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ABSTRACT 

Previous detection studies assumed that a "target" was either 

present in a region of interest with a probability p, or not, with a 

probability (1-p). Knowing the value of p, the "searcher" makes a 

measurement of a random variable that has a probability density fun~tion 

whi~h depends on whether or not the target is present and attempts to 

make a decision regarding the presence of the target. In this paper 

a more general point of view is adopted in that we allow the 

possibility of both target and non-target elements to be present in 

any region of measurement. This provides an explicit consideration of 

a third possibility, that of a mixture of target and non-target 

elements. 

The forms of the probability densities for the "mix" variate are 

obtained for a variety of assumptions regarding the relationships 

among the variates involved. A sequential decision problem is 

extended to include the three value case. 
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INTRODUCTION 

During the last two decades, a well developed theory of detection 

has been established, Detection theory is an adaptation of the 

statistical theory of hypothesis testing to problems arising in pattern 

recognition and radar, communication, and control engineering. A 

pattern recognition device is said to consist of two parts: a receptor, 

which generates a set of measurernents of the physical sample to be 

recognized, and a categorizer, which assigns each set of measurements 

to one of a finite nwnber of ,,~lasses. 

The purpose of the present paper is to discuss a new problem in 

detection theory. This problem arL::e:~, among other ways, when one 

attempts to detect a pattern in a two-dimensional optical display 

(hereafter called picture). The picture is to be scanned using a 

receptor of a fixed size and shape. For each positioning of the 

receptor, one obtains a set of measurements from the "subpicture" being 

sensed. Each measurement, x, can be thought of as a random variable, 

and is sometimes called a lol~al property of the picture. For pattern 

recognition problems a discrimiuato.:_1 (human or machine) may be assigned 

the problem of determining whethe: x is a sample from one or another 

class of inputs, say a "target scene" or perhaps a "non-target scene". 

The term "target scene" (or "target") is defined to be an object of 

primary interest to a decision-maker. 

Previous detection stlldies [l], [2], [3], assumed that a target 

was either present in a region of interest with a probability, p, or 

not, with a probability 1-p. Knowing the value of p, the searcher makes 

a measurement of a random variable that has a probability density 

function which depends on whether or not the target is present, and 

attempts to make a decision regarding the presence of the target. In 

this paper a more general point of view is adopted in that we allow the 

possibility of both target and non-target elements to be present in any 

subpicture. We shall therefore be concerned with classifying a 

measurement as being a response from one of three sources, namely, 

* References in brackets may be found on page 27. 
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elements. 

1. a subpicture containing target elements only, 

2. a subpicture containing non-target elements only, 

3. a subpicture containing both target and non-target 

The same problem arises [4] in certain analyses of radar 
search systems. The procedure is to continually sample 
a given range "bin" until a yes-no decision concerning 
the presence of a target is made. One often wishes to 
provide for the possibility of a target emerging into the 
bin during the sampling process. 

The three categories of subpictures will be called pattern classes, 

and denoted by R
1

, R2 , and R
3

, respectively. To treat the problem at 

hand let p(x I R. ) be the probability of oc>~urrence of the measurement, 
l 

x, given that it belongs to class Ri. We shall assume that p(xjR1 ) and 

p(xiRG) are known and set, for our first task, the determination of 
c.. 

p(x!R
3
). To facilitate the following discussion, we shall denote the 

measurement x by r, s, or u depending on whether x is a measurement 

from R1 , R0 , orR~, respectivelyo Furthermore we let f_1 (r) = p(rjR_1 ), 
....I.. '- _.1 

f 2(s) = p(siR
2
), and h(u) = p(u!R

3
). The next section shall be devoted 

to determining h(u) under various assumptions about the form of u. 

l. DETERMINATION OF THE DENSITY FUNCTION, h(u) 

1.1 Relationships Among the Random Variables. 

We shall consider the determination of the density function h(u) 

for the following proposed expressions relating the random variables r, 

s, and u. 
T u = wr ( ,.T ~ ~ + (l-'i-r)s(l-w,s

2
) .L. .L \ .. ''-'1/ 

II. u = wr(w) + (1-w)s(w) 

III. u = wr + (1-w)s 

IV. u r(w,s1 ) + s(w,s2) 

v. u = r(w) + s ( w) 0 
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The first three expressions result when one conceives of x as 

some average value taken over the subpi.cture. In picture processing x 

could be an average value of some textural property, say average 

intensity. One can think of the subpicture 8 as partitioned into two 

parts, P
1 

and P
2

, wherP- P
1 

:ontaLns target elements only and P
2 

contains non-target elements only. Let s
1 

and s
2 

be vector parameters 

which somehow charactei~'ize the geometric shapes of P 
1 

and P 
2

• Let 
area (P

1
) 

w(= area ~S) ) be the fraction of the subpicture containing target 

elements only. The first equation expresses u as a \-Teighted average 

of r and s. The measurement r is taken over P
1

; the measurement s is 

taken over P 2 • In general the measurement r vlill be a function of 

both wand s
1

• Similarly s is a function of wand s
2

• As P
2 

is the 

complement of P
1 

with respect to S, a specification of s
1 

also yields 

82 • Therefore we can rewTite expressions I and rJ in the for-m 

IV' u 

In expression II, r and s are deemed to be independent of sl and 

82. In expression III, r and s are assuined to be independent of '~T Clnd 

sl. Expressions IV and v arise naturCllly when one considers the 

measurement x to be a count of the rE..unber of occurrences of a certain 

event in a subpicture (such a~' the: nuJ11ber of edges, or perhaps, the: 

nwnber of closed contours). The o1·der in ~oihich -vre shall discuss the 

expressions will be II, III, V, I', and IV'. 

1.2 Case l. u = wr(w) + (1-w)s(w). 

In this case we have assumed that r and s are independent of s
1 

and 8
2

• The quantities r, s, and w are random variables with dens:ities 

f
1

(r), r 2(s), and k(w) respectively. Our objective is to derive an 

expression for the density function, h(u), of the variate u. The 

variate u is a monotonic function of s when r(w) and w are held constant. 
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To obtain the distribution of u we imagine that the two variates r(w) 

and w are held fixed at some arbitrary value while s varies over its 

possible range according to its distribution. The probability distri­

bution of u which then results is the conditional distribution of u 

given r(w) and w. Moreover, u becomes a monotonic function of the 

variable s although the equation relating u and s will contain the 

parameters wand r(w). Hence the conditional density ~(ulw, r(w)) can 

be derived from f 2(sjw) by a univariate method giving 

f (u-wr(w) I w) 
2 1-w 

Furthermore one can then produce the joint density function, g(u,r(w)lw), 

of u and r(w) conditioned upon w by the expression 

One obtains the density of u (conditioned on w) by integrating the 

function g(u,r(w)lw) with respect to r(w), taking pains to keep the 

argument of the function f
2 

in the range of the variable s. One 

obtains 

h(ulw) 
1 

r.
J f ( ()I) f (u-wr(w)l w) drl· _; ,1 r w w 2 1-w 
LT~u,w) J 

= --1-w 

In the above, the set T(u,w) = {r(w) lr(w) € R(w) and u~~(w) € S(w)} 

where R(w) is the range of r(w) and S(w) is the range of s(w). If we 

let R(w) = [c(w), d(w)], and S(w) = [a(w), b(w)], then 

T(u,w) = {rlc(w) ~ r ~ d(w) and a(w) ~ ~-~ ~ b(w)} • 
' ..L-w "' 

From the inequalities a(w) ~ ul-wr ~ b(w), we obtain 
-w 

(1-w)a(w) + wr(w) sus (l-w)b(w) + wr(w). From Figure 1 we can 

visualize the dependen:~e of the limits of integration upon u and w. 
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u 

Hence 

with 

and 

J 

1 
I 
I 
I 
I 

/~.,v£ 

I 
I y 
I 

c (w) 

h(u]w) 
1 

=-1-w 

FIGURE 1 

(1-w)b(w) + wr(w) 
or 

r(w) = ! u - 1 -w b(w) 
w w 

u = (l=v)a(w) + vrr(w) 
or 

c(;,r) =! u - 1
-w a(w) 

\{ w 

r 

U(u,w) 

J f 
1 

( r ( w) j w) :r 
2 

( u ~ ~: ( w) I w) dr , 

L(u)1-r) 

L = max ( c ( 1-.r) ; ~ u - ( 
1 ~ w) b ( w) ) , 

l 1-w ( ) U = min (-:;; u - --;;;- a w ; d ( vr) ) 

There are t.-vm cases to ciistinguir:h. If 

(1-w)a(w) + wd(w) ~ (1-w)b(w) + wc(w), then T(u,w) is 

j
'[c(w), (1-w)a(w) + u] for (1-u)a(l\r) + \\r,:C1-r) s ~l ~ (1-w)a(w) + wd(w) 

[c(w), d(w)] for (1-w)a(w) + wd(w) ~us (1-w)b(w) + wc(w) 

L [ ( 1-i·r) b ( 11) + -vn1 , d ( w) ] for ( 1-w) b ( w) + \v c ( w) s u_ s ( 1-w) b ( w) + wd ( w) • 

If (1-w)a(w) + wd(w) ~ (1-w)b(w) + wc(\-r), then T(u,w) is 

(r ('(w) _ (l-w)8(w) + wu l for (1-vr)a(w) + wc(w) s u ~ (1-w)b(w) + wc(w) 

1~~~-~~b~:: :--~: (~-~:a(w) ~ wu; ;o~ (1-w)b(w) + wc(w) ~ u ~ (1-w)a(w) + wd(w) 

LL(1-w)b(w) + wu, d(w)J for (1-w)a(w) + wd(w) sus (1-w)b(w) + wd(w). 
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Finally, to determine h(u) we must integrate with respect to w; the 

result is 

1.3 Case 2. 

h(u) = J k(w)h(ulw) dw 

w 
• I.., \ 

U = wr -t- ~1.-WJS. 

In this case we have assumed that r and s are independent of w and 

the shape vectors s
1 

and s
2

• As in Section 1.2 the objective is to 

determine the density function, h(u), for the variate u. Before 

proceeding to the general formulation we shall consider several special 

cases. 

l. Suppose 

a. r and s are constants, 

b. w is uniformly distributed on [o,m]; 0 < m ~ 1, 

c. r > s. 

Then u is uniformly distributed on [s, s + m(r-s]. 

2. Suppose 

a. r is a constant, 

b. s and w are statistically independent, 

c. s has a uniform distribution, f 2 (s), on 

d. w is uniformly distributed on [0,1]. 

We obtain, using rationale similar to that of Section 1.2, 

or 

where 

h(u) = J (b:a)(l:w) f2(u~:) dw ' 

T(u) 

(b-a)h(u) = l~ l , __ dw , 
~ .L-W 

T(u) 

12 
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T(u) = {wlo ::; w ::; l and a 
u-wr b} $ --$ . 1-w 

We ...:onsider three sub cases: 

~~ . r < a. Then 

rra-u b-u] for r < u <a 
t_a-r ' h-r 

T(u) 

1 [o b-ul for a< u < b 
b-t·J 

and 

j £n(b-r) for r ::; u < a 
a-r 

(b-a)h(u) 

£n(b-r) L for a< u <b 
u-c 

The graph of this function has the form 

I ' I ' ~ 
(b-a)h(u) 

I ~ • • ,.. 
r a b u 

ii. a < r <b. Then 

r 
(o u-a-

j 
-,,_a) for a ::; u < r 

T(u) = 

(o ?-u) for r < u ::; b 
'- b-r· 

and 

r £n(r-a) for a < u < r 
r-u 

(b-a)h(u) - l ~n( b-r) 

+>~~ u r l.Vl 

for r < u <b 
u-r 

,,"!,..,~~~ ,....w--1 ...... ~""' "k~~ +"hr-- ..fl'F\-v-YY\ 
WUV>::>t:: C,lct._t.JlJ. .Llct.t:> uuc .J.V.l.Hi 
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(b-a)h(u) t 

a r b 

iii. r >b. Then 

T(u) =[a, min(u,b)] , 

and 

r £n(~=~) for a~ u < b 

(b-a)h(u) 
= ~ £n(:_:) l r-b 

The graph of (b-a)h(u) has the form 

(b-a)h(u) t 

.~ 
a 

for 

• b r 

u 

u 

In deriving the general form for h(u), we choose to fix the 

variables r and s at constant values initially. Again we see that u 

behaves as a monotonic function of w when r and s are held constant. 

Therefore the conditional density t(ulr,s) can be derived from the 

probability density of w, k(w), by a univariate method, yielding 

£(ulr,s) 

Moreover one can derive the joint density function g(u,r,s) from the 

expression 
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g(u,r,s) = f(r,s)£(ujr,s) 

where f(r,s) is the joint density function of r and s. Finally the 

density of u is obtained by integrating g(u,r,s) with respect to r and 

s. Thus we have 

where 

and 

h(u) = Jr Jr rr,r s~1 kr,~) ,_!_, dr ds 
' r-s Ir-s! 

T(u) 

T(u) = {-(r,s)lr 8 R, s 8 S, and~ 8 wl , r-s J 

R = range of r 

S = range of s 

W = range of w. 

-L · · · ~ r , l ,.... r _ ,_ l T r r r- , l etting ~ = LC,GJ, 0 = La,oJ, w = LV,~J, and asswuing that 

and w are independent, we obtain the expression 

d S(u) 
r r . . . .11-c. . 1 . 

h(u) = J J fl(r)f2(s)k(;=;) cr:s) ds dr + 
)'(u) a 

rb rS' ( u) 
j 1 f (r)f (s)k(u-s) (s:r) dr ds 
y' (u) c l 2 r-s 

where 

~t' ( . I ,\1 
~~u) =max ta, mln\U,DJJ y(u) =min [d, max(c,u)} , 

S' (u) =max [c, m~n(u,b)} , 1' (u) =min [b, max(u,a)} • 

The two integrals evolve as a result of partitioning T(u) into two 

sets T
1

(u) and T
2

(u), where 

and 

T ( u) 
l 

= {(r,s)lr e R, s e s, r > s, and 0 ~ u-s :5 l ~ 
r-s ..J... J ' 

T2(u) = {(r,s)Jr e R, s e S, r < s, and 0 $ ~=: $ 1} , 

15 



or equivalently, 

T,(u) 
J... 

{(r,s)lr € R, s € s, and s ~ u < r} , 

and 

T2(u) = {(r,s) lr € R, s € S, and r ~ u ~ s} . 

1.4 Numerical Example for Case 2. 

Suppose 

a. r, s, and w are statistically independent, uniformly 

distributed random variables, 

Then 

where 

and 

b. R = [c,d], S = [a,b], and W = [0,1] 

c. for definiteness, 0 < c < a < d < b • 

r for u ~ a 

= l(d-a)£n(d-a) + (!(u) - S(u))£n(,(u) - S(u)) 

-(d-S(u))£n(d-S(u)) - (/(u)-a)£n(,(u)-a) for u >a 

(b-c)£n(b-c) + (!' (u) - 13' (u))£n(/' (u) - S' (u)) 

- (b-13' (u))£n(b-S' (u)) - (!' (u)-c)£n(y' (u)-c) • 

Furthermore 

(d-e) (b-a)h(u) 

where, 

r kl + hl (u) 

~ k? - h?( u) 

l k~ + h~(u) 

16 
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and 

k
1 

= (b-c)£n(b-c) - (a-c)£n(a-c), 

k2 = (d-a)tn(d-a) + (b-c)£n(b-c), 

k
3 

= (b-c)£n(b-c) - (b-d)£n(b-d), 

h1 (u) = (a-u)£n(a-u) - (b-u)£n(b-u), 

h2 (u) = (d-u)£n(d-u) + (u-a)£n(u-a) + (b-u)£n(b-u) 

+ (u-c)£n(u-c), 

h
3

(u) = (u-d)£n(u-d) - (u-c)£n(u-c). 
b 

A very lengthy and tedious computation verifies that J h(u) du - l. 
c 

Let c=l, a=2, d=3, and b=4. Then h(u) = 
r
1

(u) + r 2(u) 
, and 

k1 = k2 = k
3 

= 3 £n 3. 

The graph of h(u) is given in the following figure. 

h(u) 
. ~ r 1\ 
.b f \ .5 
.4 

.3 t \ .2 

.l 

ol ~ ~ 3 \t u 

We shall make use of this example again in Section 2.1. 

1.5 Plausible Density Functions for the variable, w. 

In this section we shall derive several plausible density 

functions, k(w), for the random variable w. We shall describe the 

circumstances which give rise to these functions and discuss the 

importance of obtaining a catalog of such functions. 

Consider the problem of scanning, horizontall~ a two-dimensional 

optical display, such as a photograph or a television image with a 

receptor (window). 

17 



the 

Suppose, 

a. the target in the display is rectangular-shaped 

b. the window is square-shaped 

c. the edges of both the window and target are parallel 

corresponding edges of the optical display as illustrated, 

... ~-----s units -------~~-.~ 

targe t~ 

~window 

§ 
1--'• 
c+ 
(}) 

l 

to 

d. each possible position of the window is equally likely. 

Let the window be a unit square and let the target be S(> 1) units 

long and T(> 1) units wide. Let w be the ratio, 
area of overlap of target and window 

area of window 
We wish to find the 

probability density function, k(w), given there exists an overlap of 

window and target. Assuming that each admissible position of the 

window with respect t6 the target is equally likely we can derive 

the expression 

k(w) = 

For S=T, we obtain, 

k(w) = 

S + T - 2 - 2 tn w 
S+T 

0 < w $; 1. 

S - 1 - tn w 
s 0 < W $ lo 

As either S or T approaches infinity, k(w) approaches a uniform 

distribution on [0,1]. 
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Suppose 

a. the target and window are circular-shaped with radii of 

R(> l) units and one unit, respectively, 

b. ea~~h possible position of the window is equally likely, 

c. w(s) defines the ratio, 

area of overlap of the target and window 
area of window 

Then 

w( s) 

where 

2 
/(t(s) 
L 

t(s) = R - l + s , 

and 

for 0 ~ y(s) ~ l 

for -l ~ y(s) ~ 0 

The variable s is a random variable having a density function 

£(s) R + l - s 
2R 

Estimates of the probability density function for w may be obtained 

by computer simulation. One could sample s, many times, from a 

discrete version of its cumulative distribution, evaluate w(s), and 

construct a discrete approximation to k(w). The procedure could be 

repeated for a family of R values. 

For the discussion above, we selected two examples where the 

variate w could range in the interval [O,l]. Another consideration 

is motivated by Figures lao and lb. 
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r-----------. ~window 

1
1 L~ h~~o+ 

- UO..L 5'- U ...._ __ 
~--------------~ 

~window 

~ /target 

la. lb. 

In Figure la the target is smaller than the window. In Figure 

lb we see an elongated target, so that the target never completely 

fills show that the values of w might be 

restricted to an interval, say, [O,m], where m < l. 

The computations of density functions for w for such cases, 

and the implications with regard to Equation 1.3.1 will be given in 

another paper. 

Our purpose is to provide a catalog of plausible density functions 

for the variate w. A function from the catalog could prove to be 

useful as an approxiwBtion in an application where a target shape is 

not regular. Moreover, knowledge of the properties of the functions 

might dictate the design of receptor shapes. 

1.6 Use of Histogram Data in Conjunction with Equation (1.3.2). 

In many pattern recognition problems, probability density 

functions for r and s are approximated by histograms obtained from 

sample sets, frequently called training sets. 

and 

With this in mind, let us define, 
m 

f
1

(r) = I aiH(r-ri) , 

i=l 

n 

b.H(s-s.) , 
J J 

j=l 

where 

20 
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(1; x>O 

H(x) =~ 
L 0 ; X ~ 0 

We shall determine the function h(u) with f
1

(r) and f 2 (s) defined by 

equations (1.6.1) and (1.6.2) and a uniform density function for w. 

It follows from equation (1.3.2) that 

where 

and 

and 

m n 

h(u) = Y Y a~b~ [I,(i,j,u) + I?(i,j,u)] , 
'--1 L......J .J... J ...L ~ 

i=1 j=1 

_d _sl ( u) 

=I J. ~ k(~) 
( ) r-s 

y1 u sj 

,.., I \ 

b ~ 2 ~u) 

= s s k(~) 
( ) r-s 

'2 u c 

- -m;"' rr1 "YYlr:JV"rY' ,,~l 
- U~.L u. L I.A. ' U~C\J>. ' .l. i ' I.A I ..J ' 

=min [b, max (u,s.)] 
J 

l - ds dr , 
r-s 

_L dr d 
s ' s-r 

For w uniformly distributed on [O,l], we obtain 

and 

r1 (i,j,u) = (d~sj)£n(d-sj) + (y1 (u) - S1 (u))£n(y1 (u)-S1 (u)) 

- (d-S1 (u))£n(d-S1 (u)) - (y1 (u) - sj)£n(y1 (u) - sj) , 
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1.7 Case 3. u = r(w) + s(w). 

Proceeding as in the earlier sections, we obtain 

h(u) = J k(w) cJ fl(rlw) f2(u-r(w)) dr] dw 

W T' (u,w) 

l .Q. 
.J..eV Case 4. u = 

The computation of h(u) for these expressions seems to be very 

difficult. One requires, initially, a characterization of P
1

, that 

part of the subpicture containing target elements only. For complex 

(say non-convex) target shapes and for arbitrary target orientations 

within the subpicture this task appears to be extremely complicated. 

1.9 Extension to a Set of Measurements. 

Let us suppose that for each positioning of the receptor, one 

obtains several measurements, xl ,xn,••• x~. Let X= (xl, •.• ,x~). We 
~ c ~ ~ ~ 

are interested in determining p(XjR
1

), p(XjR
2

) and p(XjR
3
). Let us 

assume that for each of the classes R
1

, R
2

, and R
3 

the components of 

X are statistically independent. This allows us to write 

p(XjR.) = p(x1 jR.) p(x2 jR.) ••• p(xdjR.) ; i=l,2,3 
l l l l 

and the theory discussed in sections 1.1 to 1.8 is applicable. 

2. CLASSIFICATIONS OF PATTERNS 

2.1 Bayes Analysis. 

Here we use decision surfaces of our pattern classifier which are 

defined by a set of functions g
1

(x), g
2
(x), and g

3
(x). These functions, 

called discriminant fw!ctions are chosen all -v ;Yl "R 
O....J.....l- ..,{\. ...L.1.J. .L\.i J 

g.(x) > g.(x) for i,j=l,2,3, i ~ jo 
l J 

The patterns in each of the tr~ee categories R1 , R2 , and R
3 

are 

random variables governed by the probability functions p(xiRi) = f 1 (x), 

p(xjR
2

) = r
2

(x), and p(xjR
3

) = h(x). An additional set of values 

which is needed in order to construct the discriminant f~Dctions is 
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the set of a priori probabilities, {p(Ri)}, i=l,2,3. The 

discriminant functions will be expressed in terms of the p(x!R.) and 
l 

p(R.). Our pattern classifier will be optimum in a Bayesian sense 
l 

[5], [6] if we let 

3 

gi(x) =- I A(iJj) p(xJRj) p(Rj), 
j=l 

where A.(ilj), the "loss function" represents the loss incurred when 

the classifier places a pattern actually belonging to the class R. into 
J 

category R .• Therefore the pattern classifier makes its classifications 
l 

by the following steps: 

l. the measurement x is presented to the classifier. 

2. the classifier computes Max [g
1

(x), g2(x), g
3

(x)] and 

decides in favor of the catego~J associated with the function yielding 

the largest value. 

A loss function is said to be symmetric if it is of the form 

A.(ilj) = l - B .. 
lJ 

where 

ro if i ~ j 

0 .. 

=!l lJ 
if i = j 

For such loss functions, the discriminant f~~ctions turn out to 

be 

g.(x) = p(x!R.) p(R.) ; i=l,2,3. 
l l l 

If all of the classes are equally likely a priori, i.e. 

l 
p(Rl) = p(R2) = p(R3) - 3 

we need only compute p(x!R.) for i=l,2,3 and select the maximunL This 
l 

decision is called the maximum likelihood decision. 
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Returning to the numerical example in Section 1.4, we shall 

determine the maximum likelihood decision for each x in the interval 

[1,4]. The results are 

decide ln favor 

2.2 Sequential Analysis. 

(class 

of~ class 

lclass 

if 

if 

if 

X € 

X € 

X € 

[1,2] 

[2,3] • 

[3,4] 

The result of a measurement for the subpicture is the value x 

which has the probability density function p(xJR
1

) or p(xJR
2

) or 

p(xiR7 ) depending on whether the subpicture contains target elements - . . ) . - -

only, non-target elements only, or both target and non-target elements. 

Following each measurement, the observer makes one of the following 

four decisions: 

D1 : decide target is present. 

D
2

: decide target is not present. 

n
3

: decide both target and non-target elements are present. 

W: wait for another measurement. 

The decisions D1 , D2 , and n
3 

are terminal decisions, completing 

the process. The losses of the searcher making decision R. given R. 
l J 

is true are A(ijj). We shall assume that A(lJl) = A(2J2) = A(3j3) = 0. 

The decision W allows the process to continue at 

step (i.e. permits the observer to make at least one more measurement). 

The loss incurred by this delay will be assumed to be dependent on 

which class R. we are measuri~~- Let W. equal the delay loss incurred 
l l 

if R. is truly the class being measured. The objective of the 
l 

searcher is to minimize the expected cost of a search. The decision 

policy that achieves the minimum expected cost is called the rroptimal" 

policy. Following Pollock [2] we can write a functional equation 

which will yield the optimal policy. The equation is an application 
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of Bellman's Principle of Optimality [7]. Let f(p1 ,p2 ) be the 

minimum cost of search obtained using an optimal policy where 

p. = p(R.) is the a priori probabilities associated with the occurrence 
l l 

of the class R .• 
l 

We are interested in determining the function f(p1 ,p2 ) which is 

a function of the current information about probabilities of the 

occurrence of R
1 

and R2 . We are equally interested in determining 

D(p
1

,p
2

) the decision that one should make as a function of p
1 

and p2 . 

A more realistic problem arises when one considers that there exist at 

most only n available observations remaining before a terminal 

decision MUST be made. If the decision W is made, at the next decision 

there will be only n-1 possible observations left. If n=O, then one of 

the terminal decisions must be made. Letting fn(p1 ,p2 ) be the cost of 

search using an optimal policy given there are n available observations 

remaining before a terminal decision must be made, we get 

decision D
1 

decision D
2 

fp2A(ll2) + P3A(ll3) 

Jr~(2ll) + r3A(2l3l 

fn(pl,p2) = minlp
1
A(3Jl) + r 2A(3l2) :ecision n

3 

For n=O, 

to 

lplWl + p2W2 + p3W3 + ~ :t pip(xJRi) 
0 i==l 

decision W. 
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terminal incorrect decisions 

P
2
A (112) 

p
1
A(2ll) respectively. 

If the decision is W, the expected cost is p
1

W
1 

+ p
2
W2 + p

3
w

3 
plus the 

cost of continuing from that point on, having observed some value of x. 

The probability of observing a value between x and x + dx is 

[p1p(xiR1 ) + P2P(xiR2) + p3p(xiR
3

)J dx. Having observed the value x, 

the probabilities 

and 

p' = p(R !x) 
l l 

are obtained from Bayes rule. 

Although the basic formalism of dynamic programming carries over 

without change from the two class detection problem, we have introduced 

an additional "state" variable into the functional equations. This 

introduction causes some further numerical difficulties which may be 

resolved by any one of several techniques recorded in [7]. 
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