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I. Introduction to the Problem 

In certain applied areas, notably that of systems reliability, 

but also those of work sampling and communications, it is common to 

consider a system that randomly occupies one of two states. Thus in the 

reliability application (upon which we shall concentrate hereafter) a 

radar system may be operative ("up"), or inoperative ("down"), while in 

work sampling a worker may be "working" or "resting", and in communications 

a telephone line or other facility may be "idle" or "busy". Random state 

occupancy means that the durations of the times spent in the two states 

exhibits random variability. For example, the tendency of system times- 

to-failure (up-times) to be approximately exponentially distributed is well- 

known (see Davis [ 5 ]). Similarly, the idle time of a telephone line will 

be exponential if calls occur in a stationary Poisson fashion, as may 

frequently be a reasonable assumption. Of course distributions other than 

the exponential can, and frequently do, arise. 

Our purpose in this paper is to discuss the problem of estimating 

the parameters of the probability distributions specifying the two-state 

process described. Of interest also is the estimation of functions of 

these parameters, e.g. "system readiness" and "system reliability" in the 

reliability context; these notions will be defined later. The estimation 

problem clearly depends upon the manner in which observations are taken. 
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i.e. upon the sampling plan. We assume here that at least certain of the 

observations are available only at rather infrequent times. When observations 

are made we assume that they either, a), reveal only the state of the system 

that prevails at the instant of observation, in which case we call them 

snapshots, or b), consist of continuous recording of the system state 

throughout intervals of fixed or random duration, in which case we call 

them patches. In this paper we shall consider mixtures of these plans, in 

which snapshots and patches are mutually interspersed. 

The motivation for considering such sampling plans is essentially 

that of determining system parameters economically and without the bias that 

is possible, at least in the reliability area, from the use of operator log- 

book data. The latter frequently is extremely spotty and unreliable, and a 

supplement is desirable. Snapshot, or even patch, observations approximate 

those made when occasional readings on system state are possible. For 

example, after the time of a military action it is likely to be accurately 

recalled whether or not a radar was up when needed, and possibly even the 

approximate length of time it remained so. See Cox ([ 1 ], p. 87 ff.) for 

a discussion of a related machine stoppage question. In a recent paper, 

[ 3 ], Cox has also considered an estimation problem very similar to ours. 

In activity sampling or time study snapshot observations are frequently 

taken; it has been suggested by Moder [lO J that the efficiency of such 

studies can be increased by also observing the remaining time in state of 

the system, particularly if the state observed occurs relatively infrequently. 

In telephony analogous sampling procedures may also be considered. 
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An interesting effect that sometimes accompanies system observa- 

tions is that the system behavior actually changes as ü consequence.    For 

one thing,  inspections may increase the vigilance and motivation of support 

personnel,  thus inducing the system to spend more time in the up, or 

desirable,  state.    On the other hand, too-frequent observations are 

distracting and time-consuming,  and may breed resentment.    We shall not 

attempt here to provide statistical procedures accounting for the possible 

behavioral impact of inspections or audits, although work in this direction 

is in progress. 
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II. The Exponential Model and Maximum Likelihood 

Before proceeding to estimate parameters in the general model 

described it is necessary to specify the latter mathematically. In 

reliability terminology we assume that the system is alternately up and 

down, that the i-th up time is U., the i-th down time is D., and that 

^U,, 1=1 »2, ....] and [D., i=l,2, ...] are mutually independent sequences 

of independent and identically distributed random variables. Thus the 

system is described by a two-state renewal process (Cox [ 1 ] ) .   In 

this case if the system is observed at widely spaced instants the chance 

that it is observed up is, by general renewal theory, 

Pfup in long run} = ETDI+ETD] (2a) 

with the complementary probability applying to the complementary event. 

It is thus clear that by rare snapshot sampling we can only estimate the 

ratio of the two means. However, if actual time durations are observed, as 

in patch sampling, it appears that estimates of both £[u] and E[D] are 

available. We treat this possibility in terms of the special model, in 

which up- and down-times are exponentially distributed. 

A. Exponential Model 

Let the up- and down-times have densities 

yx) = e PA^,    n > 0, x > o. 

and •' <-. O N 

fD(y) - e 'yX,    X > 0, y > 0. 
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where       E[u] = JA'
1
   and   E[D] = X-1 . 

This simple two-state Markov model occurs in reliability applications, and 

perhaps in other areas as well. We shall base our estimation procedures 

upon it. However, we shall also attempt to test the robustness of the 

estimates thereby derived by treating processes having up and down times 

actually described by other distributions (e.g. members of the log-normal 

family) as if they were from the Markov process generated by distributions 

(2.2). Results of this test, conducted by experimental sampling, are 

described in Section IV . 

B. Maximum Likelihood 

Given the two-state renewal model, with distributions (2.2) we can 

now write down the likelihood function under the assumption of rare observation. 

Let us, for illustration, suppose that the system is initially observed in the 

up state, and that starting at that moment a patch of complete up periods 

(U realizations) and complete down periods (D realizations) is recorded. 

Following this, a long interval is allowed to elapse and the system is again 

observed; the state observed recorded at the moment of first observation, 

and a subsequent patch of up and down realizations again recorded; the 

process is repeated periodically, always with long intervals elapsing between 

consecutive patches. 

Owing to the assumption of long delays between patches we shall 

assume that the probability that the system is in an up condition when a new 

patch observation begins is 
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^L      -.-Ä.    , (2.3) 
EIUJ+£|DJ        X+^ 

the system is down at patch beginning with the complementary probability. 

Moreover,  the    memoryless    or Markovian property of the exponential distri- 

bution (see Feller  [ 6  ]), assures that the duration of the first time in 

state at patch beginning (termed "remaining life", or "forward recurrence 

time",  see Cox  [ 1   ])  is exponentially distributed, with the parameter 

appropriate to the state observed at patch beginning.    It is this last 

property that renders patch sampling of the exponential process especially 

tractable,  for in general the forward recurrence time is not distributed 

in the same manner as is the corresponding time in state. 

The above considerations then lead to the likelihood function 

L(X..) = e^V e-*V (^)0(I*/. (2.4) 

where 
a 

x = total uptime observed; x  = ^ x., 
i=l 

x. being an individual up interval (or forward recurrence time), 

a = total number of up intervals (including forward recurrence 
times), 

y = total down time observed; y,  =  V V* » 

i=l 

b = total number of down intervals 
(including forward recurrence times), 

a = total number of patches beginning with system up, 

ß = total number of patches beginning with system down. 

Expression (2.4) can be specialized to account for a number of alternative 
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sampling plans.    Two examples follow. 

Case It A system's up and down history is continuously recorded through 

k initial up and down periods. Thereafter, m rare snapshot observations 

are made, on r of which the system is in an up condition.    In this case 

a = b = k 

a = r,  ß = m-r . 

Case 2i A system is observed m times at rare intervals, and each time 

the system state and the remaining time in that state are recorded. Then 

a = a = r 

b - ß = m-r. 

Returning to the general case, with likelihood (2.4), differentia- 

tion of the log-likelihood yields the two equations 

0 loq L = £* - o+fi . y =o (2.5) 
8X      X   X+H  y+  u u,o; 

and 

8 log L _ a+£ _ ajf 
x+ ==0 . (2.6) 

Eliminating the term involving (X+MO" we obtain 

-1  y-t-"x->- , a+ß -1 

then substitution into (2.6) produces the quadratic equation in ^i: 

^2[x+(y+- x+)] + Ji[y+(a-a) + x+(2a+b-^)] - (a+ß)(a+b) ■ 0 . (2.7) 
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The appropriate solution Is the laaxlmum likelihood estimate 

A     [y (a-a)-x+(2a+b+ß)]+ ^[y+(a-a)-x+(2a+b+ß)]2+4(y+-x+)(a-if )(a+b)x4 
, ^^^  (2.8) 

By symmetry, the maximum likelihood estimate of X is 

A  [x (b-p)-y (2b+a+a)]+ \/[x+(b-ß)-y+(2b+a+o)]
2+4(x+- y+)(b+a)(a+i))y+ 

X = 2(x+- y+)y,  (2-9) 

A little algebra shows that the quantities under the radicals are non- 

negative. For the Cases 1 and 2 above (2.8) and (2.9) become 

A  [y+(lt-r)-x (3k-hn-r)]+ ^[y+U-rJ-x^Ok-hn-rjft 8(y+- x+)(k^n-r)kx 
V- =  (2.10) 

2(y+-x+)x+ 

A  [x+(k+T-m)-y+(3k4r)]+ V[x+(k4T-m)-y+(3k+r)]
246(x+-y+)(k4T)ky+ 

X 2(x+-y>+  ^V 

A       m 
Case 2i      \i   =    ^ZZ~ » (2.12) 

x =  S  . (2.13) 
y+ + ^x+y+ 

The asymptotic variance-covariance matrix can be computed directly. 

We find first 

-E[82 lol L] = k^ + ^-a-A.- (2.14) 
ÖHZ      ^  H(X+ I*) 



-E[^2-L]    =   ^ + --2L (2a5) 

so (2*14) and (2.15) are the diagonal; sr.d (2.16) the off-diagonal, 

elements in the information matrix.    Inversion then gives for 

Case It 

Var[J]    =   £ [^ + k<U^] (2.17) 
K      2m\^+k(\+n)z 

Var l\]    =   ^ [m\^k(Ufx)2      ^ (2a8) 

2m\|i+lc(\+nr 

Cov(\,2)    =   —^ü!     . (2.19) 

2mk\ji + k2(\+^)2 

By similar manipulation there results for 

Case 2» 

..    rA, u2(u+2\) 
2m\ 

L   J 2m^ 

Cov[ü,;]    =   ^      . 

-1 A 
Under certain conditions, e.g. when k becomes large, \ and p. can be 

expected to be approximately normally distributed; also,  the covariance 

tends to zero.    A proof of asymptotic normality following the pattern 

of Cramer ([4], p. 366) could be given,  but is omitted. 

Although the large-sample properties of maximum likelihood 

estimators are familiar,  it is interesting to investigate samples of 



realistic size.    We shall carry out such an investigation here by 

experimental  sampling.    By this means we are able to get an idea of 

the adequacy of the maximum likelihood estimators and to evaluate 

simple empirical adjustments to the latter to improve their perfoimance. 

Section III contains such results.    Sampling experiments also can be 

expected to reveal possible inadequacies of assumptions such as those 
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made in writing down the basic likelihood (2.4). 

C. First Sampling Experiment 

This experiment was conducted for the sampling plan of Case 1 

above, with estimates (2.10) and (2.11). The actual system sampled 

involved parameter values 

|i a 0.2 (expected up-time of 5 units) 

\ ■ 1  (expected down-time of 1 unit) 

k = 5  (number of initial periods observed) 

m = 10 (number of later snapshots) 

A synthetic system realization was observed continuously through five 

consecutive up- and down-times, after which merely the state — up, or 

down — was noted; snapshots were taken at intervals of approximately 15 

time units. Five hundred realizations were examined. From the data for 

each realization estimates \i  and \ were computed, using (2.10) and (2.11). 

In addition maximum likelihood estimates of the above parameters were 

obtained, using merely the outcomes of the k = 5 initial period observations, 

omitting the snapshots; we denote the latter by \i  and \. Then, using both 

sets of estimates, i.e. ([j,, \) and ([i, \)  we computed estimates of system 

performance, 

a) Operational Readiness = R = CTTJCCTDI = x+T (2.20) 

b) Operational Reliability = r(T) = ^- e"^T (2.21) 

by substituting the estimates in for the unknown true parameters. The 
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results estimate a) the long-run probability that the system will be up 

when needed, and b) the long-run probability that the system will be up 

and remain so for T time units thereafter, (e.g. throughout a mission time). 

For our sampling experiment T = 2 time units. 

A summary of the results obtained is given in the table below. 

These summaries have been computed as follows. Consider the estimate of |i, 

say, obtained on the i-th run; call it p,.. Then 

A    1   f:. AW - 5ÖÖ  ^ h t2-22' 

and 
fA. 1   ^.^2 v(n) = sÄn L    [h-A^ >]» (2-23) 

i=l 500 

while 

= 500   ^n ^i-^
2} M(2) = ^ö   L     Ik-vTi (2.24) 

1=1 

exactly the sama procedure applies to \ . 

The numbers in parentheses next to the estimated variances for 

Patch-Snapshot sampling were computed using the asymptotic formulas 

(2.17) and (2.18). Those in square brackets next to the corresponding 

means, variances, and mean-square error for Patch sampling were computed 

using the exact formulas 

E[f] = kTI ^ (2.25) 

and .22 
Varfr] = (Ar) ^- (2.26) 
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M^ " (k-l)(k-2) ^ 
(2.27) 

By and large, agreement between the estimated variances and the exact 

variances for Patch Sampling is very good. The agreement between the 

asymptotic variances and sampling variances for Patch-Snapshot Sampling 

is less good. The difference is probably attributable to the failure of 

the asymptotic formula for our small sample size (k = 5, m = 10). An 

alternative approach would be to use the linearization or "delta method", 

expanding \i  and X in powers of x, y, and - and taking expectations. By 

this means the approximate bias as well as the variance can be determined. 

Table 1 
Estimates of Failure and Repair Rates 

X=l,p,=0.2, k=5, m=10 
(Statistics based on 500 independent realizations) 

Averages! 

Patch-Snapshot 

A(u)    =   0.231 

A(M    =    1.20 

Patch 

A(J)  = 0.244[.250] 

A(X)    =    1.24  [1.25] 

Variances: V(^)    =    0.011(0.0066)    V(^)    =    0.020[.021] 

V(X)    =    0.41   (0.16)        VCK)    =    0.61   [0.52] 

Mean Square: M(n)    =    0.012 

Error M(^)     ;    0.45 

M(^)    =    0.022 [0.023] 

M(X)    =    0.67   [0.58] 

Indications are present in this table that the estimates are biassed upwards, 

but less so when Patch-Snapshot information is available than with Patch 

information alone;  the bias of the latter can be computed,   see  (2.25).    The 
.A. 

difference between A(^) and \i  is significant at the two-sided b% level, 

as is that between A(X) and X.. In the following section we discuss ways of 
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reducing the bias. In spite of the presence of bias, Patch-Snapshot 

Sampling does considerably reduce both the variances and mean-squared errors 

of the estimates of X and \i  below those of the estimates obtained from 

Patch Sampling alone. 

It is of interest to study the results of utilizing our estimates 

of \ and p. to estimate the measures R (see (2.20)) and r(T) (see (2.21)) ot 

operational performance. The following table contrasts the results of using 

Patch-Snapshot information, and Patch information alone. 

Table 2 
Estimates of Operational Performance 

\=1, [i=0.2, k=5, m=10 

Patch-Snapshot 

Averagesi    A(R) = 0.822 (0.833) 

A(r) = 0.533 (0.558) 

Patch 

A(^) = 0.815 (0.833) 

A(f) »= 0.526 (0.558) 

Variances!    V(R) = 0.0057 (0.005)      V(R) = 0.0094 (.00774) 

V(r) = 0.016 (0.016) V(r) = 0.022 (.0218) 

Mean-Square 

Error 

M(R)  = 0.0058 

M(r)  = 0.017 

M(R)   = 0.0097 

M(r)  = 0.0226 

A A 
The asymptotic variances of R and r,  listed in parentheses, were 

obtained by delta method:    for example,  from the approximation 

R  = R + (\-\) -^ +  (ji-n) -- , 

there results, if X = E[\] and \i = B[\i] , 
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Var [S] = (f) Var[C] + (^) Var[J] + 2 f |S Cov[X.J] .   (2.28) 

In fact we do not have E[X>] =\ and E[ji] = n for our sampling experiment. 

The best estimates of E[\] and E[p,] avaiiable are A(\) and A(ii) respectively, 

and expanding around these values can be expected to improve the approxima- 

tions (although the variances for R and r in Table 2 are in excellent 

agreement). The above statements hold true also for the estimates based upon 

AT and n . When the derivatives in (2.23) are evaluated and the asymptotic 

variances and covariance (see (2.17), (2.18), and (2.19)) are substituted 

into (2.18) the results are 

Case li 

VarfcR] '- r^-li — (2.29) 
(\+n) [2m\ji+k(\+[i) ] 

and 

var[^ , e-2,T J^ (2kf2kT(U,)+T
2rmM^(^)2l] ^ ^^ 

(X+ji) I  2kmXn + k (\+IL)       j 

By setting m = 0 in the latter expressions, variances for Patch sampling 

result. On the basis of our knowledge of the exact moments of \ and p, 

(see (2.25) and (2.26)) a somewhat improved approximation to Var[R] is 

available. It is now possible to expand around the finite sample 

expectation, and to use exact variances. The result is r—^ times 

(2.29), the latter with m = 0. When k=0 the sampling plan reduces to 

consideration of m snapshot observations only, and the maximum likelihood 

r R(1-R) estimator of R is simply — , with mean R and variance —i L,    It is r  7 m  ' m 

interesting that when k = 0 in our approximate formula  (2.29)  for 
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Var[H] the latter delivers the exact variance just quoted. 

Although Case 2 will not be explored to any great extent, the 

form of the estimate of R implied by (2.12) and (2.13) is easy to obtain 

and appears rather striking! 

Case 2 

JK  
R    =   -=— — (2.31) 

vx+   +  ■vy+ 

and 

Var[R]    =    ^^ (2.32) 2m 

Addition of the excess life information thus reduces the variance of 

our estimate of R to exactly one-half of that of the corresponding 

snapshot estimate.    If k Patch observations are alone available,  then 

(2.29) provides that 

Var[R]    =2R ^"R^ . (2.33) 

The variances associated with the above estimates should be of aid in 

selecting a sampling procedure, if such an option is available. 
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III. Modifications of Maximum Likelihood Estimates 

Maximum likelihood estimates possess many desirable large-sample 

properties. If, however, one is interested in estimates that minimize 

such a plausible measure of loss or estimate ineffectiveness as the mean- 

squared error, then it is known that modifications in the "raw" maximum 

likelihood estimates are sometimes effective. An example of a modification 

(to remove bias) is furnished by the familiar practice of dividing by 

(sample size-l) rather than (sample size) when estimating the Gaussian 

variance. 

In this section we use a sampling experiment to evaluate the 

effect of some heuristic or empirical modifications in the Patch-Snapshot 

estimates. The modifications are suggested by first considering the simple 

components of the problem — Patch information or Snapshot information alone 

and adapting the results to the problem at hand. 

A. Patch estimate unbiassing 

The maximum likelihood estimate of p. based on a Patch sample of k, 

-/  k 
x
+ 

is biassed.    Since the density of u, is gamma we find directly that 

ECT]    '    kE[i-]     =    k  _[   i    ,-** tegi .dx - £ , . (3.1) 

Thus we can easily remove the bias of \i,  and likewise of X, by simply 

multiplying ^ and \ by -r- . This suggests the following heuristics for 
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improving Patch-Snapshot estimates (2.10) and (2.11)t 

A-li Replace k by k-1 in the formulas (2.10) and (2.11); 

A-2» Replace * by —• x+, and y+ by ^- y+ in (2.10) and (2.11). 

B. Patch estimates with smallest mean square error 

Consider estimates of the form cp,, where [i is  the Patch Sample 

estimate. Then, again using the gamma distribution of x , it may be shown 

that 

k-2 ^   k-2 
TV   = "T" + 

is the estimate of minimum mean-squared error. This suggests considering 

the procedure 

B-li Replace k by k-2 in (2.10) and (2.11). 

k k 
B-2i Replace x+ by j^ x+, and y+ by j—^ y+ in (2.10) and (2.11). 

The above adjustments are but a few of the many possibilities, 

and are simply proposed for experimental investigation. Their apparent 

effects upon bias and mean-squared error will shortly be examined. Before 

doing this, we consider the effect of modifying the part of the likelihood 

function effected by Snapshots alone. 

C. Snapshot estimate that minimizes the maximum mean-squared error 

Suppose Patch information is ignored. Then it is known, see 

Lehmann [ 9 1» that the estimate of a binomial parameter p(= r-r") "that 

minimizes the maximum mean-squared error is, in present notation, given by 

p   = Ij/£_+_i   . (3.2) 
m-m-   m i+fi       2(1+ ^) 
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This suggests that we replace r by 

ym  . 1   11 
_ +- -^r   > (3.3) 

l+Vn»   2 (1+Vm) 

in the estimating formulas (2.10) and (2.11). However, the value of this 

modification can perhaps be questioned in advance if there is evidence that 

p is much above one-half; see the comparison of risks of the minimax and the 

minimum variance unbiassed estimate, - , (Lehmann [ 9 ], p. 4-24). The 

sampling experiment tends to bear out our suspicions for the present example, 

Still further modifications are suggested if prior information is 

formally incorporated via Bayes ' Theorem. 

D. Snapshot generalized maximum likelihood estimate, beta prior 

Given Snapshot information, and, in addition, a beta prior distri- 

bution, then the modified likelihood function appears as follows 

Kr; ?,   t)  = pr+K(l-p)m-r+6 ; (3.4) 

where p = rxj- , and the generalized maximum likelihood estimate p is the 

value of p that maximizes L(r; *', b)i 

r-f * pg   =  srm   ' (3.5) 

Let us suppose that rather diffuse information about the value of p = 7T^ 

is available from previous experience. Consider the priors with 

1) ^= 4, 6 = 1 
y (3.6) 

2) « = 8, 6 = 2; 

both have modal values at 0.8. While 1) is the more diffuse, spreading 
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p-value probability more uniformly over [Of l] than does 2), neither appears 

to strongly pre-judge the Issue. 

The heuristic modifications suggested are then 

D-li Replace r by   m(^)    in (2*10) an<i i2*n) 

D-2i Replace r by   mfeiö^ * 

The estimate (2.32) can be interpreted in a strictly Bayesian 

manner as the mean of a posterior distribution for p. L(rj ft  &) is 

proportional to that posterior when the prior is of the beta form; we get 

(2.32) precisely wbsn the beta prior is proportional to p   (1-p) ' • 

E. Generalized maximum likelihood estimate, beta prior 

Examination of the likelihood function (2.4) shows that a beta 

prior for r-r- may be applied directly to it to create a posterior density 
jr.  .« 

for \ and \i»    If the prior is proportional to p (1-p) , then in the general 

likelihood (2.4) we only need to change a to a+^, and ß to ß+6 to obtain the 

posterior. In order to obtain the values of X and \i,  that are the modal 

values of the posterior (generalized maximum likelihood estimates) the 

above changes may be incorporated into (2.8) and (2.9). In particular, for 

Case 1 the parameters of (2.4) become 

a » b - k 

a ■ r+ , ß « m-r+ft ■ m+f'+6-(r+*') 
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and the generalized estimates are obtained by replacing r by r+» and m by 

m+Ä'-f* In (2.10) and (2.11).    We shall examine the modifications 

E-li    Replace r by r+4 and m by m+5 In  (2.10) and (2.11); 

E-2i    Replace r by r-K3 and m by m+10 In (2.10) and (2.11). 

These correspond to the beta priors of (2.33). 

The above modifications are but a  few of those that suggest them- 

selves.    For example, we have not studied the effect of Introducing prior 

probabilities for \ and \i in the Patch part of the likelihood function  (2.4). 

Natural priors for this purpose are Independent gamma densities: 

u-1 

and 

„(n) = .-•* Üfär 5 (3.7) 

♦(0 - e"'"1 {^p- 1 , (3.8) 

where the prior expectations and variances of \i and \ are given by 

E^] = -^ ,   Var   [^ =   ^    ' (3-9) 

2 
£[\] =   ^ ,  Var[X]    =   ^ . (3.10) 

Densities (2.34)  and  (2.35)   incorporate conveniently with the part of the 

likelihood involving e'^x+ p, e' y+ \    .    Specification of the priors can be 

accomplished by selecting values for the above expectations and variances and 

solving for the parameters  ^, u,  f],  and v.     Such  specification ruay,  as if 

often suggested in Bayesian analysis, reflect subjective attitudes as well 

as pact performance of similar equipments.    Given the parameters,  then it is 
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tasily seen that the generalized maximum likelihood estimates for Patch- 

Snapshot sampling result by replacing x+ by x +^, y, by y. + f)» a by a+u-l, 

and t by b+v-1  in the expressions (2*10) and (2.11). It appears that a 

natural bivariate prior for Patch-Snapshot sampling is proportional to 

(^\)w 

but in the latter |j, and \ are not independent.    Specification by choice of 

parameters 5,   T], U,  V, and w will not be attempted. 

The five-hundred realization sampling experiment, described 

in Section II, C, was utilized to evaluate the effects of the various 

modifications.    The following table summarizes the results. 
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DISCUSSION OF TABLE 3. 

A. Modification of the rate estimates 

1. Consider first the bias. Use of WSQQ as an estimate of the 

standard deviation of A(p.) together with the normal approximation provides 

strong evidence that 

a) The unmodified Patch-Snapshot estimate \i (and also X) is 

biassed upwards. Likewise, so are the modified estimates 0, 

D-l, D-2, E-l, and E-2. The magnitude of this upward bias is 

very much the same for modifications other than C; the bias of C 

A A 

is relatively large for the estimate of |1, and small for that of X. 

b) The modified estimates A-l, A-2, and in particular B-l, and 

B-2, are biassed downwards. Modifications A-l and A-2 are 

closer, on the average, to the true mean than the unmodified 

estimate, and also closer than modifications B-l and B-2. 

c) The unmodified Patch estimate p. (and also \) is biassed 

upwards to a greater degree than the Patch-Snapshot estimates. 

As anticipated, modifications A-l and A-2 effectively remove 

this bias. Applied to Patch-Snapshot they tend to over-remove 

it (see b)), which is not surprising. 

2. Consider the mean-squared error. 

A A 

a) The mean-squared errors, M([i) and M(X), of the Patch-Snapshot 
A       A 

estimates X and \i  seem to be reduced by a factor of approximately 

1.65 by application of modifications A-l and A-2. Modifications 

B-l and B-2 have about the same effect upon mean-squared error. 
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but they have much greater effect upon variance:    the B-modifica- 

tions reduce the variance of the estimates by approximately a 

factor of 3. 

b) Modification C has a more beneficial effect upon mean and 

mean-squared error of \ than upon p,.    Modifications D-l and 

D-2 have only very slightly beneficial effects, again more 

importantly upon X than upon p..    The same is true of E-l and E-2. 

c) Of the modifications considered,  the B-modifications 

produce the smallest mean-squared errors for the Patch estimates. 

The A-modifications are, however,  effective in reducing mean- 

squared error and are exactly unbiassed. 

B.    The effect of the modifications on estimates of probabilities R and r 

1.    Consider the bias. 
A ^ 

a) Use of the sample variance leads to the conclusion that R and R, 

the Patch Snapshot and Patch estimates of R, are biassed downwards. 

None of the suggested modifications significantly effect this bias, 

save for C. which somewhat increases its magnitude. Very probably 

the fact that the priors involved in the D and E modifications have 

a mode below 0.833 (at 0.8) has a tendency to further increase 

the bias. The bias of R is somewhat smaller than that of R. 

b) The Patch-Snapshot estimate r appears to be biassed downwards 

when no modification is made, but use of the sample variance does 

not enable us to state this with high confidence. Again r has a 

greater bias than r. The A modifications seem to remove this effect, 
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perhaps replacing it by a smaller, upward, bias. The B modifi- 

cations apparently go too far. 

2. Consider the mean-squared error. 

a) Only the D and E modifications seem to have a beneficial effect 

upon the mean-squared error of R; these effectively cut the mean 

squared error in half. A smaller, but still desirable, impact upon r 

is noticeable. 

b) If sampling were Snapshot alone, then the estimate of R is the 

r  -■ 
number of successes — = R , and m    ' 

Thus R is unbiassed, and for our example 

V(R) = M(R) = 0.0139 . (3.12) 

Comparison with V(R) and V(R) indicates that Patch Snapshot reduces the 

above mean square error by about a factor of two. 
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IV.    Robustness 

The exponential assumptions (2.2) made in deriving our maximum 

likelihood estimates are often plausible, especially in reliability 

problems.    However, one seldom can test such assumptionc thoroughly, and it 

seems worthwhile to investigate the behavior of our estimates when,  in fact, 

other — perhaps equally plausible ••- distributions govern the observations. 

To this end we have utilized a sampling experiment,   first generating five 

hundred realizations for each of three sets of alternative distributions, 

then sampling from these realizations as was done before, and finally 

computing estimates of p,, X, R,  and r.    Modifications were also considered. 

Specifically,  suppose that the up times of the two-state process 

have the log-normal distribution! 

.(In x-mu)/ou 

P U < x    =    —        /e"    ^dz (4.1) 

and that the down times also have the log-normal distribution with para- 
2 

meters m . and o. .    We can express the moments of U  (and D) in terms of 

2    2 
m (m.) and o (o,); and vice-versa,  thus u    d u    d ' 

.       / E2rul    .          2          .       i E[U21 ,„ 0x 
mu =    09  '  T^T     '     0u    =     09      2 * (4•2) \kW]:      u >2[u]; 

2 
Given  ^[U] and E[U  ],  and the corresponding moments  for down time one can 

utilize (4.1) to draw appropriately centered and scaled random normal 

deviates.    Let U be such a number;  then a realization of U having desired 

mean and variance is achieved by computing 
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u   -  e
u. 

From such log-normally distributed realizations, a realization of the 

up-down process history may be obtained. 

As was remarked earlier,  one use for such histories is to 

investigate the behavior of maximum likelihood estimators computed under 

the exponential  specification when,   in  fact,  the log-normal  specification 

prevails.    The results of such investigation are tabled and discussed 

below.    We take,  as in the exponential  situation, 

E[U]  = 5 
(4.3) 

E[D] = 1. 

Now for the exponential distribution the  following relationship between 

first and second moments exists: 

£[U2] = 2 E2[U]  . (4.4) 

We can easily determine log-normal distributions with this 

property.    From  (4.2)  the underlying normal must in this case have 

parameters 

mu = log E[U] - ^ log 2,       o*    = log 2. (4.5) 

A log-normal distribution with parameters  (4.5) will agree with an 

exponential with mean E[u] up to second moments.    In what follows we  shall 

refer to this situation as Case E,   (E = exponential). 

Contrasted with the above will be examined one in which the 

coefficient of variation  is one-half: 

3 
2 E[U2]    =    |E2[U], (4.6) 
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so 

2      ,.. 3 m iu ' log E[U] - i log (|)  , cT = log | . (4.7) 

This is called Case H (H = half-exponential). 

The last case to be considered is that in which the coefficient 

of variation is twice that of the exponential« 

E[U2]    =    3 E2[UJ , (4.8) 

so 

m    - log E[U] - ^ log 3, o2 = log 3. (4.9) u y     L  J      2      y    ' u 

This is called Case T (T = twice-exponential). 

Comparisons of the behavior of our estimates when the distribu- 

tions of Cases, E, H, and T prevail are given in the next tables. 
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DISCUSSION OF TABLE 4. 

a) Use of VJ^' and y ~r and the normal approximation provide strong 

evidence that for Patch-Snapshot sampling the L.-N. cases E, T, and H are 

all biassed upwards, just as is the original exponential. The upward bias 

seems actually to be somewhat smaller for the cases L.-N., E and L.-N., 

H than for the exponential case itself. If the parameters were estimated 

knowing that the L.-N. specification were correct still better properties 

would be expected for the estimates, but there are indications that only 

when L.-N., T prevails does any degradation occur in mean-squared error. 

The latter effect is possibly attributable to the positive skewness of 

L.-N., T, which is greater than that for the exponential. The degree of 

bias exhibited by the Patch-Snapshot estimates seems also to be smaller 

than that of the Patch estimates alone. 

The mean-squared errors of our estimates (2.10) and (2.11) in the 

L.-N. cases seem satisfactory; for only L.-N., T do M(p,) and M(X) exceed 

the values for the exponential case. Again an improvement over the mean- 

squared errors for Patch estimates alone seems to exist, although this 

improvement is not dramatic. 

b) For the L.-N. specification the A-modification appears to over-reduce 

the upward bias mentioned in a) above, at least for L.-N., E and H. It is 

nearly correct for L.-N., T. The net effect is to reduce or leave 

essentially unchanged the bias, except for L.-N., H; in the latter case 

the bias is increased. But in all cases the mean-squared error is brought 

down by the A-modification, sometimes considerably. 



31. 

c)    The B-modificatlon tends to over-correct the bias, without producing 

a compensatory effect upon mean-squared error.    In case L. :J., H the mean- 

squared error seems to have been increased. 

Lastly, we examine the maximum likelihood estimates of R and r when 

the log-normal is the actual underlying distribution.    A summary appears in 

Table 5. 
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DISCUSSION OF TABLE 5. 

a) There is an apparent tendency for the estimates R and r to be biassed 

downwards; the bias of the latter being greater than that of the former. 

Notice that the biases are actually not as serious for L.-N. cases as for 

the exponential. The various modifications of the estimates of X and ji 

seem to have very little effect upon the magnitude of tho bias. Modifica- 

tions A, B, and C tend to somewhat increase the mean-squared error of R. 

The D and E modifications somev/hat reduce the mean-squared error of R. 

Certainly the latter mean-squared error is brought considerably below that 

of the "distribution-free" estimate (3.12). 

b) The bias of the unmodified estimates r, and likewise of r, is in a 

downwards direction. In part this may be the effect of the downward bias 

of the R estimates, and in part that of the upward bias of the estimates of 

\i.    Apparently the A and B modifications over-compensate for this effect. 

For the present numbers the simple arithmetic average of the unmodified 

and the A-modified estimates has smaller bias than either component alone; 

this may be an accident, but further heuristics are suggested as a 

consequence. Modifications D and E force the bias, and aJso the mean- 

squared error, still further downwards. It would be of interest to combine 

modifications, applying A and D together for example, but this experiment 

has not yet been conducted. 

Tables 4 and 5 suggest that, at least for the particular situation 

considered in our sampling experiment, the maximum likelihood estimates 

based on an exponential specification behave well also when the data is 

log-normal. 
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Certainly no hard and fast conclusions are possible as a result of 

the sampling experiments.    However, possibly useful Indications concerning 

the behavior of our maximum likelihood estimates are obtained where none seem 

otherwise available. 
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