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PLANAR REPRESENTATIONS OF COMPLEX GRAPHS 

ABSTRACT 

This paper's major topic is the problem of constructing good two- 

dimensional representations, using straight lines as edges, of complex, 

generally non-planar graphs.    Two precise measures that correlate well with 

the subjective "clarity" of planar representations of randomly generated graphs 

are proposed.    One is the number of edge intersections that do not correspond to 

graph vertices.    The second measure, called infidelity, quantifies the degree 

to which the distance between pairs of vertices (in a particular metric in the 

plane) corresponds to their graph-theoretical distance from one another. 

Some experiments in graph representation, using the TX-2 computer 

on-line display, are described.   Heavy emphasis is given the definition of 

the infidelity measure, the nature of its correlation with graph "clarity", 

and some theorems which add to its characterization.    Included is a discussion 

of heuristics for the simplification of a graph representation. 

In conclusion, there is presented a sketch of a model of a graph 

theory computer package that should be useful to a researcher or student of 

graph theory. 
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INTRODUCTION 

This paper is a report on research conducted by the author during 

the summer of 1966 in the Digital Computers Group of MIT's Lincoln 

Laboratory.    In its broadest sense, the goal of the research is to demonstrate 

useful and interesting interconnections among three distinct, yet seemingly 

related, disciplines: 

1.        The purely mathematical study known as graph theory; 

2 .        the as-yet unformalized body of programming know-how 
involved in the creation and manipulation of complex 
"data structures"; and 

3.        the field of computer graphics, which seeks to facilitate 
graphical man-machine communication. 

More specifically, a major goal is to delimit issues involved in the 

design of a class of potential "graph theory packages", a term we use to 

denote any programming system allowing effective man-machine partnership 

in the teaching of, or research in, graph theory.    In Chapter II we sketch a 

model for a graph theory package based upon the work of this summer. 

To gain some experience with such system design, we have assembled 

a small package tailored for exploration of the problem of finding "good" 

representations, in a plane, of complex (in general, non-planar) graphs. 

Chapter I discusses both the problem and the package in detail.   We shall 

describe the nature of the man-machine communication achieved with this 
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rather simple system, coded in a five-week assembly language programming 

effort. 

Of theoretical interest is a lengthy discussion of a class of precise 

measures that correlate well with intuitive notions of the "simplicity" and 

"clarity" of a representation of a complex graph in a plane.    We include both 

a critical discussion of various features of the measure as well as several 

theorems characterizing them. 

We conclude Chapter I with a discussion of proposed extensions 

of this work, which include guestions relevant to both mathematical graph 

theory and computer graphics. 
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I. REPRESENTATION OF COMPLEX GRAPHS IN A PLANE 

A.        PROBLEM STATEMENT 

We shall investigate representations of a graph in a plane, assign- 

ments of (x, y) coordinant pairs to each vertex, and straight line segments 

between vertices corresponding to each edge.    These shall be termed planar 

representations.    The graphs may be directed or undirected, planar or nonplanar. 

The restriction to straight line representations of the edges results in great 

analytic simplification and appears to be appropriate for some applications. 

In such a representation of either a planar or a non-planar graph, 

there may appear apparent intersections which do not correspond to vertices 

and are therefore artifacts of the representation.    The graph of Figure 1 possesses 

such an intersection; an alternate representation in Figure 2 demonstrates that 

it is, in fact, a planar graph. 

FIGURE 1 FIGURE 2 

The mathematical question of the minimum number of such intersections for 

all representations of a graph on a particular topological surface (with or 

without the straight line restriction) is the natural extension of the planar- 

nonplanar distinction in graph theory (if nonplanar,  "how much so"?)   It 

will be discussed further in Section C. 



The problem may be simply but not precisely stated:   Given a graph, 

find a planar representation which "best illustrates the structure" of the 

graph.    How can one organize a complicated interconnection of vertices and 

edges so that an observer can "best see and understand the relationships 

thereby represented". 

The problem will occur whenever one wishes to see a pictorial 

representation of a complex graph.    If this be "computer generated" onto a 

display console, the issue arises in doing computer graphics.    Potential 

applications to computer science,  such as the display of complex data 

structures, and flowcharting or flowmapping for debugging purposes, suggest 

themselves immediately. 

We shall therefore present techniques that reorganize a planar 

representation of a graph in order to "simplify" its appearance.    We shall 

discuss precise measures that appear to correlate well with subjective notions 

of graph "clarity".    As computer graphics was a natural partner in this investi- 

gation, we must first describe, by example, the simple system developed to 

aid in the effort. 

B.        A SMALL GRAPH THEORY PACKAGE TAILORED FOR INVESTIGATION 
OF  THIS PROBLEM — AN EXAMPLE ILLUSTRATING ITS USE 

The user specifies a TOTAL number of potential graph vertices and 

a desired DENSITY of edges.    The program generates a random graph with 

DENSITY (TOTAL) (TOTAL - l)/2 edges connecting some (but not necessarily all) 



of the TOTAL vertices.    As a typical example, consider a case, pictured in 

Figure 3, in which TOTAL = 16 (decimal), and the DENSITY of connections 

is 2 0 percent of the theoretical maximum.    Notice that the vertices are 

initially assigned randomly to positions on a grid of points.    These are spaced 

equidistantly with a slight random offset to reduce overlap of lines. 

By pointing with a light pen at pairs of points on the grid (some of 

which are graph vertices), he may interchange the point positions and cause 

appropriate relocation of the adjacent edges.    Special symbols appear on the 

display to mark the two chosen points.    The hand in Figure 4, for example, 

points to the vertex in the lower right corner which is to be relocated. 

Figure 5 shows the new representation achieved after that vertex has been 

moved to a position on the left boundary. 

The user may initiate a series of such requests, without 

interruptions for recalculation of the display, by preceding and following 

the series with hits on the appropriate light pen targets , which appear at the 

bottom of the display.    Three such interchanges relocate a section on the 

right side, resulting in the representation of Figure 6.    Figure 7 is achieved 

after two more interchanges.    Figure 8 shows another representation of the 

same graph achieved after fifteen minutes of console experimentation at 

another sitting. 

With the aid of the light pen tracking cross, the user may generate 

a new grid point if the given set proves inadequate. 



FIGURE 3 

Infidelity = 300 (octal) 

FIGURE 4 

Infidelity = 300 

FIGURE 5 

Infidelity = 236 



FIGURE 6 

Infidelity = 206 (octal) 

FIGURE 7 

Infidelity = 140 

FIGURE 8 

Infidelity = 44 



As we shall later see, these are the simplest examples of a large 

class of user-controlled reorganization features that could be included in 

such a system. 

A second set of light pen targets may be used to initiate routines 

that calculate interesting parameters of the given graph.    In the present 

system, one target displays the degree of each vertex; a second calculates 

and displays all centers of a particular connected component of the graph, 

after the user chooses a component by pointing at any of its vertices. 

C.        MEASURES ON A GRAPH REPRESENTATION 

The intersection criterion and the notions of graph infidelity, to be 

discussed below, were formulated to meet the need for precise and simple 

measures that correlate well with the subjective clarity of a planar representa- 

tion.   Any automatic or partially automatic simplification scheme would reguire 

measures to evaluate its performance. 

1. Intersections 

The first measure that correlates well with intuitive notions of graph 

simplicity is an obvious one, the number of edge intersections not correspond- 

ing to graph vertices.   Attempts to find or characterize the theoretical  minimum 

2 
of this quantity for a given graph have had little success.      The only known 

results apply to very special cases, the complete graph and the complete bipartite 

graph.    In the latter case, the minimum representation is known and may be 

proved to be minimum. 



Such special cases are of little help in attacking the problem for 

graphs in general.   It seems unlikely that techniques for constructing the 

minimum representations in more general situation will be found.   A more 

promising approach would be to search for simplification heuristics and 

search algorithms that may be shown, either theoretically or experimentally, 

to reduce significantly the number of such intersections for a large class of 

graphs. 

2. Infidelity 

We have developed a second kind of measure on the graph representa- 

tion, to be called infidelity, one that quantifies the degree to which the 

distances (in a particular metric in the plane) between vertices correspond 

to the graph-theoretical distances between vertices.    We recall that the 

graph-distance between two vertices of a connected graph component may be 

defined as the minimum number of edges in all paths from one vertex to the 

other.    One infidelity measure may be defined as follows: 

(a) Consider an edge e. and one of its endpoints v.,  in 

some planar representation r.    Construct the locus of all 

points at a distance (in the chosen metric) equal to the length 

r 
of e. from v.n .    Let the measure u„  be the number of vertices 

J jl jl 

within the locus that are at a finite-graph distance strictly 

r 
greater than one unit fromv.^.  This quantity u,,  shall be 

known as the infidelity of the edge e_. with respect to its 

endpoint v.,  (in the representation r). 
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(b)       _The infidelity of the representation_r of the (connected) 

r 
graph,   u   , is defined as 

y       (ur, + ur ), 
L        jl        j2 

je J 

where J is the set of all edges of the graph. 

(c)       The infidelity of the (connected) graph is the minimum value 

r 
of u   for all representations r.    It is, therefore, a measure of the 

degree to which the "best" possible planar representation can 

"correspond" to the graph. 

The example in Figure 9 (see next page) should clarify the 

definitions.   Notice how each one endpoint pair is considered separately. 

Another representation of the same graph in Figure 10 (see next page) shows 

that the infidelity of this graph is actually zero. 

Let another name for v , be v, _ and for vr be v, . .    The infidelity d 12 f 11 

of the pair (e, , v,,), to be called u, , , is obtained by constructing the locus 

of all points at a distance from v, ,  equal to that of v,     (the length of e,). 

In the usual Euclidean metric, this is a circle with center v, ,  passing through 

v, 2»    Four vertices, va, v^, vc, and vg lie within this locus.    Because vc and vq 

are one graph-distance unit from (directly connected to) vf, they contribute 

r 
nothing to the infidelity u,, .    The constraint violations of v    and v,  , 

11 a b 



FIGURE 9 

< 
*c 

FIGURE 10 



however, cause the infidelity \i\\ to be two. 

Because v    and v    are found inside the corresponding locus 
a c 

r 
surrounding v,    , the infidelity u.     is two.    It should be clear by inspection 

that u21, u22, u  j , u      are all zero. 

The reader is now encouraged to review the original simplification 

series of Figure 3 through 8.    The infidelity of each representation (in octal) 

is displayed in the lower right corner.    On each edge is displayed the sum 

of the infidelities of that edge with respect to its two endpoints.    It should 

be noted that in the existent system the metric used is the rectangular one, 

in which the distance between the two points (x   , y  ) and (x   , y  ) is given 

by the formula    |x  -x,   | + | y  -y-, | .    Furthermore, vertices of degree one, 

which posses only one adjacent edge, have been totally excluded from every 

aspect of the computation.    (See Section C.5. for the justification of this.) 

3. A Critical Discussion of Possible Measures of Graph 
Infidelity 

We may view planar fidelity in a "distance" sense as follows:   Given 

a set of vertices, and a set of distance constraints between certain pairs of 

vertices (the edges), assign (x, y) locations to the vertices that "best" satisfy 

the constraints.    Although we have assumed that each distance constraint is 

unity (graph-distance), the generalization to weighted edges is obvious. 

The simplest calculation scheme would compare the distance (in a 

metric in the plane) between constrained vertices to the graph-distance 

10 



constraints.   Yet,  such a measure yields the same quantity for the two planar 

representations shown in Figure 11 and 12. 

FIGURE 11 FIGURE 12 

The representation in Figure 11 is considered to be the better one, 

since if it were embedded in a larger graph it would more often yield the 

intuitively "clearer" representation of the total graph structure. 

Experimentation at the TX-2 console has verified this assumption. 

Ne have calculated the average length of an edge in the plane, found the 

difference between each edge length and the average, taken the absolute value 

of the result, and summed this quantity over all edges of the graph.   After 

dividing the sum by the average length for normalization, and scaling appro- 

priately, we have displayed this quantity after each reorganization.    Modifi- 

cations that yield a much clearer graph are rarely accompanied by a significant 

reduction in the measure. 

The trouble with this calculation is that it ignores an indirect 

constraint on vertices v, and v   , that they are two units graph-distance 

11 



apart.    One might, therefore, propose to modify the measure by considering 

the constraints (graph-distance) between all pairs of points.    The above 

calculation has included only those pairs separated by one graph-distance 

unit, those pairs that define an edge. 

We have repeated the above calculation for all pairs of points, 

considering in each case a normalized distance equal to the distance in the 

planar metric divided by the graph-distance.   As before, we found the 

average of these quantities and calculated a normalized measure of the 

dispersion around the average value. 

This measure correlates with intuitive simplicity fairly well.    The 

difficulties with it are subtler than in the previous case, in which the 

measure was clearly insensitive to certain "significant" changes in a planar 

representation.    In one sense, the new measure is oversensitive.    Consider, 

for example,  in the preceding Figure 11, movements of vertex v, above the 

horizontal line v    - v   .   Although the (essentially continuous) measure 

proposed will vary with movement of v, , the representation of the graph has 

hardly changed.    The "relative positions" of the vertices, for example, are 

the same. 

Finally, a class of infidelity measures, essentially discontinuous 

with movement of a vertex, is proposed.   As defined in Section 2, the infidelity 

of an edge e. with respect to one of its endpoints v.. does not vary directly 

with its length in a planar metric, but is in fact zero if that edge is drawn 

12 



"short enough" (the other endpoint v     is "close enough"),   v     is considered 

to be close enough if it is nearer to v., than vertices at a greater graph- 

distance (two or more) from v., . 

It has been observed experimentally that this measure is somewhat 

better than the previous one in its correlation with intuitive criteria of 

representation clarity. 

4. An Interpretation of Representation Infidelity in 
Terms of Constraint Violations 

With each edge-endpoint pair of a graph, we may associate a set 

of fidelity constraints on certain vertex positions.   If there is associated 

with each vertex at finite graph-distance greater than or equal to two units 

from the endpoint a constraint that the vertex remain outside of the locus 

defined by the edge and the endpoint, then the infidelity of the representation 

is equal to the number of constraint violations. 

5. Possible Modifications to the Measure of 
Representation Infidelity 

One minor modification is a weighting of constraint violations as a 

function of the graph-distance of the offending vertices from the edge endpoint 

in question.   We have experimented with two such possibilities, of which the 

most interesting one assigns an infidelity penalty that increases monotonically 

with the graph-distance between the vertex and the endpoint.   Comparison of 

these variations while experimenting at the TX-2 console has revealed no 

significant reason to modify the (conceptually simplest) definition in this way. 

13 



A second minor modification may best be explained in terms of the 

constraint interpretation.   The present scheme assigns a set of constraints 

to each pair of vertices connected by an edge (graph-distance one unit apart). 

In the generalization, a set of constraints might be assigned to each pair of 

vertices.   For example, consider two vertices,,a and b, two graph-distance 

units apart.   One might consider the constraint that vertices at graph distance 

d 2 3 from vertex a be further from vertex a than vertex b (as measured in a 

particular planar metric).   Figure 13 demonstrates with a trivial example that 

there exist graph representations for which the infidelity measure is zero but 

for which such an extended measure would not be zero.   Notice that v. is 

closer to v, than v   is. 

V2                      V3 
i a • < 

i I I ' 
v1 v4 

FIGURE 13 

The most interesting modification is the selective elimination of 

certain subparts (subpatterns) of a graph from inclusion in the calculation. 

There are two chief reasons for such a procedure.   A particular pattern may 

be ignored in the infidelity calculation if its occurrence in the graph allows 

a trivial solution to the problem of positioning it to obtain a clear representation, 

14 



A vertex of degree one, for example, may be positioned arbitrarily close to 

the vertex to which it is connected.   Certain chains of vertices of degree 

two may be identified and positioned quite easily and thus could also be 

ignored in the infidelity calculation.    In our work, we have always omitted 

vertices of degree one from the computation. 

It is hoped that ignoring certain subpattems would also allow more 

interesting theorems on infidelity to be proved.   One possible example is a 

decomposition of a graph structure into portions containing cycles and those 

that are "tree-like" (see Section C.8).   It is clear that the interesting 

questions of representation occur in those graph portions containing cycles. 

It would be most remarkable if such selective elimination of patterns from 

the infidelity calculation would result in a measure that could be related 

somehow to the minimum intersection criterion. 

6. Summary of the Advantages of the Infidelity Measure 

(a) Clear intuitive simplifications of a graph 

representation (by hand at the TX-2 console) usually cause a decrease in 

infidelity.   Among the measures that we have considered, infidelity as 

defined and the criterion of the number of intersections show the effect best. 

(b) The measure is interesting mathematically.    It 

may go to zero for a wide class of representations .   In some cases the 

infidelity of a graph may be proved to be zero or non-zero (see Section C.8). 

Even if the minimum value is non-zero it may, if calculable, be useful as a 
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standard to evaluate the degree to which a representation has been simplified. 

(c) Its calculation is easily mechanized; given an 

appropriate data structure, it is easily updated after minor changes in the 

representation. 

7. Summary of Those Features of the Infidelity 
Measure That are Curious or Incompletely Understood 

(a) It appears unlikely that there exist "bad" representa- 

tions with low infidelity.   Experimenters at the TX-2 console who have tried 

to ruin the clarity of a representation have usually caused the measure to 

increase.   As a final test, however, one must program mechanical infidelity- 

reducing algorithms and examine the representations they produce. 

(b) Step-by-step simplification of many graphs appears 

to attain a plateau in which further rearrangement does not lower the infidelity 

of the representation or improve its clarity.   It is unknown whether or not 

such apparent plateaus are near the infidelity of the graph. 

(c) One can sometimes lower the infidelity while 

adding apparent intersections.   This phenomenon may occur when we move 

a vertex away from the loci of influence of several others. 

(d) The infidelity of any representation of any 

complete graph is zero. 

8. Theorems Characterizing the Infidelity Measure 

(a)   The infidelity of a representation is independent 

of the total scale.    Proof:   Obvious. 
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(b) Any representation of any complete graph has 

infidelity zero.   Proof:   In a complete graph, every two vertices are separated 

by one graph-distance unit.   Therefore, there can be no constraint violations. 

(c) Any graph with four or fewer vertices has infidelity 

zero.   Proof:   By exhaustion. 

(d) There exist simple planar graphs with non-zero 

infidelity. One with five vertices is the "two house, three utility" graph 

shown in Figure 14. 

HOUSE    i   «^- » J>  HOUSE    2 

a, b, c = UTILITIES 

FIGURE 14 

Proof:   With no loss in generality, we may assign the two houses positions 

anywhere in the plane.   If the infidelity of a representation is to be zero, 

then utilities a, b, and c must all lie within the shaded sector of 

Figure 15.    There are three cases, corresponding to the location of 

utility a above the line between the two houses (1, ), on the line, or below 

the line. 

17 
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FIGURE 15 

We consider the first case, in which a is positioned arbitrarily 

above 1    within the sector.    Obviously utility b cannot be located either 
h 

between 1    and 1.   or on 1    without introducing a constraint violation.    If 
ah a 

utility b is located on line 1      (the normal to 1    through a) above 1^, there 

is a violation.    Finally, if b is located above 1Q to the right (left) of 1^, 

there are violations involving the edge from vertex b to vertex 1(2). 

Thus, b must be located in the half-sector below lh-   By analogous 

reasoning, c cannot now be located anywhere in the sector without violating 

a constraint. 

Similar reasoning may be applied to the other two cases.   Note: 

For other examples, consider why the theorem (f) clearly fails with very 

dense trees. 

18 



(e)   The smallest non-planar graph with non-zero 

infidelity is the Kuratowski, three houses, three utilities graph shown in 

Figure 16. 

HOUSES     mC      X      J>*      UTILITIES 

FIGURE 16 

Proof:   The proof follows from theorems (b) and (d), Kuratowski's theorem, 

and the fact that the addition of a new vertex and six new edges does not 

in this case reduce the infidelity of any of the edge-endpoint pairs already 

included in the two houses, three utilities graph. 

(f)   A finite chain in which every vertex has degree 

less than or equal to two has zero infidelity.    Proof:    Obvious. 

D.        HEURISTICS FOR SIMPLIFICATION OF A GRAPH REPRESENTATION 

After considerable experience with graph simplification by single- 

step vertex movement, we have developed a collection of powerful heuristics 

for this task.   As these may be of interest to students of cognitive processes 

and of artificial intelligence, we shall present each heuristic with a short 

discussion and any relevant theoretical results. 

1. Isolate maximal dangling trees. 

Consider a connected graph containing at least one cycle.    We define 
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a maximal dangling tree (m.d.t.) by the following procedure:   Choose a non- 

empty set of vertices V with the properties that: 

(a) No one of the vertices may be included in a cycle in the 
graph; 

(b) the addition of any other vertex adjacent to one of the 
vertices in the set V violates condition a. 

If such a set exists, the m.d.t. is formed from all the edges incident to any 

of the vertices in V.   So that it be a subgraph, there must be included at 

least one vertex not in the set V, but adjacent to a vertex in V.   Such 

vertices shall be called attachment points, and the existence of at least one 

corresponding to each m.d.t. is guaranteed. 

In Figure 17, the sets of vertices {a,b} , {e}, and {h,i,j} may be 

used to form the only maximal dangling trees,   c, d, g, and k are attachement 

points.    The m.d.t.'s are {(a,c),  (b,c)},  {(e,d)} , and  {(g,h),  (i,h),  (j,h),  (k,h)} 

20 



Theorem:   If a connected graph contains at least one cycle and at least one 

maximal dangling tree, it possesses an articulation point (a point whose 

removal disconnects the graph).   In fact, every attachment point is an 

articulation point. 

Proof:   Choose any attachment point p, and assume that it is not an 

articulation point.   It is possible to choose two vertices adjacent to p, one 

included in a m.d.t. but not in any cycle, which we shall denote by q, and 

one not included in a m.d.t., which we shall denote by r.    (Why?)   If p is 

not an articulation point, then there exists a path from q to r not passing 

through p.   This implies the existence of a cycle including this path and 

the edges (q, p) and (p, r).    (Why?)   Thus, the assumption that q is not 

included in any cycle is contradicted, and p must be an articulation point. 

The above result and experimentation at the TX-2 display console 

justify an early isolation of m.d.t.'s, and their temporary "removal" from 

further simplification considerations.   At the conclusion of the procedure, 

it is easy to merge the m.d.t.'s with the other components of the graph in 

a manner consistent with one's intuitive notions of representation clarity. 

It is interesting to note that this "factoring" of the graph into its 

"cyclic" components and its "cycle-free" components is closely related 

to the notions of the homomorphic "leaf" and "lobe" images of a graph, 

3 
discussed by Ore in his text. 
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2. Find a vertex with a large connection vector, and 
move it along that path. 

An example of a "connection vector" would be the vector sum of 

each edge incident to a vertex, in which each vector is directed along the 

edge with magnitude equal to the length of the edge in the planar metrix. 

A simple-minded heuristic that has been used with considerable success 

at the console is the identification of a vertex with a large connection 

vector, and subsequent movement of the vertex along the vector in order to 

reduce its magnitude.   The identification of an appropriate vertex is accomplished 

instantaneously and accurately by eye; it would likewise be easy to automate. 

Care must be exercised in the application of this heuristic to avoid 

vertex congestion at the center of the display.   This may occur if too many 

vertices are moved into the center to reduce their connection vectors.    In 

terms of the infidelity measure, these vertices have been brought too close 

to many others to which they are not directly connected.   That it rises 

sharply in such cases of extreme congestion is a good feature of the measure. 

3. Reduce intersections by local vertex traversal of 
boundaries. 

Figures 18 and 19 illustrate the application of this heuristic, a 

very powerful one in certain special cases.    Notice the intersections of the 

edge labeled e. 
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FIGURE 18 FIGURE 19 

4. Identify interesting subpatterns and manipulate them 
in three dimensions. 

Although the display is two-dimensional, experienced observers 

often begin to visualize patterns in three dimensions.    This seems to facilitate 

the perception of certain advantageous, large-scale, reorganization of the 

display.   Although it is difficult to describe any precise heuristics, a few 

examples may illustrate the phenomenon. 

One occasionally recognizes that an entire subpattern is poorly 

positioned and should be moved.   Its destination may be defined by relationship 

with another subpattern.   For example, a certain subgraph may be moved 
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"inside" a boundary (cycle) elsewhere in the graph.   A deformation of a 

representation may sometimes take on a clear intuitive significance, such as 

pulling a subpattern, (for instance, a chain) through some loop or weaving it 

around a boundary, twisting a subpattern around an axis, or reflecting one 

with respect to another axis. 

Such cognitions are three-dimensional in two senses.   They are 

based on simultaneous perceptions of several distinct subpatterns, which 

must in some sense be visually separated.   In addition, they involve trans- 

formations of a representation which are conceived as a continuous mapping 

of the graph from the plane into three-space and finally back into the plane. 

E.        PROPOSED EXTENSIONS TO THIS WORK;   MORE UNSOLVED 
PROBLEMS 

1. The design of mechanical algorithms that simplify a 

graph representation by attempting to reduce its infidelity or the number of 

edge intersections, or both, should be investigated.   This is in a sense a 

classical "hill-climbing" problem; graph theory should be used to investigate 

the mathematical properties of the hills.   How can the absolute minima be 

located?   Mechanical simplification would reveal whether or not minimizing 

only infidelity or intersections yields intuitively clear representations.   A 

technique we should like to explore is initial reduction of the infidelity, 

then reduction of the number of intersections, and then further reduction of 

the infidelity. 
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2. It would be desirable to characterize the relationship 

between infidelity and intersections in a more interesting mathematical 

manner than has been accomplished to date. 

3. Can one develop an axiomatic approach to measures of 

representation clarity in such a way that the axioms define a unique measure? 

How would this compare to the infidelity criterion?    (An example of this 

procedure is the derivation of Shannon's measure of information as the 

unique function satisfying certain axioms.) 

4. Of great mathematical interest would be some results 

characterizing the noted relationship between infidelity measures on graph 

representations, inequalities, and the satisfaction of constraints. 

5. Simple data structures can be adequately used to 

represent a graph as a set of vertices and interconnecting edges.   Such a 

structure can be updated easily after a representation is modified.   If, however, 

one attempts to store explicit information about the structure of the "faces" 

defined by graph edges and their interconnections, a more complicated data 

structure is needed.   Updating the information also becomes more difficult. 

In more general form, the topic to be studied is that of data structures for 

computer manipulation of graphs imbedded in surfaces. 

6. Our investigations have dealt entirely with random 

graphs.   If graph representations were used to display complex data 

structures, such as appear in list or ring processing languages or in certain 
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debugging applications, then one may not wish to ignore features of the graph's 

structure in generating the display.    The graph may possess symmetry 

properties; there may be application-dependent constraints on the characteristics 

of the display.   For example, a display may be required to possess symmetry 

with respect to a certain axis (set of edges); alternatively, such a set may be 

required to be horizontal.   The generation of clear planar representations of 

complex graphs upon which certain symmetries and constraints are imposed 

is an important topic for future study. 

7. Finally, one must investigate the design of a graph- 

theoretic processor and linquistic facility to enable a mathematician to converse 

easily with a computer about graph representations.   Ideas relevant to this 

goal are developed in a broader context in Chapter II. 

II. THE USE AND DESIGN OF A GRAPH THEORY PACKAGE 

Experience with the graph representation package has demonstrated 

at least three distinct ways in which a graph theory package may be useful 

to a student or researcher: 

1.        The construction of examples of graphs satisfying certain 
constraints (with specific properties); 

2 .        experimentation with these examples, in which the computer 
could display graphs, calculate interesting functions on them, 
and modify them to produce new examples; and, 

3.        the investigation of graph-theoretical algorithms ("constructive" 
graph theory). 
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A.        THE LEVEL OF GRAPH STRUCTURE 

At this level the mathematician, who need not necessarily be a 

programmer, may speak in a natural language of vertices, edges, and graphs, 

may state their graph-theoretical properties, and may specify certain primitive 

iterative or recursive (non-graph-theoretic)  procedures that operate upon 

the graphs. 

As primitive graph-theoretical terms, vertex, edge, set of edges, 

graph, subgraph, value associated with a vertex, connected to, face, and 

perhaps a few others would suffice.   It is true that sophisticated graph theory 

is not readily expressed in terminology that simple.   We have, however, 

adopted the philosophy that the success or failure of a graph theory package 

lies in its expandability and flexibility, and not in the size of its pre- 

programmed library of graph-theoretic primitives.    This implies that the major 

effort should be expended in increasing the power and flexibility of the 

primitive operations which act on primitive structures (edges, sets of 

vertices, etc.), and the variety of computational "data structures" that 

represent them in the implementation.   The goal is that the user be able 

to synthesize easily his own desired set of graph-theoretical algorithms. 

The primitive capabilities must include at least the following: 

1. Mechanization of the logical connectives and logical 
quantifiers over finite domains (for example,  "for every 
edge of one set incident with some vertex in another"); 

2. mechanization of set-theoretic operations such as finding 
the union of two sets and testing if one set is a subset of 
another; 
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3. iterative procedures on sets of values associated with 
vertices or edges (for example, searching and sorting); 

4. a flexible class of loop-control and branching capabilities; 
and, 

5. recursive use of all subroutines. 

Graph theory becomes interesting when one considers certain 

properties of, for example, a vertex, a set of edges, a subgraph, or an edge 

with respect to a subgraph.   A vertex may have degree K; a set of edges may 

form a cycle; a subgraph may be bipartite; an edge may be terminal with 

respect to a subgraph.   The study of a particular graph becomes interesting 

when it is constructed to satisfy certain constraints or is found to possess 

certain properties, for it may then shed light upon the characteristics of 

some general class of graphs. 

As a mathematician explores a particular graph, the computer system 

should develop a store of properties relevant to that graph and its subparts. 

The concepts underlying the "associative language" now being developed at 

4 
Lincoln Laboratory and Stanford University are relevant here.      Such a language 

may form an appropriate base in which to embed the store of graph properties. 

B.        THE LEVEL OF IMPLEMENTATION 

Because the computational demands on a graph theory package will 

be great, questions of efficiency are critical to effective system design.   Thus, 

the programmer maintaining the level of graph structure should base the 

implementation on work quite close to the machine.   We tentatively suggest 
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for consideration , the Bell Telephone Laboratories' Low-Level Linked List 

6    4 
Language, L  .       It consists of a set of short subroutines with at least three 

highly desirable features: 

1. A wide class of field-handling capabilities , 

2. user choice of the locations and sizes of his data and 
pointer fields, and 

3. run-time redefinition of fields which causes run-time 
recompilation of the corresponding field-manipulating 
routines. 

C.        THE LEVEL OF GRAPH-THEORETICAL ALGORITHMS 

Finally, we shall discuss the synthesis of features at the level of 

graph structure into a powerful descriptive and algorithmic graph-theoretical 

language.   The most difficult and profound issue is simply stated — how to 

name subgraphs and subparts of a graph. 

It is true that, in order for any subgraph name to have (semantic) 

meaning, there must exist an algorithm that evaluates or finds the named 

subgraph.   Yet, an explicit name, such as "vertex A" or "edge #17", 

reguires only a trivial mapping from the "name space" into the "location 

space".   Such explicit names are rare in graph theory; more natural are 

expressions such as "the vertex (vertices) of degree three within two graph-distance 

units of vertex #14",  "the section graph formed from the edges in a maximal 

cycle", or "the Hamiltonian path of minimum length". 

In the first example, a set of vertices is defined by the simultaneous 

satisfaction of two predicates applicable to vertices.   The second case requires 
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the construction of all cycles, the evaluation of (search for) the maximal one, 

and the formation of a section graph from a set of edges.   The third case 

possesses similar complexity. 

Thus, the mathematician must speak to a processor that can 

decompose such statements into a sufficient set of search routines and calls 

of already-existent, graph-theoretic functions, logically combined and 

nested appropriately.   The language must allow not only these natural 

descriptive features, but also all the procedural features necessary to name 

(and save) intermediate results of any kind.   One must be able to mix 

descriptive and procedural modes with no artificial restrictions.   The system 

should also free the mathematician from much of the usual programming 

burden of error-recovery by informing him when a search has failed or 

several maxima are found, and allowing him to reformulate how to proceed 

further.    On-line interaction is naturally a prereguisite. 

These capabilities should allow the mathematician easy expression 

of algorithms that evaluate functions of a graph (maximal circuit, all 

centers, colorings with properties P and Q), and also of algorithms that 

construct simple examples of graphs satisfying certain constraints.    Investi- 

gations in the latter domain would unveil particularly challenging and 

undoubtedly new classes of graph-theoretical problems. 
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D.        THE ROLE OF COMPUTER GRAPHICS 

In conclusion, we emphasize the obvious importance of graphical 

communication to the utility of a graph theory package.   A valuable design 

philosophy is that of the Graphical Service System   under construction at 

Lincoln Laboratory, that the graphical conventions of a package be under 

user control, and that they may be established without changing the syntax 

and the semantics of the language. 

Several desirable features may be noted here: 

1. Automatic or partially automatic simplification of 
planar graph representations, 

2. the inclusion of elementary constraints on such 
representations, 

3. graphical subroutine conventions under user control, 

4. graphical subroutine output conventions under user 
control, and 

5. visual graph-probes ("bugs") to trace graph-theoretical 
algorithms. 

An example will clarify items 3,4, and 5.   Assume that a subroutine 

exists which accepts a cut-set and forms two disconnected subgraphs.   The 

user may define a pair of light-targets which, when sandwiched around a 

set of light pen bits on graph edges, accepts these edges as input.    It checks 

that they form a cut-set, or requests a cut-set routine if none exists, and 

eventually feeds them to the appropriate subroutine.   As an output convention 

the user may specify that the cut-set flash and that the vertices of one 
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subgraph be circled.   If the algorithm itself is under study, he may request 

that changes in interesting sets of vertices or edges be displayed in slow 

motion. 
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