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I. Introduction to the Problem

In certain applied areas, notably that of systems reliability,
but also those of work sampling and communications, it is common to
consider a system that randomly occupies one of two states. Thus in the
reliability application (upon which we shall concentrate hereafter) a
radar system may be operative ("up"), or inoperative ("down"), while in
work sampling a worker may be "working" or "resting”, and in communications
a telephone line or other facility may be "idle" or "busy". Random state
occupéncy means that the durations of the times spent in the two states
exhibits random variability. For example, the tendency of system times-
to.failure (up-times) to be approximately exponentially distributed is well-
‘known (see Davis | 5 ]). Similarly, the idle time of a telephone line will
be exponential if calls occur in a stationary Poisson fashion, as may
frequently be a reasonable assumption. Of course distributions other than
the exponential can, and frequently do, arise.

Our purpose in this paper is to discuss the problem of estimating
the parameters of the probability distributions specifying the two-state
process described. Of interest also is the estimation of functions of
these parameters, e.g. "system readiness" and "system reliability" in the
reliability context; these notions will be defined later. The estimation

problem clearly depends upon the manner in which observations are taken,



i.e. upon the sampling plan. We assume here that at least certain of the
observations are available only at rather infrequent times. When observations
are made we assume that they either, a), reveal only the state of the system
that prevails at the instant of observation, in which case we call them
snapshots, or b), consist of continuous recording of the system state
throughout intervals of fixed or random duration, in which case we call

them patches. In this paper we shall consider mixtures of these plans, in
which snapshots and patches are mutually interspersed.

The motivation for considering such sampling plans is essentially
that of determining system parameters economically and without the bias that
is possible, at least in the reliability area, from the use of operator log-
book data. The latter frequently is extremely spotty and unreliable, and a
supplement is desirable. Snapshot, or even patch, observations approximate
those made when occasional readings on system state are possible. For
example, after the time of a military action it is likely to be accurately
recalled whether or not a radar was up when needed, and possibly even the
approximate length of time it remained so. See Cox ([ 1 ], p. 87 ff.) for
a discussion of a related machine stoppage questiorie In a recent paper,

[ 3 ], Cox has also considered an estimation problem very similar to ours.

In activity sampling or time study snapshot observations are frequently

taken; it has been suggested by Moder [10 ] that the efficiency of such
studies can be increased by also observing the remaining time in state of
the system, particularly if the state observed occurs relatively infrequently.

In telephony analogous sampling procedures may also be considered.
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An interesting effect that sometimes accompanies system observa-
tions is that the system behavior actually changes as 4 consequence. For
one thing, inspections may increase the vigilance and motivation of support
personnel, thus inducing the system to spend more time in the up, or
desirable, state. On the other hand, too-frequent observations are
distracting and time-consuming, and may breed resentment. We shall not
attempt here to provide statistical procedures accounting for the possible
behavioral impact of inspections or audits, although work in this direction

is in progress.
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I1. The Exponential Model and Maximum Likelihood

Before proceeding to estimate parameters in the general model
described it is necessary to specify the latter mathematically. 1In
reliability terminology we assume that the system is alternately up and
down, that the i-th up time is Ui’ the i-th down time is Di’ and that
{Ui, 1=1,2, ....} and {D,, i=1,2, ...} are mutually independent sequences
of independent and identically distributed random variables. Thus the
system is described by a two-state renewal process (Cox [ 1 ],) : In
this case if the system is observed at widely spaced instants the chance

that it is observed up is, by general renewal theory,

P{up in long run} = = UE+g = (2.1)

with the complementary probability applying to the complementary event.

It is thus clear that by rare snapshot sampling we can only estimate the
ratio of the two means. However, if actual time durations are observed, as
in patch sampling, it appears that estimates of both E[U] and E[D] are
available. We treat this possibility in terms of the special model, in

which up- and down-times are exponentially distributed.

A. Exponential Model

Let the up- and down-times have densities

fU(x) = e-uxu, >0, x 2o,

N

.

N
S

and Y '
fy(y) = ey, A>0,y2o0.
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where E[u] = ul and E[pD] = L.

This simple two-state Markov model occurs in reliability applications, and
perhaps in other areas as well. We shall base our estimation procedures
upon it. However, we shall also attempt to test the robustness of the
estimates thereby derived by treating processes having up and down times
actually described by other distributions (e.g. members of the log-normal
family) as if they were from the Markov process generated by distributions
(2.2). Results of this test, conducted by experimental sampling, are

described in Section IV .

B. Maximum Likelihood

Given the two-state renewal model, with distributions (2.2) we can
now write down the likelihood function under the assumption of rare observation.
Let us, for illustration, suppose that the system is initially observed in the
up state, and that starting at that moment a patch of complete up periods
(U realizations) and complete down periods (D realizations) is recorded.
Following this, a long interval is allowed to elapse and the system is again
observed; the state observed recorded at the moment of first observation,
and a subsequent patch of up and down realizations again recorded; the
process is repeated periodically, always with long intervals elapsing between
consecutive patches.

Owing to the assumption of long delays between patches we shall
assume that the probability that the system is ir an up condition when a new

patch observation begins is



EjU =,
ELU J+E[D Toatp ! (2.3)

the system is down at patch beginning with the complementary probabilitv.
Moreover, the memoryless or Markovian property of the exponential distri-
bution (see Feller [ 6 ]), assures that the duration of the first time in
state at patch beginning (termed "remaining life", or "forward recurrence
time", see Cox [ 1 ]) is exponentially distributed, with the parameter
appropriate to the state observed at patch beginning. It is this last
property that renders patch sampling of the exponential process especially
tractable, for in general the forward recurrence time is not distributed

in the same manner as is the corresponding time in state.

The above considerations then lead to the likelihood function

s ePxe@ Ay, b A ya p B
where
a
x, = total uptime observed; X, = 2: X
i=l
X4 being an individual up interval (or forward recurrence time),
a = total number of up intervals (including forward recurrence

times),
b
Y, = total down time observed; Yy °© 2: Yy s
1:
b = total number of down intervals
{including forward recurrence times),
a = total number of patches beginning with system up,
B = total number of patches beginning with system down.

Expression (2.4) can be specialized to account for a number of alternative
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sampling plans. Two examples follow.

Case 11 A system's up and down history is continuously recorded through
k initial up and down periods. Thereafter, m rare snapshot observations
are made, on r of which the system is in an up condition. In this case

a=b-=k

a=1r, p=mr.

Case 21 A system is observed m times at rare intervals, and each time
the system state and the remaining time in that state are recorded. Then

a =a-=r

b = ﬂ m=X.

Returning to the general case, with likelihood (2.4), differentia-

tion of the log-likelihood yields the two equations

0logL _ atb _atf _ -
o TR P (255
and
0log L _ atp _ atp _ =
m Tl it o . (2.6)

Eliminating the term involving ()\+u)-1 we obtain

-1 Y+ aep -l
= otp o 'S

then substitution into (2.6) produces the quadratic equation in us

u2[x+(y+- x+)] + p[y+(a-a) + x+(2a+b+6)] - (a+p)(a4b) = 0 . (2.7)
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The appropriate solution is the waximum likelihood estimate

[y+(a-a)-x+(2a+b+ﬁ)]+-Vty+(a-a)-x+(2a+b+ﬁ)]2+4(y+-x+)(a+ﬁ)(a*b)x+

TR (2.8)

A
p,:

By symmetry, the maximum likelihood estimate of X\ is

A [x,(b-B)ey (2rara) 1t Vx,(b-p)-y,(Brare) Pralx,- v,)(ba) (atb)y,

2.9
A 2(X+‘ Y+)Y+ ( )
A little algebra shows that the quantities under the radicals are non-
negative. For the Cases 1 and 2 above (2.8) and (2.9) become
E =
A [y (k=5)-x, (3kam-x) 1+ V [y, (k-7)-x,(3cm-r) 13 8(y,- x,)(khm-r)kx,
p= (2.10)
2(y,~x )x,
. Vi 2
A [x+(k+r-m)~y+(3k+r)]+ [x+(k+r-m)-y+(3k+r)] +8(x+_-y+)(k+r)ky+
o, (2.11)
2(x+"Y+)Y+
A m
Case 21 p o= 5 (2.12)
X, + XY,
A
o e (2.13)
FRAERA

The asymptotic variance-covariance matrix can be computed directly.

We find first

2
pidedly - k4 md (2.14)
2 2 2

op S p(A )

e ———— s



2
-g[%g.g_l-] - .“_2+ —me (2.15)

A X(K+p)2
2
By -a-—lo-g-L'- T - —_m_-— .

so (2.14) and (2.15) are the diagonal, and (2.16) the off-diagonal,

elements in the information matrix. Inversion then gives for

Case 1t
A p2 g+ k()2

var (] = &~ 5] (2.17)

2mAptk (A+p)

A 2 2
var {A] = 2o [Rhutk(Mty) > (2.18)

amhptk (M)

2 2
A A

Cov(h,p) = —2A W . (2.19)

2mkhp + k2 (A+p)?

By similar manipulation there results for

Case 23
2
A +2\
varli] = AR
2
A g ; ”2
var[r] = K2m;+2

AA A
Cov[h,p] = Eﬁ .

Under certain conditions, e.g. when k becomes large, 2 and a can be
expected to be approximately normally distributed; also, the covariance
tends to zero. A proof of asymptotic normality following the pattemrn
of Cramer ([4], p. 366) could be given, but is omitted.

Although the large-sample properties of maximum likelihood

estimators are familiar, it is interesting to investigate samples of




realistic size. We shall carry out such an investigation here by
experimental sampling. By this means we are able to get an idea of

the adequacy of the maximum likelihood estimators and to evaluate

simple empirical adjustments to the latter to improve their performance.
Section III contains such results. Sampling experiments also can be

expected to reveal possible inadequacies of assumptions such as those
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made in writing down the basic likelihood (2.4).

C. First Sampling Experiment

This experiment was conducted for the sampling plan of Case 1
above, with estimates (2.10) and (2.11). The actual system sampled
involved parameter values

p = 0.2 (expected up-time of 5 units)

A =1 (expected down-time of 1 unit)

k =95 (number of initial periods observed)

m = 10 (number of later snapshots)
A synthetic system realization was observed continuously through five
consecutive up- and down-times, after which merely the state -- up, or
down -- was noted; snapshots were taken at intervals of approximately 15
time units. Five hundred realizations were examined. From the data for
each realization estimates p and N\ were computed, using (2.10) and (2.11).
In addition maximum likelihood estimates of the above parameters were
obtained, using merely the outcomes of the k = 5 initial period observations,
omitting the snapshots; we denote the latter by ﬁ'and f. Then, using both

A ~
sets of estimates, i.e. (ﬁ, \) and (ﬁ; \) we computed estimates of system

performance,
a) Operational Readiness = R = ELU S (2.20)
E[UJ+E[D] ~ Mp .
. - N T
b) Operational Reliability = r(T) = x:; e (2.21)

by substituting the estimates in for the unknown true parameters. The
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results estimate a) the long-run probability that the system will be up

when needed, and b) the long-run probability that the system will be up

and remain so for T time units thereafter, (e.g. throughout a mission time).

For our sampling experiment T = 2 time units.

A summary of the results obtained is given in the table below.

These summaries have been computed as follows. Consider the estimate of p,

say, obtained on the i-th runj call it ﬁi' Then

A il %?9 A
Alp) = =55 L i (2.22)
i=1
and
A 1 A A a2
V(u) ha m [Pq"A(P- )] ’ (2-23)
i=1 -
while ¢
A 1 A
M) = =55 (s =113
i=1
A

exactly tnhe same procedure applies to A\ .

The numbers in parentheses next to the estimated variances for
Patch-Snapshot sampling were computed using the asymptotic formulas
(2.17) and (2.18). Those in square brackets next to the corresponding
means, variances, and mean-square error for Patch sampling were computed

using the exact formulas

E[R] = E%T L (2.25)
and K 2 2
Var[g] = ('E:T) E.L-LE (2.26)

(2.24)
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i k +2 2
Mkl = Ty ¢ (2.27)

By and large, agreement between the estimated variances and the exact
variances for Patch Sampling is very good. The agreement between the
asymptotic variances and sampling variances for Patch-Snapshot Sampling

is less good. The difference is probably attributable to the failure of

the asymptotic formula for our small sample size (k = 5, m = 10). An
alternative approach would be to use the linearization or "deita method",
expanding p and N\ in powers of ;, ;, and % and taking expectations. By

this means the approximate bias as well as the variance can be determined.

Table 1
Estimates of Failure and Repair Rates
A=1,p=0.2, k=5, m=10
(Statistics based on 500 independent realizations)

Patch-Snapshot Patch
Averagess A(fl) = 0.231 A(R) = 0.244[.250]
A(N) = 1.20 A(R) = 1.24 [1.25]
A ~
Variances: v(p) = 0.011(0.0066) V() = 0.020[.021]
V(A) = 0.4l (0.16) V(X) = 0.61 [0.52]
A ~
Mean Squaret M(p) = 0.012 M(p) = 0.022[0.023]
Error M(R) 5 0.45 M(X) = 0.67 [0.58]

Indications are present in this table that the estimates are biassed upwards,
but less so when Patch-Snapshot information is available than with Patch
information alone; the bias of the latter can be computed, see (2.25). The
difference between A(ﬁ) and p is significant at the two-sided 5% level,

as is that between A(f) and A. In theé following section we discuss ways of
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reducing the bias. In spite of the presence of bias, Patch-Snapshot
Sampling does considerably reduce both the variances and mean-squared errors
of the estimates of A\ and p below those of the estimates obtained from

Patch Sampling alone.

It is of interest to study the results of utilizing our estimates
of A and p to estimate the measures R (see (2.20)) and r(T) (see (2.21)) ot
operational performance. The following table contrasts the results of using
Patch-Snapshot information, and Patch information alone.

Table 2

Estimates of Operational Performance
A=l, p=0.2, k=5, m=10

Patch-Snapshot Patch

Averages: ad) = 0.822 (0.833) A(R) = 0.815 (0.833)
A(£) = 0.533 (0.558) A(F) = 0.526 (0.558)

Variances: v(ﬁ) = C.0057 (0.005) V(R) = 0.0094 (.00774)
V(%) = 0.016 (0.016) V(%) = 0.022 (.0218)

A ~
Mean-Square  M(R) = 0.0058 M(R) = 0.0097
Error M(%) = 0.017 M(T) = 0.0226

A A
The asymptotic variances of R and r, listed in parentheses, were

obtained by delta method: for example, from the approximation

A A
. R 2 dR
R=R+()\-)\)a+(p-u)";,

there resulits, if \ = E[f] and p = E[R] ,



2 2
Ao . 3R A oR A 3R 3R . A A
var [R] 2 ) Var[r] + (5;) Var[p] + 2 3¢ 3 Cov[Ayp] (2.28)

In fact we do not have E[f] =\ and E[ﬁ] = u for our sampling experiment.

The best estimates of E[f] and E[}] available are A(Q) and A(ﬁ) respectively,
and expanding around these values can be expected to improve the approxima-
tions (although the variances for ﬁ and ? in Table 2 are in excellent
agreement). The above statements hold true also for the estimates based upon
fand : . When the derivatives in (2.3) are evaluated and the asymptotic
variances and covariance (see (2.17), (2.18), and (2.19)) are substituted

into (2.18) the results are

Case 1
Varlﬁ] 2 2?x2“2 > (2.29)
- (M) “[2mAptk (M) )
and
var[#] ¢ 2T 222§ 2keokT o)1 mhpsk (v) 21 o)

2 2 2
(A+p) 2kmAp + k“(A+p)

By setting m = O in the latter expressions, variances for Patch sampling
result. On the basis of our knowledge of the exact moments of :’and'g
(see (2.25) and (2.26)) a somewhat improved approximation to Var[aj is
avallable. It is now possible to expand around the finite sample
expectation, and to use exact variances. The result is E%E times

(2.29), the latter with m = O. When k=0 the sampling plan reduces to
consideration of m snapshot observations only, and the maximum likelihood

estimator of R is simply % y with mean R and variance 51#251. It is

interesting that when k = O in our approximate formula (2.29) for



A
Var(R] the latter delivers the exact variance just quoted.
Although Case 2 will not be explored to any great extent, the
form of the estimate of R implied by (2.12) and (2.13) is easy to obtain

and appears rather strikings

Case 2
Vx,
R = (2.31)
x4y,
and
A -
var[R] = ﬂ%m—“)- (2.32)

Addition of the excess life information thus reduces the variance of
our estimate of R to exactly one-half of that of the corresponding
snapshot estimate. If k Patch observations are alone available, then

(2.29) provides that
A .
Var[R] =2 B-UL-R . (2.33)

The variances associated with the above estimates should be of aid in

selecting a sampling procedure, if such an option 1s available.
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III. Modifications of Maximum Likelihood Estimates

Maximum likelihood estimates possess many desirable large-sample
properties. If, however, one is interested in estimates that minimize
such a plausible measure of loss or estimate ineffectiveness as the mean-
squared error, then it is known that modifications in the "raw" maximum
likelihood estimates are sometimes effective. An example of a modification
(to remove bias) is furnished by the familiar practice of dividing by
(sample size-1) rather than (sample size) when estimating the Gaussian
variance.

In this section we use a sampling experiment to evaluate the
effect of some heuristic or empirical modifications in the Patch-Snapshot
estimates. The modifications are suggested by first considering the simple
components of the problem -- Patch information or Snapshot information alone --

and adapting the results to the problem at hand.

A. Patch estimate unbiassing

The maximum likelihood estimate of p based on a Patch sample of k,

;_k_
XY

is biassed. Since the density of u, is gamma we find directly that

-1

00
k
= L1 - 1 -px (ux = X
Ef) = kE[ kf > e LE_%-Tk pdx = K5 p . (3.1)

+ 0

~ lod
Thus we can easily remove the bias of p, and likewise of A\, by simply

multiplying p and k by kkl . This suggests the following heuristics for
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improving Patch-Snapshot estimates (2.10) and (2.11):
A-13 Replace k by k-1 in the formulas (2.10) and (2.11);

k k '
A-2: Replace X, by T X4 and vy, by oy ke in (2.10) and (2.11).

B. Patch estimates with smallest mean square error
Consider estimates of the form cpu, where p is the Patch Sample

estimate. Then, again using the gamma distribution of x,, it may be shown

+

that
k=2 k-2

o< ﬁ = Xo<
k X,

is the estimate of minimum mean-squared error. This suggests considering
the procedure
B-1: Replace k by k-2 in (2.10) and (2.11).

k k g
B-2: Replace x_ by %3 X4 and vy by T3 Y4 in (2.10) and (2.11).

The above adjustments are but a few of the many possibilities,
and are simply proposed for experimental investigation. Their apparent
effects upon bias and mean-squared error will shortly be examined. Before
doing this, we consider the effect of modifying the part of the likelihood

function effected by Snapshots alone.

C. Snapshot estimate that minimizes the maximum mean-squared error
Suppose Patch information is ignored. Then it is known, see
Lehmann [ 9 ], that the estimate of a binomial parameter p(= I%ﬁ) that

minimizes the maximum mean-squared error is, in present notation, given by

n_ L (3.2)
1+\m 21+ Vm)

s 2
Pr.m. m
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This suggests that we replace r by

tVh L1 _m (3.3)

1+ym 2 (1+\m)

in the estimating formulas (2.10) and (2.11). However, the value of this
modification can perhaps be questioned in advance if there is evidence that
p is much above one-half; see the comparison of risks of the minimax and the
minimum variance unbiassed estimate, % , (Lehmann [ 9 1, p. 4-24). The
sampling experiment tends to bear out our suspicions for the present example.
Still further modifications are suggested if prior information is

formally incorporated via Bayes' Theorem.

D. Snapshot generalized maximum likelihood estimate, beta prior
Given Snapshot information, and, in addition, a beta prior distri-
bution, then the modified likelihood function appears as follows

r -
L(rs £, 8) = p  (1-p)™ TP ; (3.4)

A
where p = T and the generalized maximum likelihood estimate pg is the
value of p that maximizes L(r; ¥, 8):

I & & 4
g m+ +8

o (3.5)

A

Let us suppose that rather diffuse information about the value of p = NHL
is available from previous experience. Consider the priors with

1) €=4, 3=1

(3.6)

2) (=8, 8= 2;

both have modal values at 0.8. While 1) is the more diffuse, spreading
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p-value probability more uniformly over [0, 1] than does 2), neither appears
4o strongly pre-judge the issue.

The heuristic modifications suggested are then

D-1: Replace r by m(ﬁ%% in (2.10) and (2.11)
D-2: Replace r by m(i{%a) =

The estimate (2.32) can be interpreted in a strictly Bayesian
manner as the mean of a posterior distribution for p. L(r; (, 3) is
proportional to that posterior when the prior is of the beta form; we get

(2.32) precisely whan the beta prior is proportional to p r’"l(l-p}b'l.

E. Generalized maximum likelihood estimate, beta prior

Examination of the likelihood function (2.4) shows that a beta
prior for K%; may be applied directly to it to create a posterior density
for A and p. If the prior is proportional to pr(l-df, then in the general
likelihood (2.4) we only need to change a to at+9, and B to B+d to obtain the
posterior. In order to obtain the values of )\ and g that are the modal
values of the posterior (generalized maximum likelihood estimates) the
above changes may be incorporated into (2.8) and (2.9). In particular, for
Case 1 the parameters of (2.4) become

as=bs=k

@ =TI+, p = m-rtd = mt{4d~(r+Y)

—— i - L TR e~ m—- -

-



and the generalized estimates are obtained by replacing r by r+and m by
m+f48 in (2.10) and (2.11). We shall examine the modifications

E-1: Replace r by r+4 and m by m+5 in (2.10) and (2.11);

E-21 Replace r by r+8 and m by m+10 in (2.10) and (2.11).
These correspond to the beta priors of (2.33).

The above modifications are but a few of those that suggest them-

selves. For example, we have not studied the effect of introducing prior
probabilities for A\ and p in the Patch part of the likelihood function (2.4).

Natural priors for this purpose are independent gamma densities:

u-1
o(p) = e7HE 1“%%71- g (3.7)

and
\ v-1
- = q
‘b(k) e '2%1; Mo (3.8)
where the prior expectations and variances of j. and A\ are given by
u Ezl“l
Elp] = — » Var [p] = v , (3.9)

2
E ] (3.10)

E[\]

ﬁ sy Var[A]

Densities (2.34) and (2.35) incorporate conveniently with the part of the

likelihood involving e WX+ 3™+ P

. Specification of the priors can be
accomplished by selecting values for the above expectations and variances and
solving for the parameters £, u, 1, and v. Such specification may, as if

often suggested in Bayesian analysis, reflect subjective attitudes as well

as past performance of similar equipments. Given the parameters, then it is
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¢1sily seen that the generalized maximum likelihood estimates for Patch-
Snapshot sampling result by replacing X, by x++£, Y, by y++q, a by atu-l,
and L by b+v-1 in the expressions {(2.10) and (2.11). It appears that a
natural bivariate prior for Patch-Snapshot sampling is proportional to

e'[ut+%q] (u()u-l(kn)v-l (3.11)
(wh)"

but in the latter p and \ 2re not independent. Specification by choice of
parameters §, n, u, v, and w will not be attempted.

The five-hundred realization sampling experiment, described
in Section II, C, was utilized to evaluate the effects of the various

modifications. The following table summarizes the results.
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DISCUSSION OF TABLE 3.
A. Modification of the rate estimates
l. Consider first the bias. Use of \/g§gz as an estimate of the

standard deviation of A(ﬁ) together with the normal approximation provides
strong evidence that

a) The unmodified Patch-Snapshot estimate ﬁ (and also Q) is

biassed upwards. Likewise, so are the modified estimates D,.

D-1, D-2, E-1, and E-2., The magnitude of this upward bias is

very much the same for modifications other than C; the bias of C

is relatively large for the estimate of ﬁ, and small for that of Q.

b) The modified estimates A-1, A-2, and in particular B-1, and

B-2, are biassed downwards. Modifications A-1 and A-2 are

closer, on the average, to the true mean than the unmodified

estimate, and also closer than modifications B-1 and B-2.

c) The unmodified Patch estimate ﬁ (and also {) is biassed

upwards to a greater degree than the Patch-Snapshot estimates.

As anticipated, modifications A-1 and A-2 effectively remove

this bias. Applied to Patch-Snapshot they tend to over-remove

it (see b)), which is not surprising.

2. Consider the mean-squared error.

A
a) The mean-squared errors, M(ﬁ) and M(\), of the Patch-Snapshot
A A
estimates A and 1 seem to be reduced by a fector of approximately
1.65 by application of modifications A-1 and A-2. Modifications

B-1 and B-2 have about the same effect upon mean-squared error,
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but they have much greater effect upon variance: the B-modifica-
tions reduce the variance of the estimates by approximately a
factor of 3.

b) Modification C has a more beneficial effect upon mean and
mean-squared error of £ than upon a. Modifications D-1 and

D-2 have only very slightly beneficial effects, again more
importantly upon { than upon ﬁ. The same is true of E-1 and E-2.
c) Of the modifications considered, the B-modifications

produce the smallest mean-squared errors for the Patch estimates.
The A-modifications are, however, effective in reducing mean-

squared error and are exactly unbiassed.

B. The effect of the modifications on estimates of probabilities R and r
1. Consider the bias.

a) Use of the sample variance leads to the conclusion that ﬁ and ﬁ,
the Patch Snapshot and Patch estimates of R, are biassed downwards.
None of the suggested modifications significantly effect this bias,
save for C. which somewhat increases its magnitude. Very probably
the fact that the priors involved in the D and E modifications have
a mode below 0.833 (at 0.8) has a tendency to further increase
the bias. The bias of 3 is somewhat smaller than that of R.
b) The Patch-Snapshot estimate g appears to be biassed downwards
when no modification is made, but use of the sample variance does
not enable us to state this with high confidence. Again'f has a

greater bias than f. The A modifications seem to remove this effect,
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perhaps replacing it by a smaller, upward, bias. The B modifi-

cations apparently go too far.

2. Consider the mean-squared error.
a) Only the D and E modifications seem to have a beneficial effect
upon the mean-squared error of ﬁ; these effectively cut the mean
squared error in half. A smaller, but still desirable, impact upon 4
is noticeable.
b) If sampling were Snapshot alone, then the estimate of R is the

r
number of successes = @ R, and

E[R] = ;%; y Var[r] = ;?iﬁ;;i .

Thus R is unbiassed, and for our example

V(R) = M(R) = 0.0139 . (3.12)
A ~.
Comparison with V(R) and V(R) indicates that Patch Snapshot reduces the

above mean square error by about a factor of two.



26.

IV. Robustness

The exponential assumptions (2.2) made in deriving our maximum
likelihood estimates are often plausible, especially in reliability
problems. However, one seldom can test such assumption:z thoroughly, and it
seems worthwhile to investigate the behavior of our estimates when, in fact,
other -- perhaps equally plausible -- distributions govern the observations.
To this end we have utilized a sampling experiment, first generating five
hundred realizations for each of three sets of alternative distributions,
then sampling from these realizations as was done before, and finally
computing estimates of p, A\, R, and r. Modifications were also considered.

Specifically, suppose that the up times of the two-state process
have the log-normal distribution:

(1n x-mu)/ou

2
PULx = — e Yadz (4.1)
- on
V @

and that the down times also have the log-normal distribution with para-
meters m, and og . We can express the moments of U (and D) in terms of

2, 2. .
mu(md) and ou(od), and vice-versa, thus

2 { 2
m, = log J-L—[U?‘,}: T 03 = log ,'52&_] S (4.2)
(). E])

Given I[U] and E[U2], and the corresponding moments for down time one can

(
~

utilize (4.1) to draw appropriately centered and scaled random normal
deviates. Let ﬁ'be such a number; then a realization of U having desired

mean and variance is achieved by computing
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u = eU .
From such log-normally distributed realizations, a realization of the
up-down process history may be obtained.

As was remarked earlier, one use for such histories is to
investigate the behavior of maximum likelihood estimators computed under
the exponential specification when, in fact, the log-normal specification
prevails. The results of such investigation are tabled and discussed
below. We take, as in the exponential situation,

E{U]

E[D]

Now for the exponential distribution the following relationship between

5
(4.3)

l.

first and second moments exists:
E[U2] =2 Ez[U] . (4.4)
We can easily determine log-normal distributions with this
property. From (4.2) the underlying normal must in this case have

parameters

1 2
m, = log E[U] - 5 log 2, o = log 2. (4.5)

A log-normal distribution with parameters (4.5) will agree with an
exponential with mean E[U] up to second moments. In what follows we shall
refer to this situation as Case E, (E = exponential).

Ccontrasted with the above will be examined one in which the

coefficient of variation is one-half:

Ep®] = 2 £y, (4.6)
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s0

(4.7)

Q
]
—
o
(Yol
Nlw
.

a 1 3
m, = log E[U] - 5 log (2) )
This is called Case H (H = half-exponential).

The last case to be considered is that in which the coefficient
of variation is twice that of the exponentials

EL?] = 3 E%[u], (4.8)
so

1 2
m, = log E[U] - 5 log 3, o, = log 3. (4.9)

This is called Case T (T = twice-exponential).
Comparisons of the behavior of our estimates when the distribu-

tions of Cases, E, H, and T prevail are given in the next tables.
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DISCUSSION OF TABLE 4.

V&
a) Use of VEQE;I and %éal and the normal approximation provide strong

evidence that for Patch-Snapshot sampling the L.-N. cases E, T, and H are
all biassed upwards, just as is the original exponential. The upward bias
seems actually to be somewhat smaller for the cases L.-N., E and L.-N.,
H than for the exponential case itself. If the parameters were estimated
knowing that the L.-N. specification were correct still better properties
would be expected for the estimates, but there are indications that only
when L.-N., T prevails does any degradation occur ir mean-squared error.
The latter effect is possibly attributable to the positive skewness of
L.-N., T, which is greater than that for the exponential. The degree of
bias exhibited by the Patch-Snapshot estimates seems also to be smaller
than that of the Patch estimates alone.

The mean-squared errors of our estimates (2.10) and (2.11) in the
L.-N. cases seem satisfactory; for only L.-N., T do M(a) and M(Q) exceed
the values for the exponential case. Again an improvement over the mean-
squared errors for Patch estimates alone seems to exist, although this

improvement is not dramatic.

b) For the L.-N. specification the A-modification appears to over-reduce
the upward bias mentioned in a) above, at least for L.-N., E and H. It is

nearly correct for L.-N., T. The net effect is to reduce or leave

essentially unchanged the bias, except for L.-N., H; in the latter case
the bias is increased. But in all cases the mean-squared error is brought

down by the A-modification, sometimes considerably.
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c) The B-modification tends to over-correct the bias, without producing
a compensatory effect upon mean-squared error. In case L. il., H the mean-
squared error seems to have been increased.

Lastly, we examine the maximum likelihood estimates of R and r when
the log-normal is the actual underlying distribution. A summary appears in

Table 5.
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DISCUSSION OF TABLE 5.

a) There is an apparent tendency for the estimates R and r to be biassed
downwards; the bias of the latter being greater than that of the former.
Notice that the biases are actually not as serious for L.-N. cases as for
the exponential. The various modifications of the estimates of X\ and p
seem to have very little effect upon the magnitude of the bias. Modifica-
tions A, B, and C tend to somewhat increase the mean-squared error of R.
The D and E modifications somewhat reduce the mean-squared error of R.
Certainly the latter mean-squared error is brought considerably below that

of the "distribution-free" estimate (3.12).

b) The bias of the unmodified estimates f, anc likewise of T, is in a
downwards direction. In part this may be the effect of the downward bias
of the R estimates, and in part that of the upward bias of the estimates of
i« Apparently the A and B modificatiorns over-compensate for this effect.
For the present numbers the simple arithmetic average of the unmodified

and the A-modified estimates has smaller bias than either component alone;
this may be an accident, but further heuristics are suggested as a
consequence. Modifications D and E force the bias, and also the mean-
squared error, still further downwards. It would be of interest to combine
modifications, applying A and D together for example, but this experiment

has not yet been conducted.

Tables 4 and 5 suggest that, at least for the particular situation
considered in our sampling experiment, the maximum likelihood estimates

based on an exponential specification behave well also when the data is

iog-normal.
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Certainly no liard and fast conclusions are possible as a result of
the sampling experiments. However, possibly useful indications concerning
the behavior of our maximum likelihood estimates are obtained where none seem

otherwise available.
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