

However, the variation in impedance due to the lobes other than p = q = 0 tends to zero, since

the amount of phase differential P/D between elements required to steer a beam to a giveny
angle is constant and, therefore,

lim k -7 7

DX-.O q Dy

which is independent of element phasing. Only the impedance contribution of the p q 0 term

varies, and the fractional variation in RD is seen from Eq. (17) to be

r R D(a, _) I -sin 2 e sin2 2

RD(0,0) cose

For E-plane scan, 0 = vr/2 and

rE = cos 0

while for H-plane scan, 0 = 0 and

I
rH - cos O

in agreement with Eqs. (8) and (II) for the resistive 9heet and the trend indicated by the examples

of Fig. 5, if account is taken of the fact that Eqs. (8) and (I1) are for the impedance looking into

the array from space. The above results are for the impedance looking out. The normalized

impedance is thus inverted.

For widely separated elements of small active area, the grating-lobe series indicates ex-

actly what intuition suggests: as the element separation increases, the impulses move very close

together so that many are in visible space, and scanning the array merely moves some out of

visible space and others into it, with a net result of little impedance variation with scan. Of

course, as a consequence, there are also numerous lobes in the actual spatial pattern in visible

space, as indicated in Fig. 7, with resulting loss of sensitivity and potential directional ambiguity.

Tiw-.UT). SHORT (D'). WIDELY SPACED
(D' 3 D') ELEMW NT PATTERN

UNIFORMLY ILLUMINATED

(a) ELEMENT OF WIDTH D

0), - 6 0 X _/.

Fig. 7. Effect of element size on array patterns: (b) R A
(a) element pattern, (b) array factor for element
spacing D, (c) far-field pattern. ... . .. .

- ELEMENT WIDTH 0
(C) 5 -J SHORT (0') ELEMENT

Is
/ / 0/• 0/h
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Of more practical interest for elements with widely eeparated centers is the case in which

the elements arte themselves directive. One way to achieve this is to have the current distribu-

tion occupy most of the space between the elements, such as using parabolic reflectors. The

pattern result is indicated in Pig. 7: using more of the allotted space improves the sdppression

of the grating lobes. In the limit, as we fill all allotted space with a uniform current distribu-

tion, the pattern grating lobes are completely suppressed when the Loam is pointed at broadside.

However, they are only partially suppressed as the beam is scanned. The same thing is taking

place in the grating-lobe series; the wide center-to-center element spacing places n-.,..1y of the

nest of impulses in visible space, but these are suppressed to a degree which depends on the

extent to which the apertux e is filled.

3. Additions to the Basic Series

Several interesting and useful additions can be made in the basic grating-lobe-series for-

mulation. First, as Stark has pointed out, the modification of Eq. (17) that must be made to ac-

commodate elements above an infinite, perfectly conducting ground plane consists of the addition

of a factor dependent on the element-to-ground-plane spacings:

go W0 (k - k)
D(a, xl Z Io K=• q=,• Lkp ~(a'ff •) z{•-exp [-Jgk zpSO] (19)

0P=Wq - 00  z Pa. qp

This additional factor is of no small importance, since it goes to zero whenever k = 0 in the
pq

denomninator. The effect on impedance variation is pronounced, as we shall see.

The grating-lobe series is also adaptable to any regular grid of elements (e.g., triangular).

It is only necessary to set the relative spacings and placement of the nest of impuilses to cor-

respond to the grid shape and spacing.

The series can also be used to infer the approximate average (with respect to position in the

array) impedance behavior of the elements of small arrays of identical elements. The infinite

array assumption in the derivation is responsible for two aspects of the results of Eqs. (17) and

(19):

(a) Justification for assuming that all elements have the same impedance
and known relative amplittde and phase weighting (see Sec. I1-A). There-
fore, the impedance of any particular element is simply related to the
variation in radiated and stored power of the entire array.

(b) The sampling functionS (the nest of delta functions of Fig. 6) have infinites-
imal width.

Thus, to apply the grating-lobe series to-small arrays, we must be willing to settle for an approx-

imate average behavior of the elements (approximate, since we still assume in the derivation

that the relative amplitudes and phases of the elements are known, which actually depend on the

relative impedances). If we accept this shortcoming, the effect of the small array is to replace

the delta functions with sampling functions of a width equal to the array beamwidth. The net ef-

fect is that a reasonable qualitative assessment of the small array impedance variation can be

obtained from that of the infinite array by averaging the infinite array data over a beamwidth of

the small array.

Finally, the series can be extended to include arrays of crossed-dipole pairs with or with-

out ground planes. Since the orthogonal dipoles are radiatively coupled to each other at nearly

S.. . . . .-I I nm . o• .. . .. . .. .. . .. . . .. . j . ..b



all scan angles, the analysis of this type of array is more complicated. That is, the radiative

coupling will influence the relative currents on the dipoles of every pair with the result that the

type of feed network behind every dipole pair must be included in the analysis. The problem can

still be formulated in rather general terms for arbitrary three- or four-port feed networks behind

every dipole pair; however, we must completely specify the parameters (scattering matrix, for

example) of the feed network before valid numerical results can be obtained. In the analysis of

this type of array, we must consider the polarization properties of the transmitted waves, the

impedance variation at the input port (or ports) of the feed network for a dipole pair, and the

power dissipated in the feed network or its terminatioi,.

E. Dependence of Element Impedance on Element and Array Design Parameters

In this section, we present results of the dependence of the element driving impedance

ZD(a, 0) on the pointing direction of the main beam of the array. We first examine in a planar

array context the extent to which the impedance variation can be expected to depend on element

type and spacing and other design details. We then examine the difference in behavior in linear
arrays, including a brief examination of the frequency dependence of the driving impedance.

1. Planar Array Impedance Behavior

To make the data more directly useful for design, we will discuss ZD for planar arrays as
a function of the scan angles in each of three planes through array broadside. The symbols eE,

0H, and 0D will be used to define the angle of the beam from broadside in the E-plane, H-plane,

and "diagonal (D)'I plane (450 from both E and H), respectively. If the elements are polarized in

the y-direction, we can make the correspondence between at, e, and eE, 0HA and 0 D by

-2 rD
a x sin e , H-plane scan

-2 rD
Y= sin eE , E-plane scan

SAsin neD D-plane scan

FD y

The data presented were computed from Eqs. (17) and (19), as appropriate, using a digital

computer to sum several hundred terms. To provide a crude assessment of the dependence of

impedance variation on element type, three significantly different current distributions within

a cell were examined:

(1) An idealized short dipole; infinitesimal diameter, effective length 0.1k.

(2) An idealized half-wavelength dipole; infinitesimal diameter, K (y) =

KO cos Twy/A. y

(3) A uniform current sheet filling the entire Dx by Dy cell.

Models (1) and (2) represent idealized models of both dipoles and their complement, slots in an
infinite ground plane. Model (3) is a crude but tractable model of the dual of an open-waveguide

radiator. It has recently been demonstrated experimentally that model (2) accurately predicts
14

the behavior of real dipole arrays even for lengths not particularly close to a half wavelength.

Some experimental data on open waveguide array behavior are presented later.
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40* 65,Fig. 8. Normalizod impedance vs scan angle in E-,
20 " /* S- H-, and D-planes for a typical element of an array

of short dipoles (L 0. IX); D = D = 0.55X.

Fig. 9. Normalized impedance vs scan angle in E-, o-
H-, and D-planes for a typical element of an array o
of X/2 dipoles; D = Dy O .55X•. 7.
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We firDi, compare the impedance behavior of these three models in a common configura-

tion - a planar a' l'y with elements on a 0.55A square grid (maximum scan without grating lobes:

55" in E- and H-planeq). We then examine the modification of the dipole behavior when a ground

plane is used. The effect,4qf element spacing and grid shape on impedance variation is assessed

for dipoles above ground, ani1-khe interplay between element spacing and ground plane height is
examined as an indication of the 'egtent to which the designer can optimize performance. The

behavior of linear arrays is briefly ixamined and compared with planar array behavior. Finally,

we present an example of the frequency •iependence of the driving impedance.

For uniform presentation of the data in'•A useful form, ZD vs angle is displayed on Smith
charts (see Fig. 8). We present normalized Z. , i.e., for ZD(O) = RD(O) + JXD(e),

ZD(0) ZD(O) -JXD(O) (20)DOnorrm = RD(O)

where 0 refers to the value of Z D when the beam is pointed at broadside. While not the only

choice of interest, there are three reasons for this format:

(a) It displays the impedance variation as it would occuri if the array were
matched at broadside - a condition that maximizes gain (but does not
minimize impedance variation).

(b) It makes the results easier to correlate with experimental measure-
mento; the effects of any actual matching networks in the antenna are
accowited for by normalizing, except for an arbitrary rotation of the
Smith \hart.

(c) In some cases, the grating-lobe series does not converge to a unique
ZD, but does converge to a unique value of [ZD(e) - jXD(O)]/1D(O).

To aid the reader, for model (2), which is used for comparison of different array configurations,

we will include ZD(0) and also the impedance of a single isolated element (above a ground plane

if appropriate), Za (see Fig. 9 ).t

2. Comparison of Element Types

Figure 8 shows the behavior of a typical element of an array of short dipoles (SD) [for short

slots, interchange E for II and impedance for admittance]. The most striking fact is the supe-
riority of the behavior in the E-plane over the other planes. Unfortunately, the E-plane is atyp-
ical, since the factor (k2 - k 2 ) has a zero in the E-plane at the same angle as the zero2Ica, sncethefacor k0  k) hs azer intheE-paneatthesam anle s te zroof kz in

yq z
the denominator of Eq. (17). For all other scans, the impedance goes to the edge of the Smith

chart whenever

(a) A grating lobe comes into visible space, which occurs at 55* in the
H-plane, or

(b) The main lobe is scanned out of visible space, which occurs at 900 in
the D-plane.

The E- and H-plane curves are discontinued at 65". This angle physically corresponds to a

grating lobe at -65" (symmetrically disposed relative to the main beam), so that further scanning
is equivalent to scanning the main beam in from 65; the curve retraces itself.

If we adopt as an arbitrary criterion a tolerable VSWR of 3:1, we can scan to about 47" in

the H-plane, about 79" in the D-plane, and anywhere in the E-plane; for a 2:1 VSWR, 40" in H,

76" in D, and anywhere in E.

t For wide scan angles, a match to ZO very nearly minimizes the mismatch with sKan, but at a Ion in broadside
gain with respect to a match to ZD(O).
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For a half-wavelength dipole (HD), as indicated in Fig. 9, the behavior is qualitatively quite

similar, suggesting that the dipole length is of secondary importance. For a 3:1 VSWR, we can

scan to about 45" in H, 790 in D, and anywhere in E; for a 2:1 VSWR, about 400 in H, 77" in

D, and 50 In E.

The "open-wavegulde" (OWGD) dual model shows a still greater E-plane variation than either

dipole, but is again qualitatively similar (an observation made more obvious by comparing the

OWGD dual model results of Fig. 10 with Fig. 9 rotated about 456 ccw). For a 3:1 VSWR, we can

scan about 51" in H, about 750 in D, and about 356 in E; for a 2:1 VSWR, about 42" in H, 450

in D, and about 28 in E.

These results are summarized in Table I.

TABLE I

IMPEDANCE BEHAVIOR OF ELEMENTS
WITHOUT GROUND PLANES

Element Type

VSWR Scan Plane SD HD OWGD

E - - 35
3:1 H 47 45 51

D 79 79 75
E - 50 28

2:1 H 40 40 42
D 76 77 45

Since the OWGD dual model is crude, its apparent inferiority should not be taken too seri-

ously. To reinforce this point of view, Fig. 11 shows a comparison of experimentally determined

ZD for a finite (10 X 10) array of open-waveguide radiators with computations for a similar

(10 × 10) array of half-wavelength dipoles without a ground plane. In this case, the impedance

variation of the element in the waveguide array is seen to be slightly less than that for the same

element in the dipole array for scan in the waveguide E-plane (the H-plane for dipoles). For

scan in the waveguide H- and D-planes, however, the results for the two arrays are within the

limits set by experimental tolerances. Similar results were obtained for other elements in this

particular array and for wavegulde and dipole arrays with different Inter-element spacings

(Dx - 0.6A, Dy = 0.3A). The obvious conclusion is that the impedance behavior of an element in

a waveguide array can be predicted reasonably well by computations on a similar array of dipoles.

The addition of a ground plane under the dipoles has a marked effect on the impedance be-

havior as shown in Figs. 12 and 13 for the short and half-wavelength dipoles. Physically, the

addition of the ground plane below an electric dipole prevents the dipole from radiating along

the ground plane; hence, in the language of the grating-lobe series of Eq. (19), the ground plane

factor, I - exp [-JZkzS], approaches zero as kz -- 0, so that the impedance is continuous when a

grating lobe becomes visible. Also, if an element can radiate In the direction of the other ele-

ments, a grating lobe directed toward the other elements will cause them to absorb as much

power as they radiate, bringing about a unity reflection coefficient.
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The diagonal plane scan still causes the reflection coefficient to reach a magnitude of unity,

since the beam can be scanned out of visible space without a grating lobe coming into visible

space, thus suppressing all radiation (for an infinite array).

For the elements mounted a quarter-wavelength above ground, the allowable scand for 3:1

and 2:1 VSWR's are as shown in Table II.

TABLE II

IMPEDANCE BEHAVIOR OF ELEMENTS
WITH GROUND PLANES

Element Type

VSWR Scan Plane SD HD

E 55 50
3:1 H 50 50

D 62 62

E 45 40
2:1 H 40 40

D 52 50

The differences between the short- and half-wavelength dipole array results are not significant,

particularly in view of the ability to alter the impedance behavior somewhat by varying s, as we

shall see.

In summary, the most striking difference in impedance behavior of the elements investigated

is brought about by suppressing the ability of an element to radiate in the direction oi. other ele-

ments. For dipoles and some similar elements, this can be easily accomplished by placing them

above a ground plane. Note, however, that slots or open waveguides in a ground plane do radi-

ate along the ground plane and hence are analogous in behavior to a dipole without a ground plane

(the thin slot in a ground plane is the exact dual of the dipole without a ground plane).

Even this difference in behavior is only important for scan angles near grating-lobe forma-

tion. It is evident from Tables I and II that if the usual element spacing criterion of allowing a

grating lobe to appear marginally is used to design the array, elements such as dipoles would

give vastly superior (but still poor) VSWR performance at extreme scans if placed above a ground

plane. If, however, the element spacing is chosen to constrain the maximum VSWR to a reason-

able value, there appears to be little difference between the elements, and other considerations

(e.g., mechanical convenience) should dictate the choice. Note, however, that such a criterion

results in a much smaller allowable scan volume for a given element grid spacing.

To illustrate the extent to which detailed design parameters may affect impedance behavior,

we will explore the interlocking effects of two parameters of an array of dipoles above ground.

We will also examine the effect of the height of the dipole above ground, s, on the maximum

VSWR which occurs for a specified scan volume. In particular, we will choose a 40° cone-

shaped scan volume and examine elements on a square grid (suggested by the symmetry of the

scan volume) and a triangular grid.

A plot of maximum VSWR as a function of ground plane spacing Is shown in Fig. 14 for E-

and H-plane scans of two square-grid arrays. From this figure, it is apparent that the maximum
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SCAN TO 40*. MATCH AT BROADSIDE

--o- ;. o,.o.6*

Fig. 14. VSWR at m vs ground plane sponing
for large, square-grid arrays of ?i2 dipoles.

i0J

00O1 0.2 0.3 OA

s / o4

E-plane mismatch becomes very large and the n.aximum H-plane mismatch becomes monoton-

ically smaller as the ground plane spacing is decreased. Thus, for every inter-element spac-

ing, there is an optimum ground plane spacing which equalizes the maximum mismatch in the

principal planes of scan for a specified scan volume.

A similar set of computations for planar arrays with the elements on an equilateral trian-

gular grid is shown in Fig. 15 for a scan of 40*. Qualitatively, the results are quite similar to

those for the square-grid planar arrays. In particular, for every inter-element spacing, there

is an optimum element-to-ground-plane spacing which minimizes the maximum mismatch (as-

suming a match at broadside) incurred for a conical scan volume.

Figure 16 shows a plot of impedance variation with scan angle for a triangular-grid array

mounted at the optimum height above the ground plane (compare with Fig. 13 for the square-grid

array).

A cursory examination of the data for square-grid and triangular-grid arrays with approx-

imately equal areas per element indicates that the triangular-grid array may be preferable on

the basis of imnedance variation, although the difference is slight. Further, the comparison is

not direct, since the two arrays have somewhat different spatial coverages.

For all the linear- and rlanar-array configurations, it is seen that for optimum ground

plane spacing for a given volume coverage, an array with elements more closely spaced than
required by grating-lobe considerations will exhibit less impedance variation than one which

just satisfies the scan volh-me requirement: this is, of course, obtained at the expense of a
larger number of elements to realize the same gain and beamwidth.

3. Linear Array Impedance Behavior

For a planar array with different scan requirements in the x- and y-directions, an additional

design parameter is the choice of element alignment with the x- and y-axes. This is most evi-

dent in what we might view as an extremely degenerate case: a linear (one-dimensional) array.

Furthermore, linear arrays are obviously of interest in their own right. Consequently, we will

briefly examine the difference in impedance behavior, using arrays of dipoles above ground for

illustration.

23



.0 /O"
/ /

- 0 o.0.6) / /
---- 0 .?1 / /

/ /
/ //

Soaw O Ah* 0.? lo,

101

0 0. / 0. 054

Fig. 15. VSWR at 0ma vs ground plane* spacing for large,
equilateral triangular-grid arrays of ?0 dipoles.

70* - Fig. 16. Normalized impedance vs ican angle, in
E-, H-, and D-planes for a typical element of
an equilateral triangular-grid array of ),2 dipoles

Smounted 0.25 X above ground plane; D -0. 6X.

Z , 6 /6 + ,7-4 5

--2 J

o~o, , L, I ,4



S429
C OLLINEAR

30 0 45* '

Fig. 17. Normalized impedance vs scan angle . ,00 ROTATION
for typical elements in large, linear arrays of
?V2 dipoles mounted 0.25 X above ground planes;
D =0.6X. 42.

Zo 8 5.7 + j 72.5 " PARALLEL

130.4 +) 1 71.2 COLLINEAR
103.4 + j 39.7 45* ROTATION

01.7 + J132.6 PARALLEL

The relative impedance variation with scan angle is shown in Fig. 17 for a linear array of

dipoles spaced 0.6 A on centers, 0.25 X above a ground plane for three orientations of the dipoles

relative to the direction of the array. Observe that nearly pure resistance variation with scan
angle is obtained when the dipoles are mounted collinearly, while for parallel dipoles, the varia-

tion is mainly reactive. Also note that the mismatch at the maximum scan angle is approximately

the same for all three dipole orientations. Unfortunately, neither of these results applies for all

ground plane and inter-element spacings; that is, the above choice of array parameters gives

unique results and is presented merely to emphasize the different impedance behavior to be antic-

ipated as a function of polarization in a linear array.

In Fig. 18. array performance is assessed as a function of inter-element and ground plane

spacings (assuming a match at broadside) by giving the VSWR incurred at the maximum scan

angle as a function of the spacings. From this figure, it is readily evident that a greater im-

pedance variation with scan angle is exhibited by arrays of collinear dipoles for most ground

plane spacings. The variation of maximum VSWR with ground plane spacing (up to s = 0.25 A) is
seen to be small for arrays of parallel and 45°-echelon dipoles.

If the frequency is now allowed to vary over a 20-percent band for an array with D = 0.6 X
and s = 0.25 A, the impedance variation with scan angle at band center and at the band edges is as

shown in Fig. 19. Results are given for collinear dipole and parallel dipole arrays. The fact

that the impedance variation at the band edges is not substantially greater than at band center

indicates that some other component (or components) in the feed network will probably limit the

system bandwidth more than the antenna. (It is also interesting to observe that the Smith chart
impedance plots for the parallel dipole and collinear dipole arrays remain approximately orthog-

onal as the frequency is varied.)

IM. COUPLING IN REGULAR AND IRREGULAR FINITE ARRAYS

Intuitively, we would expect that the infinite array result discussed in the preceding section

would accurately describe the impedance behavior to be expected for elements imbedded in even

an irregular finite array, as long as the elements in the neighborhood of an element in question
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provide a uniform environment; i.e., the element is not near the edge of the array and, if the

array is irregular in spacing, the departure from regularity is small over a region of several

elements, If this statement is to be useful, we must, of course, have quantitative data on the

degree to which elements in nonuniform surroundings depart from the infinite array prediction.

We shall see that this departure depends on the element details, the location of the other ele-

ments, and the feed network that is used to excite the elements.

Furthermore, we are now in a position to discuss the effects of coupling on array patterns

(the patterns of infinite arrays are singularly uninteresting). Here again the nature of the ele-

ment feed is important. For independently fed elements (separate excitation or an isolating

feed network such as a well-matched corporate feed using four-port junctions), we can arrive

at some very general results; for feed networks which allow element interaction through the

feed, we can only outline a method of analysis and present some representative results for a

few specific cases.

A. Methods of Analysis

Since the grating-lobe series can only supply an average (in the sense explained in Sec. II-D-3)

element impedance behavior in a finite array, the first problem is to characterize the array (in-

cluding mutual coupling) in a form suitable for mathematical analysis. This can be done by taking

advantage of the well-known fact that the terminal currents and voltages of the elements in an ar-

ray can be represented by circuit equations as Eq. (1), which is repeated here for reference:

Vmn = Z mn, pqlpq [Eq. (1)]

Since there are N antennas, there will be N equations of the form of Eq. (1). This is analogous

to the case of an N terminal-pair network. The set of equations can be written in the matrix

form

V= [Z IZI (Z1)

where VJ and I] are N element column matrices, and [Zj is an N X N impedance matrix.

We could equally well relate Irn to V by an admittance matrix (inverse of {ZI) or relatemn pq
incident and reflected waves by a scattering matrix. Of these, the scattering matrix is the

easiest to measure in practice because it involves only a measurement of the power (magnitude

and phase) coupled to antenna n when antenna m is driven with unit power. Measurements of

impedance or admittance coefficients are generally much more difficult because they involve

either open-circuit voltages or short-circuit currents.

None of the matrices is easy to compute theoretically for most types of array elements, be-

cause electromagnetic scattering (including multiple scattering), as well as induction and static

field coupling, must be included in the computation of a single coefficient. However, dipoles of

any length with infinitesimal diameters can be handled ,Lnalytically by the induced emf method

for computing mutual impedances. 5 The admittance and scattering matrices can then be com- f
puted from the impedance matrix. Figure 20 shows the behavior of the mutual impedances be-

tween X/Z dipoles 0.25 above ground as a function of relative position. Further data for dipoles
and slots are given by Kraus. I

The second important part of the analysis of finite arrays is then the characterization of the

network feeding the antennas. These feed systems can take any one of several forms, e.g., the
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serial feed of Fig. Z2. Basically, they can be divided into two categories: independent (isolating)

feeds and nonisolating feeds. An independent feed is one in which the feed to an antenna in the

array is not influenced by the behavior of the remainder of the feed system ex:ept through radia-

tion coupling between antennas. Examples of independent feeds are those constructed with direc-

tiotial couplers and those using circulators or isolators behind each antenna. A nonisolating feed,

on the other hand, is one which does not meet the above criteria, that is, a feed network in which

there is 6nternal cross-coupling within the structure.

The independent source problem can most easily be analyzed drectly from the impedance

matrix by representing the sources as N independent generators with open-circuit voltages en
and impedances Zn, as indicated by the equivalent circuit of Fig. 22. The open-circuit voltages

are assumed to have independently controllable amplitudes and phases. The terminal currents

and voltages ou the anternas are then related to the source parameters by

Vn= e 1-ZgnIn n =,2... N

or, in matrix form,

V] = el -[Z g 1• I (22)

where [Z ] is an N x N diagonal matrix with the diagonal terms given by the N generator imped-

ances of the sources. When Eq. (22) is substituted in Eq. (1), we have

el =([ZJ + [Z 1) . 1] (23)

Since the antenna currents are unknown, the impedance matrix, modified by the addition of the

generator impedances to the antenna self-impedances, must be inverted to obtain an admittance

matrix [Y] relating the antenna currents to the generator voltages

I1 = [Yj el (24)

Once the currents have been computed for a particular set of drive voltages (a particular

beam-pointing angle), it is a simple matter to compute the element driving impedance for any

one of the antennas from

eZ (0.,0) ya m (25)

m m M

It should be recalled that for infinite arrays, we can rewrite Eq. (5) in terms of polar angles

(see Fig. 3) as

ZDmn(Ole) = Za + Zmn Pq
p, qkm, n

X exp (-jk[D x(m - p) sine cosn + D y(n - q) sin 0 sin 01) (26)

where we generalize to a particular location x = mDlx, y = nDy for the element Mi question. From

this equation, we have an alternate method to the grating-lobe series for computing the active im-

pedance of an element in a very large, regular, uniformly illuminated array without resorting to

a matrix inversion.

This approximation has been found to be extremely good for the center element In a large

dipole array above a ground plane (the approximation is not as good when the ground plane is
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absent). In fact, the active impedance of the center element in a 65 (collinear) X t49 (parallel)

array (with a ground plane) agrees within 0.1 percent with that of an infinite array, except near

endfire. For this reason, we often use the 65 X 149 array results instead of the corresponding

(and nearly identical) infinite array results.

Nonisolating feeds can be represented by an (N + M) X (N + M) scattering matrix [SF], where

N is the number of antenna ports and M is the number of input ports. This scattering matrix can

be written in partitioned form as

sF F"It 12

[SF =F F27
21 22

wh F is an M x M matrix which represents the input mismatches and cross-couplings amongw h e re c r s -c u li g a oA

the input lines, F is an N x M matrix representing the coupling from the input ports to the an--421 F
tenna ports (the antenna illumination under matched conditions), and S22 is an N X N matrix giving

the output mismatches (looking back at the feed) and the output cross-couplings among the feed

lines. When only reciprocal devices are used in constructing the feed, S will be just the trans-

pose of a 1F. Also, the feed scattering matrix will be unitary (the inverse of [SF 1 is given by the

transpose-conjugate of [SF]), if the components in the feed are lossless.

Thus, for a particular feed network, the characteristics of the components which comprise

the network can be combined to obtain a scattering matrix in the form of Eq. (27). Specific ex-

amples are treated in Sec. III-C. in general, we can state that the performance of these non-

isolating feed systems is quite sensitive to the design parameters of the network (principally line

lengths) because of mult'ple reflections within the structure. These reftectiort can add vectori-

ally at the various ports to give either very good or very poor array illumination depending on the

particular design of the network.

20 A(lIo gl [0-s1-lMO

son to

0 dib

-*sn 0 3 sin •0
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-- - - -40 db
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Fig. 23. Typical array function showing spurious lobes for I r.AF I = 0. 1
for an array ut',g three-port functions.

The phase shifters used in the composite system (antennas, feed network, and phase shifters)

can also have a strong influence on the array illumination. For example, when reciprocal phase

shifters are used, the part of the wave reflected from an antenna that is reflected back to the an-

tenna t'y the feed network generates a spurious beam in a different direction, resulting in a high

sidelobe in the array pattern,16 as indicated in Fig. 23. Quantitatively, for any feed with reflec-

tiorn coefficient rIA looking into the antennas and rIB looking into the feed (see Fig. 21), .the illu-

mination coefficients are related to the original coefficients an exp I-jnkD sin 0J by
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at = a I )q (r rB)q exp[-jnkD(2q + 1) sinel (28)
an qn

q= 0

Thus, for a reflection coefficient product of magnitude 0.1, the resultant far-field pattern would
be approximately as shown in Fig. 23 for a phase shift setting corresponding to a three-beamwidth
pointing angle from broadside. On the other hand, when nonreciprocal phase shifters are used,
the re-reflected waves arrive back at the antennas with the same relative phase shifts as the pri-

mary waves and hence, to a first order, only affect the amplitude (gain) of the array pattern.

B. Arrays Fed by Independent Sources

In this section, we examine some small-array configurations to determine (1) the correlation
of finite and infinite array element impedance and element gain properties and (2) the magnitude
and extent of edge effects in small arrays.

1. Impedance Behavior of Linearly Polarized Arrays

For these investigations, we will restrict ourselves to 7 X 9 and 9 X 11 arrays. (The im-
pedance matrix for a 9 x 11 array is the largest which can be conveniently handled within the core

storage of an IBM 7094 digital computer.) The geometry and element numbering system we will
adopt for a 9 x 11 rectangular-grid array are shown in Fig. 24. Alternate rows of the array are
offset by DXIZ to obtain the triangular-grid array discussed later.

The impedance variation with scan angle for the center element of a 7 X 9 array of A/2 dipole
radiators above a ground plane (Dx = Dy = 0.5A, s = 0.25A) is shown in Fig. 25. One set of curves
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Fig. 24. Geometry and element numbering.systom Fig. 25. Comparison of impedance variation of Ow
for a 9 X I I element array configuration (element center element in a 7 X 9 array of ?V2 dipoles with
50 is the center element for "is array). that of an infinite array.
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gives the results for the exact, matrix inversion solution, while another set gives the results

obtained with the approximation of Eq. (26). Both sets of curves are then compared with the

impedance variation of a large array (65 X 149) with the same geometry. It is evident that the

7 x 9 array results (both exact and approximate) agree reasonably well with the large-array

results In all three scan planes (the difference in the magnitudes of the 7 X 9 array impedance

and the large-array impedance at a particular scan angle is less than 14 percent). Near broad-

side, the small-array impedances exhibit rather unusual behavior, while at larger scan angles,

they tend to oscillate around the values for a large array. An increase in array size to 9 x l1

results in a somewhat better approximation to an infinite array, but the deviations in the magni-

tude of the impedance compared to the large array are still of the order of 10 percent. A still

better approximation to the infinite array impedance variation can be found by taking the geo-

metric mean of the 7 x 9 and 9 x 11 impedances at each of the scan angles.17

Similar results are observed when the arrays have triangular grids as shown in Fig. 26. In

this figure, the impedance variation with scan angle of a central element of a 9 x 11 equilateral

triangular-grid array (D = 0.6 A, s = 0.25 A) is compared to that of a corresponding infinite array

for three scan planes. Again it is found that the error in approximating the impedance behavior

of a large array by a small array is only about 10 percent. The small-array impedance varia-

tion oscillates around that of an infinite array which is again just typical of the behavior expected

when a function is approximated by a truncated Fourier series.

The small-array behavior differs more markedly from that of an infinite array when the

ground plane Is removed, as evidenced by Fig. 27 where the impedance variation of the center

element in 7 X 9 and 9 X Ii arrays is compared. It is clear from the very poor correlation
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Fig. 26. Comparison of impedance variation of the Fig. 27. Comparison of Impedance variation of the
center element in a 9 X |1I equilateral triangular- center element in 7 X 9 and 9 X 11 square-grid ar-
grid array of ?)4 dipoles with that of an infinit, rays of •y dipoles without ground planes.
array.
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between the two array impedance variations that small arrays of dipoles without a ground plane

or slots in a ground plane are not very useful for predicting the performance of large arrays.

As discussed above, the impedance variation (magnitude) with scoan angle for the center ele-

ment (No. 50 of Fig. 24) of a 9 x I I square-grid array agrees within about 10 percent with the

values for an infinite array. For the impedance variation with scan angle of an interior, non-

center element, there is still reasonably good agreement with an infinite array, even though

there may be substantial asymmetry in a given scan plane: for a particular scan plane speci-

fied by 0 01. the Impedance variation with scan angle 0 for one direction of scan from broad-

side will differ from that when the beam is scanned in the opposite direction ZD M(i + Tr, e) #
ZD (i, 0).

Dm
The situation is considerably worse when the elements are on the edges of the array as

shown in Fig. 28 for the element (46) in the middle of the edge where the dipoles are parallel, and

in Fig. 29 for the element (5) in the center of the edge where the dipoles are collinear. In these

figures, it is observed that the correlation of the impedance variation with that for an infinite ar-

ray is very poor. In addition, there is considerable asymmetry as evidenced by the fact that

ZD •i + Ir, 0) differs markedly (in magnitude and phase) from ZD (i, e). Note that the array
Dm IDm

is symmetrical about element 46 for H-plane scan, and therefore no asymmetry is observed in

the H-plane impedance variation with scan angle, as shown in Fig. 28. Similarly, the array is

symmetrical about element 5 for E-plane scan.

From these results, we conclude that for a 9 X It (or smaller) array, there is, strictly

speaking, no typical element; that is, every element has a different impedance variation with

scan angle. However, for dipoles above ground, the center element and the edge effects corn-

puted or measured for the small array would give a reasonable indication of those to be expected

in a large array. For dipoles without a ground plane, slots in a ground plane or open waveguides,

the 9 X 1i array gives only rough qualitative estimates of large-array behavior.

2. Pattern Behavior of Regular Linearly Polarized Arrays

Since we can model the excitation of a typical element of an independently fed array by a

circuit such as that of Fig. 22, we can conceptually turn on each generator of the array individ-

ually, with the others turned off (em = 0, m # n). When the generators are shut off, all passive

elements are effectively terminated in an impedance Zg. With only en # 0, a current in will

flow past some reference point on antenna n, directly exciting antenna n and parasitically ex-

citing the rest of the array through mutual coupling. A measurement of the far field under these

conditions produces some relative field strength which we will call 0n(0, e), since it is due to

the nth element generator. The experiment can be repeated for each element, and the far field

can be found by taking the vector sum of the individual element contributions, properly weighted

by a phase term dependent on the element location

SF(@, ) = Y(,O') in exp[Ijkn• ] (29)

n

where IR is a unit vector in the direction of the observation point, and Wn is a vector from the
th

origin to the n element location. For completely arbitrary distributions of elements, little

more can be said. However, for the important case in which (a) the array is large compared to

the region over which element interaction is strong so that edge effects can be neglected, (b) the
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elements and their generator impedances are nominally identical, and (c) the elements are reg-

ularly spaced on a flat't surface so that all interior elements "see" the same interaction environ-

ment, the pattern of each element, measured as indicated above, will be essentially the same as

the pattern of any other element. We can then factor Eq. (29) and write

F(0, e) = f(p, e) Z inexp[jk~n • "6R] (30)

n

where 7(0, 0) is a typical f1 (0, 0).

The factor f(0, 0) multiplying the summation in Eq. (30) is the pattern of a typical (central)

element in the presence of all the other elements when they are terminated in the impedance from

which they are nominally excited, and is usually referred to as the "element factor." The in of

Eq. (30) represents the current flow in the nth element due solely to the excitation of its own gen-

erator. For all elements (neglecting edge effects), in is related to en of Fig. 22 by the same pro-

portionality independent of the other element excitations, and we could replace in by en in Eq. (30),

except for a scale factor which is the passive element driving impedance.

The practical significance of this development lies in the fact that the summation of Eq. (30)

is exactly the array factor of an array of isotropic radiators, the properties of which have been

extensively discussed. The element factor contains essentially all the pattern effects of the ele-

ment type ,1nd the interaction between elements. The pattern of the entire array when only one

element is excited and the others terminated is much broader than the pattern when the entire ar-

ray is excited; hence, f(O, e) is a function whose variation with angle is slow compared to any

reasonably directive array factor in large arrays. The patterns are qualitatively similar to those

of Fig. 30. The element factor acts as a window of varying degrees of opaqueness through which

the array factor "looks." We can qualitatively conclude that under normal circumstances, in large

arrays, the element ic ctor structure will have little effect on the relative structure of the main

beam and close-in sidelobes of a large array. However, in arrays in which the beam is scanned

by element phasing, the absolute strength of the pattern will be varied with angle to conform to

the element factor weighting, since the scanning moves the array factor in space while the element
factor is stationary, as indicated by Fig. 30.

For elements in which mutual impedances can be analytically determined, the computation

of the element factor is straightforward. Perhaps more important, in the frequent case of ele-

ments for which computational formulas do not exist, the element factor can be determined ex-

perimentally by building an array only large enough to render edge effects negligible on the pat-

tern of the central element. Finally, we can also rationalize some generally valid, quantitative

conclusions about element factor shapes.
Of course, if the antenna elements are separated far enough so that the interactions are neg-

ligible, the fn (, 0) become the patterns of isolated elements (which are given in the literature

for a wide variety of radiators). However, only when the elements are separated by distances

that are much greater than their largest dimension is it safe for us to assume that interaction

effects are negligible. Unfortunately, achieving freedom from interaction in this way results In

spacing the elements sufficiently far apart that several grating lobes of the array factor appear

in visible space, as indicated in Sec. JJ-D.

t The modification for large, regularly spaced arrays on curved surfaces with large radii of curvature (compared
to X) is tedious, but not conceptually difficult,
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The more interesting case for many array applications is that of closely spaced elements -

in particular, the case of only slightly directive elements spaced less than a wavelength on cen-

ters. Here some element factor shapes can be inferred from a consideration of the gain and

directivity variation of electronically scanned arrays.

The array gain G is a measure of efficiency of the array in using all the energy available,
and involves questions of array impedance matching and ohmic losses. Although mismatch ef-

fects are not always included as a factor in the gain of an antenna, they will be included in this

discussion. Such effects are taken into account by defining the gain as the ratio of power density

per unit solid angle at the peak of the main beam to the power density that would be achieved by

radiating all the available power isotropically.t For a large, flat, equally spaced array of iden-

tical radiators, it is a simple matter to determine the gain as a function of scan angle in terms

of the element factor shape.

The power density per unit solid angle is

P(qo, 0 o -- I Ilz f(O , 0o~ z n1

where B is an angle invariant factor, the value of which will be seen to be immaterial. The

power available from each generator, assuming that the equivalent circuit of Fig. 22 applies, is

tThe IEEE Standards deflnes gain as relative to the total power into the antenna, Ignoring unmatched effects.
The definition of gain used herein thus differs from the standard definition by the factor I - I 2.
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I en 1 2 /4Rg' where Rg = R e(Z ), and we assume all element drives have the same impedance.

Hence, the total power available to the array is 2- 1 en I g/4R from which it follows that the gain

of an array is n

IZ en12
G(O e)0o) =( 4 7r) IBI 2 4Rg f(0o0 e),z nI

n

Note that if we drive only one element in the array, the gain of that element is given by
2t

M(OO$ Co) =(4r) 4RgH BI 2 i f(o, e0o)l

Further, if e 1, for all n, then

e enIZ

2; 1eni 2
n

where N is the number of elements in the array. For arbitrary taper, we can define a taper

efficiency 7 by

IZ en12
n

n

Comparison of the relationships for G, g, and 1 N gives the simple result

G(O, 8=g(0, 0) 17N (31)

The factor g(O, 0) is referred to as the "element gain functiun," and its spatial variation with the

beam-pointing angles 0 and 6 is I f(o. e) 2. Equation (31) is the quantitative statement of the

fact that the element factor acts as a weighting function on the field strength of the array. It is

easily established that the directiity of a planar array of Na active radiators with no visible

grating lobes is

Na•u(0) N4 -- a Cos 0 (32)

where e is the angle from the arruy broadside direction, and a is the area allotted to each ele-

ment. For independently excited rLdiators with no ohmic loss, which can support only a single

polarization, the array directivity ~a1d gain as defined herein can differ only as the result of mis-

match losses. These losses can be taken into account, in terms of the voltage reflection coeffi-

cient r(o, e) seen when looking into a ty•-.cal element when the entire array is excited, by writing

Gdo, e) -- ule) (t - Irno,e9),

Substitution of Eq. (32) into this expression sheds some light on the element factor behavior to

be expected as a function of element spacing:

g(, e0) 4w -a Cosea (i - I rl, 012) (33)
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We can now draw some inferences about the general nature of the gain function shapes to be ex-

pected in planar arrays.

The only place the type of radiator enters the above expression is implicitly in r(o, 0). Re-

gardless of the type of radiator, we can choose the generator impedance to match the element

at some angle of scan of our choice. If, for the sake of illustration (and maximum broadside

gain), we match the elements when the array is phased for a broadside beam, we can make the

following generalization about the element pattern for small (less than a wavelength in dimension)

elements from Eq. (33). As we space the elements farther apart, the value of g(O, 0) can be made

to increase directly with the area per element if the proper generator impedance is chosen for

each spacing. However, as the element spacing is increased, the angles at which grating lobes

become visible decrease. At these angles, the array directivity must drop rapidly by approxi-

mately 3 db, and the gain function must behave in a similar fashion (we are not matched at these

angles, so conly approximate statements are justified). That the element pattern does behave

in such a manner has been verified analytically for some elements and experimentally for many

others. Figure 31 shows element patterns of the center element of an array of dipoles without

a ground plane for various spacings on a square element grid, and Fig. 32 shows similar data for

dipoles 0.25 A above a ground plane. The figures illustrate the effects stated.

If the elements are not matched to maximize g(0, 0) for each spacing, the result is a decrease

in broadside gain and, usually, a slight increase in the width of the element factor main lobe. For

example, a convenient generator impedance choice from a practical standpoint is to match the im-

pedance of a single isolated antenna (with ground plane, if used). Indeed, Eq. (5) indicates that

for an essentially infinite array scanned over all phasings (including those producing grating

lobes), the average driving impedance is just

ff ZD (a•,,) dad/6 = Zo00,00 (34)
-It

which is essentially the same as the impedance of an isolated element for many practical types.

Consequently, this choice comes close to minimizing the maximum impedance variation, and will

usually produce a match at Eome scan angle other than broadside. The reaulting element gain

function is usually "saddle-shaped" as indicated in Fig. 33.

For arrays on curved surfaces, if the curvature is shallow compared to the extent over which

appreciable coupling takes place, the element gain function shape relative to each element's own

broadside angle will be similar to those of an equivalently spaced planar array. Thus, even

though Eq. (30) fails to apply, the element patterns can usually be taken into account in a straight-

forward and relatively simple manner.

The element gain function concept has both practical and fundamental significance. It is a

practical way to assess the gain-vs-scan-angle performance of a large array by using a small

or modest array without the requirement of a complex feed system. We need only construct an

array large enough so that the central element "sees" negligible edge effects (how large in each

dimension depends on the rate of decay of coupling for the particular element in the direction In

tEquation (31) applies also to linear arrays; hence, a dependence analogous to Eq. (33) of the gain function of
an element in a linear array on element spacing can be made (see Fig.43), but the result is complicated by the
fact that the variation of array gain with scan angle depends on the element pattern in the plane orthogonal to
the array.
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question, as elaborated on previously). All elements are then terminated except the central

element, and a pattern is taken. Experiments in design parameters can be conducted on a lim-

ited model.

There is also a connection between the shape of the element gain function and the complex

driving impedance of the elements.18 For example, note that in an essentially infinite array for

which the elements have a voltage reilection coefficient behavior r(o, e), the current into an

element at scan angle 0, e is i - r(0, 9). Furthermore, the shape of the element gain function

can be used to demonstrate a fundamental limitation on the average reflected power over all

phasings, applicable to any element.
3. Gain, Polarization, and Impedance Properties of Independently Fed

Circularly Polarized Arrays

An additional effect of element interaction on array patterns is found in arrays of elements

which can supporm more than one polarization. The general effect of the coupling is to cause the
array polarization to vary with scan angle in a manner dependent on all the factors that enter in-

to the determination of coupling effects: element type, feed circuit details, and element grid

shape and spacing.

To illustrate these effects, we present in this section some results of an analysis of arrays

of elements made of crossed dipoles. In particular, we examine arrays of such elements driven

through a hybrid power divider as indicated in Fig. 34, so that the elements can be considered

independently excited. In such a case, an element gain funct?1on for a dipole pair in the array

can be defined in the same manner as for linearly polarized arrays in the previous section. How-

ever, there are contributions to the gain function from both co-directed and orthogonally directed

dipoles, and hence the gain function must be defined relative to some polarization vector Fp:
p

Zir x x
g p x-

p y I

for an interior element of a large array, where f ex is the vector element pattern of the x-
x~ I xdirected elements, and r X(, 0) is the reflection coefficient looking into those elements, and

sim.Lr iy for the y-directed elements. It is readily shown that for an infinite, regularly spaced

array above L ground plane, the broadside gain relative to a right-circular sampling polariza-

tion vecor is

g(O, 0, F-*) =47r a

when all dipoles are matched to the feed hybrid at broadside JR. R D(0, 0) R1(O, 0)1) a result
expected on the basis of directivity considerations.

From Eq. (35), it is possible to derive expressions for the gain relative to right-circular,
laft-circular, or any arbitrary linear sampling polarization vector at any scan angle. These

relations can then be used to determine the characteristics (ellipticity, tilt angle, left- and
right -circular gain, etc.) of the wave transmitted in any direction.

In order to assess *he effects .)f an array environment on the dipole gain and impedance. we

first consider an isolated dipole pair. The polarization of the transmitted wave at various points

ir apace is the characteristic of importance for the isolated element. A typical power pattern as

would be measured by a spinnitig, linearly polarized receiving dipole is shown in Fig. 35 for a

41J



S-two
C - DIPOLES ORIENTATED

IN X- AND Y-DIRECT IONSIINAE 
X-OL PAR-- A AND r INGA TION S

--
XA MAX AN NH 

GANFRA 
OISOLATED DIPOLE PAIR MX N I.GI

ITOTGROUND PLANE

IOATENGPLE ( PAIR ANL#dg

Fig. 35. Isolated dipole-pair gain functions. Fig. 36. Gain function of center element of seven-
element linear array of hybrid-fed, crossed-dipole
pairs.

j . -D' .

0.25O

ANGLE I4mg)

Fig. 37. Gain function Of Center element of 13 X 13 array of hybrid-fed, crc -sod-dipole pairs.

42



dipole pair above an infinite ground plane. Also shown are the maximum and minimum bounds

of the corresponding pattern for a crossed-dipole pair at any point in space.

When seven elements are arranged in a linear array (no ground plane), the polarization
characteristic of the gain function for the center element is as shown in Fig. 36 for a cut in the

direction of the array when the dipoles are matched to the feed circuit at broadside and the fourth

port of the hybrid (Fig. 34) is terminated in a matched load. Note that the array environment has

substantially changed the gain from that of an isolated element, with the result that nearly circu-
lar polarization is obtained at a scan angle of 45%, while at broadside the polarization ellipse

axial ratio (max. gain/min. gain) is about 3 db. (This is similar to the results observed by
Parad and Kreutel 9 for a seven-element hexagonal array of circular waveguides.) The polari-

zation characteristic can be improved orny slightly by rotating the elements 45' as demonstrated

by the dashed curves in Fig. 36. Note that the polarization of the transmitted wave at broadside

is elliptical even with the dipoles rotated.

As a final result, we consider the center element of a 13 X 13 square-grid array above a
ground plane. A principal plane (0 = 0°) gain pattern as would be measured by a spinning, re-

ceiving dipole when the elements are matched for broadside radiation and the fourth port is ter-
minated is shown in Fig. 37. For this array, perfect, right-circular polarization is obtained at
broadside even in the presence of mutual coupling. This is a consequence of the complete sym-

metry of the array about the center element. The polarization properties in other planes of

scan for this array are shown in Fig. 38, where the polarization ellipse axial ratio variation with
scan angle for both an isolated dipole pair and the center dipole pair in the 13 X 13 array is plotted.

Note that the array environment can substantially alter the polarization of the transmitted wave
(as compared to that of an isolated dipole pair) and can in fact improve the circularity of the ra-

diated wave for optimum ground plane spacing (s - 0.25 , for Dx = Dy = 0.6 A). Since the center
element of the 13 x 13 array "sees" an environment which is approximately the same as that seen

by an element in an infinite array, the polarization results given in Fig. 38 should be quite indic-

ative of large-array polarization variation with scan angle to be expected from an array of

--- . SQAtO OS. . • •30* AND 60* -- - - • •30"

S.. .. .45- .......-- 4V*

0.252S Ato 0g , oy , 0.6 A |

/e45 
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-IoAPPEARS
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W M,
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Fig. 36. Polarization ellipse axial ratlot (a) isolated element, (b) center element in 13 X 13 army.
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cross-polarized elements fed by a hybrid. In addition, the input impedance variation with scan

angle at port I of Fig. 34 and the power dissipated (relative to the power available from the

source) in the orthogonal port termination, as shown in Figs. 39 and 40, should be within approx-

imately 1 0 percent of that which would be observed in a very large array.

From the above results, it is evident that mutual coupling effects can substantially alter the

characteristics (gain, impedance, and polarization variation with scan angle) of a circularly po-

larized element when it is placed in an array environment. However, it is also clear that a prop-

erly designed array of hybrid-fed, crossed-dipole pairs will give good performance for moder-

ate scan angles (emax f 40°). Observe that the characteristics of an elcment in an array depend

on the array geometry for both linearly polarized and circularly polarized dipole arrays; for ex-

ample, there is an optimum height above the ground plane for every inter-element spacing. It

is also worth noting that the input impedance as seen by a source driving an element in an array

varies somewhat less with scan angle for crossed-dipole arrays (compared to linearly polarized

arrays), particularly in the reactive part.

It should be stressed that these results are dependent on the circuit used to obtain the two or-

thogonal excitations. For example, if the fourth port of the hybrid were left open-circuited, the

power dissipated in that port when it is terminated (Fig. 40) would be reradiated instead of absorbed.

Examination of the phases involved shows that such radiation is of the opposite sense circular po-

larization to that desired, resulting in greater depolarization than indicated by Figs. 36-38. In
fact, it has been pointed out that to minimize depolariiation effects due to coupling in more than

one polarization, it is necessary to provide a matched load to all polarizations, even if only one

is desired. For example, in an array designed solely to radiate one sense of circular polari-

zation, a load must be provided to the other sense to minimize depolarization.

4. Pattern Behavior of Irregular Arrays

The possibility of shaping the far-field patterns of arrays with equal amplitude excitation

by unequally spacing the elements has been extensively studied, but almost exclusively under the

assumption that the effect of the mutual coupling between the elements can be ignored.T There
20is experimental and theoretical evidence, however, that the effect of coupling on the patterns

of such arrays is not generally negligible. For example, Fig. 41 compares the pattern of an

unequally spaced array of Galejs21 as computed ignoring coupling, and as computed assuming

the array to be constructed of parallel short dipoles 0.25 X above ground, independently fed by
sources of the type. shown in Fig. 22, with Zg chosen to match the impedance of an isolated dipole

0.25 X above ground. The patterns shown are for a broadside beam; the relative pattern (most

notably, the near-in sidelobe ratio) also varies with scan angle in the presence of coupling as

indicated by the corresponding patterns of Fig. 42.

The necessity for including coupling in pattern computations for unequally spaced arrays is

in marked contrast to the fact that the effects of coupling can safely be ignored in relative pat-

tern computations for large equall spaced arrays. This latter simplification is, of course, die
to the fact that for regular arrays large enough to ignore edge effects, aU elements in the array

"see" the same coupling environment and, hence, have the same input impedance.

Tb.-re are only two cases in which it is certain that the effects of such coupling on the shape

of the pattern are negligible. First, these effects can certainly be ignored when the elements

t See Ref. 21 for e recent biblloraphy.
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are fed by ideal constant-current generators so that their excitation is independent of their im-

pedance. However, such generators are hard to find. Second, coupling can obviously be ignored

when essentially all elements of an array are widely separated compared to the aperture area of

such r.n element. This is not usually an acceptable solution in practical arrays, since unequal

spacing allows control of the sidelobes commensurate with that of an equally spaced, amplitude

tapered array only over a limited angle about the main beam. This region is out to an angle

approximately equal to that at which a grating lobe would form for an equally spaced array with

spacing equal to the average spacing Dn of an unequally spaced array; that is, to an angle t

from the main beam given by

t +sin it I - (36)

Beyond this region, the sidelobes tend to be more or less random with an average relative side-

lobe level given by the reciprocal of the number of elements. Thus, control over a sizeable

fraction of visible space requires that the average spacing between the elements be less than a

wavelength. For such spacing, coupling effects are certainly riot negligible.

A practical model for the excitation circuit of a typical array of independently fed elements

was indicated in Fig. 22. Since it is both desirable and common to attempt to control only the

open-circuit voltages of the generators of such circuits (rather than the currents which depend

on the mutual coupling), we will assume that these voltages have been chosen to be equal in mag-

nitude and progressively phased for beam pointing; i.e., en = e0 exp [-jkzn sin 0o1 for a desired

pointing angle t o, for elements located at points zn along a line. In the absence of coupling, the

array factor would then simply be proportional to
e•

A(4) = - + exp[jkz (sinj - sin t)] (37)Z 9+ ZaZ n o
n

We have seen in Fig. 41 that the agreement between the array factor as given by Eq. (37) and

the array factor as computed for practical arrays including coupling is quite poor, particularly

in the sidelobe region near the main beam. The reason is not hard to find.
As pointed out in Sec. III-B-2, the contribution of an element to the far field at any angle is

proportional to the pattern of that element at that angle when the element is excited in the pres-

ence of the remainder of the elements, the latter passively terminated in Z . The shape of such

patterns in equally spaced arrays depends markedly on the spacing between the element and its

neighbor. Figure 43 shows the general behavior of the patterns of parallel dipoles 0 25 X above

ground in a linear array as a function of element spacing (the behavior of other elements in a
linear array shows a similar trend). An approximate model for the dependence of the element

tgain function on the spacing between elements of a linear array and the observation angle j is

if(e)l 2  i ~~~t~i~T~ f(V(8I + [D/A(t + I sin tI ]()!

where [x] indicates the largest integer in x, and I fe ) is the power pattern of an isolated ele- j
ment. The denominator appears complicated, but merely represents the number of grating lobes

tFor planar arrays, the variation is with the area allotted tlh elements rather thn with the length. Th. following
arguments are applicable to such arrays with this chrne* In dependence.
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in visible space for an array with spacing D and pointing angle 4. Figure 43 compares this

model with the accurately computed element patterns, and the agreement is generally good.

This agreement suggests that the patterns of unequally spaced arrays including coupling may

be well approximated, if the change in spacing is a slowly varying function of position, by a sim-

ilar function for the contribution of each element. Under this assumption, the array factor is

given by

I j nDn/ 11/2A(q) cc 1 + [D n/A(1 + I sin l exp ljkzn (sin 4 - sin ýo)1 (39)

where D n is the spacing allotted the n th element

D Z n+ 1 - Zn- 1
n Z

In Fig. 44, we show an array pattern computed with the use of the approximation of Eq. (39)

as compared with the computed parallel dipole array pattern of Fig. 41. The comparison with

the curve of Fig. 41 that includes mutual coupling effects indicates that the approximation is

quite good. A further simplification is suggested by the observation that the coupling princi-

pally affects the sidelobes near the main beam and has little effect on the far-out lobes. This

suggests that substituting the pointing angle t 0 in place of 4 in the denominator of Eq. (39) would

be an acceptable approximation; i.e.,

A() 1 + Dn;+Isin o,)] ex1/7"~

() 1 + [Dn/A(1+I exp[jkz (sin -sin4o)] (40)
n

Array factors computed using Eq. (40) compare reasonably well with those computed using Eq. (39).

C. Coupling Effects in Arrays with Nonisolating Feeds

When a finite array is fed by a reactive network, several effects can occur in addition to the

gain and impedance variations discussed above. In particular, there are problems associated

with multiple reflections, phase shifter properties, resonance phenomena, and bandwidth. Some

of these problems will be discussed in this section for both reactive corporate feeds and reactive

series feeds. The corporate feed that we consider is constructed with three-port (reactive) junc-

tions, as shown schematically in Fig. 45 for a 1:8 power divider.

The scattering matrix for a I:ZK (=N) reactive corporate feed using 3-db junctions can be

obtained by following a wave through the structure when only one port Is excited with all others

properly terminated. Part of such an incident wave will be reflected back to the driven port by

the junctions, while the remainder will continue through the structure to the other ports. The

amplitude and phase of a wave out of a particular port will then be the corresponding scattering

coefficient when the input wave has unit amplitude and zero phase. For example, consider a

unit wave incident on an output port of the 1:8 divider: at the first junction, half the incident

wave will be reflected back to the driven port and will arrive with (-2kf1 - r) phase shift, and

similarly for the other reflections. The wave returned to the driven port for this case can be

shown to be

-- exp[-jZkflI (1 + ½ exp[-j2kf21 + expl-j2k(l 2 + Y3)O1
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For the general case of a corporate feed with K levels of power division (1:2 K. power divider),

the self-scattering term at each output port S 0 is

K n

so - exp I- j~kJ ftI + Z I exp -jkZ Ii (41)
21 n=2 m=n-1 MJ

The scattering coefficients for waves coupled from the driven output port to the other output ports
are

Sn-1 = 2n exp -e I
m= L 2ni- p=n+i .,

where Zn - I is the minimum number of junctions encountered in traversing the feed from the

i t output port to the th output port. (Note that n ranges from one to K, giving only K distinct

cross-coupling terms. Also, for n = K, the summation term in brackets is zero.) This leaves

just the forward coupling from 1he input port to each of the output ports:

r, K

fexp ~-jk I m (43)

K n

It~ ~ ~~ ~Fg is. redlMvdn rmteaove fresults8thaactive scroattern marieed.istpeofe

isstongydpneto the geelcaeoa crpriate leedgwthKels of th untonseFr example, (t:h.oer selfscatering

to a maximum value of I - 1/2 K(for I = X/2' n > 2). The other scattering coefficients have

similar variations ranging from 41 2 K up to

Is 1 (44)
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S1 - so = exp[-jZkft]

which means that minimum self-reflection occurs when the first-order cross-coupling is max-
imum and vice versa. These limiting values for the scattering coefficients indicate that the

scattering matrix can vary substantially as the frequency is varied over a moderate range when

practical line lengths are used. This indicates that there will be a bandwidth limitation to any

practical corporate feed system.

With the feed scattering matrix thus defined, a relatively straightforward computation will

solve for the overali performance of the antenna plus feed network system for a specified set of
parameters. These computations, although conceptually quite simple, are very lengthy even

with a high-speed digital computer because inversions of two large matrices are involved at

each scan angle. For exact calculations, computer storage limits us to relatively small arrays

(f 64 elements); however, the approximate techniques discussed above can be successfully used

to solve for the performance of a few elements in an array which is very large in one dimension.

For example, we have examined the behavior of the c-Žnter row of 32 elements in a 32 X 65

dipole array driven by 65 identical, uncoupled,t reactive corporate feeds. When reciprocal
phase shifters are used, reflection sidelobes can result as the beam is steered from broadside,

as previously discussed. Figure 46 shows an example of these multiple reflection effects for a

square-grid array with inter-element spacings of 0.6A and mounted 0.25X above a ground plane.
Note that the reflection lobes in this case are very high because of relatively large antenna mis-

matches; for smaller angles of scan, the mismatches and, hence, the reflection lobes are de-

creased. If nonreciprocal phase shifters are used in this same array, the reflection lobes are

essentially eliminated as indicated in Fig. 47.
We have also analyzed an 8 x 8 square-grid dipole array with each row of the array fed by

a 1:8 reactive corporate feed. For this study, the array had an inter-element spacing of 0.6A

and no ground plane was used. An array of this size exhibits substantial edge effect when driven

with independent sources; however, when properly designed reactive corporate feeds (II = =2 =
S= 2.25, in this case) are used, the currents in any row are constrained to have nearly identical

amplitudes by the feed network as demonstrated by the top curve in Fig. 48.

This is a direct consequence of a property of lossless three-port junctions with output arm
lengths an odd multiple of a quarter-wavelength long: the amplitudes of the currents in the two

finite, nonzero loads terminating the output lines are in a constant ratio (unity for 3-db junctions)

independent of the values of the loads. Unfortunately, this result only applies for a discrete set

of line lengths and/or a discrete set of frequencies. For example, a 5-percent decrease in the

operating frequency of the feed described above results in the array illumination shown in the

bottom curve of the figure.

When this array is scanned by nonreciprocal phase shifters to point a beam at e = 450,

S= 45%, the 6urrent distribution across half the array at f = 0.95 fo is as shown in the up-
per part of Fig. 49. The current distribution at broadside is also shown in the figure, from

which it is readily seen that scanning the array to point a beam off broadside can substan-

tially alter the array illumination. On the other hand, if the array is operated at the center

frequency, this statement does not apply, as demonstrated by the dashed curve of Fig. 50.

t That is, the 65 reactive feeds can be considered as isolated from one another, as would be the case if each
reactive feed were fed by its own source or by a woll-nmtched hybrid corporate feed.

tThe phase shifters were assumed to be digital with a smallest phase increment of 45t
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This figure also shows the current distributions which result when analog reciprocal phase shift-

ers and an independent (hybrid) source feed are used. Note that the use of reciprocal phase

shifters results in a very poor array illumination tape and, as previously discussed, can cause

very high reflection sidelobes when the beam is scan ied off broadsid'.. Also observe that reac-

tive feed networks with nonreciprocal phase shifters can give an a- ±'ay illumination superior to

that obtained with independent sources over a small band of frequnncies.

IV. EFFECTS OF MUTUAL COUPLING ON RADIATION PATTERNS
OF MULTIPLE-BEAM OPTICAL-TYPE ANTENNAS

There are several techniques for the realization of simultaneous multiple beams from an-

tennas, with perhaps the oldest being the use of multiple feeds in conjunction with an optical-

type antc-nna, such as a reflector or a lens, For example, Fig. 51 illustrates a two-dimensional

version of such an antenna - a Luneburg lens fed by multiple sources.

The multiple-feed problem has a precise counterpart in the theory of large arrays, and

knowledge about the effect of coupling on the performance of large linear and planar arrays can

be applied directly and easily to this problem. To illustrate, let us analyze the two-dimensional

(cylindrical) Luneburg lens system of Fig. 51 (i.e., the figure is assumed to extend to z = :k-).

Consider the arrangement of Fig. 52. The lens is fed by a single feed which produces an

electric field per unit current into the feed of e(v), where v is the angle measured from the phase

center of the feed (we assume it has one). The lens performs a linear transformation on e(i) to

produce a secondary illumination E(y).t For example, if the cylindrical lens is designed so that

the feed phase centers are on the lens surface, geometrical optics will show that

E W = v)p1/Z y = p 0 sin v (45)
(p Cos u')

The far field at a range R is then determined to within a phase factor by2 2

E(Q) o E(y) exp [jky sin t ] dy (46)

where k = 2V/X.

The actual form of the transformation is of little consequence to the argument, however.

It suffices for now to use as a starting point the statement that energizing a single, isolated feed

at a location corresponding to the n = 0 position of Fig. 51 produces an equiphase illumination

along the aperture plane of E 0,(y) per unit feed current.

If the single feed is moved to a new position - say, the nth of Fig. 51 - the aperture plane

moves around the lens through an angle nD/p radians, as illustrated by Fig. 53. The phase

front is tilted by nD/p 0 radians relative to the y-axis, and the phase center of the aperture plane

has moved from x = R0 , y = 0, tox = P0 cos nD/p 0 , y = POsinnD/po" Obviously, if nD/p0 <<I.

the displacement of the phase center in the x-direction becomes negligible, while the y displace-

ment approaches nD. However, if p 0 >>•., as assumed, most of the pattern structure of interest

will lie near 4 = 0 of Fig. 52, and the y-offset of the phase center will have little effect on close-

in sidelobe levels.

t The dimensions on e(v) and E(y) differ, so that squaring each and dividing by the intrinsic impedance of free
space produces watts per unit solid angle and watts per unit surface area, respectively.
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As a result of the foregoing approximationa, the change in the apertuce illumination on a

line parallel to the y-axis that results from moving the feed appears as simply a change in phase

front slope

En(Y) = Eo(y) exp[jkn DyJ (47)

when viewed at small angles from broadside.

Returning to the multiple-feed configuration of Fig. 51, if we excite feed 0 with, for example,
a voltage generator of open-circuit voltage V° as in Fig. 54(a), and terminate the other feeds as

in Fig. 54(b), then the current in the nth feed is just

in = VoYno (48)

where Yno is the mutual admittance between feeds n and 0 (a function of the feed types, feed

placements, and Z and Zt of Fig. 54). The total illumination along a line parallel to the y-axis

Et(y) is then

N

Et(y) Z InEn(Y)

n= -N

which, by Eqs. (47) and (48), gives

N

Et(y)= Eo(Y) Vo o expljknD (49)
n= -N oJ

Thus for a large (p 0 >> A) optical system, the far field in the region near the main beam will be

the Fourier transform of Eq. (49), where E0 (y) is the aperture illumination per unit current into

the feed that would result from a single feed placed on the x-axis.

Equation (49) can be put explicitly in the form of the primary feed illumination. The effect

of the optical system on a single point source feed is to transform the feed primary pattern - say,

eo (P), where v is the angle from the x-axis as indicated in Fig. 52 - into Eo(y) by some linear

transformation, which we will denote as an operation L.

E(y) = L e(&) (50)

For example, for a surface-focused Luneburg lens, the transformation is given by Eq. (45). The

exact form of the transformation is not of immediate consequence here, only the fact that it is

tThe purist may object to the implicit assumption that the pattern which results from a feed being driven at its
terminals and the same feed being parasitically excited is necessarily the same. This assumption, which was
used to simplify notation, is not really necessary to the argument.
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Fig. 55. Spherical beamforming lens geometry.

linear, which allows us to transform both sides of Eq. (49) to give.

N

et( ) = e 0 (V) Vo Z Yno exp[jknD sinv] (51)

n= -N

where we have used y = p 0 sin v in the exponent as appropriate to the Luneburg lens, since the

phase slope in Eqs. (47) and (49) was derived for this configuration.

The physical interpretation of et(v) is that e 0 (v) of Eq. (51) is the pattern of one element of

a linear array taken in the presence of the remainder of the elements when they are passively

terminated, i.e., the "element pattern" of Sec. III-B, if there are enough feeds on either side of

the element in question to assume an infinite number. The results are directly applicable to

three-dimensional optical feeds as in Fig. 55, with the planar array gain function used for feeds

arrayed as in the figure.

Thus the conclusion of the analysis is that a multiple feed in an optical system
will radiate a pattern whose shape close to the main beam is given by trans-
forming the pattern of one feed in the presence of the other feeds when they
are terminated in the impedance normally used.

This conclusion is based on the following approximations:

(a) p0 >> X, and therefore geometrical optics is valid.

(b) The lens is large enough so that the feed assembly (or the extent of the
feed over which elements couple appreciably) is small enough for the
curvature to be negligible.

(c) The array is large enough so that the main beam and sidelobe region of
interest is of small angular extent, since for angles very far from the
line through the excited feed (the x-axis of Fig. 51 if feed 0 is excited),
the difference in phase center locations of the aperture planes for the
various feeds is not negligible in the direction of interest.

In substance, these approximations amount to a restriction to very large (narrow-beam) systems.
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